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Abstract. The theory of zero purely elastic range in stress space within
the framework of bounding surface plasticity is applied to sand consti-
tutive modelling. With a vanished yield surface, plastic loading occurs
for any direction of the stress ratio rate on which the loading and plas-
tic strain rate directions now depend, rendering the model incrementally
non-linear. The resulting model falls into the category of hypoplastic-
ity in the sense of dependence of the plastic strain rate direction on the
stress rate direction, that is different from another constitutive hypoplas-
ticity theory, which does not involve classical plasticity loading-unloading
criteria and additive decomposition of total strain rate into elastic and
plastic parts. The simplicity of the conceptual structure of the model
is particularly attractive as it consists of only one surface, the bound-
ing/failure surface, and the stress point itself in the deviatoric stress ratio
plane. The model follows the basic premises of the SANISAND family
of models that unify the description for any pressure and density within
critical state theory. Elimination of the classical yield surface concept
circumvents the complexity associated with satisfying the consistency
condition; however, the incrementally non-linear hypo-plastic nature of
the new formulation requires special handling of its numerical imple-
mentation. The work shows the simulative capabilities of the model that
are comparable with those of the classical model with very small yield
surfaces, including simulations under cyclic and rotational shear loading.

Keywords: Sands · Constitutive relations · Hypoplasticity · Zero elas-
tic range · Critical state · Bounding surface

1 Introduction

The idea of zero elastic range in plasticity theory where the yield surface size
shrinks to zero and the surface degenerates to the current stress point in stress
space was first presented in [3] as a corollary of bounding surface (BS) plastic-
ity where such disappearance of yield surface is compensated by the still finite
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bounding surface that determines now the loading direction and plastic modu-
lus. The physical motivation was the effort to simulate the response of artificial
graphite [3,8,9], a material used in nuclear reactor technology and which exhibits
zero purely elastic range in loading and unloading.

Several other materials do show either a zero or an extremely limited purely
elastic range response described by a very small yield surface, prominent among
them being soils, in particular granular soils or sands. In sand constitutive mod-
eling the consequence of this trait was reflected in the adoption by various models
of a very small size yield surface (YS) in stress-ratio space r = s/p, with s the
deviatoric and p the hydrostatic parts of the stress σ, respectively, obeying a
kinematic hardening rule. Among such models the most relevant to the current
paper are the two-surface model in [7,21], and its variation in [26] where the
name SANISAND was firstly adopted. Such a model is illustrated in Fig. 1(a)
where the YS is shown as a very small circle in r space with the back stress-
ratio α as its center. The larger surface represents the bounding surface (BS)
that varies in size, on which the image stress point rb is defined as shown by
the unit norm deviatoric direction n along r − α. The R′, normal to the BS
at rb, is the plastic deviatoric strain rate direction. As usual with BS plasticity,
the plastic modulus Kp depends on the projected on n distance (rb − r) : n
such that Kp = 0 when r = rb, i.e., when the stress ratio is on the BS. The θ
represents the relevant Lode angle.

It is then natural to consider the possibility that this very small yield surface
can be taken in the limit to be of vanishing size becoming identical to the back-
stress ratio that is its center, and consequently the YS surface degenerates to
the stress point r itself. In passing one can observe that in the counterpart of
the above for the classical triaxial q − p space, the yield surface is represented
by a very narrow wedge, which for vanishing elastic range collapses onto the
stress ratio line q/p = η. The conceptual framework of the working of the model
is illustrated in Fig. 1(b). The stress ratio rate is denoted by ṙ (a superposed
dot indicates henceforth the rate), and the stress ratio increment dr = ṙdt, is
shown as an arrow emanating from r, with dt the time increment. The extension
of ṙ direction defines the image (or bounding) stress ratio rb (mapping rule) at
its intersection with the BS, where again n and R′ are defined. Figure 1(c)
illustrates the process when the Lode angle θ effect on the BS is omitted and
the BS becomes circular, but the Lode angle effect on R′ is maintained. Notice
that whichever is the direction of ṙ for r inside or on the BS (see later for the
case of r outside the BS), there will be always a unique bounding stress ratio
point rb and associated n for convex BS shape, and furthermore n : ṙ > 0
guaranteeing there will be always plastic loading. Both n and R′ depend on
the stress rate direction. Such dependence in conjuction with the mapping rule
shown in Figs. 1(b) and (c), while originally proposed in [3,8,9] for artificial
graphite, it was also proposed for soils in a qualitative sense in [4], and applied
to sands within a full constitutive modeling framework in [2,14,29], and more
recently in [12], in constitutive frameworks quite different than the present ones.
According to [6] these models, which are also incrementally non-linear (the first
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Fig. 1. Illustration of the concept of the SANISAND-Z model (a) small yield surface,
bounding surface, mapping rule, loading direction n and deviatoric plastic strain rate
direction R′, (b) shrinking of the yield surface to the stress ratio point r, and (c)
elimination of the Lode angle effect on the bounding surface.

such model was proposed in [11] in a different setting) are named hypoplasticity
models; the same word hypoplasticity is used for a different class of models
(e.g. [15,16]) that do not involve classical plasticity loading-unloading criteria
and additive decomposition of total strain rate into elastic and plastic parts.
Incorporating the zero elastic range model within the framework of SANISAND
models, introduces what has been called the SANISAND-Z model, Z standing for
zero elastic range [10]. Its presentation and further elaboration is the objective
of this paper.
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Before closing this introduction it is instructive to delineate the present zero
elastic range model from several other models that claim, erroneously, to be
also of zero elastic range. Prominent among them are the stress-reversal surfaces
models in [22,23]. This is illustrated in Fig. 2, where after reversal at rin a
new loading process begins and the current stress ratio point r is projected at
rb on the BS by a radius emanating from rin; at rb the loading direction n
is defined and transferred at r. But this projection process creates an implied
reversal/loading surface shown by dashed line which is homothetic to the BS
with center of homothecy the rin and on which the current r lies. If now the
stress rate ṙ is in a tangent direction to the created reversal/loading surface, i.e.
it is normal to n as shown in Fig. 2, purely elastic response is induced during
such neutral loading path, allowing the stress ratio r to move around the loading
surface without causing any plastic deformation, thus, violating the concept of
zero elastic range. The second large family of erroneously called zero elastic
range models is that of generalized plasticity, where a loading direction n and
its opposite n′ = −n are defined in stress space and plastic loading is postulated
for both n : ṙ > 0 and n : ṙ = −n′ : ṙ < 0 with different plastic moduli in
each case giving the impression of non existence of purely elastic range. However,
again in this scheme a neutral loading path defined by n : ṙ = 0 causes only
elastic deformation around an implied loading surface (the definition of n is
tantamount to the definition of such surface), that negates again the zero elastic
range character of generalized plasticity. Bottom line is that zero elastic range
must be exactly what the name signifies, i.e., a null yield surface that collapses
onto the stress point itself, within a scheme that guarantees realistic description
of plastic strain rate norm and direction.

rin

n

n

n

r

rb

ṙ

Fig. 2. Geometrical explanation why stress reversal surfaces and generalised plasticity
models are not zero elastic range models.
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2 The SANISAND-Z Constitutive Model

The sensitivity of sands to stress-ratio changes renders the stress-ratio space the
appropriate one for the development of any sand constitutive model. Additional
plastic deformation due to a change of stress under constant stress ratio, requires
a modified formulation [26], which will not be considered in this work. The
additive decomposition of total strain rate into an elastic and plastic part will
be assumed, with the former given in terms of shear G and bulk K elastic
moduli, and the latter occurring along a direction R = R′ + (1/3)DI with R′

the deviatoric part of R, and D the dilatancy. A deviatoric unit norm loading
direction n is defined at stress ratio space as discussed before in conjunction
with Fig. 1, such that trn = 0 and trn2 = 1.

According to standard plasticity formulation as shown in [21], and with the
loading index (or plastic multiplier) L defined in terms of stress or total strain
rates and the plastic modulus Kp, the strain rate - stress rate direct and inverse
relations for a stress ratio dependent response are given as follows:

ε̇ =
1

2G
ṡ +

1
3K

ṗI + 〈L〉(R′ +
1
3
DI) (1)

σ̇ = 2Gė + Kε̇vI − 〈L〉(2GR′ + KDI) (2)

L =
1

Kp
n : pṙ =

1
Kp

n : (σ̇ − ṗ

p
σ) =

1
Kp

n : (ṡ − ṗr)

=
2Gn : ė − K(n : r)ε̇v

Kp + 2Gn : R′ − KD(n : r)
(3)

where 〈L〉 = L if L > 0, and 〈L〉 = 0 if L ≤ 0, the latter signifying the event of
unloading, ε denotes the strain tensor, e its deviatoric part and εv its volumetric
with a superposed dot implying their rates. It is important to notice that for
hardening response Kp > 0 while for softening and perfectly plastic response
Kp ≤ 0. In the latter case it follows that necessarily n : ṙ ≤ 0 so that L > 0.
Because for elastic unloading also n : ṙ ≤ 0, the distinction between softening
plastic loading and elastic unloading is made based on the sign of L calculated
from the last expression of Eq. (3) in terms of the total strain rates.

In addition, since the model is developed within the framework of Critical
State Soil Mechanics, the Critical Stress Ratio (CSR) in triaxial p–q space and
Critical State Line (CSL) in void ratio e – pressure p space are given by the
equations [20]

q

p
= η = ηc = M ; e = ec = e0 − λ(

p

pat
)ξ (4)

where the M assumes different values in compression and extension and becomes
function of the Lode angle in multiaxial stress space, while e0, λ and ξ are
material constants. The forgoing formulation requires the specification of the
hypoelastic moduli G and K, and the plastic constitutive ingredients n, R′, D,
and Kp.
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The Hypoelastic Moduli G and K

The G and K are given as functions of p and current void ratio e by the relations

G = G0pat
(2.97 − e)2

1 + e

(
p

pat

)1/2

; K =
2(1 + ν)
3(1 − 2ν)

G (5)

where the expression for G is given in [25]. Here G0 is a model parameter, ν is a
constant Poisson’s ratio, and pat is the atmospheric pressure for normalization.

Definition of Bounding, Dilatancy and Critical State Surfaces

Excluding for simplicity the Lode angle dependence of M , the BS is shown
schematically as a circle F b = 0 in the stress ratio space of Fig. 3. Following
[19,21], and denoting by rb a stress ratio on the BS, its analytical expression is
given by

F b = (rb : rb)1/2 −
√

2
3
M b = 0; M b = M exp(−nbψ) (6)

where the value of M is taken as the average between its triaxial compression
and extension values, Mc and Me, respectively, to compensate for the exclusion
of Lode angle dependence, ψ = e − ec is the state parameter [1], nb a positive
model constant and

√
(2/3)M b is the variable with ψ radius of the BS.

F b = 0

F c = 0

F d = 0

nr

rc

θ

ṙdt

(a)

F b = 0

F c = 0

F d = 0

nr

θ

ṙdt

rc

n

r

(b)

Fig. 3. Illustration of the working of the SANISAND-Z model in conjunction with
bounding F b = 0, dilatancy F d = 0 and Critical State F c = 0 surfaces, for (a) stress
ratio point r inside the bounding surface, and (b) stress ratio point r outside the
bounding surface.
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With rd denoting a stress ratio on the dilatancy surface (DS) F d = 0 which
is homocentric to the BS as shown in Fig. 3, its analytical expression is

F d = (rd : rd)1/2 −
√

2
3
Md = 0; Md = M exp(ndψ) (7)

with nd a positive model constant. At critical state ψ = 0 and M b = Md = M ,
thus, BS and DS collapse to the Critical State surface (CS) F c = 0, shown
in Fig. 3 as a circle of radius

√
(2/3)M . The placement of BS and DS outside

and inside CS surface, respectively, can be interchanged due to the value of ψ
being negative (denser than critical samples) or positive (looser than critical
samples) [21].

The Loading Direction n

(i) Stress Ratio Inside or on the BS: Consider first the current stress ratio r
inside or on the BS as shown in Fig. 3(a), which implies (r : r)1/2 ≤ √

(2/3)M b.
For future reference a unit norm deviatoric tensor nr = r/|r| is defined along
r. The stress ratio rate ṙ = |ṙ| ν is defined in terms of its norm |ṙ| and its
unit norm deviatoric direction ν such that trν = 0 and trν2 = 1. As already
elaborated, the image stress ratio rb on the BS is obtained as the intersection of
ṙ direction with the BS. For a given ṙ in the case of a circular BS the rbcan be
analytically specified by:

rb = r + bν; b = −r : ν +
[
(r : ν)2 + (2/3)(M b)2 − r : r

]1/2
(8)

where the foregoing expression for b is obtained by inserting rb = r + bν in
Eq. (6) and solving for b in terms of the (non negative) largest real root of the
resulting quadratic equation. The loading direction n is defined normal to BS
at rb, hence, based on Eq. (6) one has

n =
∂F b

∂rb
=

rb

|rb| (9)

where n is shown in Fig. 3(a) along the radius rb. The points rd and rc are
defined as the intersections of n with the dilatancy and critical state surfaces
F d = 0 and F c = 0, respectively, as shown in Fig. 3(a).

(ii) Stress Ratio Outside the BS: It is possible that the current stress ratio r
finds itself outside the BS, shown in Fig. 3(b), as a result of diminishing radius of
the latter due to its dependence on the state parameter ψ, Eq. (6)2, that implies
(r : r)1/2 ≥ √

(2/3)M b. In this case the plastic modulus becomes negative (see
subsequent definition), hence, there are two possibilities: either continued plastic
loading with softening response or elastic unloading. In both cases the stress ratio
rate ṙ points “inwards” of r towards the BS and the distinction of which one
of the aforementioned two cases occurs is based on the sign of L according to
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Eq. (3). L requires the determination of the image stress ratio rb to obtain the
loading direction n normal to BS at rb. If the rb is defined as before, i.e., as the
intersection of ṙ with the BS, the direction of ṙ may not intersect the BS for r
outside the BS, as implied in the illustration of Fig. 3(b). Thus, a re-definition
of the mapping rule for rb is necessary as the intersection with the BS of the
radius connecting the origin to r, Fig. 3(b), and n = ∂F b/∂rb as in Eq. (10).
Such definition of rb maintains the continuity of the mapping rule as the r
crosses the BS, and becomes independent of ṙ when r is outside the BS. Now
the process of loading/unloading is as follows. If L > 0 according to the last
expression of Eq. (3) expressed in terms of the total strain rates, plastic loading
with softening occurs; if L < 0, it signifies elastic unloading. In either case the
direction of ṙ points inwards the current r, which is updated to the position
r′ = r + ṙdt as shown in Fig. 3(b). The ṙdt is obtained from the calculation
of the σ̇ from Eq. (2) for either case since 〈L〉 = L when L > 0, and 〈L〉 = 0
when L < 0. At r′ one has r′b as shown in Fig. 3(b) and n′ = ∂F b/∂rb′. For
this new n′ the previous process is repeated. The r will reach eventually the BS
from outside. Observe that while r is outside the BS no reverse plastic loading
can occur according to the above scheme, but this is not expected to cause any
problem because the excursion outside the BS is very small.

The Deviatoric Plastic Strain Rate Direction R′

The specification of the plastic strain rate direction R = R′ + (1/3)DI requires
the definition of the deviatoric part R′ and the dilatancy D. The total flow rule
is non associative.

(i) Deviatoric Associative Flow Rule: If a deviatoric associative flow rule
is postulated, then one can set

R′ = n (10)

It follows that n : R′ = n : n = 1 in the last member of Eq. (3) for L.

(ii) Deviatoric Non-associative Flow Rule: Following [7] the relative inac-
curacy of the deviatoric associative flow rule due to independence from the
Lode angle θ in Fig. 3, can be corrected by a deviatoric non-associative flow
rule obtained from a Lode angle dependent plastic potential surface F p = 0
defined in stress ratio space by

F p = (rp : rp)1/2 −
√

2
3
Mp(θ) = 0 (11)

Mp(θ) = g(θ)Mc; g(θ) =
2c

(1 + c) − (1 − c) cos 3θ
; c =

Me

Mc
(12)

where Mc and Me are the critical stress ratios in triaxial compression and exten-
sion, respectively, g(θ) is the Lode angle-dependent interpolation function, and



A Zero Elastic Range Hypoplasticity Model for Sand 245

rp is a stress ratio on F p = 0. The F p = 0 is not shown in Fig. 3 for reasons
of clarity, but it has the usual rounded triangular shape caused by the θ depen-
dence as shown for the BS in Fig. 1(a) and (b). For any rb defined according to
the mapping rules of the previous subsection, there is a corresponding n, and for
this n there is a corresponding Lode angle θ defined by cos 3θ =

√
6trn3. The

R′ is defined as the gradient of F p = 0 with respect to the stress, at a point rp

on F p = 0 that is along n, which is expressed in [7]:

R′ = Bn−C(n2− 1
3
I); B = 1+

3
2

1 − c

c
g(θ) cos 3θ; C = 3

√
3
2

1 − c

c
g(θ) (13)

For c = 1 Eq. (13) yields as expected the associative deviatoric flow rule
R′ = n because F p = 0 becomes circular in π-plane. Based on Eq. (13) it follows
again that n : R′ = B−Ctrn3 = 1 in Eq. (3) for L, where the equality of the last
two members of the above equation is based on the expression cos 3θ =

√
6trn3.

The Dilatancy D

Following the original suggestion in [21], the dilatancy will depend on the dis-
tance rd − r of the current stress ratio r from its image rd on the DS, projected
on the unit direction n, Fig. 3, thus, the following expression holds accounting
for rd =

√
2/3Mdn and nr = r/ |r|:

D = Ad(rd − r) : n = Ad(

√
2
3
Md − |r| nr : n) (14)

with Ad a model parameter and the reminder that Md depends on the state
parameter ψ according to Eq. (7). Equation (14) can yield a positive (contraction)
or negative (dilation) value of D, depending on the relative placement of rd and
r in conjunction with n. The Ad in the simplest case is constant, but it was
found beneficial for the simulation of liquefaction to render it a function of a
fabric dilatancy tensor z as Ad = A0(1 +

√
(3/2)〈z : n〉), with A0 a constant,

where z evolves according to ż = −cz〈−ε̇p
v〉(√(2/3)zmaxn + z). Notice that

here the factors
√

(3/2) and
√

(2/3) were appropriately added to the original
expressions of Ad and ż, respectively, presented in [7], so that the values of the
constants A0, cz and zmax calibrated from a simpler triaxial formulation and
data, can be used directly as input in the multiaxial expressions above.

The Plastic Modulus Kp

Consistent with a BS formulation the value of the plastic modulus Kp will depend
on the “distance” rb − r of the current stress ratio r from its image rb on the
BS, projected on the unit direction n. An extension of the proposition made
in [7] will be adopted where the back-stress ratio α of their formulation is now
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substituted by the stress ratio r (recall that for zero elastic range one obtains
r = α as the yield surface shrinks to zero), which then reads:

Kp =
2
3
ph

(rb − r) : n

(r − rin) : n
(15)

The rin is the value of r at the initiation of a plastic loading event and h is a
model parameter which is function of the void ratio e and pressure p according
to h = G0h0(1 − che)(p/pat)−0.5, with h0 and ch model parameters. The factor
2/3 was placed for maintaining the same value of h calibrated under triaxial
conditions. The rin must be updated to a new value at initiation of a new
plastic loading event in order to obtain the infinite value of the plastic modulus
resulting from Eq. (15) when r = rin, expected in such event. Since one has
always L > 0 when r is inside the BS, a new plastic loading event is defined
as follows. When in Eq. (15) the (r − rin) : n ≤ 0, it means that the current
loading direction n, defined in terms of ṙ, forms an angle greater than 90◦ in
the generalized stress ratio space with the tensor r − rin, which is a measure
of the overall direction of ongoing stress loading path that started at rin. But
such drastic change of loading direction in regards to ongoing loading path is
tantamount to unloading and the beginning of a new loading process. Hence the
rin is updated to the current r value when the denominator of Eq. (15) becomes
negative, and a new loading process begins with an initially infinite value of
the plastic modulus because the denominator becomes zero after the update. In
other words the unloading event is followed immediately by a new loading event,
without any purely elastic response taking place. The foregoing process is further
illustrated in Fig. 4 where a loading process begins at the origin which serves as
rin at the start. At r the directions of ṙdt that continue plastic loading and
those that signify instantaneous unloading and a new plastic loading event, can

rb
n

θ

r=rin

ṙdt

rb
n

F b = 0

rin=0

ṙdt

θ

Fig. 4. Illustration of the loading and unloading/reloading domains for the direction
of ṙ in deviatoric stress space, and the updating of rin.
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be easily visualized and distinguished by the shaded sectors of the little circle
drawn around r in such way that the forward continued loading is defined by
all n for which (r − rin) : n = r : n > 0 while the new plastic loading event
for all n for which (r − rin) : n = r : n ≤ 0. These two sectors are defined by
connecting the point r with the two ends of the diameter of the F b = 0 which
is perpendicular to r − rin = r, because at these two ends the corresponding
n is normal to r − rin = r and r : n = 0. Upon unloading/initiation of new
loading, the previous rin at the origin, is updated to the current r. Finally,
when r moves outside the BS and rb is defined along r on the BS, Fig. 3(b),
the quantity (rb − r) : n < 0 in Eq. (15), which implies a Kp < 0, signifying a
softening material response as long as L > 0 according to Eq. (3).

The updating of rin in Eq. (15), necessary to obtain a smooth elasto-plastic
transition by rendering Kp = ∞ at initiation of a loading event, creates also the
so-called overshooting response upon reverse loading/immediate reloading asso-
ciated with its updating, known since the time of its inception [3]. Overshooting
implies a stress-strain curve which unrealistically overshoots the continuation of
a previous curve had the event of reverse loading/reloading not taken place. In
order to remedy overshooting, [6] outlined a way of updating rin, which is imple-
mented in the current model and has been presented in detail in [10]. In this
reference one can also find the triaxial counterpart formulation of SANISAND-Z,
that will not be presented here. It suffices for illustration purposes to show Fig. 5,
which is the counterpart of Fig. 3(a) in triaxial space, where the stress ratio r
is now the line η = q/p and the bounding, dilatancy and critical state surfaces
are represented by the straight lines with slopes M b

c , Md
c , M c

c , in compression
and M b

e , Md
e , M c

e , in extension, while loading occurs for any rate of η in the
compression or extension directions.

M b
c

M b
e

η̇dt > 0

η̇dt < 0

Fig. 5. Illustration of the SANISAND-Z model in triaxial stress space where the devia-
toric stress ratio point of Fig. 3 becomes the line η = q/p, and the bounding, dilatancy
and critical state surfaces become the lines Mb, Md and Mc with subscripts c and e
for compression and extension, respectively.
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3 Model Performance

Detailed calibration process for the SANISAND models are presented in [27];
their calibrated parameters for Toyoura sand are used in the present study, and
shown in Table 1. Simulation results are based on both the SANISAND-Z model
with true zero elastic range and the [7] version of SANISAND with a tiny yield
surface cone. The trace of the cone on the stress-ratio r plane is a circular
deviatoric yield surface with center α and radius (2/3) m. A small value of m =
0.01 is used for the simulations with [7] model. The SANISAND-Z model uses a
constant critical stress ratio M which is set equal to the compression value Mc

here, in order to properly capture the main part of the loading which is in triaxial
compression in these simulations. The [7] model uses a Lode angle dependent
critical stress ratio with M varying between Mc in triaxial compression and
Me = cMc in triaxial extension, although no extension is relevant to these data.

Performance of the SANISAND-Z model in simulation of selected drained
and undrained triaxial loading and unloading paths, in comparison with the
data of Toyoura sand from [28], is already reported in [10] and similar to previous
models examined in [7,26,27]. In this presentation the response under some more
complicated stress paths will be examined. Figures 6, 7, 8, 9 and 10 presented in
the following, are in fact variations of corresponding figures in [10].

Figure 6 compares the experimental data [24] and model simulations for
drained constant-p cyclic triaxial tests on isotropically consolidated loose sam-
ples of Toyoura sand. In this test the amplitude of shear strain (εa −εr) has been
increased in different cycles of loading. The simulation with the SANISAND-
Z model is done with a constant critical stress ratio M which is set equal to
Mc(1 + c)/2, in order to properly capture the average response in compres-
sion and extension. The simulation results are presented with solid lines in
Figs. 6(d–f). The simulations with the [7] model are done in two different ways
for the critical stress ratio with: (i) a constant M = Mc(1 + c)/2 (for direct
comparison with the results from the SANISAND-Z model), and (ii) a Lode
angle dependent M . The simulations results for these two choices of M with

Table 1. SANISAND-Z model parameters for Toyoura sanda

Model constant Symbol Value Model constant Symbol Value

Elasticity G0 125 Plastic modulus h0 15

ν 0.05 ch 0.987

Critical state Mc 1.25 nb 1.25

c 0.712 Dilatancy A0 0.704

e0 0.934 nd 2.1

λ 0.019 Fabric-dilatancy zmax 4

ξ 0.7 cz 600
aAdditional overshooting correction parameters: ēpeq = 0.01% and n = 1
(default)
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the [7] model are presented with dashed and dot-dashed lines, respectively, in
Figs. 6(d–i). The models show almost same results as each other, and very close
to those observed in the experiments. Of course the simulations results with [7]
and M(θ) are slightly closer to those observed in the experiments. Accumulation
of compressive volumetric strain with cyclic loading can be observed in Fig. 6,
and clearly when the stress ratio exceeds a certain value, which varies by the
state, the specimen begins to dilate. Additional comparison for cyclic loading of
a dense sample of Toyoura sand are presented in [10] showing again very similar
trend.

−2 −1 0 1 2

−1

0

1

2

εa−εr (%)

q/
p 

(−
)

p=100 kPa
(const.)

ein=0.845

(a)

−3 −2 −1 0 1 2 3
0

1

2

3

εa−εr (%)

ε v (%
)

(b)

−1 0 1 2
0

1

2

3

q/p (−)

ε v (%
)

(c)

−2 −1 0 1 2

−1

0

1

2

εa−εr (%)

q/
p 

(−
)

p=100 kPa (const.)

ein=0.845

(d)

−3 −2 −1 0 1 2 3
0

1

2

3

εa−εr (%)

ε v (%
)

(e)

−1 0 1 2
0

1

2

3

q/p (−)

ε v (%
)

(f)

−2 −1 0 1 2

−1

0

1

2

εa−εr (%)

q/
p 

(−
)

p=100 kPa (const.)

ein=0.845

(g)

−3 −2 −1 0 1 2 3
0

1

2

3

εa−εr (%)

ε v (%
)

(h)

−1 0 1 2
0

1

2

3

q/p (−)

ε v (%
)

(i)

Fig. 6. Simulations vs. experiments in constant-p cyclic drained triaxial tests on
isotropically consolidated relatively loose samples of Toyoura sand: experimental data
(a–c) are after [24]; simulations (d–f and g–i) are using SANISAND-Z model with
M = Mc(1+ c)/2 (solid lines), [7] model with M = Mc(1+ c)/2 (dashed lines), and [7]
model with M = M(θ) (dot-dashed lines).



250 M. Taiebat and Y.F. Dafalias

Simulation results under a particular rotational shear path comprising a cir-
cular stress path in the π-plane are presented in Figs. 7 and 8. The simula-
tion results exhibit in a very illustrative way the performance of SANISAND-Z
for such an unorthodox stress path. While the triaxial simulations can use the
much simpler formulation of the triaxial space, the rotational shear requires the
full general stress space formulation and numerical implementation, the latter
being a problem to reckon with due to the incrementally non-linear feature of
the equations. These simulations are intended to be compared with data from
Fuji river sand for which no data for calibration were available. However, given
the similarity of this sand with Toyoura sand, the model constants of the lat-
ter from Table 1 were used, instead. Figure 7 presents details of the simulation
results for the following loading scenario: An isotropically consolidated sam-
ple with pin = σc = 98 kPa and ein = 0.822 is subjected to undrained tri-
axial compression by increasing the σz until reaching τoct = 12.5 kPa, where
τoct = (1/3)

[
(σx − σy)2 + (σx − σz)2 + (σy − σz)2

]1/2; then keeping the τoct

constant, the sample is subjected to a cyclically varying circular stress path in the
π-plane under undrained condition. Three sets of simulation results are presented
in Fig. 7 showing performance of SANISAND-Z model with M = Mc(1 + c)/2
(dashed lines), [7] model with M = Mc(1+c)/2 (dashed lines), and [7] model with
M = M(θ) (dot-dashed lines). The increasing amplitude helicoidal stress path
in the stress ratio π-plane plot of Fig. 7(a) is due to the decrease of p, because
of pore water pressure increase as shown in Fig. 7(b), hence, the increase of the
ratio of stress/p.

Fig. 7. Extended simulation results for undrained circular cyclic loading with τoct =
12.5 kPa on Fuji river sand for 5 cycles using model constants for Toyoura sand from
Table 1: SANISAND-Z model with M = Mc(1 + c)/2 (solid lines), [7] model with
M = Mc(1 + c)/2 (dashed lines), and [7] model with M = M(θ) (dot-dashed lines).



A Zero Elastic Range Hypoplasticity Model for Sand 251

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.824

τoct=9.7 kPa

p (kPa)

T oc
t (k

Pa
)

(a)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.817

τoct=11.1 kPa

p (kPa)

T oc
t (k

Pa
)

(b)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.822

τoct=12.5 kPa

p (kPa)

T oc
t (k

Pa
)

(c)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.824

τoct=9.7 kPa

p (kPa)

T oc
t (k

Pa
)

(d)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.817

τoct=11.1 kPa

p (kPa)
T oc

t (k
Pa

)

(e)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.822

τoct=12.5 kPa

p (kPa)

T oc
t (k

Pa
)

(f)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.824

τoct=9.7 kPa

p (kPa)

T oc
t (k

Pa
)

(g)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.817

τoct=11.1 kPa

p (kPa)

T oc
t (k

Pa
)

(h)

0 20 40 60 80 100
−20
−10

0
10
20

ein=0.822

τoct=12.5 kPa

p (kPa)

T oc
t (k

Pa
)

(i)

Fig. 8. Simulations vs. experiments in undrained circular cyclic tests on Fuji river sand
using model constants for Toyoura sand from Table 1: experimental data (a–c) are after
[30]; simulations (d–f and g–i) are using SANISAND-Z model with M = Mc(1 + c)/2
(solid lines), [7] model with M = Mc(1 + c)/2 (dashed lines), and [7] model with
M = M(θ) (dot-dashed lines).

Figure 8 compares the effective stress path for undrained circular stress load-
ing path between the simulations and the corresponding experimental results in
[30] who explored three levels of τoct = 9.7, 11.1, and 12.5 kPa. In this figure
Toct = τoct cos Θ, where Θ determines the angle of rotation of shear stress on the
octahedral plane, shown in the original paper of [30]. Very similar general trend of
response is observed between the simulation results and the experimental data.
It is interesting to compare the plot of Fig. 7(b) with those of Figs. 8(f, i) for
τoct = 12.5 kPa; the former is in fact a three dimensional perspective of the latter
two. This is a good indicative of the overall performance of the SANISAND-
Z model in such complex loading condition. A more specific calibration of the
model parameters for Fuji river sand would likely provide better match between
the simulations and experimental results.

Because a stress ratio based model will not induce plastic deformation under
constant stress ratio loading, the question arises on how the present model will
respond to an oedometric test. Such test imposes a constant total volumetric
to total deviatoric strain ratio that in triaxial space is equal to 3/2, which can
become soon a constant stress ratio (fixed K0); before constant stress ratio is
reached, plastic deformation is induced by the model. In Fig. 9(a) the response
of the model under such oedometric test in loading and unloading is shown in p,
q stress space for two initial void ratio values, one for dense (ein = 0.65) and the
other for loose (ein = 0.95) sample, starting at an initial p = 10 kPa, using the



252 M. Taiebat and Y.F. Dafalias

(a) (b)

Fig. 9. Numerical simulation results for K0 compression loading and un-loading on
isotropically consolidated (pin=10 kPa) very loose (ein = 0.95 in dashed lines) and
very dense (ein = 0.65 in solid lines) samples using constants of Table 1.

constants of Table 1. The stress path attains a very close to constant value of the
stress ratio q/p = η = ηK0 ≈ 1.26 for the dense and q/p = η = ηK0 ≈ 0.91 for
the loose sample, which based on the relation K0 = (3− ηK0)/(2ηK0 +3) yields
the values K0 = 0.32 and K0 = 0.43 for dense and loose samples, respectively.
Simultaneously Fig. 9(b) shows a volumetric strain εv in the order of 2% and
3% at the end of loading, and remaining strain of 0.5% and 2% at the end of
unloading, for dense and loose samples, respectively; clearly plastic volumetric
deformation takes place also during the unloading phase. The foregoing K0 and
volumetric strain values are realistic, in particular accounting for the fact the
model was not calibrated to obtain the K0 value and strains under oedometric
loading and unloading.

The model can simulate general and unusual loading paths such as rota-
tional shear and shows similar simulation capabilities as its dual model with a
very small yield surface in [7]. The dependence of the loading direction n and
in particular the plastic strain rate direction R′ on the stress rate direction ν,
although supported qualitatively by experiments and DEM simulations, needs
a more thorough investigation to compare the theoretical suggestions to experi-
mental (real or virtual) evidence in a quantitative way. For example the following
two response characteristics can be proposed for verification and calibration by
DEM in the future, which are particularly suited for a model with zero elastic
range. The first is related to the suggestion in [13,17] to plot stress increments
around a stress point corresponding to strain probes of same norm in various
directions; the tips of the stress increments constitute what we can call the
Gudehus’ response envelope. Here a conjugate Gudehus’ response envelope will
be used, where a material sample is loaded till a point in stress space, and then
very small stress increments of equal norm are applied in all directions, and the
corresponding strain increments are plotted radially around an origin in strain
space; the locus of their tips constitutes the aforementioned envelope. In fact this
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(a) (b)

Fig. 10. Numerical simulation results for conjugate Gudehus’ response envelopes. The
initial state of the sample is ein = 0.88, p = 100 kPa (point A), then sheared with
constant p to τoct = 25 kPa (point B). At points A and B the sample is subjected to
constant norm stress increments of 10 kPa (thin lines) and 20 kPa (thick lines), dashed
for point A and solid for point B.

type of response envelope in strain space was first proposed in [18], a fact omitted
to be mentioned by mistake in [10], but the option to call it a conjugate Gudehus’
response envelope stems from the focus given in [13] to such constitutive model-
ing features. This is a particularly appropriate test to perform by DEM to check
the incremental non-linearity associated with the dependence of the strain incre-
ment direction on the stress increment direction. To illustrate this process such
a test was performed in drained conditions by the SANISAND-Z model and
the results shown on the deviatoric planes for stress and strain increments in
Fig. 10(a) and (b), respectively. In Fig. 10(a) the material with initial void ratio
ein = 0.88 is loaded hydrostatically by p = 100 kPa, point A, and then sheared
at constant p to τoct = 25 kPa, point B. At each position A and B, the sample is
probed by stress increments of constant norms 10 kPa and 20 kPa consecutively
in various directions, the tips of which are plotted as smaller and larger circular
envelopes, respectively, in Fig. 10(a). For each stress probing process the tips of
the corresponding strain increments are plotted around the origin of the devia-
toric plane for strain increments as shown in Fig. 10(b) for both points A and B,
and the resulting shapes are the aforementioned conjugate Gudehus envelopes.
The envelopes for the smaller stress probes are included in the envelopes for the
larger stress probes at both points, but while at point A on the hydrostatic axis
such envelope remains almost circular (there is only Lode angle dependence of
the response), at point B the distortion of the envelopes are clearly intense, as a
result of the zero elastic range and the plastic modulus dependence on the stress
rate direction via the distance from the BS. The second response characteristic
which is particular to the zero elastic range feature of the model, is shown by the
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plots for a circular rotational shear path in Figs. 7 and 8; these can be repeated
by DEM (a 3D DEM code is required) and comparisons made.

4 Conclusion

The SANISAND-Z model is an elastic-plastic constitutive model for sands, which
is obtained from a kinematic hardening model when the yield surface size van-
ishes and the surface shrinks to its back-stress center becoming identical to the
stress point itself in the deviatoric stress ratio space. The finite bounding sur-
face is used to define the loading and deviatoric plastic strain rate directions,
both of which depend now on the direction of the deviatoric stress ratio rate.
Consequently the model is incrementally non linear and falls into the category
of hypo-plasticity models in the sense of the term first introduced in [5], and
defined in detail in [6].

The non-existing yield surface eliminates the need to satisfy the consistency
condition by requiring the stress to remain on the yield surface, but the stability
and avoidance of drift of an explicit numerical implementation becomes more
difficult to achieve and requires special methodologies. On the other hand the
plastic deformation that takes place always for any loading direction (except for
elastic unloading at softening regimes for the current formulation when the stress
point is outside the bounding surface), renders the model suitable to address
bifurcation and localization problems where elastic loading “to the side” is too
stiff to accommodate the initiation of a bifurcation process in classical plasticity
with neutral loading features, which do not exist in the present model.

Otherwise the simulations of SANISAND-Z are similar in nature to those
obtained by its predecessors SANISAND models with small but finite yield sur-
faces. It is believed that the present model will be very promising in simulations
of special loading paths such as multidirectional shear and rotation of princi-
pal stress directions, that recently became of importance in various areas, of
geotechnical engineering.
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