
Chapter 9
Adaptive Fault Detection for Uncertain
Time-Delay Systems

9.1 Introduction

Time delay phenomenon often exists in the practical applications because of informa-
tion transmission. It has been proven that such time delaywill causes the performance
degradation of the controlled systems, even instability. Hence, the research of such
class of time delayed systems has become a hot issue on [1–6]. Design of observer
including fault detection observer is an important and challenging problem. Themain
difficulty lies in handling the time delay [7]. For example, consider a simple system

{
ẋ(t) = Ax(t) + Adx(t − d) + Bu

y(t) = Cx(t)
(9.1)

where x, y and u denote state, output and control input, respectively; A, Ad , B and
C are known real matrices; d is a constant. In most of the existing results such as
[8], its observer often is designed as:

{ ˙̂x(t) = Ax̂(t) + Ad x̂(t − d) + Bu + L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)
(9.2)

where L is observer gain matrix. Notice that, the first equation in (9.2) contains
time delay term x̂(t − d). Obviously, if d is unknown, then observer (9.2) is not
reasonable and does not work in practical applications. Hence, how to avoid the
above shortcoming and design a proper observer for dynamical systems becomes
important and practically useful, which is the first motivation of our work.

On the other hand, faults/failures inevitable occur in the system parts such as
actuators and sensors, which will lead to the decreasing of the system performance.
In order to compensate for these faults/failures, various fault-tolerant control (FTC)
methods are proposed [9–68]. Among these FTC methods, active FTC methods
is more common and important useful [43–53]. Fault detect (FD) is the first and
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important step in active FTC method [9]. In general, the so-called FD observer is
designed to detect the faults occurred in the system. Recently, the FD problem of time
delay systems has drawn wide attentions. For time delay systems, however, most of
the FD observers proposed in literature are similar to (9.2), which also have the same
shortcoming, i.e., the FD observers contain the unknown time delay terms. In [8],
an asymptotic value of the norm of state estimation error vector is taken as a fault
indicator. However, the asymptotic value cannot be accessed in practical applications.
Therefore, how to design an efficient FD mechanism is another motivation of this
work.

Uncertainty/nonlinearity is common in the controlled systems. In general, as [8],
the uncertainty is assumed to be known and to satisfy the so-called Lipschitz con-
dition. Indeed, under the condition, control design and system stability analysis are
simplified largely. It should be pointed out that, however, this condition could not
be always satisfied in practical applications. Hence, how to efficiently detect the
fault occurred in nonlinear systems where the uncertainties do not satisfy Lipschitz
condition is particularly valuable and helpful, which also motivate us for this work.

In this chapter, based on the above-mentioned works, the FD problem of time
delay systems is considered, where neural networks (NNs) [59, 69, 70] are used to
approximate the unknown smooth functions. Compared with the existing results, the
contributions of our work are as follows:

(1) First, a novel adaptive neural networks-based fault detection observer is con-
structed for a class of uncertain time delay systems. In the observer design, by using a
suitable adaptation mechanism, the real value of time delay can be estimated online,
which means that the conditions (the time delay should be known) and shortcoming
(the fault detection observer contains the unknown time delay) are removed.

(2) Next, different from [8] where the uncertainty was assumed to satisfy the
Lipschitz condition, the condition is relaxed in ourwork, and it is just required that the
normof the uncertainty is less than the sumof unknown functions. Thus, the algorithm
proposed in this chapter can be used in the widespread practical applications.

(3) Furthermore, a novel fault detection mechanism is proposed, which is more
efficient for FD under practical conditions.

The rest of this chapter is organized as follows. Section9.2 gives the problem for-
mulation and the preliminaries of neural networks are presented. In Sect. 9.3, a novel
adaptive NNs-based fault detection observer is proposed. In Sect. 9.4, simulations
are presented. Finally, Sect. 9.5 draws the conclusions.

9.2 Problem Statement and Description of NNs

In this section, we will first formulate the fault detection problem. Then, the mathe-
matical description of NNs is introduced.
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9.2.1 Problem Statement

Consider the time-delayed system

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Adx(t − d) + Bu(t) + g(x(t), x(t − d); t)
y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [− d̄, 0]
(9.3)

where x(t) ∈ Rn is state, u(t) ∈ Rm is input and y(t) denote output; A, Ad , B and
C are known real matrices with appropriate dimensions; d ∈ R is unknown and
satisfies 0 < d ≤ d̄, d̄ is a known real constant;

g(·) = [g1(·), g2(·); · · · , gn(·)]T ∈ Rn,

gi (·) = gi (x(t), x(t − d); t) ∈ R, i = 1, 2, . . . , n are the uncertainties, which
denote model uncertainty, external disturbance, time-varying parameter variation,
and system nonlinearity; ϕ(t) is an arbitrarily known continuous bounded function.

Throughout this chapter, (A,C) is assumed to be observable and only system
output y is measurable.

In this chapter, the faulty system can be described as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = Ax(t) + Adx(t − d) + Bu(t)+
g(x(t), x(t − d); t) + f (x(t), u(t); t)

y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [−d̄, 0]
(9.4)

where f (·) ∈ Rn denotes the unknown faults occurred in actuators or the other
system components.

The aim of this chapter in this chapter is to design a suitable adaptive observer
and more efficient fault detection mechanism for system (9.3) to detect the occurred
faults.

For notational convenience, let us define the following notations: gi = gi (·) and
g = [g1, g2, · · · , gn]T . In addition, �(t) will be abbreviated as �.

Assumption 9.1 There exist two unknown smooth functions gi1(x(t)) ≥ 0 ∈ R,
gi2(x(t − d)) ≥ 0 ∈ R and an unknown real constant gi3 ≥ 0 satisfying

|gi | ≤ gi1(x(t)) + gi2(x(t − d)) + gi3.

Assumption 9.2 Time delay d is bounded, namely, there exist two known real con-
stants d̄ > 0 ∈ R and d > 0 ∈ R such d < d ≤ d̄.

Remark 9.1 In [8], the nonlinear function gi was assumed to be known satisfying
the Lipschitz condition. However, this condition could be not always satisfied in
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practical applications. In such case, the results in [8] would not work. In this chapter,
the condition is replaced by Assumption 9.1. What’s important, it is not necessary
that gi1, gi2 and gi3 are known, which relaxes largely the condition in [8]. Thus, the
proposedmethod in this chapter can be used in the widespread practical applications.

9.2.2 Mathematical Description of NNs

NNs have been widely used in controlling of nonlinear systems due to their capabil-
ities of nonlinear function approximation [69]. In this chapter, RBF NNs

h(Z , θ) = θT ξ(Z)

will be used to approximate a smooth function h(Z), where the weight vector θ , the
basis function vector ξ(Z) are defined as follows:

θ = (θ1, θ2, . . . , θN )T ,

ξ(Z) = (ξ1(Z), ξ2(Z), . . . , ξN (Z))T ,

θi (Z) = exp(−(
∑p

j=1
(z j − ai j )

2)/(μi )
2),

μi > 0 denotes the width of the receptive field, and ai j denotes the center of the
Gaussian function, z j denotes the j th element of Z , p denotes the dimension of Z ,
N is the number of the NNs nodes.

In this chapter, for i = 1, . . . , n, gi1(x(t)) and gi2(x(t − d)) are approximated by
NNs as:

ĝi1(x̂(t), θ̂i1) = θ̂T
i1ξi1(x̂(t))

ĝi2(x̂(t − d̂), θ̂i2) = θ̂T
i2ξi2(x̂(t − d̂))

Optimal parameter vectors θ∗
gi1 and θ∗

gi2 are defined as

θ∗
i1 = arg min

θi1∈Ωi1

[ sup
x∈U,x̂∈Û

|gi1(x(t)) − θ̂T
i1ξi1(x̂(t))|]

θ∗
i2 = arg min

θi2∈Ωi2

[ sup
x∈U,x̂∈Û

|gi2(x(t − d)) − θ̂T
i2ξi2(x̂(t − d̂))|]

where Ωi1, Ωi2,U and Û are compact regions for θ̂i1, θ̂i2, x and x̂ , d̂, θ̂i1 and θ̂i2 are
the estimates of d, θ∗

i1 and θ∗
i2, respectively.

The NNs minimum approximation errors are defined as
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εi1 = gi1(x(t)) − θ∗T
i1 ξi1(x̂(t)),

εi2 = gi2(x(t − d)) − θ∗T
i2 ξi2(x̂(t − d̂)).

Now, the following assumptions are made throughout this chapter.

Assumption 9.3 |εi1| ≤ ε∗
i1 and |εi2| ≤ ε∗

i2 , where ε∗
i1 > 0 ∈ R and ε∗

i2 > 0 ∈ R are
unknown constants.

9.3 Fault Detection Observer Design

For (9.3), the FD observer is designed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x(t) = Ax̂(t) + Ad x̂(t − d̂) + AdΔ1 + Bu(t)+
L(ŷ(t) − y(t)) + sgn(eTy F)ĝ + Δ2

ŷ(t) = Cx̂(t)

x̂(t) = 0, t ∈ [− d̄, 0]

(9.5)

where x̂(t) ∈ Rn is observer state, u(t) ∈ Rm is observer control input, and ŷ(t) is
observer output;

sgn(eTy F) = diag{sgn(eTy F1), . . . , sgn(eTy Fn)}

ĝ = ĝ1 + ĝ2 + ĝ3

ĝ1 = [ĝ11, . . . , ĝn1]T

ĝ2 = [ĝ12, . . . , ĝn2]T

ĝ3 = [ĝ13, . . . , ĝn3]T

ĝi1 (= ĝi1(x(t))), ĝi2 (= ĝi2(x(t− d̂))) and ĝi3 are the estimates of unknown smooth
functions gi1, gi2 and unknown constant gi3, respectively; gi1, gi2 and gi3 are defined
in Assumption 9.1, Fi (i= 1, 2, . . . , n) is the i th column of matrix F , which satisfies
the following condition

(FTC)T = P (9.6)

real matrix P = PT > 0 will be defined later, ey = y − ŷ, d̂ is an estimate of d, Δ1

and Δ2 are robust terms to be defined later.
Denote

ex (t) = x(t) − x̂(t), ed = x(t − d) − x̂(t − d̂)
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Then, from (9.3) and (9.5), the observer error dynamics can be described as follows:

ėx (t) = (A − LC)ex (t) + Adx(t − d) − Ad x̂(t − d̂)+
g̃ − AdΔ1 − Δ2

= (A − LC)ex (t) + Adx(t − d) − Ad x̂(t − d̂)−
Ad x̂(t − d) + Ad x̂(t − d) + g̃ − AdΔ1 − Δ2

= (A − LC)ex (t) + Adex (t − d) + Ad x̂(t − d)−
Ad x̂(t − d̂) + g̃ − AdΔ1 − Δ2

(9.7)

where g̃ = [g̃1, . . . , g̃n]T and

g̃i = gi − sgn(eTy Fi )(ĝi1 + ĝi2 + ĝi3),

Note that, Ad x̂(t − d) is added to and subtracted from the right side of (9.7).
Remark 3: Many researchers study the observer design of time-delayed systems

in literature. For example, consider

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Adx(t − d) + Bu(t)

y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [−d̄, 0]

where x , y and u denote the system state, output and input, d > 0 ∈ R denotes the
time delay. In general, as doing in [8], the FD observer was given as:

⎧⎪⎨
⎪⎩

˙̂x(t) = Ax̂(t) + Ad x̂(t − d) + Bu(t) + L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)

x̂(t) = 0, t ∈ [− d̄, 0]

then we obtain the error dynamics

ėx (t) = (A − LC)ex (t) + Adex (t − d)

However, as Jiang pointed out in [7], the shortcoming of the aforementioned observer
is that d must be known. If not, the observer does not work in the practical applica-
tions. Hence, for avoiding the shortcoming, a novel fault detection observer (9.5) is
designed in this chapter.

Define the following smooth function

VDex = eTx (t)Pex (t) (9.8)

where P = PT > 0 is defined as in (9.6).
Differentiating VDex with respect to time t , we have
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V̇Dex =eTx (t)(P(A − LC) + (A − LC)T P)ex (t)+
2eTx (t)PAdex (t − d) + 2eTx (t)PAd(x̂(t − d)−
x̂(t − d̂)) + 2eTx (t)Pg̃ − 2eTx (t)P(AdΔ1 + Δ2)

(9.9)

From Young’s inequality, we have

2eTx (t)PAdex (t − d)

≤ eTx (t)PAd S
−1AT

d Pex (t) + eTx (t − d)Sex (t − d)
(9.10)

where real matrix S = ST > 0.
From Assumption 9.1, it follows

2eTx (t)Pg̃

=
∑n

i=1
2eTx (t)Pi g̃i

=
∑n

i=1
2eTx (t)Pi (gi − sgn(eTy Fi )ĝi )

≤
∑n

i=1
(|2eTx (t)Pi ||gi | − sgn(eTy Fi )2e

T
x (t)Pi ĝi )

where Pi is the i th column of matrix P .
From (9.6), we know, P = (FTC)T and P = PT > 0. Further, we have

eTx (t)Pi = eTy (t)Fi

Hence, we have

2eTx (t)Pg̃

≤
∑n

i=1
|2eTy (t)Fi ||gi | −

∑n

i=1
|2eTy (t)Fi |ĝi

≤
∑n

i=1
|2eTy (t)Fi |(gi1 + gi2 + gi3)−∑n

i=1
|2eTy (t)Fi |(ĝi1 + ĝi2 + ĝi3)

=
∑n

i=1
|2eTy (t)Fi |(g̃i1 + g̃i2 + g̃i3)

=
∑n

i=1
|2eTy (t)Fi |[θ∗T

i1 ξi1(x̂(t)) + εi1(x̂(t))−
θ̂i1ξi1(x̂(t)) + θ∗T

i2 ξi2(x̂(t − d̂))+
εi2(x̂(t − d̂)) − θ̂i2ξi2(x̂(t − d̂)) + g̃i3]

≤
∑n

i=1
|2eTy (t)Pi |(θ̃T

i1ξi1 + θ̃T
i2ξi2 + g̃i3)+∑n

i=1
|2eTy (t)Fi |(ε∗

i1 + ε∗
i2)

(9.11)
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where θ̃i1 = θ∗
i1 − θ̂i1, θ̃i2 = θ∗

i2 − θ̂i2, ξi1 and ξi2 are the abbreviations of ξi (x̂(t))
and ξi2(x̂(t − d̂)), respectively.

Substituting (9.10) and (9.11) into (9.9), it yields

V̇Dex ≤eTx (t)(P(A − LC) + (A − LC)T P)ex (t)−
2eTx (t)P(AdΔ1 + Δ2)+
eTx (t)PAd S

−1AT
d Pex (t)+

eTx (t − d)Sex (t − d)+
2eTx (t)PAd(x̂(t − d) − x̂(t − d̂))+∑n

i=1
|2eTy (t)Fi |(θ̃T

i1ξi1 + θ̃T
i2ξi2 + g̃i3)+∑n

i=1
|2eTy (t)Fi |(ε∗

i1 + ε∗
i2)

(9.12)

Define the following smooth function

VD1 =VDex +
∫ t

t−d
eTx (s)Sex (s)ds+

∑n

i=1
[ 1

2η1
θ̃T
i1θ̃i1 + 1

2η2
θ̃T
i2θ̃i2]+∑n

i=1
[ 1

2η3
g̃2i3 + 1

2η4
ε̃2i ]

(9.13)

where ε̃i = ε∗
i − ε̂i , ε∗

i = ε∗
i1 +ε∗

i2, ε̂i is the estimate of ε∗
i , ηl > 0 ∈ R, l = 1, 2, 3, 4

are adaptive rates, I is an identity matrix.
Differentiating VD1 with respect to time t , it yields

V̇D1 =V̇Dex + eTx (t)Sex (t)−
eTx (t − d)(S + 2I )ex (t − d)−∑n

i=1
[ 1
η1

θ̃T
i1

˙̂
θ i1 + 1

η2
θ̃T
i2

˙̂
θ i2]−

∑n

i=1
[ 1
η3

g̃i3 ˙̂gi3 + 1

η4
ε̃i ˙̂εi ]

(9.14)

Substituting (9.12) into (9.14), it yields
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V̇D1 ≤ eTx (t)Ξ1ex (t) − 2eTx (t)P(AdΔ1 + Δ2)+
2eTx (t)PAd(x̂(t − d) − x̂(t − d̂))+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
[|2eTy (t)Fi |ε∗

i − 1

η4
ε̃i ˙̂εi ]

(9.15)

where
Ξ1 = (P(A − LC) + (A − LC)T P + PAd S

−1AT
d P + S) (9.16)

Now, Δ1 and Δ2 are designed as follows:

Δ1 = sgn(eTy (t)FAd)(|x̂(t − d̂)| + |x̂m |)
Δ2 = sgn(eTy (t)F)ε̂

(9.17)

where
sgn(eTy FAd) = diag{sgn(eTy FAd1), . . . , sgn(eTy FAdn)},

sgn(eTy (t)F) = diag{sgn(eTy F1), . . . , sgn(eTy Fn)},

FAdi and Fi , i = 1, . . . , n, denote the i th column of matrix FAd and F , respectively,

|x̂(t − d̂)| = [|x̂1(t − d̂)|, · · · , |x̂n(t − d̂)|]T ,

|x̂m | = [x̂m1, . . . , x̂mn]T ,

x̂mi = max0≤τ≤d̄{|x̂i (t − τ)|}, i = 1, . . . , n,

matrix F satisfies (9.6), while FAd satisfies the following condition

PAd = (FT
AdC)

T
, (9.18)

and
ε̂ = [ε̂1, . . . , ε̂n]T

From (9.6), (9.17) and (9.18), we have

− 2eTx (t)PAdΔ1 + 2eTx (t)PAd(x̂(t − d) − x̂(t − d̂)) ≤ 0 (9.19)
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2eTx (t)PΔ2 =
∑n

i=1
|2eTy (t)Fi |ε̂i (9.20)

Substituting (9.19) and (9.20) into (9.15) and considering (9.6) and (9.18), one has

V̇D1 ≤eTx (t)Ξ1ex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )

(9.21)

In order to derive the adaptive law of d̂ , d̃eTy (t)ey(t) is added to and subtracted from
the the right hand of (9.21), then, we have

V̇D1 ≤ eTx (t)Ξ1ex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )+
d̃eTy (t)ey(t) − d̃eTy (t)ey(t)

(9.22)

where d̃ = d − d̂.
Since ey = Cex , we have

d̃eTy (t)ey(t) = d̃eTx (t)CTCex (t)

And since
d̃ = d − d̂ and eTx (t)CTCex (t) ≥ 0,

we have
d̃eTy (t)ey(t) = d̃eTx (t)CTCex (t)

= (d − d̂)eTx (t)CTCex (t)

= deTx (t)CTCex (t) − d̂eTx (t)CTCex (t)

≤ d̄eTx (t)CTCex (t)



9.3 Fault Detection Observer Design 221

where the properties: 0 ≤ d ≤ d̄ (Assumption 9.2) and 0 ≤ d̂ , are used. Note that,
0 ≤ d ≤ d̂ ≤ d̄ is ensured by adaptive law (9.31). Further,

V̇D1 ≤ eTx (t)(Ξ1 + d̄CTC)ex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTx (t)Pi | − 1

η4

˙̂εi )−
d̃eTy (t)ey(t)

(9.23)

If Q > 0 ∈ Rn×n , L ∈ Rn×n and P = PT > 0 ∈ Rn×n are chosen to satisfy the
following inequality,

P(A − LC) + (A − LC)T P+
PAd S

−1AT
d P + S + d̄CTC ≤ −Q

(9.24)

then (9.23) can be developed as follows:

V̇D1 ≤ − eTx (t)Qex(t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )−
d̃eTy (t)ey(t)

(9.25)

Define the following Lyapunov function

VD = VD1 + 1

2η5
d̃2

where η5 > 0 is a design parameter.
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Differentiating VD with respect to time t and considering (9.25), it yields

V̇D ≤ − eTx (t)Qex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )−

d̃(eTy (t)ey(t) + 1

η5

˙̂d)

(9.26)

Define the following adaptive laws

˙̂
θ i1 = η1|2eTy (t)Fi |ξi1 − σ1

ˆ̂
θi1 (9.27)

˙̂
θ i2 = η2|2eTy (t)Fi |ξi2 − σ2

ˆ̂
θi2 (9.28)

˙̂gi3 = η3|2eTy (t)Fi | − σ3
ˆ̂gi3 (9.29)

˙̂εi = η4|2eTy (t)Fi | − σ4
ˆ̂εi (9.30)

˙̂d =

⎧⎪⎪⎨
⎪⎪⎩

κ, if d ≤ d̂ ≤ d̄ or

(d̂ = d̄ or d̂ = d) and d̂κ ≤ 0

0, if (d̂ = d̄ or d̂ = d) and d̂κ > 0

, d < d̂(0) < d̄ (9.31)

where i = 1, . . . , n, σl > 0, l = 1, . . . , 5 are design parameters, κ = −η5eTy (t)

ey(t) − σ5d̂.
Note that, under the initial condition that d < d̂(0) < d̄ , the adaptive law (9.31)

can guarantees that
d ≤ d̂(t) ≤ d̄, for t ≥ 0

In fact, it is easily derived by lyapunov stability theory. Let us define the following
Lyapunov function

Vd = 1

2
d̂2
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Differentiating Vd with respect to time t , we have

V̇d = d̂ ˙̂d

The following analysis will be derived in two cases.
Case 1: the first condition of (9.31) holds
Since

d ≤ d̂ ≤ d̄ or (d̂ = d̄ or d̂ = d) and d̂κ ≤ 0

we have
V̇d = d̂κ = d̂(−η5e

T
y (t)ey(t) − σ5d̂) ≤ 0

Case 2: the second condition of (9.31) holds
Because

(d̂ = d̄ or d̂ = d) and d̂κ > 0

we have
V̇d = d̂ · 0 = 0

From Cases 1 and 2, using Lyapunov stability theory, we have the following results,

d ≤ d̂(t) ≤ d̄, for t ≥ 0.

Note that,
0 = −η5e

T
y (t)ey(t) − σ5d̂ − (−η5e

T
y (t)ey(t) − σ5d̂)

Thus, the adaptive law (9.31) can be rewritten as follows:

˙̂d =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ, if d ≤ d̂ ≤ d̄ or

(d̂ = d̄ or d̂ = d) and d̂κ ≤ 0

− η5e
T
y (t)ey(t) − σ5d̂ − (−η5e

T
y (t)ey(t) − σ5d̂),

if (d̂ = d̄ or d̂ = d) and d̂κ > 0

Substituting adaptive laws (9.27)–(9.31) into (9.26), it yields

V̇D ≤ − eTx (t)Qex (t) + I d̃(−η5e
T
y (t)ey(t) − σ5d̂)+∑n

i=1
(σ1θ̃

T
i1θ̂i1 + σ2θ̃

T
i2θ̂i2)+∑n

i=1
(σ3g̃i3ĝi3 + σ4ε̃i ε̂i ) + σ5d̃ d̂

(9.32)

where I = 0 (or 1), if the first (second) condition of (9.31) holds.
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If the second condition of (9.31) holds, namely,

(d̂ = d̄ or d̂ = d) and d̂κ > 0

then
I d̃(−η5e

T
y (t)ey(t) − σ5d̂)

= I d̃
d̂d̂

d̂2
(−η5e

T
y (t)ey(t) − σ5d̂)

Note that,

d̃ d̂ = 1

2
[d2 − d̂2 − (d − d̂)2] (9.33)

If d̂ = d̄ and d̂(−η5eTy (t)ey(t) − σ5d̂) > 0, then

d̃ d̂ < 0

On the other hand, if d̂ = 0 and d̂(−η5eTy (t)ey(t) − σ5d̂) > 0, then

d̃ d̂ = 0

Hence, we have
d̃d̂ ≤ 0

And since d̂κ = d̂(−η5eTy (t)ey(t) − σ5d̂) > 0, we have

I d̃(−η5e
T
y (t)ey(t) − σ5d̂) ≤ 0

Therefore, (9.32) can be further derived as

V̇D ≤ − eTx (t)Qex (t)+∑n

i=1
(σ1θ̃

T
i1θ̂i1 + σ2θ̃

T
i2θ̂i2)+∑n

i=1
(σ3g̃i3ĝi3 + σ4ε̃i ε̂i ) + σ5d̃d̂

(9.34)

Since θ̃i1 = θ∗
i1 − θ̂i1, using Young’s inequality, we have

σ1θ̃
T
i1θ̂i1 = σ1θ̃

T
i1(θ

∗
i1 − θ̃i1)

= −σ1θ̃
T
i1θ̃i1 + σ1θ̃

T
i1θ

∗
i1

≤ −1

2
σ1θ̃

T
i1θ̃i1 + 1

2
σ1θ

∗T
i1 θ∗

i1

(9.35)
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Similarly, we have

σ2θ̃
T
i2θ̂i2 ≤ −1

2
σ2θ̃

T
i2θ̃i2 + 1

2
σ2θ

∗T
i2 θ∗

i2 (9.36)

σ3g̃i3ĝi3 ≤ −1

2
σ3g̃

2
i3 + 1

2
σ3g

2
i3 (9.37)

σ4ε̃i ε̂i ≤ −1

2
σ4ε̃

2
i + 1

2
σ4ε

2
i (9.38)

σ5d̃d̂ ≤ −1

2
σ5d̃

2 + 1

2
σ5d̄

2 (9.39)

Since
λmin(Q)eTx (t)ex (t) ≤ eTx (t)Qex(t)

then substituting (9.34)–(9.38) into (9.33), it yields

V̇D ≤ − λmin(Q)eTx (t)ex (t)−∑n

i=1
(

σ1

2η1
θ̃T
i1θ̃i1 + σ2

2η2
θ̃T
i2θ̃i2)−∑n

i=1
(

σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i ) − σ5

2η5
d̃2+∑n

i=1
(

σ1

2η1
θ∗T
i1 θ∗

i1 + σ2

2η2
θ∗T
i2 θ∗

i2)+∑n

i=1
(

σ3

2η3
g2i3 + σ4

2η4
ε∗2
i ) + σ5

2η5
d̄2

(9.40)

Let
μ =

∑n

i=1
(

σ1

2η1
θ∗T
i1 θ∗

i1 + σ2

2η2
θ∗T
i2 θ∗

i2)+∑n

i=1
(

σ3

2η3
g2i3 + σ4

2η4
ε∗2
i ) + σ5

2η5
d̄2

then (9.39) can be re-written as follows:

V̇D ≤ − λmin(Q)eTx (t)ex (t)−∑n

i=1
(

σ1

2η1
θ̃T
i1θ̃i1 + σ2

2η2
θ̃T
i2θ̃i2)−∑n

i=1
(

σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i ) − σ5

2η5
d̃2 + μ

(9.41)
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It can be seen from (9.40) that, if

λmin(Q)eTx (t)ex (t) + σ5

2η5
d̃2+∑n

i=1
(

σ1

2η1
θ̃T
i1θ̃i1 + σ2

2η2
θ̃T
i2θ̃i2 + σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i ) ≥ μ

then V̇D < 0. Hence, set Ω defined as:

Ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ex ,

θ̃i1,

θ̃i2,

g̃i3,

d̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λmin(Q)eTx ex + σ5

2η5
d̃2+∑n

i=1

σ1

2η1
θ̃T
i1θ̃i1+∑n

i=1

σ2

2η2
θ̃T
i2θ̃i2)+∑n

i=1
(

σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is an invariable set. This implies that ex , θ̃i1, θ̃i2, g̃i3 and d̃ are asymptotically bounded,
namely,

||θ̃i1|| ≤
√
2η1μ

σ1
, ||θ̃i2|| ≤

√
2η2μ

σ2
, ||g̃i3|| ≤

√
2η3μ

σ3
,

||ex || ≤
√

μ

λmin(Q)
,

||ε̃i || ≤
√
2η4μ

σ4
, |d̃| ≤

√
2η5μ

σ5

It is necessary to point out that the size ofΩ can become arbitrarily small by adjusting
the parameters: σi and ηi , i = 1, 2, . . . , 5.

Now, the following theorem is given to summarize the above design procedures
and analysis.

Theorem 9.1 Consider system (9.1) and observer (9.5) with Assumptions 1 and 2,
if there exist matrices L, F, FAd , Q > 0, S > 0 and P = PT > 0 satisfying (9.6),
(9.18) and (9.24), and adaptive laws (9.27)–(9.31) are used, then error dynamics
(9.7) is asymptotically bounded with all the signals in the closed-systems converging
to an adjustable neighborhood of the origin.

Proof From the above analysis, it is easy to obtain the conclusions. The detailed
proof is thus omitted here.

From Theorem 9.1, we have

||ex || ≤
√

μ

λmin(Q)
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Let us define detection residual

R(t) = ||y(t) − ŷ(t)|| = ||Cex (t)||

Obviously, in the free-fault case, one has

R(t) ≤ ||C ||
√

μ

λmin(Q)

Hence, by using the following mechanism, fault detection can be performed,

{
R(t) ≤ Td no fault occurred,

R(t) > Td fault has occurred
(9.42)

where Td = ||C ||
√

μ

λmin(Q)
.

Remark 9.2 It can been seen that, if there is no fault in the controlled system, then
limt→∞ex (t) = 0. If some actuator faults occur in system, then limt→∞ex (t) �= 0.
Thus, in some existing works, the fault detection is designed as:

{
limt→∞ex (t) = 0, no fault occurred

limt→∞ex (t) �= 0, fault has occurred

observer (9.5) was taken to as the FDobserver of system (9.1). However, ex (∞) is not
available in practice applications. Thus, ex (∞) �= 0 cannot be seen as an indicator
to detect fault occurrence or not. Hence, (9.32) is more efficient mechanism for FD
in practical applications.

9.4 Simulation Results

The following time delayed system is considered:

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Adx(t − d) + Bu(t) + g

y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [− d̄, 0]

where

A =
[−4 0
1 0.5

]
, Ad =

[−0.1 0
0.2 0.2

]
, B =

[
0
1

]
,

C =
[
0.5 0
0 1

]
, g =

[
x1(t)sin(x2) + x2(t − d)sin(x1)
x2(t)cos(x1) + x1(t − d)cos(x2)

]
,
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time delay d = 0.5, φ(t) = e−1 − 0.1e−t .
In this simulation, it is assumed that the fault occurs at 6s in the system.
Note that (9.19) can be transformed to the the following linear matrix inequality

(LMI), [
PA − YC + AT P − CTY T + S + Q PAd

AT
d P −S−1

]
< 0

where Y = PL . By solving this LMI, we can have:

P =
[
1.7096 0.0590
0.0590 1.5033

]
, Q =

[
1.7414 0

0 1.7414

]
,

Y =
[
–5.9088 0.2191
1.0779 1.6224

]
, L =

[
–3.4856 0.0911
0.8537 1.0756

]

and

F =
[
2.5102 0.0590
0.1180 1.5033

]

The simulation results are shown in Figs. 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7 and 9.8.
From Fig. 9.1, It can be seen that the state observe errors are bounded, which implies
that the proposed observer has a better convergent property, while Fig. 9.2 shows the
residual signal asymptotically converges to the small neighborhood of the origin.
Figures9.3, 9.4, 9.5 and 9.6 also show the closed-loop system signals are bounded.
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Fig. 9.1 The state observer errors (no fault)
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Fig. 9.2 The residual signal (no fault)
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Fig. 9.3 The norm of θ̂11 (no fault)

However, when a fault occurs in the system, Fig. 9.7 shows that, the residual signal
significantly deviates from the origin, and the alarm occurs. Correspondingly, the
state observe errors significantly deviates from the origin, too, shown in Fig. 9.8.
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Fig. 9.7 The residual signal in faulty case
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Fig. 9.8 The state observer errors in faulty case

9.5 Conclusions

In this chapter, the fault detection problem of uncertain time-delayed systems is
studied. To overcome the shortcoming in existing works where the exact value of
time delay needs to be known, a novel adaptive NNs-based fault detection observer
is designed, which can estimate online the unknown time delay with system state.
Simulation results show the effectiveness of the technique proposed in this chapter.
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