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Preface

This textbook summarizes the final results of the research group GEOTECH
founded by the German Research Council (DFG) dealing with the holistic con-
sideration of geotechnical installation processes. In this sense, the entire process for
the realization of a geotechnical construction project starting from a well-defined
initial stress and deformation state is taken into account.

From the engineering practice, it is well known that the installation process of
structural elements into the ground may cause strong deformation and stress
redistribution in the surrounding soil. Dealing with excavation pits in urban areas,
installation processes like piling or anchoring therefore often lead to unexpected
displacements of the shoring or neighbouring buildings exceeding those due to the
excavation or dewatering of the pit. The assessment of the deformations resulting
from geotechnical installation processes is, on the one hand, required from the
codes (EC 7) or regulations but on the other hand, validated high-quality prediction
simulations are still not available. Suitable numerical methods should be based on
realistic and validated highly nonlinear incremental constitutive models for the soils
under cyclic/dynamic loading conditions and advanced simulation tools. However,
existing models do not offer up to now the required prediction quality.

The main target of the research group is the provision of suitable methods for the
simulation of geotechnical installation processes based on fundamental research in
order to reliably predict the serviceability state of supporting systems and nearby
structures especially with regard to the vibro-installation of piles.

In order to achieve these targets, the research group operates in three levels:

– benchmarking projects with element-like and large-scale model tests for cali-
bration and validation of the developed numerical models

– theoretical fundamental research for the development of high-quality constitu-
tive soil models and contact formulations in combination with efficient
numerical implementations and algorithms
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– application of the developed theoretical models to boundary value problems
with parametric studies of respective geotechnical installation processes and
recommendations for further use of the numerical models in practice as well as
for the practical optimization of these processes.

In this book, the final research results including not only the demonstrator
experiments for pile installation as benchmarks are presented, but also the simu-
lation results of recently developed numerical techniques and constitutive mod-
elling for the description of the nonlinear behaviour of soils under dynamic/cyclic
excitation. Furthermore, interesting results are presented associated with the
vibro-injection pile installation with multimaterial flow and large material defor-
mations. The presented results can also be used for validation of new techniques or
material models in the future.

The contributions of our invited speakers (Prof. R.J. Finno, Prof. M. Taiebat,
Prof. W. Fuentes and Prof. T. Schanz) in the final GEOTECH Workshop (23 and 24
February 2017 in Karlsruhe) are very much appreciated and are also included in this
volume due to their relevance to the scientific targets of the group.

The editor likes to thank all his colleagues (Prof. Ehlers, Prof. Wriggers, Prof.
Savidis, Prof. Rackwitz, Prof. Hettler) and co-workers (Dr. Niemunis, Dr. Osinov,
Dr. Huber) for their valuable contributions and their extreme efforts and engage-
ment in order to achieve the high scientific targets of the projects.

Furthermore, I would like to express my thanks to Mrs. Meininger for the
organization of all the workshops of the research group GEOTECH and her
engagement to make those events pleasant as well as Dr. Vogelsang for the
assistance to prepare the book.

Finally, all of us like to express our deep gratitude to DFG (German Research
Council) for the generous financial support of this very interesting research topic in
geotechnical engineering.

February 2017 Th. Triantafyllidis
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Adaptive Management Evaluation
of the SQBRC Excavation

Richard J. Finno1(B), Zhenhao Shi1, Sangre Kim1, Nathan Crafton1,
and Daniel Rendell2

1 Department of Civil and Environmental Engineering,
Northwestern University, Evanston, USA

r-finno@northwestern.edu
2 Getec UK, London, UK

Abstract. This paper summarizes the adaptive management approach
for controlling ground movements resulting from geotechnical construc-
tion activities, and presents the results of such analyses made through-
out construction of the excavation for the SQBRC building in Chicago,
IL, wherein attendant ground movement was a key design issue. This
paper describes the support system, summarizes the performance data
collected in real time, and presents the results of the optimizations made
during excavation. Optimization of soil parameters based on plane strain
analyses made at well-defined excavation stages resulted in reasonable
predictions of computed lateral movements at the end of the excavation.
Issues related modeling the support system in three dimensional analyses
are discussed, and effects of past construction activities and construction
operations other than the cycles of excavation and support installation
are illustrated. Current limitations of the approach with respect to sup-
ported excavations are discussed.

1 Introduction

Uncertainty is the distinguishing feature of geotechnical engineering in that
nature leaves behind soil and rock that is variable in composition, extent and
behavior. Developments in sensor technology, information technology and numer-
ical analysis allow one to apply the observational approach so that the effects of
these uncertainties on design and performance can be minimized. These advances
allow a cycle of measurement and prediction update based on observed perfor-
mance to be made in near real time. However, one must carefully select the moni-
toring data used as observations and properly numerically simulate construction
to minimize the difference between predictions and observed performance. This
general approach is termed “adaptive management” and can be employed to
predict, monitor and control performance during geotechnical construction. The
goal of the approach is to isolate the effects of the soil parameters to update
performance predictions, and as such, the construction process must be modeled
correctly. After data are collected at early stages of a project, updated parame-
ters form the basis of a new simulation to predict responses at later, and more
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 1



2 R.J. Finno et al.

critical, stages of construction. This paper summarizes an adaptive management
approach which incorporates real-time monitoring data to allow updating of
design predictions based on performance data. Capabilities with respect to sup-
ported excavations are described. A case study is summarized to illustrate its
application and current limitations.

2 Adaptive Management Approach

Once design criteria for a project have been established, an adaptive manage-
ment approach can be employed to predict, monitor and control performance
during geotechnical construction (e.g., Finno [3,4]). This approach is summa-
rized in Fig. 1. The left hand column represents calculations made during the
design and updating phases, and includes for excavation projects finite element
simulations of the construction process. In general, observations against which
the predictions are compared can be of any type, including deformation, pore
water pressure or structural response data in geotechnical applications. The cen-
ter column represents the optimization needed to update predictions based on
the measurements. Ideally, this process works automatically, all data collected in
the field is transferred in real time to a host computer where it can be processed
into format compatible with the numerical analyses. After data are collected
at early stages of a project, updated parameters form the basis of a new sim-
ulation to predict responses at later, and presumably more critical, stages of
construction.

Fig. 1. Adaptive management process
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In the work presented herein, the finite element code PLAXIS was the plat-
form for the numerical analyses and the optimization was performed in MAT-
LAB. These codes and the field performance data from the site website were
linked via the programming language PYTHON such that the optimization and
updated performance predictions were made automatically. Human intervention
was only needed to extract the proper data files from the project website.

Successful application of the adaptive management approach depends equally
on reasonable numerical simulations of the construction process, the constitutive
models employed, the type of monitoring data used as observations, and the
optimization techniques used to minimize the difference between predictions and
observed performance.

Use of an inverse model provides results and statistics, offers powerful tools
for model analysis and, in many instances, expedites the process of adjusting
parameter values. A fundamental benefit of inverse modeling is its ability to cal-
culate automatically parameter values that produce the best fit between observed
and computed results. The calibration by inverse analysis can be very effective in
minimizing the errors between the measured and computed results (e.g., Ou and
Tang [13]; Ledesma et al. [11]; Finno and Calvello [6]; Hashash and Finno [9]).
However, the convergence of an inverse analysis to an “optimal solution” (i.e.
best-fit between computed results and observations) does not necessarily mean
that the simulation is satisfactorily calibrated. A geotechnical evaluation of the
optimized parameters is always necessary to verify the reliability of the solution.
For a model to be considered “reliably” calibrated, both the fit between com-
puted and observed results must be satisfactory (i.e. errors are within desired
and/or accepted accuracy) and the best-fit values of the model parameters must
be reasonable.

A common method of inverse analysis that has been applied to geotechnics
is optimization by the gradient method. This approach employs a local para-
meter identification of a specific constitutive law. Many of the early evaluations
of performance data using this approach were conducted with very simple soil
models that severely restricted the ability of the computations to accurately
reflect the observed field performance data, irrespective of employing inverse
techniques. Clearly, unless the constitutive model has the capability to represent
the response of the soil to the particular loading condition, the approach will
not be successful.

When applying the optimization technique to field problems, the underlying
assumption is that the only uncertainty is the material response, and all other
factors are known and contain no errors. When making a prediction of response
during design, this is clearly not true. However, if field observations of perfor-
mance are used to calibrate the model during construction, then the construction
procedures are known exactly and this source of uncertainty is removed. Fur-
thermore, the timely collection and screening of the data must be successfully
accomplished. For any monitoring system to be fully automated, one must be
able to track construction progress so that performance data can be correlated
with the excavation activities. An internet accessible weather-resistant video
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camera is currently used in practice with some degree of regularity to allow
remote visualization of the construction process in real-time, as well as a dated,
photographic record of construction (e.g., Finno and Blackburn [5]).

One key issue is the selection of the soil model to be used in the optimiza-
tion scheme when making an update. If one wants to get reasonable updated
predictions of performance at the early stages of excavation, then the constitu-
tive model used to represent the soil behavior in the critical soil strata must
represent the behavior at all strain levels. Because one wants to get accurate
updates on performance at the early stages of excavation where the deforma-
tions and shear strain levels are small, the constitutive model must include this
feature of behavior or the optimized parameter will change until the strains are
large enough so that further degradation is accurately represented in the model.
While we have employed for analyses for the case reported herein the harden-
ing soil model with small strain stiffness (Benz et al. [2]) and a hypoplasticity
model for clays (Maš́ın [12]) as the constitutive model, only the results from the
hypoplasticity model will be presented in this paper.

A second key issue deals with the inherent three-dimensional nature of exca-
vation process. Normally, a two-dimensional plane strain model of the excavation
is developed so that updated performance predictions can be made at key stages
of the project. Such a stage would be when the excavation is made below a
tie back or cross-lot brace elevation and the excavated surface is flat so that
the plane strain conditions are applicable. However, for real time updates at
more times during the excavation, for example, when some parts of the excava-
tion that are deeper than others, a three-dimensional model is required to allow
updated predictions at any time during the process. This type of model also is
needed if there are adjacent building that have altered the states of stress in the
foundation soils that will impact the current excavation. This is the case for the
SQBRC excavation reported herein. While these models have been developed,
the research regarding them is on-going. Selected results of these analyses are
presented to illustrate some the issues with 3-D analyses.

3 Case Study: Louis A. Simpson and Kimberly K. Querry
Biomedical Research Center

The excavation for the Louis A. Simpson and Kimberly K. Querry Biomedical
Research Center (SQBRC) located on the Chicago campus of Northwestern Uni-
versity required a 43 ft to 59 ft deep excavation to facilitate the construction of a
14 story building with two basement levels. The site is located on a former hospi-
tal that was demolished prior to any activities related to the SQBRC began. The
hospital included one basement level and was supported on drilled shafts. The
shafts were cut off at excavated grade for the new SQBRC structure. The shafts
below that level were left in place and not used as part of the new foundation
system.
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3.1 Subsurface Conditions and Excavation Support System

Idealized soil stratigraphy at the site is presented in Fig. 2. Sidewalk elevation
for this site is 14 ft Chicago City Datum (CCD). A primarily granular urban
fill was found between 14 ft CCD and −11 ft CCD. A layer of clean beach sand
was encountered between −11 ft and −19 ft CCD. Beneath the sand layer are
a sequence of increasingly stronger and stiffer clays. The soft to medium clays
found between −19 ft to −42 ft CCD and the stiff to very stiff clays between
−42 ft to −72 ft CCD are glacially-derived ice margin deposits. Below elevation
−72 ft CCD, basal tills consisting of hard clays and clayey silts, locally known as
“hardpan” are encountered until Dolomitic limestone is encountered at approx-
imate −140 ft CCD. Ground water was encountered in boreholes between 1 and
−1 ft CCD.

Fig. 2. Subsurface conditions

A section view of the lateral support at the north wall is shown in Fig. 3a
and a photo of that location taken as the second level of tiebacks were being
installed is shown in Fig. 3b. The earth retention system consisted of driven hot
rolled Z-shaped sheet piles with five levels of support on the north, east, and
south walls, and soldier pile and lagging on the west side of the site. These
levels of support include grouted tiebacks at elev 2 ft CCD North side and 7 ft
CCD south side (level 1), diagonal internal braces centered at elev −4 ft CCD
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(level 2), grouted tiebacks at elev −20 ft CCD. At a few locations, the wall was
braced with grouted tiebacks at elev −27 ft CCD, adjacent to the temporary
crane foundations along the north wall and southwest corner of the excavation.
Tiebacks on the east side of the site are only present in level 3 and 4 due to the
presence of the adjacent Lurie Center and RIC buildings.

Fig. 3. Excavation support system at the north wall of the excavation

Tieback anchors were. 0.6 in. diameter strands in 4 and 6 strand configu-
rations made of 270 ksi steel. Internal braces consisted of 36 in.× 5/8 in. pipe
struts which were preloaded using hydraulic jacks to 1/3 of the design load
before installing shim plates and welding in place. The longest internal braces
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were simply supported against self-weight by a system of piles and connected
WF beams (Fig. 3b).

Load from all levels of tiebacks is distributed by the use of wales comprised
of two C14x33.9 steel sections connected by welded spacer plates allowing the
tieback to pass between them. Loads from the cross lot bracing at level 2 were
distributed using 2 W27x281 steel sections as wales. The connections between
the walers and the sheet piles were made with spot welds.

The SQBRC structure will be supported by belled drilled shaft foundations.
The depth to bottom for these foundations ranged between −80 ft CCD and
−85 ft CCD. Shaft sizes ranged from 2.5 to 10 ft in diameter with bell diame-
ters between 6 and 22 ft. Micropiles were installed adjacent the excavation on
the south side of the site to support a slab foundation utilized for loading and
unloading of heavy construction materials. These micropiles consisted of 7 in.
diameter steel pipes extending to elev −85 ft CCD, with a bonded zone starting
at elev −55 ft CCD. Grout was injected with pressures between 140 and 350 psi.

3.2 Instrumentation

Instrumentation locations at the site is shown in Fig. 4, plan view of the site
which also shows the locations of the adjacent structures, the Lurie Center to
the west and the RIC building to the east.

To measure the lateral deflection of the sheeting, shape accel arrays (SAA)
were installed at six locations around the site - noted as SAA-1 through SAA-6
on Fig. 4. An SAA is very similar to a traditional inclinometer, but it remains
in place throughout the excavation and can be programmed to take readings at
specified time intervals. It consists of a number of rigid segments either 1.64 or 1 ft

Fig. 4. Site instrumentation plan
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long with a diameter of 1 in. Each segment has three temperature-calibrated
Micro Electro Mechanical System (MEMS) accelerometers and the segments are
connected by flexible joints that can move in any direction but cannot twist. The
3D shape of SAA in a near-vertical casing is determined from static accelerations
of X and Y accelerometers. The SAA were installed and initialized after the sheet
piles were placed. In addition to the SAAs, 10 conventional slope indicators were
installed in the ground adjacent to the north and south sheet pile walls. These
devices were initialized prior to any construction activity at the site.

Two robotic total stations were installed on structures off the site influence
area to measure deformations of the surrounding structures and the basement
wall shared with the Lurie Center. Conventional optical surveys were made of
126 surface settlement points established in the streets to the north and south
of the site.

All remotely sensed data was displayed in real time on a project web site. An
interface was developed between the automated data presented on the project
website developed by Getec and the finite element code used in the optimization
process. The field data were linked to the optimization procedure as subsequently
described.

3.3 Sequence of Activities

The sequence of activities at the site is summarized in Table 1. The work pro-
gressed consistently across the site, until the tieback anchors comprising the

Table 1. Sequence of activities

Task Dates Activity

1 11/04/16 Traditional inclinometers installed and initialized

2 11/02/15–2/23/16 Drilled shafts installed

3 02/05/16–2/26/16 Sheet piles installed by vibratory hammer

4 03/04/16 SAAs installed and initialized

5 02/29/16–03/11/16 Excavation to level 1 (0 ft CCD North side of site,
5 ft CCD south side)

6 03/03/16–3/28/16 Installation of level 1 support- tieback Level 1

7 03/25/16–04/01/16 Excavation to level 2 (−7 ft CCD)

8 03/28/16–05/08/16 Installation of level 2 support - cross lot bracing

9 05/09/16–06/09/16 Excavation to level 3 (−22 ft CCD)

10 05/21/16–07/09/16 Installation of support level 3 - tieback level 2

11 06/23/16–09/02/16 Excavation to level 4 (−29 ft CCD)

12 06/25/16–07/29/16 Installation of support level 4 - tieback level 3

13 09/02/16 Excavation to final grade complete (varies −29 ft to
−45 ft CCD)

14 08/05/16 Installation of grade beams and foundations begins
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Fig. 5. Site activities during task 10

third level of support were prestressed. Activities noted as tasks 11 through
14 occurred simultaneously at various locations at site, primarily as a result of
different final excavation grades.

A photograph taken during task 10 is presented in Fig. 5. The photo shows
the location of an access ramp at the south wall that was present at various
times during the excavation. The presence of this ramp made conditions on the
south wall three-dimensional for most of the excavation. As such, the adaptive
management procedure was applied to conditions at the north wall during the
excavation because the conditions there could be represented as plane strain
at the times during construction when the excavated level was level across the
entire north wall. Plane strain optimizations were made as several times during
construction and the updated predictions were Class A, i.e., true predictions and
not back-calculations.

3.4 Summary of Performance

A summary of the lateral wall movements recorded by the two SAA along the
north wall during excavation is shown in Fig. 6. In the figure, Level 1 refers
to the cantilever stage with excavation to depths 2 ft below the upper level
tieback, Level 2 to the excavation below the cross lot bracing, Level 3 to the
excavation below the lower tieback level, Level 4 to the excavated grade at the
base of the wall and final excavation refers to time when the localized deeper
excavation within the center of the site was completed. The general responses
in both SAA are similar in that less than 0.15 in. of lateral movements were
noted until the excavation had reached the underlying soft clay. Thereafter, the
movements increased as the softer clays behind the wall and below the excavation
were stressed in response to the excavation unloading. More movement was noted
in the center of the excavation at SAA-1, a maximum of 1.6 in., than near the
edges at SAA-2, a maximum of 1.4 in. After the cantilever stage, the maximum
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Fig. 6. Lateral wall movements along north end of excavation

movement was located near the excavated surface as excavation proceeded. These
trends are typical of excavations in Chicago. Note that the design aimed to limit
the lateral movements to 2 in., as required by the City of Chicago to protect
utilities buried in the adjacent streets.

A summary of the lateral wall movements recorded by the two SAA along the
south wall during excavation is shown in Fig. 7. At SAA-5, movements at only
two dates are shown. This is because the access ramp shown on Fig. 5 precluded
significant movements until it was removed. However, the movements recorded at
SAA-6 were recorded throughout the excavation process and followed the same
trends as noted in the north wall. The magnitudes of these movements are a bit
larger than observed at the north wall because the deeper excavation in the center
of the site was closer to the south wall and because of the impact of micropile
installation near SAA-6, as will be discussed. In any case, the maximum lateral
movement was 2.5 in., greater than the regulatory requirement of 2 in. However,
this movement apparently had no impact on the adjacent utilities.

Micropiles were installed adjacent to the south wall during an 18 day period
while the excavation was a constant level of −7 ft CCD and the cross-lot braces
were being installed. The movements associated with the micropile installation
at SAA-6 are showed in Fig. 8. The micropiles were grouted at pressures that var-
ied between 140 to 300 psi. The maximum lateral movement caused by installing
the micropiles was 0.3 in. measured at a SAA that was 3.5 ft from the near-
est micropile. The largest movements occurred in the soft clay and negligible
movements developed below elev −62 ft CCD, even though the bonded zones of
the micropiles was between elev −55 and −85 ft CCD. These movements were
localized, as other inclinometers located at greater distances registered negligible
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Fig. 7. Lateral wall movements along south end of excavation

Fig. 8. Lateral movements at SAA-6 caused by micropile installation

movements. However, the installation did contribute to the lateral movements at
SAA-6 being larger than those measured near the center of the wall at SAA-5.

The data in Fig. 8 shows the importance of identifying the cause of movements
when using the field performance data to optimize soil parameters when applying
adaptive management procedures at a project. Unless the micropile installation
was explicitly considered in the finite element simulation, then these movements
would be incorrectly interpreted as being a result of the excavation process.
Optimizations conducted on such a basis would be incorrect.
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4 Optimization Assuming Plane Strain Conditions

As is typical, the plane strain model of the excavation was developed so that
updated performance predictions can be made at key stages of the project, for
example when the excavation is made below a tie back or cross lot elevation
and the excavated surface is flat so that the plane strain conditions are strictly
applicable. However, there are some parts of the excavation that are deeper
than others to accommodate mat foundations where plane strain is not strictly
applicable. Also, the sequence of excavating is such that plane strain conditions
are met during the process at only a few instance. While it is advantageous to
use data collected at several locations to optimize parameters, in this case that
was not possible. Specifically, for the plane strain analyses, ideally the SAAs
located in the center of both the north and south wall would have been used for
the optimization process. However because of the presence of the access ramp in
the center of the wall until excavation had reached elev −22 ft CCD at most of
the site, the movements were negligible at that location until the latter stages of
construction. Updates at that time would have been not nearly as useful to the
project team. Consequently, only data collected at the north wall was used in
the optimization process during excavation, although as will be seen, the finite
element simulation included both walls and the entire excavation.

A 3-D model is required to allow updated predictions at any time during the
process, and thus to provide the earliest indication of how well the system is per-
forming in terms of controlling excavation-induced ground movements. Several
issues related to such an analysis are discussed herein.

4.1 Constitutive Model

The hypoplasticity clay model developed by Maš́ın [12] was used in the plane
strain analyses to represent the responses of the two clay strata. Unlike models
formulated within the elasto-plasticity framework, there is no separation between
the elastic and plastic components of strains in the hypo-plasticity model. Impor-
tant features of the selected model as related to this work include: (1) the basic
principles of critical state soil mechanics are incorporated; (2) non-linear small
strain stiffness is considered; (3) the anisotropy of very small strain stiffness
(i.e., G0) is reproduced.

Table 2 summarizes the model parameters in the hypo-plasticity model. The
p′ and e in this table are the mean effective stress and void ratio, respectively.
The parameters Ag and ng are interpolation parameters in the following relation:

G0 = Ag(p′)ng (1)

The parameters mrat, Rmax, βr and χ control the small strain stiffness degra-
dation with increasing strain.

4.2 Finite Element Mesh

The finite element code PLAXIS was used to make the computations presented
herein. Figure 9 shows the finite element mesh in the analysis and idealized soil
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Table 2. Model parameters in the hypo-plasticity clay model

Model parameters Description of its role

λ∗ Slope of the virgin compression line in lnp′ vs. ln(1 + e)
plane

κ∗ Slope of the rebound line in lnp′ vs. ln(1 + e) plane

N The value of ln(1 + e) on the virgin compression line that
corresponds to p′ = 1

φc The critical state friction angle

νpp The ratio of the bulk modulus in isotropic compression
(Ki) and the shear modulus in undrained shear (Gi) for
tests starting from the isotropic normally compressed state

Ag and ng Interpolation parameters of the very small strain stiffness
(G0)

αg The ratio of horizontal and vertical shear stiffness at very
small strain

mrat, Rmax, βr and χ Small strain stiffness degradation parameters

stratigraphy for the SQBRC excavation. Note that this section is a north-south
section through the site and is not symmetric about its centerline due to the
variations in excavation depth. Also, the effects of the building to the east and
west of the site on the stress conditions within the clays at the center of the
excavation are assumed negligible when considering behavior at the center of
the wall.

The fill and sand layers were modeled by Hardening Soil (HS) model (Schanz
et al. [15]). The HS model has been proved successful in modeling the fill and sand
behavior in the analysis of the Lurie Center excavation (Rechea [14]), located
adjacent to the SQBRC excavation. The parameter optimization is conducted
in the two clay layers because these two layers govern the excavation-induced
ground movement, as noted by the fact that very little lateral movement was
observed until the excavation reached these clays.

Fig. 9. FEM mesh and soil stratigraphy
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4.3 Initial Hypoplasticity Model Parameters

The HS parameters of fill and sand layers were taken directly from those reported
by Rechea [14]. For the two clay layers, the parameters λ∗, κ∗, N , νpp, αg, mrat,
Rmax, βr and χ were taken from the values reported by Arboleda-Monsalve
[1], which had been used in the numerical analysis of One Museum Park West
(OMPW) excavation in the downtown Chicago. In Arboleda-Monsalve’s work,
the soft to medium clays were modeled as two separate strata, as was the stiff
clays. The averaged parameter value among layers were used as the initial val-
ues in this work, e.g., the averaged value of λ∗ values reported by Arboleda-
Monsalve for Blodgett and Deerfield layers were used as the λ∗ value for the soft
to medium clays in this analysis. The parameter φc was estimated by match-
ing the undrained shear strength measured by field vane at the SQBRC site.
The parameters Ag and ng were estimated based on in-situ shear wave velocity
measured at the sites of OMPW and Ford Center excavations (Finno et al. [7]).

4.4 Parameter Optimization

Optimization is conducted with inverse analysis based on a gradient method.
Herein, it is accomplished by coupling the optimization toolbox in MATLAB
with the finite element code Plaxis. A program is written in Python to transfer
data between Plaxis and MATLAB. A Gauss-Newton method modified by the
addition of damping and Marquardt parameters is used to find a best fit between
the computed and observed values, as defined by a weighted least-squares objec-
tive function, S(b):

S(b) = [y − y′(b)]Tw[y − y′(b)] (2)

where b is a vector containing values of the soil model parameters to be estimated;
y is the vector of the observations being matched by the regression; y′(b) is the
vector of the computed values which correspond to observations; w is the weight
matrix. The weighting is used to reduce the influence of observations that are
less reliable and increase the influence of observations that are more reliable. In
this work, a diagonal weight matrix is used. The weight of every observation,
wii, is equal to the inverse of its error variance wii = 1/(σ2

i ).
Optimization-related statistics provide information regarding which parame-

ters can be estimated through optimization with respect to particular field obser-
vations and whether certain parameters can be estimated simultaneously. Two
statistics used in this work are composited scaled sensitivity (CSS) and parame-
ter correlation coefficient (PCC).

The CSS indicates the sensitivity of computed responses to selected parame-
ters and is defined as:

CSSj = [ΣND
j=1(

∂y′
i

∂bj
bjw

1/2
ii )2/ND]1/2 (3)

where y′
i is the ith simulated value; bj is the jth estimated parameter; ∂y′

i/∂bj
is the sensitivity of the ith estimated value with respect to the jth parameter;
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wii is the weight of the ith observation and ND is the number of observations.
The CSS indicate the total amount of information provided by the observations
for the estimation of the jth parameter and measure the relative importance
of the input parameters being simultaneously estimated. The higher the value
of CSS, the higher the likelihood that computed responses could be altered by
changing the parameter.

The PCC quantifies the correlation between each pair of parameters and
ranges from −1 to 1. When the PCC is close to −1 or 1, the two parameters are
highly correlated and cannot be uniquely estimated through optimization. The
PCC is computed from the Variance-Covariance matrix, V :

V = S2(XTwX)−1 (4)

where S is the objective function value calculated from Eq. 2, X is the sensitivity
matrix with Xij = ∂y′

i/∂bj . Accordingly, the PCC between the ith and jth
parameter is given by:

PCCij =
Vij√

Vi,iVj,j

(5)

For reasons already discussed, the field observations input into the opti-
mization were the lateral displacement measured by SAA-1. The data presented
herein are for the following two stages: (1) excavation to elev −7 ft CCD before
the installation of the struts, and, (2) excavation to elev −22 ft CCD before the
installation of the second level tiebacks. The former was the first elevation at
which optimization was attempted during excavation. The lateral movements at
this time were less than 0.25 in. To illustrate the process of optimization, results
are presented for the latter case when the excavation reached elevation −7 ft
CCD. In this case, optimization was using sets of data in both stages.

Figure 10 shows the computed CSS for soil parameters from the two clay
layers. The selected parameters in the figure primarily govern soil’s deformability
as opposed to strength and failure, because the soil movement surrounding the
excavation is the optimization objective. The targeted responses in computing
CSS are soil lateral movement at centerline of the north wall of the excavation at
two stages, when the excavation had been made to elev −7 ft and −22 ft CCD.

Figure 11 shows the absolute value of computed PCC for the same parame-
ters. In this work, it is assumed that when the absolute value of PCC is equal or
greater than 0.9, the corresponding two parameters cannot be optimized simul-
taneously. For both layers, it is clear that the parameters κ∗ and νpp, Rmax and
χ cannot be optimized together.

To constrain the number of parameters simultaneously optimized and conse-
quently ensure both the effectiveness and efficiency of the optimization, it was
decided that each layer has two parameters to be optimized, with one control-
ling soil small strain stiffness and the other controlling large strain stiffness.
At first, the parameters λ∗ and Rmax, κ∗ and Rmax were selected to be opti-
mized for soft to medium stiff clay layer and stiff clay layer, respectively. While
possessing the similar sensitivity, the parameter λ∗ of soft to medium stiff clay
is preferred compared to the parameter κ∗, because further excavation below
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Fig. 10. Composite scaled sensitivity

Fig. 11. Parameter correlation coefficient

elev −22 ft CCD is expected to result in more plastic deformation of the layer,
which is primarily controlled by the parameter λ∗. It is noteworthy that the
results from preliminary optimizations show that the parameter κ∗ of stiff clay
layer is reduced to significantly smaller value than that reported for other clays
(eg., Gudehus et al. [8]), indicative that the soil behavior at the layer is controlled
by small strain stiffness. As a result, only the parameter Rmax is optimized for
the stiff clay layer.

Table 3 summarizes the initial and optimized model parameters for the two
clay layers when data sets from the two excavation depths are used in the com-
putation. Note that while the three parameters that were optimized changed
values, the amount of the correction was relatively small and within normal
ranges expected for the parameters.
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Table 3. Initial and optimized parameters for the two clay layers

Soft to medium clay Stiff clay

Initial Optimized Initial Optimized

λ∗ 0.06 0.07 0.05

κ∗ 0.012 0.012

N 0.76 0.64

φc 33 35

νpp 0.15 0.15

Ag 14000 37000

ng 0.61 0.61

αg 1.1 1.1

mrat 1 1

Rmax 5.0 e−5 4.19 e−5 2.4 e−5 4.86 e−5

βr 0.18 0.18

χ 1.3 1.3

4.5 Computations Based on Optimized Paramsseters

The ability of the adaptive management procedure to update performance pre-
dictions at the SQBRC is illustrated based on the comparisons of the com-
puted and observed lateral wall movements. Figure 12 shows the computed and
observed values at SAA-1 based on the parameters optimized when the exca-
vation was at elev −7 ft CCD (Fig. 12a) and parameters optimized when the
excavation was at elev −22 ft CCD (Fig. 12b). The parameters used in the com-
putation in Fig. 12b are those listed in Table 3. In Fig. 12(a), one sees that there
is good agreement at when the excavation is at elev. −7 ft CCD, as expected
since those data formed the basis of the optimization. However, by the time the
excavation reached elev −22 ft CCD, the computed deformations were signifi-
cantly less that the observed values. However, as one would expect, when both
data sets formed the basis of the optimization in 12b, there was good agreement
at both stages. One can conclude that there was insufficient information in the
data set when the maximum movements were about 0.2 in. to allow optimization.
When the next available period of excavation - when the excavation was below
the second tieback level at −22 ft CCD - allowed one to use plane strain con-
ditions to adequately represent the loading conditions, the movements were in
the clays were large enough and hence contained enough information to permit
computed results to adequately represent the observations.

However, this was not a test of the method since the data from the deeper
cut was also used in the optimization. Figure 13 shows the comparison between
the computed values based on data collected at elev −7 ft and −22 ft CCD
for the final excavated conditions. These calculations represent Class A predic-
tions for the final deformations because they were made during excavation. The
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Fig. 12. Computed and observed lateral movements at SAA-1 (a) optimized using data
from −7 ft CCD, (b) optimized using data from −7 ft and −22 ft CCD

Fig. 13. Computed lateral movements at end of excavation and observed final values
along north wall

computed and observed values agree well, in both magnitude and shape of the
wall deformations at SAA-1. This shape array was located in the center of the
wall and its response reflected plane strain conditions.
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Also shown in Fig. 13 is the final deformations measured at SAA-2, located
relatively close to the corner of the excavation. As one would expect, these
values are smaller than those that developed at mid-length of the wall. Only a
3-D analyses could be expected to match both field data sets with the same set
of parameters.

Fig. 14. Computed lateral movements at end of excavation and observed final values
along south wall

Figure 14 shows the comparison between computed and observed results at
the south wall based on optimization of the center of the north wall. The com-
puted results are derived from the same simulation that produced the results in
Fig. 13, since both sides of the excavation were represented in the analysis. The
final lateral movements along the south wall measured at SAA-5 (80 ft from the
southwest corner of the excavation) and SAA-6 (66 ft from the southwest corner)
are shown in the figure.

In this case, the computed deflected shape of the wall agreed well with the
observations, but the magnitude did not. Near the center of the wall, computed
movements were 0.3 in. (or about 17%) more than the observed maximum val-
ues. However, at the quarter point, the computed movements were about 0.6 in.
(about 35%) less than the observed maximum value. This discrepancy was due
to at least two factors. First, SAA-6 was affected by the installation of the
micropiles; recall that the maximum movement caused by their installation was
0.3 in. (Fig. 8). Second, the excavation in the southwest corner of the site adja-
cent to SAA-6 was 9 ft deeper adjacent to the wall than in the middle of the site,
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as was assumed in the plane strain analysis. Thus, while good agreement was not
observed in the magnitudes along the south wall, given the limitations of using
a plane strain analysis, the parameters shown in Table 3, which were optimized
for the conditions when the clays first became significantly stressed, resulted in
reasonably computed deformations at both sides of the excavation. It is clear,
however, that the detailed performance monitoring is necessary for the adaptive
management approach to work well. An automated monitoring system such as
that installed at the SQBRC site was very helpful in developing the correlations
between construction activities and observed performance.

5 Optimization Assuming 3-D Conditions

There are a number of advantages of implementing a 3-D model to compute
deformations when using the adaptive management approach to deep excava-
tions. Several of the more important include:

1. Ability to update predictions at virtually any time, unlike when using plane
strain simulations.

2. Ability to explicitly consider the effects of adjacent buildings, especially when
working in congested urban environments. The construction of such buildings
will alter the stress conditions in the soil at some locations which will be
impacted by excavation for a new building.

3. Conceptually being able to explicitly account for variability in the soil condi-
tions.

However, there are drawbacks to such an approach as well. In addition to the
practical issue of the much larger size of the problem that must be numerically
simulated, representing a support system in 3-D raises some questions as to how
to model them. In particular, for the case of a sheet pile wall, the segments are
discontinuous laterally, with some undefined rotational stiffness at each segment.
The representation of an in-place sheet pile wall, including the effects of wales
on the in-plane stiffness, becomes problematic.

Several of these issues are currently being studied, and selected results are
presented in this paper to illustrate how these issues can affect the results of
an analyses. As mentioned before, the adaptive management approach relies on
isolating the effects of the soil response so that rationale updates of performance
prediction can be made. When it is applied during construction, the uncertain-
ties associated with how the excavation is actually constructed are eliminated,
idealizations in the initial conditions and support system are still made, and
these can have an effect on the computed deformations.

In particular, the effects of how the sheet pile wall is represented in the model
and the impacts of the construction of an adjacent building, the RIC building
in this case, on the computed wall deformations are examined.
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5.1 Soil Parameters and Finite Element Mesh

In the analyses presented in this section, the soil response is modeled using the
HS model. The parameters are shown in Table 4. Definitions of the parameters
are found in the PLAXIS manual and will not be repeated herein for sake of
brevity. They are parameters that were developed as part of the preliminary
design studies, and are representative of those used in several studies of exca-
vations in Chicago (e.g., Finno and Calvello [6]; Rechea [14]; Finno [3,4]). The
results of the analyses presented in this section are used to illustrate variations
in response, and as such, as long as the parameters yield reasonable magnitudes
of movements, the conclusions drawn will be valid.

Table 4. Hardening Soil parameters for 3-D simulations

Parameter Fill Soft to medium clay Stiff clay

γunsat (pcf) 115 100 120

γsat (pcf) 115 120 130

ein 0.5 1 1

E50,ref (psf) 282,000 125,500 1,090,000

Eoed,ref (psf) 282,000 87,700 763,000

Eur,ref (psf) 846,000 376,000 3,270,000

m 0.5 0.8 0.85

c′
ref (psf) 400 5 5

φ (degree) 30 26 32

ψ (degree) 2 0 0

ν′
ur 0.2 0.2 0.2

pref (psf) 2,000 2,000 2,000

Rinter 0.5 0.5 0.5

OCR 1 1.4 1.5

The finite element mesh used in the analyses is shown in Fig. 15. The model
represents the northeast quarter of the SQBRC excavation. As seen in the figure,
the fill and sand strata have been combined into a single layer because relatively
small lateral wall movements (less than 0.2 in.) were observed during excavation
and hence the element sizes were somewhat larger in this upper layer than in
the clays. As suggested on the figure, the wales for the tiebacks and the cross-lot
braces were explicitly modeled, as noted in pink. The tiebacks were individually
modeled as embedded beams for the grouted anchor and anchor elements for
the unbonded length. The cross lot braces were modeled as beam elements and
the sheet pile wall was modeled as plate elements. The non-uniform depth of the
final excavation level is seen in the figure.
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Fig. 15. Finite element mesh for 3-D analyses

5.2 Effect of Sheet Pile Stiffness Assumption

When modeling a sheet pile wall in a plane strain analyses, the parameters
required are the Young’s modulus and Poisson’s ratio of steel, and some geometry
parameters, such as cross-sectional area and moment of inertia of the particular
steel pile section. When sheet piles have z-shaped cross-sections, the geometry of
the sheet-pile wall requires transformation to a representative rectangular cross-
sectional geometry for the finite element analysis. This is straightforward in a
plane strain simulation, but somewhat problematic in a 3-D analysis. Figure 16
shows the geometric dimensions that are transformed. The z-shaped sheet-pile
wall geometry provides a larger moment of inertia against bending in the 2–3
plane (perpendicular to the wall) than in the 1–3 plane (parallel to the wall).

When representing the sheet piles with plates, some transformation is
required to account for the Z-shape within the context of a constant cross section
of a plate element. The elastic modulus parameters are not traditional Young’s
Moduli, but rather bending stiffness parameters. The stiffness in bending in the
vertical direction, the 2–3 plane in Fig. 16, is calculated as E1I1, and the axial
stiffness is calculated by E1A1. In this case, I1 and A1 are the cross-sectional
properties in a horizontal cross-section of the rectangular element used to model
the wall.

The bending stiffness in the horizontal direction, the 1–3 plane in Fig. 16,
depends primarily on the rotational stiffness at the sheeting interlocks. It is
recommended in PLAXIS that the moment of the sheet-pile in the horizontal
direction is less than the vertical direction by a factor of 20. Bending in the 1–2
plane is not a factor for sheet pile walls, and the wall is relatively stiff (against
bending) in that direction.
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Fig. 16. Schematic of steel sheet pile and bending stiffness notation

However, there is no experimental data to justify the 20-fold reduction of wall
stiffness of which the authors are aware. The number is similar to the reduction
of E for straight sheet pile sections used in circular cellular cofferdams, where
sheets are driven into the ground with the aid of a template and subsequently
filled with sand to create the cofferdam cell. In this case, the interlocks are quite
loose until filling, and the resulting slack in the system in the tangential direction
has been modeled by using a horizontal modulus that has been reduced by 20
to 33 times, primarily on the basis of matching the lateral movements of the
cofferdam walls during filling (Kuppusamy et al. [10]).

To illustrate the effects of various E ratio assumptions, a series of simulations
were conducted using the mesh shown in Fig. 15. The reductions considered
varied from no reduction, and therefore an analysis that is similar to the plane
strain condition, and reductions of E in the horizontal direction for bending in
the 1–3 plane (Fig. 16) of 5, 10 and 20.

The computed lateral wall movements at the end of excavation are shown
in Fig. 17 along the north wall at essentially the same locations as SAA-1 and
SAA-2 for the actual SQBRC excavation. As can be seen, the same general
pattern of movements is observed in both the center and near the corner of
the wall as for the actual excavation (Fig. 6). However, at both locations, the
maximum lateral wall movements increase by about 50% as the E reduction ratio
increases from 1 to 20. Furthermore, the wall response above the strut location
changes significantly as the E reduction ratio increases. The isotropic response is
typical of convention observed responses where the top of the wall rotates back
after excavation is made below the first support level. In this 3-D case, the wall
rotates about the cross lot brace level, rather than the first tieback level. This
may be a result of the full moment connection assumed in the finite element
simulation of the substantial wales; in the field, the wales were tack welded to
the sheeting, and thus full moment connections would not result. The observed
responses in Figs. 5 and 6 suggest that the 3-D isotropic response is more akin to
the SAA data at the site. However, more study is needed to clarify this issue.
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Fig. 17. Effect of sheet pile stiffness variation on computed lateral displacements at
center and near corner of north wall

To further illustrate the effects of the E reduction ratio assumption, a plot of
the lateral wall movements at the elevation of the maximum movement, about
elev −25 ft CCD, along the north wall is shown in Fig. 18. Again one sees that
the larger the E reduction ratio, the larger the displacements. Also, the higher
E ratio results in larger curvatures in this direction, although the differences
among the four cases are not particularly large.

Another factor to consider when modeling a sheet pile wall in a 3-D analy-
sis is how to consider the effects of discontinuous elements, i.e., the wales,
which were tack welded to sheet pile wall. The composite section increases the
moment capacity in horizontal direction, but by how much? This remains an
open question.

5.3 Effect of Modeling the Adjacent RIC Building

The RIC building to the east of the SQBRC excavation was founded on belled
drilled shafts founded in the hard clays and included a 14 ft deep basement. As
such the stresses in the clays beneath it were less than those to the south and
north of the SQBRC excavation. Given that the cross-lot braces were diagonal,
loads from the north and south sides of the excavation were likely transmitted
to the east wall adjacent to the RIC building. The same is true for the Lurie
Center to the west of the excavation which was also supported on belled drilled
shafts and had a 42 ft deep basement.

To illustrate the effects of these unbalanced in situ stresses that existed, a
3-D analysis was conducted using the same geometry as shown in Fig. 15, but the
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Fig. 18. Effect of sheet pile stiffness assumption on maximum lateral wall movements
along north wall

excavation for the RIC building was included in the simulation. In reality, a full
3-D simulation that included simulating both the RIC and Lurie Center excava-
tions would be required, but the size of mesh required for this calculation was
too large to allow sufficient resolution for the detailed simulation of the SQBRC
excavation. So while the simulation which takes advantage of symmetry about
two planes is an approximation of the actual conditions, it does illustrate the
effects of the different in situ stresses at various locations around an excavation
resulting from adjacent building construction.

The soil parameters used in this analysis were those given in Table 4. Results
of the simulation are shown in Fig. 19, a plot of the lateral wall movements of
the north and east walls versus depth at the center of each wall. When the
RIC structure and excavation explicitly was considered, the results show that
maximum lateral wall movements are about 25% larger when the RIC excavation
was included.

Apparently, the loads from the north side of the excavation were transferred
to the RIC side via the diagonal cross-lot braces because the available stiffness
of the soil at the RIC side was reduced by unloading. When the RIC building
was not considered, more lateral movement was computed on the east side, as a
consequence of the absence of the upper tieback level at the east side (see Fig. 15).
It was not needed in the field because of the 14 ft deep basement at the RIC
building. This example illustrates that the stress conditions in the soil caused
by past construction activities in urban areas may affect computed deformations
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Fig. 19. Effect of the presence of the RIC building on computed wall lateral movements
at center of north and east walls

associated with deep supported excavations and that when diagonal braces are
used, careful consideration must be given to the in situ stress conditions that
may have been affected by past construction.

6 Concluding Remarks

Plane strain modeling resulted in optimization of parameters at a relatively early
stage of excavation at the SQBRC site such that lateral wall movements were
predicted reasonably well at the end of the project. This was made possible by
the automated monitoring system installed at the site, particularly the SAA that
autonomously collected lateral wall movements and stored the data in a project
web site and access to the project web camera. Construction had to be closely
monitored so that times when plane strain conditions were applicable and that
activities other than cycles of excavation and bracing that caused ground move-
ments could be identified. When subsurface conditions are similar to those in the
Chicago area, significant movements will not develop until the softer clays are
stresses by the excavation activities, and as such, these times will represent the
earliest that one could reasonably expect optimization to be reliably completed.

However, the full potential of the method will not be realized until opti-
mization can be done based on actual conditions, which many times during an
excavation are 3-D in nature. While the capabilities of the 3-D analyses are such
that one can adequately model non-uniform excavation and support installation,
there are a number of other factors need to be studied further. Two of these issues
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have been highlighted herein and included modeling the sheet pile as a three-
dimensional support so that the rotational stiffness and the wale-wall connections
can be adequately represented and defining the initial stress conditions at the
start of construction in a crowded urban setting. Because of uncertainties asso-
ciated with these issues, one cannot isolate the effects of the constitutive model
on the observed deformations. This lack of unambiguity in causes of computed
responses currently limits the application of the adaptive management method
to well defined excavation stages and center portions of large excavations where
past construction activities have been adequately modeled.
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Abstract. In this contribution, a study on the behavior of instrumented
model piles in slow, cyclic penetration tests using a cylindrical full model
test set-up is presented. The tests are performed under 1g-conditions
in a uniform medium sand. A hydraulic driving system enables a dis-
placement controlled penetration similar to the pile motion during vibro-
driving at strongly reduced frequency. The pile instrumentation allows
the measurement of shaft and tip force during the driving process. Sys-
tematic variation of soil density and displacement amplitude reveals the
occurrence of typical stress paths of vibratory pile penetration. By com-
parison with results from monotonic and vibratory penetration tests,
the influence of the penetration mode is deduced. Results from FE sim-
ulations applying a hypoplastic soil model help to illustrate the strong
requirements and the considerable challenges to obtain realistic simula-
tions of cyclic pile penetration processes. Some hints towards a further
numerical modeling of the tests are given.

Keywords: Displacement pile · Monotonic penetration · Cyclic pene-
tration · Vibratory pile driving

1 Vibratory and Cyclic Pile Penetration

Vibratory pile driving bases on the application of a harmonic excitation to a
vibrator-pile system in order to facilitate the penetration compared to jack-
ing or impact driving. The pile motion during vibro-penetration is a result of
the excitation, the dynamic properties of the pile-vibrator system and the soil
response. In practice, the range of applied frequencies is 15 to 50 Hz and typical
displacement amplitudes lie within 5–15 mm resulting in penetrations per cycle
of vibration of about 1–10 mm [4,15]. Generally speaking, dense cohesionless
soils require high displacement amplitudes whereas in loose soil, it is helpful to
use high frequencies [15].

The global penetration behavior and the evolution of tip resistance depend
qualitatively on the combination of displacement amplitude and penetration per
cycle of vibration. However, in cohesionless soils and in the scope of application,
the tip resistance is independent of the current penetration velocity. High pen-
etration rates, the so-called fast vibratory driving, is characterized by the reach
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 2
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of a limit tip resistance comparable to monotonic penetration resistance. The
beneficial effect of eased penetration is obtained for larger ratios of amplitude
and penetration per cycle, the so-called slow vibratory pile driving [4,15]. These
dependencies are qualitatively well known, although there is still a considerable
lack of understanding the soil mechanical processes and of concise prognosis tools
for the driving process. Although FE simulations have been shown to be able
to qualitatively reproduce the major effects, their systematic and quantitative
validation is still under research.

The shaft friction in a given depth depends on the radial stress acting on
the pile shaft and the friction coefficient between soil and shaft. It is also inde-
pendent of shearing velocity for cohesionless soils. While the friction coefficient
can be estimated or measured with sufficient accuracy, knowledge about the
radial stress distribution is difficult to be obtained. Although it is reasonable
to assume a qualitatively increasing stress with depth, simple estimations e.g.
done by Dierssen [5] fail to explain the observed mechanisms, notably, the so-
called friction fatigue effect: the decreasing radial stress in a given depth with
increasing pile penetration [9,11,20]. This degradation of stress along the pile
shaft is a function of depth, soil density, number and amplitude of cycles and
pile diameter [11,14,20]. The quantitative incorporation of all these effects in
numerical simulations is currently not possible.

Laboratory model tests on pile penetration are useful to gain a better under-
standing of the process and to obtain experimental data for comparison with
numerical simulations. However, dealing with vibratory pile penetration, the test
results may be influenced by boundary effects and the tests therefore be prob-
lematic for numerical simulations. Accounting for the velocity-independence of
the soil resistance during vibro-penetration, cyclic penetration tests at strongly
reduced frequency are frequently used to overcome some of these limitations and
to incorporate major effects of vibratory penetration at the same time [8,11,20].
The cyclic pile motion is now imposed. It can thus be maintained constant
throughout a test and is easily varied from test to test. Although e.g. White and
Lehane [20] highlight the role of cyclic pile motion, it is interesting to note that
a systematic investigation of its influences has not been carried out until now.

The present study tries to contribute to this research in order to close the
knowledge gap and to provide valuable experimental data for comparison with
numerical simulations. The objective is to investigate whether slow cyclic pene-
tration tests can be used to observe effects similar to vibratory pile driving and
to perform a parametric study on the influence of soil density, pile displacement
amplitude and penetration depth. The cyclic penetration tests are interpreted
with respect to monotonic penetration tests for three different initial densities.
A systematic investigation of the process is achieved by application of prescribed
cyclic displacement sequences maintained throughout each test. Due to the con-
centration on slow tests, a wide range of numerical models should be applicable
for the simulation of the tests. Some numerical back-calculations of the tests are
also given in this paper.
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2 Experimental Setup

2.1 Experimental Setup

The basic test setup is schematically illustrated in Fig. 1(a). It is also described
in detail in [19]. The model tests are performed in a cylindrical test container
of stainless steel. The container has an inner diameter of 0.94 m and a height
of 1.45 m measured from the bottom of the container. It is filled with dry sand,
thus, the inner dimensions of the test container correspond to the initial sample
geometry. An instrumented model pile is penetrated into the sand by means of
an actuator unit mounted on top of the container. The actuator unit consists
of a loading frame installed with a differential hydraulic actuator allowing a
maximum stroke of about 1.2 m. Typical penetration depths reached in the tests
are about 1 m. The actuator is operated by a hydraulic aggregate and is equipped
with a control valve allowing the application of two-way displacement sequences.

The model pile has a diameter of 50 mm and about 1.4 m length. It is manu-
factured of a stainless steel tube with 2 mm thickness and has an instrumented
pile tip. The tip has an angle of aperture of 60◦. The friction angle between
pile surface and test sand can be estimated to 12÷ 15◦ based of the results of
interface tests [19]. Above the pile head, a 0.46 m long spacer is placed to take
advantage of the full cylinder stroke for pile penetration. The spacer is connected
to the hydraulic piston.

The ratio of test container and pile diameter is rather small (dC/dpile ≈ 19)
and the container wall can be considered as rigid. Thus, significant boundary
effects are expected in the experiments leading to an increase of penetration
resistance compared to free-field conditions, particularly in dense sand [4,19].
However, the tests are comparable between each other and the lateral boundary
conditions can be implemented in a numerical model so that the basic require-
ments for benchmark experiments are fulfilled.

Two types of tests can be performed with the current setup: monotonic and
cyclic penetration tests. In monotonic tests, the pile penetration is conducted
with a constant velocity of 3 mm/s. Cyclic tests consist of alternating phases of
downward motion with approximately 3 mm/s and upward motion with about
5 mm/s. The control valve for the hydraulic actuator is therefore connected to the
data acquisition. In the case of cyclic tests, the measurement of pile displacement
is sampled and the valve is switched according to the desired sequence of down-
ward and upward pile motion. The amount of downward and upward motion
can be prescribed with sufficient accuracy after some calibration procedures.
The frequency is in the range of 0.25÷ 1 Hz leading to moderate accelerations
at the pile toe of about 0.2 g max. around the reversal phases of pile motion.

2.2 Instrumentation

At the pile head, the displacement and the head force are measured. A potentio-
metric cable transducer which is attached to the connection cross bar measures
the relative displacement between pile head and loading frame. The load cell for
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Fig. 1. (a) Basic test setup for the model tests and (b) measurements on the instru-
mented model pile

the pile head force is self-fabricated and connects the pile head to the traverse.
It has a measuring range of 50 kN, a resolution of 0.01 kN and a linearity error
smaller than 0.5%.

The pile tip is instrumented with a load cell, an acceleration transducer and
a temperature measurement. The load cell (in-house manufacture) is designed
for 10 kN maximum load with 0.5% linearity error, Fig. 2. Detailed information
about the design and the characteristics of the load cell can be found in [19].
For acceleration, an ICP-transducer and for temperature, a micro PT-100-type
sensor are used.

The measurements are recorded using a multichannel system with simultane-
ous sampling and digital filtering (16 bit, 400 Hz sampling rate and 40 Hz Bessel
lowpass filter, 4th order).

Figure 1(b) shows the nomenclature for the measured values that are used for
the interpretation in this paper. uy,pile indicates the position of the pile shoulder
relative to the initial level of the sand surface, resp. the upper edge of the test
container. The overall penetration resistance is named Fh and corresponds to the
measured head force F ∗

h subtracted by the pile weight Gpile. The tip resistance is
expressed in terms of the measured tip force Fb and the tip pressure qb = Fb/Ab.
The shaft friction force can be calculated as the difference between overall and
tip resistance, Fs = Fh − Fb.
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Fig. 2. Self-fabricated instrumented model pile tip: (a) Photo and (b) cross section

2.3 Test Sand and Sample Preparation

A uniform medium quartz sand is used in the present study. The minimum
and maximum void ratios are emin = 0.557 and emax = 0.873. Compared to
other studies of the authors [18,19], the test sand has slightly more fine content
and different index void ratios, however, it remains very similar. Figure 3 shows
a typical grain size distribution determined for the sand of the present series
(2016) in comparison with sand of an older charge (2013).

A rainer system is used to pluviate the dry sand into the test container.
Different initial densities are achieved by variation of the free fall height and
pluviation intensity. Loose samples are prepared using a rigid tube and zero
free fall height by building up a soil cone, according to the ASTM Standard [1]
or DIN 18126 [6] procedures. As can be seen in Table 1, the achieved relative
densities actually are about zero, which proves that the method also works in a
larger scale. Medium dense and dense samples are built up in horizontal layers
using a diffusor with 0.15 to 0.3 m free fall height and low intensity. High free fall
heights and low intensities lead to higher densities [3,19]. A detailed description
of the preparation and uniformity control methods is provided by Vogelsang [19].

2.4 Experimental Program

The test series discussed here comprises 9 penetration tests including 3
monotonic (MON) and 6 cyclic tests (CYC). Three different initial densities
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have been investigated: loose, medium dense and dense. For each density a set
consisting of a monotonic test, a cyclic test with small amplitude and a cyclic
test with large amplitude has been performed. Information concerning the initial
conditions and the performed test paths are given in Table 1.

The designation of the tests follows [19], where also additional test results
can be found. The value y0 corresponds to the initial vertical height of the pile
shoulder above the sand surface (Fig. 4 - test start) and in the column uy,pile,
the test path is characterized. In the case of monotonic penetration, only the
maximum penetration depth is given (relative to the pile shoulder). For cyclic
tests, the values in brackets describe the performed sequence of downward and
upward motion. For the discussion of the test results the variable uy,pile is used

Table 1. Test information for the present study

Test Date e0 [−] ID,0 [−] Type y0 [mm] uy,pile [mm]

VM-06 15.02.16 0.8655 0.024 MON 35 −1050

VM-07 17.02.16 0.8746 −0.005 CYC 35 −1030 (−10/+4)

VM-10 18.03.16 0.6958 0.561 CYC 67 −1010 (−10/+4)

VM-11 07.04.16 0.6990 0.551 MON 67 −1010

VM-12 13.04.16 0.7019 0.542 CYC 66 −1080 (−5/+1)

VM-15 24.05.16 0.6001 0.864 CYC 69 −635 (−10.3/+4.3)

VM-16 17.06.16 0.6001 0.864 MON 73 −660

VM-17 06.07.16 0.5990 0.867 CYC 74 −630 (−6.9/+3)

VM-20 19.10.16 0.8707 0.007 CYC 74 −1080 (−5/+1)
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Fig. 4. Schematic illustration of the test paths performed for the present study

indicating the current vertical position of the pile shoulder below the sand surface
(negative values for positions below the sand surface).

In the first group of tests, alternations of a penetrative motion of ca. 10 mm
and upward motions of about 4 mm are conducted. This displacement sequence
will be characterized as cyclic displacement with large amplitude. The other
cyclic test path corresponds to penetration phases of about 5 mm and pullout
phases of approximately 1 mm. These tests will be named tests with small dis-
placement amplitude. The test paths are schematically illustrated in Fig. 4.

3 Test Results

3.1 Global Penetration Resistance

The first results in Fig. 5 are illustrating the evolution of penetration resistance in
monotonic tests. The curves of the three tests will be displayed in the subsequent
figures and serve as a reference for the cyclic tests.

It can be seen that the magnitude of penetration resistance changes depend-
ing on the initial soil density. The resistance in medium dense sand is about 10
times and in dense sand about 20 times larger than in loose sand. Therefore, in
the subsequent figures, individual scales will be used for the different densities.

Apart from the magnitude of measured force, the qualitative shape of the evo-
lution of penetration resistance is density-dependent. According to the descrip-
tion of penetration resistance in sand given by Linder [12], the penetration
process can be divided in three important phases. The first phase of penetration
resembling to the behavior of shallow foundations cannot be distinguished, prob-
ably to the conical pile tip. The two other important phases of penetration can
be observed for the tests in loose and medium dense sand: a transition phase
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with very slowly increasing resistance and a phase of quasi-constant penetra-
tion resistance (Linder [12]). Especially in medium dense sand, the reaching of
the third phase of quasi-constant resistance is very marked in a depth of about
16dpile. In loose sand, the phase of constant resistance is also very pronounced
(better to see in Fig. 6). On the other hand, in dense sand, the transition to
the third phase is not reached. The rapidly increasing resistance in dense sand
is indicating a strong jamming effect related to the low ratio of container/pile
diameter.

Figure 6 shows a comparison of the penetration resistance in cyclic and
monotonic penetration tests of the present series. The upper row corresponds to
the tests with large amplitude (≈−10/+4 mm) and the lower row to the tests
with smaller amplitude (≈−5/+1 mm). The left hand side shows the results in
loose sand, the middle those in medium dense and the right hand side the tests in
dense sand. This composition is maintained throughout the subsequent figures.
The tests in dense sand were only performed to a depth of about 0.65 m because
the maximum force of the tip load cell was reached.

Figure 6 shows an alternation of large compressive forces in the penetration
phases and slightly positive forces during upward motion. The penetration resis-
tance is composed of tip and shaft force, whereas the pullout force is attributed
only to the shaft force. The interpretation of the results is first done based on
the envelope curves, in other words the maximum penetration and pullout resis-
tance. Afterwards, the behavior during individual cycles will be considered in
detail.

The maximum penetration force in a given depth is clearly related to the
monotonic penetration resistance. Thus, the envelope of the penetration force has
a similar shape as the monotonic curve. In loose sand, the monotonic resistance is
slightly exceeded, probably due to a stronger densification of the material around
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Fig. 6. Comparison of the evolution of global penetration resistance. Large amplitude
driving in the upper row and small amplitude driving in the lower row. The columns
represent different initial densities from loose to dense.

the pile. Regardless the amplitude, for medium dense and dense sand, above
depths of about 0.6 m, the limit value during cyclic penetration is almost equal
to the monotonic resistance. In medium dense sand, large penetration depths
and amplitudes lead to a significantly lower maximum penetration resistance. In
1 m depth, only about 60% of the monotonic resistance are reached. Whether
a similar effect occurs in dense sand remains unclear due to the limitation of
penetration depth.

3.2 Evolution of Tip Resistance

The evolution of tip resistance with depth is depicted in Fig. 7. The figure is
equally composed as Fig. 6.

In Fig. 7 it can be seen, that generally, the tip force vanishes during upward
motion of the pile. The tip force during penetration is similar to the global pen-
etration resistance, indicating that tip resistance is predominant compared to
shaft resistance. Globally, similar observations like from Fig. 6 can be drawn.
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Fig. 7. Comparison of the evolution of tip resistance. Large amplitude driving in the
upper row and small amplitude driving in the lower row. The columns represent dif-
ferent initial densities from loose to dense.

The most interesting observation in Fig. 7 is the significant difference between
the cyclic tests in medium dense sand. In the case of the larger amplitude, the
tip force vanishes during every upward motion of the pile and below 0.6 m the
maximum tip resistance development is significantly below the monotonic tip
resistance. Contrarily, for smaller upward motion and large penetration depths,
the tip force decreases during upward motion, but remains compressive. Fur-
thermore, the maximum tip force developed during penetration is very similar
to the monotonic curve. A certain displacement amplitude resulting in a clear
stress relief below the pile tip seems to be necessary to facilitate the penetration
compared to jacking. For shallow penetration the monotonic resistance is always
reached even though the tip force vanishes during upward pile motion. These
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observations are in accordance with the in-situ results of Cudmani [4] for small
penetration depths.

3.3 Evolution of Shaft Resistance

Similarly to the preceding figures, Fig. 8 shows the evolution of shaft force with
penetration depth.
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Fig. 8. Comparison of the evolution of shaft resistance. Large amplitude driving in
the upper row and small amplitude driving in the lower row. The columns represent
different initial densities from loose to dense.

In all tests, more shaft friction is mobilized during penetration compared to
the pullout phase. This leads to a more or less pronounced asymmetry of both
envelope curves. It is interesting to notice that the shaft friction during upward
motion in loose sand is almost negligible indicating very low radial stresses acting
on the pile. In these tests, the maximum shaft friction is slightly higher compared
to monotonic penetration. A stronger densification due to cyclic penetration can
be considered as the cause for this increase of shaft capacity. The tests in medium
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dense sand clearly reveal the occurrence of the so-called friction fatigue effect in
the case of large amplitude cycling. Throughout the whole test, the maximum
shaft friction during penetration is clearly below the monotonic curve. Contrar-
ily, for small amplitudes, the developed maximum resistance almost perfectly
corresponds to the monotonic resistance. Even though the amount of upward
motion is smaller, more friction is mobilized in the pullout phases compared to
the test with large amplitude. This indicates, that the global stress regime acting
on the pile is higher for small amplitude cycling and friction fatigue does not
occur. In dense sand, friction fatigue does not play a major role although slightly
lower shaft friction is observed for large amplitude cycling.

Large amplitudes in combination with medium dense soil conditions seem to
be beneficial for the occurrence of friction fatigue [20]. The reason why friction
fatigue is not so pronounced in the other tests may be due to the inability of
loose sand for arching and the lack of dense sand for significant contraction.

3.4 Cyclic Evolution of Tip Resistance

Figure 9 investigates the cyclic evolution of tip resistance in detail. Therefore, a
short section in about 0.5 m penetration depth is depicted.
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Fig. 9. Comparison of the cyclic evolution of shaft resistance in 0.5 m depth. Large
amplitude driving in the upper row and small amplitude driving in the lower row. The
columns represent different initial densities from loose to dense.
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As it was shown before, the maximum tip force increases with soil density.
However, apart from the magnitude of developed force, the evolution of tip
resistance is qualitatively similar for all three densities. Its shape depends mainly
on the imposed pile motion. Large amplitudes lead to a S-shaped mobilization of
tip resistance during the penetration phases. The tip force vanishes after about
0.3 mm of upward pile motion and remains approximately zero throughout the
whole pullout phase. In the subsequent penetration phase, the initial stiffness
is very low, leading to slow increase of tip resistance. However, a section with
zero tip force during penetration as described by Cudmani [4] for vibratory tests
is not apparent, see also Sect. 4. This indicates that the pile tip does not lose
contact to the sand. Although the tip force also vanishes in the tests with smaller
upward motion of the pile, a considerably higher reloading stiffness is observed.
Unloading and reloading stiffness are very similar. The tip resistance appears to
reach a limit state that lies in the range of the monotonic resistance. In the cyclic
test with small amplitude in medium dense sand, the maximum tip resistance
exceeds the monotonic test, however, the amount can be explained with local
differences of void ratio [19].

Figure 10 shows detailed cycles in a depth of about 1 m for the tests in loose
and medium dense sand. The tests in dense sand have not reached this depth
and are therefore not shown.

In loose sand, the evolution of tip resistance is similar in 1 m and 0.5 m depth.
However, for the tests in medium dense sand, significant differences can be iden-
tified. Although the qualitative behavior is comparable to Fig. 9, the maximum
tip resistance during penetration with large amplitude is substantially lower
compared to the other cyclic test and to the monotonic penetration resistance.

As will be shown in Sect. 4, the observed cyclic patterns of the evolution of
tip resistance have marked parallels to the tip resistance measured during vibro-
penetration [4]. The measurements obtained with large amplitudes show the
characteristics of the so-called cavitational penetration mode while the tests with
smaller amplitudes have more similarities with the so-called non-cavitational
mode [4]. A combination of large upward displacement and little penetration
per cycle seems to be a trigger for the cavitational penetration mode. The non-
cavitational mode occurs for small upward displacements and large effective
penetration.

3.5 Cyclic Evolution of Shaft Resistance

Figure 11 shows the cyclic evolution of shaft force for the same section as Fig. 9
in a penetration depth of about 0.5 m.

The evolutions of shaft friction in the tests with large amplitudes exhibit an
alternation between significant resistance in the penetration phases and very low
or slightly positive resistance in the pullout phases. An increase of shaft friction
during the first 4÷ 6 mm of penetration is observed. There seems to occur a
strong increase of radial stress acting on the pile in this phase. A limit shaft
resistance is reached only in loose and medium dense sand. After the reversal
of pile motion, the shaft friction is very low and is only slowly mobilized during
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Fig. 10. Comparison of the cyclic evolution of tip resistance in 1 m depth. Large ampli-
tude driving in the upper row and small amplitude driving in the lower row. The
columns represent different initial densities from loose to medium dense.

the pullout phase. In the case of loose and medium dense sand, the shaft fric-
tion remains very small throughout the whole phase indicating very low stresses
acting on the pile.

The penetration phase is qualitatively similar in the tests with smaller ampli-
tude, but the occurring shaft resistance is larger. It is almost equal to the
monotonic resistance in medium dense and dense sand. The increase of shaft
friction is stronger during the first phase of penetration, thus, the shear stiff-
ness of the soil around the pile is higher compared to the tests with smaller
amplitude. The pullout phases reveal more differences between the tests with
different amplitudes. Even though the amount of upward motion is lower in
the small amplitude tests, more friction is mobilized during the pullout phase.
This indicates that the stress relief that was observed in the test with large
amplitude does not take place. The stress regime seems to change less during
small amplitude cycling and a limit state is not reached in the pullout phase.
This observation supports the conclusions by White and Lehane [20] made on
the basis of cyclic interface tests with and without shear stress reversal. They
found out that friction fatigue is significantly more pronounced in the case of
two-way cycling (with shear stress reversal). In the light of these findings, it can
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Fig. 11. Comparison of the cyclic evolution of shaft resistance in 0.5 m depth. Large
amplitude driving in the upper row and small amplitude driving in the lower row. The
columns represent different initial densities from loose to medium dense.

be assumed that the shear stress does not reverse clearly along the whole pile
shaft in the small amplitude pile penetration tests presented here.

4 Comparison with Vibratory Tests

The comparison with existing measurements during vibro-driving processes is
used in this section to validate the presented model tests with regard to real
pile driving and to demonstrate the parallels between cyclic and vibro-driven
penetration.

Figure 12 shows some measurements from Cudmani and Huber [4,10]
obtained in two types of test series: Fig. 12(a) and (b) during in field tests on a
test site near Karlsruhe, Germany and Fig. 12(c) and (d) in calibration cham-
ber tests (CC) using a dry sand that is very comparable to the one used in the
present study. The results are displayed in the form chosen for the figures in
this paper. Three representative cycles are shown, whereby the second cycle is
highlighted. Vertical displacement downwards is negative and the measured tip
force is expressed in terms of tip resistance qb. The pile in the field tests had a
length of about 7 m and a diameter of 0.16 m. The pile tip was conical with an
opening angle of about 100◦ [10]. The chosen sections are from a depth of 5 m in
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Fig. 12. Measurements during vibratory penetration: (a), (b) field tests and (c), (d)
calibration chamber tests (from Cudmani [4] replotted with the sign convention of this
paper)

sandy gravel below the ground water table. In Fig. 12(a) and (b) different static
driving forces F0 have been used that result in different penetration modes (the
static moment Msta is equal). The model pile for the CC tests was very similar
to CPT equipment. The diameter of the model pile was 36 mm and the opening
angle of the tip 60◦. Both tests have been performed with similar parameters
(static force F0 = 0.8 kN, frequency f = 32 − 35 Hz and coefficient of earth
pressure K = 1). Two different penetration modes are observed here due to a
variation of density and stress level p0.

Figure 12(a) and (c) reveal the occurrence of the so-called cavitational pile
driving mode whereas the results in Fig. 12(b) and (d) correspond to the non-
cavitational mode. Although strong parallels are evident between field and cal-
ibration chamber measurements, also some differences can be seen. In the field
test results shown in Fig. 12(a), the phase with negligible tip resistance at the
beginning of each penetration phase is very pronounced compared to Fig. 12(c).
Here, the mobilization of tip resistance begins earlier. This may be a consequence
of the different tip angles. Considering Fig. 12(b) and (d), the most obvious dif-
ference is that the tip pressure does not vanish during the phases of upward
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motion in Fig. 12(b), while it actually does in Fig. 12(d). Furthermore, the reach
of a limit penetration resistance is more pronounced in Fig. 12(b).

Especially the calibration chamber test results are very similar to those of the
quasistatic tests presented in this paper. They demonstrate that in quasistatic
tests some important effects of vibro-penetration can be investigated. The evolu-
tion of stresses below the pile toe principally depends on the cyclic pile motion.
The ratio between penetration per cycle and upward pile motion appears to be
an indicator for the occurring penetration mode. Both, the results presented here
as well as Cudmani’s measurements [4] show that the most frequent penetration
mode is the cavitational one.

These observations lead to the statement that for a first validation step for
numerical models of vibratory pile driving in granular soils, also quasistatic
boundary value problems can be used. Due to the prescribed pile displacement,
the implementation of the test paths is very easy and a quantitative comparison
can be drawn on the basis of the developed soil resistance.

5 Towards a Numerical Simulation of the Tests

This section serves to give indications towards a successful simulation of the
presented test results and to demonstrate the encountered challenges.

5.1 Model Setup and Description of Soil Behavior

Pile penetration processes are usually simulated using the so-called zipper tech-
nique that was established systematically by Cudmani [4]. The pile is introduced
as a rigid surface in contact with the soil. It possesses a pre-pile that represents
an initial cavity in the soil. The rounded pile tip expands this cavity during
penetration until the full pile diameter is reached. A similar model is described
in more detail in [2] in this book. A schematic illustration of the applied FE
model is shown in Fig. 13(a). More details are given in Appendix A.

The classic von Wolffersdorff hypoplasticity [21] in combination with the
extension by Niemunis and Herle [13] has been shown for many times to per-
form well for simulations of monotonic penetration problems [4,7,19]. However,
considering cyclic penetration, the model suffers from serious shortcomings. Sub-
stantial problems for the model (and most others) arise from the following char-
acteristics:

– Large numbers of cycles
– Spatial and temporal variation of strain amplitudes
– Large changes of the stress level with stresses up to a few MN/m2 during

penetration and negligible stress during upward motion of the pile

A discussion on the shortcomings of the hypoplastic model for typical defor-
mation paths of pile penetration is also provided in [2] in this book. Nevertheless,
the model is used here to illustrate the considerable challenges for realistic sim-
ulations of cyclic penetration processes. The applied soil parameters are given
in Appendix A.
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Fig. 13. (a) Schematic illustration of a suitable FE model for the simulation of the
tests and (b) calculated initial stress profile in medium dense, dry sand (ID,0 = 0.55)

5.2 Initial Conditions

In test containers with rigid side walls, the initial stress field in the soil can
differ from geostatic conditions due to silo effects. As shown by Vogelsang
et al. [17] and Vogelsang [19], a satisfactory estimation of the initial soil stresses
can be obtained by FE simulation of the soil deposition. A simple technique
using a layered activation of the actual soil weight led to very realistic results.
The simulation methods are described in detail in [17,19].

Figure 13(b) investigates the soil stresses after the soil deposition for the
test container used in this study. It shows the calculated stress profile in the
center of a medium dense sample. From Fig. 13(b) can be seen that silo effects
remain negligible up to a depth of about 0.5 m. Even in 1.1 m depth, which is the
maximum depth reached in the pile penetration tests, the influences of silo effects
on the initial stress distribution are moderate. With regard to a FE simulation
of the subsequent pile penetration, a consideration of silo effects is therefore not
of vital importance. A geostatic stress field with K0 = 0.4 should be a good start
for simulations of the pile tests. Once this validation step is achieved, a better
back-calculation may be obtained when silo effects are considered.

5.3 Test Paths

Applying quasistatic FE formulations, each phase of downward and upward
motion can be interpreted as a simulation step with the corresponding constant
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displacement velocity. Using a dynamic FE code, such an implementation of the
test paths would lead to velocity jumps and singularities of acceleration around
the reversal points. These should therefore be smoothed, for example using the
smooth step amplitude function in Abaqus [16]. Another way is to idealize the
zigzag test paths of the experiments as a sinusoidal function with a downward
trend (like e.g. done in [2]). Applying explicit integration schemes, it may be
necessary to shorten the simulation time compared to the physical time scale in
order to minimize the computation time [8]. However, it has to be ensured the
process remains mostly quasistatic in order to avoid problems arising from the
reflecting boundaries.

5.4 Contact Modeling

The steel surface of the pile is rather smooth, so simple contact formulations like
the Coulomb friction model should be able to capture the major effects. Based
on interface shear tests [19], the friction angle between sand and steel can be esti-
mated to 12÷ 15◦. Another important setting parameter for the contact model
is the treatment of the contact behavior in normal direction (separation on/off
in Abaqus [16]). Since a sand-steel interface cannot support tensile stresses, a
restriction of the contact kinematics excluding a separation of the contact sur-
faces is physically not justifiable. However, a separation of the contact in normal
direction is not to be expected here due to the steep angle of the tip cone and
its exclusion can sometimes be numerically beneficial. In the present case, the
simulations turned out to run more stable without a restriction of the contact
kinematics. The consequences of this input parameter are illustrated in Fig. 14.
It shows a short section of the load-displacement curve for penetration with the
−10/+4 mm displacement sequence. The deformed FE mesh in the highest point
of pile motion during one cycle is shown on the right. As can be seen, a gap forms
below the pile tip. In the load curve, the phase without contact below the pile
tip can also be recognized during upward and in the first part of the downward
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Fig. 14. Load-displacement curve during cyclic penetration and mesh configuration in
the highest point of the pile during one cycle
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Fig. 15. Comparison of experimental and numerical results of cyclic penetration resis-
tance in medium dense sand: (a)–(d) overview of the first 0.5 m and (e)–(h) detail of
cycles in 0.4 m depth. Small amplitude driving in the left column and large amplitude
driving in the right column. (Abaqus/Standard with geostatic initial state)
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motion. Such phases have not been identified in the experiments and have to be
considered as numerical artefacts.

5.5 Some Simulation Results

Figure 15 presents exemplary results from back-calculations of the three model
tests in medium dense sand. The simulations concentrate on the first 0.5 m of
penetration. The left column corresponds to the cyclic test with small ampli-
tude (−5/+1 mm) and the right column to the one with larger amplitude
(−10/+4 mm). The first row, Fig. 15(a) and (b), gives an overview of the exper-
imental results and the second row, Fig. 15(c) and (d), of the simulation results.
Figure 15(e)–(h) show details of the cycles in about 0.4 m depth in the same
order. Since silo effects are negligible within the first 0.5 m depth, a geostatic
initial state was chosen to simplify the simulations.

In both cyclic experiments, the monotonic limit resistance is reached during
the first 0.5 m of penetration, Fig. 15(a) and (b). Considering the numerical simu-
lations, this behavior is observed only for the test with −10/+4 mm displacement
sequence, Fig. 15(d). The smaller penetration rate (per cycle) of the test with
the −5/+1 mm sequence leads to a lower penetration resistance, Fig. 15(c). The
detailed presentation of selected cycles reveals that the qualitative behavior of
the experiment is better modeled in the case of small upward motion of the
pile (−5/+1 mm), Fig. 15(g). The loosening of the soil around the pile tip dur-
ing large displacement upwards cannot be reproduced by the numerical model,
Fig. 15(h). Thus, the stiffnesses during reloading do not differ significantly. As it
is demonstrated in [2], these deficits are probably attributed to the performance
of the soil model in the occurring deformation paths.

6 Conclusions

Monotonic and cyclic full-model pile penetration tests in dry sand have been
carried out to investigate the influence of cyclic penetration on the soil resistance.
The tests include some major effects of vibratory pile driving but offer advantages
such as an easier systematic investigation of the process and the achievement of
very suitable experimental data for model validation purposes.

During cyclic pile penetration, monotonic and cyclic effects on soil resistance
are counteracting. Monotonic pile motion tends to increase the stress level around
the pile, while superimposed cycling can cause a substantial stress relief. The
ratio between upward motion and effective penetration per cycle is an indicator
for the developed soil resistance compared to the monotonic resistance. Large
ratios lead to a facilitated penetration, whereas by working with low ratios simi-
lar stresses than during monotonic penetration are observed. The beneficial effect
of cyclic penetration regarding the driveability is most pronounced in medium
dense sand in combination with large pile displacement amplitudes.

The observed stress paths during penetration with large amplitude are very
similar to the cavitational vibratory penetration mode. Cyclic penetration with
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lower amplitude corresponds to the non-cavitational vibratory mode. Friction
fatigue along the shaft becomes evident in medium dense sand when large cycles
are imposed.

The suitability of commonly used simulation methods [4,7,8] is questionable
for cyclic penetration processes, mainly due to deficiencies of most soil models
to perform in typical deformation paths. However, the applied FE model with
hypoplastic description of the soil behavior is qualitatively capable to reproduce
important effects observed in the experiments. The improvement of available
soil models is a primary task in order to obtain more realistic simulations of pile
penetration processes.

A Details of the FE Model

Details concerning the setup of the numerical model can also be found in [19].
Axisymmetric CAX4 elements are used. The horizontal length of the elements
near the symmetry axis is greater than the height in order to reduce mesh dis-
tortion problems. An impression of the FE mesh near the pile tip can be received
in Fig. 14. In order to ensure a better numerical stability, the first 0.05 m of soil
are replaced by a uniformly distributed pressure equivalent to the soil weight.
The initial conditions are assumed to be geostatic with K0 = 0.37. The initial
void ratio is chosen according to the corresponding experiment (Table 1). The
pile penetration begins in 0.1 m depth (position of the pile shoulder with respect
to the sand surface). After an initial phase of 30 mm monotonic displacement
the cyclic pile motion is prescribed. The increment size corresponds to a pile
displacement of about 0.06 mm.

The material parameters used for the simulations are given in Table 2. Note
that these differ from the parameters used in [2]. The calibration procedure
is described by Vogelsang [19]. The slight differences of the current test sand
compared to older charges (see Sect. 2.3) have not been considered during the
calibration.

The Coulomb friction model is used to model the interaction between soil
and pile resp. soil and side walls. A friction angle of 12◦ is chosen for the pile-soil
and 22◦ (≈ 2/3ϕc) for the soil-wall interface.

Table 2. (a) Applied constitutive parameters of the test sand and (b) additional
constitutive parameters of the extended hypoplastic model with intergranular strain
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Géotechnique 30(3), 269–293 (1980)

16. Simulia: Abaqus Users Manual. Version 6.14 (2014)
17. Vogelsang, J., Zachert, H., Huber, G., Triantafyllidis, T.: Effects of soil deposition

on the initial stress state in model tests: experimental results and FE simula-
tion. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation
Processes. LNACM, vol. 77, pp. 1–20. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-18170-7 1

18. Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibratory
pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.)
Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp.
31–51. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4 2

http://dx.doi.org/10.1007/978-3-319-18170-7_1
http://dx.doi.org/10.1007/978-3-319-18170-7_1
http://dx.doi.org/10.1007/978-3-319-23159-4_2


52 J. Vogelsang et al.

19. Vogelsang, J.: Untersuchungen zu den Mechanismen der Pfahlrammung. Disserta-
tion, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe
Institute of Technology, submitted (2017)

20. White, D.J., Lehane, B.M.: Friction fatigue on displacement piles in sand.
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Abstract. Numerical simulations of geomechanical and geotechnical
processes, such as vibro-injection pile installation, require suitable algo-
rithms and sufficiently realistic models. These models have to account
for large deformations, the evolution of material interfaces including free
surfaces and contact interfaces, for granular material behavior in different
flow regimes as well as for the interaction of the different materials and
phases. Although the traditional Lagrangian formulation is well-suited to
handling complex material behavior and maintaining material interfaces,
it generally cannot represent large deformation, shear and vorticity. This
is because in Lagrangian numerical methods the storage points (nodes
resp. material points) move with the local material velocity, which may
cause mesh tangling resp. clustering of points. The present contribution
addresses the development of models for geotechnical and geomechan-
ical processes by utilizing Eulerian and Arbitrary Lagrangian-Eulerian
(ALE) formulations. Such non-Lagrangian viewpoints introduce addi-
tional difficulties which are discussed in detail. In particular, we investi-
gate how to track interfaces and to model interaction of different mate-
rials with respect to an arbitrarily moving control volume, and how to
validate non-Lagrangian numerical models by small-scale experimental
tests.

Keywords: Large deformations · Mixture · Granular material · Sand ·
Volume averaging · Closure model · Interface reconstruction · Eulerian ·
Multi-material ALE

1 Introduction and Literature Review

1.1 Geotechnical and Geomechanical Processes

During the last decade there has been an increasing interest in gaining broad
understanding of the mechanisms associated with geotechnical installation
processes, and how they influence the strength and stiffness characteristics of the
soil [79,155]. The main objective of the DFG Research Unit FOR 1136 GeoTech
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 3



54 D. Aubram et al.

[156,157], with which the authors collaborate in the context of Subproject 5, is
the provision of suitable methods for numerical simulation of such processes in
order to predict the deformations of supporting systems and nearby structures.

Geotechnical installation processes, like pile driving, vibro replacement, or
pressure grouting, generally involve large deformations and material flow, the
evolution of material interfaces including free surfaces and contact interfaces, as
well as the dynamical interaction of multiple, physically distinct materials on a
hierarchy of spatial scales [14,21,118,141]; see Fig. 1. In particular, the complex-
ity in the behavior of the soil is attributable to its granular nature and internal
structure, and to the presence of multiple phases (solid, liquid and gas). The
grain-fluid mixture is generally subject to different flow regimes and undergoes
changes in phase composition and internal structure depending on the dynamics
of the geotechnical process [17,22].

The mechanisms and phenomena associated with geotechnical installation
processes, except perhaps for the significance of soil-structure-interaction, are
similar to those of geomechanical or geomorphological flows, for example,
avalanches and debris flows [87,90,92,130,133], submarine landslides [103,114],
and soil liquefaction [97,145]. Although the objectives of geomorphologists and
geotechnical engineers in studying these phenomena may be somewhat different,
both need reliable continuum mechanical models and validated numerical meth-
ods for prediction. Both also agree that multi-phase rather than single-phase or
rheological approaches should be applied to capture the complexity of evolving
geomaterial behavior [87,91,176].

1.2 Lagrangian Formulation

Geotechnical engineers have been traditionally concerned with accurate deter-
mination of soil failure conditions and small deformations that may affect struc-
tures. For such situations the Lagrangian formulation of the governing equa-
tions (balance equations, constitutive models, etc.) and their discrete counter-
parts is well-suited because it naturally handles complex material behavior and
maintains material interfaces [57,99,144,176]. Lagrangian formulations have also
been employed to study large deformation problems in geotechnical engineering
[41,49,50,84,109] as well as geomechanical or granular flows [49,90,139]; see also
[148].

The discretizations in Lagrangian methods are either mesh-based, like in
the finite element method (FEM) [27,174], or point-based, like in the mater-
ial point method (MPM) [25,150] or smoothed particle hydrodynamics (SPH)
[72,105]. The major drawback of Lagrangian approaches is that they cannot rep-
resent large deformation, shear and vorticity without serious losses in accuracy
and/or efficiency. This is because the storage points (mesh nodes resp. material
points) move with the local material velocity, which may cause mesh distortion
resp. clustering of points [34,110]; we remark that some point-based methods rely
on a spatially fixed background mesh, but the solution variables are attributed
to Lagrangian point masses. Severe local deformations may change the topol-
ogy of the material, e.g. by creating new free surfaces, and thus can hardly be
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Fig. 1. Schematic of a complex geotechnical process: installation of vibro-injection piles
to tie back the base slab of a deep excavation.
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addressed by Lagrangian meshes without rezoning (remeshing). In such extreme
situations, which are likely to occur in geotechnical and geomechanical processes,
calculations slow down or even terminate.

1.3 Non-Lagrangian Formulations

Definitions and Basic Relations. In our research work we pursue a non-
Lagrangian approach to overcome the limitations of a Lagrangian calculation.
A non-Lagrangian formulation is one where the domain of reference or a control
volume moves at a velocity different from the material velocity. The reference
domain is an independent continuum made up of reference points, and which
is approximated by the computational mesh in numerical simulations. By def-
inition, the mesh topology (connectivity) does not change, which distinguishes
non-Lagrangian approaches from those Lagrangian techniques employing manual
or automatic rezoning of the mesh.

In a non-Lagrangian approach the reference domain can be fixed in space
as in the Eulerian formulation, or may move arbitrarily as in the arbitrary
Lagrangian-Eulerian (ALE) formulation [13,14,34]. Figure 2 illustrates the dif-
ferent concepts. The ALE idea has been invented in the 1960–70’s [82,160,161].
Accordingly, the spatial description of any scalar, vector or tensor field, q, is
related to its referential or ALE description q̂ by the composition q̂ = q ◦ Φ,
where Φ is the relative motion that maps reference points onto spatial points
currently occupied by the material. The material description Q of the field is
obtained from Q = q ◦ ϕ, where ϕ is the material motion. Taking the material
time derivative of q = q̂ ◦ Φ−1 leads to the fundamental ALE operator

q̇ =
∂q̂

∂t
◦ Φ−1 + c ·∇q, with q̇ =

∂Q

∂t
◦ ϕ−1 def= h(. . .). (1)

The first term on the right side of the first equation represents the time derivative
of q with respect to fixed reference points. The second term, called the convective
term, stems from the relative motion between the material and the reference
domain and involves the so-called convective velocity c. Finally, h(. . .) is a source
or an evolution equation for the field q under consideration.

The Lagrangian and Eulerian formulations are only two special cases of the
ALE formulation. In the Eulerian formulation, c = v = ∂ϕ/∂t represents the
material velocity, and Φ = id, for which (1) reduces to the common material time
derivative. On the other hand, if the motion of the reference domain coincides
with that of the material (i.e. c = 0 and Φ = ϕ), then the Lagrangian formulation
is obtained. However, in the present work we are concerned with formulations
which are essentially non-Lagrangian (Fig. 2).

Advection Algorithms. The change from a Lagrangian to a non-Lagrangian
viewpoint introduces two main difficulties: the presence of convective terms in the
time derivatives and the problem of tracking material interfaces. The first diffi-
culty is usually resolved either by approximating the convective terms directly, or
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Fig. 2. Schematic of Lagrangian and non-Lagrangian formulations.

by using conservative advection algorithms from computational fluid dynamics
(CFD) [80,98]. However, in contrast to ideal or Newtonian fluids the constitu-
tive behavior of soils and other geomaterials is generally path-dependent. More-
over, soil strength as well as geomorphological flows are driven by gravity and
friction, which introduces additional source terms in the balance of momentum.
One standard approach for solving such problems is to use the operator-splitting
resp. fractional-step technique [33,34,52,98]. If an operator-split is applied to the
governing equations of the problems under consideration, the convective terms
and the source terms are treated in separate equations which are solved sequen-
tially.

Interface Tracking. The second difficulty of tracking interfaces arises because
material boundaries (free surfaces or contact interfaces) generally are not aligned
with the underlying computational mesh, as they would be in a Lagrangian
formulation. Since the mesh motion in ALE methods is arbitrary, it can be
defined in such a way that material boundaries are resolved by edges (2d) or
faces (3d) of the mesh elements, and elements contain only a single material.
This is called a simplified ALE (SALE) formulation [33,34,110]. The drawback
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of an SALE formulation is that the range of problems that may be addressed
is not much greater than for a pure Lagrangian method because the material
boundaries remain Lagrangian in both cases (Fig. 2). Methods that do not share
this limitation require techniques for interface tracking [37,88,142].

Interface tracking methods either track the surface, defined by a distance
function or parameter representation, or the volume occupied by the material
behind the interface. When using volume tracking, the material boundary is
reconstructed ab initio from the solution data in each mesh element containing
two or more materials (so-called multi-material elements). This can be done by
employing the densities of Lagrangian marker points, with the disadvantages
outlined above, or alternatively, the fractional volume of each material as in
volume of fluid (VOF) [59,81,137,138,175] or moment of fluid (MOF) methods
[65,66]. ALE formulations using these methods for interface tracking are referred
to as full or multi-material ALE (MMALE) formulations [34,110] (Fig. 2).

Application to Geotechnical and Geomechanical Processes. Concern-
ing the modeling of geotechnical and geomechanical processes, several non-
Lagrangian approaches are documented in the literature. These may be classi-
fied into SALE formulations using direct approximation of the convective terms
[121,122,146], SALE formulations using first-order [14,16,19,20,61] and second-
order advection algorithms [102,151], and Eulerian formulations using advection
algorithms. The order of the advection algorithm refers to the maximum accu-
racy with which the spatial distribution of the solution variable is approximated.
Within the Eulerian approaches, one may distinguish between channel or depth-
integrated hydraulic models [60,132,134], two- or three-dimensional full-scale
models using free surface tracking [107,108], and multi-material full-scale mod-
els using volume tracking by VOF methods [1,12,78].

The models for the soil or debris material employed in these approaches are
based on single- or two-phase descriptions ranging between simple rheological
models in case of the full-scale Eulerian formulations, plastic or viscoplastic con-
stitutive equations using the Mohr-Coulomb criterion in case of the hydraulic
Eulerian formulations, and more or less advanced soil mechanical models in case
of the SALE formulations. Yet no full-scale multi-material Eulerian or MMALE
formulation is available which models both the complex rate-independent fric-
tional granular material behavior and the multi-phase behavior of the grain-fluid
mixture.

1.4 Multi-material Eulerian and MMALE Methods

Multi-material Eulerian and MMALE (Fig. 2) are non-Lagrangian formulations
that emerged along with those computational continuum mechanics tools com-
monly referred to as “hydrocodes” [34,110]. Typical applications include det-
onation and impact problems, the dynamics of bubbles and droplets, mate-
rial processing and manufacturing, or astrophysical events. Besides research
codes [35,38,69,70] and codes developed at national laboratories for energy and
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defense applications [3,59,71,106,112,115,129,165,175], some general purpose
commercial codes include multi-material Eulerian or MMALE capabilities as
well [58,101]; note that the fixed mesh in coupled Eulerian-Lagrangian (CEL)
formulations [40,126,135,154] is in fact multi-material Eulerian. The decisive
advantage of an ALE mesh is that the mesh motion can be kept as Lagrangian
as possible, resulting in less numerical diffusion and more accurate representation
of interfaces compared to a fixed Eulerian mesh.

Three Step Scheme. Implementations commonly use a Lagrange-plus-remap
or three step scheme which falls into the category of operator-splitting techniques
(see above). The three step scheme divides the incremental solution of the non-
linear problem into a Lagrangian step, a rezone step, and remap step (Fig. 3).
During the Lagrangian step, the set of equations is solved by accounting for the
sources but neglecting the convective terms; cf. (1). The rezone step relocates
the nodes either to their original positions (Eulerian limit) or in such a way
that mesh distortion is reduced. The remap step finally transfers the solution
variables onto the modified mesh by using conservative advection algorithms.
Physical time is advanced only during the Lagrangian step, whereas the spatial
distributions of the solution variables are fixed during the remap step.

Subcell Closure Models (Mixture Models). The rezone step may give
rise to elements which intersect with material interfaces and thus contain a
heterogeneous mixture of two or more materials (Fig. 3 right). Because the spatial
distribution of the element’s degrees of freedom is homogeneous, however, a lack
of information arises within such multi-material elements. The main difficulties
are to accurately determine the states of the individual material portions and
the reaction of the element they will generate [143]. To tackle these difficulties,
the heterogeneous mixture is represented as an effective single-phase material

after the Lagrangian step after the remap stepinitial configuration

Fig. 3. Illustration of the MMALE three step scheme (rezone step not shown); in the
multi-material Eulerian limit the rezoned mesh would be identical to the original mesh.
The blue area indicates a material zone whose initial configuration is assigned to an
element patch highlighted in red. At the end of a calculational cycle several elements
intersect with the interface between blue and white, thus contain a mixture of two
materials.
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(homogenized mixture). This should be based on reasonable, physically-based
mixing rules, referred to as subcell closure models, which can be derived from
theories incorporating material volume fraction information [36,51,53,116,117].
However, all available subcell models assume pure, i.e. single-phase homogeneous
materials at the outset, thus are not capable of including two-phase coupled
response among the different materials of the mixture.

1.5 Large-Scale Modeling of Multi-phase Mixtures

From the previous discussion it can be concluded that adequate non-Lagrangian
models for geotechnical or geomechanical processes must account for the dynam-
ical interaction of multiple materials on at least three different length scales
[17,21,22]: the scale lmicro defined by a typical grain diameter of the granular
material (microscale), the scale lmeso at which the granular material can be rep-
resented as a continuum interacting with other bulk materials (mesoscale), and
the scale lmacro at which the immiscible mixture of mesoscale continua can be
represented as an effective single-phase material (macroscale). The mesoscale is
the scale commonly used in soil mechanics, and at which continuum mechanical
material models operate, e.g. to reproduce the nonlinear coupled behavior of
fluid-saturated sand. The solid grains and the interstitial fluid of the granular
material cannot be individually distinguished. The mesoscale also carries the
information of interest associated with bulk material deformation and interface
evolution. On the other hand, the macroscale is typically defined by a character-
istic element length in multi-material Eulerian and MMALE calculations, thus
is closely connected the non-Lagrangian formulation.

Our objective is not to describe small-scale details in the multi-phase flow
field, but rather large-scale motions and interactions of the materials. Flow
details should only be resolved to the extend they effect the mean flow. Upscal-
ing information from lower to higher scales can be achieved by different types of
approaches, and each has its advantages and disadvantages [26,56,77]. In both
mathematical homogenization [10,67,83] and volume averaging in the sense of
Whitaker [131,166–169], the balance equations for mass, momentum, etc., as
well as the closure relations (e.g. constitutive equations) are postulated to hold
on the small scale. Filtering techniques are then applied to obtain correspond-
ing equations on the large scale at which measurements are often made. On
the other hand, the continuum theory of mixtures [46–48,158] makes no small
scale assumptions. Instead the system is viewed as overlapping continua with
all balance principles postulated on the large scale. The form of the constitutive
equations in terms of large scale variables is usually restricted by exploiting the
entropy inequality.

A third type of approaches combining principles of the other two is adopted
in the present research. Hybrid mixture theory was introduced in [74–77] and
has been extended by Cushman and co-workers regarding two [2] and three
spatial scales [30,31,119,120]. The basic idea is to apply local volume averaging
[45,63,64] to the small scale balance equations and to make the constitutive
assumptions needed for closure at the large scale with respect to which averaging
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is carried out, that is, for the averaged balance equations. The closure relations
can be obtained either by direct postulation of desirable equations, as done in
[99] and herein, or based on thermodynamical considerations as in the continuum
theory of mixtures.

1.6 Overview and Structure of the Work

This contribution summarizes the work done in Subproject 5 of the DFG
Research Unit FOR 1136. The main objective of the subproject is the theoretical
and numerical modeling of complex geotechnical processes such as the installa-
tion of vibro-injection piles [125,136]; cf. Fig. 1. In previous papers [21,22,141],
MMALE has been introduced as the authors preferred modeling framework. The
main reasons for this are as follows:

– it can represent large material deformations, shear and vorticity, as well as
material interface evolution including topological changes (e.g. new free sur-
faces are allowed to be created in a natural manner);

– it can incorporate advanced history-dependent constitutive equations and
multi-phase behavior of the soil or debris material;

– it can handle interactions of multiple materials without contact elements or
specific algorithms;

– it is mass conservative and can be made less numerical diffusive than pure
Eulerian formulations;

– it is more versatile than Lagrangian formulations and can be applied in situ-
ations where Lagrangian formulations fail.

In accordance with the individual tasks performed to reach the objectives,
the paper is structured as follows. Section 2 addresses the continuum mechanical
modeling of saturated sand as a compressible grain-fluid mixture by starting with
the most general, averaged equations for two-phase media. In Sect. 3, a rigorous
theoretical framework is developed based upon the interpretation of geotechni-
cal and geomechanical processes as complex multi-phase flows. This framework
allows for the consideration of two-phase coupled behavior of saturated sand
as well as for the construction of models for the time evolution of the material
volume fractions and averaged (homogenized) properties in multi-material flow
situations. The numerical techniques implemented in the Lagrangian step, the
rezone step, and the remap of the developed MMALE method are outlined in
Sect. 4. In this method, the homogeneous equilibrium model derived from the
theoretical framework provides a closed set of equations that holds at each spa-
tial point and at all interfaces (i.e. in single-material as well as in multi-material
elements). Section 5 then summarizes the experimental model tests concerned
with the vibro-injection pile installation. The main purposes of these tests are
the verification of the assumptions underlying the theoretical investigations and
the validation of the MMALE computational models. Conclusions and outlook
of future work are discussed in Sect. 6.
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2 Saturated Sand as a Grain-Fluid Mixture

2.1 Averaged Equations of General Two-Phase Flow

In this section we derive a mathematical model for grain-fluid mixtures with
compressible constituents. The starting point are the most general, averaged
equations describing conservation of mass and balance of linear momentum,
respectively, of non-reacting immiscible two-phase flow [63,64,89]:

∂παρα

∂t
+ div(παραvα) = 0, (2)

∂παραvα

∂t
+ div(παραvα ⊗ vα) = παραbα + div(πασα) + Γ α. (3)

The equations are in Eulerian conservation form, thus referring to a fixed mod-
eling domain D ⊂ R

3 of the three-dimensional ambient Euclidian space. Each
term is generally a function of point x ∈ D and time t ∈ [0, T ] ⊂ R. The super-
script α ∈ {s, f} indicates the phase, which is either solid or fluid (liquid or gas),
and πα is the α-phase volume fraction with properties

πα ∈ [0, 1], for all α, and
∑

α
πα = 1. (4)

Moreover, vα is the spatial image of the phase α material velocity, ρα is
the spatial mass density of that phase, bα is a prescribed body force per unit
mass, and σα = (σα)T is the symmetric Cauchy stress. A superscribed T denotes
transposition of a second-order tensor, ⊗ is the tensor product, and div is the spa-
tial divergence operator. The momentum interfacial transfer term Γ α includes
surface drag forces per unit volume generated by the relative motion of the
phases. Here we simply assume that both phases move with the same velocity,
i.e. vs = vf , resulting in Γ s = −Γ f ≡ 0. In fluid-saturated granular material
this formalizes locally undrained conditions [99,176].

The stress tensor is usually decomposed into a pressure stress and an extra
stress according to [111,159]

σα = −pαI + sα, (5)

where I is the second-order unit tensor. In general, the changes in pressure
stress are related to changes in mass density, whereas the extra stress is related
to material deformations. For simplicity, we let pα = − 1

3 tr σα, meaning that
the extra stress is deviatoric, i.e. sα = σα

dev, where tr denotes the trace of a

second-order tensor and σdev
def= σ − 1

3 (tr σ)I.
We remark that quantities in (2) and (3) have been averaged with respect to

a representative volume element (RVE). Because of (4)2, summation over both
phases yields the mixture balance equations

∂ρ̄

∂t
+ div(ρ̄v̄) = 0, (6)

∂ρ̄v̄

∂t
+ div(ρ̄v̄ ⊗ v̄) = ρ̄b̄ + div σ̄, (7)
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respectively. For example, ρ̄ =
∑

α παρα.
Provided that the σα have already been modeled by appropriate constitutive

equations, the set (2) and (3) constitutes a system of 2 · 2 equations in the
3 · 2 − 1 unknowns πα, ρα, and vα, with α ∈ {s, f}, where we emphasize that
the πα should only be considered and counted as only one variable because of
(4)2. Therefore, the system of equation requires one additional relation for the
volume fraction, called the topological closure relation [44,45,51], to close the
system. Otherwise the system would be indeterminate.

2.2 Stress Contributions in Granular Material

We consider a cohesionless granular material in which a single fluid fills the
interstitial space. Rheologists call this a dense grain-fluid mixture or granular
suspension [5], and a common example is saturated sand. Since only two phases
are present, we simply define the fluid fraction or porosity through

n
def= πf , so that πs = 1 − n (8)

by using (4)2.
Two limiting regimes of dry granular flow are usually considered [9,86,139]:

a rate-independent frictional flow regime usually studied in soil mechanics
[144,176], and a rate-dependent viscous flow regime where grain inertia and
instantaneous grain contacts through collision dominate [23,86,87]. In the inter-
mediate, frictional-collisional flow regime, the contributions of frictional and col-
lisional interactions to the bulk stress of the mixture cannot be clearly distin-
guished [6–8,93].

Further complexity is introduced by the interstitial fluid in granular mate-
rials. Besides the consolidation and liquefaction phenomena well-known in soil
mechanics, indirect grain interactions may occur through lubricated contacts
[5,6,8,54]. Generally all flow regimes have to be considered in the analysis of
geotechnical and geomechanical processes. However, yet no constitutive equation
is available which models the mechanical behavior of dense grain-fluid mixture
over a wide range of flow conditions and material properties [8].

To account for the different flow regimes, the stress tensors of the solid
and fluid phases in grain-fluid mixtures are additively decomposed into a rate-
independent frictional part and a rate-dependent viscous part [9,87,93]:

σα def= σα
fr + σα

vi, with α ∈ {s, f}. (9)

Terzaghi’s effective stress [153], σ′
fr, is introduced as

σ′
fr

1 − n

def= −(ps − pf)I + ss
fr (10)

in accordance with [32], so that

p′

1 − n
= ps − pf , (11)
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where p′ def= − 1
3 trσ′

fr is the (negative) mean effective stress and ps − pf is the
excess pressure.

A particular form of the principle of effective stress [144,176] can be derived
by combining (10) with an expression of the total stress of the grain-fluid mix-
ture,

σ̄ = (1 − n)σs + nσf , (12)

resulting in
σ̄fr = σ′

fr − pfI. (13)

We adopt this form for conceptual reasons, while noting that several other ver-
sions have been postulated; cf. [96].

If the effective stress for the viscous part is assumed unaffected by fluid
stresses, then substitution of (13) and (9) into (12) yields the following rep-
resentation of the principle of effective stress for a general grain-fluid mixture
[92]:

σ̄ = σ′
fr + σ′

vi + σf
fr + nσf

vi = σ′ − pfI + nsf , (14)

with σ′ = σ′
fr+σ′

vi. In terms of pressure stress, the principle (14) reads p̄ = p′+pf ,

where p̄
def= − 1

3 tr σ̄fr.

2.3 Constitutive Equations

Application of (14) requires models for σ′
fr, σ′

vi, pf , and sf . The fluid phase is
usually represented as a Newtonian fluid, leading to simple representations of
pf and sf . Concerning the frictional part of effective stress, σ′

fr, a large number
of constitutive equations has been proposed for applications in soil mechanics.
States of failure can be adequately modeled by models employing the classical
Mohr-Coulomb yield condition [176]. Comprehensive constitutive equations that
might be applied beyond states of failure fall into the categories of hypoelasto-
plastic [100,113,128,152] or hypoplastic [73,95,123,164] rate constitutive equa-
tions. Significant progress in the development of hypoplasticity has also been
achieved in the context of this DFG Research Unit [104,124]. Such equations
take the general form

�
σ′
fr

def= c′
fr(σ

′
fr, n,h) : d, (15)

by assuming incompressible constituents. Here �
σ denotes any objective rate of

σ, c is the fourth-order material tangent tensor, h is a set of history variables
other than stress, and d

def= 1
2 (∇v + (∇v)T) is the spatial rate of deformation

tensor.
Constitutive equations for the viscous part of the effective stress, σ′

vi, are
often restricted to particular flow conditions or to narrow ranges of material
properties. Common models take the form [87,127]

σ′
vi

def= μ′ds
dev, (16)

where μ′ is the dynamic shear viscosity. The latter is generally a function of the
porosity resp. solid volume fraction and shear rate [23,68,86,87,93,94,127,130].
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2.4 Topological Closure and Compressible Constituents

Section 2.1 has revealed that a well-posed model for grain-fluid mixtures requires
topological closure, that is, an evolution equation for the fluid volume fraction
(porosity). If the material of one phase, say, the solid phase is incompressible,
then this missing equation is readily obtained from conservation of mass of that
phase. However, an indeterminacy arises for compressible constituents, reflected
in the fact that πα and ρα appear in the general Eqs. (2) and (3) only in the
form of the product ρ̃α = παρα, but not separately.

A Lagrangian formulation is chosen to resolve the aforementioned indeter-
minacy. First, let the material time derivative of a α-phase-related quantity qα

along the velocity vα be defined through

q̇α def=
∂qα

∂t
+ vα ·∇qα, with α ∈ {s, f}, (17)

where ∇ is the covariant derivative, and vs = vf = v̄, i.e. locally undrained
conditions have been assumed. Conservation of mass (2) for the solid phase can
then be written in Lagrangian form:

˙̃ρs

ρ̃s
= −div vs. (18)

with the bulk mass density ρ̃s = πsρs = (1 − n)ρs of the solid phase.
The decomposition of stress (5) introduces pressure as an independent vari-

able. The pressure change of each phase is related to its change in density through
a compression model of the form

− 1
V α

∂V α

∂pα

∣∣∣∣
Mα

=
1
ρα

dρα

dpα

def=
1

Kα
, with α ∈ {s, f}. (19)

Kα is the bulk modulus of the α-phase material, V α = παV is the volume
occupied by phase α within a small Lagrangian control volume V of the mixture,
Mα = ραV α is the mass of that phase volume, and |Mα means that the mass of
the α-phase is kept constant along with differentiation.

In a mixture the pressure of each compressible constituent is generally a
function of the mass density and volume fraction of that constituent. In par-
ticular, the pressure of the solid phase (grains) in granular material does not
only depend on the mass density but also on the porosity [28,29]. However, one
usually assumes that the Lagrangian control volume occupied by the grain-fluid
mixture is a function

V = V (pf , p̄ − pf) (20)

of the fluid phase pressure and the pressure difference p̄ − pf = p′. Under the
assumption that total mass of the solid phase, M s, is kept fixed, one has
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dV

V

∣∣∣∣
Ms

=
1
V

∂V

∂(p̄ − pf)

∣∣∣∣
pf ,Ms

d(p̄ − pf) +
1
V

∂V

∂pf

∣∣∣∣
p̄−pf ,Ms

dpf

=
1
V

∂V

∂p̄

∣∣
∣∣
pf ,Ms

d(p̄ − pf) +
1
V

∂V

∂pf

∣∣
∣∣
p̄−pf ,Ms

dpf

def= − 1
Kdr

d(p̄ − pf) − 1
Kuj

dpf ,

(21)

where Kdr and Kuj are called the drained bulk modulus and unjacketed bulk
modulus of the granular material, respectively, and

Kuj ≈ Ks. (22)

By recalling that M s = ρsV s = ρs(1 − n)V , Eq. (18) is equivalent to

dρ̃s

ρ̃s
= − dV

V

∣∣∣∣
Ms

. (23)

Therefore, replacing in (21) the total differential with the material time deriva-
tive yields

˙̄p = −Kdr div vs + ζ ṗf , (24)

where ζ
def= 1 − Kdr/Ks is the Biot-Willis coefficient [42,43,176].

Based on the previous results together with the definition of mean effective
stress, (11), we are now able to relate solid and fluid phase pressures, ps and pf , to
solid phase volumetric deformation. To determine the rate of the solid pressure,
we start from the relative volume change dV s/V s|(1−n) by keeping solid phase
volume fraction constant:

dV s

V s

∣∣∣∣
1−n

= − 1
ρs

∂ρs

∂ps
dps = −dps

Ks
= − 1

Ks

(
dp′

1 − n
+ dpf

)

=
(

dV

V

∣
∣∣∣
Ms

+
dpf

Ks

)
Kdr

(1 − n)Ks
− dpf

Ks

=
Kdr

(1 − n)Ks

dV

V

∣∣∣∣
Ms

−
(

1 − Kdr

(1 − n)Ks

)
dpf

Ks
,

(25)

By replacing the total differential with the material time derivative again and
rearrange, one obtains

ṗs = − Kdr

1 − n
div vs +

ζ − n

1 − n
ṗf . (26)

On the other hand, the assumption of locally undrained conditions, i.e. vf =
vs = v̄, allows us to rewrite conservation of mass (2) for the fluid phase as

ṗf = −ζQdiv vs, with Q
def=

(
ζ − n

Ks
+

n

Kf

)−1

. (27)
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Substitution of (27) into (24) finally yields a Lagrangian form of (6):

˙̄p = −K div v̄, (28)

in which

K = Kdr

⎛

⎜
⎜
⎝1 +

ζ2

ζ
Kdr

Ks
+ n

(
Kdr

Kf
− Kdr

Ks

)

⎞

⎟
⎟
⎠ . (29)

Equation (28) in conjunction with the bulk modulus given by (29) holds
for arbitrary compositions of saturated grain-fluid mixtures with compressible
constituents and homogeneous velocity, that is, undrained conditions. Particular
cases included are:

– solid without any pores (n = 0, Kdr = Ks, ζ = 0), for which K = Ks;
– fluid without any solid content (n = 1, Kdr = 0, ζ = 1), for which K = Kf ;
– dry granular material (0 < n < 1, Kf ≈ 0), for which K = Kdr;
– uniform suspension of zero friction (Kdr = 0, ζ = 1), for which ps = pf and

K = ((1 − n)/Ks + n/Kf)−1, known as Wood’s equation [172, p. 327].

In concluding this section, we remark that the definition (11) of mean effec-
tive stress resolves the indeterminacy associated with volume fraction evolution
in compressible grain-fluid mixtures. This definition provides the missing link
between volumetric deformation and changes in solid and fluid pressures. Evolu-
tion of volume fraction in two-phase grain-fluid mixtures thus can be associated
with solid phase conservation of mass (2) resp. (18) alone:

ṅ = (1 − n)
(

ṗs

Ks
+ div vs

)
, (30)

in which ṗs is given by (26).

3 Mixture Model for Multi-material Interaction

The previous section was concerned with the continuum mechanical modeling
of general two-phase, grain-fluid mixtures, of which saturated sand is but one
example. It has been shown that if both compressible phases move with the
same velocity, representing locally undrained conditions, then the mixture can
be equivalently modeled as an effective single-phase, i.e. homogeneous bulk mate-
rial. In the section that follows, we summarize a rigorous theoretical framework
we have developed [17,21,22] to construct macroscopic mixture models for the
dynamical interaction of grain-fluid mixtures with multiple other, physically dis-
tinct bulk materials, e.g. pure fluids or pure solids. Void, representing empty
space or atmosphere, is generally considered as material, and all materials may
undergo large deformations. We refer to such a situation as multi-material flow.
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3.1 Averaging Procedure

Consider a three-scale system consisting of bulk fluid (F), bulk solid (S), and
fluid-saturated granular material (G). The granular material consists of a solid
phase (s) and fluid phase (f), and is constituted by an assembly of solid grains,
whose typical diameter defines the microscale of the problem, lmicro. The grain
assembly can be represented by a continuum at the mesoscale lmeso, separated
from the bulk solid and bulk fluid by sharp interfaces. Moreover, we assume
that the multi-material system has a representative volume element (RVE) with
characteristic length lmacro, the macroscale. The RVE is a sub-domain H ⊂ D
of the spatially fixed, i.e. Eulerian modeling domain introduced in Sect. 2.1.

Let k ∈ {S,F,G} def= {1, . . . , M} denote the material and α ∈ {s, f} def=
{1, . . . , N} the phase. A particular phase α in a particular material k represents
an individual, chemically-independent constituent of the flow and is denoted
by αk. Concerning the present situation, αk ∈ {S ≡ sS,F ≡ fF, sG, fG}. The
intersection of each two constituents is either empty or the shared interface. The
indicator function χαk : D × [0, T ] → {0, 1} which picks out the α-phase domain
of the k-material domain is defined by

χαk(x, t) def=

{
1 if x is in αk at time t,
0 else.

(31)

The point we wish to emphasize is that the indicator function (31) can be rep-
resented as the product χαk = χαχk of two independent indicator functions for
each material k and each phase α.

As introduced in Sect. 1, our approach employs hybrid mixture theory to
upscale information from the microscale to the macroscale. The microscopic
balance equations are upscaled by using local volume averaging, and then the
closure relations (constitutive equations, etc.) are postulated on the macroscale.
To this end, let the subregion of the RVE occupied by the k-material be Hk,
and let Hαk be the subregion occupied by the α-phase of the k-material, with
H =

⋃
k Hk =

⋃
k

⋃
α Hαk. Then the H-average of an arbitrary time-dependent

spatial microscopic field q(x, t) is defined through

〈q〉(x, t) def=
1
H

∫

H
q(x + y, t) dv (32)

for all x ∈ D and t ∈ [0, T ], where dv is the volume density on R
3, H

def=∫
H 1 dv = const is the volume measure of H, and y ∈ H is a vector.

Two particular averaged fields frequently used are the volume fractions

fk def= 〈χk〉 =
Hk

H
and παk def=

1
fk

〈χαk〉 =
Hαk

Hk
, (33)

where Hk def=
∫

Hk 1 dv =
∫

H χk dv and Hαk def=
∫

Hαk 1 dv =
∫

H χαk dv. While fk

is the volume fraction of the k-material with respect to the RVE, παk represents
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the macroscale volume fraction of the α-phase intrinsic to the k-material, with
fk, παk ∈ [0, 1]. Phase or material overlaps are not allowed, hence

∑

k
fk = 1 and

∑

α
παk = 1 (34)

for all k ∈ {1, . . . ,M}.
Different macroscopic (i.e. H-averaged) fields can now be defined by employ-

ing the previous definitions and the properties (34). Clearly, if q is a microscopic
field defined per unit volume, then

〈q〉 =
∑

k
fkqk =

∑

k

∑

α
fkπαkqαk, (35)

with

qk def=
〈χkq〉
fk

and qαk def=
〈χαkq〉
fkπαk

. (36)

Here 〈q〉 is the volume average of q in the mixture, qk is the intrinsic k-material
average, and qαk is the intrinsic average related to the α-phase in the k-material.
Accordingly, if q = ρ, for example, is the microscopic spatial mass density, then
ραk represents the mass of the constituent αk per unit volume of that constituent,
παkραk is the mass of the constituent αk per unit volume of the k-material, and
fkπαkραk denotes its mass per unit volume of the mixture.

We remark that, in the present approach, each material represents a mixture
generally composed of a solid phase and a fluid phase. Hence, we define

nk def= πfk (37)

as the fluid fraction or porosity of material k, with k ∈ {S,F,G}; cf. (8). Then
the solid fraction is πsk = 1 − nk by using (34)2. For pure solid (k = S) one has
nS = 0, whereas nF = 1 in case of pure fluid (k = F).

3.2 Macroscopic Mixture Model

On the microscale all constituents of the mixture are regarded as continua, gov-
erned by the equations of continuum mechanics [111,158,159]. The balance equa-
tions are conservation of mass and balance of momentum for the problems under
consideration, in conjunction with the interface jump conditions. Each term of
the microscopic balance equations is averaged according to the procedure above.
Details can be found in [21], and in [63,64] for the case of two scales.

Under the assumption of non-reactive constituents, one obtains the following
Eulerian conservation form of α-phase-k-material macroscopic conservation of
mass

∂fkπαkραk

∂t
+ div(fkπαkραkvαk) = 0 (38)

and macroscopic balance of linear momentum

∂fkπαkραkvαk

∂t
+ div(fkπαkραkvαk ⊗ vαk)

= fkπαkραkbαk + div(fkπαkσαk) + Γ αk.

(39)
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Note that these equations are consistent with the set (2) and (3) for general two-
phase media if one sets χk ≡ 1 resp. fk ≡ 1 (single material case). As in Sect. 2.1,
let us further assume that no momentum is exchanged no matter between which
constituents, and that velocity is homogeneous. Clearly,

Γ αk ≡ 0 and 〈v〉 = vk = vαk, (40)

for all k ∈ {S,F,G} and αk ∈ {S,F, sG, fG}.
Based on (35), summation of (38) and (39) over all phases and all materials

finally yield the macroscopic conservation of mass and macroscopic balance of
momentum of the mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0, (41)

∂〈ρv〉
∂t

+ div〈ρv ⊗ v〉 = 〈ρb〉 + div〈σ〉. (42)

We emphasize again the consistency between (41) and (6), as well as between
(42) and (7) for the case where the mixture represents a single saturated gran-
ular material and no other bulk materials. Moreover, Sect. 2 has revealed that
grain-fluid mixtures without mass and momentum exchange can be treated as
homogeneous bulk material, possessing a single velocity field. Therefore, after
adding the superscript G referring to the granular material to the relevant terms
of Sect. 2, these terms can be directly substituted into the equations of this
section.

After combining the mixture balance principles (41) and (42) with the par-
ticularizations made for saturated granular material in Sect. 2, and doing some
algebraic manipulation, the following Lagrangian model for geotechnical or geo-
mechanical multi-material flow is obtained [17,21]:

〈ṗ〉/〈K〉 + div〈v〉 = 0 (43)
div〈s − pI〉 + 〈ρb〉 − 〈ρ〉〈v̇〉 = 0, (44)

in which
〈p〉 =

∑

k

fkpk = fSpS + fFpF + fG
(
pG

′
+ pfG

)
, (45)

〈s〉 =
∑

k

fksk = fSsS + fFsF + fG
(
sG′

+ nGsfG
)

, (46)

〈ρ〉 =
∑

k

fkρk

= fSρS + fFρF + fG
(
(1 − nG)ρsG + nGρfG

)
,

(47)

1
〈K〉 =

∑

k

fk

Kk
=

fS

KS
+

fF

KF
+

fG

KG
, (48)

and KG given by (29).
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Constitutive equations and compression models must be prescribed for the
bulk solid (sS, pS), bulk fluid (sF, pF), granular material (sG′

, pG
′
), and inter-

stitial fluid (sfG, pfG), by using the consistent macroscopic rate of deformation
tensor

〈dk〉 def= 〈d〉 +
ḟk

3fk
I for each k ∈ {S,F,G}. (49)

Moreover, in accordance with Sect. 2.4 the evolution of the porosity of the gran-
ular material is given by

ṅG = (1 − nG)
(

ṗsG

KsG
+ div〈vG〉

)
, (50)

with

ṗsG = − KG
dr

1 − nG
div〈vG〉 +

ζG − nG

1 − nG
ṗfG (51)

and div〈vG〉 = div〈v〉 + ḟG/fG.
The model is the backbone of our non-Lagrangian numerical method sum-

marized in Sect. 4. Its is important to note that the set of Eqs. (43) and (44)
holds at each spatial point and at all interfaces, as well as for zones occupied by
a single or multiple bulk materials. All materials that might be present in such
processes, either compressible or incompressible, are treated in a unified fashion
due to the decomposition of stress (5) used for all constituents.

3.3 Volume Fraction Evolution and Homogeneous Equilibrium

In the mathematical sense of counting equations and unknowns, the above sys-
tem of equations requires an additional M − 1 closure relations (for the present
case, M = 3) to become a closed system. It is natural to think of this indeter-
minacy as being associated with conservation of mass and the evolution of the
material volume fractions fk, with k ∈ {1, . . . , M} = {S,F,G}. The reader is
referred to [44,45,51] for a more general discussion of volume fraction closure in
two- and multi-phase flow models.

A simple way to obtain topological closure for multi-material flow is to assume
constant volume fractions. However, such an assumption is inadequate if mate-
rial compressibilities differ by several orders of magnitude. In our approach, we
achieve closure by assuming homogeneous equilibrium [53,116,149], formalized
through

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {S,F,G}. (52)

The first assumption of pressure equilibrium between bulk materials is adequate
because the speed of sound in each material is large compared with velocities
in the problems of interest. In other words, equilibration is infinitely fast such
that pressure is continuous across a material interface. The second assumption,
(52)2, has already motivated zero momentum exchange between the constituents;
see (40). However, it is not generally a reasonable one because equilibration of
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velocity differences is driven by drag forces on material interfaces. Using the
assumption implies fully bonded materials.

In following [53,116] and using the assumptions (52), we have derived in
[17,21] a more realistic closure model reflecting homogeneous equilibrium:

ḟk = fk

( 〈K〉
Kk

− 1
)

div〈v〉, for all k ∈ {S,F,G}. (53)

Note that this equation naturally provides for a mixture compression model
and a void collapse mechanism: the material with the smallest bulk modulus
contributes most to the total volume change.

3.4 Non-Lagrangian Formulation of the Model

Since local volume averaging is defined with respect to a fixed region of space, the
Eulerian formulation of the proposed model is natural. Indeed, the Lagrangian
form (43) and (44) has been derived from the Eulerian conservation form (41) and
(42), respectively, using the material time derivative. The arbitrary Lagrangian-
Eulerian (ALE) formulation further generalizes the model. A condensed deriva-
tion is given below; for more details, see [13,14].

According to Sect. 1.3, the ALE formulation introduces a reference domain
which may move in space at an arbitrary velocity w. The relative volume change
between the referential coordinate system and the spatial coordinate system is
the Jacobian, J , and its rate of change is given by

∂J

∂t
= J div w. (54)

The ALE operator (1) is substituted into the Eqs. (43) and (44), respectively.
Multiplication of the resulting equations with J and substitution of (54) gives
the ALE conservation form of (43) and (44):

∂p̂J

∂t
+ J div(pc) = J(p − K) div v (55)

∂ρ̂v̂J

∂t
+ J div(ρv ⊗ c) = J(ρb + div(s − pI)), (56)

where
c = v − w (57)

is the convective velocity. Angle brackets indicating mixture quantities have been
dropped for notational brevity.

3.5 Application: Isotropic Compression

Consider a Lagrangian control volume occupied with a mixture of steel (bulk
solid), air (bulk fluid), and dry sand. The volume is subjected to quasi-static
isotropic compression. Under these conditions only (43) needs to be integrated
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in time. A first-order explicit scheme has been implemented for this purpose. The
initial volume fractions are set to fS

0 = 0.4, fF
0 = 0.2, and fG

0 = 0.4, respectively,
and the initial porosity of the sand is nG

0 = 0.4. The sand is chosen to be uniform
and fine-grained, with an angle of internal friction φ = 32◦. The initial pressure
of all constituents is the atmospheric pressure at sea level, patm = 101.0 kPa.

Steel under isotropic compression can be approximated by hypoelasticity
[159]. The constant bulk modulus is KS = 1.6 × 108 kPa. Moreover, we assume
that the compressibility of the bulk air and the air trapped in the sand pores
does not change with pressure, so that KF = KfG = patm = const.

Janbu’s power law [173] is employed in order to model nonlinear stiffness of
the granular material:

Es
def= C

( −σ′

patm

)a

patm, (58)

where Es is the confined stiffness of the bulk granular material measured in
the confined compression (oedometer) test. σ′ is the effective stress component
in loading direction and C, a are constants. For uniform fine sand, the values
C = 300 and a = 0.6 are reasonable. Jaky’s formula [55] then relates σ′ in the
oedometer test to the mean effective stress, yielding

σ′ = − 3〈p〉
1 + 2(1 − sin φ)

. (59)

Finally, a relationship between Es and the drained bulk modulus of the granular
material, KG

dr, can be established by using elasticity theory,

KG
dr = Es

1 + ν

3(1 − ν)
, (60)

in which Poisson’s ratio is estimated from ν = (1 − sin φ)/(2 − sin φ).
Results are plotted in Fig. 4 and seem to be reasonable. At the beginning

of isotropic compression of the mixture, the bulk air is compressed, which does
not significantly change the mixture pressure and the porosity of the granular
material. The increase in bulk solid and granular material volume fractions is
approximately the same due to (53) and the fact that the mixture bulk mod-
ulus is relatively low at this stage of compression. Once the bulk air has been
completely compressed, mixture pressure increases exponentially because of the
power law (58) and continuous compaction of the granular material. This, in
turn, gives more weight to the large bulk modulus of steel in evaluating the
mixture bulk modulus, (48).

4 Numerical Techniques

The MMALE method developed in the context of Subproject 5 is an extension of
our simplified ALE method for plane and axisymmetric problems [14,16,19,20,
140]. The implementation uses the three step scheme introduced in Sect. 1.4 and
illustrated in Fig. 3. In this section we present the basic numerical techniques in
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Fig. 4. Example application of the homogeneous equilibrium model: mixture of steel
(bulk solid), air (bulk fluid), and dry sand under quasi-static isotropic compression.
Evolution of the volume fractions, sand porosity, and mixture pressure. Reprint from
[17, p. 97] with permission of Elsevier.

the Lagrangian step, rezone step, and remap step associated with that scheme.
Additional details can be found in [18,141].

Let us write the set of Eqs. (55) and (56) in compact form

∂q̂J

∂t
+ J divF = SJ, (61)

where q ∈ {ρv, p}, F is the convective flux of q, and S is the source term.
Conceptually, the three step scheme splits (61) into two sets of equations which
are solved sequentially:

∂q̂J

∂t
= SJ, (Lagrange) (62)

∂q̂J

∂t
+ J divF = 0. (remap) (63)

The first set of equations, (62), is associated with c = 0 resp. v = w. Hence, it is
equivalent to the set of Eqs. (43) and (44) and formalizes an Lagrangian descrip-
tion of motion. The solution of the second set of equations, (63), is associated
with the remap step.

4.1 Lagrangian Step

During the Lagrangian step, the set (43) and (44) subject to prescribed initial
conditions and boundary conditions is solved with almost standard finite element
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methods [27,99,174,176]. Accordingly, the set of equations is written in a weak
form which is discretized in space using finite elements. A two-field mixed element
formulation is used which accounts for material and geometric nonlinearities. For
a single finite element Ω, the weak form of the governing equations discretized
in space can be written in matrix form

M∗ÿ + C∗ẏ + F in − F ex = 0 def= Ψ , (64)

in which

Ψ
def=

[
Ψu

Ψp

]
, y

def=
[

u
p

]
, M∗ def=

[
M 0
0 0

]
,

C∗ def=
[

C 0
QT S

]
, F in def=

[
f in− Qp

0

]
, F ex def=

[
f ex

0

]
,

M
def=

∫

Ω

NT
v ρNv dv, Q

def=
∫

Ω

BTmNp dv,

S
def=

∫

Ω

NT
p

1
K

Np dv, f in def=
∫

Ω

BTsdv,

f ex def= fb + f t def=
∫

Ω

NT
v ρbdv +

∫

∂σΩ

NT
v t da. (65)

In the equations, y is the vector of nodal degrees of freedom, including the nodal
pressure vector p and nodal displacement vector u, M is called the (consistent)
mass matrix, Q is the coupling matrix, S is the compressibility matrix, f in is the
vector of internal nodal forces, and f ex is the vector of applied external nodal
forces, consisting of the body forces fb and the surface forces f t. Moreover, Np

and Nv are the matrices of the interpolation functions for pressure and velocity,
respectively, B is the strain operator matrix, and m = [1, 1, 1, 0]T. A damping
matrix C has been included for reasons of generality. If C = 0, then damping is
assumed to reside entirely in dissipative material behavior.

We emphasize that the terms in (64) are functions of the current geometry
x, which is also unknown. However, the current geometry can be determined
from the initial geometry and the nodal displacements u due to the Lagrangian
formulation. The material time derivative of the displacement is the velocity,
that is, v = u̇ and v̇ = ü is the material acceleration.

The continuous time interval of interest, [0, T ] ⊂ R, is partitioned into a
sequence of discrete time steps, using an incremental decomposition tn+1 =
tn + Δt. Then, the solution of the semi-discrete weak form (64) is advanced
implicitly in time using the Newmark-beta and generalized trapezoidal methods
in conjunction with a damped Newton-Raphson method. The final form of the
linearized system of equations reads

Ki
n+1dyi

n+1 = ri
n+1, (66)
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where i denotes the current iteration step, ri
n+1 is called the vector of residuals,

Ki
n+1

def=

⎡

⎢⎢
⎢
⎣

∂Ψu

∂ui
n+1

∂Ψu

∂pi
n+1

− 1
a1

∂Ψp

∂ui
n+1

− 1
a1

∂Ψp

∂pi
n+1

⎤

⎥⎥
⎥
⎦

=

⎡

⎣a0M
i

n+1 + a1C
i
n+1 + Di

n+1 −Qi
n+1

−(Qi
n+1)

T −a6
a1

Si
n+1

⎤

⎦

(67)

is the effective stiffness matrix,

D
def=

∫

Ω

BTcBdev dv (68)

is the material stiffness matrix (ignoring initial stress stiffness), Bdev is the
deviatoric strain operator, and a0, a1, a6 are numbers associated with the time
integration scheme.

The element type used in the current implementation is the MINI quadri-
lateral element [24], which is the quadrilateral analogue of the MINI triangle
element [11,177]. It is a stabilized quadrilateral using a bilinear approximation
of the geometry, displacement, and pressure together with an additional bubble
function for the displacement approximation.

Solution of the finite element system of equations (66) requires evaluation of
the stress at the quadrature points of the elements in every iteration of every
time step. The stress has to be integrated because the constitutive equations
are generally given in spatial rate form using objective stress rates; cf. (15).
Our current method employs an incrementally objective integration algorithm
originally developed by Hughes [85] and improved in [147, Sect. 8.3] in order to
ensure exact stress update if the motion over a time step is rigid.

4.2 Rezone Step

After the Lagrangian step, the mesh is rezoned. The rezone step provides the
mesh velocity w, from which the convective velocity required for remap can be
determined in accordance with (57); cf. [14,15] for mesh rezoning resp. smoothing
algorithms. If the MMALE method is run in the pure Eulerian mode (w = 0
resp. c = v), the mesh nodes are relocated to their original positions. In either
case the mesh topology remains unchanged.

4.3 Remap Step

The basic equation for the remap is the conservation law (63). Data assumed
to be given in the remap step includes both the deformed geometry x− and
rezoned geometry x+ as well as the solution variables q− obtained after the
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Lagrangian step; quantities before and after the remap are marked with − and
+, respectively.

Due to the structure of (63), the remap takes the form of an advection
problem subject to the initial condition q|t=t− = q−. A finite volume method
[14,20,98] is employed for numerical solution. Finite volume methods are con-
servative because they solve the integral form of a conservation law with respect
to a control volume tessellation. In our method the control volume tessellation
coincides with the underlying finite element mesh, hence the terms “control vol-
ume” and “element” can be used interchangeably. The problem for which we
seek an approximate solution can be summarized as

d
dt

∫

Ω

q dv +
∑

I

∫

ΓI

qc · nda = 0 (69)

subject to q|t=t− = q− and for each element, where Ω is the element domain,
ΓI is the boundary edge starting at local node I, with ∂Ω ≈ ⋃

I ΓI , and n is the
unit normal to that edge.

After discretization in space and first-order explicit discretization in time,
(69) takes the form

q+ =
q−V − − ∑

I ΔQ−
I

V +
, with V + = V − −

∑

I

ΔVI . (70)

Here q+ is the remapped field under consideration, V − is the volume of the
deformed element in the Lagrangian mesh, V + is the element volume in the relo-
cated mesh (i.e. after the remap), ΔVI is the total volume transported across the
edge ΓI between Ω and the element Ωadj(I) adjacent to ΓI , and ΔQ−

I represents
the transported q-volume across that edge.

For each element, ΔVI is commonly defined as the volume swept out by
the edge ΓI between the configurations x− and x+ [39]. Moreover, it is defined
positive if the nodes defining the edge are moved further into the element’s
region, that is, if the transport volume is leaving the element. The transported q-
volume ΔQ−

I , on the other hand, is approximated by using the so-called Godunov
flux

ΔQ−
I

def= 1
2ΔVI(q− + q−

adj(I)) + 1
2 |ΔVI |(q− − q−

adj(I))

= 1
2

(
(q− + q−

adj(I)) + sgn(ΔVI)(q− − q−
adj(I))

)
ΔVI .

(71)

Substitution into (70) results in a conservative first-order upwind transport algo-
rithm which corresponds to the classical donor-cell difference scheme [34]. Donor-
cell advection is used in many ALE codes because it is simple, stable, conserva-
tive, and monotonicity-preserving [33,61,69,70,82,129]. Discussions of this and
several other advection algorithms can be found, for example, in [34,80,98].

The pseudocode of a suitable implementation of the donor-cell transport
algorithm in the remap step is provided in Algorithm1, and it uses a proce-
dure outlined in [39]. Note that volume is updated only if the total transported
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Algorithm 1. Donor-cell advection algorithm.
Input: V −, q−, Lagrangian mesh and rezoned mesh
Output: V +, q+ for all elements

1 forall the elements in the mesh do
2 set V = V − (total volume);
3 set Q = q−V (q-volume);

4 forall the elements in the mesh do
5 forall the element edges I do
6 calculate total transport volume ΔVI ;
7 if ΔVI > 0 then
8 V ← V − ΔVI ;
9 Vadj(I) ← Vadj(I) + ΔVI ;

10 ΔQ−
I = q−ΔVI (donor-cell assumption);

11 Q ← Q − ΔQ−
I ;

12 Qadj(I) ← Qadj(I) + ΔQ−
I

13 forall the elements in the mesh do
14 V + = V and q+ = Q/V +

volume is positive, i.e. a negative transport volume is set to zero, and a vol-
ume subtracted from the element is added to element adj(I) adjacent to edge
I to avoid double counts. This eliminates half of the remap operations. Higher-
order accurate transport algorithms have the same structure as the donor-cell
algorithm Algorithm1, except for the evaluation of q− occurring in line 10 [39].

4.4 Treatment of Multi-material Elements

One important feature that distinguishes non-Lagrangian from the Lagrangian
numerical methods is the presence of multi-material elements (cf. Sect. 1 and
Fig. 3 right). These elements require extensions of the Lagrangian step and remap
step presented in the previous sections in order to achieve a reasonable accuracy
of the overall MMALE method.

Mixture Model in the Lagrangian Step. In the Lagrangian step, the stress
and state variables are integrated in time for each individual material. There-
after, the stress and stiffness for the mixture of materials has to be evaluated
and substituted into the respective terms of the system of finite element equa-
tions (66). For this purpose, we have developed the framework and homogeneous
equilibrium model summarized in Sect. 3 accounting for the two-phase behavior
of saturated granular material. We reemphasize that the homogeneous equilib-
rium model is consistent with the set of equations solved in the Lagrangian step,
hence valid for both single- and multi-material elements.

Eulerian and MMALE meshes may consist of elements that partially or com-
pletely cover void (empty space or atmosphere); note that void is treated as a
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particular bulk fluid in (43) and (44). These elements require special treatment
in the implicit Lagrangian step because a stiffness matrix has to be inverted
[38]. Void elements practically do not have any stiffness or mass density. There-
fore, their nodes remain unconsidered when setting up the finite element system
of equations. Elements located at material boundaries are partially filled with
void. The stiffness of the mixture inside these elements might be low, causing
large displacement increments during the equilibrium iterations. Therefore, the
incremental nodal displacements of partially filled elements are uniformly scaled.

Material Subzones Representation in the Remap Step. If an element
contains m > 1 materials, the remap must be carried out for all variables q of
each individual material k, with k ∈ {1, . . . , m}. Application of mixture theory
(Sect. 3) then requires that the advected variable is qkfk, where qk represents
the averaged variable measured per unit volume of the k-material, and fk is the
k-material volume fraction. The generic advection algorithm (70) then takes the
form

qk+ =
qk−fk−V − − ∑

I ΔQk−
I

fk+V +
for all k ∈ {1, . . . , m}, (72)

and with V + obtained from (70)2.
For the determination of the transported (advected) volume fraction fk+

and the transported qk-volume ΔQk−
I across element edges I, the the spatial

distribution of the material subzones (subcells) in multi-material elements must
be taken into account. Otherwise initially coherent zones would disperse after a
few advection steps. The present MMALE method reconstructs and propagates
material interfaces element by element by using a volume of fluid (VOF) method.
The amount of transported material is defined as the regions swept out by the
element edges during mesh rezoning truncated by the interfaces.

Common state-of-the-art VOF methods approximate the interface in each
multi-material element by a straight line; see reviews in [37,137]. One of the
earliest two-dimensional methods is due to Youngs [175], which forms a basis
for the developments of the present research. Our implementation relies on that
described in [138] because the original paper provides little detail of the interface
reconstruction procedure. Details are presented in [22], so only a few key facts
will be repeated here.

A linear interface can be generally described by the Hesse normal form

n · x − d = 0, (73)

in which x is an arbitrary point on the interface, n is the unit normal on that
interface, and d is the line constant. A linear reconstruction of the interface
is determined for each element in two steps: (i) estimate n, or equivalently, the
interface slope and (ii) determine d such that the volume fraction of the material
lying behind the interface matches the known value.

The interface slope is estimated based on the volume fraction data in the
current element and its neighbors. The location of the material interface is
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f k
k

Fig. 5. VOF interface propagation in accordance with [34,175]. The reconstructed
interface and the total volume ΔV transported across an element edge are used to
calculate the transported material volume ΔV k > 0.

determined by noting that the truncated element volume behind the interface
represents the partial material volume. Volume is conserved, i.e. the right loca-
tion of the interface has been determined, if the partial volume divided by the
element volume matches the given volume fraction data of that element. The
matching can be achieved by deriving an explicit expression that relates the
truncated element volume to d.

The material transport volumes are usually computed as truncation volumes,
as illustrated in Fig. 5. Once the total transport volume across an element edge,
ΔV , has been determined, a region having the same amount of volume is created
that lies entirely within the element (Fig. 5 right). The k-material transport vol-
ume, ΔV k, is then defined as the set-theoretic intersection of the total transport
volume and the material domain behind the reconstructed interface. Finally, the
material volume fraction can be updated in accordance with (70), i.e.

fk+ =
fk−V − − ∑

I ΔV k
I

V +
. (74)

Once the transported k-material volumes ΔV k
I are known, the transported

qk-volumes ΔQk−
I needed for the remap (72) can be determined by an appro-

priate advection scheme. In case of donor-cell advection (71),

ΔQk−
I = 1

2

(
(qk− + qk−

adj(I)) + sgn(ΔV k
I )(qk− − qk−

adj(I))
)

ΔV k
I . (75)

4.5 Rigid Disk in Uniform Flow Field

To test the VOF reconstruction and propagation algorithms of our method, we
consider a rigid circular disk transported in a uniform diagonal velocity field.
The problem statement and square mesh are shown in Fig. 6a. Figure 6b depicts
the reconstructed interface in the initial configuration and the corresponding
distribution of the red material volume fraction. The latter has been obtained
by intersecting the circular material domain with the domain enclosed by each
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mesh element, resulting in a volume fraction constant in each element. A direct
comparison of the original interface and its piecewise linear reconstruction is
given in the detailed view of Fig. 7. Note that the fractional element volume on
each side of the interface is the same for the original interface and its linear
approximation.

The second and third row in Fig. 6 show the material configurations and
volume fraction distributions after advecting the material along the diagonal
of the computational domain. Figures 6c and d plot the results for the case
where the transport algorithm does not account for the geometry of the material
subzone in each element. It can be seen that the material loses coherence and
disperses during transport (Fig. 6c), leading to a blurred red zone in the volume
fraction plot (Fig. 6d). In contrast to that, the shape of the circular disk is
retained throughout the calculation if the material distribution is considered in
each remap step by using the VOF algorithm (Figs. 6e and f).

5 Experimental Tests

Experimental model tests have been carried out in the context of Subproject 5 to
observe the multi-material flow field during vibro-injection pile (RI-pile) installa-
tion in sand. This section summarizes the test set-up, measurement concept and
experimental program, and discusses some preliminary results. Further details
have been presented in a previous paper [141]. Moreover, we refer the reader
to the benchmark tests done in the Central Project of the DFG Research Unit,
e.g. those reported in [162,163] and in this collection.

5.1 Set-Up and Measurement Concept

The set-up used for the tests is shown in Fig. 8. The main components are a
waterproof chamber with glass panel serving as a viewing window, a model pile,
and a device for vibratory pile driving. All components are in-house develop-
ments. The vibrator consists of two counter-rotating imbalances whose mass and
rotational speed are adjustable. The model pile is made up of a 50mm × 50mm
stainless steel square tube equipped with a welded-on collar at the pile toe and
a built-in injection tube. The opening of the injection tube is located directly
above the collar (Fig. 8c). Pressurized injection is enabled by a diaphragm pres-
sure vessel.

During the tests the pile was guided alongside the glass panel. The driving
and grouting process was digitally filmed through the viewing window using a
standard Full HD camcorder. Series of consecutive still images were recorded at
50 Hz with a maximum resolution of 1920 × 1080 pixels. Digital still images of
the configurations at the end of the tests were also captured. By analyzing the
recorded image sequence using image correlation software, details of the multi-
material flow field could be measured without on-sample instrumentation. A
MATLAB toolbox based on particle image velocimetry (PIV) [4,14,171], called
GeoPIV [170], is used in the present research. PIV tracks the texture within
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Fig. 6. Transport of a circular disk in uniform flow. (a) Initial configuration and
mesh. (b) Initial volume fraction distribution and reconstructed material interface.
(c) Final configuration and (d) final volume fraction distribution without interface
tracking. (e) Final configuration and (f) final volume fraction distribution using the
VOF method.
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Fig. 7. Detailed view of Fig. 6b. Original interface portion (dashed line) and piecewise
linear reconstructed interface (solid red line) which is generally discontinuous across
element edges. The material volume fraction in each element matches the original value
obtained by intersecting the circle with the element domain.

areas of an image through a sequence of images to determine local incremental
displacement vectors. The totality of these displacement vectors represents an
incremental displacement field from which an incremental strain field can be
obtained through postprocessing.

5.2 Experimental Program

The sand employed in the experimental model tests is a quartz sand with well-
rounded to angular grains identified as fine-gravelly coarse Sand (fgrCSa) accord-
ing to [62]. The limit void ratios are emin = 0.482 and emax = 0.779. Further
granulometric properties are listed in [14], in which the same sand was used for
quasi-static penetration tests. In all tests the chamber was filled with air dried
sand by dry sieve pluviation. Each sand model was prepared in several layers of
equal thickness in order to achieve a homogeneous distribution of initial density.
Due to geometric constraints of the chamber the initial mean relative density
was always larger than 85% (very dense).

Series with a total of 10 tests have been conducted (Table 1). The degree of
saturation, the grouting material, the grouting pressure, and the load amplitude
of the vibrator were varied between the tests. The vibration frequency was about
20 Hz for all tests and the load amplitude varied between 1.9 kN and 2.56 kN.
Two tests were run in air dried sand, whereas the other were carried out in
sand which had been water flooded. In three experiments the pile shaft annulus
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a) b)

c) d)

1500 mm

1030 mm

730 mm

model pile
50 x 50 mm

1500 mm

Fig. 8. Experimental investigation of vibro-injection pile installation. (a) Filled test
chamber with glass panel and model pile. (b) Detailed view of the glass panel, pile
guide, and model pile. (c) Tapered pile toe with welded-on collar and bolt closing the
injection tube. (d) Self-made vibrator with controller (frequency converter). Reprint
from [141, p. 117] with permission of Springer.
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Table 1. Details of conducted vibro-injection pile (RI-pile) installation tests. Reprint
from [141, p. 119] with permission of Springer.

Test ID Date Saturation Grouting material/

Pressurization [bar]

Frequency [Hz]/

Load amplitude

[kN]a

RI-1-D 2011 Air dried None 20.7/2.56

RI-2-F Water flooded 20.0/2.39

RI-3-F 20.0/1.90

RI-4-F

RI-5-Bb Bentonite

slurry/—c
20.0/2.39

RI-6-D 2012 Air dried None 20.0/2.39

RI-7-B Water flooded Bentonite

slurry/—c

RI-8-B Bentonite slurry/1.0

RI-9-Hb Hydraulic

binder/3.0

RI-10-H 2013 Water flooded Hydraulic

binder/3.0

20.0/2.39

D – dry; F – flooded; B – bentonite; H – hydraulic binder

In all tests the initial mean relative density was >85% (very dense)
awith respect to the vibrator; the static force (dead weight) varies between

the tests
banalyzed by using particle image velocimetry
cloaded under its own weight

created by the welded-on collar was injected with pigmented bentonite slurry,
whereas hydraulic binder was used in two other tests.

5.3 Test Results

All the tests using bentonite slurry injection failed in keeping open the shaft
annulus created by the collar at the model pile toe. In contrast to that,
the hydraulic binder has a sufficiently high shear resistance to stabilize the
shaft annulus while possessing excellent flowability during pressurized grouting.
Figure 9 shows two digital photographs of test RI-9-H recorded about half an
hour after the pile installation has completed. Although the amount of hydraulic
binder infiltration into the pores of the coarse test sand increases with time, it
cannot be completely avoided. Therefore, the assumption of impermeable inter-
faces (zero mass exchange) in the mixture model summarized in Sect. 3 is not
always a reasonable one. Despite this, Fig. 9 indicates a clear soil-grout interface
which is almost vertical along the pile shaft.

Figure 10 shows the results of a PIV analysis of test RI-9-H using hydraulic
binder injection. Figure 10a plots the time history of the vertical displacement of
the pile tip. Those configurations where image capturing took place are marked
with black squares. During a vibration cycle, however, the pile moves upward
and downward. The displacement increments in the soil which occurred during
the downward motion of the pile between image 1 and image 2 are displayed in
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grout

pile

pile

infiltrated
grout

soil-grout
interface

soil-grout
interface

Fig. 9. Digital photograph of the configuration of test RI-9-H (hydraulic binder injec-
tion) through the viewing window of the chamber about half an hour after pile instal-
lation has completed. Reprint from [141, p. 120] with permission of Springer.

Fig. 10b using vectors with scaled length. It is clearly visible that the soil is not
only displaced below the pile toe and underneath the collar in a predominantly
vertical direction but also moves downward above the collar. Figure 10c shows
the displacement increments due to upward motion of the pile between image 5
and image 6. The vectors above the collar indicate that the soil located at the
soil-grout interface is dragged along with the pile motion and displaced in lateral
direction.
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Fig. 10. Results of model test RI-9-H using hydraulic binder injection. (a) Schematic
time history of vertical pile displacements. PIV results showing soil displacement incre-
ments (b) at downward motion of the pile (image 1 to image 2), and (c) at upward
motion of the pile (image 5 to image 6).

6 Conclusions and Outlook

The original objective of Subproject 5 of the DFG Research Unit FOR 1136
GeoTech has been the numerical simulation of vibro-injection pile installation in
sand. Our research work within this project, however, has revealed that available
methods will not produce reliable results because of two shortcomings: (i) they
cannot represent the large deformations and material interface evolution associ-
ated with such multi-material flow situations and/or (ii) they cannot accurately
reproduce the complex two-phase, coupled behavior of saturated geomaterial.
Consequently, we adjusted the focus of our research towards theoretical mod-
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eling of geotechnical and geomechanical processes in general, and the develop-
ment of a numerical tool that consistently employs the advanced models in a
non-Lagrangian formulation.

A rigorous theoretical framework has been developed in order to model the
geomaterial (saturated sand or debris material) as a general grain-fluid mixture
as well as its interaction with multiple other bulk materials such as pure solid and
pure fluid on the macroscale. Macroscopic balance principles have been derived
from the corresponding balance principles on the microscale by employing local
volume averaging as the filtering technique. In contrast to common two-scale
theories, the proposed three-scale hybrid mixture approach is able to incorporate
both the evolution of bulk material interfaces as well as the two-phase phenomena
associated with grain-fluid mixtures. Moreover, the approach allows for the use
of phenomenological constitutive models describing grain-fluid mixture response
for different flow regimes. Accordingly, the stress tensors have been split into
rate-independent and rate-dependent parts, and into a pressure stress and an
extra stress. Closure of the mixture model has been achieved by the fundamental
assumption of homogenous distributions of pressure and velocity.

To numerically model and simulate geotechnical and geomechanical processes,
we have developed a multi-material ALE (MMALE) method. The implementa-
tion of the method is based on the common three step scheme, splitting incre-
mental solution into Lagrangian, rezone, and remap steps. MMALE allows mate-
rial interfaces to flow through the computational mesh, so that multi-material ele-
ments may arise which contain two or more materials. The homogeneous equilib-
rium mixture model derived from the proposed hybrid mixture theory describes
the interaction within those multi-material elements in a mechanically consistent
way. The donor-cell advection algorithm is used to conservatively remap the solu-
tion variables onto the rezoned mesh. To precisely determine the amount of lost
or gained material volume, material interfaces are reconstructed and propagated
through the mesh by using the VOF technique.

Experimental model tests have been carried out in order to investigate the
relevant phenomena of vibro-injection pile installation in sand, an example of
a complex geotechnical process. A special model pile and a test chamber with
viewing window have been designed and manufactured for this purpose. Image
sequences have been recorded through the viewing window during the instal-
lation process, which have been subsequently analyzed by using particle image
velocimetry. The tests indicate that displacement, infiltration, and mixing occurs
along the soil-grout interface due to the dynamical interaction of multiple, phys-
ically distinct materials on different spatial scales. The tests also reveal that the
grains in a body of sand usually entail adequate image texture for PIV analysis,
but not the grouting material unless it would be seeded with marker particles.

Future work will focus on the application of the the MMALE method in
conjunction with the proposed mixture model to specific geotechnical and geo-
mechanical processes. The developed modeling framework is unique on national
as well on international level and offers great potential for future research.
The latter is motivated by the assumptions and restrictions associated with
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the present research. For example, the incorporation of mass and momentum
transfer between the constituents would be of great practical relevance because
geomechanical problems are often driven by local drainage and consolidation
phenomena as well as by contact constraints.

Nomenclature

Operators and Special Notations

·, :,⊗ single contraction, double contraction, tensor product
〈·〉 spatial average
˙(·), ˙(·)α material time derivative, of an α-related field

(̂·) referential, ALE description
(·)αk αk-intrinsic average
�
(·) objective rate
∇(·) covariant derivative, gradient
∂(·) boundary, partial derivative
div(·) divergence
Δ(·) increment
tr(·) trace of a second-order tensor

Superscripts and Subscripts

−,+ associated with Lagrangian step, remap step
adj adjacent
dev deviator of a second-order tensor
dr drained
f, fG fluid phase, in granular material
fr frictional (rate-independent) contribution
F bulk fluid; F ≡ fF
G fluid-saturated granular material
′,G′ related to effective stress in granular material
k k-material; k ∈ {S,F,G} = {1, . . . ,M}
n, n + 1 associated with time tn, tn+1

s, sG solid phase, in granular material
S bulk solid; S ≡ sS
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T transpose of a tensor
uj unjacketed
vi viscous (rate-dependent) contribution
α α-phase; α ∈ {s, f} = {1, . . . , N}
αk α-phase in k-material; αk ∈ {S,F, sG, fG}

Latin Symbols

b, bαk, 〈b〉 body force per unit mass
B strain operator matrix
c convective velocity
c fourth-order material tangent tensor
C damping matrix
d line constant
d,dk spatial rate of deformation
da,dv surface area density, volume density
D material stiffness matrix
D modeling domain in the ambient space
f, fk, fαk volume fractions, of k, αk

f in,f ex vector of internal, external nodal forces
fb,f t vector of body, surface forces
H,Hk,Hαk volume measures of H, Hk, Hαk

H representative volume element (RVE)
Hk,Hαk portions of k, αk in H
I local node, vertex, edge
I second-order unit tensor
J Jacobian
K,Kk,Kαk, 〈K〉 bulk modulus
K effective stiffness matrix
lmicro, lmeso, lmacro microscale, mesoscale, macroscale
M mass, number of materials in the mixture
M mass matrix
n, nk, nG fluid fraction, porosity
n normal on interface
N number of phases in the mixture
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Np,Nv matrix of the interpolation functions
pαk, pk, 〈p〉 pressure
p′, pG

′
mean effective stress

p nodal pressure vector
q, qk, qαk generic spatial field
Q coupling matrix
r vector of residuals
sk, sαk, 〈s〉 extra stress
S compressibility matrix
t time
u nodal displacement vector
v,vk,vαk, 〈v〉 spatial velocity
V volume, of an element
w mesh velocity
x point in the ambient space
y vector of nodal degrees of freedom

Greek Symbols

ΓI edge, element edge
Γ αk rate of momentum supply via ∂Hαk

ΔQI ,ΔQk
I total transported q-volume, transported qk-volume

ΔVI ,ΔV k
I total transport volume, material transport volume

ζ Biot-Willis coefficient
μ dynamic shear viscosity
παk volume fraction of α with respect to Hk

ρ, ρk, ραk, 〈ρ〉 spatial mass density
σ,σk,σαk, 〈σ〉 (Cauchy) stress
σ′,σG′

effective stress
χk, χα, χαk indicator function
Ω element domain, control volume
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Acronyms

ALE Arbitrary Lagrangian-Eulerian
CFD Computational Fluid Dynamics
FEM Finite Element Method
MMALE Multi-Material Arbitrary Lagrangian-Eulerian
MPM Material Point Method
MOF Moment Of Fluid
PIV Particle Image Velocimetry
RVE Representative Volume Element
SPH Smoothed Particle Hydrodynamics
VOF Volume Of Fluid
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58. Dassault Systèmes: Abaqus Analysis User’s Guide, Version 6.14 (2014)
59. DeBar, R.B.: Fundamentals of the KRAKEN code. Technical report UCID-17366,

Lawrence Livermore Laboratory, Livermore, USA (1974)
60. Denlinger, R.P., Iverson, R.M.: Flow of variably fluidized granular masses across

three-dimensional terrain. Numerical predictions and experimental tests. J. Geo-
phys. Res. 106(B1), 553–566 (2001)

61. Di, Y., Yang, J., Sato, T.: An operator-split ALE model for large deformation
analysis of geomaterials. Int. J. Numer. Anal. Meth. Geomech. 31, 1375–1399
(2007)

62. DIN EN ISO 14688–1: Geotechnische Erkundung und Untersuchung – Benennung,
Beschreibung und Klassifizierung von Boden – Teil 1: Benennung und Beschrei-
bung. Beuth Verlag, Berlin, January 2003 (German Code)

63. Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech.
15, 261–291 (1983)

64. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer,
New York (1999)

65. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Report
LA-UR-05-7571, Los Alamos National Laboratory, Los Alamos, USA (2005)

66. Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from
moment data. J. Comput. Phys. 227, 5361–5384 (2008)

67. Emeriault, F., Cambou, B., Mahboubi, A.: Homogenization for granular materials:
non reversible behaviour. Mech. Cohesive-Frictional Mater. 1, 199–218 (1996)

68. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid
Mech. 40, 1–24 (2008)

69. Freßmann, D.: On single- and multi-material arbitrary Lagrangian-Eulerian
approaches with application to micromechanical problems at finte deformations.
Dissertation, Fachbereich Bauingenieur- und Vermessungswesen, Universität
Hannover, Germany (2004)

70. Freßmann, D., Wriggers, P.: Advection approaches for single-and multi-material
arbitrary Lagrangian-Eulerian finite element procedures. Comput. Mech. 39, 153–
190 (2007)

71. Galera, S., Breil, J., Maire, P.-H.: A 2D unstructured multi-material Cell-Centered
Arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface recon-
struction. Comput. Fluids 46, 237–244 (2011)

72. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)



96 D. Aubram et al.

73. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils
Found. 36(1), 1–12 (1996)

74. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase
systems: 1, averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

75. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase
systems: 2, mass, momenta, energy, and entropy equations. Adv. Water Resour.
2, 191–203 (1979)

76. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase
systems: 3, constitutive theory for porous media flow. Adv. Water Resour. 3,
25–40 (1980)

77. Hassanizadeh, M., Gray, W.G.: Mechanics and thermodynamics of multiphase
flow in porous media including interphase boundaries. Adv. Water Resour. 13(4),
169–186 (1990)

78. Heinrich, P.: Nonlinear water waves generated by submarine and aerial landslides.
J. Waterw. Port Coast. Ocean Eng. 118(3), 249–266 (1992)

79. Hicks, M.A., Dijkstra, J., Lloret-Cabot, M., Karstunen, M. (eds.): Installation
Effects in Geotechnical Engineering. CRC Press, London (2013)

80. Hirsch, C.: Numerical Computation of Internal and External Flows, Vol. 1: Fun-
damentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann,
Burlington (2007)

81. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of
free boundaries. J. Comput. Phys. 39, 201–225 (1981)

82. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian com-
puting method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

83. Hornung, U.: Homogenization and Porous Media. Springer, New York (1997)
84. Hu, Y., Randolph, M.F.: A practical numerical approach for large deformation

problems in soil. Int. J. Numer. Anal. Meth. Geomech. 22, 327–350 (1998)
85. Hughes, T.J.R.: Numerical implementation of constitutive models: rate-

independent deviatoric plasticity. In: Nemat-Nasser, S., Asaro, R.J., Hegemier,
G.A. (eds.) Theoretical Foundation for Large-Scale Computations for Nonlinear
Material Behavior, pp. 29–63. Martinus Nijhoff Publishers, Dordrecht (1984)

86. Hutter, K., Rajagopal, K.R.: On flows of granular materials. Continuum Mech.
Thermodyn. 6, 81–139 (1994)

87. Hutter, K., Svendsen, B., Rickenmann, D.: Debris flow modeling: a review. Con-
tinuum Mech. Thermodyn. 8, 1–35 (1996)

88. Hyman, J.M.: Numerical methods for tracking interfaces. Physica D 12, 396–407
(1984)

89. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn.
Springer, LLC (2011)

90. Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)
91. Iverson, R.M.: The debris-flow rheology myth. In: Rickenmann, D., Chen, C.L.

(eds.) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment,
pp. 303–314. Millpress, Rotterdam (2003)

92. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across
three-dimensional terrain, 1. Coulomb mixture theory. J. Geophys. Res. 106(B1),
537–552 (2001)

93. Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for gran-
ular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93
(1987)

94. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows.
Nature 441, 727–730 (2006)



Non-Lagrangian Formulation 97

95. Kolymbas, D.: Introduction to Hypoplasticity. A.A. Balkema, Rotterdam (2000)
96. Lade, P.V., de Boer, R.: The concept of effective stress for soil, concrete and rock.

Géotechnique 47, 61–78 (1997)
97. Lade, P.V., Yamamuro, J.A. (eds.): Physics and Mechanics of Soil Liquefaction.

A.A. Balkema, Rotterdam (1999)
98. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, 3rd edn.

Cambridge University Press, Cambridge (2002)
99. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and

Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley,
Chichester (1998)

100. Li, X.S.: A sand model with state-dependent dilatancy. Géotechnique 52(3), 173–
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Abstract. An experimental study using half-model tests to investigate
the vibro-penetration of piles in saturated sand is presented. In the tests,
a model pile with half-circular cross section is penetrated along an obser-
vation window by means of a vibrator. The use of a high speed camera
and a sophisticated image acquisition system enables the observation of
the penetration process with sufficient temporal and spatial resolution.
A consistent evaluation of pile head and toe motion is achieved using a
combined interpretation of acceleration measurements and Digital Image
Correlation (DIC) analysis. The application of DIC to evaluate cyclic
soil deformations reveals the relation of typical displacement patterns in
the soil and characteristic phases of pile penetration. Pore water pres-
sure measurements at two fixed locations show the dependence of pore
water pressure evolution on the penetration mode and soil density. The
extensive measurements allow an improved interpretation of the typical
penetration modes during vibratory pile driving.

Keywords: Vibratory pile penetration · Pile driving · Digital image
correlation

1 Introduction

Thorough research on complex processes like vibratory pile driving should be
based on numerical simulations with validated material models, field studies and
not least on the laboratory investigation using model tests. Numerical simula-
tions provide the potential to solve complicated problems, for example towards a
consideration of the effects of vibro-driving on adjacent structures. However, the
numerical modeling of pile driving and related processes is still under research.
Most of the existing models are based on simplifying assumptions and a sys-
tematic validation has not been carried out until now. They are therefore not
established in the engineering community. Without an objective and quantita-
tive comparison with experimental data, a high level of acceptance will not be
achieved. To perform these benchmarks, high-quality experiments capturing the
significant effects of pile driving are needed.

The suitability of field tests as benchmark experiments is limited due to the
poor knowledge and observability of the underground conditions including soil
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
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state. Nevertheless, important achievements have been made on the basis of field
tests [2,3,6,7]. Model tests can overcome some limitations of field studies and
have therefore been extensively used to investigate vibratory pile driving in the
laboratory. Rodger and Littlejohn [9] summarized and interpreted important
experiences from practice and were able to identify the fundamental penetration
modes. O’Neill et al. [8], Wong [20] and Wong et al. [21] concentrated their labo-
ratory studies on the driveability and the bearing capacity of vibro-driven piles in
granular soil. They have demonstrated the existence of an optimum frequency of
about 20 Hz regarding the penetration velocity that seems to be independent of
soil density (for the used vibrator-pile-soil system). Cudmani [6] and Cudmani
et al. [5] used calibration chamber tests to investigate the influencing factors
on the occurrence of two different penetration modes: the so-called cavitational
and non-cavitational vibratory pile driving. The consideration of higher vibra-
tion modes, e.g. described by Vielsack and Storz [14], is not within the scope of
this study. All these investigations contribute to an improved knowledge and a
better comprehension of the mechanics of vibratory pile driving. However, with-
out information about the soil deformations in vicinity to the pile toe, the soil
mechanical interpretation of many test results has to remain hypothetical and
therefore often qualitative and superficial [15].

Digital Image Correlation (DIC) techniques have been shown to be very use-
ful to obtain information about the soil deformation occurring in model tests.
For the application of DIC, the test setup has to provide an observation win-
dow to visualize the soil in the region of interest. In the case of pile penetra-
tion tests, a half-model pile is driven into a soil body along the observation
window. Monotonic penetration processes have been studied in detail by many
researchers, e.g. [1,18,19]. When it comes to cyclic or vibratory processes, only
very few experimental results including DIC measurements exist [10,16]. The
reliable evaluation and the synchronization with other measurements are much
more difficult and very high frame rates are required to capture the cyclic and
dynamic pile and soil motion. A first attempt for the evaluation of cyclic soil
behavior during vibro-penetration has been made in [16] proving the benefit but
also the challenges of these evaluations.

In this contribution, experiences and results from a series of vibratory pile
penetration tests are described. A half model that enables the evaluation of cyclic
soil motion around the penetrating model pile is used for this purpose. First
results of similar model tests have been presented in [16], however, the occurring
pile penetration was very limited in these tests. Now, penetration depths of
about 15 pile diameters are reached. Additionally, an enhanced instrumentation
is applied, enabling also the evaluation of pore water pressures in vicinity to
the pile. Due to these improvements, the model tests provide new insights into
vibratory pile driving processes and the soil behavior near to penetrating piles.
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2 Description of the Experiments

2.1 Experimental Setup

The test setup is also extensively described in [16,18], therefore, only the most
important aspects are briefly summarized here. The test container has a half-
circular base area and an acrylic glass front sheet, see schema in Fig. 1. It is used
as an observation window in the intended symmetry plane of the problem. During
the sample preparation and the test, the container is reinforced with two steel
beams attached outside to minimize deflection. The test container is filled with
saturated soil and a model pile with almost half-circular cross section is vibrated
into the soil along the observation window. Two LED spotlights with constant
intensity and with very low IR-content give a good, uniform illumination without
heating-up the test container.
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Fig. 1. Basic test setup for the vibratory pile tests

Contrary to [16], in this study, a pile with almost half-conical tip has been
used, see Fig. 2(a). Figure 2(b) summarizes important characteristics of the pile-
vibrator system used here.

2.2 Test Sand, Sample Preparation and Uniformity Control

A uniform medium quartz sand is used as test material. An extensive character-
ization of the sand is provided by Vogelsang [18]. A very similar sand has been
used in other studies of the authors [16]. Important properties and some remarks
on specific characteristics of the current test sand can be found in [17] in this
book.

The same preparation methods as described in [16] have been applied for the
present test series. The dry sand is pluviated into deaerated water by means of
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a) b)

mass vibrator mvib g 6594

frequency range Hz 0-50

static moment Msta kgm 0.00533

mass load cell mLC g 660

mass pile mpile g 627

total mass mdyn g 7881

stiffness load cell cLC kN/mm 100

stiffness pile EA/Lpile kN/mm 8.51

length pile Lpile m 0.97

cross section Ab mm2 493.6

Fig. 2. (a) Pile tip and (b) characteristics of the pile-vibrator system used

a diffusor system. A subsequent densification is achieved through hammer blows
against the container walls leading to a liquefaction and reconsolidation of the
sample [18]. Contrary to [16], the model pile is not pre-installed during the sand
deposition procedure.

CPT results verifying the sample uniformity are also included in [16]. The
achieved sample quality is shown to fulfill the high requirements that have to be
established for model pile penetration tests.

2.3 Experimental Program and Procedures

The test series described here contains three tests that have been performed
under similar conditions. Information concerning the tests is shown in Table 1.
Three different initial densities for the sand ranging from medium dense to dense
have been investigated. An explanation of the symbols and the nomenclature for
the pile toe region is provided in the end of the paper.

Table 1. Information on the three vibratory tests of this study.

Test Date hsand e0 ID,0 Sr y0 f uy,pile,max

[m] [-] [%] [-] [mm] [Hz] [mm]

VIB-HM-04 19.07.16 0.808 0.6478 71 1 −129 25.0 −481

VIB-HM-05 08.08.16 0.787 0.6127 82 1 −116 25.0 −466

VIB-HM-06 17.08.16 0.837 0.6923 53 1 −157 25.0 −509

After the sand deposition, the pile is placed and fixed at the desired position
and the horizontal guidings for the pile to be driven are installed. The vertical
position of the pile tip is a few mm above the sand surface. Then the fixation of
the pile is released and the pile penetrates into the sand by a few pile diameters
due to the weight of the pile-vibrator system. In Table 1, the value y0 indicates
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the initial vertical position of the pile shoulder relative the sand surface. Begin-
ning from this configuration, the vibrations are applied with a frequency of 25 Hz.
uy,pile is used for the vertical position of the pile shoulder with respect to the ini-
tial sand surface, uy,pile,max is the maximum penetration depth reached in the test
(negative for penetration). The vibrations are stopped when the pile head reaches
the upper guiding, thus, the maximum vertical travel of the pile is about −350 mm
corresponding to about uy,pile,max = −500 mm depth of the pile tip (≈ −15dpile).

2.4 Measurements and Image Acquisition System

The instrumentation used in the present test series is slightly enhanced compared
to [16] and is described in detail in [18]. The following measurements have been
recorded:

– Pile head force between pile and vibrator using a load cell of type HBM Type
U2A with 10 kN measuring range

– Mean pile head displacement with potentiometric draw-wire sensor
– Acceleration at the pile head using a PCB 321 A02 ICP sensor with ±50 g

measuring range
– The pore water pressures at two stationary locations in the plane of the

observation window applying GE UNIK 5000 transducers hydraulically con-
nected to the location of measurement (20 kN/m2 measuring range, for details
see [18])

– Eccenter position using a light barrier system indicating the sign of the result-
ing vertical excitation force

– Digital images of a soil region with approximately 200 × 125 mm2 in 0.5 m
depth with a frame rate of 300 fps

– Synchronization signal during image capturing

The image acquisition system and the synchronization with the other mea-
surements is schematically illustrated in Fig. 3. The maximum image rate is
352 fps with 2048×1088 pixels. Here, 300 fps are used. The continuous data rate
is about 750 MB/s (monochrome images with 8-bit depth). The image resolu-
tion corresponds approximately to 0.1 mm/pixel resp. 5 pixel per mean grain.
A frame drawn on the inner observation window around the outer edges of the
region of interest enables the determination of the scale, an exact rotation of
the image with respect to the vertical axis and a distortion control. Depending
on the applied excitation frequency, the image rate provides between 10 and
15 images per cycle of vibration (here 12 with f = 25 Hz) which is sufficient to
reproduce the cyclic displacements. To handle the high image rate, high speed
interfaces, an adapted video grabber and a server with 120 GB RAM are used.
This equipment enables a continuous data transfer to the hard disc array to
record a complete vibratory test.

For a synchronization of the other measurements and the image series, the
camera is connected to the data acquisition system. A signal for the times at
which an image was captured is recorded. A LED bar code that is placed near
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Fig. 3. Data and image acquisition system

to the image border facilitates the synchronization of measurements and cap-
tured images. It provides information about the data and image samples and
the position of the eccentric masses.

2.5 Test Evaluation

The penetration velocity, the force-displacement curve, the evolution of pore
water pressures and the occurring soil displacements are the basis of the inter-
pretation of the tests.

Displacement of the Pile-Vibrator System. The displacements of the pile-
vibrator system are evaluated using two different approaches accounting for the
non-perfect rigidity of the pile:

– By analyzing the image series using Digital Image Correlation (see next para-
graph). This evaluation is possible for the region of the pile toe in the test
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section where it is visible in the images. It allows the determination of the
total pile toe displacements (trend and cycles) with a sampling rate equal to
the image rate. The pile displacements can be described easily e.g. in terms of
splines-functions (Python [11]). By differentiating twice, the accelerations of
the pile toe can be estimated and accounted for in the interpretation [11]. A
synchronization with the force measurement enables of determination of the
load-displacement behavior of the pile (see also [16]).

– The mean pile head displacement is measured by a potentiometer attached to
a wire-drum. During strong accelerations of the pile, a vibration of the drum
can sometimes not be prevented. The mean pile displacement is therefore
calculated as the moving average over one vibration period of the drum. For
short time periods, the cyclic pile head displacements are evaluated by two
times integration of the measured acceleration. A trapezoidal rule is used
for this purpose and a possible drift is subtracted to obtain the pure cyclic
displacements.

Soil Reaction Force. The measured pile head force Fh results primarily from
the soil reaction force but also contains the inertia force of the pile. This force
is subtracted from the head force in order to evaluate the net soil reaction force
(plus a probably occurring friction between observation window and pile). Note,
that the soil reaction is understood as a total force and comprises effective soil
resistance and pore water pressures. It is assumed that pile and vibrator undergo
the same accelerations and that the measurement at the vibrator can be taken as
representative for the pile also. For the evaluation of the inert mass, the pile mass
and 90% of the load cell mass are considered which corresponds approximately
to the mass below the measuring element.

Digital Image Correlation (DIC). The DIC evaluation is performed using
the software JPIV [13] and a subsequent summation and strain calculation
procedure. The JPIV settings and their physical meaning are given in Table 2.
Evaluation methods and theoretical framework are extensively described by
Vogelsang [18]. The test evaluation presented here concentrates on the cyclic
pile-soil interaction. Similar evaluations like in [16] are used therefore, consid-
ering short test sections when the pile reaches a depth of about 0.5 m. For the
evaluation of the load-displacement curve, the pile toe displacements are tracked

Table 2. JPIV settings used in the present study

Pass Test Patch Width/Height Interrogation Width/Height

[pixel] [mm] [×d50] window [pixel] [mm]

1 64 ≈ 8 ≈ 15 128 ≈ 16

2 32 ≈ 4 ≈ 7 64 ≈ 8

3 32 ≈ 4 ≈ 7 64 ≈ 8
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and synchronized with the force measurements. Incremental displacement fields
in the soil evaluated during a representative cycle are used to analyze the soil
behavior.

3 Description of the Experimental Results

3.1 Typical Test Results

Figure 4 shows some typical test results obtained for three selected cycles in test
VIB-HM-05 with dense sand (ID,0 = 0.82). The second cycle is highlighted. At
the beginning of this cycle, the pile shoulder is located about 0.42 m below the
sand surface, which corresponds to the configuration where the point of the pile
tip passes the vertical level of the lower pore water pressure transducer PWD1.
This test section will be analyzed in detail later on in comparison with the two
other tests.

The test results verify that the penetration behavior is quasi stationary
and the consideration of individual cycles is admissible for the interpretation.
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The measured head force pulsates and increases strongly in the penetration
phases. Assuming that the pile undergoes the same accelerations as the vibra-
tor, the soil reaction force can be calculated from the pile head force taking
into account the inertial force of the pile, Fig. 4(b). It is slightly higher than
the pile head force in the penetration phases and stays constantly small and
positive during upward pile motion. This positive force is probably attributed
to shaft friction and friction between pile and observation window. The cyclic
pile head velocity and displacement are calculated from the measured accelera-
tion as described above. The pile displacement is approximately sinusoidal with
downward trend, Fig. 4(c) and (d), except after the end of the penetration phase
where a slight kink is observed in the phase diagram due to the sharp impact,
Fig. 4(c). The described behavior does not qualitatively change throughout the
test. Similarities and differences to the other tests will be discussed in the next
paragraphs.

3.2 Global Penetration Behavior

Figure 5 compares the evolution of pile motion with depth for all three tests.
Figure 5(a) shows the mean penetration velocity calculated by differentiation of
the mean pile head displacement. Figure 5(b) depicts the pile head displacement
amplitude obtained by integrating the acceleration signal twice.

The mean penetration velocity decreases strongly with depth. As expected,
penetration occurs faster with decreasing relative density. The calculated pile
head amplitude is slightly larger than the calculated free amplitude of the
pile-vibrator system, probably due to the non-rigidity of the pile. It is inter-
esting to see that the displacement amplitude increases noticeably with depth
for the tests VIB-HM-05 (ID,0 = 0.82) and VIB-HM-06 (ID,0 = 0.53) while it is
approximately constant in test VIB-HM-04 (ID,0 = 0.71). The decrease of the
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displacement amplitude towards the end of test VIB-HM-05 is maybe a result
of cables touching the guiding of the pile and impeding the pile displacement.

3.3 Cyclic Penetration Behavior

Figure 6 shows the cyclic penetration behavior of the pile for three selected cycles.
The second cycle is highlighted and taken as a representative cycle. The current
penetration depths differ slightly due to different initial sand heights but the
position with respect to the container bottom is equal and the point of the pile
tip is at the same vertical level as the lower pore water pressure transducer, see
illustration in Fig. 6(d).
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The maximum penetration resistance increases with relatively density but the
differences are not so pronounced as could be expected for the investigated den-
sity range. The reach of a limit resistance can only be observed in Fig. 6(a) for the
test with the lowest density. Only test VIB-HM-05 in Fig. 6(c) resembles clearly
to the so-called cavitational penetration mode described by Cudmani [6] and is
therefore chosen afterwards for the interpretation of the penetration mechanism.
The test reveals a very low reloading stiffness in the penetration phase. For the
first 0.5 mm, the penetration resistance remains very small. Subsequently, the
penetration resistance increases roughly linearly without reaching a limit state.
The measured force during upward pile motion is small and results probably from
friction along the shaft between pile and soil and between pile and observation
window. The other two tests cannot be associated clearly with this penetration
mode although they provide some of the described characteristics. In VIB-HM-
06, the initial penetration phase with very low stiffness is less pronounced and
furthermore, a limit state seems to be reached towards the end of the penetration
phase, Fig. 6(a). The force-displacement curve of test VIB-HM-04 is similar but
due to the smaller penetration per cycle a limit state is not reached, Fig. 6(b).
None of the tests can be identified as penetration in the non-cavitational mode.

3.4 Evolution of Pore Water Pressure

The permeability of the test sand is rather high (≈ 1.5 · 10−3 m/s for medium
density), however, this does not completely prevent a build-up of pore water pres-
sures. Typical evolutions of pore water pressure at the two measurement loca-
tions is shown in Fig. 7(a) exemplary for test VIB-HM-05 (ID,0 = 0.82). PWD1

is the lower and PWD2 is the upper pressure transducer. The marked configura-
tions I–IV will be used for the interpretation. Figure 7(b) illustrates the positions
of the pile tip with respect to the pore water pressure measurements in the con-
figurations I–IV.

The pore water pressures oscillate around the hydrostatic pressure without
significant trend. A slight build-up of mean pore water pressure is observed when
the pile tip approaches the pressure transducer, but only about 0.5 kN/m2 max-
imum. The pore water pressure amplitudes increase with approaching pile tip
and decrease rapidly when the pile tip has passed the location of measurement.
This behavior was observed in all tests. The maximum amplitudes are always
reached when the point of the pile tip is located at the same vertical level as the
pore water pressure measurement location, Detail I and III in Fig. 7(b). When
the pile shoulder reaches this level, the amplitude has already decreased signifi-
cantly. The envelopes of pore water pressures were similar in the other tests and
are therefore not presented here.

The evolutions of excess pore water pressure at PWD1 are shown in detail
in combination with the pile displacement in Fig. 8. The same test sections as
above have been used. The left vertical axis corresponds to the pore water pres-
sure measurement while the right axis is used for the pile displacement. The
dashed vertical lines indicate the reversal points of pile motion. An alternative
presentation of the results eliminating time by plotting the pore water pressure
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evolution depending on the pile displacement is shown in Fig. 9. In the left col-
umn, the alternating part of the displacements uy,pile,zm (zero mean) and in the
right column the total displacements are used. The arrows indicate the curve
sense.

Only in the case of VIB-HM-04 which has a density lying between those of
the two other tests, the pore water pressure oscillates with a frequency corre-
sponding to the excitation mainly. In the two other tests, the pore water pressure
evolutions apparently contain the double excitation frequency. Towards the end
of the penetration phases, in all tests, negative excess pore water pressures can
be seen. During upward pile motion, primarily positive excess pore water pres-
sures occur. In the tests VIB-HM-06 (ID,0 = 0.53) and VIB-HM-05 (ID,0 = 0.82),
a change of positive and negative excess pore water pressures is observed in each
penetration and pullout phase resulting in an evolution with double excitation
frequency. Towards the end of upward pile motion the pore water pressure tends
to approach the hydrostatic level.
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Intuitively, one would expect excess pore water pressures during penetra-
tion and negative excess pore water pressures during upward pile motion. The
observed behavior can only be explained with the volumetric soil behavior.
Negative excess pore water pressures in the penetration phases have to be con-
sidered as an indicator for a phase with dilative soil behavior around the pile tip.
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Fig. 10. Normalized incremental displacement fields obtained from DIC analysis for
the penetration phase of the representative cycle: (a), (b) VIB-HM-06 (ID,0 = 0.53),
(c), (d) VIB-HM-04 (ID,0 = 0.71) and (e), (f) VIB-HM-05 (ID,0 = 0.82)

On the other hand, excess pore water pressure during upward motion indicates
contractancy.

From cyclic triaxial tests on medium dense and dense sand, it is well known
that a double alternation of contractancy and dilatancy occurs if the shear defor-
mation amplitude is sufficiently large. After reversals of deformation, the soil
exhibits contractancy before the phase transformation line is reached and the
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behavior switches to dilative regime. Regarding pile driving, the cyclic deforma-
tion is superimposed by a monotonic portion (penetration). The phase transfor-
mation line is therefore almost always reached in the penetration phase. During
upward pile motion, the occurring deformations are sometimes not sufficient for
a mobilization of dilatancy. Results of triaxial tests reproducing deformation
paths that are considered to be typical for cyclic pile penetration are given in [4]
in this book.

3.5 Incremental Displacement Fields

Figure 10 compares the incremental displacement fields for the penetration phase
of the representative cycle obtained with DIC for the three tests. The upper row
shows the horizontal displacements Δux while the lower row contains the vertical
displacements Δuy. Every column stands for one test. As shown above, the pile
motion differs between the three tests. In order to achieve comparability, the
incremental soil displacements are therefore normalized with the incremental
pile displacement Δuy,pile during the penetration phase. The position of the pile
tip in the initial configuration of the penetration phase is indicated in thick black
line. The evaluation was performed for the left half of the symmetric problem.
On the right side, the pressure transducer oscures the view on the sand and
exhibits a DIC analysis.

Despite different densities and amounts of pile penetration, the displacement
fields remain qualitatively similar. Laterally below the pile tip a soil zone is dis-
placed outwards with maximum horizontal displacement of 10% of the vertical
pile displacement. The whole soil volume affected has a width of about four pile
diameters (here considered as the region with horizontal displacements larger
than 1% of the vertical pile displacement). It appears to decrease slightly with
increasing density which may indicate more confined conditions. The main ver-
tical displacements are directed downwards. Beside the pile shoulder, a small
zone with upward displacements can be identified. Directly below the pile tip,
the largest vertical displacements reach about 40% of the pile displacements.
Taking again 1% of Δuy,pile as a criterion, the soil zone subjected to vertical
displacements extends to a depth of roughly three pile diameters measured from
the pile shoulder. The results are in good accordance with the measurements
published in [16].

Similar observations can be made considering the phase of upward pile
motion. The displacements are mainly in opposite direction of the penetration
phase. The extension of the affected soil zone is also similar for the three den-
sities. Again, the horizontal displacements are smaller in dense sand, Fig. 11(e).
Compared to the pile displacement, the vertical soil displacements are the largest
in the case of VIB-HM-04, Fig. 11(d). This indicates that the short phase of
upward motion in this test is qualitatively different compared to the other tests.
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Fig. 11. Normalized incremental displacement fields obtained from DIC analysis for
the pullout phase of the representative cycle: (a), (b) VIB-HM-06 (ID,0 = 0.53), (c), (d)
VIB-HM-04 (ID,0 = 0.71) and (e), (f) VIB-HM-05 (ID,0 = 0.82)

4 Interpretation of the Penetration Mechanism

This paragraph summarizes the most important findings and tries to give an
overview of the mechanism of pile penetration. The representative cycle of VIB-
HM-05 is chosen due to the similitude to the so-called cavitational pile penetra-
tion mode [5,6].
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Figure 12 shows a combination of results from DIC together with measure-
ments on the pile and pore water pressure measurements for the penetration
phase. Figure 12(a)–(d) contain the DIC measurements. Now, the incremental
displacement fields are calculated for four sections: both, penetration and pullout
phase are split into two sections each. The following characteristic curve points
are used: (1) the beginning of penetration, (2) the maximum of pore water pres-
sure in the penetration phase, (3) the beginning of upward pile motion, (4) the
maximum of pore water pressure in the pullout phase and (5) the end of upward
pile motion. Again, the incremental displacements are normalized with the pile
displacement occurring in the corresponding section. Figure 12(e) and (f) pro-
vide the (already known) force-displacement curve and the combined illustration
pore water pressure evolution and pile displacement. The curve points indicating
the evaluated sections are marked. Figure 13 is equivalent to Fig. 12 but for the
pullout phase.

A comparison of the Fig. 12(a), (b) and (c), (d) reveals that the deforma-
tion mechanism is qualitatively changing during the penetration phase. At the
beginning of penetration from 1 to 2, only very localized deformations occur in
direct vicinity to the pile tip, Fig. 12(a), (b). This corresponds to the section
with very low soil resistance, Fig. 12(e), and excess pore water pressure build-
up, Fig. 12(f). Cudmani [5,6] assumes that pile and soil have separated during
upward pile motion leading to the formation of a gap below the pile toe and
that this gap has to be closed in the first phase of penetration. However, even in
the highest positions of the pile during the cycles, an opening of a gap has not
been observed here. The section is rather seen as a consolidation phase for the
soil directly below the pile tip. In the second section of the penetration phase
from 2 to 3, a more extended deformation mechanism has developed. In [18] it is
shown that the deformations occurring in this section are similar to those dur-
ing monotonic pile penetration. Consequently, the section comprises the increase
of soil resistance, Fig. 12(e), and a tendency for negative pore water pressures
(dilative soil behavior), Fig. 12(f).

Like for the penetration phase, the split of the pullout phase also shows a
different behavior in the two sections. Globally, the displacements are in opposite
direction compared to the penetration phase. The beginning of upward motion
from 3 to 4 is like a reflection of the end of penetration (2 to 3). One difference
is that in the outer regions, vertical displacements downwards (against the pile
motion) are observed. The end of upward motion from 4 to 5 corresponds more to
the opposite of phase 1 to 2. The soil reaction force does not significantly change
from 4 to 5, Fig. 13(e), but Fig. 13(f) shows that the excess pore water pressure
changes from positive to negative in this phase. Whether this effect is a result
of the transition from contractive to dilative soil behavior or of the extraction
of pile volume can not be clarified. Although the differences between the two
sections of the pullout phase are less pronounced as in the penetration phase, the
combined interpretation of DIC and pore water pressure measurements reveals
a qualitatively different behavior.
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Fig. 12. (a)–(d) Normalized incremental displacement fields obtained from DIC analy-
sis in the penetration phase of the representative cycle of test VIB-HM-05 (ID,0 = 0.82),
(e) force-displacement curve and (f) pore water pressure evolution
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Fig. 13. (a)–(d) Normalized incremental displacement fields obtained from DIC analy-
sis in the pullout phase of the representative cycle of test VIB-HM-05 (ID,0 = 0.82),
(e) force-displacement curve and (f) pore water pressure evolution
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The results globally support the interpretation of vibratory pile driving given
in [16]. Vogelsang et al. [17] and Vogelsang [18] show that the evolution of cyclic
soil resistance is mainly a result of the cyclic pile motion. Of course, a pore water
pressure buildup in cohesionless soil is only possible in a vibratory test. A com-
parable dynamic pore water pressure evolution is reported by Triantafyllidis [12]
for pile driving processes in an excavation pit. Due to the similarity with other
laboratory experiments as well as with observations from practice, the tests are
considered to provide a realistic insight into the typical mode of vibratory pile
penetration and should be used for model validation purposes.

5 Conclusions

The penetration behavior of a vibro-driven pile is determined by the excitation
(frequency, static and dynamic driving force), the dynamic properties of the
vibrator-pile-soil system and the soil state (density, stress level and degree of
saturation). The penetration velocity decreases with depth (increasing stress
level) and density. A clear link between soil density and amplitude of pile motion
could not be observed.

Although the evolution of pore water pressures near to the pile is not gov-
erning the penetration behavior in the presented tests, its measurement is very
useful for the test interpretation. Pore water pressures appear to be an indicator
for the volumetric soil behavior around the pile. Depending on the mean pene-
tration velocity and the displacement amplitude of the pile in combination with
the soil density, the pore water pressures either oscillate with same frequency as
the excitation or are subject to a frequency doubling. A frequency doubling is
considered to indicate a double alternation of contractancy and dilatancy in the
soil during each excitation period.

The most commonly encountered penetration mode, so-called cavitational
pile penetration, occurs for large displacement amplitudes with respect to mod-
erate penetration velocities. The soil surrounding the pile has to provide the
potential for the mobilization of dilatancy. After the reversals of pile motion,
the soil behaves contractant. The mobilization of soil resistance is accompanied
by dilative soil behavior.

As a next step, the experimental results presented here will be compared
with numerical back-calculations. The FE techniques presented in [4] of this
book will be applied for the simulations. In this context, emphasize will be given
on the performance of different soil models to capture the observed volumetric
soil behavior.

Notation

Forces are displayed in mechanical sign convention. Downward displacements
are defined as negative. Horizontally, the center line of the pile corresponds to
the origin of the coordinate system. The used terminology for the pile toe region
is illustrated in Fig. 14(a). Pile toe is used in general for the lower end of the
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pile, pile tip for the tapered region (if existent). Some important symbols are
explained in Fig. 14(b).

pile shoulder

Nomenclature pile toe

pile tip

point of 
the pile tip

a) b)

x, y cartesian coordinates in the observation plane
y0 initial vertical position of the pile shoulder
uy, vy, ay vertical displacement, velocity and acceleration
ux horizontal displacement (in observation plane)
uy,pile vertical position pile shoulder below sand surface
uampl vertical pile displacement amplitude
Fh pile head force
hsand sand height
dpile pile diameter
Ab pile cross section
f vibration frequency
pw pore water pressure

Fig. 14. (a) Nomenclature for the pile toe region and (b) notation used in the paper
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gen Böden. Dissertation, Publications of the Institute of Soil Mechanics and Rock
Mechanics, vol. 152. University of Karlsruhe (2001)

7. Huber, G.: Vibrationsrammen: Großmaßstäbliche Versuche. Workshop Vibra-
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Géotechnique 30(3), 269–293 (1980)

10. Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-injection pile installation in sand:
part II - numerical and experimental investigation. In: Triantafyllidis, T. (ed.)
Holistic Simulation of Geotechnical Installation Processes - Numerical and Physical
Modelling, pp. 103–131. Springer, Cham (2015)

11. SciPy community: SciPy reference guide - release 0.13.0 (2013)
12. Triantafyllidis, Th: Neue Erkenntnisse aus Messungen an tiefen Baugruben am

Potsdamer Platz in Berlin. Bautechnik 75(3), 133–154 (1998)
13. Vennemann, P.: JPIV-software package for particle image velocimetry (2007).

http://www.jpiv.vennemann-online.de
14. Vielsack, P., Storz, M.: Dynamics of vibratory pile driving. In: Workshop “Vibra-

tionsrammen”, pp. 3–12. Karlsruhe (1997)
15. Viking, K.: The vibratory pile installation technique. In: Holeyman et Rocher-

Lacoste, G. (ed.) TRANSVIB 2006, Editions du LCPC, pp. 65–82. Paris (2006)
16. Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibra-

tory pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.)
Holistic Simulation of Geotechnical Installation Processes - Benchmarks and Sim-
ulations, pp. 31–51. Springer, Cham (2016)

17. Vogelsang, J., Huber, G., Triantafyllidis, T.: Stress paths on displacement piles dur-
ing monotonic and cyclic penetration. In: Triantafyllidis, T. (ed.) Holistic Simula-
tion of Geotechnical Installation Processes. NNACM, vol. 82, pp. 29–52. Springer,
Cham (2017)

18. Vogelsang, J.: Untersuchungen zu den Mechanismen der Pfahlrammung. Disserta-
tion, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe
Institute of Technology (2017, submitted)

19. White, D.J., Bolton, M.D.: Displacement and strain paths during plane-strain
model pile installation in sand. Géotechnique 54(6), 375–397 (2004)
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Abstract. The present study reports the extensive comparison of model
tests with numerical simulations of vibro-driven pile installation in sat-
urated sand. The purpose of the study is to validate existing simulation
techniques and to investigate the ability of those to reproduce effects
experimentally observed during pile installation. A limited number of
cycles has been considered and the focus is placed on the cyclic evolu-
tion of soil deformations and stresses. Two axisymmetric FE models have
been developed for the simulation of model tests. In the first, the pile-soil
interaction is modeled in a simplified way by applying a sinusoidal dis-
placement boundary condition at the soil-pile interface close to the pile
toe. The second model simulates the performed model tests more realis-
tically by including the pile-oscillator system. The u-p formulation has
been adopted in both models for the dynamic analysis of fluid-saturated
solids with nonzero permeability. A hypoplastic constitutive model with
intergranular strain has been selected to describe the mechanical behav-
ior of the soil. The soil displacements and the evolution of pile resistance
are compared. The good agreement between the results confirms that
the pile installation process can be satisfactory reproduced numerically.

Keywords: Saturated sand · Vibratory pile driving · Model tests

1 Introduction

Vibratory pile driving involves substantial stress redistribution in the under-
ground. Especially in water-saturated soil, the installation process can lead to
a significant reduction of the effective stresses and thus to soil shear stiffness
degradation around the pile. Adjacent foundations and structures might there-
fore be subjected to inadmissible deformations and also the load-bearing behav-
ior of a vibro-driven pile is strongly influenced by the installation process. Hence,
there is a strong need for the development of appropriate calculation approaches
and numerical methods to quantify the mentioned phenomena, not only from a
researchers perspective but also from a practical point of view.

Difficulties concerning a realistic numerical simulation of vibratory pile pen-
etration arise from the description of pile-soil interaction and the complicated
deformation process in the soil around the pile, including large monotonic as well
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 5



FE Simulation of Vibratory Pile Driving 125

as cyclic deformations with alternating phases of very high and very low stress
regime. The interaction of soil and pore fluid in water-saturated conditions leads
to considerable additional challenges. Therefore, suitable modeling techniques
and constitutive models have to fulfill very high requirements. Although there
are several numerical studies simulating the pile driving process in saturated
soil [6–8,12,21], most of them rely on simplifications and rough assumptions.
Additionally, due to the fact that a validation of these methods has not been
carried out, a reliable prediction of the effects of pile penetration is currently
difficult and questionable.

A key issue of the simulation of vibratory pile driving below the groundwater
table is the dynamic analysis of fluid-saturated solids with nonzero permeability.
However, for example the commonly used finite-element program Abaqus does
not provide a built-in procedure for these types of simulations. Consequently,
vibratory pile driving is often simulated in dry sand although in situ the pen-
etration depths mostly reach the groundwater. If the presence of pore water is
considered, its influence is either reduced to the buoyancy force [6–8] or locally
undrained conditions are assumed [21]. In order to tackle this problem, a user-
defined finite element has been used in the present study. The element is based
on the u-p formulation and has been proposed and validated in [4].

In the present study, model tests on vibro-driven pile installation in satu-
rated sand are compared with numerical simulations. The model validation is
carried out based on the back-calculation of an exemplary test sequence that has
already been extensively evaluated [19]. In this first validation step, a limited
number of cycles has been considered, in order to justify the application of an
implicit dynamic FE-formulation in combination with a hypoplastic constitutive
soil model. Two axisymmetric FE models have been developed for the simulation
of model tests, see Fig. 1.

Fdyn
Rigid pile with
oscillator force 

Soil Soil 

Interaction
pile-soil 

a) b) 

Displacement BC
with decreasing 
amplitude along 
the pile shaft 

Soil nodes at 
the interface
pile-soil

Fig. 1. (a) Simplified and (b) enhanced modeling technique

The simplified model has been developed in order to validate a simplified sim-
ulation technique, proposed in recent numerical studies [4,15,21]. Therein, the
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pile-soil interaction is modeled by introducing a prescribed sinusoidal displace-
ment boundary condition at the soil-pile interface. The maximum displacement
amplitude is applied at the pile toe, while the amplitude vanishes along the pile
shaft. The dynamic BVP is solved with zero and finite soil permeability. Firstly,
the influence of soil permeability on the solution is investigated based on the
numerical results. Subsequently, experimental and numerical results are com-
pared based on the occurring soil displacements and displacement amplitudes.

The enhanced model overcomes some of the limitations of the first model
by including the pile-oscillator system and a contact definition between soil and
pile. Pile and oscillator are modeled as rigid bodies and vibrate due to a pre-
scribed dynamic load at the oscillator. This setup enables the comparison of the
penetration behavior of the pile between experiment and simulation. A detailed
comparison of cyclic soil deformations is also provided in this paper. Accounting
for the experiences with the simplified model, the second dynamic BVP is solved
only for finite soil permeability.

2 Model Test Concept

The experimental set-up and the instrumentation for the model tests was devel-
oped by Vogelsang et al. [19], see also [20]. It is illustrated schematically in Fig. 2.
The test container has a half cylindrical base area and a plane acrylic glass front
sheet, which is used as an observation window for the measurement of the soil
displacements around the pile using Digital Image Correlation (DIC) technique.
A similar test set-up is used by Savidis et al. [16], Tehrani et al. [17] and Arshad
et al. [1].

The model pile has an almost half-circular cross-section with a diameter
of 33 mm and a flat-ending pile toe. The front and side view of the pile are
shown in Fig. 2. The front part of the pile is covered by a combination of felt
and PTFE (Teflon)-stripes, in order to minimize the friction between pile and
observation window. Assuming that the friction between sand and wall is also
low, the simplified consideration of a radially symmetric geometry of the model
seems to be justified.

In the tests, the pile is pre-installed in a certain depth before it is subjected
to vibrations for a short time period of a few seconds. During the test prepara-
tion, the dry sand is pluviated into water while the pile is already fixed in its
initial position. A description of the test preparation methods and a discussion
on sample homogeneity are given in [19,20]. It is intended to keep the pile pen-
etration as low as possible. Therefore, the pile-oscillator system is suspended by
a compensation spring that reduces the static driving force. The stress level in
the soil due to gravity is very low and might be problematic for the calibration
parameters used in the numerical simulation of the model tests. A moderately
elevated stress level is achieved by application of a uniformly distributed load
with a magnitude of 2 kN/m2 on the ground surface.
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Fig. 2. Set-up of the experiments with detail photos of the pile-oscillator system and
the pile toe

During the model tests, the region of interest around the pile toe is filmed
with a high-speed camera providing approximately 15 images per cycle of vibra-
tion. The video files are then decomposed into individual images. The occur-
ring deformations are evaluated using the Particle Image Velocimetry software
JPIV [18] and a subsequent summation and strain calculation procedure [19,20].
In the test sequence evaluated here, the other measurements concern the pile
head force and the global penetration. They are recorded with a frequency of
2400 Hz. A detailed description of the measurement methods and the evaluation
procedures can be found in [20].

3 Test Material, Constitutive Model and Soil Parameters

A poorly graded medium quartz sand with sub-rounded grains has been used
in the model tests. It is referred to in the literature as Karlsruhe Sand. Some
important properties of the sand are given in Table 1. An extensive character-
ization of the material can be found in [20]. In the numerical simulations, the
hypoplasticity constitutive model according to von Wolffersdorff [25] extended
by the intergranular strain concept proposed by Niemunis and Herle [14] has
been used to describe the granular soil behavior. The hypoplastic parameters of
Karlsruhe sand, used in the present study are depicted in Table 2. The parame-
ter set has been proposed for the test sand in [24] and has also been used for
numerical simulations of vibro-penetration in [2,21].
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Table 1. Properties of Karlsruhe Sand

Mean grain size d50 [mm] 0,55

Coefficient of uniformity U [-] 1,5

Critical friction angle ϕc [◦] 32,8

Min. void ratio emin [-] 0,549

Max. void ratio emax [-] 0,851

Table 2. (a) Constitutive parameters of Karlsruhe Sand and (b) additional constitutive
parameters of the extended hypoplastic model with intergranular strain

The permeability coefficient k was determined by laboratory tests [2,20] and
can be estimated for a given porosity n using Eq. 1, which corresponds to the
Kozeny/Carman equation [3,11].

k(n) =
1

308
γw
ηw

n3

(1 − n)2
d2w (1)

with γw the specific weight and ηw = 1.37 · 10−3 kN s/m2 the dynamic viscosity
of the water and dw = 0.5 mm the effective grain size.

4 Simplified Finite Element Model

The radially symmetric FE-model with the initial and boundary conditions is
shown in Fig. 3. The dimensions of the model are selected to coincide with the
geometry of the model test. Figure 3(c) shows a detail of the FE-mesh at the pile
toe vicinity. The size of the finite elements amounts about 1.5 mm near the pile
and 25 mm at the outer boundary of the model. As in the experiment, a constant
distributed load with a magnitude of 2 kN/m2 is applied to the ground surface in
order to avoid inadmissible tensile effective stresses and ensure better numerical
stability. In order to approximate the influence of the side walls on the model
test, no normal displacement and no shear stresses are selected at the outer
boundary of the numerical model. A possibly occurring friction between sand
and outer wall is thus neglected. As previously mentioned, the soil displacements
occurring in the model test are evaluated near the pile toe with the Digital Image
Correlation (DIC). The measured values are imposed as a time-varying boundary
condition at the soil-pile interface of the FE model (see Fig. 3d), corresponding to
the vibration of the pile. Consequently, the vertical displacement uy is prescribed
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by means of a composite function, which decomposes into a cyclic part due to
pile vibration and a trend due to pile penetration:

uy(t) = vm t − uampl [1 − cos(2πft)] , (2)

with vm the mean penetration velocity, uampl the pile displacement amplitude,
f the vibration frequency and t the time from the beginning of vibration. This
displacement boundary condition is imposed with the maximum amplitude uampl

at the pile bottom and 5 mm upwards along the pile shaft. Subsequently, follows
a 20 mm long transition zone in which the amplitude decreases linearly down to
zero, see Fig. 3(c). The horizontal displacement at the soil-pile interface is set to
zero. Concerning the pore water boundary conditions, the pore water pressure
at the top surface is set to zero, while the other boundaries are taken to be
impermeable.
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Fig. 3. Simplified FE model: (a) Geometry and boundary conditions, (b) initial condi-
tions, (c) detail of the FE-mesh in the vicinity of pile toe and (d) prescribed displace-
ment boundary condition at pile toe

The initial soil stresses are considered to be geostatic with the coefficient of
earth pressure at rest K0, calculated according to Jaky [10]:

K0 = 1 − sin(ϕ′
p) = 0.4 (3)
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with ϕ
′
p = 37◦ corresponding approximately to the peak friction angle of the test

sand for the given density. The initial distribution of the pore water pressure is
assumed to be hydrostatic with the water level lying at the ground surface. The
initial distribution of pore fluid pressure and effective stress components are
illustrated schematically in Fig. 3b. The soil is considered to be fully saturated
(Sr = 1) with the compression modulus of the fluid taken to be constant and
equal to the bulk modulus of the pure water, Kf = 2.2 GPa. The initial density
is taken from the model test, with e0 = 0.691 corresponding to a medium dense
sand with ID,0 = 0.53. The initial intergranular strain tensor components are
set to zero.

The dynamic BVP has been solved with the FE-SoftwareAbaqus/Standard
both with k = 0 and k = 1.5 · 10−3 m/s soil permeability, the last chosen accord-
ingly to Eq. 1. As in [15], the simulation with k = 0 is performed using CAX4
elements available in Abaqus/Standard by introducing the pore water pres-
sure as an internal variable in the constitutive model. For the dynamic analysis of
fluid-saturated solids with nonzero permeability the axisymmetric u8p4 UEL, pre-
sented and validated in [4], is used. The dynamic calculation is carried out with the
implicit HHT integration schema [9] for the duration of 1 s. The time increment
is taken to be constant and equal to 10−4 s, which corresponds to approximately
425 increments per cycle of vibration. In case of finite permeability, additional vis-
cous stresses have been used for better numerical treatment of the dynamic step,
as proposed in [4], with the values of viscosity coefficients λ and μ (see Eq. 5 in
[4]), chosen small enough in order not to strongly influence the numerical solu-
tion. Furthermore, in order to avoid positive (tensile) mean effective stress in the
soil, the small-stress correction according to [4] has been used.

Some important parameters of the simulation are summarized in Table 3.

Table 3. Parameters for the simulation of the model test

hsand

(m)
e0
(−)

ID,0

(%)
uampl

(mm)
vm
(mm/s)

f
(Hz)

K0

(-)
Kf

(GPa)
Sr

(-)
k
(m/s)

0.85 0.691 53 0.5 −11 23.5 0.4 2.2 1 0/0.0015

4.1 Observations from FE Simulations

In the present section, the interest is focused on the influence of soil permeability
on the solution of the boundary value problem. The main target is placed on the
cyclic evolution of stresses in the vicinity of the pile toe due to the pile vibration.
Since the instrumentation of model tests does not allow stress measurements in
the soil, a validation of these observations based on the present model experiment
is not possible. Consequently, in this section only numerical simulation results
will be presented.
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Figures 4 and 5 show the distributions of mean effective stress near the pile
toe after 10 and 23.5 cycles (at the end of simulation, t = 1 s), obtained from
the solution of the numerical simulation calculated with k = 0 (Fig. 4) and
k = 1.5 · 10−3 m/s (Fig. 5). The red area in the figures corresponds to a low-
stress zone, in which the mean effective stress lies between 0 and −0.5 kPa, i.e.
does not exceed 15% of the initial value at the pile toe level.

In the locally undrained case (k = 0), the mean effective stress is reduced
close to the pile toe to nearly zero after several cycles of vibration. The low-
stress zone is approximately circular and extends over an area of about two pile
diameters after 1 s of vibration. For k = 1.5 · 10−3 m/s, a low-stress zone is
only generated at the pile shaft above the pile shoulder. Throughout the entire
simulation time, the area beneath the pile toe is subjected to a quasi-stationary
change between large effective stress during pile penetration and small effective
stress during upward pile motion.

This behavior is demonstrated in Fig. 6(a), where the evolution of mean effec-
tive stress at Point A (see Figs. 4 and 5) is plotted for the two different permeabil-
ities. Point A is located about two pile diameters below the pile toe at a horizon-
tal distance of a half pile radius from the symmetry axis. For k = 1.5 ·10−3 m/s,
the mean effective stress decreases slightly and oscillates with an amplitude of
circa 1 kPa, while it vanishes after several cycles of vibration in the case of
k = 0 m/s. For k = 1.5 · 10−3 m/s, due to the consolidation process, the aver-
age pore water pressure does not increase during the vibration but oscillates
slightly about its initial value, see Fig. 6(b). In the case of zero permeability,
the displacement trend downwards leads to a gradual increase of the mean pore
water pressure during the vibration without reaching an asymptotic state. For
a great number of cycles, the accumulation of pore water pressure during pile
penetration can lead to unrealistic pore pressure gradients.

Figure 7 shows the calculated displacement vectors in the soil after 1 s of
vibration in the vicinity of the pile toe for the two investigated soil perme-
abilities. For k = 0, a significant zone with circular displacement paths about a
stationary point, located in the low-stress zone, is observed. Similar to the obser-
vations in [15], the circular zone shows a significant accumulation of permanent
displacements. Its existence is related to the assumption of locally undrained
conditions in the soil. The rotation disappears for the solution with high soil
permeability, as can be seen in Fig. 7 (right). For k = 1.5 ·10−3 m/s the direction
of the soil displacements is almost gravitational. A comparable behavior occurs
in the model tests, where no rotational zones were observed and the direction of
the soil displacements is found to be almost in the gravitational direction (see
Fig. 9 in the following section).

In the case of a finite permeability, the dynamic excitation is accompanied by
a consolidation process in the soil. Figure 8 shows the calculated distribution of
void ratio after 1 s of vibration. The initial void ratio is e0 = 0.691 (ID,0 = 0.53)
and corresponds to the light blue color in the figure. As can be seen from Fig. 8,
there is a narrow zone with dilative behavior along the pile shaft and directly
beneath the pile toe. Here, the soil behavior is governed by the large monotonic
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+0.000e+00

A A

Fig. 4. Mean effective stress near the pile toe after 5 cycles (left) and 23.5 cycles (right)
for k = 0

+0.000e+00

A A

Fig. 5. Mean effective stress near the pile toe after 5 cycles (left) and 23.5 cycles (right)
for k = 1.5 · 10−3 m/s
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Fig. 7. Displacement vectors near to the pile toe after 1 s of vibration for k = 0 (left)
and k = 1.5 · 10−3 m/s (right)

deformation due to the displacement trend downwards. Outside of this area,
the cyclic deformation predominates, leading to an approximately circular soil
compaction zone. The strongest densification occurs beneath the pile toe.

Figure 8 proves rather significant volume changes and thus, partly drained
conditions in the soil. Based on these observations, the assumption of locally
undrained conditions with almost constant void ratio cannot be justified. This
consequence is also supported by the experimental observation of free particles
that move cyclically within the soil skeleton due to water flow.
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Fig. 8. Void ratio near to the pile toe after 1 s of vibration for k = 1.5 · 10−3 m/s

4.2 Comparison of FE- and Experimental Results

In this paragraph, the experimental results are compared with the simulations
using the simplified FE model. Figure 9 shows the isolines of horizontal (a–c) and
vertical (d–f) displacements after 1 s of vibration. The experimental results are
depicted in the left column, the central column corresponds to the FE solution
with undrained conditions and on the right hand side, the FE solution with
k = 1.5 · 10−3 m/s is shown.

Beneath the pile toe, the horizontal displacements concentrate in a zone
located below the pile shoulder in all three cases, Fig. 9(a)–(c). The soil is pushed
outwards due to the imposed downward displacement at the pile-soil interface.
The maximum values reach about 2 mm which corresponds to ca. 17% of the
vertical pile displacement (12 mm after 1 s of vibration) resp. about 6% of the pile
diameter (33 mm). The zone that is horizontally displaced is considerably larger
in the case of undrained conditions. The experimental results lie somewhere
in between the two FEM solutions but resemble more the drained solution.
Above the pile toe, neither the experimental results nor the FEM solution with
k = 1.5 · 10−3 m/s show significant horizontal displacements. Contrarily, for
undrained conditions a clear motion towards the pile shaft is observed there.

The vertical displacements below the pile toe near to the symmetry axis are
similar, Fig. 9(d)–(f). They remain greater than 50% of the vertical pile dis-
placement up to about one pile diameter below the pile toe. However again, the
undrained solution appears to slightly overestimate the occurring displacements
for larger depths. Although a satisfactory agreement between the three solutions
is observed beneath the pile toe, the existence of the zone with rotational dis-
placement paths in the locally undrained case leads to a zone beside the pile
toe with upward soil motion. As can be seen in Fig. 9(e) and (f), the model test
results and the FEM results with k = 1.5 · 10−3 m/s show a global trend for
settlements.
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Fig. 9. (a)–(c) Horizontal and (d)–(e) vertical displacement fields after 1 s of vibration
obtained in the model test (left), by the numerical simulations with k = 0 m/s (middle)
and k = 1.5 · 10−3 m/s (right)

Figure 10 shows the fields of horizontal and vertical displacement amplitudes
after 0.5 s of vibration. The figure is composed in the same way as Fig. 9.

The largest horizontal amplitudes occur below the pile shoulder and reach
values up to 0.05 mm. The vertical amplitudes are about one magnitude larger,
with 0.4 mm in the direct pile toe vicinity. The amplitude field calculated for
partially drained conditions (k = 1.5 · 10−3 m/s) is in almost perfect agreement
with the experimental results. The occurring amplitudes as well as the affected
soil region are very similar, except for the very small vertical amplitudes in the
outer regions. The FE solution obtained with undrained soil conditions shows a
significant overestimation of the soil region subjected to vibrations. Moreover,
the large displacement amplitudes above the pile toe and in the outer zones
cannot be identified in the other results. It can be stated that the assumption
of locally undrained conditions leads to a qualitative disagreement with experi-
mental observations and numerical results with finite soil permeability.
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Fig. 10. (a)–(c) Horizontal and (d)–(e) vertical displacement amplitude fields after
0.5 s of vibration obtained in the model test (left), by the numerical simulations with
k = 0 m/s (middle) and k = 1.5 · 10−3 m/s (right)

Although very satisfactory results are obtained from the solution with k =
1.5·10−3 m/s, the simplified FE model demands a knowledge of the experimental
results at the pile-soil interface. Consequently, only limited conclusions can be
drawn for the vibratory pile driving process, particularly for in situ conditions.
Furthermore, important aspects such as the evolution of pile resistance during
the pile installation process cannot be investigated. For a better understanding
of the process, a second, enhanced FE-model is described in the following section.

5 Enhanced FE-Model

The enhanced model is also radially symmetric and includes not only the soil
body but also the pile-oscillator system, as can be seen in Fig. 11. The model



FE Simulation of Vibratory Pile Driving 137

a)

Sand:
ID,0=0.53
Sr=1.0

Connector Element

σv0=2 kN/m²

0.85 m

0.47 m

Fdyn

mpile

moscillator

Oscillator
(horizontally guided)

Rigid Pile, dpile=33 mm
(horizontally guided)

0.35 m

Detail
FE-mesh

cconnector

b)

16.5 mm

c)

-0.2

-0.1

 0

 0.1

 0.2

 0  0.25  0.5  0.75  1
-25
-20
-15
-10
-5
 0
 5
 10
 15
 20
 25

F
dy

n,
 F

am
pl

 [k
N

]

f [
H

z]

vibration time t [s]

f Fampl Fdyn

Fig. 11. Enhanced FE model: (a) Geometry and boundary conditions, (b) detail of the
FE-mesh in the vicinity of pile toe and (c) evolution of the prescribed point load at
oscillator

dimensions correspond to those of the simplified model. The pile and the oscil-
lator are assumed to be horizontally guided rigid bodies, each with its own mass
defined in the related reference point. The pile is connected to the oscillator
with a 1-D connector element, which represents the load cell in model test. This
model setup enables the output of the force at the location of force measurement
in the experiment.

Figure 11(b) shows the FE mesh in the pile toe vicinity. The FE mesh in the
soil is similar to the one of the simplified FE model, except directly beside and
under the pile toe. The first row of elements in this region is rather coarse (size
of elements about 6 mm) in order to reduce mesh distortion problems during
the simulation of pile penetration. A frictionless node-to-surface contact formu-
lation [5] has been used for the pile-soil interaction. A separation of the contact
in the normal direction is excluded, since the opening of a gap filled with void
(air) is physically not justified. Like in the simplified model, a constant distrib-
uted load with 2 kN/m2 magnitude is applied to the ground surface and the
normal displacement and the shear stresses at the outer boundaries are taken
to be zero. At the pile toe and along the pile shaft the contact to the pile forms
the boundary condition for the soil. The hydraulic boundary conditions as well
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as the initial conditions and material parameters for the soil body are the same
as those in the simplified FE model.

The calculation is performed in Abaqus/Standard with k = 1.5 ·10−3 m/s
and consists of three steps: In the first step, pile and oscillator are fixed and the
initial geostatic equilibrium is calculated. In the second step, pile and oscillator
are set free in vertical direction and move slightly downwards due to their own
weight without the existence of inertia forces. The last step is a dynamic calcu-
lation step, where the excitation is applied as a prescribed dynamic excitation
of the oscillator. The evolution of the load is shown in Fig. 11(c). In the experi-
ment, the oscillator reaches the full vibration frequency and thus, the oscillating
force after about two vibration periods. This behavior is approximated in the
FE model. The dynamic calculation step was carried out according the implicit
HHT integration schema with a constant time increment of 10−4 s. Similar to
the simplified model, the small stress correction and small viscous stresses have
been used.

For the comparison of the FE results (“full” model) and the model test
results (almost “half” model), the masses of oscillator and pile as well as the force
amplitude and the connector element stiffness are scaled by the ratio of the cross-
sections of full- and half pile (scaling factor equal to 1.73). Thereby remains the
free amplitude of the pile-oscillator system unchanged and the dynamic behavior
of the total system is only slightly influenced. The results are compared based
on the occurring soil reaction force. This force is the result of the pile head
force subtracted by the inertia force of the pile. It also includes pore pressures
effects. Comparability between the force measurements and simulation results
is achieved by division by the cross-section of the pile. The result is named as
related soil reaction force:

(FH − mpile apile)/Ab (4)

with FH the pile head force, mpile and apile the mass and acceleration of the pile
and Ab the pile cross-section at the toe. It should already be noted here that in
the experiment, FH also includes system friction between pile and front sheet.

Some important parameters of the simulation with the enhanced model are
summarized in Table 4.

Table 4. Parameters for the simulation of the model test with the enhanced model

hsand e0 ID,0 mpile moscillator cconnector f K0 Kf Sr k

(m) (−) (%) (kg) (kg) (kN/mm) (Hz) (-) (GPa) (-) (m/s)

0.85 0.691 53 2.25 11.4 173 23.5 0.4 2.2 1 0.0015

5.1 Comparison of Numerical and Experimental Results

The pile penetration behavior is compared in Fig. 12. Figure 12(a) shows the
evolution of measured and calculated pile displacements. Figure 12(b) depicts in
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Fig. 12. (a) Evolution of measured and calculated pile displacements during the pile
vibration, (b)–(d) detailed analysis of the section from 0.4 to 0.6 s: (b) evolution of
pile displacement (c) related soil reaction force during pile penetration for the model
test and (d) for the FE- simulation (mp = mpile and ap = apile)

detail the time period from 0.4 to 0.62 s of Fig. 12(a). The cycle at about 0.5 s is
selected as a representative cycle for the comparison of the results and is marked
with five points. The measured and calculated related soil reaction force during
pile penetration is compared in Fig. 12(c) and (d).

Apart from the first cycles a qualitatively similar behavior is observed in
Fig. 12(a). After about 0.3 s, a quasi-steady state is reached with approximately
constant mean penetration velocity. The oscillation amplitude is also similar,
which indicates a successful transmission between the “full” simulation model
and the “half” experimental model. However, the pile penetrates faster in the
simulation than in model test. The penetration per cycle amounts about 0.65 mm
in the simulation, while it is only 0.4 mm in the test.

The cycles of the force-displacement curves in Fig. 12(c) and (d) differ in
shape and size between simulation and model test. Although the penetration
per cycle is greater in the simulation, the maximum mobilized soil reaction force
is only about a third of that in the experiment. Moreover, the characteristic
S-shape of the evolution of penetration resistance in the test as described in
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[19,20] is not evident in the simulation. The numerical model fails to reproduce
the large force amplitude between the marked points 2 and 4. In the experiment,
this difference is a result of the pile shaft friction and the friction between pile
and front sheet. These effects are excluded in the numerical simulation. However,
it can be assumed, that this simplification at least partly causes the observed
differences in terms of penetration rate, see Fig. 12(a). Subtracting frictional
influences from the experimental soil reaction force leads to a more realistic force
amplitude compared to the simulation (see the schematic explanation Fig. 13).
However, there is still a difference in the mobilized soil resistance.

In order to prove the above explanation, we introduce a dashpot feature in
the FE model, Fig. 14. The dashpot connects the pile to the ground, thus, the
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Fig. 14. (a) Dashpot element attached to the pile to substitute system friction effects,
(b) characteristic curve and (c) related force-displacement curve of the dashpot
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pile velocity vpile corresponds to the relative velocity vrel. The characteristic
curve of the dashpot and the resulting force-displacement relationship for the
simulated test are given in Fig. 14. Due to the velocity-based definition of the
characteristic curve, immediately before the reversal points of pile motion, the
resulting force differs slightly from a typical friction model.

It should be noted that by modeling the dashpot, it is not intended to propose
a universal model to substitute the shaft friction. Shaft friction depends on the
normal stresses acting on the shaft and the ultimate shaft friction is usually not
constant throughout the process. However, it has been experimentally observed
that system friction predominates in the present case and that its limit value is
relatively constant. This system friction influences the penetration behavior of
the pile. The purpose of the dashpot feature here is to achieve a better compa-
rability between experiment and simulation by introducing effects that are not
incorporated in the numerical model.

Figure 15 shows the comparison of experimental and numerical results like
Fig. 12, but with the dashpot. The penetration behavior in the simulation is now
more similar to the experiment, indicating a beneficial performance of the dash-
pot. Also the evolution of penetration resistance is reproduced better. However,
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the strong increase of pile resistance between the points 2 and 3 is still missing
in the simulation. The reason for this discrepancy will be discussed later on.

Figures 16 and 17 compare the measured and calculated incremental displace-
ment fields near the pile toe for the representative cycle (highlighted cycle in
Fig. 15). Figure 16 presents the results during the penetration phase and Fig. 17
during the phase of the upward pile motion. Both phases are divided into two
sections between the marked points 1÷2 and 2÷3 respectively 3÷4 and 4÷5, see
Fig. 15(b). The images on the left show the horizontal displacements whereas the
vertical displacements are depicted in the images on the right. The left part of
each image illustrates the experimental results and the right the results obtained
from the FE simulation. As can be seen in Fig. 15(b), the displacement ampli-
tudes are almost identical and thus a direct comparison of the displacement fields
is possible.
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Fig. 16. Comparison of incremental displacement fields for the representative cycle
during the penetration phase 1÷ 2 (above) and 2÷ 3 (below). The horizontal displace-
ments (left) and the vertical (right) are shown in the images. The left part of each
image depicts the experimental results and the right the FE-simulation.
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Fig. 17. Comparison of incremental displacement fields for the representative cycle
during during the upward pile motion phase 3 ÷ 4 (above) and 4 ÷ 5 (below). The
horizontal displacements (left) and the vertical (right) are shown in the images. The
left part of each image depicts the experimental results and the right the FE-simulation.

Comparing the images, the following observations can be made:

– Phase 1 ÷ 2: There is a good agreement between numerical and experimental
results. Both reveal soil displacements directed away from pile toe in a spher-
ical area of about two pile diameters. However, compared with the model test
the numerical simulation overestimates the soil displacements.

– Phase 2 ÷ 3: The soil displacements are qualitatively similar to Phase 1 ÷ 2.
In the experiment, a deeper and larger zone of the soil is affected compared to
the first phase of penetration. The numerical results do not exhibit significant
differences to the preceding phase.

– Phase 3 ÷ 4: Due to the sharp decrease of tip pressure after the reversal of
pile motion, a slight uplift and horizontal soil movement towards the pile is
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observed. The vertical displacement field is similar to the previous phase 2÷3,
but inversed. Model test and simulation results are in good agreement.

– Phase 4 ÷ 5: The deformation mechanism corresponds to the Phase 1 ÷ 2 in
opposite direction. Directly below the pile toe, the soil is moved to the symme-
try axis following the vertical motion of the pile. The simulation reproduces
this mechanism qualitatively and quantitatively with almost perfect agree-
ment.

For the sake of brevity, the incremental displacement fields obtained from
the simulations without the dashpot feature are not presented here. However, it
should be noted that they are also in very good accordance with the experimental
results.

Figure 18 illustrates the logarithmic volumetric soil deformation εvol depend-
ing on the pile displacement for the representative cycle (see Fig. 15) for two
selected locations around the pile toe (named element A and C following the
nomenclature in [19]). Element A is located below the pile toe while element C
lies slightly beside, see Fig. 18(a). In Fig. 18(b)–(e), the experimental results are
compared with the results obtained from the numerical simulation. The proce-
dure for the calculation of volumetric strain in the experiment has been presented
in [19]. The volumetric strains are set to zero at the beginning of the highlighted
cycle.

Experiment and simulation show a considerable oscillation of volumetric
strain, which proves the presence of at least partially drained conditions in the
soil. At element A, the largest amplitude of volumetric strain is observed. In the
model test, the peak-to-peak amplitude amounts 1.7% at element A resp. only
0.5% at element C. The numerical simulation clearly underestimates the changes
of volumetric strain (0.5% at element A and 0.25% at C).

The numerical simulation reproduces the contractant soil behavior during
Phase 1–2 but fails to mobilize dilatancy, that is experimentally observed towards
the end of the downward pile motion (Phase 2–3). The dilatant phase in the
experiment corresponds to the phase with strong increase of penetration resis-
tance (between the points 2 and 3 in Fig. 15(c)) and results in a deeper and larger
deformation mechanism (see Phase 2–3 in Fig. 16). On the other hand, the lack
of dilatancy in the simulation leads to the almost linear increase of soil resis-
tance during the downward pile motion (Fig. 15(d)) and very similar incremental
displacement fields for the two penetration phases (Fig. 16). During the upward
pile motion, generally a volume increase is observed, which is more pronounced
in the experiment. However, in the experiment, at element C the reversal of pile
motion is accompanied by a strain reversal and a slight contractant soil behavior
(between points 3 and 4 in Fig. 18(d)), which is not evident in the simulation.

The inability of simulation to reproduce the effects mentioned above is related
with the ineffective performance of the hypoplastic constitutive model to describe
some issues of cyclic soil behavior. Important deficiencies of the applied hypoplas-
tic model will be discussed in the following paragraph based on element tests.
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Fig. 18. (a) Volumetric strain plotted versus the pile displacement for the representa-
tive cycle (see Fig. 15b) at three selected points: (a) Location of the selected points,
(b)–(d) experimental and numerical results at the selected points

5.2 Hypoplasticity in Cyclic Triaxial Element Tests

Two cyclic drained triaxial tests have been carried out and are recalculated
in element tests via the software Abaqus/Standard. The two triaxial tests
imitate typical loading paths of pile penetration. In both tests (named Triax
A and Triax B), a large monotonic deformation is interrupted by phases of
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unloading, in Triax A without and in Triax B with shear stress reversal. The
tested sand was initially medium dense and the initial void ratios similar. The
conducted test paths are:

– Triax A: alternation of monotonic triaxial compression of Δε1 = −4% followed
by unloading to q = 0

– Triax B: repetition of cycles consisting of a monotonic triaxial compression of
Δε1 = −4% and a monotonic triaxial extension of Δε1 = 2%

For the back-calculations, the same hypoplastic model and parameters as
described in Chap. 3 have been used. Figure 19 shows a comparison of test and
simulation results.
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Fig. 19. Back calculation of drained cyclic triaxial tests: (a), (b) Triax A (e0 = 0.654,
ID,0 = 0.66) and (c), (d) Triax B (e0 = 0.668, ID,0 = 0.62)

Both experiments show a global trend to dilatancy due to the large monotonic
portion of the deformation. Cyclic deformation without shear stress reversal in
Triax A leads to stronger dilatancy than it is the case in Test B with shear
stress reversal. The unloading phases are associated with significant contrac-
tant material behavior, which is more pronounced in Test B (with shear stress
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reversal). During reloading, the material continues to contract slightly before a
strong mobilization of dilatancy is observed. The volumetric strain amplitudes
are about 0.5% for Triax A and 1% for Test B respectively. The reloading stiffness
is lower in Test B than in Triax A.

Comparison with back-calculations reveal considerable problems for
hypoplasticity to realistically reproduce the test results. The most important
shortcomings of the hypoplastic model are a lack of contractancy during unload-
ing, a too long phase of contractant behavior during reloading and too weak
mobilization of dilatancy subsequently. Similar shortcomings have been observed
and described by Niemunis et al. [13] and Wichtmann [23]. From these defi-
ciencies arise the major problems of the numerical simulation to reproduce the
experimental observations, such as the evolution of pile resistance and the pen-
etration velocity (see Fig. 15). Recently developed constitutive models, like neo-
hypoplasticity [13], aim to improve the described deficiencies of the commonly
used hypoplasticity model. There is reasonable hope that by implementation of
a better description of soil behavior within the FE framework of the present
study, enhanced simulations of vibro-penetration can be achieved.

6 Closing Remarks

Vibratory pile driving in saturated soil has been intensely studied by means of
Finite Element simulations with help of a user-defined element in the framework
of an u-p formulation. A simplified and an enhanced model have been developed
and used to back-calculate model test results.

The simplified solution technique proposed in [4,15,21], regardless its rough
simplifications with the prescribed sinusoidal displacement boundary condition,
can be used to study the soil deformations around a vibrating pile if the consid-
ered time period and the occurring pile penetration is limited. The assumption
of zero soil permeability affects the numerical solution and leads to results that
have not been confirmed by experimental observations, notably the formation of
a zone with rotational displacement patterns around the pile toe and an unre-
alistic build-up of pore water pressure. Consequently, the assumption of locally
undrained conditions in the soil seems to be inappropriate for the numerical sim-
ulation of vibratory pile driving. The solution with the actual soil permeability
achieves to reproduce adequately the soil deformations in the vicinity of the pile
during the vibratory pile driving process.

The good agreement between the results of the enhanced FE-model and the
model test confirms that the pile installation process can be satisfactory repro-
duced numerically. The differences observed in the developed pile resistance and
penetration velocity do not originate from the numerical method, but rather from
the inability of the hypoplastic model to describe adequately the soil behavior
for the occurring deformation paths.

As a next validation step, the developed enhanced FE model will be applied
for the simulation of new vibratory tests, presented in [22] in this book. These
experiments include also large pile penetration effects and provide an improved
instrumentation to enable pore pressure measurements.
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Some Aspects of the Boundary Value Problems
for the Cyclic Deformation of Soil

Vladimir A. Osinov
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Abstract. Some geotechnical installation processes such as vibratory
pile driving or vibro-compaction of soils are characterised by a wide strain
amplitude range in the soil, from several per cent and higher in the vicin-
ity of the vibration source to vanishingly small amplitudes in the far field.
The gradual accumulation of residual stresses and deformations after
each small-amplitude cycle plays in such processes as important a role
as large-amplitude cyclic deformation. The numerical simulation of such
processes faces, among other difficulties, the necessity to model simul-
taneously large- and small-amplitude cyclic deformation with a large
number of cycles. This imposes stringent requirements on the consti-
tutive model. A problem of the large-amplitude vertical vibration of a
pile in saturated soil, which belongs to the problems with a wide strain
amplitude range, was solved earlier with two constitutive models: an
incremental hypoplasticity model and a high-cycle accumulation model.
Using this problem as an example, the present paper discusses the solu-
tion approaches and numerical and constitutive aspects of the problem,
with particular attention to the accumulation effects in hypoplasticity.

Keywords: Cyclic deformation · Hypoplasticity · Pile vibration

1 Introduction

Boundary value problems for the cyclic deformation of soil can be classified into
two groups according to the number of cycles to be modelled: low-cycle problems,
in which the number of cycles does not exceed several tens, and high-cycle prob-
lems with a larger number of cycles up to tens of thousands or more. A wide area
of applications for low-cycle problems is the modelling of earthquake-induced
soil deformation. Many cyclic soil deformation processes related to geotechni-
cal engineering are high-cycle processes, e.g. vibratory or impact pile driving
or vibro-compaction of soils. The modelling of such processes is often restricted
to a relatively small number of cycles and is thus reduced to the solution of a
low-cycle problem.

Along with the number of cycles, each cyclic deformation problem is charac-
terised by a range of strain amplitudes. The mechanical behaviour of soils under
cyclic loading is strongly dependent on the strain amplitude. We will restrict
c© Springer International Publishing AG 2017
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Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 6
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ourselves to granular soils such as sand whose skeleton is commonly assumed
to exhibit rate-independent constitutive behaviour. For small strain amplitudes
below 10−5, the response of soil to cyclic loading may with good accuracy be con-
sidered as linearly elastic. For higher amplitudes, the behaviour of soil becomes
plastic with a residual stress after a closed deformation cycle and a residual
deformation after a closed stress cycle. In some cases such as earthquake-related
problems, the assumed elastic range may be extended to higher strain amplitudes
up to 10−4. On the other hand, permanent changes in stresses or deformations
may need to be taken into account even for small strain amplitudes of the order of
10−5 if the changes accumulate over a large number of cycles. The accumulation
effects become stronger with increasing amplitude.

Some high-cycle processes such as vibratory pile driving or deep vibratory
compaction involve a wide range of strain amplitudes from several per cent and
higher in the vicinity of the vibration source to vanishingly small amplitudes in
the far field. The deformation in the near-field is additionally complicated by the
large-strain flow of the soil caused by the pile penetration or the soil compaction.
The weak accumulation effects at strain amplitudes of 10−4 to 10−3 at distances
of one to a few metres from the pile or vibrator play an important role, as they
determine the ultimate changes in the soil state (stresses and density) at these
distances. The wide amplitude range together with the necessity to correctly
reproduce the accumulation effects for a large number of cycles impose stringent
requirements which can hardly be satisfied by any of the existing constitutive
models.

Incremental plasticity models allow us to calculate an arbitrary deformation
path and any number of cycles. Solving problems with many cycles entails high
computational costs, as each cycle has to be computed incrementally with a
large number of strain increments. The maximum size of the strain increment
is limited by the accumulation of numerical errors in the residual stresses or
deformations after each cycle. However, if the weak accumulation effects in the
problem under study are important, the main difficulty in solving the problem
for a large number of cycles is not the long computing time but the inaccuracy of
the incremental model in regard to the weak accumulation effects. Constitutive
models of another type, so-called explicit cyclic models, consider the stresses
and deformations as explicit functions of the number of cycles and are cali-
brated directly on high-cycle tests. For this reason, they are more accurate in
describing the accumulation effects than incremental models. A disadvantage of
explicit models, which restricts their use, is that they are inapplicable to strain
amplitudes over 10−3.

In this paper we consider the problem of the vibration of a pile in saturated
granular soil solved earlier in [1,10,11]. A spherically symmetric approximation
to this problem for the vicinity of the pile toe was studied in [7,8]. If the pile
displacement amplitude is large enough, the pile vibration problem belongs to
the class of problems with a wide strain amplitude range and a large number of
cycles. The problem was solved with two constitutive models of different types:
an incremental hypoplasticity model and an explicit high-cycle model. In the
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present paper, using this problem as an example, we discuss the solution app-
roach, some numerical aspects and some features of the constitutive models. The
large-amplitude pile vibration problem is of interest in connection with the sim-
ulation of vibratory pile driving. The problem of vibratory pile driving involves
additional numerical difficulties, as compared to pure pile vibration without pen-
etration. The difficulties arise, in particular, from the pile-soil contact conditions
and the mesh distortion. These questions are beyond the scope of the present
paper.

The low-cycle pile vibration problem with the hypoplasticity model is
described in Sect. 2. To judge whether the hypoplasticity model is appropri-
ate for the high-cycle problem as well, in Sect. 3 we present examples of how
the model reproduces the accumulation effects at small strain amplitudes. This
issue has not been addressed in the literature so far. Sections 4 and 5 outline
the explicit cyclic model and its use in the high-cycle pile vibration problem.
Section 5 also discusses numerical aspects of solving the high-cycle problem with
the explicit model.

2 Low-Cycle Pile Vibration Problem

The problem of the vertical vibration of a cylindrical closed-ended pile in satu-
rated soil has been solved in [1] in a two-dimensional axisymmetric formulation
with the finite-element program Abaqus/Standard. A user-defined finite element
has been constructed to enable the solution of the dynamic problem with nonzero
soil permeability. The same problem with locally undrained conditions is studied
in [10]. The objective of the studies was to find permanent stresses and stress
amplitudes in the vicinity of the pile toe. The problem is solved for a few tens
of cycles with fine spatial and temporal discretization. The soil is modelled as a
two-phase medium consisting of a solid skeleton and a pore fluid. The dynamic
problem with nonzero soil permeability [1] is formulated in the u-p approxima-
tion [19,20] neglecting the difference in the accelerations of the solid and fluid
phases. The behaviour of the solid skeleton is modelled by the hypoplasticity
theory with intergranular strain [3]. The constitutive equations for the effective-
stress tensor σ and for the intergranular-strain tensor δ are written as

σ̇ = F (ε̇,σ, δ) , (1)
δ̇ = S (ε̇, δ) (2)

with tensor-valued functions F and S, where ε is the deformation tensor, and
the dot stands for the time derivative. The constitutive functions F and S can
be found in the original paper [3] or in [5,6,9]. The vertical vibration of the
pile is simulated by prescribing time-harmonic displacement of the soil with
given amplitude and frequency at the pile-soil interface. Non-reflecting bound-
ary conditions available in Abaqus are prescribed at the outer boundary of the
computational domain to minimize wave reflections.

A typical solution to the low-cycle pile vibration problem is shown in Fig 1.
The figure shows the distribution of the mean effective stress around the pile
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toe after 20 cycles of vibration. The cyclic deformation of the soil caused by the
pile vibration results in the formation of a zone with low effective stress around
the toe. The absolute value of the mean effective stress in the darkest area in
Fig. 1 does not exceed 1 kPa, or 2% of the initial stress (−50 kPa at the toe
depth). This low-stress zone, which may also be viewed as a liquefaction zone,
appears around the pile toe after the first several cycles of vibration and grows
slowly with time. The low-stress zone is formed with both zero and nonzero
permeability of up to 10−3 m/s. The difference between the two cases is in the
pore pressure evolution. The reduction of the mean effective stress in the locally
undrained case is accompanied by the build-up of the pore pressure, so that the
total stress in the low-stress zone remains approximately at the same level. An
increase in the pore pressure in the high-permeability case is weaker because of
the pore pressure dissipation. As a result, the total stress in the low-stress zone
becomes smaller in absolute value compared with the initial stress.

Owing to the large strain amplitudes in the immediate vicinity of the pile toe,
the major changes in the stress state, from the initially homogeneous stresses to
what is shown in Fig. 1, occur during the first 10–20 cycles. The size of the low-
stress zone then slowly increases with the number of cycles. The question arises
as to how to solve the high-cycle problem and thus to trace the further evolution
of the stress state. Obviously, one possibility is to continue the calculations for a
larger number of cycles. As mentioned in Introduction, the main difficulty in this
case is not the long computing time but the question of whether the constitutive
model correctly reproduces the weak accumulation effects which determine the
growth of the low-stress zone in our problem or the ultimate soil density in
a vibro-compaction problem. This question is discussed in the next Section in
relation to the hypoplasticity model.

Fig. 1. Mean effective stress in saturated sand around the pile toe after 20 cycles of
vibration calculated with the hypoplasticity model [1]
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3 Accumulation Effects in Hypoplasticity

The versions of hypoplasticity in which stresses and density are the only state
variables (e.g. [2,18]) are known to be unsuitable for the modelling of multi-cycle
deformation because of excessive ratcheting. An additional state variable called
intergranular strain [3] substantially improves the ability of the theory to model
cyclic deformation. Although most attention in the development of the extended
version with intergranular strain was paid to the adequate description of the stiff-
ness, the accumulation effects are qualitatively correct: drained cyclic shearing
results in the gradual compaction of the soil, while undrained shearing results in
the effective-stress reduction. This stimulated the use of the intergranular-strain
version of hypoplasticity for the numerical modelling of processes with multi-
cycle deformation including vibratory pile driving, deep vibratory compaction
and earthquake-induced soil liquefaction (see references in [10]). However, quan-
titative analyses of the accumulation effects are still missing in the literature.

A common drawback of incremental plasticity models regarding cyclic defor-
mation is that it is problematic, if at all possible, to calibrate a given model with
respect to the accumulation effects at small to medium strain amplitudes for a
large number of cycles and, at the same time, to preserve the correct constitu-
tive behaviour at large amplitudes. The accumulation effects depend on many
factors such as the applied strain or stress amplitude, the relative soil density,
the current stress state and the cyclic deformation history.

The set of constitutive parameters of the extended version of hypoplasticity
with intergranular strain consists of two groups. The first group includes the basic
parameters involved in both the basic version without intergranular strain [18]
and the extended version [3]. The second group includes additional intergranular-
strain parameters involved in the extended version only. The basic parameters
are determined from element tests with monotonic deformation. The proper
estimation of the additional parameters requires cyclic tests, which are more
complicated and time consuming. For this reason, the additional parameters
are often estimated otherwise or taken from the original paper [3]. Problems in
the determination of the intergranular-strain parameters may cause additional
inaccuracy of the model.

Here we will discuss the applicability of the hypoplasticity theory with inter-
granular strain to the modelling of high-cycle deformation with several hundred
cycles and moderate strain amplitudes in the range between 10−4 and 10−3.
Emphasis in the examples presented below will be placed on the accumulation
effects rather than on the incremental stiffness. The hypoplasticity model will
be compared with the high-cycle accumulation model discussed below in Sect. 4.
Since the cyclic model is calibrated directly on multi-cycle tests, the curves
obtained with this model will be used here as benchmark curves. For the com-
parison of the two models to be possible, we will take a soil (sand L12 from [17])
for which both models have been calibrated [13].

Example 1. The first example deals with the densification of dry soil caused
by cyclic shearing. This type of deformation is closely related, for instance, to
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the modelling of deep vibratory compaction. Figure 2 shows the results of cyclic
simple shearing with the initial relative density ID = 0.2, the initial stresses
σ11 = −100 kPa, σ22 = σ33 = −70 kPa, σ12 = σ13 = σ23 = 0, and the strain
amplitude γ12 = 10−3. The stress component σ11 is kept constant during the
deformation. A salient feature of the compaction with a constant strain ampli-
tude observed in experiments is the strong decrease in the compaction rate with
increasing density. This feature is well reproduced by the cyclic model. In con-
trast, the hypoplasticity model shows little influence of the current density on the
compaction rate. Although the model predicts the existence of a densest state
in which the compaction terminates, this state is reached too fast because of
too high compaction rates at medium and high densities. The weak dependence
of the compaction rate on the density is found to be an inherent characteristic
of the present version of hypoplasticity, rather than being a consequence of an
improper choice of the intergranular-strain parameters. This drawback may lead
to the considerable overestimation of the final density in the numerical simula-
tion of compaction processes with a large number of cycles.
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Fig. 2. Densification of dry sand during cyclic simple shearing with a strain amplitude
of 10−3

Example 2. The fact that the influence of the density on the densification of
dry soil in the hypoplasticity model is weak suggests that the effective-stress
reduction in saturated soil under undrained conditions may also depend only
slightly on the density. This conjecture turns out to be true. Figure 3 shows the
mean effective stress σ after 300 cycles of pure shearing calculated with the two
models for sand L12. The initial stress state is hydrostatic with the mean stress
σ0 = −100 kPa. The stress in the figure is shown as a function of the strain
amplitude for two relative densities. The degree of the effective-stress reduction
obtained with hypoplasticity increases with increasing amplitude up to the total
vanishing of the effective stress for sufficiently large amplitudes. However, in
contrast to the cyclic model, there is no dependence of the effective-stress reduc-
tion on the density. The curves for the dense and loose soils practically coincide,
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which is inconsistent with experimental observations. It is likely that this model,
when used for the high-cycle pile vibration problem for saturated soil, will give
the same rate of growth of the low-stress zone for dense and loose soils.

Example 3. Another deficiency of the extended version of hypoplasticity man-
ifests itself when monotonic deformation is superimposed on small-amplitude
cyclic deformation. The model is such that small-amplitude cyclic deformation
makes the intergranular strain tensor nearly zero in norm (much smaller than
a certain value). This remains true if the average deformation tensor changes
slowly with the number of cycles. If the intergranular strain tensor is zero, the
model reduces to hypoelasticity, i.e. incrementally linear elasticity with stress-
dependent stiffness. The change in the average stress is then dictated by the
monotonic part of the deformation according to the hypoelastic response. If the
monotonic part of the deformation has a deviatoric component, the model can
produce arbitrarily high principal-stress ratios and tensile stresses.

This property of the model is illustrated in Fig. 4 by a strain-controlled tri-
axial test in which the deformation components ε1 and ε2 = ε3 oscillate with
amplitudes of 8×10−5 and 4×10−5, respectively, and also have monotonic con-
stituents (Fig. 4a). The monotonic part of the deformation has a deviatoric and
a tensile volumetric components. Such deformation is expected to result in the
gradual reduction and eventual vanishing of the stress. Calculations show that
the monotonic and the purely cyclic deformation paths applied individually pro-
duce the correct stress responses: the stress components tend to zero. However,
this is not the case for the superposition of the two paths. The stresses calculated
with the parameters of sand L12 are shown in Fig. 4b. The stress σ1 does tend to
zero in the beginning but then crosses the zero axis and becomes positive. The
stress σ2 begins to increase in absolute value already after the first several cycles.
The stress evolution in the present example depends on the intergranular-strain
parameters and can be such that much more cycles are needed for the wrong
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trend to become noticeable. Figure 4c shows the result obtained with the para-
meters of Karlsruhe sand used in [1,8,10]. The stresses in Fig. 4c decrease in
absolute value during the first few tens of cycles, but the trend then turns to
that shown in Fig. 4b as the number of cycles increases.

The drawback illustrated in Fig. 4 escaped attention until recently and was
revealed in the solutions to the boundary value problems of the cyclic defor-
mation of saturated soil with finite permeability [8]. The monotonic volumetric
expansion of the soil skeleton due to pore water flow together with the applied
cyclic loading may result in a deformation path similar to that shown in Fig. 4a.
An ad hoc approach that eliminates the above drawback of the constitutive
model is proposed in [8]. It is known from numerical experiments that the original
version of hypoplasticity without intergranular strain does not produce unlimited
stress ratios – at least, for coaxial deformation. In the approach proposed in [8],
the original and extended versions of hypoplasticity are combined using a weight
function. The function is chosen in such a way that the extended version contin-
uously turns to the original one if the increasing principal-stress ratio exceeds
a certain threshold. Alternatively, tensile stresses and unlimited principal-stress
ratios could be eliminated by the small-stress correction and the projection of
the stress state on a bounding surface, as described in Sect. 4 for the high-cycle
model.

The examples presented in this Section show that the use of an incremental
constitutive model – in our case, hypoplasticity – for the solution of a high-cycle
problem with small to medium strain amplitudes may lead to substantial errors
in permanent stresses and deformations. An alternative way is to use an explicit
cyclic model.

4 High-Cycle Accumulation Model

While incremental plasticity models describe any deformation path, so-called
explicit cyclic models are developed specially for the simulation of cyclic deforma-
tion. Stresses and deformations in these models are understood as average quan-
tities that change gradually with the number of cycles due to small-amplitude
cyclic deformation. The models are called ‘explicit’ because the average stresses
and deformations are considered as explicit functions of the number of cycles.
In this paper we will deal with the application of the high-cycle accumulation
model for granular soils elaborated in [4,12]. The constitutive parameters of the
model control directly the dependence of the accumulation effects on the strain
amplitude, the current density, the stress state and the cyclic deformation his-
tory. The model has been calibrated by cyclic element tests on various sands
with a large number of cycles (up to 105) [14–17].

The constitutive equation for the stress tensor in the cyclic model is written
in rate form with respect to the number of cycles treated as a real number. If
the soil is deformed with a constant frequency, the constitutive equation can be
written in terms of temporal rates:

σ̇ = E(σ) : (ε̇ − ε̇acc), (3)
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where σ is the average stress tensor (the effective stress in the case of satu-
rated soil), ε is the average deformation tensor of the skeleton, and E(σ) is a
stress-dependent stiffness tensor. The tensor ε̇acc entering the constitutive equa-
tion is a strain accumulation rate which is a function of a scalar strain ampli-
tude εamp, the void ratio, the stress tensor and the cyclic deformation history
(see [4,7,12,14,17] for detail). The determination of the strain amplitude εamp

as a function of space and time, when solving a high-cycle problem, constitutes
a separate boundary value problem which is independent of the cyclic model.
The scalar strain amplitude εamp is determined from the amplitudes of the indi-
vidual components of the strain tensor corresponding to the cyclic deformation.
Equation (3) has been calibrated by the comparison of the results of drained and
undrained cyclic tests [15,16]. The tensor E is taken as in an isotropic elastic
solid with a fixed Poisson ratio and a pressure-dependent bulk modulus

K(σ) = Ap1−n
atm (−σ)n, (4)

where σ is the mean stress and A, patm, n are parameters.
The use of equations (3), (4) for the solution of boundary value problems

requires two corrections. The first correction should prevent the possible unlim-
ited growth of the principal-stress ratio caused by the hypoelastic response (3).
The correction in [8,11] is made by projecting the stress state on a given bound-
ing surface in the stress space if the stress state falls outside the surface. The
bounding surface corresponds to the Matsuoka-Nakai yield condition with a given
friction angle. The projection is made in the direction to the hydrostatic axis in
such a way that the mean stress does not change. Equation (3) then becomes

σ̇ = E(σ) : (ε̇ − ε̇acc) + σ̇cor (5)

with a correction term σ̇cor.
The second correction to (3), (4) is necessary if the mean stress σ approaches

zero. This may be the case in saturated soil subjected to cyclic deformation,
either because of low soil permeability or in the presence of tensile deformation
of the skeleton due to pore water flow. It can be shown that if 0 < n < 1 in (4),
which is the case for granular soil, the mean stress σ reaches zero after a finite
number of cycles. Zero σ and, as a consequence, zero skeleton stiffness make a
boundary value problem ill-posed. The small-stress correction proposed in [11]
is made through the multiplication of (4) by a factor which depends on σ:

K(σ) = Ap1−n
atm (−σ)n

[
1 − exp

(
− σ

σζ

)]ζ−n

, (6)

with a parameter ζ > 1 and a reference stress σζ < 0. With ζ > 1, the mean
stress σ, if it decreases in absolute value, approaches zero asymptotically with
the number of cycles. At the same time, (6) turns into (4) if σ/σζ � 1.

5 High-Cycle Boundary Value Problem

The high-cycle accumulation model has two attractive advantages over incre-
mental models in relation to the numerical solution of boundary value problems
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with a large number of cycles. First, this model, when properly calibrated, is
much more accurate in the description of the accumulation effects, and second,
it enables us to calculate a large number of cycles in a relatively short comput-
ing time. A crucial disadvantage, which substantially restricts the application
of the model, is that it is invalid for large strain amplitudes over 10−3. This is
not a drawback of this particular model, but rather an intrinsic property of any
explicit model based on the concept of gradually changing average stresses and
deformations. This restriction does not allow the high-cycle model to be directly
employed for the solution of the pile vibration problem considered in this paper
because of large strain amplitudes in the vicinity of the pile.

The problem of vibration-induced soil deformation can be solved with the
high-cycle model by excluding the zone of large strain amplitudes from the com-
putational domain with the help of an auxiliary boundary [7,8,11], as illustrated
in Fig. 5. The main difficulty in this approach is the specification of boundary
conditions at the auxiliary boundary. The location of the auxiliary boundary
and the boundary conditions may be deduced from the solution to the low-cycle
problem solved with an incremental model for the whole domain prior to the
high-cycle problem [8,11]. The low-cycle solution also provides an initial stress
state for the high-cycle problem.

The solution of the high-cycle problem with the cyclic accumulation model
consists in the concurrent solution of two coupled boundary value problems,
called here the first and the second problems. A calculation step between times
t and t + Δt begins with the determination of the scalar strain amplitude field
εamp(x, t) as a function of space at time t. Finding this strain amplitude consti-
tutes the first boundary value problem. As mentioned on Sect. 4, this problem is
independent of the cyclic model and may be solved with any suitable constitu-
tive model in a dynamic or quasi-static formulation, depending on the physical

Fig. 5. Computational domain with an auxiliary boundary around the pile for the
high-cycle problem
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problem under study. For pile vibration studied in [7,8,11], the first bound-
ary value problem is solved for an elastic medium in the dynamic steady-state
formulation for time-harmonic displacements and stresses with spatially inhomo-
geneous soil stiffness. The stiffness is determined from the current effective stress
through an assumed relation which is also independent of the cyclic model. The
steady-state problem is solved with a given pressure or displacement amplitude
at the auxiliary boundary (stress-controlled and displacement-controlled cases,
respectively). The remote boundary is made transparent for outgoing waves by
non-reflecting boundary conditions. They are exact in the spherically symmetric
problem [7,8] and approximate in the two-dimensional case [11].

The scalar strain amplitude determines the tensorial strain accumulation
rate ε̇acc(x, t) required for the constitutive equation (3). Assuming this rate to
be constant on the interval Δt, the effective stress, the pore pressure and the
void ratio at time t + Δt are found from the second boundary value problem –
a quasi-static deformation problem for a fluid-saturated porous solid with the
constitutive equation (3) for the skeleton. The auxiliary boundary in [7,8,11]
is taken to be impermeable with zero displacements. The boundary conditions
at the remote boundary correspond to the conditions at infinity. After the new
stress state at time t + Δt has been found, the next step begins with the first
boundary value problem with the new stiffness. In order to reduce the computing
time, it may be reasonable to check the effective stress changes and to update
the strain amplitude field by solving the first boundary value problem only if
the changes exceed a certain threshold. If the stress changes are too small, the
old strain amplitude field may be taken for the next step.

The solution scheme for the high-cycle problem as two coupled boundary
value problems has been implemented in [7,8,11]. The problem for the vicinity
of a pile toe has been solved in [7,8] in a spherically symmetric approximation.
The study in [11] is aimed at finding permanent stress changes near a concrete
wall caused by the large-amplitude vibration of a pile. The influence of the pile is
simulated by a spherically symmetric vibration source with a constant pressure
amplitude σa (stress-controlled problem) placed at a distance L from the wall, as
illustrated in Fig. 6. This approximation reduces the original three-dimensional
pile-wall problem to a two-dimensional axisymmetric problem.

A feature of the steady-state problem in the stress-controlled case is a
resonance-like increase in the strain amplitude (called resonance for brevity)
at a certain spatial distribution of the effective stress. The resonance has been
observed in both the spherically symmetric and the two-dimensional axisymmet-
ric problems. No resonance occurs in the displacement-controlled case, since the
strain amplitude is controlled by the displacement amplitude at the boundary.
The resonance is accompanied by an abrupt increase in the size of the low-stress
zone and may also result in an abrupt change in the stress state at a fixed
spatial point if the low-stress zone covers this point during the resonance. This
is illustrated in Fig. 7, which shows the mean effective stress near the concrete
wall for the problem in Fig. 6. The effective stress changes gradually until the
instant of resonance and then falls quickly to a smaller or nearly zero value. The
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Fig. 6. A spherical auxiliary boundary with a pressure amplitude σa approximating
the influence of a vibrating pile on the stress state near a concrete wall [11]

instant of resonance depends, besides the constitutive parameters of the soil, on
the pressure amplitude, the pile-wall distance, the relative soil density and the
permeability. The influence of the permeability on the stress state near the wall
is the same as for the vicinity of the pile toe: high permeability does not allow
the pore pressure to grow, but does not hinder the effective stress reduction.
As a result, the total stress becomes eventually reduced by approximately the
same amount as the effective stress. In the cases shown in Fig. 7, the stress state
behind the wall remains practically unchanged.

The studies in [7,8,11] were the first to use the high-cycle accumulation
model [4,12] for the solution of boundary value problems for saturated soils

Fig. 7. Mean effective stress near the wall (Point A in Fig. 6) as a function of time for
different pressure amplitudes σa and two pile-wall distances L, calculated for sand L12
with a relative density of 0.6 [11]
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under dynamic loading. Earlier applications of the model dealt with dry or fully
drained soils under quasi-static cyclic loading.

The numerical solution of dynamic boundary value problems for saturated
soils encountered two kinds of instability. The first instability stems from the
property of the high-cycle model to produce, under certain conditions, widely
diverging stress responses for slightly different deformation paths. Consider two
soil samples with the same initial stress state and density. Let each of them
be subjected to a uniaxial compression ε1 with a constant deformation rate
and, at the same time, to small-amplitude cyclic deformation with an increasing
amplitude εamp, as shown in Fig. 8. The deformation of the two samples is slightly
different, and it would be natural to expect only a slight difference in the stress
paths as well. However, the stress paths diverge markedly, although both finally
approach zero, see Fig. 8. The cyclic and monotonic parts of the deformation,
when applied individually, would lead, respectively, to the decrease and increase
in the absolute value of the mean stress. The result of the superposition depends
on the intensity of the two components. Although the decrease due to the cyclic
deformation in the present example dominates, the dependence on the monotonic
deformation is nevertheless strong. That is why the two stress paths diverge.
Another example, in which the compression eventually dominates and the stress
increases after a temporary fall, is shown in Fig. 9.

The high sensitivity of the stress response to the variation of the applied
deformation exists only for certain combinations of the deformation path, the ini-
tial stress state and the density. Exceptional as this phenomenon might seem, it
may manifest itself in numerical calculations and completely spoil a spatially con-
tinuous solution. Different stress paths, like those shown in Fig. 8, were obtained
in neighbouring finite elements or within one element in numerical solutions with
the 4-node bilinear axisymmetric quadrilateral elements of Abaqus/Standard.
This instability usually leads to the formation of a zone in which the stresses
change discontinuously and irregularly from element to element. The zone of
irregularity disappears as the stresses in all elements of the zone approach zero.
The instability did not arise when using the 8-node biquadratic axisymmetric
quadrilateral elements.

While the presence of discontinuous solutions is easy to see, another kind of
instability faced in the numerical simulations does not lead to any discontinu-
ity and may not be as easy to notice as the previous one. The instability has
been revealed by solving a problem with a spherically symmetric solution as a
two-dimensional axisymmetric problem. It was found that the solution may lose
spherical symmetry at a certain instant and then remain non-symmetric. The
mechanism of this bifurcation cannot yet be clearly explained. The loss of sym-
metry occurs in the problems with nonzero permeability after the formation of a
low-stress zone and is initiated by non-symmetric strain amplitude fields arising
in the steady-state problem prior to the loss of symmetry. The non-symmetric
strain amplitude fields may be a consequence of instability caused by the very
low shear stiffness in the low-stress zone, as compared to the bulk modulus.
The latter remains almost unchanged due to the presence of pore water. The
fact that the non-reflecting boundary conditions at the remote boundary are
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Fig. 8. Superposition of monotonic uniaxial compression ε1 and cyclic deformation with
increasing strain amplitude εamp calculated with the high-cycle accumulation model
for sand L12. Two slightly different deformation paths (solid and dashed lines) produce
markedly different stress responses. Initial state: σ1 = −50 kPa, σ2 = σ3 = −35 kPa,
ID = 0.6
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Fig. 9. The same as in Fig. 8 for a different deformation path and ID = 0.8

not exact may also play a role leading to spurious non-symmetric eigenmodes.
The non-symmetric disturbance to the stresses and density increases because
of some complicated positive feedback. This instability has been eliminated by
introducing a small correction stress σ∗ in the steady-state problem [11] to pre-
vent too low shear stiffness.
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6 Concluding Remarks

Vibratory pile driving or vibro-compaction of soils are high-cycle processes in
which the ultimate stress state and density of the soil, except for the immedi-
ate vicinity of the vibration source, are determined by the weak accumulation
effects at small to medium strain amplitudes. The problem of the large-amplitude
vibration of a pile in saturated soil was solved with the hypoplasticity model as
a low-cycle problem to find the stress state around the pile toe at the beginning
of the vibration. One should proceed with caution when using the hypoplas-
ticity model for the solution of high-cycle problems. As shown in the present
paper, the hypoplasticity model has shortcomings in reproducing the accumula-
tion effects. The accumulation of residual stresses and deformations under purely
cyclic loading is qualitatively correct but exhibits a lack of adequate dependence
on the strain amplitude and the relative soil density. A combination of monotonic
and small-amplitude cyclic deformation may lead to physically unrealistic stress
states and thus produce an incorrect response. These facts should be taken into
account when using the hypoplasticity model for the simulation of cyclic defor-
mation processes such as vibratory pile driving or vibro-compaction, especially
with a large number of cycles.

The high-cycle pile vibration problem was solved with the explicit cyclic
model. This model is more reliable from the viewpoint of the accumulation effects
but is applicable only to small strain amplitudes. Because of this restriction,
boundary value problems with the cyclic model require special formulation in
order to exclude the zone of large strain amplitudes from the computational
domain. The main difficulty in this approach is the indeterminacy of boundary
conditions for the reduced computational domain. Resolving this difficulty is
crucial for the accuracy of the modelling.

Acknowledgments. The study was financed by the Deutsche Forschungsgemein-
schaft as part of the Research Unit FOR 1136 ‘Simulation of geotechnical construction
processes with holistic consideration of the stress strain soil behaviour’, Subproject 6
‘Soil deformations close to retaining walls due to vibration excitations’.
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Abstract. A computer aided calibration, benchmarking and testing of
constitutive models is presented. A large collection of test data for Karl-
sruhe sand is used together with the neohypoplastic model as an example.
The essential feature of the procedure is an automatic evaluation of the
discrepancies between a test and its simulation. They can be minimized
by modifications of material constants or used as a benchmark for dif-
ferent models. Apart from the curve-fitting part one may check whether
a constitutive model violates the Second Law. For this purpose several
specially designed stress loops are tried out. A shake down of all state
variables is established. The neohypoplasticity and the barotropic hypoe-
lasticity are used as examples in the thermodynamic tests. In conclusion
several modification to neohypoplastic models are presented.

Keywords: Second law · Material calibration · umat

1 Introduction

A constitutive model for soil is given in a form of the user’s material subrou-
tine umat which is a well established standard of the commercial FE program
Abaqus�. The main subject here is the calibration of the model, i.e. a general
method to find the material constants. The FE program is not necessary for
the calibration because we assume homogeneous fields of stress and strain in all
tests. A small public-domain program IncrementalDriver, http://www.pg.
gda.pl/∼aniem/dyd.html, enables numerical element tests (a single Gauss point
in the FEM). One can use IncrementalDriver to simulate various loading
paths with prescribed stress path σ(t) or strain path ε(t) or partly both. It is
assumed that numerous test data files containing various stress and strain paths
are available for comparisons. For example such data bank for sand is available
online, http://www.torsten-wichtmann.de/, and described in detail in [14,15].

IncrementalDriver can read the test results1 and perform a computa-
tion with umat. The prescribed path is followed in-fly and one can watch the
developing discrepancy between the simulation and the laboratory results.
1 In different components, e.g. Roscoe or Cartesian.
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At the beginning of each increment umat is given the stress σn and the inter-
nal state variables αn. umat updates these values depending on the strain incre-
ment Δε = εt+Δt−εt returning their values σn+1 and αn+1 at the end of the incre-
ment. Moreover umat calculates a tangential stiffness matrix2 E = ∂Δσ/∂Δε.
The main task of IncrementalDriver is to drive umat along a prescribed
loading path defined by strain or stress components. The complementary com-
ponents of εn+1 and σn+1 are calculated using constitutive equations and stored
(in an output file) together with the collection of all state variables αn+1. It is
easy to follow a strain path ε(t) feeding umat with the strain increments Δε
along the path: the update of all state variables3 is performed by umat itself and
IncrementalDriver needs just to do some bookkeeping and to output the
results. It is more difficult to follow a prescribed stress path σ(t) or a combined
stress/strain path (=generalized loading path). The essential problem arises from
the fact that umat accepts only strain increments Δ̆ε as input. For a prescribed
stress increment Δ̆σ IncrementalDriver determines iteratively the compo-
nents of Δε in a procedure similar to the equilibrium iteration (EI) in the FEM.

The final result obtained from IncrementalDriver is a chronological list
of states which is usually plotted and compared with analogous diagrams from
the laboratory. We call such list a history and the discrete states are called the
records. A portion of history with roughly proportional prescribed increments is
called a step and the difference between two consecutive records is an increment.
IncrementalDriver can read a history from an external file choosing some
components (columns) as an input. Such input file can be obtained from labo-
ratory or it can be the output of IncrementalDriver itself, usually generated
with a different umat or with a different set of material constants.

A fair comparison of several4 umats should be done basing on a common col-
lection of laboratory tests5. However, constitutive models are usually evaluated
graphically using different collections of tests and differently selected components
of the material response. The main objective of this paper is to formulate a fair
benchmark, instead. For the quantification of the discrepancy between the lab-
oratory results and the simulation we define a scalar functional F(Ci,α0, ε(t)),
possibly with some constraints. In the process of calibration the loading program
is fixed, εS(t) = εL(t), and we can iterpret the scalar discrepancy functional as a
penalty function F (Ci,α0) to be minimized by an optimal choice of the material
constants Ci and the initial values α0 of state variables.

The functional F(ε(t)) is a promising general-purpose tool in constitutive
modeling. It can be helpful:

2 Jacobian matrix.
3 Except for strain.
4 Describing different constitutive models or different sets of material constants.
5 We use triaxial and oedometric tests on the Karlsruhe fine sand [13] here but other

types of tests (biaxial, true-triaxial, hollow-cylinder tests) can also be read by Incre-
mentalDriver. For compatibility with umat one should convert the nominal stress
to the Cauchy stress and the Biot strain to the Hencky strain in each record of the
test data files.
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• to calibrate a constitutive model (as a penalty function for optimization);
• to compare optimally calibrated models (as a benchmark);
• to evaluate the sensitivity [5] of the response to different material constants;
• to evaluate an admissible range of the material constants;
• to determine what aspect of the constitutive description needs an improve-

ment.

A formulation of a good functional F(ε(t)) is not easy and it may differ
depending on the engineering problem at hand. The essential benefit of F(ε(t))
is the objectivity. Although a considerable experience has been gathered in the
traditional (graphical) evaluation of the constitutive models for soils, it happens
frequently that only “nicely looking” diagrams are selected for publications.
Sometimes even the set of material constants for the same material is modified
from test to test to render the model more attractive. In order to avoid biased
comparisons it seems of great value to have several public-domain benchmarks.
Different benchmarks can be suited to different engineering requirements:

a. Settlement: stiffness after shake-down, after reversals, accumulation, creep
b. Strength: Peak strength, dilatancy and contractancy
c. Liquefaction: dilatancy and contractancy upon monotonic or cyclic loading

under undrained conditions

Of course, some other features like simplicity, originality and robustness of a
model, the uniqueness of the solution or a good simulation of shear banding are
also of considerable importance, however we do not consider such qualities here.
We assume that all umats are formulated in an objective manner and neither the
time nor the strain is considered as a state variable.

A serious drawback of a phenomenologically formulated constitutive model
can be the violence of the 2nd Law of thermodynamics. Some users may prin-
cipally reject a “non-physical” model that violates the 2nd Law irrespectively
of the quality of the simulations [2,3]. Therefore we propose to allow for some
inequality constraints to accompany the functional F(ε(t)). For example, a sim-
ple thermodynamical constraint can be based on the inequality

∫
σ : dε > 0

upon a closed stress cycle6. No cumulative evolution of α is allowed if we
want to conclude a perpetuum mobile (an inadmissible material behaviour) from∫

σ : dε < 0.

2 Assumptions for the Evaluation of σL − σS

Only rate independent constitutive models are considered (no creep or relax-
ation). The laboratory values are denoted by �L and the ones from simulation
by �S . We begin with a list of generally desired features of the evaluation algo-
rithm.

6 Stress is a state variable and strain is not. It is essential to recover all state variables
after a cycle to check the 2nd Law.
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1. We assume εL(t) = εS(t) i.e. the deformation prescribed or measured in
the laboratory is applied in the simulation. The quality of the simulation
is evaluated comparing the stress paths σL(t) and σS(t). This assumption
excludes tests with incomplete description of the strain path7.

2. Instead of time t we use the length z of the strain path, dz = ‖ε̇‖dt. The
length z grows monotonically so each stress component can be parametrized
by a function σij(z).

3. The frequency of sampling used in comparison ‖σL − σS‖ should not
(strongly) affect the evaluation of the quality of the simulation.

4. The calculation is performed in steps understood as sequences of proportional
load increments. The discrepancy σS −σL resulting from previous steps may
accumulate8. In order to eliminate the inherited error σL −σS from previous
steps we set σS

B to the measured value σL
B at the beginning of each step. The

operation σS := σL = σB is further called the alignment.
5. The constitutive routines, umat, should be robust enough to survive such

alignments. The void ratio needs no reset because of identical deformation
program, εL = εS . Other state variables α usually cannot be aligned because
they cannot be measured.

6. We apply the alignment of stress at the beginning of each step only. Align-
ment after individual stress increments (or short sequences thereof) could
cause a problem with asymptotic values shown (for the 1D case) in Fig. 1.
Slightly overestimated yield stress can result in very different increments

Fig. 1. Calculation of a strain-controlled step B-E using a special constitutive algorithm
that aligns the simulated stress σS to the laboratory value σL after every increment
in order to compare just the increments ΔσS − ΔσL instead of the whole stress paths
σS(t) − σL(t)

7 Given drained triaxial test results with full description in axial direction ε1(t), σ1(t)
and partial description in radial direction σ2(t) = σ3(t) one can perform a calculation
with IncrementalDriver and compare say εS1 (t) with εL1 (t) but one cannot use such
test for calibrations and for benchmarks because some components of the strain path
ε(t) are neither measured nor prescribed.

8 In some tests such accumulation has a positive feedback. For example, consider an
isotropic compression calculated with a barotropic elasticity, ṗ = kpε̇vol. A small
error at the beginning of the test will grow exponentially.
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Fig. 2. All 1D tests (a–c) should be evaluated similarly, i.e. the quality of simulation
is identical. Tests (a–c) differ by the duration of the step but not from the quality of
the simulation.

ΔσS �= ΔσL if stress is aligned after each increment. Comparison of longer
sequences reveals a good quality of the simulation (Fig. 2).

7. A detection of turning points should be performed using the scalar product
of the directions �εn : �Δεn+1, wherein n is the number of increment. We expect
that each stress component can be well approximated by a parabolic curve

σij(z) =
1
2
σ′′

ijz
2 + σ′

ijz + σijB (Fig. 3).

Fig. 3. Simulations with different constitutive models (a) and (b) after the alignment of
stress at (1). Upon the continuation of straining 1–2 with the model (a): the discrepancy
reappears and hence it cannot be treated as an inherited error. Using model (b): the
discrepancy disappears so the alignment of stress is justified: further straining would
increase the inherited error although the constitutive response on the strain portion
1–2 is nearly perfect.

3 Detecting Reversals and Kinks in εL(z)

Due to high frequency of recording the increments may be very small and it may
occur that the subsequent strain increments (read from the history) point to
very different directions simply due to some noise in measurements. Therefore,
it is not a good idea to use arccos( �Δεn : �Δεn+1) > cos θr as a definition of a
reversal point.
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The removal of the noise could be performed by a convolution of the raw data
with a discrete Gauss distribution as a smoothing function. This is implemented
in the following Mathematica procedure:

smoothData[data_, nGlPoints_: 2] := Module[{ker, t, n, i, EPtime, EQtime, smoothD,

dataExtendB, dataExtendE, smoothDstep},

ker = Table[Exp[-n^2/10.0]/Sqrt[10.0 \[Pi]], {n, -nGlPoints, nGlPoints}]; ker /= (Plus @@ ker);

smoothD = ( ListCorrelate[ker , #] & /@ Transpose[data] ) // Transpose ;

dataExtendB = Array[{0, 0} &, nGlPoints]; dataExtendE = Array[{0, 0} &, nGlPoints];

Do[dataExtendB = {data[[nGlPoints-i + 1,1]], Interpolation[smoothD, data[[nGlPoints-i+1,1]] ]};

dataExtendE = {data[[Length[data]-nGlPoints+i,1]],

Interpolation[smoothD,data[[Length[data]-nGlPoints+i,1]]]};

PrependTo[smoothD, dataExtendB]; AppendTo[smoothD, dataExtendE];

,{i, 1, nGlPoints}];

smoothD]

However, if the source of noise is the loading device, rather than inaccuracies
in measurement, then such noise should not be removed because the material
response can be affected by small oscillations that accompany the monotonic
loading. Moreover, smoothing across reversals may lead to strong rounding
thereof. The test �Δεn : �Δεn+1 > cos θr on smoothed kinks may overlook some
rounded ones. Therefore we recommend smoothing between the reversals only.

In order to detect a reversal we propose the following algorithm. A sequence
of strain increments is approximated by two consecutive strain spans a and b
with a predefined length, say ‖a‖ = ‖b‖ ≈ L = 0.002%. The parameter L may
be modified depending on the noise, on the size of smallest strain cycles and on
the accuracy of the measurement. The spans should connect the existing records
of εL(t) and they should have a common hinge (a polygon with two segments
and three points in strain space). The lengths will be only approximately equal
to L (no interpolation). Our polygon is sliding along the strain path and the
angle θ(z) between the arms a and b is evaluated. The (discrete) parameter z
corresponds to the location of the middle point of the polygon. This angle θ
shows whether the directions of strain spans (of length ≈ L) are very different.
Suppose that the strain spans a and b (arms of the polygon) point to very
different directions at z = z̄

arccos(�a : �b) = θ(z̄) > θr (1)

say with θr = 30◦.
We do not mark z̄ as a reversal of the strain path yet. From z̄ on we simply

integrate θ and zθ from z̄ to z̄ + L. The reversal is defined as

zr = A/B wherein A =
∫ z̄+L

z̄

zθ(z)dz and B =
∫ z̄+L

z̄

θ(z)dz (2)

During the numerical integration the polygon is being pushed along the strain
path until z = z̄ +L is reached and we assume that beyond the reversal zone the
condition (1) is not satisfied anymore. Otherwise we continue the calculation of
both integrals A and B until (1) is not satisfied and then use (2)1. The algorithm
works reasonably also in the 1-D case (Fig. 4).

If the length of strain increments does not vary significantly, Δz ≈ const, we
may convert L into a particular number of increments.
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Fig. 4. Two connected strain spans a and b are used to find maximum θ while being
pushed through the strain path εL(z) over a reversal zone

4 Quantification of Discrepancies σS(z) − σL(z)

We propose a simple method to evaluate the quality of the simulations within a
single step from tB to tE . In the absence of creep and relaxation we can use the
length z(t) =

∫ t

tB
‖ε̇(τ)‖dτ of the strain path as the independent material time9.

Such time grows from zB = 0 to zE > 0. Simulating a step we repeat the strain
path obtained from (or prescribed in) the laboratory, i.e. εS(z) = εL(z). All
discrepancies are measured in stress only, σS(z) �= σL(z). We commence each
step at the common stress σS = σL = σB , i.e. we undo the differences from
the previous steps and set σS to σL at the beginning of each step. After the
step is completed different end-values σL

E = σL(zE) and σS
E = σS(zE) can be

obtained. We propose to approximate the stress path components by parabolic
curves basing on the Taylor series

σ(z) = σB + σ′z +
1
2
σ′′z2 for σ = σL or σ = σS , (3)

whereas �′ and �′′ denote the derivatives with respect to z at z = 0. For the
evaluation of the quality of the simulation we calculate the

• inclinations σ′
B and curvatures σ′′

B at the beginning of each step s. We do it
separately for σS(z) and σL(z)

• contribution F s
raw to the penalty function basing on differences in inclinations

and in curvatures from step s
• total value of penalty function collecting all step contributions weighted by

the average stress level in the step

In order to determine σ′
ij and σ′′

ij we may use, apart from σijE , the integrals
Wij =

∫ zE

0
(σij − σijB)dz, Fig. 5

Wij =
∫ zE

0

[σ′
ijz +

1
2
σ′′

ijz
2]dz =

1
2
σ′

ijz
2
E +

1
6
σ′′

ijz
3
E (4)

9 Similarly to the concept of endochronic theory but without fading memory.
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Fig. 5. The stresses σS
ref and σL

ref to be compared in the penalty function are evaluated
at z = zref = 0.1% using approximation of the step curves σS(z) and σL(z) based on
Taylor expansion

The values σijE = σijB + σ′
ijzE + 1

2σ′′
ijz

2
E can be directly found from the his-

tory produced by IncrementalDriver and from the history obtained in the
laboratory. After evaluation of z for each record the integrals Wij can also be
easily calculated, say using the numerical trapezoidal rule. Given σijE and Wij

we may find σ′
ij and σ′′

ij (both at z = 0) by solving
[

zE
1
2z2E

1
2z2E

1
6z3E

]

·
{

σ′
ij

σ′′
ij

}
=

{
σijE − σijB

Wij

}

(5)

We need these values for all components σL
ij and σS

ij separately. The raw value
F s
raw of the discrepancy in a single step s is defined as a stress difference at

zref = 0.1%, identical in all steps. The directly determined difference ‖σS(zref)−
σL(zref)‖ is less representative for the whole step than

F s
raw = ‖σL

ref − σS
ref‖ where σref = σB + σ′zref +

1
2
σ′′z2ref (6)

obtained from the parabolic approximations of the whole step10. Note that the
duration of a step does not influence the evaluation, at least not significantly.

The raw discrepancies F s
raw from different steps could be simply added. How-

ever, it would not be fair to add Fraw at a very different average stresses over
a step, due to the well known barotropy of granular materials. Therefore, we
propose to scale Fraw in such way as if they were obtained for pref = − 1

3 trσ =
100 kPa and at the critical void ratio ec. For this purpose a baro-pyknotropic nor-
malization factor f(e, p) is used. The values of e and p should be representative
for the current step. The final error is found as

F =
1
ns

∑
f(e, p)F s

raw with f(e, p) =

(
pref( 1+e

1+ec
)−1/λB

p

)nB

(7)

wherein ec is the critical void ratio at pref = 100 kPa and pref( 1+e
1+ec

)−1/λB is the
pressure that renders the actual void ratio e to be the critical one. The constant
10 Moreover some steps can be shorter than 0.1% and σref has to be extrapolated in

this case.
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λB is the inclination of the CSL slope in the double logarithmic Butterfield dia-
gram. The exponent nB ≈ 0.6 describes the barotropy of stiffness E ∼ (p/pref)nB

The quality of the model can be evaluated from the average value of weighted
raw discrepancy from all steps and from all tests. Of course, one may use dif-
ferent weighting factors to favor some tests of importance for a given practical
problem. This would lead to another benchmark, however.

5 A Thermodynamic Constraint

We consider an element test (state variables are homogeneous fields) of a soil
sample (constant mass) under isothermal condition, Θ = const. As a thermody-
namic constraint we require that the constitutive model implemented as umat
satisfies the inequality

∫
σ : dε > 0 upon any closed cycle (CC) (8)

By definition, the closed cycle (CC) means that not only stress but also other
state variables must return to their initial values at the end of the cycle. We
should have σ(T ) = σ(0) and α(T ) = α(0) wherein T is period of the loading
function. The strain ε is not a state variable in soil mechanics11. Hence, the
condition ε(T ) = ε(0) is not needed in a CC.

The integral
∫

σ : dε describes the work input. The heat sΘ may flow freely
from or into the sample. The internal energy is increased by the sum of the heat
inflow and work input. We assume that the internal energy is a function of stress
and state variables only, U(σ,α). We may omit the temperature Θ because it
is assumed to be constant. The function U(σ,α) exists although it need not be
explicitly formulated by the constitutive model under consideration. Admittedly
the arguments of U are somewhat unusual12 but the Legendre conversion of the
internal energy to Gibbs free enthalpy is not necessary because we do not consider
any differentials. Our criterion (8) is based solely on the fact that the internal

11 We assume that the void ratio, which itself is usually an energetically relevant quan-
tity, is stored directly as a component of α and its evolution equation of is of the
rate form ė = (1 + e)ε̇kk. However, one may memorize just the initial void ratio e0
(as a kind of material constant) and calculate the current one from the total form
e = (1 + e0) exp(εkk) − 1. In such case the void ratio need not be a state variable
because it is a secondary variable to the volumetric strain. This approach renders
the volumetric strain a state variable. The deviatoric part of the total strain ε∗ is
not usually a state variable is soil mechanics. For simplicity we assume that all umats
use the rate form ė = (1 + e)ε̇kk and no part of strain need to be treated as a state
variable.

12 The caloric function for the density of internal energy is typically Ū(εel, s, . . . ) with
entropy s, (elastic) strain εel, stress σ = ∂εŪ , and temperature Θ = ∂sŪ . One
may resolve the latter two equations for s(σ, Θ) and εel(σ, Θ) and substitute these
expressions into the caloric equation: U(σ, Θ, . . . ) = Ū(εel(σ, Θ), s(σ, Θ), . . . ). This
is the form we are dealing with.
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energy cannot change after a CC because σ and α do not. If the work input
(8) is positive after a CC, that is at the same U , then the heat outflow of the
same amount must have occurred. Hence, the work input per CC can be called
the density of one-cycle dissipation. If the work input is negative

∫
σ : dε < 0

after a CC then the heat inflow must have compensated it. In the latter case
the material has converted heat inflow into work output, which is known as
perpetuum mobile of the second kind. Such material contradicts the Second Law.
An important assumption in the above criterion is that all energetically relevant
state variables are known. This means that the internal energy function U(σ,α),
even if not explicitly formulated in the constitutive description, does not depend
of anything else but σ,α and the temperature Θ.

Of course, it is not possible to check the positiveness of energy input
∫

σ :
dε > 0 over all CCs. We may check only a few CCs upon which we expect this
criterion to be endangered. Our test is therefore a necessary condition only. It is
not sufficient for the thermodynamic consistency of the model in umat. All state
variables α may evolve during a CC according to α(t) = αoscil(t)+αacct/T . We
distinguish in this evolution the oscillatory (=periodic) portion αoscil(t) with
αoscil(0) = αoscil(T ) and the monotonic accumulation αacct/T .

A CC tests requires αacc = 0. We assume that the monotonic portion of
the evolution of all state variables eventually leads to asymptotic values αasy

for which no further accumulation occurs, i.e.
∫ T

0
α̇dt = 0. In order to reach

such asymptotic state we may need thousands of conditioning cycles, however.
In order to avoid such tedious calculations an iterative procedure could be used
that regards the accumulation αacc(α0) as a function of the starting value α0 of
all state variables. The stress path is closed and kept unchanged. The correction
c of the initial guess α0 can be found with the Newton iteration solving

αacc(α0 + c) ≈ αacc(α0) + (∂αacc/∂α0) : c = 0 (9)

for c. The derivative (∂αacc/∂α0) can be found numerically in each iteration.
Unfortunately, such non-physical improvement of α0 can easily lead to values
of α beyond the admissible range, especially when α0 of the above iteration
lied far away from the shake-down values αasy. Therefore in hard cases we pre-
ferred to apply thousands of cycles to reach a shake-down state α in a natural
(constitutive) manner.

In soil mechanics the usual state variables are stress σ and void ratio e. The
closedness of stress is guaranteed by the loading program but we need to adjust
the initial value e0 of the void ratio in such way that the accumulation eacc(e0) =∫ T

0
ėdt = 0 vanishes after the full stress cycle. The correction c of the initial void

ratio e0 can be found iterative from eacc(e0 + c) ≈ eacc(e0) + (∂eacc/∂e0)c = 0.
Having found the asymptotic state αasy we may check whether energy can be

extracted from the material (a perpetuum mobile of the second kind). Clockwise
and counterclockwise circulations should be applied. Note that αasy may be
slightly different in both cases. IncrementalDriver can perform a stress cycle
(a loading program with

∫
dσ = 0) whereas the integration

∫
σ : dε is performed
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using the calculated strain increments. A shake down of α can be easily checked
in the history obtained from simulation.

In the above analysis we have assumed that the evolution equations of all
variables is bounded, i.e. αasy exists. In particular, we exclude the situation that
the oscillatory portion has a different period than the one of stress. We exclude
the periodic stress σ(Tσ) = σ(0) and a periodic state variable α(Tα) = α(0)
with different periods Tα �= Tσ.

5.1 Identifying All Energetically Relevant State Variables

Technically, umat may store different quantities in the list statev of state vari-
ables. Some of the components may be just auxiliary variables of no importance
for the energy conservation, for example the number of return mapping itera-
tions or a mobilized friction angle. In order to recognize true, i.e. energetically
relevant variables αi from the list statev we perform a special identification test,
checking whether a variation of a component i of statev influences the energy
input upon a CC. The relevance test may give different results upon different
stress paths and for different circulations. The procedure (9), i.e. establishing of
the shake-down values, need to be applied to “energetical” components statev
only.

If one cannot exclude a priori any component of statev we check all of them.
To check the relevance of the i-th component of statev upon a given loop and
for a given circulation we proceed as follows.

1. Compute the energy input D0 =
∫

σ : dε upon a CC path commenced from
a chosen statev.

2. Repeat the same CC but adding a small perturbation β to the ith component
of the initial statev and compute the energy input Di.

3. If Di differs significantly from D0, then our ith component counts as a true
state variable for the current CC and current circulation.

5.2 Examples

Let us consider a 2D Coulomb elastoplastic model for a cohesionless soil with a
constant dilatancy angle tanψ = −ε̇/|γ| larger than the friction angle tanϕ =
|τ |/σ, i.e. ψ > ϕ with geotechnical sign convention, σ > 0. The void ratio
is not implemented in the model so the only state variable is stress. After a
long monotonic shearing the stress remains constant, Fig. 6. Such shearing can
be interpreted as a degenerated case of a CC because σ(T ) = σ(0) with an
arbitrarily chosen period T . Moreover, in the asymptotic plastic flow we have
sign(γ̇) = σ(τ) and the total mechanical power is negative, viz.

τ γ̇ + σε̇ = |σ tan ϕ||γ̇| − σ tan ψ|γ̇| = σ(tan ϕ − tan ψ)|γ̇| < 0 (10)

In Fig. 6 we can interpret the σε̇ scalar product of ε̇ and σ which is evidently
negative for ψ > ϕ.
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Fig. 6. Frictional material with excessive dilatancy

Declaring e as an energetically relevant state variable we could not consider
the monotonic shearing as a CC anymore because of eacc �= 0. Generally, our test
with CC is suitable for materials with bounded state variables only, i.e. all state
variables α must reach a steady state αasy upon a monotonic deformation with
ε̇ = const. However, it can be shown that such declaration is of no importance
because changes in e do not influence

∫
σ : dε.

Fig. 7. A CC in stress with a barotropic hypoelastic material.

Let us consider a hypoelastic barotropic model. The bulk modulus is pro-
portional to pressure p, K = p/κ, similarly as the shear modulus, G = μp/κ
with μ = 3−6ν

2+2ν . We consider a CC, ABCDA, Fig. 7 consisting of four steps:
Δp > 0;Δq > 0;−Δp;−Δq; starting from the initial stress p0 and q0 = 0. We
find the strain increments from the integration

ΔABεvol =
∫ p0+Δp

p0

κ

p
dp = κ ln

p0 + Δp

p0
ΔBCεq =

κΔq

3μ

1
p0 + Δp

(11)

ΔCDεvol =
∫ p0

p0+Δp

κ

p
dp = κ ln

p0
p0 + Δp

ΔDAεq = −κΔq

3μ

1
p0

(12)

After the CC we obtain an accumulation of strain εaccq = κΔq
3μ (1/(p0+Δp)−1/p0)

but strain is not considered as an energetically relevant state variable in soils
and hence its accumulation does not contradict the definition of CC.

The total work input upon a CC is

∫ tE

tA

σ : ε̇ dt =
∫ tE

tA

σ : C : σ̇dt =
∮

σ : C : dσ with C = ∂ε/∂σ (13)
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For triaxial tests p is energetically conjugated with εvol, similarly as q with
εq. Hence, we need just two components of the compliance Cpp = κ/p and
Cqq = κ/(3μp). The total work upon our CC consists of

UAB =
∫ p0+Δp

p0

pκ/pdp = Δpκ (14)

UBC =
∫ Δq

0

qκ/(3μ(p0 + Δp))dq = (Δq)2κ/(6μ(p0 + Δp)) (15)

UCD =
∫ p0

p0+Δp

pκ/pdp = −Δpκ (16)

UDA =
∫ 0

Δq

qκ/(3μp0)dq = −(Δq)2κ/(6μp0) (17)

Their sum is negative

UABCDA =
(Δq)2κ

6μ

[
1

p0 + Δp
− 1

p0

]
(18)

so the barotropic hypoelasticity is thermodynamically inadmissible.

6 Using Mathematica NMinimize[] for Calibration

We can use the discrepancy between simulations and experimental results as
described by (7) to calibrate the material constants of a constitutive model.
The calibration can be formulated as follows: find the set of material constants
C1, C2, . . . that minimizes the function F (C1, C2, . . . ) defined by (7). We have
done this using the Mathematica’s, https://www.wolfram.com/mathematica/,
function NMinimize. In general, F (C1, C2, . . . ) cannot be expressed analytically,
and therefore the gradients ∂F/∂Ci required by some local optimization algo-
rithms can be expensive. Therefore we choose the downhill optimization algo-
rithm (by setting the option Method -> "NelderMead"). This algorithm is based
on evaluations of F without ∂F/∂Ci.

The minimized function F (Ci) is evaluated in Mathematica by calls
to an external Fortran program that wraps the IncrementalDriver. Hence
NMinimize evaluates F as an external command. During the minimization pro-
cedure, Mathematica writes the current set of constants in a text file, the
Fortran program reads those constants from the text file, evaluates the error
function F and writes its value in a text file. Finally, Mathematica reads the
value of F from that text file and returned that value to NMinimize.

To illustrate how a coupling of Mathematica and Fortran works in the
context of a minimization problem consider the following Fortran code which
evaluates the objective function F (C1, C2) = cos(C1) sin(C2)

https://www.wolfram.com/mathematica/


Computer Aided Calibration and Neohypoplasticity 181

program fun
implicit none
character(256) :: workDir, line
real(8) :: C1,C2,f
workDir = ’C:\Data\projects\neoHypo\MathematicaUndFortran\’

& // ’Console1\Console1\Debug\’
open(unit=10,file=trim(workDir) // ’constants.txt’)
read(10,*) C1
read(10,*) C2
f = cos(C1)*sin(C2)
open(unit=11,file=trim(workDir) // ’f.txt’)
write(11,*) f
close(10); close(11)
end program fun

This program is called by the function f in Mathematica via

workDir = \"C:\\Data\\projects\\neoHypo\\MathematicaUndFortran\\Console1\\Console1\\Debug\\"
f[C1_?NumberQ, C2_?NumberQ] := Module[{fval},

iter += 1;
Export[workDir <> "constants.txt", {C1, C2}];
RunProcess[workDir <> "Console1.exe"] ;
fval = Import[workDir <> "f.txt", "Table"][[1, 1]];
fval
]

iter = 0;
NMinimize[{f[C1, C2], -1 <= C1 <= 1, -1 <= C2 <= 1}, {C1, C2}, Method -> {"NelderMead"},
MaxIterations -> 1000]
iter

Constraints to the parameters C1, C2, . . . can be provided directly in
NMinimize or by returning large values of F (penalty values) in the Fortran
program when the parameters violate the constraints.

7 New Developments in Neohypoplasticity

The neohypoplastic model [8] was presented in detail in the second volume of
the “Holistic Simulation” series. We assume that the reader has this volume at
hand and hence only some new developments of the model are presented here.
Using the procedure described in Sect. 5, we were able to conclude that the evo-
lution of the void ratio in neohypoplasticity requires an improvement. In order
to check whether energy can be extracted from material, we attempted in vain to
perform a true CC. In the hope of satisfying the condition αacc = 0 we were
applying hundreds of stress cycles, see Fig. 8. After some time, zacc = 0 estab-
lished itself, but eacc �= 0 (unlimited densification). As the condition αacc = 0
could not be satisfied for all state variables, the violation of the Second Law by
neohypoplasticity could not be properly tested.

In order to keep e > ed = emin we proposed a limited range of ω describing
the additional contractancy due to rolling and a special dilatancy term mdYd.
We include both in the expression for the stress rate

σ̇ = Ē :
(
ε̇ − m Y ‖ε̇‖ − ωmz 〈−z : ε̇〉−mdYd‖ε̇‖)

with md = −mz = �1
(19)

The factor ω, initially intended as a material constant, has been rendered a
barotropic function ω(P ). It grows at small pressures P in accordance to the
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observation that the cyclic accumulation at a constant strain amplitude acceler-
ates with decreasing P . Hence we propose

ω(P ) =
Preffe(e)

zmax(Pmin + P )
, where fe = 1 − 1/ [1 + exp(kd(e − ed))] (20)

rapidly suppresses the “rolling” contractancy at e ≈ ed or smaller. The material

constants are
zmax Pmin Pref kd

0.05 3 100
√

3 200 .

Let us consider an extremely dense state e < ed with ω = 0 due to fe ≈ 0
and with Y ≈ Ymin. The additional dilatancy Yd should guarantee ė− ėd > 0 for
any strain rate ε̇, i.e.

(1+e)1 : ε̇+aednB(aP )nB−1Ṗ > 0 with a =
√

3/hBs and 1 : ε̇ = −
√

3ε̇P

The rate ėd = e′
d(P )Ṗ has been obtained from differentiation of the Bauer’s

compression line and Ṗ can be calculated from (19). For the sake of simplicity
let us assume isotropic elasticity Ē and hence Ṗ = − �1 : Ē : (ε̇ − m . . . ) =
ĒPP (ε̇P − mP . . . ). The resulting inequality allows to derive the necessary Yd.
We use e = ed, − �1 : md = −1 and we overestimate the contractancy with
− �1 : m = 1

aednB(aP )nB−1ĒPP (ε̇P − Y ‖ε̇‖ + Yd‖ε̇‖) > (1 + ed)
√

3ε̇P

ĒPP (ε̇P − Y ‖ε̇‖ + Yd‖ε̇‖) > (aP )1−nB
(1 + ed)
anBed

√
3ε̇P

ĒPP (ε̇P − Y ‖ε̇‖ + Yd‖ε̇‖) > (aP )1−nB
(1 + ed)
anBed

√
3ε̇P (21)

Apart from very low pressures, say P < 5 kPa the stiffness ĒPP is significantly
larger than the expression at ε̇P on the r.h.s of (21). Moreover Y is very small at
e = ed and hence the inequality (21) can be endangered for unloading ε̇P < 0,
say for ε̇P < −1. The deviatoric component is of no importance if Y d > Y and
hence we take ε̇Q = 0 In this case our inequality takes the form

Yd − Y > 1 − (aP )1−nB
(1 + ed)

ĒPP anBed

√
3 (22)

Let us denote the above value as Ydd, i.e. the maximal value of Yd. In general

Yd/Ydd = 1 − 1/ [1 + exp(kd(ed − e))] (23)

As described in [8], Sect. 4.5 there, an asymmetric term had been be added
to the elastic stiffness to enable modelling of different peak friction angles under
drained and undrained loading. Instead of adding an asymmetric term we pro-
pose now to rotate the stiffness, see Sect. 7.1. The advantage of this new approach
is its flexibility. It allows just the deviatoric portion of stress to be rotated, which
is in agreement with some additional laboratory tests presented also in Sect. 7.1.
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Fig. 8. Work input D =
∫

σ : dε upon 450 CC in stress using neohypoplasticity. Since
zacc vanishes after few cycles, one may use the last CC to check whether energy can
be extracted from material. However, this is not possible since void ratio continues
decreasing after each CC.

Further, some attempts were made to provide a coupling between the neo-
hypoplasticity and the paraelastic (PE) model for small amplitudes proposed in
[9]. The major concern here was the so-called “overshooting” effect, Sect. 7.2.
Finally an extension has been proposed in Sect. 7.3 to consider viscous effects
(excluded from the calibration procedure).

7.1 Alternative Non-symmetric Elastic Stiffness

Instead of adding ±L to the off-diagonal terms of the stiffness matrix, as shown
in [8], we propose a rotation of the stress rate on the P −Q plane. The isometric
components of the linear elastic stress {Ṗ el, Q̇el} could be rotated using

{
Ṗ

Q̇

}
=

[
c −s
s c

]
·
{

Ṗ el

Q̇el

}
with

{
Ṗ el

Q̇el

}
=

[
EPP EPQ

EQP EQQ

]
·
{

ε̇P

ε̇Q

}
, (24)

wherein c = cos β, s = sinβ and β > 0 denotes a ccw rotation of the elastic
stress rate on the P − Q plane. It has been shown experimentally, Fig. 9, that
just the deviatoric part of the stress rate should be rotated,

{
Ṗ

Q̇

}
=

{
Ṗ el

0

}
+

[
c −s
s c

]
·
{

0
Q̇el

}
(25)
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In the general case we need an operator Rijkl that rotates the stress rate σ̇∗
ij as if

it was a vector in 9 dimensional space, i.e. the Frobenius norm ‖R : σ̇∗‖ = ‖σ̇∗‖
does not change. However, neither the eigenvectors nor the eigenvalues of σ̇∗

ij are
preserved. The rotation is performed on the plane containing the hydrostatic axis
and the current stress13, i.e. spanned by −�δij and σ̇∗

ij . We start by introducing
two operators

Aijkl = �δij
�δkl and Dijkl = Iijkl − Aijkl (26)

which extract the hydrostatic part A : σ and the deviatoric part D : σ from a
2nd rank tensor σ, respectively.

The rotation operator σ̇∗ is obtained using an analogy to the Rodriguez
formula

Rijkl = Iijkl + (c − 1)(uijukl + vijvkl) −
√

1 − c2(uijvkl − vijukl) , (27)

Q

P

β>0

β>0

−δσ
ij

ij

ij*

σ*

wherein uij = −�δij and vij = �σ∗
ij are perpendicular

unit tensors and c = cos β is the cosine of the rotation
angle β. Tensor Rijkl rotates from uij to vij , i.e. from
P -axis via current Q towards −P . In particular, the
same strain increment is rotated counterclockwise at
Q > 0 and clockwise at Q < 0 in the P,Q plane. The
rotation is objective and R is a 4th rank tensor. The
stiffness is rotated for the deviatoric portion only using
Erot = A : E + R : D : E. In the elastic case

σ̇ = (A : E + R : D : E) : ε̇ (28)

Needs["Tensor‘bnova‘"]

(* u = -onev; v = onevstar; c = Cos[a]; s = Sin[a]; a = -Pi/6;
RR = identity4 + (c - 1) ((u~out~u) + (v~out~v) ) - s ((u~out~v) - (v~out~u));
aa // voigtE // Inverse // voigtCi ; isoPQ[aa] *)
elUpdate[state_, de_, params_] := Module[{T, dT , eps, RR },

{T , eps} = state[[ 1 ;; 2]]; RR = rotationTensor[-onev, onevstar, -Pi/6];
aa = (RR~ colon~ (deviatorer ~colon~ iE[100, 0.2] ))

+ ((onev~out~ onev) ~colon~ iE[100, 0.2] );
dT = aa ~colon~ de; {T + dT, eps + de }
];

g4 = stressResponsePQ[elUpdate, {-100*delta, 0*delta}, {}]

The objectivity of the rotation can be checked rotating the transformed (with
a) tensor and then transforming back (with p) the result

Needs["Tensor‘bnova‘"]
a=aRot12[40 \[Degree]].aRot23[20 \[Degree]]; p=pRot23[20 \[Degree]].pRot12[40 \[Degree]] ;
s = DiagonalMatrix[{1, 2, 3}]; RR = rotationTensor[-onev, deviator[s], -Pi/6] // N;
Rs = RR ~colon~ s // N
asa = rotateTensor[s, a] // N;
RRa = rotationTensor[-onev, deviator[asa], -Pi/6] ; (* or RRa = rotateTensor[RR,a] *)
Rasa = RRa ~colon~ asa // N; pRasap = rotateTensor[Rasa , p] // Chop

13 A generalized P̄ − Q̄ plane with P̄ = −tr σ/
√

3 and Q̄ = ‖σ∗‖.
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Fig. 9. Modifications of an isotropic elastic (Poisson number 0.2 shown in all pictures)
response envelope in the PQ-diagram. Red point corresponds to the isotropic com-
pression. (a) basic response envelope σ̇ = E : ε̇, (b) deviatoric strain rate rotated
CW by 30◦ i.e. σ̇ = E : (A + R : D) : ε̇, (c) total strain rate rotated CW by 30◦

i.e. σ̇ = E : R : ε̇, (d) total stress rate rate rotated CW by 30◦ i.e. σ̇ = R : E : ε̇
(e) deviatoric stress rate rate rotated CW by 30◦ i.e. σ̇ = (A + R : D) : E : ε̇. The
latter modification has been confirmed by the tests.

Fig. 10. Left: p − q stress path consisting of several isotropic compression cycles 2-
3-2-4-2-5-2 preceded by a long monotonic undrained shearing 1–2. Inclination of the
strain response in the middle is similar to Strain paths in the εvol − εq obtained from
isotropic compression after conditioning (shake-down). The tests (left) were done by
T. Wichtmann and L. Knittel [7].
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The rotation of the deviatoric portion of stress rate only is justified by the
following triaxial test, Fig. 10-left. Identical dense sand samples as described in
[8], Sect. 3.1, are subjected to different isotropic compression cycles 1–2 after a
long undrained shearing path 0–1. The corresponding strain increments, Fig. 10-
right, are only slightly rotated off the isotropic direction.

Starting from a triaxial compression (state 1) the rotation of the strain incre-
ments was counterclockwise in the εvol − εq diagram, that means contrarily to
the rotation observed in the hyperelastic part. Hence, we may conclude that the
appropriate rotation of the elastic response should involve just the deviatoric
stress rate, as shown in Fig. 9e. As yet there is too little systematic experimental
data to decide which type of modification of isotropic stiffness is of advantage:
the one from Fig. 9b or e.

7.2 Coupling of Neohypoplasticity with Paraelasticity

The paraelastic (PE) [9,11] region has been defined in [9] as a sphere in the strain
space that encompass the reversible stress-strain behaviour. The PE sphere
undergoes a kinematic hardening, i.e. the middle point εc of the root reversal is
“dragged” by the current strain ε and rotated by the “headwind” as shown in
Fig. 11. Both can be described by

ė = c1 (I − �e�e) : ε̇ with e = ε − εc or
ε̇c = (1 − c1)ε̇ + c1�e�e : ε̇ with ε̇c = ε̇ for �e ∼ ε̇

Multiplier mT increases stiffness EHP due to change cos α = �̇ε : (ε − εc)
→ in the

direction of straining

E is interpolated between

{
EHP for cos α > 0
mTEHP for cos α = 0

It turns out that the PE range may protrude beyond the yield surface after
neutral loading or after a shakedown on the yield surface. This may lead
to the so-called “overshooting” upon resumed monotonic deformation, Fig. 12.

Fig. 11. The “headwind” makes the evolution of εc similar to dragging.
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A related but more serious deficiency, common to many models including PE or
the intergranuar strain, can be revealed upon a slow monotonic shearing over-
laid by a high-cycle oscillation14. The high-cycle oscillation leads to an elastic
shakedown at any stress. In consequence of this, the nonlinear terms are strongly
suppressed. Hence, extremely large stress ratios (including tension stress) can be
reached resulting from the monotonic portion of loading.

Fig. 12. Modified evolution of εc prevents the “overshooting”

In order to circumvent this problem the following modification of the evolu-
tion equation

ė = −c2Y
n(�e − m)‖ε̇‖ with e = ε − εc or

ε̇c = ε̇ + c2Y
n(�e − m)‖ε̇‖ with ε̇c = ε̇ for Y = 0 (29)

is proposed. The main purpose of (29) is to repel the centre εc from the yield
surface and to mitigate the “overshooting”. On the yield surface, Y = 1, a state
�e = m should establish itself.

Summing up, the kinematic hardening consists of dragging with headwind
and of repulsion. The resulting evolution equation has the form

ε̇c = (1 − c1)ε̇ + c1�e�e : ε̇ + c2Y
n(�e − m)‖ε̇‖

In the incremental formulation the above rate equation is not exact. However,
in the usual projection on the surface ‖e + Δe‖ = r we should not correct the
strain ε but the centre εc of the elastic region. The Δε remains constant in the
return mapping iteration. It can change within the equilibrium iteration only.

14 Cycles of small amplitude but high frequency, say 100 cycles per 0.1 � of monotonic
deformation.
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7.3 Viscosity

The neohypoplastic model has been supplemented by two rheological effects:

– slow decay of the back strain e, which can be used to simulate aging,
– fast Bagnold viscosity for high rates of shear deformations, which can be of

importance during liquefaction (at σ ≈ 0).

Both effects can be deactivated, e.g. for calibration procedures or thermodynamic
check-up.

Relaxation of the Back Strain. The constitutive behaviour of sand is time
dependent. A slow relaxation of the centre εc of the elastic region in strain space
is proposed to be described as an evolution of the so-called root reversal in
the paraelastic model. The middle point εc of the PE root reversal may evolve
towards the current strain ε according to

ė = −1
τ
e (30)

with the relaxation time15 τ(σ). After the deformation is stopped, ε̇ = 0, the
decay e → 0 leads to εc → ε. Hence, (30) may lead to an overshooting (Fig. 12).
However, transient overshooting is acceptable for sands, cf. the TESRA model
[1]. The overshooting is indeed transient: a subsequent shearing can easily reac-
tivate the repelling mechanism (29). Relaxation (30) is driven by the time alone
and repelling (29) is driven by the length of deformation. One should prevent
relaxation (30) to dominate over (29) during any combination of monotonic and
high-cycle loading in order to avoid problems described in Sect. 7.2. For this
purpose, the relaxation time τ is rendered stress-dependent. It simply grows to
infinity for large Q/P . In this case the relaxation is practically absent.

Bagnold Viscosity. Another viscous effect is proposed for very fast deforma-
tion. It may be of importance for vanishing hypoplastic stress σHP = 0 because
the barotropic stiffness may vanish due to E ∼ Pn. The Bagnold viscosity is sim-
ilar to the well known Newtonian viscosity σ∗ = με̇∗ but beside shear stress σ∗

it implements the normal stress components which is called dispersive pressure.
Several models for debris flow or magma flow have been proposed basing on this
kind of viscosity, [6]. The total viscous stress is proposed to be calculated from

σvis = ηBag

[
ε̇∗ − kBag

�1‖ε̇∗‖
]

, (31)

15 The half-life of e is τ ln(2).
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wherein minus is due to the mechanical sign convention. Only linear depen-
dence16 is used in (31) with17 dynamic friction kBag ≈ 0.7 and dynamic viscosity
ηBag ≈ 0.02 kPa. Formally, the stress rate σ̊vis obtained from time differentiation
of (31) can be added (parallel coupling) to the hypoplastic rate σ̊HP

σ̊ = σ̊HP + σ̊vis with σ̊vis = ηBag

[
ε̈∗ − kBag

�1(ε̇∗)→ : ε̈∗
]

(32)

In numerical implementation we use (31) rather than the incremental form of
(32). For this purpose the viscous stress σvis n from the previous increment need

to be memorized. Given the updated stress σ+
�
σ

HP

we first subtract σvisn stored
as a state variable and then we add the current viscous stress σvis from (31). The
main argument for using (31) is the accuracy upon sudden strain path reversals.
Although such reversals are rare in reality, they may often appear in numerical
simulations. Equation (32) may evoke artificial stress jump upon reversals due to
(ε̇∗)→ : ε̈∗ �= 0, especially for small time increments. As an illustrative example

(Avg: 75%)
Field−1

+0.000e+00
+8.333e−01
+1.667e+00
+2.500e+00
+3.333e+00
+4.167e+00
+5.000e+00
+5.833e+00
+6.667e+00
+7.500e+00
+8.333e+00
+9.167e+00
+1.000e+01

−1.369e+00

+1.107e+02

(a) (b) (c)

Fig. 13. Liquified zone around a vibrating pile (axial symmetry). The von Wolffersdorff
hypoplastic [16] version (a) predicts excessive spreading [10,12] of the this zone, com-
pared to neohypoplasticity (b, c). A strong mesh distortion is observed in the liquefied
zone if calculated with neohypoplasticity without viscosity (b). It is evident that the
Bagnold viscosity can regularize the calculation with neohypoplasticity (c).

16 Hunt et al. [4] showed that two velocity ranges, originally proposed by Bagnold, are
not necessary.

17 These parameters are obtained from rough extrapolation of experiments on suspen-
sions with very low density.
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let us consider a 180◦ reversal changing the sign of ε̇∗ but keeping ‖ε̇∗‖ = const.
According to (32) the dispersive pressure will jump by −ηBagkBag

�1(ε̇∗)→ : ε̈∗Δt
although it is clear from (31) that it should remain unchanged. The viscous part
of stress contributes to the Jacobian matrix as follows

Dvis =
∂σvis

∂
�
ε

=
ηBag

Δt

[
JD − kBag

�1(
�
ε

∗
)→

]
(33)

with the tensor JD
ijkl = δikδjl − 1

3δijδkl of deviatoric projection, �∗ = JD : �.
For isometric components (31) takes the form

{
P vis = ηBagkBag|�εQ|/Δt

Qvis = ηBag
�
εQ/Δt

(34)

and the Jacobian is a 2 × 2 matrix

[Dvis
]

=
[

0 skBag

0 1

]
ηBag

Δt
with s = sign(

�
εQ) (35)

Importance of Bagnold Viscosity. It turns out that Bagnold viscosity can
strongly influence the FEM simulations of the installation process of a vibro-
injection pile. In an example calculation we tested an axisymmetric FE-model
with a dynamic 34 Hz loading under undrained conditions. We used Bagnold to
simulate the liquified soil material as an extremely dense suspension. The neo-
hypoplasticity results in a much narrower liquefied zone and Bagnold viscosity
provides a natural regularization, Fig. 13.

8 Conclusions

The proposed computer-aided calibration and benchmarking of constitutive
models is very promising. The essential element of the algorithm is the scalar
penalty functional F() that allows for an objective evaluation of the quality of
the constitutive simulation. This functional requires several auxiliary operations
like detection of kinks and a so-called alignment that eliminates inherited errors
from earlier steps. Other undesired factors, like the length of the path or the
stress level, may also endanger the objectivity of the evaluation. They have been
mitigated too. The calibration of the material constants is simply a minimiza-
tion of the penalty functional F() for a given set of tests with fixed strain paths.
This operation, possibly under consideration of additional constraints, is dele-
gated to Mathematica. An important constraint is the consistency with the
Second Law. A computer-aided checkup of this aspect of a material model has
been developed. This consistency checkup turned out to be very helpful in the
development of neohypoplasticity. Basing on its results a modification to the evo-
lution of the volumetric strain has been proposed. Moreover it turned out that
the asymmetric portion of stiffness would work better if controlled by the strain
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path length z rather than by the the stress obliquity. Finally, several recent
developments of the neohypoplastic model have been presented. They replace
the asymmetric part of stiffness by a special rotation of stiffness. Optionally, a
rheological mechanism has been added for the back stress evolution. Moreover
a viscous stress (of Bagnold type) has been implemented in order to improve
simulations of liquefied sands.
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Abstract. In civil engineering, the installation of a reliable foundation is
essential for the stability of the emerging structure. Already during the
foundation process, a comprehensive survey of the mutual interactions
between the preliminary established construction pit and the surround-
ing soil is indispensable, especially, when building in an existing context.
In this regard, drawing our attention to the construction site at the Pots-
damer Platz in Berlin, which resides within a nearly fully saturated soil
and in the immediate vicinity of existing structures, measurements have
revealed significant displacements of the retaining walls during the vibra-
tory installation of the foundation piles via a so-called vibro-injection pro-
cedure. Herein, due to the gradual plastic strain accumulation and the
small pore-fluid permeability of the granular assembly, the rapid cyclic
loading conditions gave rise to a gradual pore-pressure build-up, which
degraded the load-bearing capacity of the surrounding soil.

Addressing the simulation of cyclic loading conditions within a fluid-
saturated soil, the present contribution proceeds from a multi-phasic
continuum-mechanical approach based on the Theory of Porous Media
(TPM), where the solid scaffold is described as an elasto-(visco)plastic
material incorporating both an isotropic and a kinematic hardeningmodel.
The properties of the proposed solid-skeleton description are extensively
discussed. Moreover, the model response is compared to experimental
data.

Keywords: Elasto-plasticity · Soil mechanics · Theory of Porous Media

1 Introduction

A soil is a complex aggregate of several mutual interacting components. On the
one hand, it consists of the soil grains composing the solid skeleton and, on
the other hand, of a single or multiple pore fluid(s), e.g. pore water or pore
gas, occupying the intergranular pore space. Consequently, due to their granu-
lar structure, soils cannot be classified as solids or fluids, as their macroscopic
observed state (solid- or fluid-like) strongly relies upon the loading conditions
and the mutual interactions between the individual constituents. For instance,
common failure scenarios, such as slope instabilities or soil liquefactions, can be

c© Springer International Publishing AG 2017
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Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 8
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traced back to a pore-pressure build-up. In particular, the contract tendency of
the granular assembly gives rise to an excess of pore pressure, which degrades
the intergranular normal contact forces and, thereby the intergranular frictional
forces. In consequence, the load-bearing capacity of the overall soil compound
decreased.

The present contribution is dedicated to the numerical simulation of liquid-
saturated granular assemblies, which are subjected to cyclic loading conditions
as they occur, for instance, during earthquakes or geotechnical installations
processes (e. g. installation of vibro-injection piles). Aiming at the stability analy-
sis of fluid-saturated granular media, there are several models available, see, e. g.,
[33,44], from which most are based on the phenomenological and somehow ad
hoc formulated Biot ’s theory [4], however, proceeding from different approaches
in order to describe the solid-skeleton behaviour. In this regard, special attention
needs to be paid to the description of the contractant (densification) and dilatant
(loosening) behaviour of the granular assembly under pure shear deformations
as a consequence of the micro-structural grain motions, such as grain sliding and
grain rolling. Depending on the initial density, the soil exhibits a macroscopically
contractant (loose soil) or dilatant behaviour (dense soil) under shear loading,
where in the latter, although the dilatant regime is more pronounced, the defor-
mation behaviour is preceded by a slight contractant property at first. However,
experimental observations have revealed that with ongoing shear deformation,
independent of the initial soil state (loose or dense), the soil reaches a critical
state from which on no further volumetric changes occur, see [8]. This observa-
tion motivated the development of so-called critical-state-line (CSL) models, see,
e. g., [27,34,37]. In this regard, some are associated with the Cam-Clay-based
descriptions, see, e. g. [27] or [34], and others with the hypoplasticity framework,
see e. g. [41]. Furthermore, it is also worth to mention the more phenomenologi-
cal approaches, such as [45,46], which employ a direct stress-strain relation that
distinguishes between loading and unloading stages. Other approaches account
for the hardening (and softening) behaviour through kinematic hardening mod-
els. Herein, the yield surface is translated or rotated within the principle stress
space through a so-called kinematic back-stress tensor and/or a rotation ten-
sor, respectively. In this connection, further two concepts can be distinguished
to handle the nonlinear hardening (or softening) material properties. On the
one hand, there are the so-called multiple-yield-surface models, which have been
introduced by [23,30]. Herein, various nested yield surfaces are defined, where
each subdomain is associated with constant hardening parameters. Upon load-
ing, the individual hardening regimes are gradually activated and the hardening
behaviour accumulates. These models suffer from their piece-wise linear hard-
ening properties and theoretically require an infinite number of nested yield
surfaces to accurately recover the non-linear behaviour and, in turn, a signifi-
cant number of material parameters. On the other hand, there are the nonlinear
kinematic hardening models, which already propose a non-linear relation for the
evolution of the kinematic back-stress tensor, see, e. g., [1], or the evolution of
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the rotation tensor, respectively. A comparison between both concepts can be
found in [28].

For the purpose of this contribution, the description of the soil aggregate
proceeds from the thermodynamically consistent TPM as a suitable modelling
approach. Herein, the overall soil is described as an immiscible biphasic aggre-
gate composed of the soil grains and the percolating pore water. The descrip-
tion of the solid skeleton is based on the approach of [13], who proposed an
elasto-(visco)plastic formulation incorporating an isotropic hardening model
and a stress-dependent failure surface. The model has been validated through
the simulation of small-scale slope-failure experiments. Subsequently, the solid-
skeleton model was incorporated into a dynamic biphasic formulation by [19,22]
to cope with dynamic loading conditions and the related phenomena therein,
such as dynamic soil liquefaction, thereby illustrating that the TPM-based mod-
elling approach appropriately accounts for the important solid-skeleton-pore-
fluid interaction. For the purpose of this contribution, the formulations of [13]
will be further enhanced through a kinematic hardening model based on non-
linear evolution of the kinematic back-stress tensor to overcome its shortcomings
under quasi-static cyclic loading conditions.

2 Fluid-Saturated Soil Model

In what follows, a fluid-saturated soil model is presented. In this regard, at
first, the theoretical framework namely the TPM is briefly reviewed. For a more
detailed insight refer, e. g., to [6,18] and references therein. Subsequently, the
governing equations are tailored to describe a fluid-saturated soil, where partic-
ular focus is put on the description of the elasto-plastic behaviour of the solid
skeleton.

2.1 Preliminaries

With respect to the TPM, the overall aggregate is treated as an immiscible mix-
ture of various interacting components ϕα, which are assumed to be homoge-
neously distributed within a representative elementary volume (REV) dv. How-
ever, addressing the simulation of fluid-saturated soils, the overall aggregate is
composed of the solid skeleton (α = S), assembled by the soil grains, and of the
pore liquid (α = L) representing the pore water. The composition of the bulk
volume element is defined through the respective volume fractions nα = dvα/dv,
where dvα is the partial volume of the component ϕα within the REV. Note that
the saturation condition

∑
α nα = nS + nL = 1 must hold.

Following this, two density functions are defined. The material (realistic or
effective) density ραR = dmα/dvα relates the components local mass dmα to
its volume dvα, while the partial (global or bulk) density ρα = dmα/dv is asso-
ciated with the bulk volume. Moreover, both density definitions are related to
each other through ρα = nαραR. As we assume materially incompressible and
uncrushable grains, the realistic density of the solid remains constant under the
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prescribed isothermal conditions, but the bulk density can still change through
a changing volume fraction nα.

2.2 Kinematics

In the framework of the TPM, the individual components ϕα are treated as super-
imposed continua, where each spatial point is simultaneously occupied by particles
of both components. Moreover, each component is moving according to its own
motion function and, thus, has its own velocity field. In this regard, it is conve-
nient to express the solid motion in the Lagrangean description through the solid
displacement uS and the motion of the pore-liquid component ϕL in the Euler ian
setting relative to the solid motion through the seepage velocities wL :

• solid: uS = x − XS , (uS)′
S =

′
xS ,

• pore liquid: wL =
′
xL − ′

xS .
(1)

Therein, XS denotes the position of a solid material point in the reference con-
figuration (t = t0), while x is the position of a point in the current configuration
(t > t0). Moreover, (·)′

S and (·)′
L denote the material time derivatives following

the motion of the solid skeleton and the pore fluid, respectively.

2.3 Balance Relations

The underlying balance equations proceed from the balance equations of classical
continuum mechanics. However, with respect to an efficient solution procedure,
the set of governing balance laws is tailored to the particular application sce-
nario of the present contribution by imposing several constraints on the general
balance laws. In this regard, the individual constituents are assumed to be mate-
rially incompressible, i. e. (ραR)′

S = 0, and mass-exchange processes among them
are excluded. Moreover, only quasi-static processes are considered, i. e. the accel-
eration terms are dropped, and the investigations are restricted to isothermal
processes. Note that, in order to obtain a thermodynamically consistent model,
the entropy inequality is exploited additionally. However, its lengthy evaluation
is not carried out here, instead, only the final results are given. An interested
reader is referred, for instance, to [12,16] and references therein. Following these
elaborations, the underlying balance laws are the momentum balance and the
volume balance both associated with the overall aggregate:

0 = div (TS
E − p I) + (ρS + ρL)g, (2)

0 = div(vS +
kL

γLR
{ρLRb − grad p}). (3)

Therein, g is the unique mass-specific body force (gravity), kL is the hydraulic
conductivity (Darcy permeability) and γLR = gρLR is the effective fluid weight
with g = |g| = const. as the scalar gravitational acceleration. Moreover,
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TS
E is the effective solid stress, which is associated with the intergranular forces,

p is the pore-fluid pressure and I is the second-order identity tensor. The corre-
sponding primary variables of the resulting independent field variables are the
solid displacement uS and the pore-liquid pressure p.

2.4 Solid Skeleton

Due to its granular microstructure, the solid skeleton exhibits a complex mater-
ial behaviour. In particular, the macroscopic behaviour of the granular assembly
is a result of the microstructural grain motions leading to irreversible (plastic)
deformations on the macroscopic level. These plastic deformations are of par-
ticular importance during multiple loading-unloading loops, see, for instance,
the comprehensive experimental observations of [2], where irreversible deforma-
tions have been found during both pure deviatoric and pure isotropic loading
conditions. To mimic the gradual accumulation of plastic deformations during
cyclic loading, kinematic hardening model are commonly used, thereby usually
proceeding either from a rotation or a translation of the yield surface within the
principle stress space. An example of the former can be found in [29], where the
yield surface is allowed to tilt over the hydrostatic axis of the principle stress
space. In contrast, other authors, for instance [1,5], follow the latter approach.
For the purpose of this contribution, the latter is used, as it, in contrast to the
rotational hardening approach, additional allows for a plastic strain accumula-
tion observed during cyclic isotropic compression see e. g. [2].

For the purpose of this contribution, the constitutive description of the solid
skeleton is based on [13], where an elasto-plastic formulation proceeding from
comprehensive quasi-static monotonic experiments has been proposed. In partic-
ular, the experiments have revealed that the shape of the failure surface, which,
in turn, governs all admissible stress states, is not constant but depends on the
current isotropic stress state. Moreover, an isotropic hardening formulation has
been used to account for material hardening. To additionally account for the
hardening properties of granular assemblies under cyclic loading conditions, the
given formulation of [13] is extended through a translational kinematic harden-
ing model yielding a mixed isotropic-kinematic hardening model. Following the
elasto-plastic modelling framework, this section comprises the individual model
components, in particular, the description within the elastic domain, the yield
criterion, the evolution of the plastic strains, the isotropic and the kinematic
hardening models, and the stress-dependent failure surface.

Preliminaries. The description of the solid skeleton is constrained to the small
strain regime. Consequently, the linear solid-strain tensor is given by

εS =
1
2
(graduS + gradTuS) −→ εS = εSe + εSp, (4)

which, in the framework of elasto-plasticity, is additively split into an elastic εSe

and a plastic part εSp. Following this, the solid volume fraction can be written
as, see [20],

nS = nS
0S(1 − εV

S ) = nS
0S(1 − εV

Sp)(1 − εV
Se) = nS

p (1 − εV
Se). (5)
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Therein, nS
0S denotes the initial solid volume fraction and εV

S = divuS = εS ·I
is the volumetric solid strain, which is split into its corresponding elastic part
εV

Se = εSe · I and plastic part εV
Sp = εSp · I. Moreover, with respect to the

assumed small strain regime, the effective solid stress tensor is approximated by
its linearised formulation σS

E , i. e. σS
E ≈ TS

E . Note that, as we proceed from a
continuum-mechanical framework, volumetric compression corresponds to neg-
ative volumetric quantities, i. e. σS

E · I < 0 and εV
S < 0, whereas volumetric

expansion corresponds to positive volumetric quantities, i. e. σS
E · I > 0 and

εV
S > 0. Within the elasto-plastic setting, the investigation, whether the current

stress state yields purely elastic, or elasto-plastic deformations, is made based on
the yield criterion F (σS

E), where the deformation is purely elastic for F < 0 and
elasto-plastic for F = 0. In a graphical representation, the yield limit, F = 0, is
depicted through the so-called yield surface in the principle stress space. It bounds
the elastic domain and, consequently, defines all elastic stress states. Once plastic
deformations are commenced, the load cannot increase any further unless the elas-
tic domain is altered through a suitable hardening mechanism. In this regard, in
order account for hardening or softening effects, the hardening model has to alter
the shape of the yield-surface (isotropic hardening) or translate the yield locus

Fig. 1. Illustration of the failure surface
∗
F and of the isotropic and kinematic hardening

concepts.
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through the principle stress space (kinematic hardening), where in any case the
failure surface bounds the ultimately allowable stress states, see Fig. 11.

In this regard, in order account for hardening or softening effects, the hard-
ening model needs to alter the shape of the yield-surface (isotropic hardening)
or translate the yield locus through the principle stress space (kinematic hard-

ening), where the failure surface
∗
F bounds the ultimately allowable stress states,

see Figure 1. Note that, following the findings of [13], the failure surface is not

constant but depends on the current stress state, i. e.
∗
F =

∗
F (σS

E). Proceeding
from the isotropic hardening model, the shape of the yield surface is altered,
e. g., via expansion or shrinkage, from its initial state F0 towards its current
state F̃ through a variation of the yield surface parameters. In case of kinematic
hardening, the yield locus is shifted from its initial position O towards O within
the principle stress space {σ1, σ2, σ3} via the back-stress tensor YS

E (shifting
tensor), viz.

σS
E = σS

E + YS
E . (6)

Combining both hardening concepts, the yield surface is simultaneously shifted
(kinematic hardening) and altered (isotropic hardening) simultaneously, where
the latter is described within the shifted principle stress space {σ1, σ2, σ3}.

Elastic domain. In order to capture the materially non-linear behaviour of
sand, in the geometrically linear regime, the following stress-strain relation based
on a non-linear elastic potential is introduced [13]:

σS
E :=

∂ΨSe

∂εSe
= 2μS εD

Se +
[
kS
0 + kS

1 (
εV

Se crit

εV
Se crit − εV

Se

− 1)
]

εV
Se I. (7)

Therein, εD
Se = εSe − 1/3 εV

Se I denotes the deviator of the elastic strain tensor.
Moreover, μS is the constant elastic shear modulus, kS

0 and kS
1 are volumetric

bulk moduli, and εV
Se crit is the critical volumetric strain, which is given by

εV
Se crit = 1 − nS

max

nS
P

, (8)

where nS
max is a material parameter defining the densest packing.

Yield surface. Within the framework of elasto-plasticity, the elastic domain is
bounded by an appropriate yield surface. For soils, or granular matter in general,
a suitable criterion is provided in [17]. It reads:

F =
√

Γ II
D

σ +
1
2
αI

2

σ + δ2I
4

σ + βIσ + ε + I
2

σ − κ = 0,

Γ = (1 + γ
III

D

σ

(II
D

σ )3/2
)m.

(9)

1 Herein, the stress tensors are interpreted as vectors in the principle stress space.
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Therein, Iσ, II
D

σ and III
D

σ are the first principal invariant of σS
E and the (negative)

second and third principal invariants of the effective stress deviator (σS
E)D all

given in the shifted principle stress space. The material parameter sets Sh =
(δ, ε, β, α, κ)T and Sd = (γ,m)T define the shape of the yield surface in the
hydrostatic (Sh) and deviatoric plane (Sd) (Fig. 2).

Fig. 2. Sketch of the evolution of the plastic flow in the hydrostatic (left) and deviatoric
plane (right).

Evolution of plastic strains. In order to evaluate the evolution of the plastic
strains, following the experimental findings of several authors, see, e. g., [26] or
[43], the concept of non-associated plasticity needs to be applied for frictional
geomaterials as an associated flow rule would overestimate the volumetric defor-
mations. In this regard, a suitable plastic potential, which allows for an adequate
description of the contractant and dilatant behaviour of the granular assembly
is introduced:

G =

√

ψ1II
D

σ +
1
2
α I

2

σ + δ2I
4

σ + ψ2β Iσ + ε I
2

σ. (10)

Therein, ψ1 and ψ2 are material parameters, which serve to relate the dilatation
angle νD to experimental data. The flow rule governing the plastic strain rate
(εSp)′

S reads

(εSp)′
S = Λ

∂G

∂σS
E

, (11)

Therein, Λ is the so-called plastic multiplier, which in the framework of vis-
coplasticity using the overstress concept of Perzyna [32] is determined from

Λ =
1
η

〈 F

σ0

〉r

, (12)

where
〈 · 〉 are the Macaulay brackets, η is the relaxation time, σ0 is the reference

stress and r is the viscoplastic exponent. Note that the overstress concept regu-
larises the ill-posed problem, for instance at the onset of shear bands, see [14] and
the references therein, through a careful choice of the parameters η and r.
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Isotropic and kinematic hardening. In granular assemblies, any macroscopi-
cally observed plastic deformation is a result of the microstructural grain motions
leading to macroscopic hardening or softening effects. In this regard, experimen-
tal observations have revealed an anisotropic material behaviour, see, e. g., [25] or
[35], which originates from the preceded loading history, see [5]. This anisotropy
is of particular importance upon the stress reversal under cyclic (dynamic and
quasi-static) loading conditions. An explanation is found by the similarities
between the established theory of dislocation movement in solid materials, e. g.
metals, known as the Bauschinger effect [3], and the grain motions and the
related grain-to-grain interactions. Additionally, a densification or loosening of
the granular assembly leads to isotropic hardening or softening, respectively,
which needs to be considered as well.

Fig. 3. Sketch of the combined isotropic-kinematic hardening concept considering the
failure surface.

Any hardening model needs to ensure that the current stress state is admis-
sible. In particular, it has to satisfy the yield criterion, i. e. F (pi) ≤ 0, and, in
addition, the failure criterion

∗
F = F (

∗
pi) ≤ 0 (13)

as the ultimate loading boundary, where
∗
pi ∈ {∗

α,
∗
β,

∗
δ,

∗
ε,

∗
γ} denotes the set of

material parameters governing the failure surface. In order to ensure the admis-
sibility of the computed stress state, the commonly used predictor-corrector
scheme, see [38], is used. Herein, a preliminary overstress is computed based on
the current strain increment (predictor step), which is, subsequently, checked
whether the current increment is elastic (F < 0) or elasto-plastic (F ≥ 0). In
case of plasticity, the governing equations of the plasticity model are solved such
that the resulting stress state lies on the yield surface (F = 0) (plastic corrector
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step), where, in the scope of the present formulation, the shape of the yield sur-
face is adjusted (isotropic hardening) and the yield locus is shifted through the
principle stress space (kinematic hardening). In the scope of the kinematic hard-
ening part, the translation direction is of particular interest. In this regard, Mróz
[29] proposed an approach based on the geometric requirement that the tangen-
tial plane on the yield surface, which is associated with the current stress state,
has to correspond to a tangential plane on the failure surface, thereby defining
a second stress state on the failure surface. The evolution of the plastic strain
is then governed by the vector defined through the current stress state and the
second stress state leading to neither an associated nor a plastic-potential-driven
non-associated flow rule. Note that the approach of [29] prevents an intersection
of the yield and failure surfaces.

The current model also proceeds from a stress-projection method, but in
contrast to [29], following a non-associated flow rule exploiting a plastic potential.
In particular, the projection is carried out utilising the current stress state σS

E

and the normalised flow direction N, which proceeds from the plastic potential
(10). The projected stress state

∗
σS

E , which lies on the failure surface, is then
found with the help of the scaling factor ζ, see Figure 3. In particular, following
the concept of the volumetric and deviatoric splitting, the projection is carried
out independently along the hydrostatic and the deviatoric direction via

(
∗
σS

E)V = σS
E + ζV NV , (

∗
σS

E)D = σS
E + ζDND, (14)

where the projected stress tensors (
∗
σS

E)V and (
∗
σS

E)D, the scalar multipliers ζV

and ζD and the normalised projection directions NV and ND are the corre-
sponding contributions in the hydrostatic and deviatoric direction, respectively.
The projection directions are computed through

NV =
1
3

sgn(GV )I with GV =
∂G

∂σS
E

· I, (15)

ND =
1

‖GD‖G
D with GD =

∂G

∂σS
E

− 1
3

(
∂G

∂σS
E

· I
)
I,

where sgn(·) = (·)/‖ · ‖ denotes the signum function with ‖(·)‖ =
√

((·) · (·))
being the Euklid ian norm. Exploiting the relations (14)1 and (14)2, ζV and ζD

can be computed2 through the requirement that the projected stresses have to
lie on the failure surface, i. e.

∗
F

(
ζV

) != 0 and
∗
F

(
ζD

) != 0. (16)

2 Note that under pure hydrostatic or deviatoric loading, the contributions of the
plastic flow in the deviatoric or hydrostatic direction, respectively, are not uniquely
defined due to ‖GD‖ = 0 and GV = 0, respectively. Consequently, arbitrary projec-
tion directions ND and NV are defined in this case in order to keep the formulation
computable. In this case, the scaling factors, ζV and ζD, do not contribute to the
hardening, see (18) and (19), due to vanishing plastic strain rates in the correspond-
ing directions.
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Consequently, the presented formulation always ensures the admissibility of the
resulting stress state. To make this point more clear, lets assume an invalid stress
state, i. e. where the current stress point lies outside the domain bound by the
failure surface. In this case, at the onset of plastic deformations, the scaling
factor ζ will be negative and the plastic strain increment, will be in the opposite
direction, thereby leading to a softening material behaviour.

Next, the isotropic and kinematic hardening laws are addressed. In this
regard, concerning the isotropic hardening, suitable evolution laws for the para-
meter subset pi ∈ {β, δ, ε, γ} of the yield surface F have been proposed by [15],
viz.

(pi)′
S = (pV

i )′
S + (pD

i )′
S = (

∗
pi − pi)[CV

pi (εV
Sp)

′
S + CD

pi ‖(εD
Sp)

′
S‖ ]

with pi(t = 0) = pi0,
(17)

which, however, are adopted to match the present mixed isotropic-kinematic
hardening concept and yield

(pi)′
S = (pV

i )′
S + (pD

i )′
S = ζV CV

pi(ε
V
Sp)

′
S + ζDCD

pi‖(εD
Sp)

′
S‖

with pi(t = 0) = pi0.
(18)

In both cases, the evolution equation (pi)′
S for the parameters pi is separated into

volumetric and deviatoric parts, (pV
i )′

S and (pD
i )′

S , which are driven by the cor-
responding plastic strain rates, (εV

Sp)
′
S and (εD

Sp)
′
S , together with the volumetric

and the deviatoric evolution constants, CV
pi and CD

pi . Moreover, pi0 denotes the ini-
tial values of the parameters pi. Evidently, the deviatoric part only governs plastic
hardening, whereas the volumetric part (pV

i )′
S can take positive or negative values

and, therefore, describes both hardening and softening processes [13].
The evolution of the kinematic back-stress tensor YS

E is based on the app-
roach of Armstrong & Frederick (AF) [1]. However, it has been modified to match
the present framework:

(YS
E)′

S = ζV (CV
0 − CV

1 |YSV
E |)(εV

Sp)
′
S I

+ ζD[CD
0 (εD

Sp)
′
S − CD

1 ‖(εD
Sp)

′
S‖YSD

E ].
(19)

Therein, (YS
E)′

S denotes the rate of the kinematic back-stress tensor. Further-
more, YSV

E = YS
E · I and YSD

E = YS
E − 1/3YSV

E I denote the volumetric and the
deviatoric part of the back-stress tensor, and |(·)| is the absolute value of (·).
Moreover, CV

0 and CV
1 , and CD

0 and CD
1 are the volumetric and the deviatoric

evolution constants, respectively. In contrast to a pure linear kinematic hard-
ening model, which, for instance, was proposed by [5], the nonlinear extension
in (19) gives a better representation of the material behaviour. The differences
between the linear kinematic, i. e. CV

1 = 0 and CD
1 = 0, and the AF hardening

model are schematically depicted in Fig. 4.
In particular, at the onset of yielding, the nonlinear part is initially inac-

tive. With ongoing (monotonic) loading it becomes more and more pronounced,
thereby slowing down the rate of the back-stress tensor. Upon load reversal,
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the back-stress tensor and its rate have opposite directions and, therefore, the
additional term increases the stress rate. For more details on the AF model, the
interested reader is referred, for instance, to the work of [9,10,24] or [31]. where,
however, the latter three in particular focus on its extension within the scope of
metal-plasticity.

A suitable model for the description of granular media needs to account for
the contract and dilatant properties of the granular assembly, which are, within
the current setting, driven through the plastic potential. In consequence, the used
hardening models adapt, in addition to the yield surface, the plastic potential
and, therefore, the direction of the plastic flow as well. The impact on the plastic
strain increment proceed from the isotropic and the kinematic hardening model
are qualitatively sketched in Fig. 5 (left) and (right), respectively.

Herein, both hardening models are subjected to the same loading scenario
starting with an isotropic compression to reach the stress state A and followed
up by an pure deviatoric load from A to C. At first, the attention is drawn
to the pure isotropic hardening model. Herein, the evolution of the volumetric
contribution of the plastic strain increment gradually changes from a contrac-
tant behaviour at A towards a dilatant behaviour at C, see Fig. 5 (left). In
contrast, in case of the kinematic hardening model, the volumetric part in the
plastic strain increment merely exhibits contractant and isochoric properties, see
Fig. 5 (right). Consequently, only the isotropic hardening part in the combined
isotropic-kinematic hardening model mimics the commonly observed contract-
dilatant property of granular matter under pure shear deformation.

Stress-dependent failure surface. To complete the model, the attention is
drawn to the stress-dependent failure surface. In this regard, the comprehensive
experimental investigations under monotonic quasi-static loading conditions car-

Fig. 4. Comparison between a linear kinematic hardening law and the model of
Armstrong and Frederick [1].
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Fig. 5. Comparison of the evolution of the plastic strains in case of pure isotropic (left)
and pure kinematic hardening (right).

ried out by [13] have revealed that the failure surface is not constant, but depends
on the hydrostatic stress state, i. e. on the confining pressure Iσ. In particular,
different confining pressures lead to slightly different granular configurations and,
consequently, to different grain movements upon loading. Therefore, at failure
the granular configuration and consequently, the corresponding stress states are
different. Following [13], the evolution of the stress-dependent failure surface is
conducted via

∗
ε(Iσ) =

∗
ε0(1 +

∗
Cε Iσ) with

∗
ε ≥ ∗

εlim, (20)

Therein,
∗
Cε is a constant evolution parameter of the failure surface, while

∗
ε0

theoretically defines the failure surface for the unloaded virgin material, which is
adjusted as small as possible but large enough for the smallest confining pressure
used in a triaxial experiment. The failure-surface limit is defined by

∗
εlim.

Fig. 6. Schematic sketch of stress path resulting in a not admissible stress state.
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Next, the behaviour of the plasticity model and, in particular, its interplay
with stress-dependent failure surface is elaborated in terms of a load-unload-
reload cycle. For this purposed a possible loading scenario as depicted in Figure

6 is considered. Note that, therein,
∗
FB and

∗
FE denote the failure surfaces asso-

ciated with stress states B and E, respectively. In the considered load case,
a soil specimen is subjected to a hydrostatic compression and a triaxial load
((O-A-B). Next, the specimen is unloaded and the hydrostatic stress level is
reduced (B-C-D) and, finally, the specimen is reloaded (D − E). Following the
considered load path, the stress path O-A-B causes a consolidation and, thereby
an load-path-associated granular configuration represented through a shift and
an expansion of the elastic domain through the kinematic and isotropic hard-
ening models. During the unloading stage B-C-D, the granular configuration
is mainly maintained. However, in the subsequent reload D-E, the stress state
violates the yield criterion, thereby representing the interlocked granular con-
figuration and, in consequence, allowing for stresses states violating the failure
criterion. However, once the applied load exceeds the yield limit, plastic deforma-
tions are commenced and the granular assembly rearranges such that granular
configuration and the current hydrostatic stress state match, which is represent
in the plasticity model by returning the current stress onto the failure surface.

Summarised solid-skeleton model. With the previous elaborations at hand,
two different solid-skeleton descriptions can be summarised, each composed of a
set of ordinary differential equations (ODE). In particular, the mixed isotropic-
kinematic hardening (IKH) model comprises the Eqs. (11), (12), (18), (19), (16)1
and (16)2 and reads

LIKH =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

(εSp)′
S

0

(pi)′
S

(YS
E)′

S

0

0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

−

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Λ
∂G

∂σS
E

Λ − 1
η

〈 F

σ0

〉

ζV CV
pi (εV

Sp)
′
S + ζDCD

pi‖(εD
Sp)

′
S‖

ζV (CV
0 − CV

1 |YSV
E |)(εV

Sp)
′
S I

+ ζD[CD
0 ε̇D

p − CD
1 ‖(εD

Sp)
′
S‖YSD

E ]
∗
F

(
ζV

)

∗
F

(
ζD

)

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

= 0. (21)
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The purely isotropic-hardening (IH) model, composed of the relations (11), (12)
and (17) is summarised as

LIH =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

(εSp)′
S

0

(pi)′
S

⎤

⎥⎥⎥⎥⎥
⎥
⎦

−

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Λ
∂G

∂σS
E

Λ − 1
η

〈 F

σ0

〉

(
∗
pi − pi)[CV

pi (εV
Sp)

′
S + CD

pi ‖(εD
Sp)

′
S‖ ]

⎤

⎥⎥⎥⎥⎥
⎥
⎦

= 0. (22)

Note that, alternatively, (22)2 may be solved for Λ and inserted into (22)1, in
order to reduce the number of ODE within the local system on the one hand
and to allow for explicit time-discretisation schemes on the other hand.

3 Numerical Treatment

The present section briefly outlines the spatial and temporal discretisation meth-
ods as well as the associated solution procedure of the underlying problem. For
a more detailed insight into the numerical treatment of elasto-plastic porous
materials, the interested reader is referred to, e. g., [13] and references therein.

The spatial discretisation is based on the finite-element method (FEM),
thereby following a variational approach of Bubnov-Galerkin-type. Note that
the ansatz and test functions need to fulfil the inf-sup condition (Ladyshenskaya-
Babu ška-Brezzi (LBB) condition) [7] for the sake of a stable solution procedure.
In particular, the solid displacements uS and their corresponding test functions
are approximated by quadratic shape functions, whereas linear shape functions
are used for the pore pressure p and its associated test function. Addressing the
simulation of quasi-static process, the unconditionally stable backward (implicit)
Euler scheme, see e. g. [21], is used for the temporal discretisation.

The resulting system of a non-linear algebraic equations is composed of a
global system associated with the finite-element (FE) discretisation and a local
system related to the ODE of the elasto-plastic model. The coupled system is
solved iteratively through the Newton-Raphson method. To be more precisely,
in order to obtain an efficient solution strategy, the system is solved in a decou-
pled manner through a generalisation of the block Gauss-Seidel -Newton method,
thereby exploiting the block-structured nature of the coupled system. This pro-
cedure results in two nested Newton iterations, where at each global iteration
step, which seeks the solution to the primary variables, the local system is itera-
tively solved at first for the internal state variables with frozen primary variables.
Note that the solution of the local system is found, as usual in elasto-plasticity,
through the commonly used predictor-corrector scheme, see [38].

Following this, the discrete governing equations are implemented into the
coupled FE solver PANDAS, which is then linked to the commercial FE package
Abaqus via a general interface, see [36].
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Fig. 7. Geometry and loading of the triaxial test (left) and the deduced IBVP (right).

4 Simulation

The simulations address the investigation of the model responses under quasi-
static cyclic loading conditions of the pure isotropic and the mixed isotropic-
kinematic hardening model both in comparison to experimental data. In this
connection, at first, a triaxial test on a cylindrical sand sample (diameter: 0.1 m,
height: 0.1 m) subjected to slow cyclic load cycles is carried out, which will
serve as a reference for the subsequent simulations. Herein, on the one hand,
the isotropic hardening (IH) model with the material parameters depicted in
Appendix A, and, on the other hand, the mixed isotropic-kinematic hardening
(IKH) model with the parameters of Appendix B are used. Note that the material
constants of the IKH are, in contrast to the IH model, not found through an
calibration procedure. Instead, they are adapted from the parameters of the IH
model. Therefore, the present investigations merely serve as a proof-of-concept
rather than a validation of the material models.

The governing triaxial test and the deduced IBVP are depicted in Fig. 7. Note
that in the numerical model, the axial symmetry of the problem is exploited,
thereby simplifying the actual three-dimensional problem to a axial-symmetric
two-dimensional FE model, which is solely composed of a single axial-symmetric
finite element. The solid displacements normal to the symmetry lines (left and
bottom edge) are equal to zero, i. e. uS1 = uS2 = 0, whereas the edges associated
with the free surfaces of the specimen, i. e. the top and bottom edge, are free to
move and are perfectly drained, i. e. p = 0. The sample is subjected to a quasi-
static cyclic loading, through a prescription of the axial σa(t) and the radial
stresses σr(t). In particular, the confining pressure, i. e. σa(t) = σr(t) = 0.1 MPa,
is applied in the interval t ∈ [ 0 s, 600 s ] in a first step. Subsequently, the radial
stress is kept constant and the axial stress periodically increases and decreases
with an amplitude of Δσa = 0.05 MPa, see Fig. 8.

The evolution of the axial solid strain of the experiment, and the computed
responses of the IH and IKH model are depicted in Fig. 9. At first, the elabora-
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Fig. 8. Evolution of the axial σa(t) and
the radial stress σr(t) applied on the
cylindrical soil specimen.

Fig. 9. Evolution of the total axial
strain εa for the IH and the IKH
model in comparison to the experimen-
tal records.

tion of the experimental records is addressed. As illustrated by the evolution of
the axial strain, the subsequent loading-unloading loops alter the granular con-
figuration, thereby allowing for a gradual axial settlement of the top end of the
specimen. These findings are in agreement with the experimental observations
of other authors, see, e. g., [11] or [42]. Comparing the experimental observations
with the model responses, it can be seen that only the IKH model is capable of
predicting the axial settlement under the prescribed quasi-static loading condi-
tions. The predictions of the IKH model are in very good agreement with the
test result.

5 Conclusions

The present contribution addressed the simulation of granular assemblies under
quasi-static cyclic loading conditions, thereby exploiting the TPM and the elasto-
plasticity as suitable modelling frameworks. For the sake of a complete represen-
tation, the entire numerical model starting from the governing balance laws, over
the constitutive relations towards the numerical treatment has been presented.
In particular, two hardening models describing the solid-skeleton behaviour have
been elaborated, namely an isotropic and a mixed kinematic-isotropic harden-
ing model. Both formulations have been compared to experimental data, which
has been obtained from quasi-static cyclic triaxial tests. It has been shown that
the pure isotropic hardening model fails to mimic the axial settlement under slow
cyclic loading conditions. In contrast, the mixed isotropic-kinematic hardening
model was able to qualitatively reproduce the experimental observations at least
to some extent. However, it was also illustrated that the proposed model does not
reproduce the exact characteristics of the axial-strain evolution, i. e. the curvature
in the zigzag pattern. To trace back the origin of the mismatch, further experimen-
tal investigations are necessary to optimise the governing material parameters on
the one hand and to identify further physical processes, which might be essential
for the mimicking of the experimental observations on the other hand.
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Appendix A: Material Parameters of the IH Model

Following the DIN 18196 of the German Institute for Standardisation, the under-
lying granular material, in particular, the sand3 of the research unit FOR 1136
“GeoTech”, can be classified as closely graded sand with an average grain diam-
eter of d50 = 0.55mm, see Fig. 10. The density of an individual soil grain,
which corresponds to the realistic solid density of the overall aggregate, is
ρSR = 2650 kg/m2.

In order to identify the solid-skeleton material parameters associated with the
FOR1136 sand, the course of actions as described in [13] is followed.Herein, initially
several triaxial tests on cylindrical sand specimens (height: 0.1m, diameter: 0.1m)
havebeen carried out, fromwhich, subsequently, thematerials parameters are iden-
tified through a staggered identification scheme, In particular, at first, the elastic
shear modulus μS is determined straightforward from triaxial loading-unloading
loops and the compression-extension-ratio parameter

∗
γ of the failure surface is

found fromcompressionandextension experiments atdifferent confiningpressures.
Subsequently, several triaxial tests at different confining pressure, in particular,
σc,1 = 0.1MPa, σc,2 = 0.2MPa and σc,3 = 0.3MPa, have been carried out, where
the axial σa and radial stresses σr, the axial strain εa, and the volumetric strain εV

have been recorded. The material parameters are then found through a minimisa-
tion of the squared error between simulation and experiment, which is known as
Least-Squares optimisation method. In particular, a gradient-based constrained
optimisation is used, in which the Hessean matrix is approximated through the
BGFS (Broyden, Fletcher, Goldfarb, Shannon) procedure, see e. g. [39], and the
parameter constraints are considered via the sequential-quadratic-programming
(SQP) technique, see [40]. The identified solid-skeleton material parameters of the
research-unit sand FOR 1136 are summarised in Table 1.

Fig. 10. Microscopic picture of the soil grains (left) and grain size distribution (right)
of the sand of the research unit FOR1136.

3 The sand samples have been provided by the Institute of soil and rock mechanics
(Institut für Boden- und Felsmechanik, IBF) of the Karlsruher Institut of Technology
(KIT).
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Fig. 11. Comparison of the experimental data with the simulation results of the triaxial
tests at different confining pressures (left) and of the isotropic loading-unloading loop
(right).

A comparison between the simulation and the experiments for the triaxial
experiments at different confining pressures and for the isotropic compression
test are depicted in Fig. 11. As can been seen, the model responses are in a quite
good agreement with the experimental observations.

Appendix B: Material Parameters of the IKH Model

Proceeding from the material constants of the pure isotropic hardening (IH)
model, see Table 1, the governing parameters of the mixed isotropic-kinematic
hardening (IKH) model are guessed and the adjustments according to Table 2
are made.
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Table 1. Material parameters of the solid skeleton of the sand of the research unit
FOR1136.

Parameter Symbol Value Unit

Elastic parameters and solidity

Initial volume fraction nS
0S 0.6 -

Maximum volume fraction nS
max 0.623 -

Shear modulus μS 190 N/m2

Bulk modulus 1 kS
1 20 MN/m2

Bulk modulus 2 kS
2 47 MN/m2

Yield-surface parameters

Yield-surface parameter α 0.01 m2/MN

Yield-surface parameter κ 0.0001 m2/MN

Yield-surface parameter m 0.54 -

Initial yield surface

Yield-surface parameter δ0 0.0009 m2/MN

Yield-surface parameter ε0 0.1 m2/MN

Yield-surface parameter β0 0.05 -

Yield-surface parameter γ0 0.0 -

Failure surface

Yield-surface parameter
∗
δ 0.09 m2/MN

Yield-surface parameter
∗
ε0 0.01 m2/MN

Yield-surface parameter
∗
β 0.255 -

Yield-surface parameter
∗
γ 1.75 -

Failure-surface constant
∗
Cε 0.4 m2/MN

iso. hard. evolution constants

Volumetric constant CV
δ −93 m2/MN

Volumetric constant CV
ε −150 m2/MN

Volumetric constant CV
β −250 -

Volumetric constant CV
γ −0 -

Deviatoric constant CD
δ 23 m2/MN

Deviatoric constant CD
ε 200 m2/MN

Deviatoric constant CD
β 180 -

Deviatoric constant CD
γ 20 -

Plastic potential

Parameter 1 ψ1 1.3 -

Parameter 2 ψ2 0.53 -

Viscoplasticity

Reference stress 1 σ0 0.0001 MN/m2

Relaxation time η 0.001 s

Viscoplastic exponent r 0.001 s
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Table 2. Material-parameter adjustments of the solid skeleton for the mixed isotropic-
kinematic hardening (IKH) model.

Parameter Symbol Value (IH) → Value (IKH) Unit

Yield-surface parameters

Yield-surface parameter α 0.01 10−5 m2/MN

Yield-surface parameter κ 0.0001 10−6 m2/MN

Initial yield surface

Yield-surface parameter δ0 0.5 0.0009 m2/MN

Yield-surface parameter ε0 0.01 0.1 m2/MN

Yield-surface parameter β0 0.003 0.05 -

Failure surface

Yield-surface parameter
∗
δ 0.09 0.0005 m2/MN

Yield-surface parameter
∗
ε0 0.01 0.00001 m2/MN

Yield-surface parameter
∗
β 0.255 0.003 -

iso. hard. evolution constants

Volumetric constant CV
δ −93 −1500 m2/MN

Volumetric constant CV
ε −150 −1500 m2/MN

Volumetric constant CV
β −250 0 -

Deviatoric constant CD
δ 23 −1500 m2/MN

Deviatoric constant CD
ε 200 −1500 m2/MN

Deviatoric constant CD
β 180 0 -

Deviatoric constant CD
γ 20 0 -

kin. hard. evolution constants

Volumetric constant CV
0 - 0 m2/MN

Volumetric constant CV
1 - 0 m2/MN

Deviatoric constant CD
0 - 300 m2/MN

Deviatoric constant CD
1 - 50 m2/MN

Plastic potential

Parameter ψ1 1.3 0.001 -

Parameter ψ2 0.53 1.0 -
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des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und
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16. Ehlers, W.: Poröse Medien - ein kontinuumsmechanisches Modell auf der Basis der
Mischungstheorie. Habilitation Thesis, Forschungsberichte aus dem Fachbereich
Bauwesen, Heft 47, Universität-GH-Essen (1989)

17. Ehlers, W.: A single-surface yield function. Arch. Appl. Mech. 65, 246–259 (1995)
18. Ehlers, W.: Challanges of porous media models in geo- and biomechanical engi-

neering including electro-chemically active polymers and gels. Int. J. Adv. Eng.
Sci. Appl. Math. 1, 1–24 (2009)

19. Ehlers, W., Schenke, M., Markert, B.: Simulation of soils under rapid cyclic loading
conditions. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installa-
tion Processes. LNACM, vol. 77, pp. 207–228. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-18170-7 11

20. Ehlers, W., Scholz, B.: An inverse algorithm for the identification and the sen-
sitivity analysis of the parameters governing micropolar elasto-plastic granular
material. Arch. Appl. Mech. 77, 911–931 (2007)

21. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprob-
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Abstract. In this work three different concepts for a direct application
of soil models within a frictional contact description are presented. These
concepts can be used in conjunction with all different kinds of contact
formulations and solution methods. Additionally, all types of plasticity
models can be used within these formulations. The advantage of these
concepts is shown exemplary in the modeling process of soil-structure
interactions where the Ehlers plasticity model for the continuum is now
able to describe the soil behavior at the contact surface. The numerical
implementation of the new frictional relations is based on the Mortar
method and the numerical investigation of a direct shear test shows the
reproduction of the typical stress-strain relation of the soil at the contact
surface. The work ends with a critical discussion about the different
friction formulations and the application of the Ehlers soil model in a
direct shear test.

Keywords: Contact mechanics · Finite element method · Mortar
method · Friction laws · Projection strategies · Contact layer · Soil
mechanics · Soil-structure interactions

1 Introduction

When investigating simulations of sliding contacts, Coulomb’s law is mostly pre-
ferred to model the frictional behavior. Even within the highly complex modeling
process of soil-structure interactions Coulomb’s law is applied [1,2], although the
simulation of a pile penetration process shows a large difference between numeri-
cal and experimental results (Fig. 1, [12]). As a consequence new frictional models
were developed in [12] improving the slip behavior. Unfortunately, in this case,
a large number of additional material parameters have to be introduced which
have to be determined for each individual contact pair.

Within geotechnical installation processes for piles, anchors or sheet pile
walls, mostly the surface of the structure has to be viewed as rough. Exper-
imental measurements of a direct shear test between soil and concrete show
that for a rough surface of the structure the response behavior is almost equal
to the same test case between two soil specimens [20,22,29]. This leads to the
conclusion that for soil-rough structure interactions the real contact zone lies

c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 9
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Fig. 1. Comparison of experimental and numerical results of a pile penetration test [12]
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Fig. 2. Development of the contact zone in a direct shear test between soil and a
concrete specimen possessing a rough surface

completely within the soil (Fig. 2). Since many soil models are able to represent
the three-dimensional geomechanical behavior realistically, the description of the
mechanics at the contact layer can be improved by the use of such models. Until
now either interface elements [5,36], or special joint elements [10,11] are used to
model the contact interface by use of soil models. Additionally, some interface
models exists where the rough surface structure is taken into account [14,17].
Unfortunately, these models are limited to small sliding. Only an incorporation
into contact formulations makes it possible to simulate the most important sit-
uations for engineers, like a pile, anchor or sheet pile wall installations where
large relative movements occur.

In order to overcome these limitations in the planing process of founda-
tions three different strategies are presented each able to incorporate soil models
directly within any contact formulation. The second advantage of these schemes
is the natural outcome that no additional parameters are needed.

A big challenge of any method that includes soil models is the correct repro-
duction of the dilatant or contractant behavior at the contact surface. A direct
integration of these effects into a contact model would lead in the case of con-
tractancy to a penetration of one body into the other, which is not allowed, or in
the case of dilatancy to a release of the contact during the sliding process, which
is not reasonable. Additionally, yield criteria are often formulated in terms of
three stress invariants whereas slip laws are mostly based on the norm of the
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tangential stress vector and on the absolute value of the normal pressure. Hence,
a direct link between these invariants is not possible. However, in the litera-
ture, some relation between contact and continuum are disclosed. For instance,
the three-dimensional Mohr-Coulomb yield criterion is the natural extension of
the two-dimensional Coulomb slip rule [4]. Using the penalty regularization for
the tangential contact formulation the analogue to the elastoplastic theory can
be exploited in the modeling process [3,15,33]. In [31] a direct link between
the contact and the continuum kinematics is stated which can also be used to
incorporate soil models within the contact formulation. All these relations are
providing the basis for the presented methods.

If the surface of the structure can be assumed as perfectly smooth, contact
takes place directly at the interface of soil and structure and Coulomb’s law can
be used, as can be seen in the outcomes of experimental tests between steel and
soil in [28] or [13]. Only a proper coefficient of friction has to be determined.

A soil model based on the framework of the elastoplastic theory which is able
to include the porous structure of the soil [7,9] is stated in Sect. 3. Additionally,
two regularization schemes are mentioned shortly at the end of this section which
stabilizes numerical algorithm and avoids oscillations between the elastic and
plastic state.

Sections 3, 4 and 5 describe the three methods to use soil models as frictions
laws in detail. The first one transforms the plasticity equations properly into fric-
tional formulations using the connection between Coulomb slip rule and Mohr-
Coulomb yield criterion. The second concept integrates the plasticity model
directly into the slip rule formulating a continuum stress dependent coefficient
of friction and normal contact force. In the third concept, the two-dimensional
contact formulation is extended towards 3D in order to include the plasticity
models directly, which leads to a contact layer formulation.

The performance of these concepts are shown in Sect. 6 based on a numerical
investigation of a direct shear test. The outcomes are compared with the results
of the corresponding three-dimensional setup using interface elements in between
of the two contact specimens. The presented work is closed with an evaluation
of the projection schemes and of the Ehlers soil model in Sect. 7.

2 Soil Model

The aim of the developed friction laws is the improved prediction of soil structure
interactions by an use of soil models directly at the contact surface. Therefore a
proper soil description is needed. Among many different models Ehlers developed
a generic elasto-plastic formulation [7,9] able to take into account typical effects
known in soil mechanics, like the pressure dependency of the friction angle and
the dependency of the admissible elastic domain on the Lode angle. The porosity
of the soil is considered by the factor cv given within the linear elastic stress strain
relation

σ = λ tr εe cv + 2μεe. (1)
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The factor cv [9] describes the influence of the solid volume ratio which is limited
by its initial value ns

0 and its upper bound ns
max

cv =
tr εc

( tr εc − tr εe)
, tr εc =

ns
p

ns
max

− 1 =
ns
0

ns
max (1 + tr εp)

− 1. (2)

The yield criterion bounding the admissible elastic domain is formulated in terms
of the first invariant of the stress tensor Iσ as well as of the second IIs and of
the third invariant IIIs of the deviatoric stress s

f (σ) =

√(
1 + γ IIIs II−

3
2

s

)m

IIs +
1
2

α I2σ + δ2 I4σ + β Iσ + ε I2σ − κ = 0. (3)

Seven parameters (α, β, γ, δ, ε, κ,m) have to be determined by proper material
tests [7] where the friction angle ϕ and the cohesion c are linked to the model
via κ = c cosϕ and β = 1

3 sinϕ. To ensure a correct dilatancy or contractancy
behavior of the soil in this model a non associated plasticity formulation is used.
Defining a potential g(σ)

g (σ) =

√

Ψ1IIs +
1
2
αI2σ + δ2I4σ + Ψ2βIσ + εI2σ (4)

the evolution equation of the plastic strain is given by the derivative of the
potential with respect to the stress tensor multiplied with the plastic rate λ̇

ε̇p = λ̇
∂g (σ)

∂σ
=

1
2grt

[
Ψ1s +

(
αIσ + 4δ2I3σ

)
1
]
+ (Ψ2β + 2εIσ)1

grt =

√

Ψ1IIs +
1
2
αI2σ + δ2I4σ.

(5)

The dilatancy and contractancy effects of the soil can be controlled by the two
additional parameters (Ψ1, Ψ2). A measure able to determine the dilatant or
contractant behavior is the tangent of the dilatancy angle νp. This value is the
quotient of the volumetric plastic strain to the norm of its deviatoric part

tanνp =
ε̇p · 1
3‖ ėp ‖ . (6)

The tensor ėp = ε̇p −1/3(ε̇p ·1)1 used in (6) indicates the deviatoric part of the
rate of the plastic strain. Since the soil has a highly nonlinear plastic behavior,
an additional equation is needed to take into account hardening and softening
effects. In the Ehlers soil model evolution equations for the four parameters
h = [β, γ, δ, ε]T are introduced in order to describe these effects

ḣ = λ̇ (hmax − h)
[
Cv

h tanνp + Cd
h

] ‖ ėp ‖ = 0. (7)

Therein hmax corresponds to the maximum values of the parameters and Cv
h,Cd

h

control the volumetric and the deviatoric changes, respectively. The actual stress
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Fig. 3. Difference between standard and substepping back-projection schemes

is computed from the constitutive Eqs. (1)–(7) and the numerical solution is
based on the implicit return mapping algorithm [26]. A detailed implementation
can be found in [23,30]. Unfortunately, in the case of a plastic response, due
to the conical structure of the yield surface in stress space, the back-projection
within the return mapping algorithm onto the surface can fail, especially close
to the apex. This is especially true when the trial stress and the trial hardening
parameters are far away from the projection point (Fig. 3). Hence a projection to
different solutions can occur which leads to a non convergence of the algorithm.
A possibility to improve the closest point projection algorithm is the use of a
substepping scheme [27] which is based on line search techniques. A numerical
implementation within the implicit return mapping algorithm can be found in
[18]. Another challenge is the oscillation between the elastic and the plastic state
due to the kink in the transition between the two states. This can lead also to
a non converging of the overall solution algorithm. Remedies to overcome such
cases are viscoplastic regularization. The formulation used here is presented in
[6] and numerically implemented in [25].

3 Friction Laws by Relating Contact and Continuum
Stress Quantities

The formulations and solution techniques related to the elasto-plastic theory
have a lot in common with the ones related to the frictional contact behavior.
The yield criterion bounding the elastic domain is similar to the slip rule lim-
iting the stick case. Furthermore, an evolution equation is used for the plastic
strain in the continuum as well as for the tangential movement between the con-
tacting bodies. Despite all similarities, unfortunately, a direct transition from
plasticity to friction is not possible. The stress dependency within the yield cri-
terion is often expressed by means of three invariants whereas friction laws are
expressed in terms of the norm of the tangential stress and the normal pressure.
Additionally, dilatancy and contractancy effects cannot be directly included in
the contact formulation. A positive dilatancy angle would lead to a release of
the contact, although the pressure between the bodies is non zero and a nega-
tive dilatancy angle would lead to a normal penetration which is not allowed.
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Therefore, to incorporate the dilatancy effects at the contact layer an additional
contact stress component is introduced.

One of the oldest model describing especially granular materials is the Mohr-
Coulomb yield criterion. This criterion

fm =
√

IIscos(Θ)
cosϕ

+

[
1
3
Iσ −

√
IIs
3

sinΘ

]

tanϕ = 0. (8)

is actually the three-dimensional extension of the Coulomb friction law

fc = ‖tt‖ + tn tan ϕ = 0 (9)

see [4] for a derivation. Comparing these two formulations the norm of the tan-
gential contact stress ‖tt‖ and the normal pressure tn between the two contact
members can not be directly related to the continuum quantities Iσ,

√
IIs, Θ.

However, since the tangential contact motion is equivalent to shearing with a
load on top, the Lode angle

Θ = −1
3
arcsin

(√
27
2

IIIs

II
3
2
s

)

(10)

can be assumed to be zero Θ = 0◦. With this assumption the stress values mostly
used in plasticity models can be directly related to the standard contact stress
quantities

IIs := ‖tt‖2cos2ϕ, Iσ := 3 tn, Θ := 0◦. (11)

This kind of projection can also be illustratively explained, see Fig. 4 where the
friction law is simply obtained by a cut of the yield surface at a Lode angle
of 0◦. Together with the link between the continuum stress invariants and the
contact quantities Eq. (11) the standard algorithms (see [33] for more details)
computing the normal and tangential contact stress can be stated. Unfortunately,
due to this projection the tangential stress vector is mostly not pointing towards
the sliding direction anymore due to the dilatancy effects. In contact cases the
dilatancy angle has to be zero. Otherwise either a release of the contact or
a penetration of one body into the other would occur which is not allowed.
Looking at the graphical illustration in Fig. 5 the projected tangential stress
vector tproj can be subdivided into a part parallel to the sliding direction and a
part tD perpendicular to it. Thereby the latter part corresponds to the norm of
the tangential stress multiplied with the tangent of the dilatancy angle

tD = −tanνp‖tt‖. (12)

The minus sign has to be added, since the normal stress contributions and not
the pressure is considered. Hence in the relation of the contact and continuum
stress quantities (11) the dilatancy effects can be considered without influencing
the sliding behavior by writing alternatively

Iσ = 3tn − 3 tanνp ‖tt‖. (13)
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4 Friction Laws by Relating Contact and Continuum
Kinematics

In many frictional contact models the specific slip behavior is only included
into the coefficient of friction within Coulomb’s law. The coefficient μ is then
a function of the temperature, the pressure, the contact velocity or the surface
roughness, for instance. A model based on a pressure and velocity dependent
coefficient of friction can be found in [35]. Such a model is also formulated
for soil-structure interactions in [12]. Due to the complex behavior in the zone
between the soil and the structure many new material parameters are needed.
More detailed descriptions of different frictional formulations can be found in
[33] and the references therein. Based on this idea a new concept of projecting
plasticity models onto the contact surface is developed so that the coefficient
of friction and the also the normal contact stress within Coulomb’s law depend
directly on the three-dimensional stress tensor

fc = ‖tt‖ + μ (σ) tn (σ) = 0. (14)

As mentioned in the previous section contact can also be considered as shearing
with load on top (Fig. 6). Instead of relating the continuum stress invariants
to the contact stress as described in Sect. 3 the continuum kinematics are now
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Fig. 6. Equivalence of sliding and shear

expressed in terms of the contact quantities. In the case of a penalty regulariza-
tion, see standard computational contact textbooks like [33] for more informa-
tion, the tangential stress

tt = −ct [gt − gp
t ] (15)

is given by the difference of the actual and the plastic slip distance multiplied
by a penalty parameter. In standard contact algorithms the actual slip distance
is computed by an integration of the slip velocity ġt over time

gt =
∫ t

t0

ġtdτ. (16)

The tangential penalty parameter can be chosen arbitrarily and hence it can
also be assumed to depend on twice the shear modulus μ divided by an intrinsic
virtual height. Applying the penalty regularization a penetration between the
contacting bodies is allowed. If the penalty parameter is approaching infinity, the
non-penetration condition holds exactly and no height between the bodies arises.
Here if the height approaches zero the penalty parameter approaches infinity
which verifies the proposed approach. The actual tangential contact stress can
now be reformulated

tt = −2μ
1
h

[gt − gp
t ] , ct =

2μ

h
. (17)

The second term can be interpreted as the negative shear strain of the contact
layer, see also Fig. 6 for a graphical illustration,

εe
3α =

1
h

[gTα − gp
Tα] . (18)

The negative sign of the tangential gap values in (17) can also explained by
means of the different assumptions made in the contact theory compared to
the continuum formulations, see [30] for more details. Due to the small intrinsic
height h, which is assumed between the two contacting bodies, no membrane
strains are taken into account

εe
αβ ≡ 0. (19)

As mentioned in Sect. 3, the dilatancy effects can not be reproduced directly
within a contact formulation and an alternative formulation has to be included.
Here the normal stress component is already known and corresponds to the
pressure resulting from the enforcement of the non penetration condition

σ33 = tn. (20)
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Using a linear stress strain relationship the elastic strain in the normal direction
can be reformulated in terms of the normal stress component and the elastic
normal strains

εe
33 =

σ33

λ + 2μ
+

λ

λ + 2μ
[εe

11 + εe
22] . (21)

The stress strain relationship in Voigt notation can now be modified in order to
compute the missing stress components

⎡
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⎢⎢⎢
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c11 c22 0 0 0
c22 c11 0 0 0
0 0 μ 0 0
0 0 0 μ 0
0 0 0 0 μ

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎣

εe
11

εe
22

2εe
12

2εe
23

2εe
13

⎤

⎥
⎥⎥⎥
⎦

+

⎡

⎢
⎢⎢⎢
⎣

1
1
0
0
0

⎤

⎥
⎥⎥⎥
⎦

c33σ33. (22)

The new coefficients in (22) can be derived directly from Eq. (21)

c11 =
2λ2 + 4λμ + 4μ2

λ + 2μ
, c22 =

2λ2 + 2λμ

λ + 2μ
, c33 =

λ

λ + 2μ
(23)

Together with the nodal plastic strain at the previous time step all quantities
are known and can be used within any three-dimensional plasticity routine deliv-
ering the actual continuum stress and the material tangent at contact. Due to
the known normal stress component the continuum material routine has to be
modified only slightly, but the solution algorithm remains the same. The final
step in the overall algorithm is the computation of the coefficient of friction.
Based on the analogy of the Coulomb friction law (9) and the Mohr-Coulomb
yield criterion (8) the coefficient of friction

μ =

∣∣∣∣∣
∣
tan

⎛

⎝arcsin

⎛

⎝
√

IIscosΘ
1
3 Iσ −

√
IIs
3 sinΘ

⎞

⎠

⎞

⎠

∣∣∣∣∣
∣

(24)

as well as the normal stress component follows directly from the invariants of
the actual stress tensor

tn =
1
3
Iσ −

√
IIs
3

sinΘ. (25)

Like in Sect. 3 the first term can be characterized as the normal pressure resulting
from the enforcement of the non-penetration condition. Since the Lode angle Θ
is not zero in case of dilatancy/contractancy, the second term can be interpreted
as the contribution to the force acting in normal direction due to dilatancy or
contractancy effects, respectively.

5 Friction Laws by Extending Contact Kinematics to 3D

To extend the contact kinematics a relation between continuum kinematics and
standard contact formulations has to be stated. This link can be easily estab-
lished if the solid-shell concept [16,24] is adopted. In analogy to this concept any
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point of the continuum is defined in terms of the corresponding position vector
of each surface together with a linear interpolation in between. The position
vectors of the deformed and of the initial configuration can then be simplified
to a description of the position vectors of each contact surface

x(ξα, ξ) = x2(ξ2α) +
ξ

h

[
x1(ξ1α) − x2(ξ2α)

]

X(ξα, ξ) = X2(ξ2α) +
ξ

h

[
X1(ξ1α) − X2(ξ2α)

]
.

(26)

The interpolation between the contacting bodies is regularized by the parameter
ξ and by the height of the contact layer h. The index (a =1) indicates values of
the slave surface and the index (a =2) stands for values of the master surface.
Additionally, ξaα corresponds to the intrinsic coordinates of the two surfaces. In
contrast to the shell theory the initial configuration, indicated by the position
vector X, is exactly the configuration at the onset of contact. The base vectors
directly follows from the derivative of the position vector with respect to the
intrinsic coordinates

Gα =
∂X
∂ξα

=
(

1 − ξ

h

)
X2

,α +
ξ

h
X1

,α =
(

1 − ξ

h

)
A2

α +
ξ

h
A1

α = Ḡα

G3 =
∂X
∂ξ

=
1
h

[
X1 − X2

]
= N = Ḡ3.

(27)

In the initial configuration, the gap vector between the two surfaces conforms
to a not normalized normal vector at the contact layer. The derivative of the
position vector with respect to the surface coordinates are equal to the two
surface base vectors A1

α, A2
α. Like in shell theory, in the deformed configuration

the gap vector is normally not perpendicular anymore (Fig. 7). The dimensionless
gap vector is termed director and indicated by d and a1

α, a2
α correspond to the

surface base vectors of the deformed configuration

gα =
∂x
∂ξα

=
(

1 − ξ

h

)
x2

,α +
ξ

h
x1

,α =
(

1 − ξ

h

)
a2

α +
ξ

h
a1

α = ḡα

g3 =
∂x
∂ξ

=
1
h

[
x1 − x2

]
= d = ḡ3.

(28)

The base vectors of the contact layer can now be formulated either in terms
of the position vectors gi, Gi or directly written by means of the surface base
vectors. The latter ones are indicated by a bar on top ḡi, Ḡi. However, both
formulations are identical. The connection to the standard contact kinematics
can now be derived, if the components of the Green Lagrange strain tensor are
computed in terms of the two base vector formulations

Eij =
1
2

(
gi · ḡj − Gi · Ḡj

)
. (29)

Within that work Latin letters i, j = 1, 3 indicate continuum quantities whereas
Greek letters α, β = 1, 2 are related to quantities of the surface. In order to derive
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h

X
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X
2

N

Body 2 (slave)

Body 1 (master)

x 1

x 2

d

Body 2 (slave)

Body 1 (master)

Fig. 7. Initial (left) and deformed configuration (right) of a simple two-dimensional
contact layer example

the connection between contact and continuum kinematics these components
have to be integrated over the height

gij =
∫ h

0

Eijdξ. (30)

In analogy to the shell theory the membrane part indicates the change of the
surface base vectors during the deformation. Due to the integration each part is
now weighted with fractions of the height

gαβ =
h

6
[
x1

,α · a1
β + x2

,α · a2
β

]
+

h

12
[
x1

,α · a2
β + x2

,α · a1
β

]

− h

6
[
X1

,α · A1
β + X2

,α · A2
β

]
+

h

12
[
X1

,α · A2
β + X2

,α · A1
β

]
.

(31)

The shear part is characterized by the tangential change of the gap vector. At the
beginning of contact the initial surface base vectors A1

α, A2
α are perpendicular

to the normal vector N and thus the double shear components only computes
in terms of the current quantities

2gα3 =
(
x1 − x2

) · 1
2

(
a1

α + a2
α

)
. (32)

Finally, the normal part describes the change of the norm of the gap vectors
during deformation

g33 =
1
2

(
x1 − x2

) · d − 1
2

(
X1 − X2

) · N. (33)

With the definition of the difference vector w as the change of the gap vector

w =
(
x1 − x2

) − hN, d =
1
h
w + N (34)

the normal part of the integrated Green Lagrange strain components can be
rewritten

g33 = w · N +
1
2h

w · w. (35)
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Since only small changes are assumed in the normal direction the second, non-
linear, part can be neglected. With this assumption the remaining first part of

x1

x2

hN

wh

gT

Fig. 8. Split of the gap vector into normal direction and difference vector for the two-
dimensional case

Eq. (35) can be considered as the change of the height during the deformation
as can be seen as well in Fig. 8

g33 = �h. (36)

The advantage of this formulation is the simple representation of the kinematical
deformation in normal direction even in a sinuous movement. The standard
contact quantities are obtained if the height in (30) approaches zero

gc
ij = lim

h → 0

∫ h

0

Eijdξ. (37)

Since the initial height of the contact layer is zero in standard contact situations,
gc
33 exactly corresponds to the normal gap

gc
αβ = 0, 2gc

α3 =
(
x1 − x2

) · 1
2

(
a1

α + a2
α

)
, gc

33 = gn. (38)

In standard contact formulations a1
α is mostly assumed as the tangential base

vector at the contact surface. This means that the surface base vectors of each
side are pointing towards the same direction and are equal in length

a1
α =

1
2

(
a1

α + a2
α

)
. (39)

This outcome is also in line with the assumptions made in Sect. 4. Neglecting
the approach of the height towards zero 3-dimensional contact kinematics can
be stated. The corresponding strain can be obtained, if the resulting formulation
is divided by the height h

Ec
ij =

1
h

∫ h

0

Eijdξ =
1
h

gij . (40)
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Just as in the previous section this strain can be used within any 3-dimensional
plasticity routine using the same solution algorithms which yields the actual con-
tinuum stress and the material tangent at the contact layer. A detailed descrip-
tion of this contact layer formulation and its numerical implementation can be
found in [31]. In contrast to the previous section the continuum material routine
has not to be modified.

6 Numerical Investigations

The performance of the three different formulations to include soil models
directly in contact formulations will be demonstrated at a direct shear test.
Numerical implementation of the algorithms for standard continuum formula-
tions can be found for instance in [34]. The presented new frictions laws are
included into contact formulations based on the Mortar method. This method
is at the moment the most robust discretization technique for contact problems
and hence it is applied in this work. A more detailed introduction and discus-
sions on application of the Mortar method for contact problems are available in
[19,21,30]. The implementation of the presented frition laws of the Sects. 3, 4
and 5 within the Mortar method can be found in [31,32].

Table 1. Material data for GEBA sand

λ = 100 MN
m2 μ = 150 MN

m2 ns
0 = 0.585 ns

max = 0.595

β0 = 0.105 βmax= 0.263 Cv
β = −58 Cd

β = 350

γ0 = 0.0 γmax = 1.6 Cv
γ = −10 Cd

γ = 35

δ0 = 0.01 m2

MN
δmax = 0.005 m2

MN
Cv

δ = 90 Cd
β = −15.9

ε0 = 0.0805 m2

MN
εmax = 0.008 m2

MN
Cv

ε = −300 Cd
ε = 300

α = 0.01 κ = 0.0001 MN
m2 m = 0.5454 η = 0.005

Ψ1 = 0.97 Ψ2 = 0.48

In this direct shear test a soil specimen of dense fine sand slides over a block
of steel (E = 210 · 103 MN/m2, ν = 0.2). The surface of the steel block is
assumed to be rough and hence governing the shear behavior. The direct shear
test deliver the same response as the three-dimensional triaxial test which can
be seen in experimental investigations [22]. The sand is taken from the Geben-
bacher (GEBA) pit with grain diameters between 0.03–0.3 mm, a sieve retention
of d10 = 0.09 mm, d60 = 0.11 mm and a coefficient of uniformity of CU = 1.22.
The material parameter are determined in [8] and are given in Table 1. On top
of the test apparatus a variable surface pressure is applied. Furthermore, the soil
specimen and the block of steel are fixed in the horizontal direction. In order
to avoid tension within the soil specimen on the side where the tangential dis-
placement is applied a pressure of p1 = 0.5 kN/m2 ensures positive stress values
within the soil (Fig. 9). For each concept of a friction law based on continuum
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soil models a series of different vertical pressure loads is investigated. In order
to compare the reproducibility of the continuum behavior at the contact surface
all the results are compared with the same direct shear test where now one layer
of continuum elements is located in between of the two plates as can be seen in
Fig. 10. The evaluation of the continuum case is based on the analogy between
the Mohr-Coulomb yield criterion and the Coulomb friction law in Eqs. (8) and
(9), respectively.

0.25 m0.05 m

u = 0,05 m

p3

0.05 m 0.25 m

sand
steel

p1

p3

sand
steel

0.05 m
0.05 m

0.05 m
0.05 m

rough rough

Fig. 9. Side view and front view of the direct shear test with a rough surface

Fig. 10. Finite element mesh of the contact case (left) and of the continuum case with
one layer of elements between the two bodies (right)

6.1 Friction Laws by Relating Contact and Continuum Stress
Quantities

Comparing the force evaluation along the sliding distance a different behavior is
obvious (Fig. 11). In the interface element during the phase when the pressure
is imposed a plastic response behavior can be observed already. In the contact
model only stick occurs in the first loading situation. Hence the evolution of
the hardening behavior starts not before sliding and then in a more moderate
fashion. In order to compare the results with the continuum case in normal
direction as well, not only the contact pressure, but also the dilatancy part, see
Eq. (13), is considered in Fig. 11. This leads to a value slightly larger than the
applied contact force on top of the specimen. The Lode angle is not exactly zero
in the case of dilatancy or contractancy and leads to a small under-prediction
of the force acting in normal direction although dilatancy was included in the
formulation. Additionally, it can be seen from Fig. 11 that the change of the
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Fig. 11. Comparison of tangential (left) and normal force (right) versus sliding distance
at a constant pressure of 100 = kN/m2
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Fig. 12. Comparison of tangential force (left) and friction angle (right) versus normal
force

height of the interface element has not a strong influence on the final result.
Only the peak behavior is slightly different at the onset of sliding. Nevertheless
the evaluation of the final friction angle as well as of the final tangential force
over the normal force are qualitatively in a good accordance as can be seen
in Fig. 12. Beside the possibility of arbitrary large relative movements between
the soil and the structure another advantage of this contact formulation is the
reduction of the CPU time with a factor of 10 compared to the corresponding
computation of the continuum model.

Remark: Comparing the tangential force evaluation of the projected contact
formulation (Fig. 11) with the outcome of a triaxial test [32] the results are
qualitatively pretty close. The accordance can be explained with the similar
evolution of the hardening parameters in both cases which is different to the
corresponding behavior in a direct shear test. Looking at the normal-tangential
force evaluation of Fig. 12 the cap structure of the underlying yield criterion
cannot be completely reproduced. Only the middle part, which is slightly curved,
can be represented leading to the nonlinear behavior in the evaluation of the
friction angle over the normal force in Fig. 12. The yield criterion of Eq. (3) and
hence the projected slip rule have four roots on the axis of the normal force
and on the space diagonal, respectively. However the domain is only defined
between the inner two roots. Hence for values beyond the inner roots a unique
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back-projection onto the slip line can not be guaranteed anymore. A detailed
explanation of these implications can be found in [30].

6.2 Friction Laws by Relating Contact and Continuum Kinematics

For the evaluation of the second strategy the same investigations using the same
direct shear test is conducted. In contrast to the first concept now a height
has to be introduced. Although this height is artificial it is chosen to consist of
10 mm corresponding to the forced localization zone occurring within the soil
structure interaction zone. This height is imposed directly within the continuum
simulation using standard elements at the interface and considered intrinsically
within the contact formulation.
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Fig. 13. Comparison of tangential force (left) and friction angle (right) versus normal
force

Comparing the final tangential force and the final friction angle of different
normal load levels (Fig. 13) both evaluations shows the same outcome.
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Fig. 14. Comparison of tangential (left) and normal force (right) versus sliding distance
of the first 5 mm at a constant pressure of 100 = kN/m2 (right)

The tangential force of the interface element and of the projected contact
formulation end up both with the same force and shows a hardening peak (14).
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Only the height of the peak and the time when it occurs are different. The
same holds for the normal force evaluation in Fig. 14. As mentioned in Sect. 4
the normal force includes the contact pressure from the enforcement of the non-
penetration condition as well as a part resulting from dilatancy/contractancy
effects. However replacing the upper specimen by a block of steel and comparing
the evaluation of the tangential and of the normal force both outcomes are almost
equal (see [32]). The reason for the good accordance is the small normal strain
in direction of sliding (ε11 ≈ 10−6) due to the stiffer upper block which conforms
to the assumption made in Eq. (19). In the soil-structure example presented here
this normal strain is around ε11 ≈ 10−3 and can not be disregarded anymore.

As well as for the projection scheme in Sect. 3 the CPU time of this projection
method is also around 10 times less as for the pure continuum case with interface
elements in between of the upper and lower specimen.

6.3 Friction Laws by Extending Contact Kinematics to 3D

In contrast to the test scenarios before now a real height is introduced between
the two contact bodies defining a contact layer. The initial mesh of this con-
tact layer approach and of the corresponding interface element are shown in
Fig. 15. As can be seen on the left side of the Fig. 15 in the contact case the
upper block seems to hoover over the lower specimen, but in this open space
the continuum soil model is embedded. Looking at the tangential and normal
force evaluation in Fig. 16, contrary to the friction laws of Sects. 3 and 4, both
outcomes are identical, since the membrane strain is now considered at the con-
tact layer. In the frictional behavior of GEBA fine sand a hardening zone at
the beginning of loading is obviously accompanied by a small increase of the
normal force. Such a behavior is typical for dense sand. The computation of
the tangential and the normal force at each time step are based on the analogy
between Coulomb and Mohr-Coulomb. The stress values of each soil element in
the pure continuum FEM model are evaluated at the mid plane of that element.
Another big advantage of the developed element is that the dilatant behavior
can now be reproduced at the contact layer. In the evaluation of the height
(Fig. 17) it has to be highlighted that in the first few steps a decrease of the
height slightly below the initial 10 mm occurs showing a contractant behavior.
Afterward the height increases due to dilatancy. This outcome is very typical for

Fig. 15. Finite element mesh of the contact case (left) and of the continuum case with
one layer of elements between the two contact bodies (right)
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of h = 10mm and with a pressure of p3 = 100 kN/m2 (left) and friction angle versus
normal pressure (right)

dense sand. With standard contact models such characteristics cannot be repro-
duced. The dilatancy would releases the contact which is not feasible and the
contractancy would lead to a penetration which is not allowed. An evaluation
at different surface pressures p3 additionally shows that the friction angle is not
linearly depending on the normal force (Fig. 17) if the GEBA fine sand model is
used at the contact layer.

7 Conclusion

In this work three different strategies were presented each able to directly use soil
models as friction laws. The first concept exploits the natural relation between
Coulomb slip rule and Mohr-Coulomb yield criterion to establish a connection
between the stress invariants of the continuum and the contact quantities, normal
pressure and norm of the tangential stress. To model dilatancy effects properly a
new dilatancy stress component was introduced. Since the Lode angle is not zero
in the case of dilatancy or contractancy effects, this scheme underpredicts the real
stress at the contact surface. If both bodies are sticking together the response
behavior is only elastic. However in the continuum case a plastic response is
also possible if the relative movement of the two bodies is only small. Both
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phenomena reason the slightly different outcome of the first concept compared
to the interface element.

The second approach has the advantage of a direct implementation of the
plasticity model into the friction equations and constitutes a very robust algo-
rithm. On the other hand the introduced height of the contact layer leads to
an additional parameter which has to be determined. Since within soil-structure
interactions the height of the contact layer corresponds to the height of a forced
localization, a value of 2–3 times the average grain diameter is a reasonable
approach.

Finally the last method of a contact layer formulation can reproduce the
continuum behavior exactly. Here as well a height has to be introduced which can
also be legitimated by the forced localization zone which occurs at the contact
layer.

Additionally, as mentioned in this work, the outcome of the triaxial test dif-
fers from the corresponding evaluation of the direct shear test using the Ehlers
model which should not be the case for proper soil models. The back-projection
algorithm can also not deliver feasible results, if the normal pressure is too large
or too small due to the double roots at the limits of the slip line. In between the
range is imaginary which adds another challenge to the back-projection algo-
rithm. To show the real performance of especially the first two concepts a com-
parison with other plasticity models has to be done.

It has also to be highlighted that all three contact formulations can be applied
in arbitrary large sliding situations. In this work the focus lied on the compar-
ison with interface element. At the end it has to be mentioned that although
these concepts were applied only to soil-structure interactions, they can be seen
as a generic scheme to include any kind of continuum model within a contact
formulation.
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Abstract. The theory of zero purely elastic range in stress space within
the framework of bounding surface plasticity is applied to sand consti-
tutive modelling. With a vanished yield surface, plastic loading occurs
for any direction of the stress ratio rate on which the loading and plas-
tic strain rate directions now depend, rendering the model incrementally
non-linear. The resulting model falls into the category of hypoplastic-
ity in the sense of dependence of the plastic strain rate direction on the
stress rate direction, that is different from another constitutive hypoplas-
ticity theory, which does not involve classical plasticity loading-unloading
criteria and additive decomposition of total strain rate into elastic and
plastic parts. The simplicity of the conceptual structure of the model
is particularly attractive as it consists of only one surface, the bound-
ing/failure surface, and the stress point itself in the deviatoric stress ratio
plane. The model follows the basic premises of the SANISAND family
of models that unify the description for any pressure and density within
critical state theory. Elimination of the classical yield surface concept
circumvents the complexity associated with satisfying the consistency
condition; however, the incrementally non-linear hypo-plastic nature of
the new formulation requires special handling of its numerical imple-
mentation. The work shows the simulative capabilities of the model that
are comparable with those of the classical model with very small yield
surfaces, including simulations under cyclic and rotational shear loading.

Keywords: Sands · Constitutive relations · Hypoplasticity · Zero elas-
tic range · Critical state · Bounding surface

1 Introduction

The idea of zero elastic range in plasticity theory where the yield surface size
shrinks to zero and the surface degenerates to the current stress point in stress
space was first presented in [3] as a corollary of bounding surface (BS) plastic-
ity where such disappearance of yield surface is compensated by the still finite
c© Springer International Publishing AG 2017
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bounding surface that determines now the loading direction and plastic modu-
lus. The physical motivation was the effort to simulate the response of artificial
graphite [3,8,9], a material used in nuclear reactor technology and which exhibits
zero purely elastic range in loading and unloading.

Several other materials do show either a zero or an extremely limited purely
elastic range response described by a very small yield surface, prominent among
them being soils, in particular granular soils or sands. In sand constitutive mod-
eling the consequence of this trait was reflected in the adoption by various models
of a very small size yield surface (YS) in stress-ratio space r = s/p, with s the
deviatoric and p the hydrostatic parts of the stress σ, respectively, obeying a
kinematic hardening rule. Among such models the most relevant to the current
paper are the two-surface model in [7,21], and its variation in [26] where the
name SANISAND was firstly adopted. Such a model is illustrated in Fig. 1(a)
where the YS is shown as a very small circle in r space with the back stress-
ratio α as its center. The larger surface represents the bounding surface (BS)
that varies in size, on which the image stress point rb is defined as shown by
the unit norm deviatoric direction n along r − α. The R′, normal to the BS
at rb, is the plastic deviatoric strain rate direction. As usual with BS plasticity,
the plastic modulus Kp depends on the projected on n distance (rb − r) : n
such that Kp = 0 when r = rb, i.e., when the stress ratio is on the BS. The θ
represents the relevant Lode angle.

It is then natural to consider the possibility that this very small yield surface
can be taken in the limit to be of vanishing size becoming identical to the back-
stress ratio that is its center, and consequently the YS surface degenerates to
the stress point r itself. In passing one can observe that in the counterpart of
the above for the classical triaxial q − p space, the yield surface is represented
by a very narrow wedge, which for vanishing elastic range collapses onto the
stress ratio line q/p = η. The conceptual framework of the working of the model
is illustrated in Fig. 1(b). The stress ratio rate is denoted by ṙ (a superposed
dot indicates henceforth the rate), and the stress ratio increment dr = ṙdt, is
shown as an arrow emanating from r, with dt the time increment. The extension
of ṙ direction defines the image (or bounding) stress ratio rb (mapping rule) at
its intersection with the BS, where again n and R′ are defined. Figure 1(c)
illustrates the process when the Lode angle θ effect on the BS is omitted and
the BS becomes circular, but the Lode angle effect on R′ is maintained. Notice
that whichever is the direction of ṙ for r inside or on the BS (see later for the
case of r outside the BS), there will be always a unique bounding stress ratio
point rb and associated n for convex BS shape, and furthermore n : ṙ > 0
guaranteeing there will be always plastic loading. Both n and R′ depend on
the stress rate direction. Such dependence in conjuction with the mapping rule
shown in Figs. 1(b) and (c), while originally proposed in [3,8,9] for artificial
graphite, it was also proposed for soils in a qualitative sense in [4], and applied
to sands within a full constitutive modeling framework in [2,14,29], and more
recently in [12], in constitutive frameworks quite different than the present ones.
According to [6] these models, which are also incrementally non-linear (the first
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Fig. 1. Illustration of the concept of the SANISAND-Z model (a) small yield surface,
bounding surface, mapping rule, loading direction n and deviatoric plastic strain rate
direction R′, (b) shrinking of the yield surface to the stress ratio point r, and (c)
elimination of the Lode angle effect on the bounding surface.

such model was proposed in [11] in a different setting) are named hypoplasticity
models; the same word hypoplasticity is used for a different class of models
(e.g. [15,16]) that do not involve classical plasticity loading-unloading criteria
and additive decomposition of total strain rate into elastic and plastic parts.
Incorporating the zero elastic range model within the framework of SANISAND
models, introduces what has been called the SANISAND-Z model, Z standing for
zero elastic range [10]. Its presentation and further elaboration is the objective
of this paper.
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Before closing this introduction it is instructive to delineate the present zero
elastic range model from several other models that claim, erroneously, to be
also of zero elastic range. Prominent among them are the stress-reversal surfaces
models in [22,23]. This is illustrated in Fig. 2, where after reversal at rin a
new loading process begins and the current stress ratio point r is projected at
rb on the BS by a radius emanating from rin; at rb the loading direction n
is defined and transferred at r. But this projection process creates an implied
reversal/loading surface shown by dashed line which is homothetic to the BS
with center of homothecy the rin and on which the current r lies. If now the
stress rate ṙ is in a tangent direction to the created reversal/loading surface, i.e.
it is normal to n as shown in Fig. 2, purely elastic response is induced during
such neutral loading path, allowing the stress ratio r to move around the loading
surface without causing any plastic deformation, thus, violating the concept of
zero elastic range. The second large family of erroneously called zero elastic
range models is that of generalized plasticity, where a loading direction n and
its opposite n′ = −n are defined in stress space and plastic loading is postulated
for both n : ṙ > 0 and n : ṙ = −n′ : ṙ < 0 with different plastic moduli in
each case giving the impression of non existence of purely elastic range. However,
again in this scheme a neutral loading path defined by n : ṙ = 0 causes only
elastic deformation around an implied loading surface (the definition of n is
tantamount to the definition of such surface), that negates again the zero elastic
range character of generalized plasticity. Bottom line is that zero elastic range
must be exactly what the name signifies, i.e., a null yield surface that collapses
onto the stress point itself, within a scheme that guarantees realistic description
of plastic strain rate norm and direction.

rin

n

n

n

r

rb

ṙ

Fig. 2. Geometrical explanation why stress reversal surfaces and generalised plasticity
models are not zero elastic range models.
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2 The SANISAND-Z Constitutive Model

The sensitivity of sands to stress-ratio changes renders the stress-ratio space the
appropriate one for the development of any sand constitutive model. Additional
plastic deformation due to a change of stress under constant stress ratio, requires
a modified formulation [26], which will not be considered in this work. The
additive decomposition of total strain rate into an elastic and plastic part will
be assumed, with the former given in terms of shear G and bulk K elastic
moduli, and the latter occurring along a direction R = R′ + (1/3)DI with R′

the deviatoric part of R, and D the dilatancy. A deviatoric unit norm loading
direction n is defined at stress ratio space as discussed before in conjunction
with Fig. 1, such that trn = 0 and trn2 = 1.

According to standard plasticity formulation as shown in [21], and with the
loading index (or plastic multiplier) L defined in terms of stress or total strain
rates and the plastic modulus Kp, the strain rate - stress rate direct and inverse
relations for a stress ratio dependent response are given as follows:

ε̇ =
1

2G
ṡ +

1
3K

ṗI + 〈L〉(R′ +
1
3
DI) (1)

σ̇ = 2Gė + Kε̇vI − 〈L〉(2GR′ + KDI) (2)

L =
1

Kp
n : pṙ =

1
Kp

n : (σ̇ − ṗ

p
σ) =

1
Kp

n : (ṡ − ṗr)

=
2Gn : ė − K(n : r)ε̇v

Kp + 2Gn : R′ − KD(n : r)
(3)

where 〈L〉 = L if L > 0, and 〈L〉 = 0 if L ≤ 0, the latter signifying the event of
unloading, ε denotes the strain tensor, e its deviatoric part and εv its volumetric
with a superposed dot implying their rates. It is important to notice that for
hardening response Kp > 0 while for softening and perfectly plastic response
Kp ≤ 0. In the latter case it follows that necessarily n : ṙ ≤ 0 so that L > 0.
Because for elastic unloading also n : ṙ ≤ 0, the distinction between softening
plastic loading and elastic unloading is made based on the sign of L calculated
from the last expression of Eq. (3) in terms of the total strain rates.

In addition, since the model is developed within the framework of Critical
State Soil Mechanics, the Critical Stress Ratio (CSR) in triaxial p–q space and
Critical State Line (CSL) in void ratio e – pressure p space are given by the
equations [20]

q

p
= η = ηc = M ; e = ec = e0 − λ(

p

pat
)ξ (4)

where the M assumes different values in compression and extension and becomes
function of the Lode angle in multiaxial stress space, while e0, λ and ξ are
material constants. The forgoing formulation requires the specification of the
hypoelastic moduli G and K, and the plastic constitutive ingredients n, R′, D,
and Kp.
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The Hypoelastic Moduli G and K

The G and K are given as functions of p and current void ratio e by the relations

G = G0pat
(2.97 − e)2

1 + e

(
p

pat

)1/2

; K =
2(1 + ν)
3(1 − 2ν)

G (5)

where the expression for G is given in [25]. Here G0 is a model parameter, ν is a
constant Poisson’s ratio, and pat is the atmospheric pressure for normalization.

Definition of Bounding, Dilatancy and Critical State Surfaces

Excluding for simplicity the Lode angle dependence of M , the BS is shown
schematically as a circle F b = 0 in the stress ratio space of Fig. 3. Following
[19,21], and denoting by rb a stress ratio on the BS, its analytical expression is
given by

F b = (rb : rb)1/2 −
√

2
3
M b = 0; M b = M exp(−nbψ) (6)

where the value of M is taken as the average between its triaxial compression
and extension values, Mc and Me, respectively, to compensate for the exclusion
of Lode angle dependence, ψ = e − ec is the state parameter [1], nb a positive
model constant and

√
(2/3)M b is the variable with ψ radius of the BS.

F b = 0

F c = 0

F d = 0

nr

rc

θ

ṙdt

(a)

F b = 0

F c = 0

F d = 0

nr

θ

ṙdt

rc

n

r

(b)

Fig. 3. Illustration of the working of the SANISAND-Z model in conjunction with
bounding F b = 0, dilatancy F d = 0 and Critical State F c = 0 surfaces, for (a) stress
ratio point r inside the bounding surface, and (b) stress ratio point r outside the
bounding surface.
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With rd denoting a stress ratio on the dilatancy surface (DS) F d = 0 which
is homocentric to the BS as shown in Fig. 3, its analytical expression is

F d = (rd : rd)1/2 −
√

2
3
Md = 0; Md = M exp(ndψ) (7)

with nd a positive model constant. At critical state ψ = 0 and M b = Md = M ,
thus, BS and DS collapse to the Critical State surface (CS) F c = 0, shown
in Fig. 3 as a circle of radius

√
(2/3)M . The placement of BS and DS outside

and inside CS surface, respectively, can be interchanged due to the value of ψ
being negative (denser than critical samples) or positive (looser than critical
samples) [21].

The Loading Direction n

(i) Stress Ratio Inside or on the BS: Consider first the current stress ratio r
inside or on the BS as shown in Fig. 3(a), which implies (r : r)1/2 ≤ √

(2/3)M b.
For future reference a unit norm deviatoric tensor nr = r/|r| is defined along
r. The stress ratio rate ṙ = |ṙ|ν is defined in terms of its norm |ṙ| and its
unit norm deviatoric direction ν such that trν = 0 and trν2 = 1. As already
elaborated, the image stress ratio rb on the BS is obtained as the intersection of
ṙ direction with the BS. For a given ṙ in the case of a circular BS the rbcan be
analytically specified by:

rb = r + bν; b = −r : ν +
[
(r : ν)2 + (2/3)(M b)2 − r : r

]1/2
(8)

where the foregoing expression for b is obtained by inserting rb = r + bν in
Eq. (6) and solving for b in terms of the (non negative) largest real root of the
resulting quadratic equation. The loading direction n is defined normal to BS
at rb, hence, based on Eq. (6) one has

n =
∂F b

∂rb
=

rb

|rb| (9)

where n is shown in Fig. 3(a) along the radius rb. The points rd and rc are
defined as the intersections of n with the dilatancy and critical state surfaces
F d = 0 and F c = 0, respectively, as shown in Fig. 3(a).

(ii) Stress Ratio Outside the BS: It is possible that the current stress ratio r
finds itself outside the BS, shown in Fig. 3(b), as a result of diminishing radius of
the latter due to its dependence on the state parameter ψ, Eq. (6)2, that implies
(r : r)1/2 ≥ √

(2/3)M b. In this case the plastic modulus becomes negative (see
subsequent definition), hence, there are two possibilities: either continued plastic
loading with softening response or elastic unloading. In both cases the stress ratio
rate ṙ points “inwards” of r towards the BS and the distinction of which one
of the aforementioned two cases occurs is based on the sign of L according to
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Eq. (3). L requires the determination of the image stress ratio rb to obtain the
loading direction n normal to BS at rb. If the rb is defined as before, i.e., as the
intersection of ṙ with the BS, the direction of ṙ may not intersect the BS for r
outside the BS, as implied in the illustration of Fig. 3(b). Thus, a re-definition
of the mapping rule for rb is necessary as the intersection with the BS of the
radius connecting the origin to r, Fig. 3(b), and n = ∂F b/∂rb as in Eq. (10).
Such definition of rb maintains the continuity of the mapping rule as the r
crosses the BS, and becomes independent of ṙ when r is outside the BS. Now
the process of loading/unloading is as follows. If L > 0 according to the last
expression of Eq. (3) expressed in terms of the total strain rates, plastic loading
with softening occurs; if L < 0, it signifies elastic unloading. In either case the
direction of ṙ points inwards the current r, which is updated to the position
r′ = r + ṙdt as shown in Fig. 3(b). The ṙdt is obtained from the calculation
of the σ̇ from Eq. (2) for either case since 〈L〉 = L when L > 0, and 〈L〉 = 0
when L < 0. At r′ one has r′b as shown in Fig. 3(b) and n′ = ∂F b/∂rb′. For
this new n′ the previous process is repeated. The r will reach eventually the BS
from outside. Observe that while r is outside the BS no reverse plastic loading
can occur according to the above scheme, but this is not expected to cause any
problem because the excursion outside the BS is very small.

The Deviatoric Plastic Strain Rate Direction R′

The specification of the plastic strain rate direction R = R′ + (1/3)DI requires
the definition of the deviatoric part R′ and the dilatancy D. The total flow rule
is non associative.

(i) Deviatoric Associative Flow Rule: If a deviatoric associative flow rule
is postulated, then one can set

R′ = n (10)

It follows that n : R′ = n : n = 1 in the last member of Eq. (3) for L.

(ii) Deviatoric Non-associative Flow Rule: Following [7] the relative inac-
curacy of the deviatoric associative flow rule due to independence from the
Lode angle θ in Fig. 3, can be corrected by a deviatoric non-associative flow
rule obtained from a Lode angle dependent plastic potential surface F p = 0
defined in stress ratio space by

F p = (rp : rp)1/2 −
√

2
3
Mp(θ) = 0 (11)

Mp(θ) = g(θ)Mc; g(θ) =
2c

(1 + c) − (1 − c) cos 3θ
; c =

Me

Mc
(12)

where Mc and Me are the critical stress ratios in triaxial compression and exten-
sion, respectively, g(θ) is the Lode angle-dependent interpolation function, and
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rp is a stress ratio on F p = 0. The F p = 0 is not shown in Fig. 3 for reasons
of clarity, but it has the usual rounded triangular shape caused by the θ depen-
dence as shown for the BS in Fig. 1(a) and (b). For any rb defined according to
the mapping rules of the previous subsection, there is a corresponding n, and for
this n there is a corresponding Lode angle θ defined by cos 3θ =

√
6trn3. The

R′ is defined as the gradient of F p = 0 with respect to the stress, at a point rp

on F p = 0 that is along n, which is expressed in [7]:

R′ = Bn−C(n2− 1
3
I); B = 1+

3
2

1 − c

c
g(θ) cos 3θ; C = 3

√
3
2

1 − c

c
g(θ) (13)

For c = 1 Eq. (13) yields as expected the associative deviatoric flow rule
R′ = n because F p = 0 becomes circular in π-plane. Based on Eq. (13) it follows
again that n : R′ = B−Ctrn3 = 1 in Eq. (3) for L, where the equality of the last
two members of the above equation is based on the expression cos 3θ =

√
6trn3.

The Dilatancy D

Following the original suggestion in [21], the dilatancy will depend on the dis-
tance rd − r of the current stress ratio r from its image rd on the DS, projected
on the unit direction n, Fig. 3, thus, the following expression holds accounting
for rd =

√
2/3Mdn and nr = r/ |r|:

D = Ad(rd − r) : n = Ad(

√
2
3
Md − |r|nr : n) (14)

with Ad a model parameter and the reminder that Md depends on the state
parameter ψ according to Eq. (7). Equation (14) can yield a positive (contraction)
or negative (dilation) value of D, depending on the relative placement of rd and
r in conjunction with n. The Ad in the simplest case is constant, but it was
found beneficial for the simulation of liquefaction to render it a function of a
fabric dilatancy tensor z as Ad = A0(1 +

√
(3/2)〈z : n〉), with A0 a constant,

where z evolves according to ż = −cz〈−ε̇p
v〉(√(2/3)zmaxn + z). Notice that

here the factors
√

(3/2) and
√

(2/3) were appropriately added to the original
expressions of Ad and ż, respectively, presented in [7], so that the values of the
constants A0, cz and zmax calibrated from a simpler triaxial formulation and
data, can be used directly as input in the multiaxial expressions above.

The Plastic Modulus Kp

Consistent with a BS formulation the value of the plastic modulus Kp will depend
on the “distance” rb − r of the current stress ratio r from its image rb on the
BS, projected on the unit direction n. An extension of the proposition made
in [7] will be adopted where the back-stress ratio α of their formulation is now
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substituted by the stress ratio r (recall that for zero elastic range one obtains
r = α as the yield surface shrinks to zero), which then reads:

Kp =
2
3
ph

(rb − r) : n

(r − rin) : n
(15)

The rin is the value of r at the initiation of a plastic loading event and h is a
model parameter which is function of the void ratio e and pressure p according
to h = G0h0(1 − che)(p/pat)−0.5, with h0 and ch model parameters. The factor
2/3 was placed for maintaining the same value of h calibrated under triaxial
conditions. The rin must be updated to a new value at initiation of a new
plastic loading event in order to obtain the infinite value of the plastic modulus
resulting from Eq. (15) when r = rin, expected in such event. Since one has
always L > 0 when r is inside the BS, a new plastic loading event is defined
as follows. When in Eq. (15) the (r − rin) : n ≤ 0, it means that the current
loading direction n, defined in terms of ṙ, forms an angle greater than 90◦ in
the generalized stress ratio space with the tensor r − rin, which is a measure
of the overall direction of ongoing stress loading path that started at rin. But
such drastic change of loading direction in regards to ongoing loading path is
tantamount to unloading and the beginning of a new loading process. Hence the
rin is updated to the current r value when the denominator of Eq. (15) becomes
negative, and a new loading process begins with an initially infinite value of
the plastic modulus because the denominator becomes zero after the update. In
other words the unloading event is followed immediately by a new loading event,
without any purely elastic response taking place. The foregoing process is further
illustrated in Fig. 4 where a loading process begins at the origin which serves as
rin at the start. At r the directions of ṙdt that continue plastic loading and
those that signify instantaneous unloading and a new plastic loading event, can

rb
n

θ

r=rin

ṙdt

rb
n

F b = 0

rin=0

ṙdt

θ

Fig. 4. Illustration of the loading and unloading/reloading domains for the direction
of ṙ in deviatoric stress space, and the updating of rin.
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be easily visualized and distinguished by the shaded sectors of the little circle
drawn around r in such way that the forward continued loading is defined by
all n for which (r − rin) : n = r : n > 0 while the new plastic loading event
for all n for which (r − rin) : n = r : n ≤ 0. These two sectors are defined by
connecting the point r with the two ends of the diameter of the F b = 0 which
is perpendicular to r − rin = r, because at these two ends the corresponding
n is normal to r − rin = r and r : n = 0. Upon unloading/initiation of new
loading, the previous rin at the origin, is updated to the current r. Finally,
when r moves outside the BS and rb is defined along r on the BS, Fig. 3(b),
the quantity (rb − r) : n < 0 in Eq. (15), which implies a Kp < 0, signifying a
softening material response as long as L > 0 according to Eq. (3).

The updating of rin in Eq. (15), necessary to obtain a smooth elasto-plastic
transition by rendering Kp = ∞ at initiation of a loading event, creates also the
so-called overshooting response upon reverse loading/immediate reloading asso-
ciated with its updating, known since the time of its inception [3]. Overshooting
implies a stress-strain curve which unrealistically overshoots the continuation of
a previous curve had the event of reverse loading/reloading not taken place. In
order to remedy overshooting, [6] outlined a way of updating rin, which is imple-
mented in the current model and has been presented in detail in [10]. In this
reference one can also find the triaxial counterpart formulation of SANISAND-Z,
that will not be presented here. It suffices for illustration purposes to show Fig. 5,
which is the counterpart of Fig. 3(a) in triaxial space, where the stress ratio r
is now the line η = q/p and the bounding, dilatancy and critical state surfaces
are represented by the straight lines with slopes M b

c , Md
c , M c

c , in compression
and M b

e , Md
e , M c

e , in extension, while loading occurs for any rate of η in the
compression or extension directions.

M b
c

M b
e

η̇dt > 0

η̇dt < 0

Fig. 5. Illustration of the SANISAND-Z model in triaxial stress space where the devia-
toric stress ratio point of Fig. 3 becomes the line η = q/p, and the bounding, dilatancy
and critical state surfaces become the lines Mb, Md and Mc with subscripts c and e
for compression and extension, respectively.
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3 Model Performance

Detailed calibration process for the SANISAND models are presented in [27];
their calibrated parameters for Toyoura sand are used in the present study, and
shown in Table 1. Simulation results are based on both the SANISAND-Z model
with true zero elastic range and the [7] version of SANISAND with a tiny yield
surface cone. The trace of the cone on the stress-ratio r plane is a circular
deviatoric yield surface with center α and radius (2/3) m. A small value of m =
0.01 is used for the simulations with [7] model. The SANISAND-Z model uses a
constant critical stress ratio M which is set equal to the compression value Mc

here, in order to properly capture the main part of the loading which is in triaxial
compression in these simulations. The [7] model uses a Lode angle dependent
critical stress ratio with M varying between Mc in triaxial compression and
Me = cMc in triaxial extension, although no extension is relevant to these data.

Performance of the SANISAND-Z model in simulation of selected drained
and undrained triaxial loading and unloading paths, in comparison with the
data of Toyoura sand from [28], is already reported in [10] and similar to previous
models examined in [7,26,27]. In this presentation the response under some more
complicated stress paths will be examined. Figures 6, 7, 8, 9 and 10 presented in
the following, are in fact variations of corresponding figures in [10].

Figure 6 compares the experimental data [24] and model simulations for
drained constant-p cyclic triaxial tests on isotropically consolidated loose sam-
ples of Toyoura sand. In this test the amplitude of shear strain (εa −εr) has been
increased in different cycles of loading. The simulation with the SANISAND-
Z model is done with a constant critical stress ratio M which is set equal to
Mc(1 + c)/2, in order to properly capture the average response in compres-
sion and extension. The simulation results are presented with solid lines in
Figs. 6(d–f). The simulations with the [7] model are done in two different ways
for the critical stress ratio with: (i) a constant M = Mc(1 + c)/2 (for direct
comparison with the results from the SANISAND-Z model), and (ii) a Lode
angle dependent M . The simulations results for these two choices of M with

Table 1. SANISAND-Z model parameters for Toyoura sanda

Model constant Symbol Value Model constant Symbol Value

Elasticity G0 125 Plastic modulus h0 15

ν 0.05 ch 0.987

Critical state Mc 1.25 nb 1.25

c 0.712 Dilatancy A0 0.704

e0 0.934 nd 2.1

λ 0.019 Fabric-dilatancy zmax 4

ξ 0.7 cz 600
aAdditional overshooting correction parameters: ēpeq = 0.01% and n = 1
(default)
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the [7] model are presented with dashed and dot-dashed lines, respectively, in
Figs. 6(d–i). The models show almost same results as each other, and very close
to those observed in the experiments. Of course the simulations results with [7]
and M(θ) are slightly closer to those observed in the experiments. Accumulation
of compressive volumetric strain with cyclic loading can be observed in Fig. 6,
and clearly when the stress ratio exceeds a certain value, which varies by the
state, the specimen begins to dilate. Additional comparison for cyclic loading of
a dense sample of Toyoura sand are presented in [10] showing again very similar
trend.
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Fig. 6. Simulations vs. experiments in constant-p cyclic drained triaxial tests on
isotropically consolidated relatively loose samples of Toyoura sand: experimental data
(a–c) are after [24]; simulations (d–f and g–i) are using SANISAND-Z model with
M = Mc(1+ c)/2 (solid lines), [7] model with M = Mc(1+ c)/2 (dashed lines), and [7]
model with M = M(θ) (dot-dashed lines).
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Simulation results under a particular rotational shear path comprising a cir-
cular stress path in the π-plane are presented in Figs. 7 and 8. The simula-
tion results exhibit in a very illustrative way the performance of SANISAND-Z
for such an unorthodox stress path. While the triaxial simulations can use the
much simpler formulation of the triaxial space, the rotational shear requires the
full general stress space formulation and numerical implementation, the latter
being a problem to reckon with due to the incrementally non-linear feature of
the equations. These simulations are intended to be compared with data from
Fuji river sand for which no data for calibration were available. However, given
the similarity of this sand with Toyoura sand, the model constants of the lat-
ter from Table 1 were used, instead. Figure 7 presents details of the simulation
results for the following loading scenario: An isotropically consolidated sam-
ple with pin = σc = 98 kPa and ein = 0.822 is subjected to undrained tri-
axial compression by increasing the σz until reaching τoct = 12.5 kPa, where
τoct = (1/3)

[
(σx − σy)2 + (σx − σz)2 + (σy − σz)2

]1/2; then keeping the τoct

constant, the sample is subjected to a cyclically varying circular stress path in the
π-plane under undrained condition. Three sets of simulation results are presented
in Fig. 7 showing performance of SANISAND-Z model with M = Mc(1 + c)/2
(dashed lines), [7] model with M = Mc(1+c)/2 (dashed lines), and [7] model with
M = M(θ) (dot-dashed lines). The increasing amplitude helicoidal stress path
in the stress ratio π-plane plot of Fig. 7(a) is due to the decrease of p, because
of pore water pressure increase as shown in Fig. 7(b), hence, the increase of the
ratio of stress/p.

Fig. 7. Extended simulation results for undrained circular cyclic loading with τoct =
12.5 kPa on Fuji river sand for 5 cycles using model constants for Toyoura sand from
Table 1: SANISAND-Z model with M = Mc(1 + c)/2 (solid lines), [7] model with
M = Mc(1 + c)/2 (dashed lines), and [7] model with M = M(θ) (dot-dashed lines).
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Fig. 8. Simulations vs. experiments in undrained circular cyclic tests on Fuji river sand
using model constants for Toyoura sand from Table 1: experimental data (a–c) are after
[30]; simulations (d–f and g–i) are using SANISAND-Z model with M = Mc(1 + c)/2
(solid lines), [7] model with M = Mc(1 + c)/2 (dashed lines), and [7] model with
M = M(θ) (dot-dashed lines).

Figure 8 compares the effective stress path for undrained circular stress load-
ing path between the simulations and the corresponding experimental results in
[30] who explored three levels of τoct = 9.7, 11.1, and 12.5 kPa. In this figure
Toct = τoct cos Θ, where Θ determines the angle of rotation of shear stress on the
octahedral plane, shown in the original paper of [30]. Very similar general trend of
response is observed between the simulation results and the experimental data.
It is interesting to compare the plot of Fig. 7(b) with those of Figs. 8(f, i) for
τoct = 12.5 kPa; the former is in fact a three dimensional perspective of the latter
two. This is a good indicative of the overall performance of the SANISAND-
Z model in such complex loading condition. A more specific calibration of the
model parameters for Fuji river sand would likely provide better match between
the simulations and experimental results.

Because a stress ratio based model will not induce plastic deformation under
constant stress ratio loading, the question arises on how the present model will
respond to an oedometric test. Such test imposes a constant total volumetric
to total deviatoric strain ratio that in triaxial space is equal to 3/2, which can
become soon a constant stress ratio (fixed K0); before constant stress ratio is
reached, plastic deformation is induced by the model. In Fig. 9(a) the response
of the model under such oedometric test in loading and unloading is shown in p,
q stress space for two initial void ratio values, one for dense (ein = 0.65) and the
other for loose (ein = 0.95) sample, starting at an initial p = 10 kPa, using the
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(a) (b)

Fig. 9. Numerical simulation results for K0 compression loading and un-loading on
isotropically consolidated (pin=10 kPa) very loose (ein = 0.95 in dashed lines) and
very dense (ein = 0.65 in solid lines) samples using constants of Table 1.

constants of Table 1. The stress path attains a very close to constant value of the
stress ratio q/p = η = ηK0 ≈ 1.26 for the dense and q/p = η = ηK0 ≈ 0.91 for
the loose sample, which based on the relation K0 = (3− ηK0)/(2ηK0 +3) yields
the values K0 = 0.32 and K0 = 0.43 for dense and loose samples, respectively.
Simultaneously Fig. 9(b) shows a volumetric strain εv in the order of 2% and
3% at the end of loading, and remaining strain of 0.5% and 2% at the end of
unloading, for dense and loose samples, respectively; clearly plastic volumetric
deformation takes place also during the unloading phase. The foregoing K0 and
volumetric strain values are realistic, in particular accounting for the fact the
model was not calibrated to obtain the K0 value and strains under oedometric
loading and unloading.

The model can simulate general and unusual loading paths such as rota-
tional shear and shows similar simulation capabilities as its dual model with a
very small yield surface in [7]. The dependence of the loading direction n and
in particular the plastic strain rate direction R′ on the stress rate direction ν,
although supported qualitatively by experiments and DEM simulations, needs
a more thorough investigation to compare the theoretical suggestions to experi-
mental (real or virtual) evidence in a quantitative way. For example the following
two response characteristics can be proposed for verification and calibration by
DEM in the future, which are particularly suited for a model with zero elastic
range. The first is related to the suggestion in [13,17] to plot stress increments
around a stress point corresponding to strain probes of same norm in various
directions; the tips of the stress increments constitute what we can call the
Gudehus’ response envelope. Here a conjugate Gudehus’ response envelope will
be used, where a material sample is loaded till a point in stress space, and then
very small stress increments of equal norm are applied in all directions, and the
corresponding strain increments are plotted radially around an origin in strain
space; the locus of their tips constitutes the aforementioned envelope. In fact this
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(a) (b)

Fig. 10. Numerical simulation results for conjugate Gudehus’ response envelopes. The
initial state of the sample is ein = 0.88, p = 100 kPa (point A), then sheared with
constant p to τoct = 25 kPa (point B). At points A and B the sample is subjected to
constant norm stress increments of 10 kPa (thin lines) and 20 kPa (thick lines), dashed
for point A and solid for point B.

type of response envelope in strain space was first proposed in [18], a fact omitted
to be mentioned by mistake in [10], but the option to call it a conjugate Gudehus’
response envelope stems from the focus given in [13] to such constitutive model-
ing features. This is a particularly appropriate test to perform by DEM to check
the incremental non-linearity associated with the dependence of the strain incre-
ment direction on the stress increment direction. To illustrate this process such
a test was performed in drained conditions by the SANISAND-Z model and
the results shown on the deviatoric planes for stress and strain increments in
Fig. 10(a) and (b), respectively. In Fig. 10(a) the material with initial void ratio
ein = 0.88 is loaded hydrostatically by p = 100 kPa, point A, and then sheared
at constant p to τoct = 25 kPa, point B. At each position A and B, the sample is
probed by stress increments of constant norms 10 kPa and 20 kPa consecutively
in various directions, the tips of which are plotted as smaller and larger circular
envelopes, respectively, in Fig. 10(a). For each stress probing process the tips of
the corresponding strain increments are plotted around the origin of the devia-
toric plane for strain increments as shown in Fig. 10(b) for both points A and B,
and the resulting shapes are the aforementioned conjugate Gudehus envelopes.
The envelopes for the smaller stress probes are included in the envelopes for the
larger stress probes at both points, but while at point A on the hydrostatic axis
such envelope remains almost circular (there is only Lode angle dependence of
the response), at point B the distortion of the envelopes are clearly intense, as a
result of the zero elastic range and the plastic modulus dependence on the stress
rate direction via the distance from the BS. The second response characteristic
which is particular to the zero elastic range feature of the model, is shown by the
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plots for a circular rotational shear path in Figs. 7 and 8; these can be repeated
by DEM (a 3D DEM code is required) and comparisons made.

4 Conclusion

The SANISAND-Z model is an elastic-plastic constitutive model for sands, which
is obtained from a kinematic hardening model when the yield surface size van-
ishes and the surface shrinks to its back-stress center becoming identical to the
stress point itself in the deviatoric stress ratio space. The finite bounding sur-
face is used to define the loading and deviatoric plastic strain rate directions,
both of which depend now on the direction of the deviatoric stress ratio rate.
Consequently the model is incrementally non linear and falls into the category
of hypo-plasticity models in the sense of the term first introduced in [5], and
defined in detail in [6].

The non-existing yield surface eliminates the need to satisfy the consistency
condition by requiring the stress to remain on the yield surface, but the stability
and avoidance of drift of an explicit numerical implementation becomes more
difficult to achieve and requires special methodologies. On the other hand the
plastic deformation that takes place always for any loading direction (except for
elastic unloading at softening regimes for the current formulation when the stress
point is outside the bounding surface), renders the model suitable to address
bifurcation and localization problems where elastic loading “to the side” is too
stiff to accommodate the initiation of a bifurcation process in classical plasticity
with neutral loading features, which do not exist in the present model.

Otherwise the simulations of SANISAND-Z are similar in nature to those
obtained by its predecessors SANISAND models with small but finite yield sur-
faces. It is believed that the present model will be very promising in simulations
of special loading paths such as multidirectional shear and rotation of princi-
pal stress directions, that recently became of importance in various areas, of
geotechnical engineering.
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Abstract. In geotechnical applications cyclic loading occurs frequently
caused by earthquake shaking, traffic or wind and wave loading. The con-
sideration of cyclic loading effects finds increasing attention nowadays.
This particularly holds true for structures, which are of civil importance
and involve high investment costs. Sophisticated calculation approaches
are applied within the design process of these boundary value problems.
However, many of the calculation models assume undrained stress paths,
where cyclic loading leads to a continuous generation of excess pore water
pressure. When soft, marine clays under slower loading are involved, the
dissipation of excess pore water pressure becomes relevant. The tran-
sient consolidation process needs to be considered. Thus, in the present
paper the consolidation behaviour of Norwegian Onsøy clay as a typical
representative of natural, marine clay under cyclic loading is analysed.
Part I of this paper presents the experimental study. Testing results from
monotonic and cyclic oedometer tests on natural as well as remoulded
clay are introduced. The differences in the compression behaviour and
pore water pressure dissipation of structured and remoulded clay are
illuminated. Furthermore, the effect of cyclic loading characteristics, as
e.g. the load amplitude, on consolidation is analysed. Part II of the paper
comprises a numerical study. Modelling the cyclic consolidation processes
by use of FEM, the focus of the analysis is set on the necessity of dif-
ferent features of a hierarchical model to analyse this type of boundary
value problems.

1 Motivation: Natural Clay Behaviour Under
Oedometric, Cyclic Loading Conditions

In many geotechnical applications cyclic loading of structures plays an important
role and needs to be considered within the design process. Cyclic loading may for
example be caused by traffic loads or earthquake shaking. Of cause, it is also of
particular importance in the framework of foundation design for offshore instal-
lations, as e.g. pipeline or pile foundations, wind turbines and gravity platforms
[24]. When dealing with soft soils under slower loading, the dissipation of excess
pore water pressure needs to be considered and the transient consolidation of
the soil comes into picture.

c© Springer International Publishing AG 2017
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Consolidation processes under cyclic loading have been dealt with in a mul-
titude of studies in literature. Analytical solutions considering consolidation
under cyclic loading conditions are e.g. available in [18,20,21]. Admittedly, most
of these solutions are based on Terzaghi’s classical theory assuming geometri-
cal and constitutive linearity. Due to this linearisation only idealized boundary
value problems can be analysed. In [16,17,19] an experimental study dealing
with cyclic consolidation processes of soft Kaolin clay is introduced. Within this
study the excess pore water pressure build-up and dissipation occurring during
consolidation is analysed.

Based on this study, the present paper deals with the consolidation of natural,
structured clay under cyclic loading. As representative material in the present
paper natural, marine Onsøy clay from Norway is considered. Hereby, the focus
is set on the behaviour of structured clay loaded to a stress level below and above
its yield stress as well as on the difference in consolidation of the natural and
identical, but remoulded clay.

Structure of soil includes fabric and bonding. While fabric is the arrangement
of soil particles, bonding characterises the connections of the soil skeleton, which
are not of frictional kind. When structured clay is subjected to an increasing
stress, initially the bonding will procure a relatively stiff behaviour of the soil
matrix. Only when the yield stress, the maximum bearable stress, is exceeded
the bonding is destroyed and the soil experiences a so-called destructuration.
This destructuration is reflected in the stress-strain behaviour by a sudden drop
of soil stiffness thus a significant compression caused by a rearrangement of the
soil particles [2–4]. Beyond that, the destructuration of natural clay may also be
caused by a mechanical destruction of the bonding induced by simple remoulding
of the natural clay. From the example of quick clay the effect is well known, that
sensitive, marine clays subjected to remoulding show a dramatic change in their
material behaviour. This effect can be observed in the oedometric compression
behaviour of structured clays as due to the mechanical distortion of the structure
the remoulded clay shows the same compression behaviour in terms of stiffness
in low and high stress ranges [22].

The present paper is subdivided into two parts: Part I presents the experi-
mental study and testing results, while Part II deals with the numerical mod-
elling of the boundary-value problem.

The experimental study, presented in this Part I of the paper, is opened by
a characterisation of the tested soil, Onsøy clay. To analyse the compression
behaviour of natural and remoulded clay under monotonic loading, stepwise
oedometer tests are conducted. To meet the special requirements of the testing, a
particular oedometer cell designed and constructed at Ruhr-Universität Bochum
is used. This oedometer cell introduced in [16] allows the testing of slurries due to
a cell sealing system and enables the measurement of pore water pressure, water
in- and outflow, radial stress as well as frictional loss. Regarding the analysis of
the settlements differences between natural and remoulded clay are illuminated.
The analysis of the compression behaviour of the natural samples additionally
allows for determination of the material’s yield stress. The knowledge of yield
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stress is required for the following cyclic consolidation analysis, as within this
study natural and remoulded samples are subjected to cyclic loading with various
loading amplitudes below and above yield stress. Thereby, the influence of load
amplitude on the cyclic consolidation of structured clay is analysed.

Part II of the paper deals with the numerical modelling. As an important role
falls upon the constitutive behaviour of cyclically loaded soils, the necessity of
different features of a hierarchical model to analyse this type of boundary value
problems is studied.

2 Material Characteristics of Onsøy Clay

The present study was performed using marine, natural Onsøy clay from a site
close to Fredrikstad, which is located approximately 100 km south-east of Oslo,
Norway. The deposit was formed during glaciation and early post glaciation
(Holocene). During the isostatic uplift, caused by the following de-glaciation, the
depositional environment changed from marine to estuarine [14]. The material
properties of this clay have been characterized in detail by [13,14] as well as other
studies at Norwegian Institute of Technology (NGI). The main characteristics
are described in the following. A more detailed characterisation can be found in
[14,15].

The block sample used for the present study was taken in approx. 10 m depth.
For the sampling a Sherbrooke sampler was used in order to prevent disturbance
of the sensitive clay material. Details on this sampling procedure can be found
in [5,12].

The natural water content of the tested clay was determined to be approxi-
mately wnat = 65% with a mean void ratio of approximately enat = 1.77, as the
specific gravity ρs was determined according to [1] by pycnometer method to
be ρs = 2.77g/cm3. These values coincide with the range for the natural water
content given by [14] for samples from similar depths. The pH value was deter-
mined by pH probe to be pH = 7.3. With reference to tests in [24] on the same
material from a different sampling depth, the salt concentration was assumed to
be 32.5 g/l, which is in accordance with [14] suggesting an average value of 30 g/l
for material from depths larger than 7 m. Table 1 summarises the most impor-
tant parameters describing the natural state of the sample block used within the
present study.

Table 1 additionally gives the plasticity index and Atterberg limits for the
tested clay, determined according to [6–8]. With reference to the plasticity dia-
gram after Arthur Casagrande Onsøy clay tested in the present study lies slightly
above the A-line and therefore can be characterised as a pronounced plastic clay.
The activity IA can be calculated to IA = 1.9[-].

The grain size distribution was analysed using two different techniques: sedi-
mentation technique according to [9] and laser diffraction method. Figure 1 shows
the determined grain size distribution curves. Hereby, Onsøy clay can be char-
acterised as a dark grey clayey silt, with a clay content of 40%. The organic
content can be approximated to 0.6% [14].
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Table 1. Material characteristics of tested Onsøy clay material

Onsøy clay

Natural water content, wnat[%] 65

Natural degree of saturation, Sr[%] 96–100

Natural void ratio, enat[-] 1.77

pH value, pH[-] 7.31

Salt concentration in pore water, ΨSalt[g/l] 25–29

Liquid limit, wL[%] 67.4

Plastic limit, wP [%] 29.6

Plasticity index, IP [%] 37.8

Shrinkage limit, wS [%] 28.8

Activity, IA[-] 1.9

Further material characteristics, e.g. mineralogy, chemical composition, CEC
and specific surface area, can be found in [15].

3 Experimental Methods

The experimental study presented in the following covers oedometer tests on
natural and remoulded Onsøy clay under monotonic and cyclic loading. All
tests were carried out in an oedometer cell designed and constructed at Ruhr-
Universität Bochum. The device was introduced in [17,19]. Details on the func-
tionality, construction and calibration of the device in addition can be found
in [15]. In the following section the main features of the oedometer device are
illustrated together with the applied loading and hydraulic boundary conditions.
As sensitive natural and remoulded soil samples are tested, particular consider-
ation is required regarding the sample preparation and installation technique.
The description of these closes this chapter.

Oedometer Device

For the experimental study of the consolidation behaviour of clays under cyclic
loading an oedometer device was designed and constructed at Ruhr-Universität
Bochum, introduced in [17,19].

Figure 2 shows the device, which enables testing of samples with a diameter of
70 mm. For the recent study samples with a height of 20 mm were used. Thereby,
the diameter-to-height-ratio of 3.5 follows [10] and limits the friction between
sample and oedometer ring to a tolerable extent.

The sample is placed between two filter plates within a stainless-steel oedome-
ter ring, which is fixed in vertical position and sealed against the top and bottom
plate of the device by rubber rings. Thus, it allows testing of slurry and paste-
like material as required in the present study. The thin-walled oedometer ring is
equipped with strain gauges allowing the measurement of radial stresses during
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Fig. 1. Grain size distribution of Onsøy clay

the consolidation process. Drainage is allowed through the filter plates embrac-
ing the sample. Therefore, in general different drainage conditions are possible.
In the present study drainage is executed through the sample top. A pore pres-
sure transducer included in the bottom part of the device is used to measure
transient pore water pressure during testing. It is able to measure positive and
negative pore water pressures up to 1000/−100 kPa.

A load cell at the top and bottom of the device allows the measurement of
vertical force above and below the sample and thereby facilitates the evaluation
of frictional loss.

Applied Loading

The present study comprises oedometer tests under monotonic as well as cyclic
loading.

In the monotonic loading tests the load is applied stepwise with a magnitude
of 10–20–50–100–200–400 kPa during loading phase and 200–100–50–20–10 kPa
during unloading phase. The load steps are applied quasi-instantaneously. The
vertical stress application is limited to a maximum of 400 kPa due to the mea-
surement range of the strain gauges applied on the oedometer ring.

For the cyclic tests a loading function of sinusoidal type was chosen according
to [16,21] as a typical loading pattern in geotechnical applications. The loading
function in given in Eq. 1.

L(t) = q sin2 πt

d
(1)

where L(t)= applied loading as a function of time t, q = load amplitude and
d = load period.
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Fig. 2. A Photograph and B Sketch of the new oedometer device [17]

Figure 3 shows the haversine loading function over time as applied in the
experimental testing.

For cyclic consolidation studies the chosen load period and amplitude are of
significant relevance. In the present study the load amplitude was varied with
reference to the yield stress of the tested natural material. Details are given in
Sect. 5. In agreement with [16] the load period d was chosen to be d = 120 s. It
can be calculated with reference to the time tref (T0 = 1). tref (T0 = 1) is the
time an equivalent sample (identical initial state) under static loading needs to
consolidate.

d =
T0 · H2

cv
=

0.0075 · (0.02 m)2

2.5 · 10−8m2/s
= 120 s (2)

where T0 is the chosen dimensionless period, cV is the material-dependent coeffi-
cient of consolidation assumed to be a constant, stress-independent value deter-
mined from monotonic consolidation tests on equivalent sample material. For
details see [17].

Fig. 3. Haver-sine loading function
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Fig. 4. Equivalence of (a) PTPB and (b) PTIB oedometer drainage configurations [16]

Hydraulic Boundary Condition

In a standard oedometer configuration usually both top and bottom of the sam-
ple are drained (abbreviated PTPB), the maximum pore water pressure occurs
in the mid-plane of the sample. In this location, measurement is technically dif-
ficult and would cause strong disturbance of the sample and flow paths. Thus,
in the present experimental study tests were conducted with permeable top and
impermeable bottom (abbreviated PTIB). This configuration is equivalent to a
standard PTPB oedometer configuration as illustrated in Fig. 4 [16].

Sample Preparation and Installation

Sample material preparation and installation of the sample in the oedometer
ring are distinctly different for remoulded and natural clay. Important details of
these procedures are illustrated in the following.

The sample preparation requires particular elaborateness and precision as
mainly the natural clay is very sensitive and testing results are susceptible to
variations in initial and boundary conditions, e.g. in the initial material state and
saturation of the sample. Therefore, throughout the whole installation process,
special caution was taken to guarantee homogeneity of the sample, to avoid
inclusion of air bubbles and to ensure full saturation of the testing system.

For the tests on natural samples, larger, so-called pre-samples were cut from
the block avoiding inclusion of shell fragments, sand inclusions and disturbed
boundary areas. The sample itself was then installed by pushing the thin-walled
oedometer ring into the pre-trimmed material. This preparation and installation
technique was selected to guarantee the least disturbance of the sensitive natural
clay as well as close contact between sample and oedometer ring for measurement
of horizontal stresses.

The remoulded clay was prepared by mixing soil material at the natural
water content of wL,nat = 65%, without prior air or oven drying. The mechanical
distortion during mixing is presumed to a cause a complete destruction of the
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existing structure in the natural state. Afterwards, the paste-like, remoulded
clay was placed in the oedometer ring using a spatula taking special caution to
avoid the inclusion of air bubbles during the installation of sample material into
the ring.

Pre-moistened filter paper is placed below and above the soil sample to pre-
vent finest particles to be flushed out of the sample into the filter plate clogging
its pores.

4 Consolidation Under Monotonic Loading

To analyse the consolidation of Onsøy clay under monotonic loading, stepwise
oedometer tests on natural and remoulded samples were carried out. The com-
pression behaviour is analysed regarding the destructuration of the natural clay.
A comparison to testing data from literature is drawn in order to evaluate the
present test results. Besides, material parameters as for instance compression
and swelling index as well as the yield stress are determined from the compres-
sion curves. A closer look is taken at the time-dependent settlement evolution
and pore water dissipation of natural and remoulded clay. From this comparison
conclusions regarding the material behaviour of natural samples before and after
exceeding the yield stress can be drawn.

Compression Behaviour

Figure 5 illustrates the compression behaviour of natural and remoulded Onsøy
clay from the conducted oedometer tests. The natural clay initially acts very
stiff and shows a pronounced destructuration after exceeding the yield stress.
Under the applied maximum load of 400 kPa the two materials still show a
difference in axial strain or void ratio respectively. However, from tests in a high
stress oedometer cell it is known that the compression curves for natural and
remoulded clay converge when subjected to a stress of about 1000 kPa [15].

The yield stress σy marks the stress at transition point where the compression
of natural soil changes from elastic to elasto-plastic. From the test data it is
determined to be σy ≈ 50−60 kPa. However, additional tests in a high stress
oedometer cell suggest a slightly higher yield stress of approx. 80 kPa [15], which
is in better accordance with data from literature [14].

The elasto-plastic compression index Cc and elastic swelling index Cs can be
calculated from the testing data with reference to Eqs. 3 and 4 to be Cc = 0.425
and Cs = 0.055.

Cc = − Δe

Δ log (σ′
v)

(3)

Cs = − Δee

Δ log (σ′
v)

(4)

The compression ratio CR according to [11] is defined as

CR =
Cc

(e0 + 1)
(5)
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Fig. 5. Compression behaviour of natural and remoulded Onsøy clay

and can be calculated to be CR = 0.15. It is in good agreement with data from
literature [11].

Figure 6 compares the present test data with test data given in [14] for sam-
ples from 6.10 m and 6.23 m depth. In general, the present results are in good
agreement with data from literature. The slightly higher yield stress corresponds
to the higher sampling depth of the clay tested within the present study.

Settlements

Figure 7 (top) shows the normalised time-dependent settlements of a natural
clay sample under oedometric compression. It can be recognised that in the first
three load steps from 1–10 kPa, from 10–20 kPa and from 20–50 kPa settlements
occur fast compared to the later load steps. In Terzaghi’s theory [23] the mate-
rial’s ability to consolidate and the consolidation rate are characterised by the
consolidation coefficient cv. The consolidation coefficient can be described by the
following equation

cv =
k · Es

γw
(6)

where k is the hydraulic permeability, Es is the stiffness and γw is the unit weight
of water. Using cv the time where 99% of the consolidation settlement has been
reached from Terzaghi’s theory can be calculated to be

t99% =
2 · H2

cv
(7)

where H is the drainage length.
In the first three load steps the natural soil is structured. The high perme-

ability due to high void ratio together with a high stiffness due to intact bonding



266 N. Müthing et al.

Fig. 6. Compression behaviour of natural and remoulded Onsøy clay - comparison with
literature

result in a high cv and in a fast consolidation respectively. After exceeding the
yield stress, the stiffness suddenly drops due to the destructuration of the soil,
while the void ratio and permeability experience a slower change. This signifi-
cantly retards the consolidation process or in terms of cv causes a decrease in
cv. In the higher load steps the soil matrix is compressed. The decrease in void
ratio causes a decrease in permeability. However, the increase in stiffness is more
dominant, so that for higher loading the consolidation occurs faster. This can
also be observed in Fig. 7 (bottom) illustrating the normalized time-dependent
settlements of the remoulded clay sample under oedometric compression. Here,
for all load steps it holds true that with ongoing compression the consolidation
is accelerated.

Figure 8 compares the normalized time-dependent settlements of natural and
remoulded clay experiencing oedometric decompression. It can be observed that
due to the experienced destructuration and elastic decompression stress path
both clays show an equivalent decompression. Caused by the higher stiffness
the swelling deformation occurs faster in the higher than in the lower stress
ranges. As the change in stress-dependent stiffness is congruent for remoulded
and natural sample (reflected in almost identical inclination of the decompression
branch CS), the swelling rate in the particular load steps likewise is the same.

A detailed study on the evolution of cv during soil compression and its depen-
dency on changing permeability and stiffness can be found in [15].
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Fig. 7. Time-dependent settlements of natural (top) and remoulded (bottom) Onsøy
clay

Pore Water Dissipation

The pore water dissipation during the monotonic load steps reflects the typical
behaviour in terms of stiffness and permeability changes found from the time-
dependent settlements. A detailed study of the measured pore water pressures
during monotonic load application and consolidation phase is beyond the scope
of this paper, but can be found in [15].
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Fig. 8. Time-dependent decompression of natural (top) and remoulded (bottom) Onsøy
clay

5 Cyclic Consolidation

For the present study on the consolidation of marine Onsøy clay under cyclic
loading six oedometer tests are evaluated to analyse the influence of the applied
load amplitude on the consolidation. Thereby, the load amplitude is chosen with
reference to the yield stress. While one load amplitude was set to 50 kPa and
hence chosen to be smaller than the yield stress, the other two amplitudes were
set to be 100 kPa and 200 kPa exceeding the yield stress. The influence of the
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Fig. 9. Time-dependent settlements of natural and remoulded Onsøy clay under cyclic
loading

load amplitude on the destructuration and thus on the consolidation process
is analysed in terms of time-dependent settlements and pore water dissipation.
Other loading characteristics, as e.g. the loading frequency, have an additional
influence on the consolidation. A study on these influences can be found in [15],
but is not considered in the present paper.

Compressibility and Time-Dependent Settlements

Figure 9 compares the time-dependent settlements of natural and remoulded
samples under haversine loading with different amplitudes.

During the cyclic consolidation process the settlements accumulate and after
a finite number of load steps reach a quasi stationary state. The number of cycles
required for accomplishment of steady state is material and load dependent and
accounts for approx. 200–250 cycles in the present testing. The increment of
settlement accumulation is significantly decreasing from larger values in the first
cycles to smaller ones in quasi stationary state.

Comparing the final settlements after 250 cycles or 500 min to the results from
the monotonic oedometer tests (see Fig. 10), it can be observed that the com-
pression under cyclic loading corresponds with the compression under monotonic
loading. The generally slightly smaller settlement in cyclic tests can be explained
by remaining pore water pressures and a corresponding smaller effective com-
pression stress. Details can be found in [15].

However, it can be observed that compression of all tests on remoulded
clay exceed the settlements of the natural samples significantly under loading
with same load amplitude. This corresponds to the compression behaviour in
monotonic oedometer tests.
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Fig. 10. Compression behaviour of natural and remoulded Onsøy clay under monotonic
and cyclic loading

Figure 11 illustrates the normalized time-dependent settlements under cyclic
loading. It becomes obvious, that the remoulded samples all show a similar time-
dependent behaviour, while the time-dependent compression behaviour of the
natural clay depends on the applied load amplitude. The natural sample loaded

Fig. 11. Normalised time-dependent settlements of natural and remoulded Onsøy clay
under cyclic loading
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with a load amplitude below yield stress shows a much faster consolidation than
the natural samples loaded with a load amplitude above yield stress. This also
corresponds to the findings shown for consolidation under monotonic loading.
However, it was to be expected from the monotonic testing results that the test
under 100 kPa consolidates slower than the test under 200 kPa. This is assumed
to be the case as the shape of the settlement curve for 100 kPa suggests that full
consolidation is not yet reached.

Fig. 12. Pore Water Dissipation of natural (top) and remoulded (bottom) Onsøy clay
under cyclic loading of 50 kPa amplitude
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Pore Water Dissipation

The difference in consolidation rate for natural and remoulded clay tested with a
load amplitude below yield stress is clearly reflected in the pore water dissipation.
Figure 12 compares the normalised time-dependent dissipation of pore water
pressures for the two tests with a load amplitude of 50 kPa.

Generally, it can be seen that within the first cycles the excess pore water
is build up. With ongoing consolidation time the excess pore water pressure
dissipates, reaching a quasi stationary state after a finite number of cycles. This
number of cycles is equal to the number of cycles necessary to reach a steady
settlement state. It is important to notice that the amplitude of excess pore water
pressures u is strongly damped during the consolidation process. Moreover, the
pore water pressures in the quasi stationary state reach slight negative values at
the beginning and end of a loading cycle cycling around 0.

A significantly faster decay of mean pore water pressure is observed for nat-
ural than for remoulded clay. Analogue to the monotonic loading the bonding
in the soil structure of the natural clay causes a higher stiffness of the material
and thus a must faster consolidation. The effect is even more pronounced in the
cyclic testing as here due to the alternating loading the effective stress increases
slower and thus seems to have a less distinct effect on the destructuration.

6 Conclusion and Outlook

In the present paper the consolidation of Norwegian Onsøy clay as a typical
representative of natural, marine clay is analysed.

Part I of this paper comprises the experimental study. To analyse the material
behaviour of natural and remoulded clay, Onsøy clay was characterised regard-
ing its soil mechanical properties. In a specially designed oedometer cell tests
under monotonic as well as cyclic loading were conducted. Particular considera-
tions and elaborateness are required for sample preparation, installation as well
as for the choice and measurement of the hydraulic and mechanical boundary
conditions.

The consolidation in terms of compression, time-dependent settlements and
pore water dissipation was analysed. From the experimental data it was shown,
that Onsøy clay under monotonic loading behaves as a typical structured clay,
showing destructuration after reaching its yield stress of approximately 60 kPa.
From the cyclic oedometer tests it becomes clear that the monotonic compression
is reflected in the cyclic behaviour as well. The influence of structure and loading
conditions on the behaviour of natural and remoulded clay was scrutinized by
comparing both material types under cyclic loading with load amplitudes below
and above yield stress.

The following Part II of this paper comprises a numerical study modelling
the cyclic oedometer tests on Onsøy clay. In geotechnical design processes the
need for sophisticated constitutive models allowing the simulation of complex
boundary value problems is growing. Therefore, the necessity and ability of dif-
ferent features of a hierarchical model to analyse this type of cyclic consolidation
boundary value problems are studied.
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Abstract. Geotechnical csonstruction projects in natural clay deposits
are challenging because of the complex constitutive features of these clays
(e.g. inherent and stress-induced anisotropy and destructuration). Cyclic
loading, on the other hand, is typical for various geotechnical applications
where natural clay deposits are involved such as wind and wave loads in
relation to onshore and offshore foundations, ship locks or dams. This
makes important to consider cyclic loads in the numerical simulations for
geotechnical applications in natural clay deposits. Therefore, in case of
natural clays it is essential to have proper constitutive models accounting
for the clay material response to the cyclic nature of the loading in order
to have reliable predictions of the time-dependent consolidation behavior
and the corresponding development of the ground settlements. Within
the present study the influence of the constitutive model on the numerical
simulation of the natural clay consolidation under cyclic loading is qual-
itatively investigated employing the experimental results for a typical
natural clay reported in the companion paper Cyclic response of natural
Onsøy clay – Part I: Experimental analysis. The approach followed in this
paper employs an adequate hierarchical constitutive soil model based on
the bounding surface plasticity (BSP) concept. The hierarchical struc-
ture of the constitutive model makes it possible to investigate the impor-
tance of a particular feature of the model such as the inherent and the
stress-induced anisotropy, the structure and the destructuration by acti-
vation/deactivation of the associated constitutive parameters. Finally,
the model responses (such as the evolution of the excess pore-pressure
and the settlement during cyclic loading) of each model of the hierarchi-
cal family are compared and discussed with respect to the necessity of
the model complexity level. In order to calibrate the constitutive para-
meters a number of geotechnical experiments are numerically simulated
considering natural and reconstituted Onsøy clay samples under drained
and undrained hydraulic conditions. Moreover, the significant influence
of the destructuration and the features of the BSP concept on the model
response under consolidation induced by cyclic loading is highlighted. In
conclusion, it is shown that the presented constitutive model based on
the BSP concept is generally capable to predict the consolidation behav-
ior of natural clay induced by cyclic loading. The model is suitable to
simulate the main phenomena such as the pore-water pressure dissipation
behavior and the associated but retarded evolution of the settlement.

c© Springer International Publishing AG 2017
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Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 12
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1 Introduction

For the purposes of a reliable geotechnical construction on natural clay deposits
due to clay’s low stiffness and permeability it is essential to understand the
clay consolidation behavior induced by cyclic loading. The consolidation under
cyclic loading is characterized by the time-dependent evolution of the excess
pore-water pressure, the corresponding development of the effective stress and
the associated settlement.

The required adequate constitutive model has to account for the complex con-
stitutive behavior governed by the initial and current stress states, the stress-
strain history and the structure of the natural clay. The structure of natural
clays consists of two parts [4,20,22]: The anisotropic fabric formed during geo-
logical processes such as sedimentation or consolidation and the inter-particle
bonding which is related to several different time-dependent physico-chemical
processes. The anisotropy effects the rotation of the yield stress with respect to
the stress path history and the inter-particle bonding imparts additional strength
to the clay before yielding. To capture the complex hydro-mechanical behavior
of natural clays the present study is focused on modeling the inherent and the
stress-induced anisotropic fabric and the stress-induced destructuration associ-
ated with a progressive damage of the inter-particle bonding. Furthermore, the
importance of the realistic modeling of the constitutive behavior induced by
cyclic loading is emphasized. Special attention is given to the smooth elastoplas-
tic behavior inside the bounding surface, the degradation of the stiffness and the
accumulation of plastic strains induced by cyclic loading.

Consequently, a series of hierarchical constitutive SANICLAY models which
were introduced in [10,30,34] based on the BSP concept are employed and effi-
ciently implemented in a three-dimensional state-of-the-art finite element code
using a robust time integration scheme. The explicit integration scheme with
an automatic error control and sub-stepping algorithm originally proposed by
[32,33] has been modified to be applicable for the integration of the more com-
plex constitutive equations in the BSP framework. The time integration scheme
is out of the scope of the present study.

The Onsøy clay is chosen as a representative for a typical natural clay exhibit-
ing certain anisotropy and destructuration. The constitutive parameters are cali-
brated against several geotechnical laboratory tests on reconstituted and natural
Onsøy clay under oedometric and triaxial mechanical boundary conditions, dif-
ferent loading paths and drained and undrained hydraulic conditions.

The main focus in this study is set on the understanding of the influence
of the hierarchical complexity of the constitutive model on the one-dimensional
consolidation behavior of natural clay induced by cyclic loading. The aim of
the qualitative study is the evaluation of the necessity of certain typical fea-
tures of the natural clay behavior (e.g. anisotropy, destructuration, elastoplastic
behavior during unloading-reloading path) in consolidation analysis rather than
a quantitative comparison with the experimental results.

In this study the focus is set on the consolidation behavior under oedometric
boundary conditions. Accordingly, qualitative numerical analysis by use of finite
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element simulations are carried out. The experimental setup of the oedometer
device, the initial conditions and the mechanical and hydraulic boundary condi-
tions are chosen in accordance with the experimental study on Cyclic response of
natural Onsøy clay – Part I: Experimental analysis. To assess the need and the
influence of hierarchical modeling the evolution of the excess pore-water pressure
and the settlements are evaluated.

2 A Hierarchical Model Within the Framework
of the Bounding Surface Plasticity

The hierarchical structure of the adequate constitutive model in the framework of
the BSP is described in the following section. The model is generally formulated
in the multiaxial stress space. Firstly, the non-linear elastic model response is
introduced followed by the general description of the bounding surface plasticity
concept. The model in its simplest form is based on the elastoplastic critical state
soil mechanics concept using the Modified Cam-Clay approach incorporating
isotropic hardening and softening. Some model extensions allow to capture more
sophisticated soil mechanical features of natural clay such as the anisotropy cov-
ered by rotational hardening and the destructuration. Concluding, some special
features of the BSP model concerning a more appropriate cyclic model response
are presented.

2.1 Elasticity

The elastic stress-strain behavior is described by a non-linear stress-dependent
isotropic hypo-elastic relation. The stress and the strain tensors can be presented
as the sum of the deviatoric and the volumetric part. The formulations in the
multiaxial stress and strain space are given in the following: the mean effective
stress p = 1/3 tr σ, the deviatoric stress tensor s = σ − p I. The elastic stress-
strain relationship is given by Eq. 1.

ε̇e =
ṗ

3 K
I +

ṡ

2 μ
(1)

The bulk modulus K (see Eq. 2) is assumed to be dependent on the stress state
expressed by the effective mean stress p. Furthermore, the bulk modulus K is
defined by the specific volume 1 + e and the elastic swelling index κ. In this
study the definition of the specific volume v = 1 + e is related to the current
void ratio e. The shear modulus μ is expressed in terms of the bulk modulus K
and a constant Poisson’s ratio ν (see Eq. 3).

K =
1 + e

κ
p (2)

μ =
3 (1 − 2 ν)
2 (1 + ν)

K (3)
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2.2 Bounding Surface Plasticity

2.2.1 Concept

The BSP concept developed by [1,6,8,9,17–19] allows for a more sophisticated
modeling of the behavior inside the yield surface to account for complex stress
paths, cyclic loading and accumulation of strains. The multiaxial formulations
of the plastic potential surface G and the bounding surface F are given by Eqs. 4
and 5 respectively. The constitutive features incorporated in the plastic potential
surface and the bounding surface such as critical state soil mechanics, isotropic
hardening and softening, anisotropy and destructuration, non-associated flow
rule and Lode angle dependence and the corresponding constitutive parameters
will be explained in the following sections.

G =
3
2

{s̄ − p̄ α} : {s̄ − p̄ α} −
{

M2 − 3
2

α : α

}
p̄ {pα − p̄} = 0 (4)

F =
3
2

{s̄ − p̄ α} : {s̄ − p̄ α} −
{

N2 − 3
2

α : α

}
p̄ {ps,0 − p̄} = 0 (5)

The bounding surface F indicates the maximum stress state which the clay
has been experienced during the stress-strain history and an additional elastic
nucleus feln homologous to the bounding surface defines the elastic range (see
Figs. 1 and 2). The bounding surface, the plastic potential surface and the elastic
nucleus in the p, q effective mean vs. deviatoric stress space are schematically
illustrated in Fig. 1. The main feature of the BSP model is that the plasticity
modulus Kp at the current stress state σ is related to the plasticity modulus
K̄p at the corresponding image stress state σ̄ on the bounding surface indicated
with a bar via a distance function and an additional shape hardening function
ĥ (see Eq. 6).

Kp = K̄p + ĥ
δ

〈r − seln δ〉 = K̄p + ĥ

〈
b − 1

b − {b − 1} seln

〉
(6)

This approach ensures a smooth elastoplastic transition and enables the occur-
rence of elastoplastic deformations for stress paths from the outside of the elastic
nucleus to the bounding surface. The plasticity modulus at the image stress state
is determined from the consistency condition of the bounding surface Ḟ = 0. This
yields to Eq. 7 where q is the vector of the internal hardening variables derived
from the hardening rules with respect to the image stress state on the bounding
surface.

K̄p = −∂F

∂q
: q̃ (7)
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Fig. 1. Schematic illustration of the bounding surface, the plastic potential surface and
the elastic nucleus in the p, q effective stress space

Fig. 2. Schematic illustration of the BSP concept

The image stress is obtained by a radial projection rule (see Eq. 8) where
(1 ≤ b < ∞) is the similarity ratio between an imaginary loading surface through
the current stress state to the bounding surface through the image stress state
and σpc (ppc, spc) is the projection center. The projection center serves as the
center of homology for the loading surface as well as for the elastic nucleus. The
similarity ratio can be obtained from inserting the projection rule for the image
stress in the bounding surface formulation.

σ̄ = b {σ − σpc} + σpc (8)

The generalized scalar distances δ = |σ̄ − σ| and r = |σ̄ − σpc| are schematically
illustrated in the p, q effective stress space in Fig. 2. Moreover, the constitutive
parameter seln is an indirect measure of the size of the elastic nucleus. For a
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stress point inside the elastic nucleus with r/seln < δ the latter term in Eq. 6
and correspondingly the plastic modulus converge to infinity indicating a purely
elastic behavior. By setting a huge value for seln the model response reduces from
bounding surface plasticity to conventional elastoplasticity. For a stress point on
the bounding surface with δ = 0 or b = 1 the latter term in Eq. 6 converges
to zero and Kp = K̄p. Hence, the bounding surface acts like a yield surface in
conventional elastoplasticity. For all other loading paths having a positive scalar
plastic loading index L elastoplastic strains will be induced in accordance with
Eq. 9 as a function of the plasticity index Kp of the current stress state. Whereat,
the scalar plastic loading index L which defines the magnitude of the plastic
strain rate is derived from combining the flow rule and the consistency condition
on the bounding surface by use of the image stress state. All induced plastic
strains result in an update of the yield surface such as expansion, shrinkage or
rotation due to isotropic hardening and softening, anisotropy or destructuration.

L =
1

Kp

∂F

∂σ̄
: σ̇ (9)

2.2.2 Critical State

To describe the mechanical stress-strain behavior of natural clays the BSP model
is generally formulated in the framework of the critical state soil mechanics. [14,
24] gave an overview of critical state models developed and used in computational
geomechanics. The constitutive model employed in the current study is based on
the concept of the critical state soil mechanics by use of the Modified Cam-Clay
(MCC) formulation. The critical state defines a unique but material dependent
relationship between the volumetric stress and the deviatoric stress at failure and
the void ratio ecs (or the specific volume) at the critical state independent of the
initial state [27–29]. At the critical state in the triaxial stress space the deviatoric
plastic strain develops continuously while the triad of the volumetric stress, the
deviatoric stress and the void ratio (no total volumetric strain) remains constant.
The original Cam-Clay model was initially proposed by [27–29] determining the
formulation of the plastic potential from a plastic work rate equation including
the dilatancy as the coupling between the plastic volumetric and deviatoric strain
rates. The slope of the critical state line projected to the p, q effective stress
space is defined as the critical state stress ratio M . Afterward, [3,26] modified
the Cam-Clay model having an elliptical plastic potential surface and associated
yield surface to overcome the discontinuity of the Cam-Clay surface at the tip.

2.2.3 Isotropic Hardening and Softening

The BSP model incorporates a classical isotropic hardening as used in the Cam-
Clay models. The internal hardening variable p0 is controlling the evolution of
the size of the yield surface as a function of the plastic volumetric strain rate ε̇pv.
Furthermore, the model is suitable to model the softening behavior of heavily
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overconsolidated clays on the dry side of the critical state. The evolution of the
internal hardening variable p0 is given by the rate Eq. 10.

ṗ0 =
{

1 + e

λ − κ

}
p0 ε̇pv = 〈L〉

{
1 + e

λ − κ

}
p0 tr

{
∂G

∂σ̄

}
(10)

To sum up, the BSP model includes six constitutive parameters which are
directly related to the critical state soil mechanics concept. The elastoplastic
compression index λ and the elastic swelling index κ define the natural logarith-
mic effective mean stress-void ratio behavior in loading and unloading-reloading
respectively. In addition to this, the Poisson’s ratio ν, the critical state stress
ratio M in the p, q effective stress space, the isotropic hardening variable p0
which defines the initial size of the yield surface and the initial void ratio e0.

2.2.4 Anisotropy

The inherent anisotropy leads to an initial rotation of the yield surface. Induced
stresses and corresponding plastic strains result in a evolution (expansion,
shrinkage, rotation) of the yield surface with respect to the loading direction.
To capture the inherent and stress-induced anisotropy [7] extended the isotropic
to an anisotropic formulation of the plastic potential by proposing a new rate
expression of the plastic work. This formulation results in a rotated and dis-
torted elliptical plastic potential surface. The anisotropy is introduced to Eq. 4
by a rotational tensor α coupling the plastic volumetric and deviatoric strain
rates and by pα visualized in Fig. 1. The stress-induced evolution of the rota-
tional hardening variable α is controlled using sophisticated rotational hardening
rules [7,10–12,36] as a function of the plastic volumetric and deviatoric strain
rates and the stress path history. The chosen evolution of the internal hardening
variable α is given by the rate Eq. 11.

α̇ = 〈L〉 c patm
p

p0
{αb − α} (11)

αb =
r

xα
(12)

The rate of evolution of anisotropy and rotation is controlled by the constitutive
parameter c. The ratio p/p0 slows down the rate of the evolution for heavily
overconsolidated clays and the atmospheric pressure patm is used for reasons of
dimensional consistency. The rate equation includes a proper equilibrium value
αb (see Eq. 12) for the rotational tensor α with respect to various stress paths
indicated by the deviatoric stress ratio tensor r = s/p. Consequently, employ-
ing a less complex rotational hardening rule (out of the sophisticated ones) is
sufficient in this study since the oedometric model response is less sensitive to
the stress-induced anisotropy due to the almost constant effective stress ratio.
The constitutive parameter xα controls the equilibrium values of the rotational
tensor. This allows for a correct modeling of the K0 loading path (for example
in an oedometer test).
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In the current study the yield surface and the plastic potential surface have
the same rotational tensor α governed by the same rotational hardening rule.

2.2.5 Non-associated Flow Rule and Lode Angle Dependence

To account for a more accurate modeling of the softening behavior of clay under
undrained shearing and of the softening behavior of heavily overconsolidated clay
under drained shearing [10,15,16] introduced a non-associated flow rule. The for-
mulation of the yield surface in terms of non-associated flow rule is achieved by
replacing M and pα in the formulation of the plastic potential surface by N and p0.

Furthermore, [10,15,16] added a Lode angle dependence of the plastic poten-
tial surface and the yield surface to capture the different behavior in compression
and extension. It is to be mentioned that in this study for the sake of simplicity
of the time integration of the constitutive equations only the plastic potential
surface is considered as Lode angle dependent. Whereat, the critical state stress
ratio M(θ) for the plastic potential surface is a function of the Lode angle θ
which is defined as the third stress invariant [31,39] given by Eqs. 13–15 where
m = Me/Mc and r̄ − α is the effective stress ratio.

M(θ) =
2 m

{1 + m} − {1 − m} cos(3 θ)
Mc (13)

cos(3 θ) =
√

6 tr(n3
rα) (14)

nrα =
r̄ − α

|r̄ − α| (15)

2.2.6 Excessive Rotation and Uniqueness of Critical State

The rate equation of the rotational tensor (see Eq. 11) avoids an excessive rota-
tion of the plastic potential in the vicinity of the critical state by applying a
certain restrictive condition for the maximum value of α for η-values exceeding
a multiple of Mr defined by an internal model variable ξ given by Eqs. 16–21.
Moreover, the uniqueness of the critical state line is guaranteed. The ratio of
the rotational tensor at the critical state to the critical state stress ratio αcs/M
must be independent of the Lode angle θ.

if η > ξ Mr → αb =

√
2
3 ξ Mr nr

xα
(16)

η =

√
3
2

r : r (17)

ξ = xα
min(Me,Mc, N)

Mc
(18)

Mr =
2 m

{1 + m} − {1 − m} cos(3 θr)
Mc (19)

cos(3 θr) =
√

6 tr(n3
r ) (20)

nr =
r

|r| (21)
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2.2.7 Destructuration

The initial structure due to the bonding of the natural clay increases the yield
stress compared to the reconstituted clay at the same void ratio allowing for
loading paths with a higher effective mean stress without causing yielding. The
stress-volumetric strain behavior of a natural clay until the yield stress is reached
seems to be predominantly elastic having nearly the same slope and therefore
the same swelling index as the reconstituted clay during unloading-reloading
paths. After exceeding the yield stress destructuration abruptly occurs causing
a reduction of the stiffness and the strength of the natural clay resulting in a
large compression. Consequently, the elastoplastic compression index is high.
Due to the progressive nature of the destructuration the compression index of
the natural clay is gradually decreased until the stress-void ratio curve of the
natural clay converges at higher stress states to the corresponding curve of the
reconstituted clay. The destructuration is completed and almost no structure
remains.

In the constitutive modeling the initial structure and the destructuration are
considered by applying the general approach of [13]. A homologous reference sur-
face Fi is introduced to describe the size of the yield surface of the reconstituted
clay having intrinsic properties independent on the natural state (see Fig. 3).
[34,35] incorporated the concept of an intrinsic yield surface in the SANICLAY
model introduced by [10]. The concept is based on the assumption that the size
of the yield surface of a natural clay depends on the current amount of the
structure. The difference in size of both yield surfaces (intrinsic vs. structured)
indicates the amount of structural effects and inter-particle bonding forces. Con-
sequently, the degree of structuring is specified by the internal structure variable
Si = p0,s/p0,i defined as the ratio of the internal hardening variable p0,i for the
reconstituted clay to p0,s for the natural structured clay. The initial structure is

Fig. 3. Schematic illustration of the bounding surface for the natural clay and the
intrinsic reference surface for the reconstituted clay in the p, q effective stress space
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specified by the constitutive parameter Si,0. For reasons of quantification of the
structure of a natural clay with respect to the reconstituted state, [5] introduced
the stress sensitivity. In brief, the stress sensitivity Sσ is defined as the ratio
of the axial effective yield stress σaxial,yield for the natural state to the axial
effective stress σaxial,yield, rec for the reconstituted state at the same intrinsic
void index and can be directly related to the internal structure variable Si. The
internal hardening variable p0,s is introduced to the formulation of the yield sur-
face in Eq. 5. The evolution of the internal hardening variable p0,s given by the
rate Eq. 22 is divided into the classical isotropic hardening in accordance with
Eq. 10 and the counteracting evolution of the structure variable Si as a decaying
function of the plastic volumetric and deviatoric strain rates. The evolution of
the structure variable Si is given by Eqs. 23 and 24. Whereat, the constitutive
parameter ki specifies the rate of destructuration and the constitutive parameter
A describes the fraction of the volumetric and the deviatoric plastic strain rates
ε̇pv and ėp respectively influencing the destructuration. The initial void ratio and
the compression and the swelling index are introduced to ensure consistency
with the classical isotropic hardening.

ṗ0,s = Si ṗ0,i + Ṡi p0,i (22)

Ṡi = −ki

{
1 + e

λ − κ

}
{Si − 1} ε̇pdestr (23)

ε̇pdestr =

√

{1 − A} {ε̇pv}2 + A

{
2
3

ėp : ėp

}
(24)

2.2.8 Shape Hardening Function

Furthermore, for stress paths inside the bounding surface the plasticity mod-
ulus Kp in Eq. 6 is also dependent on the shape hardening function ĥ given
by Eq. 25. The shape hardening function controls the degradation of the stiff-
ness, the accumulation of plastic strains and accordingly the evolution of the
stress-strain response loops during cyclic loading. Whereat, h0 is a constitutive
parameter defining the initial value of the shape hardening function. The accu-
mulation of the plastic strains is captured by the internal damage variable d.
The evolution of the damage variable is given by the rate Eq. 26 as a function of
the deviatoric plastic strain rate and the constitutive parameter adam controlling
the rate of evolution. The term {p0,s}3 is added for reasons of stress-dependency
and dimensional consistency of the shape hardening function. With increasing
plastic deviatoric strain rate during cyclic loading the internal damage variable
increases, the shape hardening function decreases and consequently the plasticity
modulus and the stiffness reduce as well.

ĥ = {p0,s}3 h0

1 + d
(25)

ḋ = adam

{
2
3

ėp : ėp

}1/2

(26)
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2.2.9 Projection Center

The projection center is always updated to the last point of stress reversal to
allow for a more accurate simulation of the evolution of the plastic strains dur-
ing unloading paths. A stress reversal is revealed by the condition for the plastic
loading function L ≤ 0. That means the next stress increment is pointing inside
the imaginary loading surface. After updating the projection center a new image
stress on the opposite side of the bounding surface is determined resulting ini-
tially in a stiff and predominantly elastic model response. Because the projection
center serves as the center of homology for the elastic nucleus the position of the
elastic nucleus is updated in a analogue manner. Accordingly, the initial part of
the next stress increment yields to purely elastic behavior depending on the size
of the elastic nucleus.

Moreover, the projection center has to be updated because it must not be
outside the bounding surface when the latter one is updated due to isotropic
or rotational hardening, destructuration or softening. This requirement arises
from the condition of the uniqueness of the image stress for a given projection
center and stress state. The evolution of the projection center σ̇pc(ṗpc, ṡpc) as
a function of the evolution of the internal hardening variables q̇ is given by
Eqs. 27–30. To ensure the proper position of the projection center the ratio X in
Eq. 29 should be kept constant. Whereat sα = ppc α and sbs is the stress state
on the bounding surface which is closest to the projection center.

ṗpc =
ppc
p0,s

ṗ0,s (27)

ṡpc =
spc

p0,s
ṗ0,s +

{

ppc α̇ − X

√
2
3

ppc {p0,s − ppc} 3
2 {α : α̇}

{
N2 − 3

2 {α : α}}
ppc {p0,s − ppc}1/2

npc

}

(28)

X =

√
3
2 {spc − sα} : {spc − sα}

√
3
2 {sbs − sα} : {sbs − sα}

=

√
3
2 {spc − sα} : {spc − sα}

{{
N2 − 3

2 {α : α}}
ppc {p0,s − ppc}

}1/2
(29)

npc =
{spc − sα}
|spc − sα| (30)

Finally, it is to be mentioned that the viscoplastic and strain-rate dependent
material behavior is not considered in the present study [18,19,23,25].

3 Calibration of the Constitutive Parameters

For the calibration of the constitutive parameters geotechnical tests under oedo-
metric and triaxial mechanical conditions and drained and undrained hydraulic
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conditions are numerically simulated. In the following figures the experimen-
tal results are indicated by symbols and the numerical results are indicated by
lines. It is to be mentioned that the experimental data are provided by different
research groups. However, the testing materials originate from similar site and
depths but manifesting slightly different in situ conditions such as void ratio,
stress state, degree of structure. Further differences may occur due to distur-
bance by sampling and due to sample preparation. In spite of these differences,
the calibration of the constitutive parameters results in just one parameter set.

The oedometer tests under static loading on reconstituted and natural Onsøy
clay from a depth of 9.9–10.3 were conducted at Ruhr-Universität Bochum and
described in the study Cyclic response of natural Onsøy clay – Part I: Experi-
mental analysis. The void ratio-axial stress behavior is visualized in Fig. 4. The
elastic swelling index κ and the elastoplastic compression index λ are determined
from the oedometer test on the reconstituted material. The initial value of the
internal structure variable Si,0 is measured according to the stress sensitivity
concept and the constitutive parameters ki and A are used to fit the post-yield
destructuration behavior. The bounding surface constitutive parameter seln, h0

and adam are calibrated to capture the elastoplastic behavior during the unload-
ing paths which is similar for the reconstituted and the natural clay. In this
study, the elastic nucleus is reduced to a single point by setting the constitu-
tive parameter seln = 1 in order to have no purely elastic material behavior.
The damage parameter adam is set to a small number because the accumulation
of plastic strains is not that distinct in the consolidation analysis afterward.

The Poisson’s ratio ν is taken from [21] based on a K0 loading test followed
by an elastic K0 unloading.

Fig. 4. Axial stress vs. void ratio behavior obtained from oedometer tests on reconsti-
tuted and natural Onsøy clay from a depth of 9.9–10.3 m conducted at Ruhr-Universität
Bochum
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The triaxial test data on natural Onsøy clay are taken from literature. [21]
investigated the drained triaxial behavior of anisotropically consolidated Onsøy
clay from a depth of 11.4–11.5 m by considering several constant loading paths in
compression and extension. Special emphasis is given to the determination of the
yield stress with respect to the loading direction. The yield stress different from
the in situ stress indicates the initial structure and the multitude of yield stresses
from different loading conditions specifies the inherent anisotropy. Consequently,
the shape (given by N), the initial size (p0,s) and the initial rotation (α0) of the
bounding surface can be derived from the drained triaxial test data by fitting
the rotated and distorted ellipse (see Fig. 5).

Furthermore, [37,38] analyzed the undrained triaxial behavior of anisotrop-
ically consolidated Onsøy clay from a depth of 10.5–10.9 m in compression and
extension. The effective stress paths in Fig. 6 allow for the identification of the crit-
ical state stress ratios Mc in compression and Me in extension. It is to be mentioned
that the undrained triaxial test results of [37,38] ondifferent samples showa certain
scatter of the stress-strain behavior such as a variation of the value of the peak devi-
atoric stress. Furthermore, the tests were conducted having faster rate of strain. An
increase in strain rate is correlated to a higher deviatoric peak stress. The proposed
model in this study is not able to cover strain rate effects.

The constitutive parameter xα can be calculated based on the closed-form
relation for a drained K0 loading path introduced by [10] shown in Eqs. 31–33.
It is to be noted that the initial value of α0 is derived from the drained triaxial
tests as described above and not calculated by αK0 = ηK0/xα. This underlies
the assumption that the stable state due to the rotation of the plastic potential

Fig. 5. Rotated bounding surface in p, q effective stress space obtained from anisotropi-
cally consolidated drained triaxial tests in compression and extension on natural Onsøy
clay from a depth of 11.4–11.5 m [21]
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Fig. 6. Effective stress path obtained from anisotropically consolidated undrained tri-
axial tests in compression and extension on natural Onsøy clay from a depth of 10.5–
10.9 m [37,38]

and the bounding surface under K0 loading is not reached yet. During further
loading under a constant η the surfaces will adjust themselves.

αK0 =
ηK0

xα
=

3/2 B η3
K0

+ η2
K0

+
{
2 {1 − {κ/λ}} − B M2

c

}
3/2 ηK0 − M2

c

3 {1 − {κ/λ}}
(31)

B = − 2 {1 + ν}
9 {1 − 2 ν}

κ

λ
(32)

ηK0 =
3 {1 − K0}
{1 + 2 K0} (33)

The constitutive parameter for the evolution of the rotation of the plastic poten-
tial and the yield surface is calibrated by fitting against the effective stress path
in Fig. 6 and the axial strain-deviatoric stress behavior and the axial strain-excess
pore-water pressure behavior illustrated in Fig. 7. The calibration leads to a low
value of the constitutive parameter c. This implies that due to a slow rotation
the undrained stress path almost follows the shape of the bounding surface both
in compression and extension. Furthermore, the bounding surface constitutive
parameter seln, h0 and adam can be adjusted.

An overview of the calibrated constitutive parameters is shown in Table 1.
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Fig. 7. (a) Axial strain vs. deviatoric stress and (b) axial strain vs. excess pore-water
pressure behavior obtained from anisotropically consolidated undrained triaxial tests in
compression and extension on natural Onsøy clay from a depth of 10.5–10.9 m [37,38]

Table 1. Constitutive parameters

MCC SANICLAY SANICLAY D SANICLAY BSP+D

Critical state
soil mechanics
MCC

κ 0.024 0.024 0.024 0.024

ν 0.2 0.2 0.2 0.2

λ 0.185 0.185 0.185 0.185

Mc 1.43 1.43 1.43 1.43

Me 0.83 0.83 0.83 0.83

N 1.0 1.0 1.0 1.0

Anisotropy
rotational
hardening

α0 0 0.3 0.3 0.3

c 0 10 10 10

xα - 12.2 12.2 12.2

Structure
destructuration

Si0 1 1 5 5

ki - - 0.7 0.7

A - - 0.5 0.5

BSP seln 100 100 100 1

h0 10,000 10,000 10,000 100

adam 0 0 0 1
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4 Numerical Modeling of the Consolidation Behavior
of Natural Clays Induced by Cyclic Loading

4.1 Concept

In the following section the influence and the necessity of the hierarchical com-
plexity of the constitutive model on the consolidation behavior of natural clays
induced by cyclic loading is investigated by use of the finite element method
(FEM). Moreover, the numerical results are qualitatively compared with the
experimental results. The analysis is conducted by employing the hierarchical
structure of the constitutive model. Accordingly, the importance of a certain
feature of the model can be elaborated by activation/deactivation of the corre-
sponding constitutive parameters described in the following. In brief, the inher-
ent and the stress-induced anisotropy are deactivated by reducing the consti-
tutive parameters for the initial rotation α0 = 0 and for the evolution of the
rotation c = 0 respectively. Likewise, the destructuration is disabled by setting
the constitutive parameter for the initial structure Si0 = 1. Furthermore, the
bounding surface is switched to conventional elastoplasticity by increasing the
values of the constitutive parameters for the size of the elastic nucleus seln = 100
and for the initial value of the shape hardening function h0 = 10, 000. Add to
this, by setting the constitutive parameter adam = 0 no accumulation of plastic
strains induced by cyclic loading is allowed. Consequently, the hierarchical model
family is divided into four models listed below. The corresponding constitutive
parameters are shown in Table 1. It is to be noted that all models exhibit a Lode
angle dependence of the plastic potential and a non-associated flow rule.

• MCC → isotropic hardening and softening
• SANICLAY → additional anisotropy
• SANICLAY D → additional destructuration
• SANICLAY D + BSP → additional bounding surface plasticity

The necessity of the degree of complexity of the constitutive model is evalu-
ated based on the comparison of the model responses of each constitutive model
of the hierarchical model family. As the most important model responses in
consolidation tests under cyclic loading the evolution of the excess pore-water
pressure and the development of the settlements are numerically analyzed.

4.2 Boundary and Initial Conditions

The FEM is an adequate tool for solving geotechnical boundary value problems
such as the one-dimensional consolidation induced by cyclic loading. Within the
coupled hydro-mechanical consolidation analysis both displacement and pore-
water pressure are nodal degrees-of-freedom. The consolidation process is numer-
ically solved according Biot’s theory [2]. The geometry (diameter of 7 cm and
height of 2 cm) and the mechanical and hydraulic boundary conditions of the
simulation model are chosen in accordance with the experimental setup of the
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oedometer device introduced in the study Cyclic response of natural Onsøy clay
– Part I: Experimental analysis. Consequently, the bottom of the sample is ver-
tically fixed and the sample is laterally constraint. The cyclic haversine loading
is applied at the top of the sample as a mechanical stress boundary condition,
whereat the load amplitude be 200 kPa and the load period be 120 s. Further-
more, the applied hydraulic boundary conditions allow for the drainage of the
pore-water at the top of the sample and restricts the sides and the bottom to be
impermeable.

In the present study the natural clay sample is chosen and considered as
a homogeneous and fully saturated two-phase material composed of solids and
pore-water. The effective stresses at the beginning of the simulation are initial-
ized based on the coefficient of lateral earth pressure at rest K0 = 0.55 which is
taken from [21]. Moreover, all models initially manifest the same preconsolidation
pressure p0, s = 35 kPa according to the yield stress derived in the oedometer
test under static loading. The initial void ratio e0 = 1.783 is determined in
compliance with the experimental data and used to initialize the density. The
permeability of the natural clay is assumed to be isotropic in this study. The
coefficient of permeability k = 10−8 m/s is calibrated against the dissipation
behavior of the excess pore-water pressure from the oedometer tests on reconsti-
tuted and structured Onsøy clay conducted at Ruhr-Universität Bochum. The
void ratio dependence of the permeability following a logarithmic relation is not
considered in this study.

4.3 Discussion

In the discussion on the results of the numerical simulations and model pre-
dictions data for normalized excess pore-water pressure and settlements will be
used. The excess pore-water pressure is normalized by the total stress amplitude
200 kPa, while the settlements are normalized by the maximum value for the

Fig. 8. Experimental data for natural Onsøy clay: (a) normalized excess pore-water
pressure and (b) normalized settlement
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settlement s in the experiments after 250 cycles where mean value of the excess
pore-water pressure oscillates around zero (in our case s = 3.5 cm).

Figure 8 shows the evolution of the normalized excess pore-water pressure
over cycles and the evolution of the normalized settlement over cycles from the
consolidation experiment under cyclic loading on natural Onsøy clay using a load
amplitude of 200 kPa and a load period of 120 s. The comparison of the exper-
imental results for the evolution of the normalized excess pore-water pressure
and the corresponding results from the numerical simulations after employing
the four considered constitutive models (Fig. 9) reveals that all models under-
estimate the reduction in the excess pore-water pressure amplitude and predict
negative pore-water pressure fast after first 5–10 cycles. Therefore, there is a
need in further analysis of the experimental set-up and the numerical model

Fig. 9. Evolution of the normalized excess pore-water pressure over cycles from the
numerical simulation of consolidation tests under cyclic loading on natural Onsøy clay
using a load amplitude of 200 kPa and a load period of 120 s – (a) MCC (b) SANICLAY
(c) SANICLAY D (d) SANICLAY BSP+D
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Fig. 10. Evolution of the normalized settlement over cycles from the numerical simu-
lation of consolidation tests under cyclic loading on natural Onsøy clay using a load
amplitude of 200 kPa and a load period of 120 s – (a) MCC (b) SANICLAY (c) SANI-
CLAY D (d) SANICLAY BSP+D

including careful check of the consistency of the initial and boundary conditions
in the experiment and the corresponding numerical simulation.

Regarding the model predictions for the settlements (Fig. 10) the normalized
settlements are most pronounced for the simulations employing the constitutive
models with destructuration (SANICLAY D and SANICLAY BSP+D). How-
ever, it is to be mentioned that in the experiment (see figure Fig. 8b) approxi-
mately just 75% of the maximum settlements are reached after 50 cycles. Simi-
larly like for the normalized pore-water pressure the numerical simulations pre-
dict the maximum settlements to be achieved after much less cycles compared
to the case in the experiment. While SANICLAY D gives results for the max-
imum settlements close to those from the experiment, the less complex MCC
and SANICLAY models underestimate the corresponding maximum experimen-
tal values. Furthermore, due to the accumulation of the plastic strains during
cyclic loading the BSP+D model overestimates the corresponding maximum set-
tlements observed in the experiments. It is evident that the complexity in the
constitutive mechanical model brings mainly difference in the magnitude of the
settlements. It has to be mentioned that a model parameter sensitivity analysis
to be made as a future work can give an explanation on the importance of the
internal model parameters that are difficult to be identified directly from the
available experimental data. Despite these discrepancies the simulations quali-
tatively well explain the evolution of the settlements with cyclic loading and the
reduction of the mean excess pore-water pressure with the increase of the cycle
number.

5 Conclusion and Outlook

The objective of the present study is a qualitative numerical analysis of the
influence of the hierarchical complexity of a constitutive model on the one-
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dimensional consolidation behavior of natural clay induced by cyclic loading.
A hierarchical constitutive model based on the BSP concept is introduced and
the constitutive parameters are calibrated against various geotechnical element
tests on Onsøy clay as a representative for a typical natural clay. The impor-
tance of an enriched constitutive model is assessed based on the comparison
of the model responses of each constitutive model of the hierarchical model
family incorporating different features of the natural clay behavior. The qual-
itative numerical analysis confirms that the constitutive model is suitable to
simulate the one-dimensional consolidation behavior of natural clay induced
by cyclic loading. The model is capable to simulate the main phenomena of
one-dimensional consolidation induced by cyclic loading. Especially, the ability
for simulating the reduction of the mean value of the excess pore-water pres-
sure cycling around zero in the quasi-stationary state, the predominant elastic
cycling of the settlements in the quasi-stationary state and the damping of the
amplitude of the excess pore-water pressure with an increasing number of cycles
are emphasized. Moreover, the importance of an adequate numerical model is
pointed up by the significant influence of the destructuration and the features of
the BSP concept (such as elastoplastic material behavior in unloading-reloading
stress paths) on the model response in one-dimensional consolidation induced
by cyclic loading.

The deeper understanding of the one-dimensional consolidation process needs
a more sophisticated analysis of the effective stress-strain behavior and especially
the evolution of the internal state variables with respect to the cyclic loading.
Furthermore, the qualitative analysis presented in the current study has to be
continued by investigating the influence of the constitutive parameters on the
model responses during cyclic loading by use of a global sensitivity analysis in
order to quantitatively compare the numerical with the experimental results.

Acknowledgements. The authors acknowledge the financial support provided by the
German Science Foundation (DFG) in the framework of the Collaborative Research
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Abstract. Within the scope of the research group FOR 1136
GEOTECH the main objective of subproject 8 (TP 8, part II) was
the development of a holistic three-dimensional finite-element model
as a framework for further model extensions from other subprojects.
Enhanced methods and models for example specific material descrip-
tions, contact element formulations and process approximations should
be easily implementable without a loss of reliability of the simulation
results. During model development, Thom and Hettler showed that cap-
turing the construction processes and their effects on deep excavation
walls by use of dynamic calculation exceeds present storage and com-
putation capacities [1]. The adaptability of the existing model is used
to pursue another approach. A more efficient method was developed
which nevertheless incorporates the decisive effects of the dynamic influ-
ences. Additionally, the advantages and disadvantages of different mate-
rial models are discussed.

Keywords: Finite-element modelling · Construction-induced deforma-
tions · Material modelling

1 Introduction

The excavation of the Potsdamer Platz in Berlin in 1993 is a suitable base for
theory and method development, because of comprehensive measurements which
were necessary for monitoring and quality management, cf. [2]. Its large dimen-
sions with spans of up to 200 m and depths of up to 25 m required a high construc-
tion precision and continuous control. Since the ground water level is 3 m below
ground level, the pits were constructed with an anchored underwater concrete bot-
tom slab and tied-back diaphragm walls, see Fig. 1(a). The unexpected additional
horizontal displacements of the deep excavation wall, as shown for two measure-
ment points in Fig. 1(b) and (c) are caused by the installation of vibrated RI-piles.
The significant difference between the horizontal displacements of the cross sec-
tions can be explained by the dynamical installing direction of the RI-piles: con-
struction of RI-piles parallel to the wall (Fig. 1(b)) and orthogonally (Fig. 1(c)).
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 13
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Fig. 1. Debis excavation at Potsdamer Platz (a) cross-section of excavation, (b) hori-
zontal displacements in cs MV1, (c) horizontal displacements in cs MV2, cf. [2]

Thom and Hettler introduced the following model in detail in [1]. The evalua-
tion for a dynamic simulation of installing the vibrated RI-piles is also discussed,
but the calculation method exceeded present computation capacities. Section 2
provides an overview of the geometrical model as well as the quasi-static process
approximations and Sect. 3 shows an alternative approach for the computation of
the dynamic vibration step. The material model impact is shown by means of two
examples. Concluding remarks are discussed in Sect. 4.

2 Numerical Model

The finite-element-program ABAQUS was used to create the 3D-model. The
chronological order of the construction process can be classified roughly by the
‘wished-in-place’ installation of the diaphragm wall, an initial excavation by
deactivating the corresponding elements, prestressing of anchors, realized by the
definition of the feather rigidity at the corresponding places, the second excava-
tion to the bottom of the pit and finally, the installation of the vibrated RI-piles.
Figure 2 shows an exploded view of the conclusive FE-model with information
about the material layers, contact definitions and geometric divisions. The lat-
ter is necessary for the controlling of the FE-mesh structure (refinement of the
elements towards the diaphragm wall; element deactivation has to correspond
to the actual excavation depth). An established material model for the numer-
ical description of soil is the enhancement of the classical hypo-plasticity (von
Wolffersdorff [3]) by Niemunis and Herle [4], which additionally takes the elas-
tic strain range into account. This is used for the first calculation example,
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Fig. 2. Overview of the 3D finite element model

Fig. 3. (a) Model top view (b) RI-pile field and numbering

the classical hypo-plasticity for the second one. The new approach for reducing
the computational effort of the dynamic vibration process by applying a pore
water overpressure in close vicinity of the piles instead, is motivated by Osinov,
cf. [5,6]. He analyzed the effect of soil liquefaction in consequence of RI-pile
construction in detail. Here, the soil is approximated by multi-phase C3D8P-
elements, which take the solid as well as the liquid phase into account. Through
additional mass and interaction terms, the pore pressure λ is solved simultane-
ously and can be used to apply the overpressure during the vibration process as
a boundary condition instead of the dynamic loading. The top view in Fig. 3(a)
shows the location of the representative field of nine RI-piles. The construction
of each pile is approximated by an assembly of nodes with a depth of 22 m
corresponding to the pile length. The numbering in Fig. 3(b) complies with the
activation of the boundary conditions.

3 Numerical Solutions

The enhanced hypo-plasticity by Niemunis and Herle is used to approximate
the dynamic vibration process of the RI-piles by a quasi-static pore water over-
pressure, see Sect. 3.1. Due to insufficient accordance with the measured data,
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also the classical formulation of hypo-plasticity by von Wolffersdorff is imple-
mented through the USER-interface of the model in Sect. 3.2, to enable an assess-
ment of advantages and disadvantages of the elastic strain range consideration.

3.1 Example 1: Consideration of the Elastic Strain Range

The first modification of the dynamic approximation of the vibration process
was to change the method into a static one, as described earlier. Accordingly,
the enhanced hypo-plasticity was used likewise. Figure 4 shows the displacement
solutions u1 for the whole geometry after the completed excavation process (a),
the application of pore water overpressure (b) as well as the diaphragm wall
deformations compared with the measurement data in both cases (c). After the
excavation process, the global soil displacements (a) as well as the horizontal
deformation of the diaphragm wall (c) correspond to earlier solutions and match
the measured values quite well. The only exception is the upper section, where
the effected assumptions for the anchors neglect the wall movement because of
prestressing forces. As a result of this, the maximum displacements are overesti-
mated. A striking fact is the very small increase of deformations due to the pore
water overpressure. That is probably the consequence of the overestimation of
stiffness increase by the material model. Strain evaluation of soil elements close
to the wall suggests an elastic material response, so the strain and displacement
accumulation through cyclic loading is not possible.

Fig. 4. Horizontal displacements u1 soil and diaphragm wall (a) after excavation (b)
after applying pore water overpressure λ (c) wall displacements at both points in time

3.2 Example 2: Neglect of the Elastic Strain Range

The second example uses the initial formulation of hypo-plasticity without con-
sideration of the elastic strain range to verify the presumption of Sect. 3.1.
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Fig. 5. Horizontal displacements u1 soil and diaphragm wall (a) after excavation (b)
after applying pore water overpressure λ (c) wall displacements at both points in time

Figure 5(a), (b) and (c) show the same evaluations as Fig. 4, but for the sim-
plified material model. The difference in magnitude is significant. Unlike the
first example, the increase of deformation Δu due to pore water overpressure
close to the RI-piles, achieves realistic dimensions considering that there is just
a small field of RI-piles in contrast to the real excavation pit. Whereas an obvi-
ous deficiency is the deviation of the first solution state from the measured data.
The deformations of the diaphragm wall after the completed excavation process
are highly overestimated.

3.3 Comparison of the Variants

While the modified hypo-plasticity is able to map all static processes of the
excavation precisely, it fails to capture the influence of pore water overpressure
λ in combination with the two-phase C3D8P elements. Whereas the classical
formulation captures the static approach for the installation of the vibrated RI-
piles, but totally overestimates the construction process of the excavation.

4 Discussion

A comprehensive FE-model was used to capture an alternative approach for
cyclic and dynamic loading. For this aim, two different material formulations
were used to get the structure response of the interaction between soil and
earth structures. Both material models are insufficient for the whole construction
process, because their results just partially match to available measurements.
Generally, the FE-model is a good framework, because it captures all processes
including all simplifications and approaches. It can be used for further inves-
tigations on enhancements of material or process modeling, because individual
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components can easily be exchanged, for example the material model through
the USER-surface.
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Abstract. It is known that some common constitutive models show deficits
when predicting elastic and plastic deformations due to low cycle loading
resulting for example from geotechnical installation processes. The aim of part I
of subproject 8 within the DFG research group FOR 1136 (GeoTech) is to show
the performance of different constitutive models and to compare them with
experimental results and between each other.
Series of drained, stress-controlled triaxial-tests are carried out. The strains

from monotonous and low-cycle loading are investigated systematically,
regarding total and quasi-elastic strains as well as strain accumulation.
All experiments are recalculated numerically with different constitutive

models, amongst them some common as well as advanced constitutive models,
which have been developed recently and partly within the aforementioned
research group GeoTech. By comparing the experimental and numerical results
systematically, an attempt is made to show the model’s advantages and deficits
and to give hints for the application in boundary value problems.

Keywords: Low-cycle loading � Triaxial tests � Strain response envelopes �
Incremental stress-strain behaviour � Granular soils

1 Introduction

In practical applications soil elements can be subject to monotonous as well as to stress
or strain cycles with different magnitudes of amplitudes. Constitutive equations used to
solve boundary value problems (BVPs) should generally be able to model all these
loading situations and predict resulting stresses and deformations realistically.

Especially when it comes to cyclic loading, occurring for example during
geotechnical installation processes, it is well known, that some common constitutive
models show deficits when predicting elastic and plastic deformations with regard to
magnitude as well as to accumulation.

Cyclic loading processes can be divided into high-cycle and low-cycle loading,
depending on the number of cycles. To avoid numerical errors and high computing
time, it is often useful to calculate deformations due to high-cycle loading by means of

© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics, 82, DOI 10.1007/978-3-319-52590-7_14



explicit models, where irreversible strains are treated similar to creep deformations
under constant loads, Niemunis et al. (2005). In Wichtmann’s High Cycle Accumu-
lation model e.g. the strain amplitudes are limited to De � 10�3. So it is appropriate to
use other constitutive equations for low number of cycles N, when the magnitude of
strains is � 10−3. Low-cycle loading processes can be roughly defined with N � 50,
Danne and Hettler (2013). In these cases, an implicit calculation of deformations may
be appropriate.

In this paper the performance of five common and advanced constitutive models is
examined by experimental and numerical element tests with monotonous and low-cycle
loading.

After describing some fundamentals in Sect. 2, the resulting strains from experi-
mental and numerical element tests are evaluated separately and divided into

– total strains by monotonous loading (Sect. 3),
– strain accumulation during low cycle loading (Sect. 4) and
– quasi-elastic strains due to low cycle loading (Sect. 5)

The summary at the end of this paper contains some preliminary recommendations
which of the considered constitutive equations might be most suitable for application in
BVPs.

2 Fundamentals

2.1 Triaxial Device and Testing Procedure

The triaxial device used for the experiments is equipped with high-resolution mea-
surement- and control-technology. The confining pressure as well as the axial force can
be controlled independently, so that stress paths in different directions from any initial
stress-state can be carried out.

The tested soil is a fine grained sand with a low uniformity-index (CU = 1.25,
d50 = 0.15 mm), having a positive impact when it comes to avoid effects from mem-
brane penetration, investigated e.g. from Nicholson et al. (1993). Height and diameter
of the soil specimen are 10 cm.

The soil sample is fabricated by pluviating dry sand thereby maintaining a constant
height. This specimen-preparation-method was kept constant for all tests. The achieved
relative densities ID were well reproducible with small deviation (±0.1). Starting at
isotropic stress, the predefined initial stress-state was reached, either by increasing the
vertical stress r1 (for stress-states in compression) or the horizontal stress r3 (for
stress-states in extension). Then the soil sample was consolidated.

The experiments are carried out with dense soil samples (ID � 0.75). Corre-
sponding results from loose samples are described in Danne (2017). The investigated
initial stress-states are shown in Table 1.

The stress controlled experiments are carried out under drained conditions.
Therefore stresses are effective stresses (r = r′). Cyclic loading is performed at low
frequency during low-cycle loading to avoid pore water pressure and maintain pure
drained conditions.
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A detailed description of experimental fundamentals can be found in Danne and
Hettler (2015) and Danne (2017).

2.2 Stresses and Strains

The definition of a stress or increment is described in Eqs. (1) and (2).

Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dr21 þ 2Dr23

q

ð1Þ

De ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

De21 þ 2De23

q

ð2Þ

The stress vector can be quantified by plotting the strains in the rendulic plane, see
e.g. Gudehus (1979). In this plane, the direction of stress increment can be described by
the angle ar between stress vector and the positive

ffiffiffi

2
p

r3-axis.

2.3 Constitutive Equations

The following constitutive equations are investigated:

– Hardening Soil-model (HS)
– elasto-plastic model based on the theory of porous media (TPM)
– Hypoplasticity with intergranular strain (IS)
– Intergranular Strain Anisotropy-model (ISA)
– Simple Anisotropic Sand Plasticity model (Sanisand)

2.3.1 Hardening Soil-Model
The Hardening Soil-model (“HS-model”) developed by Schanz (1998) is formulated in
the framework of classical theory of plasticity. Total strains are calculated using a
stress-dependent stiffness, different for first loading and un-/reloading. Plastic strains
are calculated by introducing a multi-surface yield criterion. Hardening is assumed to
be isotropic depending on both the plastic shear and the volumetric strain. For the
frictional hardening a non-associated and for the cap hardening an associated flow rule
is assumed.

The numerical calculations have been carried out with the programme Plaxis 2D.
The required parameters have been determined experimentally with standard laboratory
tests.

Table 1. Initial stress-states in terms of mean pressure p and deviatoric stress q

Stress state p [kPa] q [kPa] Stress–Ratio η = q/p [–]
A 200 150 0.75 Compression
I 200 0 – Isotropic
J 200 –100 –0.5 Extension
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2.3.2 TPM-Model
The theory of porous media (TPM) is a general thermodynamically consistent con-
tinuum mechanic concept to macroscopically describe common multiphase materials.
The theory describes systems, which consist of a porous solid, whose pores are filled by
one or more fluids, e.g. liquids or gases. The different parts are not regarded separately;
instead a certain volume part is allocated to each part at each point. In soil mechanic
applications it is assumed, that a partly saturated soil consists of a solid phase (in-
compressible grains), a liquid phase (incompressible pore water) and a gas phase
(compressible pore gas or air), Ehlers (1996). The considered constitutive equation was
developed by Ehlers et al. (2011) within the framework of TPM. It determines
deformations by a single yield criterion with isotropic hardening and a yield surface,
depending from hydrostatic stress state.

The 29 required parameters for a fine sand, which is very similar to the fine sand
used by the authors, were determined and provided by the institute of applied
mechanics at Stuttgart University.

2.3.3 Hypoplastic Model with IS
The hypoplastic constitutive model describes the stress-strain behaviour of
non-cohesive soils in rate form. Its present version was formulated by von Wolffers-
dorff (1996). Small strain stiffness formulation (so-called intergranular strain “IS”
concept) was added by Niemunis and Herle (1997). All hypoplastic calculations have
been carried out with the IS extension.

The parameter set for the tested fine sand has been determined and provided by
colleagues of the Karlsruhe Institute of Technology (KIT). The numerical calculations
have been carried out with Niemunis’ “incremental driver” Niemunis (2008), which has
also been provided by the KIT.

2.3.4 Sanisand-Model
The Sanisand-model was developed within the framework of critical state soil
mechanics and bounding surface plasticity Taiebat and Dafalias (2008). As analytical
description of a narrow but closed cone-type yield surface, that obeys rotational and
isotropic hardening, an 8-curve equation is used.

Here too, the colleagues of the KIT have determined the parameters for the tested
sand and provided them to the authors. Niemunis’ “incremental driver” has been used
for the numerical calculations.

2.3.5 Intergranular Strain Anisotropy-Model
The elastoplastic ISA-model recently introduced by Fuentes (2014) is based on the
intergranular strain concept, but contrary to the existing formulations it proposes a yield
function describing a surface within the intergranular strain space. It includes an elastic
locus in the intergranular strain space.

The numerical calculations have been carried out with Niemunis’ “incremental
driver”; the required parameters for this model have been determined by colleagues of
the KIT and provided to the authors.
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3 Monotonous Loading

The experimental and numerical results for monotonous loading are evaluated by
means of so called “strain response envelopes” (SRE), first mentioned in Lewin and
Burland (1970) and Gudehus (1979). Some important and often-cited experiments
including a detailed description of the test procedure can be found e.g. in Doanh
(2000), Calvetti (2003) or Costanzo et al. (2006). Further results see Danne (2017).

After the soil sample is consolidated at a predefined stress state, stresses are in- or
decreased in a certain loading direction until a limit state is reached. For all loading
directions one equally prepared and consolidated sample is used.

3.1 Triaxial Compression (Stress State A)

Figure 1 shows the experimental and numerical results determined for stress state A,
see Table 1. Apart from the hypoplastic and the ISA-model, all envelopes are
approximately symmetrical to their long axis. Best qualitative agreements with the
experiments can be found using both elastoplastic models, the HS- and TPM-model,
Fig. 2c and d.

Comparing the strains due to the stress increment Dr ¼ 50 kPa for example (bold
line in Fig. 1) best agreements with the experiments concerning the magnitude of the
strains can be obtained with the elastoplastic TPM- and the hypoplastic model. Strains
calculated with the ISA- and with HS-model are too small. For deviatoric unloading –

leading to positive radial and negative axial strains – the strains predicted with the
hypoplastic and the ISA-model seem to be too small and the unloading stiffness too
large respectively. The shapes of the SREs derived from hypoplastic calculations show
a small bulge due to the strain response for isotropic compression (ar = 35°). This
cannot be observed experimentally.

Plotting the absolute value of strains depending on the loading direction, a better
quantitative evaluation of the results is possible, Fig. 2.

All models show the largest strains due to deviatoric loading. The experimental
results lie between the numerical curves. Strains from hypoplasticity and the
TPM-model are equal or larger than the experiments. Strains calculated with the
Sanisand and the ISA-models are significantly smaller for both stress increments, Fig. 2.

Considering the results for Dr ¼ 50 kPa in Fig. 2b, the total strains calculated with
the hypoplastic model match very well with experiments. Hypoplastic strains due to a
smaller stress increment Dr ¼ 20 kPa however are almost twice as large as the
experimental ones at deviatoric unloading (ar � 315°), Fig. 2a. For the smaller stress
increment, best agreements between the HS-model and the experiments can be
observed.

At deviatoric unloading there are better agreements between constitutive equations
and experiments, for the differences of the magnitudes of strains are not that significant.
The largest unloading-stiffness however can be observed for the hypoplastic model,
which is almost twice as large as the ones observed experimentally.
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3.2 Isotropic Stress State (I)

Starting from the isotropic axis (stress state I, see Table 1), the shapes of the SREs for
stress increments Dr � 50 kPa are almost symmetrical for the two elastoplastic models
and the experiments, Fig. 3a, b, and c. For larger stress increments the envelopes
become elongated towards extension. This might be explained by the fact, that
unloading in extension is closer to the failure line than in triaxial compression.

Fig. 1. Strain response envelopes due to monotonous loading for stress state A, ID � 0.75
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The hypoplastic and the ISA-model in Fig. 3d and f show significant differences –
already observed in compression – between strains due to isotropic compression with
positive radial and axial strains and isotropic extension with negative radial and axial
strains.

Strains due to this stress increment calculated with the ISA- and the TPM-model
seem to be too small for almost all loading directions. For the hypoplastic and the
ISA-model it can once again be observed that deviatoric unloading, leading to positive
radial and negative axial strains, cannot be reproduced correctly, because the envelopes

Fig. 2. Absolute value of total strains De due to monotonous loading depending on loading
direction ar, stress state A, ID � 0.75: (a) Dr ¼ 20 kPa, (b) Dr ¼ 50 kPa
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are too small and the stiffness is too large respectively. For the hypoplastic SREs a little
bulge within the envelope’s shape can be observed, resulting from the strain response
due to isotropic compression (ar = 35°).

Figure 4 shows the absolute values of total strains due to a constant strain incre-
ment depending on the loading direction. It is obvious that the agreements between the
ISA-model and the experiments and all other models are rather poor.

Fig. 3. Strain response envelopes due to monotonous loading for stress state I, ID � 0.75
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This is also the case for the hypoplastic strains at deviatoric loading (ar � 125°),
where strains are almost three times larger than the experimental results.

For both stress increments the strains from the HS-model are closest to the
experimental results. However, this is not the case for extension; here the strains from
the Sanisand- and hypoplasticity-model are the largest and fit the experimental results
best.

(a)

(b)

Fig. 4. Absolute value of total strains De due to monotonous loading depending on loading
direction ar, stress state I, ID � 0.75: (a) Dr ¼ 20 kPa, (b) Dr ¼ 50 kPa
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3.3 Triaxial Extension (Stress State J)

In Fig. 5 it can be noticed that the agreements between experimental and numerical
results in extension are less than in compression.

While the experiments lead to relatively slim SREs, all numerical SREs are wider.
The hypoplastic strains are the largest, followed by the ISA-model. Like in the

Fig. 5. Strain response envelopes due to monotonous loading for stress state J, ID � 0.75
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experiments the stress increment Dr ¼ 100 kPa cannot fully be applied with the
HS-model in all directions; the outer envelope is not closed.

For a constant stress increment (Dr ¼ 20 kPa and Dr ¼ 50 kPa), Fig. 6 shows the
absolute values of total strains depending on the loading direction. It can be observed
that the experimental strains due to loading directions towards the failure line in
extension (ar � 225� � � � 315�) are much larger than the numerical results.

4 Low Cycle Loading with Regard to Total Strain
Accumulation

The strain accumulation during low-cycle loading is investigated by applying deviatoric
stress cycles with Dp ¼ 0 and Dq 6¼ 0 on a soil element at the isotropic stress-state I
(Table 1).

Fig. 6. Absolute value of total strains De due to monotonous loading depending on loading
direction ar, stress state J, ID � 0.75: (a) Dr ¼ 20 kPa, (b) Dr ¼ 50 kPa
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Fig. 7. Strain accumulation due to 40 deviatoric stress cycles Dq ¼ 50 kPa, stress state I,
ID � 0.75: (a) linear x-axis, (b) logarithmic x-axis

(a) experiment (b) Hardening Soil

(c) TPM-model (d) hypoplasticity

(e) Sanisand (f) ISA

Fig. 8. Strain accumulation Dɛ due to 20 pure deviatoric stress cycles Dq ¼ þ 50 kPa, stress
state I, ID � 0.75
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As shown in Fig. 7, the experimentally observed strain accumulation of total strains
De versus the number of cycles N can be described in this case with a logarithmic
approach

epl;N ¼ a1 1þ a2 � ln Nð Þð Þ ð3Þ

see e.g. Goldscheider (1977), Hettler (1981), Hettler and Gudehus (1985). It also turns
out, that the quasi-elastic strains, i.e. the difference between loading and unloading,
remains already constant after a low number of cycles.

(a) experiment (b) Hardening Soil

(c) TPM-model (d) hypoplasticity

(e) Sanisand (f) ISA

Fig. 9. Strain accumulation Dɛ due to 20 pure deviatoric stress cycles Dq ¼ þ 200 kPa, stress
state I, ID � 0.75
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The comparison between experimental and numerical strain accumulation is shown
in Figs. 8 Dq ¼ þ 50 kPa and 9 Dq ¼ þ 200 kPa with dashed lines for plastic strains.
None of the considered constitutive models is able to describe the logarithmic increase,
because there is either total elastic behaviour after the first unloading or an approxi-
mately linear increase of strains.

For small stress amplitudes Dq ¼ þ 50 kPa in Fig. 8 the linear increase observed
from the Sanisand-, ISA- and the hypoplastic model is low and the plastic strains after

(a) experiment (b) Hardening Soil

(c) TPM-model (d) hypoplasticity

(e) Sanisand (f) ISA

Fig. 10. Quasi-elastic strain response envelopes at low-cycle loading, stress state A, ID � 0.75:
comparison of constitutive equations and experiments
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20 cycles of almost all constitutive equations lie at least in an approximately realistic
range with Depl � 0:01 � � � 0:10% and experimental strains Depl;exp � 0:045%. The
strains after the first unloading of both elastoplastic models almost exactly match the
experiments (Depl;exp;N¼1 � 0:018%). These models’ elastic behaviour, starting already
from the 2nd cycle and the triplication of experimental strains during low cycle loading
at the same time to Depl;N¼20 � 0:043%, lead to deviations from the experiments.

Regarding the strain accumulation due to a larger deviatoric stress amplitude Dq ¼
þ 200 kPa in Fig. 9, with the same set of parameters results in an unrealistic strain
increase (“ratcheting”) for the hypoplastic and the ISA-models, as the strains at the end
of the low-cycle loading are much larger than in the experiments. The strains calculated
with all other constitutive equations at the end of cyclic loading are between
Depl;N¼20 � 0:1. . .0:5% and are of the same magnitude as the experimental results with
Depl;N¼20 � 0:35%.

Similar observations can be made for isotropic stress cycles and different initial
densities, see Danne and Hettler (2016) and Danne (2017).

5 Low Cycle Loading with Regard to Quasi-Elastic Strains

Quasi-elastic strains have been investigated in detail e.g. in Danne and Hettler (2016)
and Danne (2017). Considering stress amplitudes Dr � 50 kPa it seems to be a good
approximation to assume constant elastic behaviour already after a few cycles. While
monotonous or low-cycle preloading and the initial density have little influence on the
quasi-elastic strains, this is not the case for the mean pressure and the initial stress-state,
Danne and Hettler (2013) and Hettler and Danne (2013).

Fig. 11. Absolute value of quasi-elastic strains Dɛ due to low-cycle loading with Dr ¼ 50 kPa
depending on loading direction ar, stress state A, ID � 0.75
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5.1 Triaxial Compression (Stress State A)

Figure 10 shows the SREs for compression stress state A (Table 1). The envelopes
derived from calculations with the TPM- and the ISA-model are too small and the
quasi-elastic stiffness too large respectively. In addition, the envelopes from
TPM-model have the shape of a circle, which is not realistic. The SREs calculated with
hypoplasticity are – in contrast to those observed for monotonic loading – too slim;
especially the stiffnesses at isotropic loading and unloading are too large.

(a) experiment (b) Hardening Soil

(c) TPM-model (d) hypoplasticity

(e) Sanisand (f) ISA

Fig. 12. Quasi-elastic strain response envelopes at low-cycle loading at stress state I, ID � 0.75:
comparison of constitutive equations with experiments
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Plotting the absolute value of quasi-elastic strains due to the same stress increment
(here: Dr ¼ 50 kPa) depending on the loading direction in Fig. 11 it can be noticed that
there are no agreements between the elastoplastic TPM-model and the other models at
all, for the envelopes are a circle-shaped, Fig. 10c.

For the other models at least the loading directions, which lead to the largest and the
smallest strains respectively are in good accordance. Except for the elastoplastic TPM-
and the ISA-model, all models predict absolute values of strains in an approximately
correct range.

5.2 Isotropic Stress State (I)

The quasi-elastic SREs from an initial isotropic stress state in Fig. 12 show rather
different shapes and sizes. The experimental SREs cannot be reproduced with the
TPM- and ISA-model; neither shape nor size match.

Figure 13 shows the absolute value of quasi-elastic strains for a stress increment of
50 kPa depending on the loading direction. All models lead to equal strains due to
deviatoric loading and unloading. This is not the case for the experiments, where the
strains due to deviatoric unloading are larger than those from deviatoric loading.

5.3 Triaxial Extension (Stress State J)

Figure 14 shows the quasi-elastic SREs from stress state J. The experiments lead to the
largest quasi-elastic strains for deviatoric loading and unloading.

The absolute values of quasi-elastic strains as a function of the loading direction are
shown in Fig. 15.

Fig. 13. Absolute value of quasi-elastic strains Dɛ due to low-cycle loading with Dr ¼ 50 kPa
depending on loading direction ar, stress state I, ID � 0.75
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The experiments lead to the largest quasi-elastic strains, followed by the
Sanisand-Model and hypoplasticity. The only constitutive equation which is able to
predict larger quasi-elastic strains due to deviatoric unloading (ar = 315°) than devi-
atoric loading (ar = 125°) is the hypoplastic model. A stress-induced anisotropy is
observed experimentally. It becomes visible by the rotation of the envelopes’ main axis
for different stress ratios and can also be reproduced best with hypoplastic calculations.

(a) experiment (b) Hardening Soil

(c) TPM-model (d) hypoplasticity

(e) Sanisand (f) ISA

Fig. 14. Quasi-elastic strain response envelopes at low-cycle loading, stress state J, ID � 0.75:
comparison of constitutive equations with experiments
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6 Summary and Recommendations

In the detailed and systematical investigation of the incremental stress-strain behaviour
at monotonous and low-cycle loading, no constitutive equation can be identified able to
describe the experimental results for all kinds of loading directions appropriately.

In Table 2 an attempt is made to summarise the results evaluating, how the
stress-strain behaviour at a certain loading condition can be reproduced by the inves-
tigated constitutive equation.

Fig. 15. Absolute value of quasi-elastic strains Dɛ due to low-cycle loading with Dr ¼ 50 kPa
depending on loading direction ar, stress state J, ID � 0.75

Table 2. Agreements and differences of the considered constitutive equations with the
experiments

Constitutive equation Hardening
soil

Elastoplastic
model (based on
TPM)

Hypoplasticity
with interg.
strain

Sanisand-Model ISA-Model

Stress paths with…
…monotonous loading
only

++ + + + +

…monotonous un- and
reloading

+ + – – –

Low-cycle loading
strain accumulation with
small stress amplitudes

– – + + +

strain accumulation with
large stress amplitudes

– – – – – – –

Quasi-elastic strains ++ – – + + –

+(+) (very) good agreements
–(–) (some) differences
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Despite of the comprehensive analysis it is very difficult to derive recommendations
for practical purposes such as the models’ application in BVPs. Beside the fact, that the
results are derived from experiments with axially symmetrical stress states under
drained conditions, it also has to be kept in mind, that in contrast to element tests, cyclic
loading in BVPs does not immediately lead to a cyclic stress field right from the
beginning.

Nevertheless Table 2 may be helpful to select a suitable constitutive equation for
application in BVPs, but should be complemented by sensitivity analyses, where the
influence of the model’s parameters on the numerical results is identified, see e.g.
Saltelli et al. (2008), Miro et al. (2014).

Despite of the extensive investigations, not all possible influences on the incre-
mental stress-strain behaviour have been considered. Further aspects like grain size
distribution, inherent anisotropy may also play a role. Continuative investigations seem
appropriate.
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Abstract. The ISA-plasticity is a novel approach based on the inter-
granular strain concept. It introduces a yield surface within the intergran-
ular strain space. The intergranular strain is related to the recent strain
history, which is used to improve the model performance for cyclic load-
ing. This paper proposes an ISA model for the simulation of saturated
clays incorporating also possible viscous effects that clays may have.
These rate-dependent phenomena are described within a viscous strain
rate, which is added to the model besides the elastic and (hypo)plastic
one. Possessing the plastic strain rate independent from the viscous strain
rate the model is able to describe both viscous and non-viscous clays. At
the beginning the formulation of the model is described. Subsequently,
some explanation about the numerical implementation and the required
parameters is given. Finally, the model is evaluated through some simula-
tions with a Kaolin clay, which are compared with experimental results of
laboratory tests. The simulations include oedometric and triaxial tests
under monotonic and cyclic loading. The monotonic tests include also
strain rate variation to evaluate the rate dependence of the proposed
model.

Keywords: Viscous clays · Unsaturated clays · Constitutive model ·
ISA plasticity · Intergranular strain

1 Introduction

A realistic description of the behavior of viscous and non-viscous clays under
monotonic and cyclic loading is of great importance for the evaluation of
the performance of geotechnical structures dealing with these materials [2,12].
Researches have found that the clay behaves elastically only under very small
strain amplitudes, of about ‖Δε‖ < 10−4. Subsequently, small strain effects take
place including the reduction of the plastic strain rate and the stiffness increase
due to reversal loading under medium strain amplitudes in the order of strain
magnitude of about 10−4 < ‖Δε‖ < 10−2 [17]. Under continuing shearing the
material stiffness degradates and under very large deformations, ‖Δε‖ >> 10−2,
it reaches asymptotically the critical state, which indicates the failure. These the-
oretical and practical observations should pursue every realistic and competent
constitutive model.
c© Springer International Publishing AG 2017
T. Triantafyllidis (ed.), Holistic Simulation of Geotechnical Installation Processes,
Lecture Notes in Applied and Computational Mechanics 82, DOI 10.1007/978-3-319-52590-7 15



Constitutive Model for Viscous Clays Under the ISA Framework 325

In the literature, the usage of different models for each particular simulation
problem is recommended. For example for simulations regarding non-viscous
clays one would choose an elastoplastic model like [24] or a hypoplastic model
like [10,16]. Dealing with a clay that shows a high plasticity, a viscous model is
necessary. One could than use an elasto-visco-plastic model [27,28] or a visco-
hypoplastic model [17,18]. The mentioned models simulate the behavior of clays
under monotonic loading well. Yet, for geotechnical structures dealing with the
cyclic behaviour of clays, like for example urban excavations with retaining walls
with a low number of cycles due to the excavation and backfilling processes or
offshore foundations with a large number of cyclic loading, other models are rec-
ommended [13,15]. Thus, to describe different effects several contitutive models
are required.

A new constitutive approach has been proposed by Fuentes and Triantafyl-
lidis [8], the ISA-plasticity, which introduces a yield and a bounding sur-
face within the intergranular strain space. Within the yield surface the model
accounts for the elastic behavior under very small strain amplitudes. Once the
material state reaches the yield and proceeds towards the bounding surface,
the effects of intermediate strain amplitudes are considered. Finally, reaching
the bounding surface the plastic strain rate reduction and the stiffness increase
ceases. The first ISA model was proposed for sands [5,8] and than coupled with
the hypoplastic model of Wolffersdorff [26] with extensions to simulate multi-
dimensional loading [20]. In [6], the ISA model was reformulated to simulate
non-viscous clays. Only qualitative simulations have been performed in [6] and
no strain-rate dependency has been introduced into the model.

In this article, a viscous ISA model for clays is proposed. In contrast to other
viscous models the time-dependent phenomena are described through an addi-
tional strain rate, which can vanish if simulations with non-viscous clays are
required. The structure of this article is as follows: at the beginning the formula-
tion of the model is explained. Afterwards, some comments about its numerical
implementation and the required parameters are given. Finally, some simulations
with a Kaolin clay are discussed in order to evaluate the model performance. The
conducted experiments include monotonic and cyclic loading under oedometric
and triaxial conditions. Whereby, some tests include the variation of the vertical
strain rate to evaluate the performance of the rate dependent component of the
model.

The notation of this article is as follows: scalar quantities are denoted with
italic fonts (e.g. a,b), vectors and second rank tensors with bold fonts (e.g. v,
A, σ), and fourth rank tensors with Sans Serif type (e.g. E, L). Multiplication
with two dummy indices, also known as double contraction, is denoted with
a colon “:” (e.g. A : B = AijBij). When the symbol is omitted, it is then
interpreted as a dyadic product (e.g. AB = AijBkl). The deviatoric component
of a tensor is symbolized with an asterisk as superscript A∗ = A − (trA/3) I.
The brackets ‖ ‖ denote the Euclidean norm ‖ v ‖=

√
vi vi or ‖ A ‖=

√
A : A.

The effective stress tensor is denoted with σ and the strain tensor with ε. The
Roscoe invariants are defined as the mean stress p = −trσ/3, the deviatoric
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stress q =
√

3/2 ‖ σ∗ ‖, the volumetric strain εv = −trε̇ and the deviatoric
strain εs =

√
2/3‖ε∗‖.

2 Intergranular Strain Model

The intergranular strain concept was first introduced in hypoplasticity by
Niemunis and Herle [19] in order to improve the simulation of soil’s behav-
iour under cyclic loading. Based on this idea and in order to incorporate the
elastic locus of the material response, known as the threshold strain [1,23],
Fuentes and Triantafyllidis [5] proposed an entirely reformulated intergranu-
lar strain model, the ISA-plasticity. It presents an elastoplastic model with the
yield surface within the intergranular strain space. The intergranular strain h is
a state variable related to the strain amplitude ε through the following evolution
equation:

ḣ = ε̇ − λ̇HN. (1)

According to the elastoplastic terminology, λ̇H ≥ 0 is the consistency parameter
defined later on and N is the intergranular strain flow rule. The yield surface
reads:

IS yield surface: FH = ‖h − c‖ − R/2 = 0. (2)

Under elastic conditions, i.e. FH < 0, the consistency parameter takes λ̇H = 0.
Obviously, the model delivers an elastic response only for very small strain ampli-
tudes ‖Δε‖ < R, inside the yield surface FH = 0. The tensor c is the hardening
variable describing the center of the yield surface consisting of a sphere and the
material parameter R represents the diameter of the sphere, i.e. it determines
the size of the elastic range. As visualized in Fig. 1, in the space spaned by
the volumetric invariant and deviator invariant the yield surface takes the form
of a circle, which explains many interrelationships. The volumetric invariant is
described by hv/

√
3 = −tr(h)/

√
3 and the deviator invariant by

√
3/2hs = ‖h∗‖.

As illustrated in Fig. 1(a) the flow rule is normal to the yield surface and is
defined by:

N = (h − c)/(R/2) = (h − c)→ (3)

For sake of simplicity it is proposed to consider the norm of N, i.e. ‖N‖ = 1. As
N is defined only for FH = 0 the distance between h and c can take the value
R/2 as a maximum.

Considering the plastic case in which the intergranular strain “touches” the
yield surface FH = FH(h, c) = 0, λ̇H > 0, it is desired that after a reversal
loading, the material exhibits smoothly the appearance of a plastic strain rate.
Brittle materials would present a very rapid change of the stiffness when changing
from elastic to plastic behavior, but most soils and some other materials show
actually a smooth stiffness transition when it turns from the elastic into plastic
regime. This effect can be well simulated through a hardening mechanism of
the yield surface described with the tensor c, termed also as “back-intergranular
strain”. For the ISA platform, some simple relations of the bounding surface
plasticity have been adopted to simulate this behavior. Thus, the model considers
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c-

(a)

R/2

(b)

Fig. 1. Yield and bounding surface of the intergranular strain model [5]. (a) Geometry,
(b) Example of the bounding condition FHb = 0.

besides the yield surface a bounding surface within the intergranular strain space,
which is illustrated in Fig. 1(a) and follows the relation:

IS bounding surface: FHb = ‖h‖ − R = 0 (4)

It presents also a sphere (in 3D) with twice the size of the yield surface (for
simplicity reasons). The evolution equation of c describes the hardening of the
yield surface towards the bounding surface. By the means of elastoplasticity the
general form of this equation reads:

ċ = λ̇H c̄ (5)

whereby λ̇H = 0 renders ċ = 0, i.e. under elastic conditions no hardening is pro-
duced. Therefore, under plastic conditions λ̇H > 0 the hardening is determined
by the proposed function c̄. In order to fulfill the bounding surface constraint
‖h‖ ≤ R, the hardening variable should be bounded by ‖c‖ = R/2, see also
Fig. 1(a). For this purpose, the “image” of the tensor c is introduced:

cb = R/2 (ε̇)→. (6)

Hence, the hardening function c̄ reads:

c̄ = β (cb − c)/R. (7)

Hereby β is a material parameter defining the hardening rate. Note that for
β = 0 no hardening is experienced and the intergranular strain model gets
perfect plastic. Of course, Eq. 7 is only defined under plastic conditions FH = 0.

The consistency parameter is derived by means of elastoplasticity to:

λ̇H =
〈N : ε̇〉

N : N + N : c̄
=

〈N : ε̇〉
1 + HH

(8)

whereby HH = N : c̄ = −(∂FH/∂c) : c̄ defines the hardening modulus.
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The presented model defines the elastoplastic evolution of the intergranular
strain concept proposed by Fuentes [5]. It presents an associated flow rule N =
∂FH/∂h and a single hardening mechanism.

As will be highlighted in the next section, the proximity of the intergranular
strain to the bounding surface is important to quantify if the plastic strain is
whether fully mobilized or not. For this purpose an image tensor of the inter-
granular strain at the bounding surface is introduced:

hb = RN. (9)

and the proximity of h to FHb = 0 is described by ‖hb−h‖. According to Fuentes
model, the bounding surface should be asymptotically reached after applying
large strains in a constant direction (ε̇)→. In order to interpolate between the
fully mobilized state and strain reversal after fully mobilized state the scalar
function ρ is introduced:

ρ = 1 − ‖hb − h‖
2R

. (10)

This scalar function provides two important and illustrative cases. For ‖hb−h‖ =
2R it yields ρ = 0 viz. strain reversal after fully mobilized state and for h = hb it
renders ρ = 1 viz. fully mobilized state, for more details see Fig. 2. The last case is
very useful when formulating relations of the mechanical model under medium
and large strain amplitudes. Thus, this scalar function is used to interpolate
between the elastoplastic and hypoplastic mechanical model formulation as will
be shown in the next section.

2R

(a)

2R

(b)

Fig. 2. The interpolation function ρ and its limit values: (a) ρ = 0 for ‖hb − h‖ = 2R,
(b) ρ = 1 for h = hb.

3 Mechanical Model Formulation

As mentioned before, the stress-strain-time behavior of clayey soils is of primary
concern for the evaluation of long-time performance in geotechnical engineering.
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The phenomena associated with the viscosity of soils such as strain creep, stress
relaxation and rate-dependence, may be important especially for calculations in
soft soils, i.e. at low overconsolidation ratios (OCR).

Contrary to visco-plastic models, the proposed visco-ISA model assumes the
“decomposition” of the strain rate into elastic ε̇e, plastic ε̇p and viscous ε̇v

portion:
ε̇ = ε̇e + ε̇p + ε̇v (11)

with the constitutive equation:

σ̇ = E : ε̇e = E : (ε̇ − ε̇p − ε̇vis) = m Ē : (ε̇ − yh
¯̇εp − ε̇vis) (12)

whereby Ē is the residual stiffness and the tensor ¯̇εp is the residual plastic strain
rate. The stress rate continuity between the elastic and plastic response is estab-
lished through the scalar functions m and yh.

The plastic strain rate factor yh reduces the plastic strain rate upon unloading
or cyclic loading yh < 1 and guarantees a smooth transition between elastic and
plastic response through the relation:

yh = ρχ〈N : ε̇→〉. (13)

Obviously for yh = 0 the model response is elastic and yh = 1 implies fully
mobilized states thus no plastic strain rate reduction is required. χ is a material
parameter, which can be calibrated through a cyclic undrained triaxial test.

The stiffness increase upon cyclic loading or unloading is produced through
the factor m [5]:

m = mR + (1 − mR) yh. (14)

At fully mobilized states yh = 0 and m = mR and under neglection of the
viscous strain rate ε̇v the model can simply be adjusted by adopting Ē and ¯̇εp

to a conventional elastoplastic model for example the MCC model for clays or
to a hypoplastic model for clays like the one developed by Masin [16]. For the
definition of the stiffness tensor, plastic and viscous strain rate some basic modi-
fications regarding the characteristic void ratios and stress surfaces are required.
These are explained within the next sections.

3.1 Normal Consolidation and Critical State Line

The normal consolidated line for clays, well known also from the MCC model,
is identifed at isotropic stress states q = 0 when the void ratio is equal to the
maximum void ratio e = ei:

ei = ei0 − λ log(p/pref) (15)

whereby ei0 is a parameter describing the value of the maximum void ratio ei at
p = pref = 1 kPa, the scalar λ is the compression index and pref = 1 kPa is the
reference mean stress. The Hvorslev pressure p = pei is the maximum pressure
at constant void ratio, which is obtained from Eq. 15 for e = ei:

pei = exp ((ei0 − e)/λ) (16)
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The critical void ratio ec follows also from the relations of the modified Cam
Clay model:

ec = (ei0 − λ log(2)) − λ log(p/pref) (17)

where ec0 = ei0 − λ log(2) is the critical void ratio at pref = 1 kPa. The term
λ log(2)) in Eq. 17 comes from the fact, that once the critical state is reached,
the mean pressure yields accordingly to a value of p = pei/2 [6].

3.2 Critical State Surface and Bounding Surface

The model is based on the bounding surface plasticity [4] and on the critical
state plasticity [14], incorporating a bounding and a critical surface. The criti-
cal surface determines the soil behavior at large deformations (‖ε‖ > 25%) and
reads [9]:

Critical state surface: Fc ≡ r : r − rc = 0, rc =
√

2/3Mcg(θn) (18)

with the current stress ratio r = σ∗/p and the critical state slope Mc for triaxial
compression in the p − q space. The scalar function g = g(θ) governs the shape
of the critical state surface seen from a deviator plane and is evaluated with the
Lode’s angle θ:

c ≤ g(θ) =
2c

(1 + c) − (1 − c) cos(3θ)
≤ 1 (19)

with the ratio between the critical state slope Mc for triaxial extension and
triaxial compression c = Me/Mc = 3/(3 + Mc).

At the bounding surface holds the condition ‖¯̇ε‖/‖ε̇‖ = Y = 1 and under
neglection of the viscous strain in Eq. 12, the stress rate would vanish σ̇ = 0.
This implies that the bounding surface can be also used to describe the peak
stress ratio of the material. The bounding surface incorporated in this work is
similar to the one incorporated in [6]:

Bounding surface: Fb ≡ r : r − rcfb = 0 with fb = fb0

(
1 −

(
e

ei

)nF
)1/2

(20)
with the material parameter fb0 > 1 used to define the maximum stress ratio
‖r‖ at overconsolidated states and the exponent nF , which reads:

nF =
log

((
f2

b0 − 1
)
/f2

b0

)

log (ec/ei)
. (21)

This exponent controlls the intersection between the bounding and critical state
surface [6].

3.3 Stiffness Tensor

The ISA stiffness tensor proposed by Fuentes is computed via multiplying the
residual stiffness tensor with a scalar function, which Niemunis introduced like-
wise in [17]:

E = mĒ (22)
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whereby 1 ≤ m ≤ mR is the scalar function responsible for the stiffness increase
upon reversal loading:

m = mR + (1 − mR) yh. (23)

Note, that for elastic conditions in the intergranular strain space yh = 0 and
thus m = mmax = mR. Hence, the requirement of the maximum value for the
stiffness under elastic conditions is fulfilled.

Otherwise, for yh = 1, which implies fully mobilized states the interpolation
function m renders its minimum value m = 1. The residual stiffness tensor Ē
obeys the relation [5,6]:

Ē = K1 ⊗ 1 + 2GIdev − K√
3Mc

(1 ⊗ r + r ⊗ 1). (24)

The bulk modulus K and shear modulus G are adjusted to the behavior of clays:

K =
p (1 + e)

λ

1
1 − Y0min

(25)

G =
p (1 + e)

λ

1
1 − Y0min

3 (1 − 2ν)
2 (1 + ν)

(26)

whereby ν is the Poisson ratio and the scalar function Y0min = (rk − 1)/(rk +1)
with the compression and swelling index λ and κ respectively.

3.4 Plastic Strain Rate

The plastic strain rate is proposed to account for small strain effects through
the relation:

ε̇p = yh
¯̇εp (27)

whereby yh from Eq. 13 implies three fundamental cases for the plastic strain
rate:

– yh = 0: the response is elastic and no plastic strain rate is required.
– 0 < yh < 1: a smooth transition between elastic and plastic response is pro-

duced. A reduction of the plastic strain rate is implied.
– yh = 1: the response is (hypo)plastic and no reduction of the plastic strain

rate is required. The plastic strain rate takes its residual value.

The residual plastic strain rate ¯̇εp is formulated by means of hypoplasticity [17]
and adjusted to account for the material behavior of soft soils:

¯̇εp = Y m‖ε̇‖ (28)

with the proposed flow rule:

m = (−1/2F 1 + r)→. (29)
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The scalar F is a function of the critical state and the deviator stress ratio tensor
F (g(θ), r). The degree of nonlinearity is adjusted to the material behavior of clays
with different overconsolidation ratios OCR ≥ 1:

Y = Y0 + (1 − Y0)
(‖r‖

fb

)2

, Y0 =
(

rk − 1
rk + 1

) (
p

pei

)2

, rk =
λ

κ
. (30)

The degree of nonlinearity takes its minimum value Y = Y0 at isotropic states
r = 0 and its maximum value Y = 1 at the bounding surface.

3.5 Viscous Strain Rate

The time-dependent phenomena in the proposed model are treated through the
viscous part of the strain rate ε̇vis. For the viscous strain rate the well known
relation used in several visco-plastic models [17,18,22] is adopted for the pro-
posed visco ISA model:

ε̇v = Cα

(
1

OCR3D

)1/Iv

m (31)

whereby Cα = Ivλ is the parameter first introduced by Buisman [3] and Iv

the viscosity index. Note that by calibrating the viscosity index Iv and the
compression index λ the constant Cα can be mathematically evaluated. A special
feature of this formulation is that by setting Iv = 0 the viscous strain rate
vanishes avoiding so the exponent discontinuity. Moreover, the proposed model
can be used for both viscous Iv 
= 0 and non viscous Iv = 0 soft soils.

The overconsolidation ratio OCR3D should be evaluated for three dimen-
sional stress states. Thus it is necessary to consider both, the mean stress p and
the deviatoric stress q for the calculation and in order to be consistent with the
one dimensional relation OCR = pei/p, at isotropic states the overconsolidation
ratio should yield the value OCR3D = pei/p. In this work, a similar formulation
as the one used to determine the degree of nonlinearity (see Eq. 30) is proposed:

OCR3D =
pei

p
+

(
1 − pei

p

)( ‖r‖
‖rb‖

)2

. (32)

The undrained strength cu of viscous soft soils is rate dependent and every
competent constitutive model should be able to simulate this important feature
for geotechnical problems. Some qualitative undrained triaxial simulations with
the proposed model for several strain rates are represented in Fig. 3, whereby
the rate dependence of the undrained shear strength can be observed: slower
strain rates return a lower shear strength (see Fig. 3(a) and (b)) and a higher
pore water pressure development or reduction of effective stress (see Fig. 3(b)).

The lateral earth pressure K0 = σ22/σ11 = σ33/σ11, used to calculate the
earth pressure distribution for example on retaining walls, tunnel lining, deep
foundations etc., is an important feature of every constitutive model. Refering to
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Fig. 3. Isochoric shearing illustrating the dependence of strength cu = qmax/2 on the
applied deformation rate ε̇

normal consolidated states, Jaky [11] proposed an empirical relation for the coef-
ficient K0 = 1−sin(ϕc) which depends on the residual friction angle ϕc. Figure 4
represents the model’s performance for two oedometric tests Δε11 = 0.1 with
different deformation rates ε̇ = 6 · 10−4 /s and ε̇ = 6 · 10−6 /s, respectively. The
identical response for both strain rates can be observed in Fig. 4(b) whereby also
the coincidence between the simulations and the empirical relation is evident.
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Fig. 4. Oedometric test. Verification of models performance comparing the simulated
K0 value with Jaky’s K0 = 1 − sin(ϕc) value.
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4 Numerical Implementation and Parameters

In general, the integration of constitutive models using an explicit algorithm
and possibly substepping is precise enough. Yet, the viscous models require a
special numerical treatment, because the viscous strain rate is very sensitive
to changes in the void ratio and in particular in the stress or for larger time
increments. These effects were not existent in non-viscous models, because they
are not dependent on time and the overconsolidation ratio is not used with a
power law in the order of 20. Niemunis [17] recommended the substepping as well
as the implicit updating of stress and the implicit integration of the intergranular
strain h.

The proposed model has been implemented with the programming language
Fortran, whereby the well known “elastic predictor” scheme has been used
[21]. The terms associated with non viscous clays were explicitly implemented.
For the viscous strain rate, the semi-implicit scheme proposed by [17] has been
implemented. In order to avoid numerical problems, a substepping scheme with
small strain increments overlapped the described integrations. The subroutine
follows the syntax of the subroutine UMAT from the software Abaqus Standard.

The model requires the calibration of 12 material parameters. All parameters
with the required routine tests for their calibration are listed in Table 1.

Table 1. Material constants of the proposed viscous ISA model
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5 Simulations with Kaolin Clay

This section presents some simulations with the proposed model for the Kaolin
clay. The performance of the model is compared with the experiments performed
on this medium plasticity clay with a viscosity index of Iv = 0.015 by Wichtmann
[25]. The parameter set calibrated for the Kaolin clay is listed in Table 1. In

all simulations the intergranular strain h has been initialized with h = −R
→
1

corresponding to a fully mobilized state after isotropic compression.
Figure 5 presents an oedometer test and the model’s prediction. The experi-

ment consists of several constant rate-of-strain stages, various creep phases and
some unloading-reloading cycles showing hysteretic behavior. Both, experiment
and simulation conducted from the oedometric normal consolidated state were
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Fig. 6. Undrained triaxial tests on normal consolidated samples



336 M. Tafili and T. Triantafyllidis

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

D
ev

ia
to

ri
c 

st
re

ss
 q

 [
kP

a]

Axial strain rate ε1 [%]

OCR=2
OCR=4
OCR=8

(a) q vs. ε1 space

0

50

100

150

200

250

0 50 100 150 200 250

D
ev

ia
to

ri
c 

st
re

ss
 q

 [
kP

a]

Mean stress p [kPa]

CSL

OCR=2
OCR=4
OCR=8

(b) p vs. q space

Fig. 7. Undrained triaxial tests on over consolidated samples
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Fig. 8. Undrained triaxial test with strain rate jumps

stress-controlled. The simulation with the viscous ISA model captures all effects
observed in the experiment.

Figure 6 represents undrained monotonic triaxial tests conducted on nor-
mal consolidated samples of Kaolin clay with different confining pressures
p0 = 100 kPa, p0 = 200 kPa and p0 = 300 kPa and the same axial strain rate
ε̇1 = 10−8 1/s. The experimental data (dashed lines) and the simulations (solid
lines) depicted in both q−ε1 space and p−q space show satisfactory coincidence,
with some small discrepancies regarding the peak stress.

The undrained behavior of over consolidated samples is presented in Fig. 7.
The samples were consolidated to mean pressures of p0 = 200 kPa, p0 = 400 kPa
and p0 = 800 kPa and then unloaded to p0 = 100 kPa, hence three over consol-
idation ratios were obtained OCR = 2, OCR = 4 and OCR = 8, respectively.
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Fig. 9. Cyclic undrained triaxial test on normally consolidated sample with stress
cycles of qampl = 60 kPa and displacement rate of ε̇1 = 0.1 mm/min
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Fig. 10. Cyclic undrained triaxial test on normally consolidated sample with stress
cycles of qampl = 70 kPa and displacement rate of ε̇1 = 0.1 mm/min

The simulations represented with solid lines Fig. 7(a) show a similar pattern with
the peak stress as for OCR = 1, Fig. 6(a).

Figure 8 presents a multi stage constant-rate-of-strain undrained triaxial test
according to the following sequence: ε̇1 = 10−4 → ε̇1 = 10−5 → ε̇1 = 10−6 →
ε̇1 = 10−5 1/s. The simulation shows satisfactory coincidence with experimental
results.

The cyclic performance of the proposed model is presented in Figs. 9 and 10
for undrained triaxial compression tests with symmetric deviatoric stress cycles
of amplitude qampl = 60 kPa and qampl = 70 kPa, respectively. The simula-
tions with the set of parameters given in Table 1 for monotonic loading showed
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Fig. 11. Cyclic undrained triaxial test on normally consolidated sample with stress
cycles of qampl = 70 kPa and displacement rate of ε̇1 = 0.1 mm/min simulated with
the extended model from [9]

excessive accumulation of stress and strain (ratcheting). Therefore, a new para-
meter set has been used in Figs. 9 and 10 in order to improve the prediction of
the model upon cyclic loading. The simulations with this parameter set capture
well the experimental observations for both deviatoric stress amplitudes.

In [9] the cyclic extension introduced by Poblete et al. [20] was implemented
in the proposed visco ISA model. The model requires 3 additional parameters
and is able to describe both monotonic and cyclic loading of clays with only one
parameter set [7,9], an example of cyclic loading simulations is given in Fig. 11.
The parameter set used for these simulations can be found in [7,9].

6 Closure and Outlook

In the present work, a constitutive model for the simulation of saturated clays
within the ISA-plasticity has been proposed. The main feature of the model is its
generality for viscous and non-viscous clays, thus different properties of clays can
be evaluated with the same model. Furthermore, the model can describe also the
cyclic behavior of clays due to its intergranular strain concept. The simulations
for the Kaolin clay showed a good prediction for monotonic and cyclic load-
ing in undrained triaxial tests and oedometer tests compared to experimental
results. Also the strain rate dependency was successfully investigated, whereby
the variation of the vertical strain rate was implemented. Some other experimen-
tal observations are left out for future model improvement, such as the inherent
anisotropy, cementation, dilatancy and partial saturation.



Constitutive Model for Viscous Clays Under the ISA Framework 339

References

1. Anderson, D., Richart, F.: Effects of straining on shear modulus of clays. J.
Geotech. Eng. ASCE 102(9), 975–987 (1976)

2. Avgerinos, V., Potts, D.M., Standing, J.: The use of kinematic hardening models
for predicting tunnelling-induced ground movements in London clay. Géotechnique
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Abstract. The ISA-plasticity is a useful theory to propose constitutive
models for soils accounting for small strain effects. It uses the intergranu-
lar strain concept, previously proposed by Niemunis and Herle (1997) to
enhance the capabilities of some existing hypoplastic models under cyclic
loading. In contrast to its predecessor, the ISA-plasticity presents a com-
pletely different formulation to incorporate an elastic locus depending
on a strain amplitude. However, it keeps similar advantages and brings
other new ones such as the elastic locus and improved simulations of
the plastic accumulation upon a number of cycles. In the present article,
some numerical investigations are made to evaluate the performance of
an ISA-plasticity based model on simulations with repetitive loading. We
have chosen to couple the ISA-plasticity with the hypoplastic model by
Wolfferdorff to simulate some experiments. At the beginning of the arti-
cle, the theory of the ISA-plasticity is briefly explained. Subsequently, its
numerical implementation is step by step detailed. A semi-explicit algo-
rithm is proposed and some hints are given to allow the coupling with
other models. At the end, some simulations of experiments with the Karl-
sruhe fine sand are shown in which the performance of the model under
repetitive loading is evaluated. The behavior of the plastic accumulation
is examined upon a number of cycles and some remarks are given about
the current investigation.

Keywords: ISA model · Plastic accumulation · Repetitive loading ·
Hypoplasticity

1 Introduction

The ISA-Plasticity is a useful mathematical platform to develop constitutive
models for the simulation of cyclic loading in soils. This theory considers the fact
that the simulation of cyclic behavior is improved when accounting for the effect
of the recent strain history [16,17]. Therefore, it incorporates the intergranular
strain concept, originally proposed by Niemunis and Herle [13] to consider this
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information. The mathematical formulation of the ISA-Plasticity is however dif-
ferent from the one of Niemunis and Herle [13]: to start, the evolution equation of
the intergranular strain is elastopolastic, and its formulation is based on a simple
bounding surface approach. Furthermore, it considers an elastic locus related to
a specific strain amplitude which can be adjusted to the elastic threshold strain
amplitude [18,20]. Finally, its yield surface presents a kinematic hardening sim-
ilar to some “bubble” models for clay (e.g. [1]) to simulate a smooth transition
between the elastic and plastic behavior.

Since the work of Fuentes and Triantafyllidis [6], the ISA-plasticity has been
used to extend some existing models. Recently, an ISA-plasticity model was
coupled with the hypoplastic model by Wolffersdorff [21] to examine its behav-
ior under complex loading [15]. It was concluded that the model needed to be
extended in order to simulate well the plastic accumulation under repetitive
loading. The proposed extension in [15] is based on a simple mechanism: if the
model experiences subsequent cycles away from the critical state line, it reduces
the rate of plastic accumulation. With this, the proposed extension achieved a
good performance in some simulations with cyclic loading. However, this ver-
sion is recent and should be carefully inspected with additional examples in
order to study its advantages and disadvantages. Beside this, the procedure for
its numerical integration has not been well detailed and discussed. Hence, more
description is expected by some users for the implementation of an ISA-plasticity
based model on finite element codes to solve boundary value problems.

In the present work, we evaluate an ISA-plasticity based model under repet-
itive loading. We include some simulations of element test under monotonic and
cyclic loading to analyze the behavior of the plastic accumulation upon a number
of cycles. Furthermore, we analyze the performance of the model in a finite ele-
ment simulation of a shallow foundation subjected to cyclic loading. Additional
descriptions for the numerical implementation of the model were also included.
The structure of the present article is as follows. We begin with an outline of
the ISA-plasticity and give some hints to link it with some existing models.
Then, a numerical integration scheme is detailed. Finally, the mentioned simula-
tions are shown and carefully analyzed. The notation of this article is as follows.
Scalar quantities are denoted with italic fonts (e.g. a, b), second rank tensors
with bold fonts (e.g. A, σ), and fourth rank tensors with Sans Serif type (e.g.
E, L). Multiplication with two dummy indices, also known as double contraction,
is denoted with a colon “:” (e.g. A : B = AijBij). A dyadic product between
two second rank tensors is symbolized with A⊗B and results in a fourth order
tensor Cijkl = AijBkl. The deviatoric component of a tensor is symbolized with
an asterisk as superscript A∗. The effective stress tensor is denoted with σ and
the strain tensor with ε. The Roscoe invariants are defined as p = −trσ/3,
q =

√
3/2 ‖σ∗‖, εv = −trε and εs =

√
2/3 ‖ε∗‖.
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1.1 Brief Description of the ISA-plasticity

In this section the formulation of the ISA-plasticity is outlined. Details and
additional information of the model are found in [5,6]. We use the same notation
of the variables as in former publications [5,6].

According to this theory, cycles under small strain amplitudes (‖Δε‖ < 10−4)
deliver an elastic response while those with larger strain amplitudes render plas-
tic behavior. The transition from elastic to plastic is demarcated by the strain
amplitude ‖Δε‖ = R ≈ 10−4. To capture this, the ISA-plasticity uses the infor-
mation of the intergranular strain which is a strain-type state variable, proposed
by Niemunis and Herle [13] to detect recent changes of the strain rate direction.
Having this information, we may improve existing models for the simulation of
cyclic loading and eliminate the excessive plastic accumulation (racheting). The
ISA-plasticity featured an alternative evolution equation for the intergranular
strain h, with a special characteristic: under elastic conditions, the intergranular
strain h evolves identically with the strain ε:

ḣ = ε̇ (under elastic conditions) (1)

The latter condition makes simple the formulation of a yield surface with
the desired property. It should present a spherical shape within the principal
space of the intergranular strain to guarantee an elastic locus with a specific
strain amplitude ‖Δε‖ = R. Therefore, the yield function denoted with FH , is
defined as:

FH = ‖h − c‖ − R

2
(2)

whereby R is a material parameter representing the strain amplitude and c is
a tensor representing the center of the yield surface and therefore called the
back-intergranular strain. The value of R may be adjusted to the elastic ampli-
tude observed on shear modulus degradation curves, with typical values around
R ≈ 10−5−10−4. The yield surface presents a kinematic hardening which fol-
lows some hardening rules from the bounding surface plasticity. Therefore, the
model considers an additional bounding surface as depicted in Fig. 1. Its move-
ment is ruled by the kinematic hardening of its center, i.e. the back-intergranular
strain c.

The evolution law of the intergranular strain h is elastoplastic. Its formula-
tion was basically proposed considering two facts: the first is that under elastic
conditions its evolution equation gives ḣ = ε̇. The second is the assumption of
an associated flow rule N = (∂FH/∂h) to make its formulation simple. Hence,
the following evolution law has been proposed [6]:

ḣ = ε̇ − λ̇HN (3)

whereby λH ≥ 0 is the consistency parameter (or plastic multiplier) and N is
the flow rule (‖N‖ = 1) which reads:

N =
∂FH

∂h
=

h − c
R/2

(4)
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Fig. 1. Yield surface and bounding surface within the intergranular strain principal
space. (a) Names and notation. (b) Example of a bounding condition for the intergran-
ular strain

The consistency parameter vanishes under elastic conditions λH = 0 and
takes its maximum value λ̇H = ‖ε̇‖ at the bounding surface of the intergranular
strain. The shape of the bounding surface is also spherical but with fixed center
at h = 0 and diameter equal to 2R, i.e. it presents twice the size of the yield
surface. The bounding surface function FHb reads:

FHb = ‖h‖ − R (5)

The hardening rule for the back-intergranular strain c uses similar ideas to
the bounding surface plasticity. For this purpose, we project an image tensor of
c at the bounding surface with the following mapping rule:

cb = (R/2)
−→̇
ε (6)

whereby cb is the projected tensor. The hardening function c̄ = ċ/λ̇ reads:

c̄ = βh(cb − c)/R with ċ = λ̇H c̄ (7)

where βh is an additional parameter to control the rate of c. Notice that if
cb = c then the rate c̄ = 0 vanishes. Hence for very large strains, the model
gives h = hb, c = cb, see Fig. 1b. The expression for the consistency parameter
is deduced by simple plasticity relations from the consistency equation ˙FH = 0
and reads:

λ̇H =
〈N : ε̇〉

1 −
(

∂FH

∂c

)
: c̄

(8)

whereby the operator 〈x〉 = x when x > 0 and 〈x〉 = 0 if x ≤ 0. The Eqs. 2–8
conform the model of the intergranular strain alone. This model evolves in paral-
lel with the mechanical model but independently because it does not depend on
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the stress tensor σ. The ISA-plasticity introduces some additional scalar factors
to use the information provided by the intergranular strain model. These scalar
factors depend on the projection of the intergranular strain h at the bounding
surface using the flow rule N as the mapping tensor:

hb = RN (9)

where hb is the projected tensor. Aided by tensor hb, one may detect some
recent movements in the loading history. For example, if ‖hb −h‖ = 0, it means
that the current intergranular strain lies at its bounding condition. According
to the model, this condition is only reached under large strain amplitudes and is
therefore called “mobilized states”. On the other hand, greater values of ‖hb −
h‖ > 0 represent a reversal loading which has been recently performed. Hence,
the model proposes the function ρ as:

ρ = 1 − ‖hb − h‖
2R

(10)

In this manner, ρ = 0 implies reversal loading while ρ = 1 implies “mobilized
states”. In the next section, the mechanical model will be briefly described.

1.2 Description of the Mechanical Model

The mechanical model relates the stress rate σ̇ with the strain rate ε̇ through
a constitutive equation. For this theory, the constitutive equation presents the
following general form:

σ̇ = mĒ : (ε̇ − yh ˙̄εp) (11)

where m and yh are scalar functions, Ē and ˙̄εp are called “mobilized” stiffness
tensor and “mobilized” plastic strain rate respectively. Tensors Ē and ˙̄εp can
be adjusted to existing relations of hypoplastic models, e.g. [8,10,21]. Actually,
when the intergranular strain lies under mobilized states, the scalar functions
render m = 1 and yh = 1 and the model yields to:

σ̇ = Ē : (ε̇ − ˙̄εp) (for mobilized states) (12)

This mathematical form is actually not recognized as a formal hypoplastic model
[9]. Users of the Hypoplasticity family are rather familiar with the equation:

σ̇ = Lhyp : ε̇ + Nhyp ‖ε̇‖ (for mobilized states) (13)

whereby Lhyp is the “linear” stiffness and Nhyp is the “non-linear” stiffness
[8,10,21,22]. The existing relations for tensors Lhyp and Nhyp can be adopted
for the present theory when setting the following equivalencies:

Lhyp = Ē (14)

Nhyp = − (E : ˙̄εp)/‖ε̇‖ (15)



346 W. Fuentes et al.

We have selected the hypoplastic model by Wolffersdorff [21] for the present
work considering that our interest is the simulation of sand.

The scalar function yh is a factor which ranges between 0 ≤ yh ≤ 1 and aims
to reduce the plastic strain rate after reversal loading. The function yh reads:

yh = ρχ〈N :
−→̇
ε 〉 (16)

where χ is an exponent which can be set as a material constant [6], or improved
to account for the effect of repetitive loading within the plastic accumulation
rate [14]. The function m aims to increase the stiffness upon reversal loading.
This function reads:

m = mR + (1 − mR)yh (17)

where mR is a material constant to increase the stiffness under elastic condi-
tions. The consideration of these equations allows to illustrate schematically
the response of the ISA model under different strain amplitudes, as depicted
in Fig. 1. For instance, let us suppose an elastic strain amplitude of R = 10−4.
For small strain amplitudes (‖Δε‖ < 10−4), the behavior is elastic and the
constitutive equation yields to σ̇ = mRĒ : ε̇. For very large strain amplitudes
(‖Δε‖ > 10−2), also called “mobilized states”, the intergranular strain lies at
its bounding condition h = hb and the scalar factors give yh = 1 and m = 1.
Therefore, the model coincides with the hypoplastic equation σ̇ = Ē : (ε̇− ˙̄εp) or
σ̇ = Lhyp : ε̇ + Nhyp ‖ε̇‖. Between these two states, a “transition” phase exists
in which the model operates with the equation σ̇ = mĒ : (ε̇ − yh ˙̄εp), see Fig. 2.

The recent modification by Poblete et al. [15] included the modification of
exponent χ to improve the simulations under repetitive loading. In order to
detect whether a few or a number of subsequent cycles have been performed,
they proposed an additional state variable εacc with the following evolution law:

ε̇acc =
Ca

R
(1 − yh − εacc) ‖ε̇‖ (18)

whereby Ca is a material parameter controlling the rate of ε̇acc [15]. Notice that
if one performs subsequent cycles, the function yh reduces its value yh → 0 and
the state variable εacc starts to increase. Hence, one can use this information
to reduce the plastic strain rate upon subsequent cycles which are now detected
with the condition εacc > 0. To achieve this, the exponent χ is reduced according
to the relation:

χ = χ0 + εacc(χmax − χ0) (19)

whereby χ0 and χmax are material constants. The first should be adjusted for
small number of cycles N < 3 and the other for large number of cycles (e.g.
N > 15).

We now end this section with the deduction of the continuum (explicit) stiff-
ness M = (∂σ̇/∂ε̇) of the model. This can be deduced after derivation of the
constitutive equation such that it reduces to:

σ̇ = M : ε̇ (20)
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Fig. 2. For cycles under small strain amplitudes ‖ε̇‖ < R, the behavior is elastic.
At mobilized states, the constitutive equation turns into hypoplastic. Between these
two states, a smooth transition is simulated through the functions 0 ≤ m ≤ mR and
0 ≤ yh ≤ 1

whereby the continuum stiffness M reads:

M =
{

[mR + (1 − mR)yh](Lhyp + ρχNhyp ⊗ N) for FH ≥ 0
mRL

hyp for FH < 0
(21)

1.3 Numerical Implementation

A numerical implementation for finite element codes has been performed in a
Fortran subroutine following the syntax of Abaqus. The simulations were
made using the open-source software Incremental Driver [12] created by
Niemunis but modified by the authors of this work to improve the code for cyclic
loading. The algorithm is semi-explicit, meaning that most equations were solved
explicitly except by a few which will be mentioned in the sequel. The integration
strategy is similar to classical implementations of elastoplastic models, in which
an elastic predictor is made to detect whether an elastic or plastic step should
be performed. For this implementation, a subincrementation algorithm is rec-
ommended to avoid numerical convergence difficulties. A subincrement size of
about ‖Δε‖ ≈ 10−5 is recommended. The implementation is split in two parts,
the first related to the intergranular strain model and the second to the mechan-
ical model. The subroutine structure is typical of finite elements code, in which
the strain increment together with the current state (stress, state variables) are
given as input and the subroutine delivers the state at the end of the increment,
see Table 1. The jacobian Jijkl = ∂Δσij/∂Δεkl is provided at the end of the
implementation for its use in the global finite element matrix. The integration
presented in the subsequent sections is based on the equations from Sect. 1.1.

1.4 Integration of the Intergranular Strain Model

The implementation begins with the intergranular strain model. The fact that
the model does not depend on the stress σ makes its implementation easier
because is not coupled with the mechanical model. In other words, the inter-
granular strain may be integrated independently from the mechanical model.
The integration scheme begins with the computation of a trial elastic step to
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Table 1. Input and ouput variables of the numerical implementation.

Symbol name

Input variables

εij Strain (beginning of increment)

Δεij Strain increment

σij Stress (beginning of increment)

Δt Time increment

hij Intergranular strain (beginning of increment)

cij Back-intergranular strain (beginning of increment)

εacc State variable (beginning of increment)

Output variables

σij Stress (end of the increment)

Jijkl Jacobian (end of increment)

hij Intergranular strain (end of increment)

cij Back-intergranular strain (end of increment)

εacc State variable (end of increment)

evaluate the yield function. In the following lines, a step-by-step guide is given
using the index notation to make simpler the interpretation of the tensorial
operations.

The first step is to define the strain rate ε̇ij and the unit strain rate ˆ̇εij :

ε̇ij = Δεij/Δt

ˆ̇εij =
ε̇ij√
ε̇ij ε̇ij

(22)

Then, the trial intergranular strain variable htrial
ij and trial back-intergranular

strain ctrialij are computed assuming elastic conditions:

htrial
ij = hij + Δεij

ctrialij = cij

(23)

The trial yield surface F trial is then computed:

F trial = [(htrial
ij − ctrialij )(htrial

ij − ctrialij )]1/2 − R

2
(24)

In case that F trial < 0, an elastic step is performed. For that case, we take
the trial variables htrial

ij and ctrialij as the solution:

hij = htrial
ij

cij = ctrialij

(25)
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In case that F trial ≥ 0, a plastic step is performed. In the plastic case, we
begin with the computation of the flow rule. For our implementation, we use the
approximation Nij ≈ N trial

ij :

Nij =
(htrial

ij − ctrialij )
√

(htrial
ij − ctrialij )(htrial

ij − ctrialij )
(26)

Subsequently, the consistency parameter is computed λ̇ as a function of the
image tensor cmax

ij and the hardening function c̄ij :

cmax
ij =

R

2
ˆ̇ε

c̄ij =
βR

R
(cmax

ij − cij)

λ̇ =
Nij ε̇ij

c̄ijNij + 1
(27)

Finally, the back-intergranular strain cij and the intergranular strain hij are
deduced implicitly from Eqs. 3 and 7 respectively:

cij = cij +
βR/R(cmax

ij − cij)λ̇Δt

1 + βR/Rλ̇Δt

hij = hij +

[

ε̇ijΔt − λ̇Δt

R/2
(hij − cij)

]

(

1 +
λ̇Δt

R/2

)

(28)

At the end of the plastic step, we recommend to use a simple correction to
ensure the condition FH = 0. We compute the flow rule Nij with the actualized
variables of the tensors hij and cij and then we correct cij as follows:

Nij =
(hij − cij)√

(hij − cij)(hij − cij)

cij = hij − R

2
Nij

(29)

Notice that with the latter correction the yield function gives FH = 0. Some
minor refinements may be introduced to the code to ensure that hij and cij never
cross beyond the bounding surface, but these corrections are not discussed in the
present work. In the next section, the numerical integration of the mechanical
model is detailed.

1.5 Integration of the Mechanical Model

We now present an integration procedure for the mechanical model. In contrast
to the previous section, the mechanical model is coupled with the response of the
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intergranular strain. An implicit implementation is troublesome in view of the
large amount of derivatives to be considered. Therefore, we perform an explicit
integration and let the numerical convergence to be achieved by selecting an
appropiated subincrement size. In the following lines, the code sequence for the
mechanical model is explained.

We begin with the computation of exponent χ according to Eq. 19:

χ = χ0 + εacc(χmax − χ0) (30)

Then, the flow rule Nij is once more actualized with the variables hij and cij

calculated within the intergranular strain model:

Nij =
(hij − cij)√

(hij − cij)(hij − cij)
(31)

Subsequently, the scalar factors ρ and yh are evaluated:

ρ = 1 −
√

(RNij − hij)(RNij − hij)
2R

yh = ρχ〈Nij
ˆ̇εij〉

(32)

Once the scalar functions and the intergranular model are actualized, we pro-
ceed to compute the stiffness tensor Mijkl. For this purpose, tensors Nhyp

ij and
Lhyp

ijkl ought to be defined. For our code, we have used some additional Fortran
subroutines to compute these tensors according to the hypoplastic equation by
Wolfferdorff [21], see Appendix A. We recall that the user is free to select the
hypoplastic model with its respective definitions for tensors Nhyp

ij and Lhyp
ijkl. In

general, these tensors do not depend on the intergranular strain model variables,
but only on the current stress σ and void ratio e. Hence, we recommend their
implementation with a simple explicit procedure with the appropriate subincre-
ment size. The user may improve this integration with automatic subincremen-
tation with error control [3,4].

Having tensors Nhyp
ij and Lhyp

ijkl defined, we compute the stiffness tensor
Mijkl. The computation of the stiffness tensor Mijkl depends whether an elastic
(F trial ≥ 0) or plastic step (F trial < 0) has been performed within the intergran-
ular strain model and reads:

Mijkl =
{

[mR + (1 − mR)yh](Lhyp
ijkl + ρχNhyp

ij Nkl) for F trial ≥ 0
mRLijkl for F trial < 0

(33)

The stress σij is actualized with the equation:

σij = σij + MijklΔεkl (34)

Finally, the void ratio e and the state variable εacc are actualized:

εacc = εacc +
Ca

R
(1 − yh − εacc)

√
ΔεijΔεij

e = e + (1 + e)(Δεii)
(35)
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For the sake of simplicity, we approximate the jacobian with Jijkl ≈ Mijkl

at the end of the subroutine. Simulations have shown that this approximation
leads to numerical convergence.

1.6 Material Parameters

In this section a brief description of the material parameters is given. A summary
of the model parameters with their respective names is given in Table 2. In this
table, we have also included their suggested range and some useful experiments
for their determination.

We basically distinguish three types of parameters: the first related to the
behavior of the material under monotonic loading. These parameter are the
one from tensors Lhyp and Nhyp, see Appendix A. The hypoplastic model by
Wolfferdorff adopted incorporates 8 parameters very well studied in the literature
[7,11]. They correspond to hs, nB , ei0, ec0, ed0, α and β and are calibrated
using routine tests under monotonic loading, especially oedometric and triaxial
tests. A comprehensive guide for their determination can be found in [7,15].
The second group corresponds to those incorporated in the evolution law of the
intergranular strain model. They correspond to mR, R, βh and χ0 and can be
adjusted with cyclic triaxial test. Notice that some of these parameters, such
as mR and R, were already introduced in the intergranular strain model by
Niemunis and Herle [11,13] and therefore their calibration experience can be also
used for the present model. A procedure for their determination is explained in
some recent works [5,6,15]. Lastly, the parameters Ca and χmax are aimed to
control the behavior of the model for a large number of repetitive cycles (e.g.
N > 15). They were explained in the work of [15] including some remarks for
their calibration. In order to analyze the influence of the parameter Ca, we have
included some simulations of a cyclic undrained triaxial test in Figs. 3 and 4.
These simulations borrow the parameters of the Karlsruhe fine sand (see Table 2)
but vary the parameter Ca = {0.005, 0.015, 0.025}. The void ratio was set to
e = 0.8 and the initial consolidation pressure to p0 = 100 kPa. Cycles with a
stress amplitude of qamp = 50 kPa were applied. The results shows how increasing
values of Ca increases the number of cycles required to reach the critical state
line, see e.g. Fig. 4. Hence, in some way the parameter Ca represents how fast
the model increases its stiffness due to the application of subsequent cycles. We
will show that a similar pattern is observed in finite element simulations of cyclic
phenomena.

2 Simulations of Experiments

In this section, we present the simulations of some triaxial tests to analyze
the model. These simulations consider an element test condition, meaning that
homogeneous fields of stress and strain are assumed. The selected material cor-
responds to the Karlsruhe fine sand, which has been previously calibrated in a
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Fig. 3. Simulations of cyclic undrained triaxial test. Parameters of Karlsruhe fine sand.
Variation of parameter Ca
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Table 2. Material constants of the model

Description Units Approx. range Value Useful experiments

Wolffersdorff hypoplaticity

ϕc Critical state friction angle [◦] 0◦−50◦ 33 UTCa

hs Granular hardness [-] 10−107 86260 OCb

nB Barotropy exponent [-] 10−6−1 0.32 OC

ei0 Maximum void ratio [-] 0.1−2 1.21 emax test

ec0 Critical void ratio [-] 0.1−2 1.09 emax test, UTC, DTCc

ed0 Minimal void ratio [-] 0.1−2 0.67

α Dilatancy exponent [-] 0−2 0.21 UTC, DTC

β Exponent [-] 0−10 1.5 UTC, OC, UTC, DTC

ISA parameters

mR Stiffness factor [-] 1−7 5 CUTCd

R IS yield surface radius [-] 10−5−10−4 1.4 × 10−4 −
βh IS hardening parameter [-] 0−1 0.35 CUTC

χ0 Minimum value of χ [-] 1−10 7 CUTC

Extension by [15]

Ca Controls the rate of εacc [-] 0−1 0.025 CUTC

χmax Maximum value of χ [-] 1−50 15 CUTC
aUTC: Undrained triaxial test
bOC: Oedometric compression test
cDTC: Drained triaxial test
dCUTC: Cyclic undrained triaxial test

former work [15]. This sand presents a mean grain size of d50 = 0.14 and a uni-
formity coefficient equal to Cu = d60/d10 = 1.5. The grain size is catalogued as
sub-angular, and seems not to produce an inherent anisotropy on air pluviated
samples due to its roundness [5]. The minimum and maximum void ratios are
emin = 0.677 and emax = 1.054 respectively and a specific gravity of Gs = 2.65
has been determined.

The first simulations correspond to six different undrained triaxial tests under
monotonic loading. All these tests were consolidated isotropically to the same
initial mean stress p = 200 kPa and sheared under triaxial conditions. Three of
them were sheared under compression while the other three under extension.
The void ratios e range between e = 0.698−0.964 and are indicated in Fig. 5.
All tests were simulated with the proposed model and showed in general a good
agreement, except by the lack of a quasi-steady state in the simulations. The
latter shortcoming is related to the performance of the Wolffersdorff hypoplastic
model.

The next experiments consist on two different cyclic undrained triaxial tests.
The first is shown in Fig. 6. The sample was isotropically consolidated to a
mean stress of p0 = 200 kPa and ended with a void ratio of e = 0.800. Then,
stress cycles with an amplitude of qamp = 120 kPa were applied. The experiment
exhibited 8 cycles before reaching failure at the critical state line. The simulations
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void ratios. Experiments using Karlsruhe fine sand, data from [19]
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Fig. 6. Undrained triaxial test under cyclic loading. Deviator stress amplitude of
qamp = 120 kPa. Experiment using Karlsruhe fine sand, data from [19]

also showed the same number of cycles. The post-failure behavior may present
some discrepancies. At that state, some other effects such as the cyclic mobility
are of importance, but this analysis is out of the scope of the present article. The
second cyclic test presents a similar density e = 0.798 after consolidation but
a different stress amplitude qamp = 50 kPa. The sample has been isotropically
consolidated to a pressure of p = 100 kPa. Considering the smaller value of the
stress amplitude, a larger number of cycles before reaching failure is expected.
The experiment showed about 90 cycles while the simulation showed about 83
cycles (Fig. 7). This is discrepancy is somehow small and may be improved by
selecting more appropriated parameters. The accumulated pore pressure uacc

against the number of cycles N of the two cyclic triaxial tests are plotted in
Fig. 8.
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Fig. 7. Undrained triaxial test under cyclic loading. Deviator stress amplitude of
qamp = 50 kPa. Experiment using Karlruhe fine sand, data from [19]

3 Simulations with Finite Elements

We now evaluate the constitutive model in a boundary value problem solved
with finite elements. The problem corresponds to a circular shallow foundation
subjected to cyclic loading. The finite element model was made by [23] to sim-
ulate a scaled model of a shallow foundation constructed in the laboratory of
the Institute of Soil Mechanics and Rock Mechanics from the Karlsruhe Insti-
tute of Technology [23]. The geometry and the boundary conditions are depicted
in Fig. 9. The main objective is to analyze the influence of the parameter Ca in
the simulations. Axial-symmetric finite elements with two degrees of freedom per
node (only displacements) were employed. The soil corresponds to the Karlsruhe
fine sand in dry conditions, i.e. no pore water pressure were included. The prob-
lem has been simulated using the software Abaqus Standard. A contact formu-
lation solved by the penalty method has been employed to simulate the frictional
interaction between the foundation and the soil with a friction coefficient of 0.5.
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The foundation material is steel and is simulated with an isotropic elastic model
with a Young modulus equal to E = 2.1 × 108 kPa and Poisson ratio ν = 0.3.
The density of the foundation has been neglected on the current analysis.

P
0.13 m

0.47 m

Foundation 0.05

-0.05

P [kN]

N

45

(a) (b)

0.47 m

Fig. 9. Geometry and boundary conditions of the finite element simulation
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Fig. 10. Displacements contours for each case (Ca = 0, Ca = 0.025 and Ca = 0.05)
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A geostatic condition has been initially applied assuming a lateral earth
coefficient of K0 = 0.5 and a dry density of the sand equal to ρd = 1500 kg/m3.
The initial void ratio has been set to e = 0.8 and the intergranular strain has
been initialized assuming mobilized states in the vertical direction, i.e. h22 = −R
and c22 = −R/2, where the subindex 2 points in the vertical direction.

After the geostatic step, a sinusoidal load is applied on the top of the foun-
dation. The load is schematized in Fig. 9 and presents 45 cycles with maximum
value equal to P = 0.5 kN. We consider a very slow load velocity to ignore any
dynamic effect. Three different simulations were performed considering the vari-
ation of parameter Ca = {0, 0.025, 0.05}. The cases with Ca > 0 consider the
extension proposed in [15] to account for repetitive loading. The Fig. 10 presents
the contours of the displacements for the three cases at the end of the simula-
tion. The results clearly show an increasing settlement of the foundation with
decreasing value of Ca. Hence in some way, the parameter Ca simulates the over-
all increase of the stiffness upon the subsequent cycles. The plots of the vertical
displacements Uy on the top of the foundation are shown in Fig. 11.

4 Closure

We have performed some simulations of some experiments to evaluate the accu-
racy of an ISA-plasticity based model. For large strain ampltiudes ‖δε‖ > 10−2,
the model delivers the hypoplastic relation by Wolffersdorff [21]. The extension
by [15] was herein considered to simulate the reduction of the plastic accumu-
lation for increasing number of subsequent cycles. The simulations of element
test with cyclic loading under undrained triaxial conditions showed satisfactory
results. The model was able to capture approximately the number of cycles
required to reach the critical state line. We have also inspected the performance
of the model in a boundary value problem of scaled shallow foundation subjected
to cyclic loading. With the simulations, we have proved that the current model is
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able to increase its overall stiffness when it experiences repetitive loading. Cur-
rently, some other issues are investigated to improve the model, as for example
the cyclic mobility effect and the post-liquefaction behavior.

A Hypoplastic Model from Wolffersdorff

The hypoplastic model by Wolffersdorff has been explained in several works
[7,11,15,21]. We outline here the equations required to implement the model.
The general equation reads:

σ̇ = Lhyp : ε̇ + Nhyp ‖ε̇‖ (36)

whereby Lhyp is the “linear” stiffness and Nhyp is the “non-linear” stiffness. The
linear stiffness Lhyp reads [21]:

σ̇ = Lhyp = fbfe
1

σ̂ : σ̂
(F 2I + a2σ̂σ̂) (37)

whereby σ̂ = σ/trσ is the relative stress [11], I is a unit fourth order tensor for
symmetric tensors and the other quantities fb, fe, F and a are scalar functions.
The scalar function F is defined as:

F =

√
1
8

tan2(ψ) +
2 − tan2(ψ)

2 + 2
√

2 tan(ψ) cos(3θ)
− 1

2
√

2 tan(ψ)
(38)

whereby the factors a, θ and ψ are defined as:

a =
√

3(3 − sin(ϕc))
2
√

2 sin(ϕc))

tan ψ =
√

3‖σ̂∗‖

cos(3θ) =
√

6
tr(σ̂∗σ̂∗σ̂∗)
(σ̂∗ : σ̂∗)3/2

(39)

and depends on the deviator stress σ∗ and the critical state friction angle ϕc.
The remaining scalar functions fb, fe and fd are dependent on the characteristic
void ratios proposed by Bauer [2]:

ei = ei0 exp (− (3p/hs)
nB )

ed = ed0 exp (− (3p/hs)
nB )

ec = ec0 exp (− (3p/hs)
nB )

(40)

These curves introduces the parameters ei0, ed0, ec0, hs and nB . The scalar
functions fe and fb are called picnotropy and barotropy factors and read:

fe =
(ec

e

)β

fb =
hs

nB

(
1 + ei

ei

)(
ei0

ec0

)β (
− trσ

hs

)1−nB
[

3 + a2 −
√

3a

(
ei0 − ed0

ec0 − ed0

)β
]−1

(41)
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with the parameter β. The non-linear stiffness is defined as:

Nhyp = fdfbfe
Fa

σ̂ : σ̂
(σ̂ + σ̂∗) (42)

with the density factor:

fd =
(

e − ed

ec − ed

)α

(43)

with the parameter α controlling the model dilatancy.
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