Knee Ligament Injuries

Aristides I. Cruz Jr.

Anterior Cruciate Ligament (ACL) [1,2]

Anatomy/Biomechanics

- Primary restraint to anterior translation of the tibia relative to the femur
- Secondary restraint to tibial rotation
- Anteromedial (AM) bundle:
 - More isometric
 - Tight in flexion
- Posterolateral (PL) bundle:
 - Tight in extension
 - Contributes primarily to rotational stability

Diagnosis

History

- Contact or noncontact sports injury
- Pivoting knee injury
- "Pop" followed by knee effusion (swelling)

Physical Exam

- Anterior drawer
- Lachman exam:

e-mail: aristides_cruz@brown.edu

- Anteriorly directed force on the tibia with the knee flexed 30°
- Grading:
 - I = 3-5 mm translation
 - II = 6–10 mm
 - III > 10 mm:
 - \circ A = Firm endpoint
 - \circ B = Soft endpoint
- Pivot shift exam:
 - Valgus force as the knee is brought from extension into flexion.
 - In extension, the tibia subluxated anteriorly and reduces at 20–30° of flexion as IT band transitions from knee extensor to flexor thus reducing the tibia.

Imaging

- X-ray:
 - "Segond fracture," avulsion fracture off the anterolateral proximal tibia; classically associated with ACL rupture
- MRI: definitive diagnosis

Treatment

Nonoperative

- · Low-demand patients
- Primarily consists of activity/lifestyle modification
- PT to emphasize hamstring strength
- ACL specific bracing with activity

A.I. Cruz, Jr., MD

Assistant Professor of Orthopaedics, Warren Alpert Medical School at Brown University, Rhode Island Hospital/Hasbro Children's Hospital, Providence, RI, USA

Operative

- Active, high-demand patients.
- Failed nonoperative treatment (persistent knee instability).
- Reconstruction is current gold standard (as opposed to repair).

Surgical Options

- Single vs. double bundle:
 - Double bundle may better reproduce knee kinematics [3].
 - No clear difference in clinical outcomes between single and double bundle.
- Graft choice:
 - Hamstring (semitendinosus, gracilis):
 - Smaller patients yield smaller grafts:
 - Graft size <8 mm associated with higher risk of failure [4]
 - No bone-bone healing
 - Bone-patellar tendon-bone:
 - Longest history of use
 - "Gold standard"
 - Bone-bone healing
 - Donor-site morbidity (anterior knee pain)
 - Complication patella fracture
 - Quadriceps tendon
- Allograft vs. autograft [5]:
 - Autograft:
 - Pro: patient's own tissue, no risk of disease transmission, and faster graft incorporation
 - Cons: donor-site morbidity
 - Allograft:
 - Pro: no donor-site morbidity and can select graft size.
 - Cons: slower graft incorporation, theoretic risk of disease transmission, and irradiated allograft may be associated with higher failure rates.
 - Femoral tunnel drilling:
 - Transtibial:
 - More "traditional" technique
 - Femoral tunnel location accessed via the tibial tunnel
 - Independent tunnel:
 - May allow for more "anatomic" femoral tunnel placement by allowing more oblique drill trajectory

- Requires knee hyperflexion to prevent posterior wall "blowout"
- Retrograde or "outside-in" drilling:
 - Requires specialized instrumentation
 - Allows independent femoral tunnel drilling without need for knee hyperflexion

Rehab/Injury Prevention [6]

- Neuromuscular training/jump training
- Jump landing in valgus and relative extension implicated in increased risk of injury
- · Address relative hamstring weakness

Complications

- Re-rupture:
 - Most common cause tunnel malposition
- Loss of motion/arthrofibrosis:
 - Delay surgery until patients regain motion and swelling from acute injury controlled
- · Tunnel osteolysis
- Fixation failure
- "Cyclops" lesion:
 - Due to fibroproliferative tissue within the intercondylar notch
 - Blocks extension
 - Treat with arthroscopic debridement
- Posttraumatic arthritis:
 - May be associated with concomitant meniscal pathology

Posterior Cruciate Ligament (PCL) [7,8]

Anatomy/Biomechanics

- Anterolateral (AL) bundle:
 - Tight in flexion
- Posteromedial (PM) bundle: – Tight in extension
- Meniscofemoral ligaments:

- Originate from posterior horn lateral meniscus and insert onto PCL
- Anterior, ligament of Humphrey; posterior, ligament of Wrisberg

Diagnosis

History

- Posteriorly directed blow to the flexed knee (i.e., "dashboard" injury)
- Knee hyperflexion injury with the plantarflexed foot

Physical Exam

- Posterior drawer test:
 - Grading:
 - I = 1-5 mm translation
 - II = 6–10 mm
 - \circ III > 10 mm
- Posterior sag sign:
 - With the knee at 90° flexion, the tibia lies posterior relative to the femoral condyles compared to contralateral side.
- Quadriceps active test:
 - With the knee flexed at 90°, the tibia subluxated posteriorly relative to the femur; resisted activation of the quadriceps reduces the tibia anteriorly.
- Dial test:
 - See section below (posterolateral corner injuries).

Imaging

- X-ray:
 - May show avulsion fracture off posterior tibial insertion
 - Posterior drawer stress test \rightarrow posterior subluxation of the tibia
- MRI

Treatment [9]

Nonoperative

- Most isolated PCL tears (Grade I-II)
- Rehab to concentrate on quadriceps strengthening

Operative

- Isolated Grade III tears with persistent functional instability
- Multi-ligament knee injury

Surgical Options

- Tibial avulsion fracture \rightarrow direct repair
- Reconstruction options:
 - Transtibial technique:
 - Beware of "killer turn":
 - PCL graft is passed from anterior to posterior through tibial tunnel; graft then passed from posterior to anterior into femoral tunnel.
 - May cause attenuation of graft tissue.
 - Tibial inlay technique:
 - Avoids "killer turn":
 - Tibial portion of graft seated into the socket in posterior aspect of the tibia
 - Graft choice:
 - Allograft vs. autograft:
 - Same inherent issues as above.
 - Allograft affords more graft options especially during multi-ligament knee reconstruction.

Medial Collateral Ligament (MCL) [10]

Anatomy/Biomechanics

- Superficial MCL:
 - Primary restraint to valgus stress of the knee
- Deep MCL:
 - Secondary restraint to valgus stress.
 - Attaches to the medial meniscus.
 - Posterior fibers blend with the posteromedial capsule and the posterior oblique ligament (POL).

Diagnosis

History

Commonly associated with ACL rupture

Physical Exam

- Tenderness along medial aspect of the knee.
- Valgus stress testing at 30° knee flexion isolates superficial MCL.
- Grading:
 - I = 1–4 mm medial joint line gapping
 - II = 5–9 mm
 - III \geq 10 mm
- Valgus stress at 0° knee flexion indicates posteromedial capsule or cruciate ligament injury.

Imaging

- X-ray:
 - Rule out bony injury.
 - Valgus stress test may show medial joint line gapping.
- MRI:
 - Can characterize sprain vs. partial vs. complete tear

Treatment

Nonoperative

- Primary treatment in both isolated and combined ACL injury
- NSAIDs, rest, physical therapy, and bracing (to resist valgus)

Operative treatment

- Relative indications:
 - Acute repair in Grade III (complete) injuries
 - Multi-ligament knee injury
- Reconstruction indicated in chronic injuries with persistent functional instability

Posterolateral Corner (PLC) [11, 12]

Anatomy/Biomechanics [13]

- PLC structures consist of static and dynamic structures:
 - Static:
 - Lateral collateral ligament (LCL)
 - Popliteus tendon

- Popliteofibular ligament (PFL)
- Lateral capsule
- Arcuate ligament
- Fabellofibular ligament
- Dynamic:
 - Biceps femoris
 - Popliteus muscle
 - Iliotibial band
 - Lateral head of gastrocnemius
- PLC resists external rotation, varus, and posterior translation.

Diagnosis

History

- Acute injuries:
 - Be suspicious with high-energy injury mechanisms and multi-ligamentous knee injury (i.e., knee dislocation).

Physical Exam

- Varus thrust with gait exam
- Varus stress at 30° knee flexion:
 - Grading:
 - I = 0-5 mm lateral joint line gapping
 - \circ II = 6–10 mm
 - \circ III > 10 mm
- Varus laxity at 0° (LCL + cruciate injury)
- Dial test:
 - Tests for isolated PLC vs. PLC + PCL injury.
 - External rotation of tibia at 30° and 90° of knee flexion.
 - Positive test is >10° of side-to-side difference:
 - + test @ 30° and 90° flexion → PLC + PCL injury
 - ∘ + test @ 30° flexion only → isolated PLC injury
- Reverse pivot shift:
 - Valgus/external rotation force as the knee is brought from flexion into extension.
 - In flexion, the tibia subluxated posteriorly and reduces at approximately 20–30° of flexion as IT band transitions from knee flexor to extensor.

Imaging

- X-rays:
 - Avulsion fracture off the fibula ("arcuate fracture") represents bony avulsion of lateral ligamentous complex.
- MRI:
 - Imaging of choice

Treatment

Nonoperative

- Isolated PLC Grade I/II injuries
- Knee immobilizer with protected weightbearing ×2 weeks followed by progressive rehab

Operative

- PLC repair:
 - Indicated only in acute injuries (within 2 weeks from injury)
 - Fibular avulsion \rightarrow ORIF
- PLC reconstruction:
 - Grade III injury
 - Chronic injuries
 - Correct varus malalignment (if present) with high tibial osteotomy in chronic injuries
- Reconstruction techniques:
 - Multiple described
 - Goal: reconstruct LCL and PFL
- Acute multi-ligament knee injury:
 - Staged reconstruction:
 - Repair/reconstruct PLC early (within 2 weeks of injury).
 - Reconstruct PLC prior to ACL.

Complications

- Knee stiffness/arthrofibrosis
- Missed PLC injury:
 - Unrecognized PLC injury may lead to failed ACL reconstruction.
- Peroneal nerve injury

References

- Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):1579–602.
- Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005;33(11):1751–67.
- Kopf S, Musahl V, Bignozzi S, Irrgang JJ, Zaffagnini S, Fu FH. In vivo kinematic evaluation of anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(9):2172–7.
- Mariscalco MW, Flanigan DC, Mitchell J, et al. The influence of hamstring autograft size on patientreported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopedic Outcomes Network (MOON) Cohort Study. Arthroscopy. 2013;29(12):1948–53.
- Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Consortium M, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43(7):1583–90.
- Donnell-Fink LA, Klara K, Collins JE, et al. Effectiveness of knee injury and anterior cruciate ligament tear prevention programs: a meta-analysis. PLoS One. 2015;10(12):e0144063.
- Sekiya JK, Whiddon DR, Zehms CT, Miller MD. A clinically relevant assessment of posterior cruciate ligament and posterolateral corner injuries. Evaluation of isolated and combined deficiency. J Bone Joint Surg Am. 2008;90(8):1621–7.
- Lee BK, Nam SW. Rupture of posterior cruciate ligament: diagnosis and treatment principles. Knee Surg Relat Res. 2011;23(3):135–41.
- Montgomery SR, Johnson JS, McAllister DR, Petrigliano FA. Surgical management of PCL injuries: indications, techniques, and outcomes. Curr Rev Muscoskelet Med. 2013;6(2):115–23.
- Roach CJ, Haley CA, Cameron KL, Pallis M, Svoboda SJ, Owens BD. The epidemiology of medial collateral ligament sprains in young athletes. Am J Sports Med. 2014;42(5):1103–9.
- Ranawat A, Baker 3rd CL, Henry S, Harner CD. Posterolateral corner injury of the knee: evaluation and management. J Am Acad Orthop Surg. 2008;16(9):506–18.
- LaPrade RF, Wentorf F. Diagnosis and treatment of posterolateral knee injuries. Clin Orthop Relat Res. 2002;402:110–21.
- LaPrade RF, Bollom TS, Wentorf FA, Wills NJ, Meister K. Mechanical properties of the posterolateral structures of the knee. Am J Sports Med. 2005;33(9):1386–91.