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Abstract. The ISA-plasticity is a useful theory to propose constitutive
models for soils accounting for small strain effects. It uses the intergranu-
lar strain concept, previously proposed by Niemunis and Herle (1997) to
enhance the capabilities of some existing hypoplastic models under cyclic
loading. In contrast to its predecessor, the ISA-plasticity presents a com-
pletely different formulation to incorporate an elastic locus depending
on a strain amplitude. However, it keeps similar advantages and brings
other new ones such as the elastic locus and improved simulations of
the plastic accumulation upon a number of cycles. In the present article,
some numerical investigations are made to evaluate the performance of
an ISA-plasticity based model on simulations with repetitive loading. We
have chosen to couple the ISA-plasticity with the hypoplastic model by
Wolfferdorff to simulate some experiments. At the beginning of the arti-
cle, the theory of the ISA-plasticity is briefly explained. Subsequently, its
numerical implementation is step by step detailed. A semi-explicit algo-
rithm is proposed and some hints are given to allow the coupling with
other models. At the end, some simulations of experiments with the Karl-
sruhe fine sand are shown in which the performance of the model under
repetitive loading is evaluated. The behavior of the plastic accumulation
is examined upon a number of cycles and some remarks are given about
the current investigation.

Keywords: ISA model · Plastic accumulation · Repetitive loading ·
Hypoplasticity

1 Introduction

The ISA-Plasticity is a useful mathematical platform to develop constitutive
models for the simulation of cyclic loading in soils. This theory considers the fact
that the simulation of cyclic behavior is improved when accounting for the effect
of the recent strain history [16,17]. Therefore, it incorporates the intergranular
strain concept, originally proposed by Niemunis and Herle [13] to consider this
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information. The mathematical formulation of the ISA-Plasticity is however dif-
ferent from the one of Niemunis and Herle [13]: to start, the evolution equation of
the intergranular strain is elastopolastic, and its formulation is based on a simple
bounding surface approach. Furthermore, it considers an elastic locus related to
a specific strain amplitude which can be adjusted to the elastic threshold strain
amplitude [18,20]. Finally, its yield surface presents a kinematic hardening sim-
ilar to some “bubble” models for clay (e.g. [1]) to simulate a smooth transition
between the elastic and plastic behavior.

Since the work of Fuentes and Triantafyllidis [6], the ISA-plasticity has been
used to extend some existing models. Recently, an ISA-plasticity model was
coupled with the hypoplastic model by Wolffersdorff [21] to examine its behav-
ior under complex loading [15]. It was concluded that the model needed to be
extended in order to simulate well the plastic accumulation under repetitive
loading. The proposed extension in [15] is based on a simple mechanism: if the
model experiences subsequent cycles away from the critical state line, it reduces
the rate of plastic accumulation. With this, the proposed extension achieved a
good performance in some simulations with cyclic loading. However, this ver-
sion is recent and should be carefully inspected with additional examples in
order to study its advantages and disadvantages. Beside this, the procedure for
its numerical integration has not been well detailed and discussed. Hence, more
description is expected by some users for the implementation of an ISA-plasticity
based model on finite element codes to solve boundary value problems.

In the present work, we evaluate an ISA-plasticity based model under repet-
itive loading. We include some simulations of element test under monotonic and
cyclic loading to analyze the behavior of the plastic accumulation upon a number
of cycles. Furthermore, we analyze the performance of the model in a finite ele-
ment simulation of a shallow foundation subjected to cyclic loading. Additional
descriptions for the numerical implementation of the model were also included.
The structure of the present article is as follows. We begin with an outline of
the ISA-plasticity and give some hints to link it with some existing models.
Then, a numerical integration scheme is detailed. Finally, the mentioned simula-
tions are shown and carefully analyzed. The notation of this article is as follows.
Scalar quantities are denoted with italic fonts (e.g. a, b), second rank tensors
with bold fonts (e.g. A, σ), and fourth rank tensors with Sans Serif type (e.g.
E, L). Multiplication with two dummy indices, also known as double contraction,
is denoted with a colon “:” (e.g. A : B = AijBij). A dyadic product between
two second rank tensors is symbolized with A⊗B and results in a fourth order
tensor Cijkl = AijBkl. The deviatoric component of a tensor is symbolized with
an asterisk as superscript A∗. The effective stress tensor is denoted with σ and
the strain tensor with ε. The Roscoe invariants are defined as p = −trσ/3,
q =

√
3/2 ‖σ∗‖, εv = −trε and εs =

√
2/3 ‖ε∗‖.
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1.1 Brief Description of the ISA-plasticity

In this section the formulation of the ISA-plasticity is outlined. Details and
additional information of the model are found in [5,6]. We use the same notation
of the variables as in former publications [5,6].

According to this theory, cycles under small strain amplitudes (‖Δε‖ < 10−4)
deliver an elastic response while those with larger strain amplitudes render plas-
tic behavior. The transition from elastic to plastic is demarcated by the strain
amplitude ‖Δε‖ = R ≈ 10−4. To capture this, the ISA-plasticity uses the infor-
mation of the intergranular strain which is a strain-type state variable, proposed
by Niemunis and Herle [13] to detect recent changes of the strain rate direction.
Having this information, we may improve existing models for the simulation of
cyclic loading and eliminate the excessive plastic accumulation (racheting). The
ISA-plasticity featured an alternative evolution equation for the intergranular
strain h, with a special characteristic: under elastic conditions, the intergranular
strain h evolves identically with the strain ε:

ḣ = ε̇ (under elastic conditions) (1)

The latter condition makes simple the formulation of a yield surface with
the desired property. It should present a spherical shape within the principal
space of the intergranular strain to guarantee an elastic locus with a specific
strain amplitude ‖Δε‖ = R. Therefore, the yield function denoted with FH , is
defined as:

FH = ‖h − c‖ − R

2
(2)

whereby R is a material parameter representing the strain amplitude and c is
a tensor representing the center of the yield surface and therefore called the
back-intergranular strain. The value of R may be adjusted to the elastic ampli-
tude observed on shear modulus degradation curves, with typical values around
R ≈ 10−5−10−4. The yield surface presents a kinematic hardening which fol-
lows some hardening rules from the bounding surface plasticity. Therefore, the
model considers an additional bounding surface as depicted in Fig. 1. Its move-
ment is ruled by the kinematic hardening of its center, i.e. the back-intergranular
strain c.

The evolution law of the intergranular strain h is elastoplastic. Its formula-
tion was basically proposed considering two facts: the first is that under elastic
conditions its evolution equation gives ḣ = ε̇. The second is the assumption of
an associated flow rule N = (∂FH/∂h) to make its formulation simple. Hence,
the following evolution law has been proposed [6]:

ḣ = ε̇ − λ̇HN (3)

whereby λH ≥ 0 is the consistency parameter (or plastic multiplier) and N is
the flow rule (‖N‖ = 1) which reads:

N =
∂FH

∂h
=

h − c
R/2

(4)
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Fig. 1. Yield surface and bounding surface within the intergranular strain principal
space. (a) Names and notation. (b) Example of a bounding condition for the intergran-
ular strain

The consistency parameter vanishes under elastic conditions λH = 0 and
takes its maximum value λ̇H = ‖ε̇‖ at the bounding surface of the intergranular
strain. The shape of the bounding surface is also spherical but with fixed center
at h = 0 and diameter equal to 2R, i.e. it presents twice the size of the yield
surface. The bounding surface function FHb reads:

FHb = ‖h‖ − R (5)

The hardening rule for the back-intergranular strain c uses similar ideas to
the bounding surface plasticity. For this purpose, we project an image tensor of
c at the bounding surface with the following mapping rule:

cb = (R/2)
−→̇
ε (6)

whereby cb is the projected tensor. The hardening function c̄ = ċ/λ̇ reads:

c̄ = βh(cb − c)/R with ċ = λ̇H c̄ (7)

where βh is an additional parameter to control the rate of c. Notice that if
cb = c then the rate c̄ = 0 vanishes. Hence for very large strains, the model
gives h = hb, c = cb, see Fig. 1b. The expression for the consistency parameter
is deduced by simple plasticity relations from the consistency equation ˙FH = 0
and reads:

λ̇H =
〈N : ε̇〉

1 −
(

∂FH

∂c

)
: c̄

(8)

whereby the operator 〈x〉 = x when x > 0 and 〈x〉 = 0 if x ≤ 0. The Eqs. 2–8
conform the model of the intergranular strain alone. This model evolves in paral-
lel with the mechanical model but independently because it does not depend on
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the stress tensor σ. The ISA-plasticity introduces some additional scalar factors
to use the information provided by the intergranular strain model. These scalar
factors depend on the projection of the intergranular strain h at the bounding
surface using the flow rule N as the mapping tensor:

hb = RN (9)

where hb is the projected tensor. Aided by tensor hb, one may detect some
recent movements in the loading history. For example, if ‖hb −h‖ = 0, it means
that the current intergranular strain lies at its bounding condition. According
to the model, this condition is only reached under large strain amplitudes and is
therefore called “mobilized states”. On the other hand, greater values of ‖hb −
h‖ > 0 represent a reversal loading which has been recently performed. Hence,
the model proposes the function ρ as:

ρ = 1 − ‖hb − h‖
2R

(10)

In this manner, ρ = 0 implies reversal loading while ρ = 1 implies “mobilized
states”. In the next section, the mechanical model will be briefly described.

1.2 Description of the Mechanical Model

The mechanical model relates the stress rate σ̇ with the strain rate ε̇ through
a constitutive equation. For this theory, the constitutive equation presents the
following general form:

σ̇ = mĒ : (ε̇ − yh ˙̄εp) (11)

where m and yh are scalar functions, Ē and ˙̄εp are called “mobilized” stiffness
tensor and “mobilized” plastic strain rate respectively. Tensors Ē and ˙̄εp can
be adjusted to existing relations of hypoplastic models, e.g. [8,10,21]. Actually,
when the intergranular strain lies under mobilized states, the scalar functions
render m = 1 and yh = 1 and the model yields to:

σ̇ = Ē : (ε̇ − ˙̄εp) (for mobilized states) (12)

This mathematical form is actually not recognized as a formal hypoplastic model
[9]. Users of the Hypoplasticity family are rather familiar with the equation:

σ̇ = Lhyp : ε̇ + Nhyp ‖ε̇‖ (for mobilized states) (13)

whereby Lhyp is the “linear” stiffness and Nhyp is the “non-linear” stiffness
[8,10,21,22]. The existing relations for tensors Lhyp and Nhyp can be adopted
for the present theory when setting the following equivalencies:

Lhyp = Ē (14)

Nhyp = − (E : ˙̄εp)/‖ε̇‖ (15)
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We have selected the hypoplastic model by Wolffersdorff [21] for the present
work considering that our interest is the simulation of sand.

The scalar function yh is a factor which ranges between 0 ≤ yh ≤ 1 and aims
to reduce the plastic strain rate after reversal loading. The function yh reads:

yh = ρχ〈N :
−→̇
ε 〉 (16)

where χ is an exponent which can be set as a material constant [6], or improved
to account for the effect of repetitive loading within the plastic accumulation
rate [14]. The function m aims to increase the stiffness upon reversal loading.
This function reads:

m = mR + (1 − mR)yh (17)

where mR is a material constant to increase the stiffness under elastic condi-
tions. The consideration of these equations allows to illustrate schematically
the response of the ISA model under different strain amplitudes, as depicted
in Fig. 1. For instance, let us suppose an elastic strain amplitude of R = 10−4.
For small strain amplitudes (‖Δε‖ < 10−4), the behavior is elastic and the
constitutive equation yields to σ̇ = mRĒ : ε̇. For very large strain amplitudes
(‖Δε‖ > 10−2), also called “mobilized states”, the intergranular strain lies at
its bounding condition h = hb and the scalar factors give yh = 1 and m = 1.
Therefore, the model coincides with the hypoplastic equation σ̇ = Ē : (ε̇− ˙̄εp) or
σ̇ = Lhyp : ε̇ + Nhyp ‖ε̇‖. Between these two states, a “transition” phase exists
in which the model operates with the equation σ̇ = mĒ : (ε̇ − yh ˙̄εp), see Fig. 2.

The recent modification by Poblete et al. [15] included the modification of
exponent χ to improve the simulations under repetitive loading. In order to
detect whether a few or a number of subsequent cycles have been performed,
they proposed an additional state variable εacc with the following evolution law:

ε̇acc =
Ca

R
(1 − yh − εacc) ‖ε̇‖ (18)

whereby Ca is a material parameter controlling the rate of ε̇acc [15]. Notice that
if one performs subsequent cycles, the function yh reduces its value yh → 0 and
the state variable εacc starts to increase. Hence, one can use this information
to reduce the plastic strain rate upon subsequent cycles which are now detected
with the condition εacc > 0. To achieve this, the exponent χ is reduced according
to the relation:

χ = χ0 + εacc(χmax − χ0) (19)

whereby χ0 and χmax are material constants. The first should be adjusted for
small number of cycles N < 3 and the other for large number of cycles (e.g.
N > 15).

We now end this section with the deduction of the continuum (explicit) stiff-
ness M = (∂σ̇/∂ε̇) of the model. This can be deduced after derivation of the
constitutive equation such that it reduces to:

σ̇ = M : ε̇ (20)
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Fig. 2. For cycles under small strain amplitudes ‖ε̇‖ < R, the behavior is elastic.
At mobilized states, the constitutive equation turns into hypoplastic. Between these
two states, a smooth transition is simulated through the functions 0 ≤ m ≤ mR and
0 ≤ yh ≤ 1

whereby the continuum stiffness M reads:

M =
{

[mR + (1 − mR)yh](Lhyp + ρχNhyp ⊗ N) for FH ≥ 0
mRL

hyp for FH < 0
(21)

1.3 Numerical Implementation

A numerical implementation for finite element codes has been performed in a
Fortran subroutine following the syntax of Abaqus. The simulations were
made using the open-source software Incremental Driver [12] created by
Niemunis but modified by the authors of this work to improve the code for cyclic
loading. The algorithm is semi-explicit, meaning that most equations were solved
explicitly except by a few which will be mentioned in the sequel. The integration
strategy is similar to classical implementations of elastoplastic models, in which
an elastic predictor is made to detect whether an elastic or plastic step should
be performed. For this implementation, a subincrementation algorithm is rec-
ommended to avoid numerical convergence difficulties. A subincrement size of
about ‖Δε‖ ≈ 10−5 is recommended. The implementation is split in two parts,
the first related to the intergranular strain model and the second to the mechan-
ical model. The subroutine structure is typical of finite elements code, in which
the strain increment together with the current state (stress, state variables) are
given as input and the subroutine delivers the state at the end of the increment,
see Table 1. The jacobian Jijkl = ∂Δσij/∂Δεkl is provided at the end of the
implementation for its use in the global finite element matrix. The integration
presented in the subsequent sections is based on the equations from Sect. 1.1.

1.4 Integration of the Intergranular Strain Model

The implementation begins with the intergranular strain model. The fact that
the model does not depend on the stress σ makes its implementation easier
because is not coupled with the mechanical model. In other words, the inter-
granular strain may be integrated independently from the mechanical model.
The integration scheme begins with the computation of a trial elastic step to
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Table 1. Input and ouput variables of the numerical implementation.

Symbol name

Input variables

εij Strain (beginning of increment)

Δεij Strain increment

σij Stress (beginning of increment)

Δt Time increment

hij Intergranular strain (beginning of increment)

cij Back-intergranular strain (beginning of increment)

εacc State variable (beginning of increment)

Output variables

σij Stress (end of the increment)

Jijkl Jacobian (end of increment)

hij Intergranular strain (end of increment)

cij Back-intergranular strain (end of increment)

εacc State variable (end of increment)

evaluate the yield function. In the following lines, a step-by-step guide is given
using the index notation to make simpler the interpretation of the tensorial
operations.

The first step is to define the strain rate ε̇ij and the unit strain rate ˆ̇εij :

ε̇ij = Δεij/Δt

ˆ̇εij =
ε̇ij√
ε̇ij ε̇ij

(22)

Then, the trial intergranular strain variable htrial
ij and trial back-intergranular

strain ctrialij are computed assuming elastic conditions:

htrial
ij = hij + Δεij

ctrialij = cij

(23)

The trial yield surface F trial is then computed:

F trial = [(htrial
ij − ctrialij )(htrial

ij − ctrialij )]1/2 − R

2
(24)

In case that F trial < 0, an elastic step is performed. For that case, we take
the trial variables htrial

ij and ctrialij as the solution:

hij = htrial
ij

cij = ctrialij

(25)
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In case that F trial ≥ 0, a plastic step is performed. In the plastic case, we
begin with the computation of the flow rule. For our implementation, we use the
approximation Nij ≈ N trial

ij :

Nij =
(htrial

ij − ctrialij )
√

(htrial
ij − ctrialij )(htrial

ij − ctrialij )
(26)

Subsequently, the consistency parameter is computed λ̇ as a function of the
image tensor cmax

ij and the hardening function c̄ij :

cmax
ij =

R

2
ˆ̇ε

c̄ij =
βR

R
(cmax

ij − cij)

λ̇ =
Nij ε̇ij

c̄ijNij + 1
(27)

Finally, the back-intergranular strain cij and the intergranular strain hij are
deduced implicitly from Eqs. 3 and 7 respectively:

cij = cij +
βR/R(cmax

ij − cij)λ̇Δt

1 + βR/Rλ̇Δt

hij = hij +

[

ε̇ijΔt − λ̇Δt

R/2
(hij − cij)

]

(

1 +
λ̇Δt

R/2

)

(28)

At the end of the plastic step, we recommend to use a simple correction to
ensure the condition FH = 0. We compute the flow rule Nij with the actualized
variables of the tensors hij and cij and then we correct cij as follows:

Nij =
(hij − cij)√

(hij − cij)(hij − cij)

cij = hij − R

2
Nij

(29)

Notice that with the latter correction the yield function gives FH = 0. Some
minor refinements may be introduced to the code to ensure that hij and cij never
cross beyond the bounding surface, but these corrections are not discussed in the
present work. In the next section, the numerical integration of the mechanical
model is detailed.

1.5 Integration of the Mechanical Model

We now present an integration procedure for the mechanical model. In contrast
to the previous section, the mechanical model is coupled with the response of the
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intergranular strain. An implicit implementation is troublesome in view of the
large amount of derivatives to be considered. Therefore, we perform an explicit
integration and let the numerical convergence to be achieved by selecting an
appropiated subincrement size. In the following lines, the code sequence for the
mechanical model is explained.

We begin with the computation of exponent χ according to Eq. 19:

χ = χ0 + εacc(χmax − χ0) (30)

Then, the flow rule Nij is once more actualized with the variables hij and cij

calculated within the intergranular strain model:

Nij =
(hij − cij)√

(hij − cij)(hij − cij)
(31)

Subsequently, the scalar factors ρ and yh are evaluated:

ρ = 1 −
√

(RNij − hij)(RNij − hij)
2R

yh = ρχ〈Nij
ˆ̇εij〉

(32)

Once the scalar functions and the intergranular model are actualized, we pro-
ceed to compute the stiffness tensor Mijkl. For this purpose, tensors Nhyp

ij and
Lhyp

ijkl ought to be defined. For our code, we have used some additional Fortran
subroutines to compute these tensors according to the hypoplastic equation by
Wolfferdorff [21], see Appendix A. We recall that the user is free to select the
hypoplastic model with its respective definitions for tensors Nhyp

ij and Lhyp
ijkl. In

general, these tensors do not depend on the intergranular strain model variables,
but only on the current stress σ and void ratio e. Hence, we recommend their
implementation with a simple explicit procedure with the appropriate subincre-
ment size. The user may improve this integration with automatic subincremen-
tation with error control [3,4].

Having tensors Nhyp
ij and Lhyp

ijkl defined, we compute the stiffness tensor
Mijkl. The computation of the stiffness tensor Mijkl depends whether an elastic
(F trial ≥ 0) or plastic step (F trial < 0) has been performed within the intergran-
ular strain model and reads:

Mijkl =
{

[mR + (1 − mR)yh](Lhyp
ijkl + ρχNhyp

ij Nkl) for F trial ≥ 0
mRLijkl for F trial < 0

(33)

The stress σij is actualized with the equation:

σij = σij + MijklΔεkl (34)

Finally, the void ratio e and the state variable εacc are actualized:

εacc = εacc +
Ca

R
(1 − yh − εacc)

√
ΔεijΔεij

e = e + (1 + e)(Δεii)
(35)
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For the sake of simplicity, we approximate the jacobian with Jijkl ≈ Mijkl

at the end of the subroutine. Simulations have shown that this approximation
leads to numerical convergence.

1.6 Material Parameters

In this section a brief description of the material parameters is given. A summary
of the model parameters with their respective names is given in Table 2. In this
table, we have also included their suggested range and some useful experiments
for their determination.

We basically distinguish three types of parameters: the first related to the
behavior of the material under monotonic loading. These parameter are the
one from tensors Lhyp and Nhyp, see Appendix A. The hypoplastic model by
Wolfferdorff adopted incorporates 8 parameters very well studied in the literature
[7,11]. They correspond to hs, nB , ei0, ec0, ed0, α and β and are calibrated
using routine tests under monotonic loading, especially oedometric and triaxial
tests. A comprehensive guide for their determination can be found in [7,15].
The second group corresponds to those incorporated in the evolution law of the
intergranular strain model. They correspond to mR, R, βh and χ0 and can be
adjusted with cyclic triaxial test. Notice that some of these parameters, such
as mR and R, were already introduced in the intergranular strain model by
Niemunis and Herle [11,13] and therefore their calibration experience can be also
used for the present model. A procedure for their determination is explained in
some recent works [5,6,15]. Lastly, the parameters Ca and χmax are aimed to
control the behavior of the model for a large number of repetitive cycles (e.g.
N > 15). They were explained in the work of [15] including some remarks for
their calibration. In order to analyze the influence of the parameter Ca, we have
included some simulations of a cyclic undrained triaxial test in Figs. 3 and 4.
These simulations borrow the parameters of the Karlsruhe fine sand (see Table 2)
but vary the parameter Ca = {0.005, 0.015, 0.025}. The void ratio was set to
e = 0.8 and the initial consolidation pressure to p0 = 100 kPa. Cycles with a
stress amplitude of qamp = 50 kPa were applied. The results shows how increasing
values of Ca increases the number of cycles required to reach the critical state
line, see e.g. Fig. 4. Hence, in some way the parameter Ca represents how fast
the model increases its stiffness due to the application of subsequent cycles. We
will show that a similar pattern is observed in finite element simulations of cyclic
phenomena.

2 Simulations of Experiments

In this section, we present the simulations of some triaxial tests to analyze
the model. These simulations consider an element test condition, meaning that
homogeneous fields of stress and strain are assumed. The selected material cor-
responds to the Karlsruhe fine sand, which has been previously calibrated in a
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Fig. 3. Simulations of cyclic undrained triaxial test. Parameters of Karlsruhe fine sand.
Variation of parameter Ca
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Table 2. Material constants of the model

Description Units Approx. range Value Useful experiments

Wolffersdorff hypoplaticity

ϕc Critical state friction angle [◦] 0◦−50◦ 33 UTCa

hs Granular hardness [-] 10−107 86260 OCb

nB Barotropy exponent [-] 10−6−1 0.32 OC

ei0 Maximum void ratio [-] 0.1−2 1.21 emax test

ec0 Critical void ratio [-] 0.1−2 1.09 emax test, UTC, DTCc

ed0 Minimal void ratio [-] 0.1−2 0.67

α Dilatancy exponent [-] 0−2 0.21 UTC, DTC

β Exponent [-] 0−10 1.5 UTC, OC, UTC, DTC

ISA parameters

mR Stiffness factor [-] 1−7 5 CUTCd

R IS yield surface radius [-] 10−5−10−4 1.4 × 10−4 −
βh IS hardening parameter [-] 0−1 0.35 CUTC

χ0 Minimum value of χ [-] 1−10 7 CUTC

Extension by [15]

Ca Controls the rate of εacc [-] 0−1 0.025 CUTC

χmax Maximum value of χ [-] 1−50 15 CUTC
aUTC: Undrained triaxial test
bOC: Oedometric compression test
cDTC: Drained triaxial test
dCUTC: Cyclic undrained triaxial test

former work [15]. This sand presents a mean grain size of d50 = 0.14 and a uni-
formity coefficient equal to Cu = d60/d10 = 1.5. The grain size is catalogued as
sub-angular, and seems not to produce an inherent anisotropy on air pluviated
samples due to its roundness [5]. The minimum and maximum void ratios are
emin = 0.677 and emax = 1.054 respectively and a specific gravity of Gs = 2.65
has been determined.

The first simulations correspond to six different undrained triaxial tests under
monotonic loading. All these tests were consolidated isotropically to the same
initial mean stress p = 200 kPa and sheared under triaxial conditions. Three of
them were sheared under compression while the other three under extension.
The void ratios e range between e = 0.698−0.964 and are indicated in Fig. 5.
All tests were simulated with the proposed model and showed in general a good
agreement, except by the lack of a quasi-steady state in the simulations. The
latter shortcoming is related to the performance of the Wolffersdorff hypoplastic
model.

The next experiments consist on two different cyclic undrained triaxial tests.
The first is shown in Fig. 6. The sample was isotropically consolidated to a
mean stress of p0 = 200 kPa and ended with a void ratio of e = 0.800. Then,
stress cycles with an amplitude of qamp = 120 kPa were applied. The experiment
exhibited 8 cycles before reaching failure at the critical state line. The simulations
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Fig. 5. Undrained triaxial test under compression and extension. Variation of initial
void ratios. Experiments using Karlsruhe fine sand, data from [19]
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Fig. 6. Undrained triaxial test under cyclic loading. Deviator stress amplitude of
qamp = 120 kPa. Experiment using Karlsruhe fine sand, data from [19]

also showed the same number of cycles. The post-failure behavior may present
some discrepancies. At that state, some other effects such as the cyclic mobility
are of importance, but this analysis is out of the scope of the present article. The
second cyclic test presents a similar density e = 0.798 after consolidation but
a different stress amplitude qamp = 50 kPa. The sample has been isotropically
consolidated to a pressure of p = 100 kPa. Considering the smaller value of the
stress amplitude, a larger number of cycles before reaching failure is expected.
The experiment showed about 90 cycles while the simulation showed about 83
cycles (Fig. 7). This is discrepancy is somehow small and may be improved by
selecting more appropriated parameters. The accumulated pore pressure uacc

against the number of cycles N of the two cyclic triaxial tests are plotted in
Fig. 8.
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Fig. 7. Undrained triaxial test under cyclic loading. Deviator stress amplitude of
qamp = 50 kPa. Experiment using Karlruhe fine sand, data from [19]

3 Simulations with Finite Elements

We now evaluate the constitutive model in a boundary value problem solved
with finite elements. The problem corresponds to a circular shallow foundation
subjected to cyclic loading. The finite element model was made by [23] to sim-
ulate a scaled model of a shallow foundation constructed in the laboratory of
the Institute of Soil Mechanics and Rock Mechanics from the Karlsruhe Insti-
tute of Technology [23]. The geometry and the boundary conditions are depicted
in Fig. 9. The main objective is to analyze the influence of the parameter Ca in
the simulations. Axial-symmetric finite elements with two degrees of freedom per
node (only displacements) were employed. The soil corresponds to the Karlsruhe
fine sand in dry conditions, i.e. no pore water pressure were included. The prob-
lem has been simulated using the software Abaqus Standard. A contact formu-
lation solved by the penalty method has been employed to simulate the frictional
interaction between the foundation and the soil with a friction coefficient of 0.5.
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Fig. 8. Accumulated pore pressure uacc against number of cycles N . Experiment using
Karlruhe fine sand, data from [19]

The foundation material is steel and is simulated with an isotropic elastic model
with a Young modulus equal to E = 2.1 × 108 kPa and Poisson ratio ν = 0.3.
The density of the foundation has been neglected on the current analysis.

P
0.13 m

0.47 m

Foundation 0.05

-0.05

P [kN]

N

45

(a) (b)

0.47 m

Fig. 9. Geometry and boundary conditions of the finite element simulation
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Fig. 10. Displacements contours for each case (Ca = 0, Ca = 0.025 and Ca = 0.05)
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A geostatic condition has been initially applied assuming a lateral earth
coefficient of K0 = 0.5 and a dry density of the sand equal to ρd = 1500 kg/m3.
The initial void ratio has been set to e = 0.8 and the intergranular strain has
been initialized assuming mobilized states in the vertical direction, i.e. h22 = −R
and c22 = −R/2, where the subindex 2 points in the vertical direction.

After the geostatic step, a sinusoidal load is applied on the top of the foun-
dation. The load is schematized in Fig. 9 and presents 45 cycles with maximum
value equal to P = 0.5 kN. We consider a very slow load velocity to ignore any
dynamic effect. Three different simulations were performed considering the vari-
ation of parameter Ca = {0, 0.025, 0.05}. The cases with Ca > 0 consider the
extension proposed in [15] to account for repetitive loading. The Fig. 10 presents
the contours of the displacements for the three cases at the end of the simula-
tion. The results clearly show an increasing settlement of the foundation with
decreasing value of Ca. Hence in some way, the parameter Ca simulates the over-
all increase of the stiffness upon the subsequent cycles. The plots of the vertical
displacements Uy on the top of the foundation are shown in Fig. 11.

4 Closure

We have performed some simulations of some experiments to evaluate the accu-
racy of an ISA-plasticity based model. For large strain ampltiudes ‖δε‖ > 10−2,
the model delivers the hypoplastic relation by Wolffersdorff [21]. The extension
by [15] was herein considered to simulate the reduction of the plastic accumu-
lation for increasing number of subsequent cycles. The simulations of element
test with cyclic loading under undrained triaxial conditions showed satisfactory
results. The model was able to capture approximately the number of cycles
required to reach the critical state line. We have also inspected the performance
of the model in a boundary value problem of scaled shallow foundation subjected
to cyclic loading. With the simulations, we have proved that the current model is
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able to increase its overall stiffness when it experiences repetitive loading. Cur-
rently, some other issues are investigated to improve the model, as for example
the cyclic mobility effect and the post-liquefaction behavior.

A Hypoplastic Model from Wolffersdorff

The hypoplastic model by Wolffersdorff has been explained in several works
[7,11,15,21]. We outline here the equations required to implement the model.
The general equation reads:

σ̇ = Lhyp : ε̇ + Nhyp ‖ε̇‖ (36)

whereby Lhyp is the “linear” stiffness and Nhyp is the “non-linear” stiffness. The
linear stiffness Lhyp reads [21]:

σ̇ = Lhyp = fbfe
1

σ̂ : σ̂
(F 2I + a2σ̂σ̂) (37)

whereby σ̂ = σ/trσ is the relative stress [11], I is a unit fourth order tensor for
symmetric tensors and the other quantities fb, fe, F and a are scalar functions.
The scalar function F is defined as:

F =

√
1
8

tan2(ψ) +
2 − tan2(ψ)

2 + 2
√

2 tan(ψ) cos(3θ)
− 1

2
√

2 tan(ψ)
(38)

whereby the factors a, θ and ψ are defined as:

a =
√

3(3 − sin(ϕc))
2
√

2 sin(ϕc))

tan ψ =
√

3‖σ̂∗‖

cos(3θ) =
√

6
tr(σ̂∗σ̂∗σ̂∗)
(σ̂∗ : σ̂∗)3/2

(39)

and depends on the deviator stress σ∗ and the critical state friction angle ϕc.
The remaining scalar functions fb, fe and fd are dependent on the characteristic
void ratios proposed by Bauer [2]:

ei = ei0 exp (− (3p/hs)
nB )

ed = ed0 exp (− (3p/hs)
nB )

ec = ec0 exp (− (3p/hs)
nB )

(40)

These curves introduces the parameters ei0, ed0, ec0, hs and nB . The scalar
functions fe and fb are called picnotropy and barotropy factors and read:

fe =
(ec

e

)β

fb =
hs

nB

(
1 + ei

ei

)(
ei0

ec0

)β (
− trσ

hs

)1−nB
[

3 + a2 −
√

3a

(
ei0 − ed0

ec0 − ed0

)β
]−1

(41)
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with the parameter β. The non-linear stiffness is defined as:

Nhyp = fdfbfe
Fa

σ̂ : σ̂
(σ̂ + σ̂∗) (42)

with the density factor:

fd =
(

e − ed

ec − ed

)α

(43)

with the parameter α controlling the model dilatancy.
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