Chapter 6
Adaptive Fault Tolerant Backstepping
Control for High-Order Nonlinear Systems

6.1 Introduction

It is well known that system physical components may become faulty which may
cause system performance deterioration or worth, may lead to instability that can
further produce catastrophic accidents. The fault effects require to be compensated
to enhance the reliability and safety of the system. Accommodating faults to maintain
acceptable system performances is particularly important for life-critical systems. In
order to improve system reliability and to guarantee system stability in all situations,
many effective FTC approaches have been proposed the literature.

Fuzzy logic systems (FLSs), as universal function approximators, have been
widely used to model the nonlinearities with arbitrary preciseness. Due to the capabil-
ity, fuzzy logic systems are also adopted to solve identification and control problems
in nonlinear systems [1-6]. Various adaptive fuzzy control approaches, based on the
feedback linearization, were developed for controlling uncertain nonlinear systems.
Robust adaptive backstepping control [1, 5-10] and observer-based backstepping
control [11-13] attracted much attention from many researchers, and many excellent
results were obtained during the past decades.

Recently, stable control problems of high-order systems attracted the interest of
many researchers [14-19]. In [14], the authors presented a continuous feedback
solution to the problem of global strong stabilization, for genuine nonlinear systems
that may not be stabilized, even locally, by a smooth feedback. The same authors
extended their results in [15], where they investigated the reference tracking problem
in nonlinear systems with disturbances. However, the control schemes in [14, 15]
do not guarantee the closed-loop systems’ stability or better tracking performance
under faulty conditions.

In this chapter, we investigate the problem of active FTC for a class of high-order
nonlinear uncertain systems with actuator gain faults. Compared with some existing
works, the following main contributions are worth to be emphasized:
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(1) In literature, results concerning FTC in the literature like [20-31] consider the
1-order systems. This chapter extends the results to the more general systems, i.e.,
so-called high-order systems as [32-37], and an observer-based active fault-tolerant
backstepping control scheme is proposed.

(2) Differing from the classical backstepping technology, our fault-tolerant control
scheme does not need computing the high order derivatives of virtual control signal
at each step of backstepping design procedure, which thus reduces the computation
complexity.

(3) In general, the denominator of the fault-tolerant control law contains the esti-
mate of the gain fault. If the denominator equals zero, a singularity occurs. In the
proposed FTC scheme, the controller singularity is avoided without using a projection
algorithm.

(4) In contrast with [20-25], the proposed FTC scheme does not require the a
priori knowledge of the signs of control gain terms.

The rest of this chapter is organized as follows. In Sect. 6.2, the problem formula-
tion, Nussbaum-type function and mathematical description of FLS, are introduced.
Actuator faults are described and the FTC objectives are formulated. In Sect. 6.3,
the main technical results of this chapter are given, which include fault detection,
isolation, estimation and fault-tolerant control scheme design. The aircraft control
application is presented in Sect. 6.4 and simulation results are given and demonstrate
the effectiveness of the proposed technique. Finally, Sect. 6.5 draws the conclusion.

6.2 Problem Formulation and Mathematical
Description of FLSs

In this section, we will formulate control problem. Then, the FLS description is
introduced.

6.2.1 Problem Statement

Considers the following nonlinear systems:

Xxi=x,i=1,...,n—1
i+1
m

. P

=)+ gi(0u] 6.1)

y=x
where x = [x1, X2, ...,%,]7 € R" denotes the state vector, y = x| denotes the
system output, u; € R, j = 1,2,...,m denote control inputs, p > 1 is a known

positive odd number, f(x) € R denotes an unknown continuous smooth function,
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gi(x) € R, j =1,...,m are complete unknown control gain functions, i.e., the
value and sign of g;(x) are both unknown.

Remark 6.1 System (6.1) is more general than the considered system in [18] which
was described as x; = x[’i > i=1,...,n—1andx, = u”. In addition, since actuator
faults were not considered in [ 18], only one actuator was used. In this chapter, the FTC
problem will be considered. In order to ensure the dependability of the controlled
system, redundant actuators are added which leads to an over-actuated system.

In practical application, actuators may become faulty. In this chapter, actuator
loss-of-effectiveness failures are considered, which can be modeled as follows.

@:@@mﬁsz“”mtzq (6.2)

where unknown function k;(x) denotes the remaining control rate, ¢; is unknown
fault occurrence time.

The control objectives, which are valid in normal (no fault) and faulty conditions,
are to design the proper control inputs # = [uy, ..., u,,]7 which ensure that the Sys-
tem output can track asymptotically the reference model signal y; with the tracking
error converging to a small neighborhood of the origin and the closed-loop system
is uniformly ultimately bounded (SGUUB). Under normal condition (no fault), u is
designed to ensure boundedness of the closed-loop signals and asymptotic stability.
Meanwhile, the FDI algorithm is working. As soon as actuator faults are detected
and isolated, the fault accommodation algorithm is activated and a proper FTC input
u is used such that the tracking performance is still maintained stable under faulty
situation.

In order to design an appropriate controller, the following lemmas are introduced.

Lemma 6.1 ([38]) Vg > 1, being an odd integer;, a, b € R, the following inequality
holds:
la +b|” < (la| + 1b)? < 277" [a? + b7 (6.3)

Lemma 6.2 ([38]))Vm >0€ R,Vn >0 € Randr(x,y) > 0 € R, the following
inequality holds:

(e, y) x|+ rn (e, )yt (6.4)

xm n<
™[yl mn mn

Lemma 6.3 ([11]) For « € R", 8§ € R™, M € R"<*™, and arbitrary matrices

X € R"X7a Y € RMaXm 7 RN lf|:;(T §:| > 0, then

T
—2a"MB < [Z} |:YT i(MT Y _ZM} [Z} 6.5)
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6.2.2 Nussbaum Type Gain

Any continuous function N(s) : R — R is a function of Nussbaum type if it has the
following properties:

hm sup — / N(g)ds = 400 (6.6)
1 N

lim inf —/ N(¢)dg = —o0 (6.7)
s—>—00 s Jo

For example, the continuous functions ¢ cos(¢), ¢% sin(¢), and es’ cos((/2)g)
verify the above properties and are thus Nussbaum-type functions [39]. The even
Nussbaum function €S’ cos((r/2)¢) is used throughout this chapter.

Lemma 6.4 ([40, 41]) Let V (-) and ¢ (-) be smooth functions defined on [0, t r) with
V(t) > 0,Vt € [0,ty), and N(-) be an even smooth Nussbaum-type function. If the
following inequality holds:

V(t) <co +/ (gN(s) + gdz, Vi €[0,1y) (6.8)
0

where g # 0 is a constant, and c, represents a suitable constant, then V (1), (1)
and fot gN(g)g"dt must be bounded on [0, t ).
Lemma 6.5 ([41]) Let V(-) and ¢(-) be smooth functions defined on [0, ty) with

V(t) = 0,Vt € [0,1f), and N(-) be an even smooth Nussbaum-type function. For
vt € [0, ty), if the following inequality holds,

t t
V() <co+ e_""/ g(T)N(c)ce'dT —i—e_""/ ce''dt (6.9)
0~ 0

where constant ¢; > 0, g(-) is a time-varying parameter which takes values in the

unknown closed intervals I = [I7', [T Twith O ¢ I, and c( represents some suitable
constant, then V (t), ¢(t) and fot 8(r)N(s)gdt must be bounded on [0, ).

6.2.3 Mathematical Description of FLSs

A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier, the
fuzzy inference engine working on fuzzy rules, and the defuzzifier. The knowledge
base for FLS comprises a collection of fuzzy if-then rules of the following form:

I, oAl oAl oAl
R :tifxyis Ajand x; is A, --- and x, is A,,

.ol (6.10)
then yis B, | =1,2,..., M
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where x = [x;,...,x,]7 C R" and y are the FLS input and output, respec-
tively. Fuzzy sets Af and B' are associated with the fuzzy functions u, (x;) =

xifa,{

2
exp(—(=5+) ) and pup (y') = 1, respectively. M is the rules number. Through sin-

gleton function, center average defuzzification and product inference [42], the FLS
can be expressed as:

M n M n
Y =y (H B (x»)/Z (H K (x,-)) (6.11)
=1 =1 =1 \i=Il

where yl = max g/ p . Define the fuzzy basis functions as:

n M n
a0 = [T (x,»)Z(H i <x,->)
i=1 =1 i=1

and define 07 = [§', 72, ..., 9M] = [01,65,...,0y] and £(x) = [E(x), ...,
&u(x)]”, then the above FLS can be rewritten as:

y(x) =0"E(x) (6.12)

The stability results obtained in FLS control literature are semi-global in the sense
that, as long as the input variable of the FLS remains within some pre-fixed compact
set, where the compact set can be made as large as desired, there exist controllers
with sufficiently large number of FLS rules such that all the signals in the closed-loop
remain bounded.

Lemma 6.6 ([5, 6]) Let f(x) be a continuous function defined on a compact set 2.
Then for any constant ¢ > 0, there exists a FLS such as

sup | f(x) —0"E()| <€

xesf

In this chapter, using FLS, the unknown functions f(x), g;(x) and g;;(x), j =
1,2,...,m, are approximated as

f)=0fe,0), f&) =078,
8)(0) = 0LE,(x), §;(R) =0L&,®)
8 () = 0L &0 (X), 81 (R) = 0] £ (B)

Let define the optimal parameter vector 67, 6;; and 6, ; as
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j=argmin [ sup |f(x) — f(@I]

I xeU.zel

0, = arg min [ sup [g;(x) = &g;(¥,)l]

8158 yeU gl

Og; =arg min [ sup [gx(x) — &k (¥)I]

€
skISeki - yey £l

where .Qf, .ng, 24xj, U and U are compact regions for éf, égj, égkj, x and x, respec-
tively; ) rs Qg s ng j and x are the estimates of 9* 9;1 , ng j and x, respectively. Similar
to [11-13], The FLS minimum approximation errors and actual approximation errors

are defined as
er=f(x)—07TE,R), 8p = fx)—0]&r )
£ = 8j(x) — O3] £4j(R), 8y = g;(x) — O£ (%)

T a AT A
gkj = 8kj(X) — O ;Eekj (X), Sgnj = 8rj (X) — Ok (X)
Now, the following assumptions are made.
Assumption 6.1 There existunknown posmve real constants €7, &5, €5, 85, €ni» Ouis
and known positive real constants Mgf, M,;f, Mggj, Mggkj, such that |e /] < e}, eF <
Sf |8f| <947, 8* = M5f |8gj| = 8):/’ 8&! = MFgJ’ |<9ng| = 18gkj’ ;’kk/ = Mgkj'

Assumption 6.2 There exist known positive real constants My, Mg,; and My,
such that [|07[| < Moy, [167 || < Mpg; and ||67 || < Mog;.

In order to facilitate the descriptions, in the following, f(x), g(x), gkj(x), f (x),

8(R), 8 (%), £7(£), £ (£) and £y (£) are abbreviated to f, g, gij f. & 8uj- &7+ £
and &,;, respectively.

6.3 Main Results

In this section, the main technical results of this chapter are given. We will first
consider the stability control problem of system (6.1) under normal conditions, design
a bank of observers to generate residuals, investigate the FDI algorithm based on the
observers, and propose a FTC scheme to tolerate the fault using estimated fault
information.
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6.3.1 Fault Detection

In order to detect the fault, the following observer is constructed.

fc:”’ +LGy—9),i=1,...,n—1

f+z [8) + 8g1u” + 1 (y — $) (6.13)
$ =3 =
where [;,i = 1, ..., n are constant parameters that will be designed later.
Let £ = [£1, £, ..., £,]7 and define observer errors ¢; = x; — %;,i = 1, ..., n,

then observer error dynamics can be described as follows:

¢ = xip - )2,‘,;1
= (ei1 +xig)” =X = Li(y —3)

~ P 1 1 ap—l

=e —Lly—-y+ Zl  Creindl

b= f =420 (& =& = Egpuf —la(y =)

(6.14)

Using the notation ¢ = x — X, the above error dynamics can be re-written as:
é=Ae,+Re, —L(y—3)+d+ B(ds+d,) (6.15)

where €p = [efv .. ell d - Zl 1 1+1-x,p+llai = 1 .n— 1’df = f — f =
8f’dg:Zj l(gj gg])"t,s and

T
—r ry ll 1

d; 0
_rno ... 0 T 1, 0 0 1

In the following we will use the backstepping technique to design the fault-tolerant
controller.

Define
=X —Ya s =X —o Xy, .. X2, i =2,3,...,n (6.16)
where g = 0, 2,41 = 0,and o;_;,i = 1,...,n — 1 are virtual controls which will

be designed at each step, o, = u is the actual control input. The recursive design
procedure contains n steps. From Step 1 to Step n — 1, virtual control ¢;_ is designed
at each step. Finally an overall control law u is constructed at step n.
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Step 1:
From z; = x| — y4, one has

2 =X —ya=x=@+a)’+ Ly -3 —

b T 6.17)
=al+2  Craal L= =

Define |
Vi=Vu+V,, Viu= Ezf, V, =e' Pe

where P = PT > 0 denotes a matrix with appropriate dimensions. Differentiating
Vi1 with respect to time ¢ leads to

. . p P iop—i A .
Vil =z121 = z10] + 2 Zj:1 Clzyal™ +z2ili(y = 3) — 2154 (6.18)

Notice that, p + 1 > 2 is an even number. Differentiating V, with respect to time
t, from Lemma6.3, it leads to
Ve=2e"[P(A+K)+ (A+K)" Ple, +2¢" Pd +2¢" PBdy — " (PLC + CTLT P)e

[e ]T[X—PLC—CTLTP Y+ P(A+R)
¢p

<
YT +@Aa+pTp z

} [; ] +2¢T P(d + Bdy + Bdy)
p
(6.19)
. . . . . XY
where X, Y, Z denote matrices with appropriate dimensions, and [YT Zi| > 0.

From Lemma 6.2, one has

Z: : ezxz zk 1Ck_|€2|p U+Zk 1Ckp |)?2|p'07(ﬁ)
p—k (£ .

I:Zkzl C]]E;()—} . |62|‘” + [Zkzl C;; > o (1 k):| . |x2|p

Weileal” + wez|%2|?

(6.20)
) X —k ,(L)
where w,; = [ - Cf,;cr]  Wey = [Z{l C;”ch PF }

Define
___p

Azk 1C"k

where A > 1 is a design parameter. Since 0 < o < 1, one has w,|ez|? < %|ez|1’.
Therefore,

P k kap—k 1
D Crasd T < el +walfl”,

>
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Further one has
Qo ChbE™) < S (leal”)” +2(we2) (ol
Similarly, one has

S chekr <—|e,|"+z<wez> (2172 i =2....n

Hence,
Hleal? + we |2, |
1 R 1 N
d'd < [—leal’ +walfal”. ... ~leal” +weal %], 01 | o
slenl” + wealX, 1P
0
—Z . A2(|e, 1P)? + 2(we2)* (13:17)?
-~ 1P)2 " 2015 17)2
=1 Zi:2(|e,| P+ 2wa) (&)
leal”
. n ~
=leal?, . leal”, 01| = [+ D 2we) (%17
leal” =
0
lea|”
leal” n .
=leil” lexl’ o onleal”l| L | =@+ D 2we) (517
|eﬂ|p

=epep— (@) + D 2w (17
From Young’s inequality, one has
e'Pd <" PPTe+dd <" PPetele, — (@ + Y 2wl (%)
2e"BPd; = ¢ PBS; < ' PPe+ 8% < e PP e+ (85)7 < e’ PPe+ (Msp)'.
Further, one has

T TyT
o Tel"[X—PLC—CTLTP+2PPY+PA+R)[e] - .
< Ao +2¢7 PBd
V‘—[ep] [ ¥T +(A+R)TP Z41 Me,,]+ 0+2e g
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where Ay = —(e1”)? + 3, 2(we)*(|%:17) + (Myz)”, T denotes identity matrix
with appropriate dimensions.
Hence, one has

. P L. . R .
Vi <ziaf + 2 Zi:l Clzyal™ +z21li(y — §) — 2194 + Ao + 2¢” PBd+

e, YT+ (A+RTP Z+1 ey

[e]T[X—PLC—CTLTP~I—2PP Y~|—P(A~|—R)] |:e:|

Obviously, if matrices X, Y, Z, Q > Oand P = PT > 0 are chosen appropriately
XY
such that |:YT Z:| > 0 and

X—-PLC—-CTL"TP+2PPY+P(A+R)
T T pT <-0
YT+A+R'P Z+1

where I denotes identity matrix with appropriate dimensions, then,

. P Lo R X _
Vi <ziel +z1 ZFI Clzal™ +uli(y = ) — 21ya + Ao+

T
2¢" PBd, — [e} [e}
¢ ¢ €p ¢ €p (6.21)

Amin(Q) T P p j_J p—J
k()¢ TR 2. Caed

2 (y — $) — 2194 + Ao + 2¢" PBd,

Let Ag = 2111 (y — $) — 214 + Ao, one has

)\min(Q) eT

L 2 (P)

Petziaf +21,_ Chajal ™ + Ao +2¢ PBd, (622)

Thus, virtual control «; can be modified as

”(—lz _ 2o 71 € 2°
o) = 27T g T e (6.23)

0, 71 € ch
Remark 6.2 In general, virtual control «; can be chosen as follows

(—zz1— — (6.24)
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Just as pointed out in [41], for the above virtual control (6.23), controller sin-
gularity may occur since % is not well defined at z; = 0. Therefore, care must
be taken to guarantee the boundedness of the control. It is noted that the controller
singularity takes place at the point z; = 0, where the control objective is supposed
to be achieved. From a practical point of view, once the system reaches its origin,
no control action should be taken for less power consumption. As z; = 0 is hard to
detect owing to the existence of measurement noise, it is more practical to relax our
control objective of convergence to a “ball” rather than to the origin.

Similar to [41], let define ‘QC:,- C §2 and .{2(9 s.t.
2 ={zllzl <} =2 -2 . i=1....m

where c¢;; > 0 is a constant that can be chosen arbitrarily small and “-" is used to
denote the complement of set B inset Aas A — B := {x|x € A and x ¢ B}. Thus,
virtual control «; can be modified as (6.23).

Step 2.

Since 7, = X, — ay, one has

3a1 Ap 3061

=X

A day R R
- )el(x£’+li(y—y))=x§"—
1

FEIC NPT
=(z3+ )’ — ) (6.25)
8a1 1
=a2 Z C’Z3 2 axl =0 3 Ho 8)21
Define

]2
V2=V1+§Z2

Differentiating V, with respect to time ¢, leads to

V2§V1+22zg=—ﬁ:(QP)) TPe—le—i—le [ ] p7 ]—l—zzaf—i—
222 C]z3oz2 J —zzgzl ]:OCjzza —J
Let
= 0, [ept < et 3 et
(6.26)
V, <— %}f(QP))eTPe — %z? + A+ 208 + 2 Zle Cizjal™ +2¢" PBd,

(6.27)
Similarly, choose a virtual control as follows
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p( 1 Al EQO
- 2T e (6.28)

03 Z2 € '(ZCA72

Substituting o, into (6.27), it yields

1, 1 ol
Mnin@) rp, 1o =%+ 2 Z',’ [ Crazay™! +2¢" PBd,
im

e Jmnl0)
= () 243 -
(6.29)

Step k:
Since zx = X; — ax_1, one has

.z k=1 aak 1
L =Xk — 21—1 (xl+1 +l1(y = 3)

k= 1306k 1
== 2, 5 @ Hln (= 9) 630

k—1 aak A
=<Zk+1+ak>f'—zl L og Gl O = )

14 P — k— 180lk 1
=af + ijl C;jazljc+1°‘f - Zz . (x1+1 +la(y—79)

Define {

Vi =Viei + =2}
2

Differentiating V; with respect to time ¢, leads to

. Ami 1 k—1
Vi < — MeTPe - = 21—1 Z,-2 + Ay + ol +

P i J P T
k ijl Clzi0 ' +2e" PBd,
where
p S i
e > [l ]+
Ak—] = k-1 0o
k—1 - N
2o D> Chlzkaf T+ [y = )]
Just as «y_1, virtual control ¢y, is chosen as follows
1 Apq 0
T(—=zzx — , k€82
(=2 Zk o (6.32)

O = 2 Tk
09 Zk e chk
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Substituting ¢ into (6.28), yields

y )\min 1 k P —j
Vi < —m—((QP))eTPe s at ijl Cizl ol +2¢" PBd, (6.33)
max

Step n:
Since z,, = X, — a1, one has

. " n—1 da,—1
in =Xn — zl_l r; (x1+1 +hp(y— Y))

~ m R . n—1 805 1
=f+ ijl @ +epul +1n(y -9 — Z,_l " (xl+1 g1 =)
m R R n 1 80( 1
=f—85+ ijl @j+epul +1(y—3) - 21_1 L (x1+1 + 41y — )

=6{Er+0f6r+vp+ 27:1 @ +epul +l(y - y)—

n—1 306,, 1
2 <x,+] +hp1 (=)
(6.34)

Define

1 s 1 1
Vy=Vo1+-22+—0L9 — § 0.0, 6.35

where ]/f = Ef +5f,)/f = )/f — ]/f, 9f = 9f —0f )/f = ]/f ff,égj = 9* —
O, 8g) = &y — Egjs bf, Vs, Oqj, &, are the estimates of 0%, V5. 055 €j» and 1y >
0, >0, n3 > () are adaptive rates.

Differentiating V,, with respect to time ¢, leads to

. Amin(Q) 1 I -1 =T - mo. AP
1 ~T/'\ 1 Y T 1 m ~T A -~ A
Ap1 — *9f9f — iy +2e" Pdg — . ijl (0,,0¢j +2gjégj)

Amin(Q) o7 12:” 1 2 Em 5. 2,0 T
S . - 1 = 1 ;

— > (OLbgj +Egjeg) + 6T nEr — —0 1)+ Pr(lznl — —7

- ijl(g, ¢i T Egjfe)) + 07 Gnkp — 0 + 74 (lznl = -7 p)

where
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p P —j -1 AT A A~
2ot D [ ol | 4+ 206 6 G + 1y = )+
n—1 aOln 1
Aot =1 20 [Z Cllztal T 1+ 1li(y = $)I1—

n— laan 1
> (x,+1+l,+1(y—y))+|zn|yf

Since
2" PBdy =3 2" Pulg; — & — b
:Zj 2" Pu(0;] &gj + £ — 03164 — 8g))u)
= Z:;] 2e" POk u] +
D2 Puey =Bl + D 2" Pulegy — egul
=2 2 PjEgu] + 3T 26T gl +
2 2 Paeg = el

from the above inequality, one has
¥ )\mm(Q) T ~T ~ m ~ N P
Vng—m —*Z Z-+Zn9_f§f+|zn|)’f+znzj=1(gj+5j)uj+
< P m T * N\, P
A1+ ijl 2eT Py (@5 + Egpuf) + D 2 Puleg) — e )ul—

1 T A | Y 1 m ~T A Y
P L A 5 R Z =1 Ugj0si +8gj%g))

mm(Q) T * p
Pe + + +2 Tp : . —
TP ax(P) e E [Zn(g] Egj) e’ Pp(egj — Egj)]’fi]

A

s 6 Eoi
T P 8J ~ . T p_ T8
ijl [ng(Ze Pukgju’ i )+ &g (e’ Pul i )+

~T 1 x - 1 X Z:L_ll 2
0f (Znéf—HGf)+Vf(|an—EVf) > + Ap—i
(6.36)
Choose control law 7, ;, i = 1, 2, ..., m and adaptation functions éf, )jf, égj, égj
as follows:
o N(&) (=32, — 21 .
i = Ui =0 = m , €82, (6.37)

0, zx € £2,,
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where ¢ = =122 — A,
O = mznts — by (6.38)
Vi =mlzal — 0,7y (6.39)
égTj = 2n3e” Pnégj”f + 140, (6.40)
égj = aneTPnu? + 1484; (6.41)

and ny > 0,1, > 0,n,; > 0 are design parameters, u; is a bounded control
input which is applied simultaneously to the ith actuator in the system (6.1) and the
observer (6.13).

Applying Young’s inequality, one has

810, = L0707~ 8p =~ 70, + 1010y < — 31676, + 5 orTe;,
’;—;wf = ’;—fow; —7n) = —Z—Z?ﬁ + Z—foy}‘ <= 2" 27T (2n 7P
%égjégj = %5@(8; — &gj) = _)ZZ Fo %~81821 S- Z;’gﬁj oty

Substituting the above inequalities into (6.36), it yields
. )\, i l n
Vv, < _Meﬂoe _ _Z- Zl?_|_
2 max (P) 2 i=1
m A A * . .
D @ e+ 2eTPn<eg, —&i)IN(9)¢ + ¢}

«T 77gJ *T g ’78/
gv+2 9f9f+( yf)+z 20051 05+ 5, (e))—i—

D 2@+ By + 267 Pulegy — eg_j>]N<g>g' +¢)

Ny 2 me Tgj a2 Ngj 3742
<—V,,+—M + X (M, + Ms; +§ M2 4+ 28y
& 2m or 2772( o ar) j=1"2m Osj 23 Sg’)

> (s + Ey) + 267 Paley — 5DIN(S)E + )

—gVu+u+hN() + )¢
(6.42)
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where
g = min{)\mm—(Q)’ l’ n_f’ 77_}/’ @’ o Ngm
2max(P) 2 21’]1 2}')2 2)73 2,73

nr
n=-—
2m

m o — -
) ﬂﬁ%Méj+Aﬂ

2 Ny = 7 \2
M2+ 2—;2(Mgf + Msp)* + i)

j=12n;3
h=2 L@ +Eg)) + 26" Palegy — &)

The above control design procedures and analysis are summarized in the following
theorem.

Theorem 6.1 Consider nonlinear system (6.1) under Assumptions 6.1 and 6.2, con-
trol law (6.37) and adaptive laws (6.38-6.41). If matrices X, Y, Z, Q > 0 and

p=PT >Oaresuchthat|:XT Yi| > 0 and

Yt 7z
X—PLC—-CTL"P+2PPY+ P(A+R)

[ Y+ A+ RTP Z+1 s-¢ (643)

we can guarantee the following properties under bounded initial conditions

(1) all signals in the closed-loop system are semi-globally uniformly ultimately
bounded;
(2) the vectors z; remain in the compact set 522 i=1,2,...,n specified as

(@is 87 71 s s )| 121l < V278, 18711 < V201
00— | 17e1 SV2mi 118511 < V2ns 12,

i T

- = i
8¢l < V/2m31, |le]] <

)\min(P)
whose size is (I = % + ¢y + Vu(0) > 0, which can be adjusted by appropriately
choosing the design parameters 01, M2, 13, N, Ny, Ng.1s - - - > Ng.m-

Proof Since vV, < —gV,+u+hN(g)+ 1)¢, one has

t
V(1) < % + [Va(0) — g]e_g’ +€_g’/(h1\’(§) + De #7¢dr

0 (6.44)

t
< Ve e / (hN(S) + e " &dr
g
0
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t
Applying Lemma6.5, we can conclude that, V,(¢), [ (hN(5) + 1)e " ¢dt and

0
¢ (t) are SGUUB on [0, 7). According to Proposition 2 in [39], if the solution of
the closed-loop system is bounded, then 1, = +o00. Let ¢, be the upper bound of

t
f (hN(g) 4+ 1)e 8" ¢dt, we have the following inequalities:
0

t t
et [N+ e edr < [N+ Deidr <
0 0

Thus, (6.44) becomes
7 _
V(1) < g +cg +Vu(0) =0 (6.45)

Hence, if matrices X, Y, Z, O and positive definite symmetric matrices P are

;(T ; > 0 and (6.38) holds, then, the proposed
control input (6.37) can ensure that V,, (¢) is bounded, namely, the closed-loop system
is semi-globally uniformly ultimately bounded. Noting the definitions of V, (¢) and

zi,i = 1,2,...,n, we have %zf < V() < pand 2175;9} < 1. Furthermore,
we have |z;| < /272, 1071| < /2012 Similarly, we have |7 < /2mft, [16,.1] <
N2, 1€ il < V203, [le]| < ‘/A_L_(P).Fromthe above analysis, we can conclude

that there do exist compact sets .Q? such that z; € .QZO ,Vt > 0. The proof is
completed.

chosen appropriately such that

From Theorem 6.1, one has

2[
llell < (6.46)
)‘min(P)
Furthermore, the detection residual can be defined as
J=1ly@®) =30l (6.47)

From (6.46), it can be seen that the following inequality holds in the healthy case:

2[
)\min (P)

J < IC]] (6.48)
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Then, the fault detection can be performed using the following mechanism:

J < Ty no fault occurred,
(6.49)
J > T, fault has occurred
where threshold T, is defined as follows:
2
T, =||IC 6.50
a = 1IC| — P (6.50)

6.3.2 Fault Isolation and Estimation

Since the system has m actuators and it is assumed that only one actuator becomes
faulty at one time, we have m possible faulty cases in total. When the sth (1 < s < m)
actuator is faulty, the faulty model can be described as:

ul = py(x)uy (6.51)

The faulty system (6.1) can be described as follows:

)'Cs,izxi.ﬂ, i=1,....,n—1

. m

Xsn = f + Zj:l gjuf — gspfuf (652)
J#s

Vs = Xs,1

After a fault has been detected, the isolation scheme is activated. Now, the fol-
lowing m nonlinear fault isolation observers are designed as follows:

)és,i :f;?i+] + Li (s _)A)s)» i=1,...,n—-1
Ron =0T+ Lo 8 Wl + Ly = §) + 01,8 + Bl
s =Ur&f ot 88 T gy T len (Y =Y gkr ghr ) U

Vs = X5,1 = st

(6.53)
where I;,i = 1,2,...,n,s = 1,2--- .m are constants, which will be designed
later, 6, &, - (X, v) is the estimate of g, (x, v)pf (x,), r =1,...,m.

Let Xy = [X5.1, X2, -« -» )?_Y,,,]T, the error terms e; = x; — X, and ey, = y; — ¥s

are respectively the state error and output error between the faulty plant and the sth
observer. The above error dynamics can be re-written as:

és = Ayel + Rye? — Ly(ys — 35) +ds + By (dy + dy + p5) (6.54)
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T ~ A N
where Esp = [egl’ ) ef,n] P df = f - g}ﬂéf’ Ps = gskspuf - [QngrSgkr + ggkr]uf’

dy =" -1 (8 — & — &g )u] and

iss itr
—r ry ls1 1 !
A= 1 s Rs = : s Ls = : s Cg = : 5
—rnO -0 ' Lin 0
3o Cfaeéisp,;k 0
d, = : By=|:
0 1

Similar to the previous subsection, differentiating V, = eST P;e; with respect to
time ¢ and using (6.20) and (6.54), it leads to

Vxe = ez Psés + ez" Pxes
= 28‘?[PS(AS + Ry) + (A + Rs)TPs]ef“‘
2e! Py(d + Bydy + Bydg + Bsps) — el (P,LCs + CILT Py)e,

From Young’s inequality, one has

el Pid < el P Pe;+d"d
n
= eZ-PsPses + esTpesp - (es,lp)z + Zi=2 2(we2)2(|x3’,-|f’)2

2exTPSBsdf = eXTPSBsdf =< eXTPS Pses + djzf =< 63 PSPXes + (8;)2
- 2
=< e‘Z-PsPses + (MSf)

Furthermore, one has
v e, 1" [X, — P,L,C, — CTLT P, + P,P, Y, + P;(A; + R,)] [ e N
T YxT + (As + Rs)TPs Zs+ 1 ef
Ao+ 2e” PB(d, + py)

el
(6.55)

2 n N -2
where Ag = —(e” )7 + 31, 2(we2) 2 (12,117)° + (Msf) "
In the following, stability analysis will be given at two cases, i.e., s =r ors # r.

Casel:s =r
Since
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m
=1

_n,T m *T ¢ T e . _ a2 NP
= 2! Psn(zj:l#s O3] &gj +egj — 03 Egj — Bgj)ul+

ze‘z‘PSBS(pS +dg) = 2eSTPS’1[Z (gj - g’] - ég])uf + (8ks — 8ks — g‘gks)ual',]
(G*IZ;Eng + Egks - aTkSSng - égks)"t.{?)
8 8
el Tp T P mn Tp = .,P
= 2 200 Ponlgibegl #2026 Pankggu+
m T L A% p
zj:l,j;ﬁs 2eg Psn(eg) sgj)uj+

T 7T T = T A
2ey PsnQZ’;](AY%_gks"ﬁg7 + 2eg Psnggksusp + 2ey Pyn(egks — 5;]“)“5

(6.56)
“/ < € ! Xs_RvLsCs_Cg-LZRv+ZRYPST YY+PS(AY+RS) €y +
se = ef YT+ (A; + R)T P Zo+ 1 ef
m T ;T p " Tp =~ .p
Ao+ ZFL#S 2e] PO &g ul + ZJ_:L#S 2e!l PoBgjul+
m
T N
Z},:l.j L, 26 Pu(eg — Egul+
26{ PsnéngSSgksuf) + ZesT Psnggksuap + ZesT Py, (ggks - é;ks)uf
(6.57)
where P;,, is the nth column of P;.
Similar to the above subsection, define
Ts,1 = Xs,1 = Vs
Ls,i = ),es,i - O(s,ifl(jes,lv ceey -xAs,ifl)y i = 27 37 e, n
1,
Vs,l = Vs,ll + Vse’ Vs,ll = EZS'I
1, .
Vii=Vsi1 + 3% i=2,3,...,n
and choose a virtual control oy ;, i = 1,2, ..., n —1 and practical control & ,j, j =
1, ..., m as follows
1 Ao
N(==z51 — —, 251 € 2°
s = ( 2! Zs,1 o ol (6.58)
0, z5s1 € 82, ;
”(—lZ 2 — —, 752 € 82°
g = 27 (6.59)
0, zs0 € 'chz
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Ar_q
N (—=zop — ——, zy0 € 20
o) = 270 g T otk (6.60)
O Ts,k S ch 2%
1 Ap
P N(S‘)(_Ezs,n - TI) 0
Qgnj = Uj = m » Zsk € QC:s;n (661)
{ 0’ s,k € QCLZH
where ¢ = —%zin — A1, “ch,z; i =1,...,n are defined as *chk in the previous

subsection. The adaptive laws are designed as follows:

07 =2mel Pukp+ 6, (6.62)
b= mlzal + 0,95 (6.63)

Bo; = 2msel Pgu” +ngify (6.64)
Egj = 2mel Puu”l + 11584 (6.65)
Ogts = 211467 Pugistt? + NgisBiis (6.66)
Eoks = 2ne] Putt? + NgrsBis (6.67)

where u; is a bounded control input which is applied simultaneously to the jth

actuator in the system (6.1) and the observer (6.53), and n; > 0, n, > 0, 3 >

0,74 >0,nr>0,1n, > 0,04 > 0,10, >0, ngrs > 0 are design parameters.
Define

V, =V 4 070, 4 524

s = Vs.n PR A yf
1 2m 2m (6.68)
215 L=tj=1,j#s (QT% +8 )+ ( ks Ok +8§ks)

Similar to the previous subsection, differentiating V; with respect to time 7, one
has

1
V <V¥ n Tt _9f 9]‘ + _yf )/f+ (nggggky + 8gks£gks)+

_Z/ IH&Y 6)g/ +881881]

(6.69)
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It is obvious that if

(6.70)

Xs - PSLSCS - CsTL?Ps +2Psps Ys + Ps(As + Rs) < _Q
Y[ + (A, + R)T P Zi+1 ’

where X, Y, Z denote matrices with appropriate dimensions, respectively, and

|:;(T §i| > 0, matrix Q; > 0, then from (6.69), one has

T
y y €s €s m T hT p
Vy <Viu — [ ,,] o} [ ,,} +Ao+ D 20 Pulggul+

m T A p
zj Lz Ze Pmeg,u/ + Z, Lz 2e; Py, (gq; — g*j)uj+

ZeTPangkségksur +2e! Psnegksu; + 2] Py (egks — Eppul+

(6.71)

9f9f + Vfo + ijl,j;és [9 egj +5g18g1] ngsegkf ‘|'5gks8gks
m n2 3 N4

Similar to (6.42) in the above subsection, considering (6.62-6.67), from (6.71),

one has ) B
Vi < —gVs +jig + (h(X)N(5)S + <) (6.72)

where

Ngj

+
j=lj#s 2n3 )

(MGZS’J + M‘?gl

n n

I =ﬁM9f L 2 My + M) Y
Ngks 2
28 (Mngs + Sgks)

g — min {1 77_f 7’_}/ E ngm Ngks Amin (Q)
272n0 2m 2037 2037 20 2himax(P)

5 )

h@ =2 Tan(@) +8g) + 26T Paleg — e+
Zn(gks + é:gks) + 26TPn(8gks - 8;/”)

Since V, < —g, Vi + jis + (R(X)N(5)¢ + &), one has

_ w
V(@) < B + [V5(0) — é—s]e_g” +e_”"/(f_l()?)1\’(§) + Dge *"¢dr

N

(6.73)

B v, @e s et [ REN(S) + Dée o™ dr

s

IA
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l -
Applying Lemma6.5, we can conclude that, V, (1), [ (h(X)N(5) + 1)¢e ¢7¢dr

0
and ¢ (¢) are SGUUB on [0, #/). According to Proposition 2 in [39], if the solution
of the closed-loop system is bounded, then ¢, = +o00. Let ¢, be the upper bound of

t _
f h(X)(N(c) + 1)ce#" ¢dt, we have the following inequalities:
0

et [N + et edr <,

Thus, (6.73) becomes ~
%®§?+%+%@=m (6.74)

Hence, if matrices X, Y, Z;, Q, and the positive definite symmetric matrix P

are chosen appropriately such that |:)),( P ;S i| > (0 and (6.74) holds, then, the proposed

control input (6.61) and adaptive laws (6.62—6.67) can ensure that V;(¢) is bounded,
namely, the closed-loop system is semi-globally uniformly ultimately bounded. That
is to say, all signals of the closed-loop system remain the following compact set £2;,

(Zl’ ef )/f, egjs Egjs ngss Egks e)‘ |Zl| =V 2“«:’ ||9f|| =V 2771“57
21 = |yf| <V 2n2 ks, ||9g/|| =V 2n3hs, |8g]| = 27)3:“’37

Ogks |1 < V2mapts, 1Eghs| < v/2nmapss, llel| <

mm(P)

Case2:s £ r
Since s # r, from the faulty (6.52) and the observer (6.53), one has

zeST Ps Bsps = 26;[' PsBs[(gks - gs - é:gs)”t{-’ + (gr - gkr - égkr)uf] (675)

From the adaptive laws (6.64—6.67), one has

Qgs 5& egks, égs 5& ggksa egr # ngra égr ?é ggkr

Itis noted that 2eTP B; [(gks gs — egs)uq 4+ (gr gk, §gk,)u,p ] varies infinitely

since Ggg =~ ngg, Gg, * ng,, sgY * 8ng and & sg, * 8gkr, which further cause that
Vi (¢t) varies infinitely. As a result, basically, all signals of the closed-loop systems
such as e; do not remain £2; using the above control law and adaptive laws.

The above design procedure and analysis are summarized in the following theo-
rem.
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Theorem 6.2 Consider the faulty system (6.52) under Assumptions 6.1 and 6.2, with
virtual controls (6.58—6.60), control law (61) and adaptive laws (6.62—6.67). If matri-
X Y5

YT 7, > 0 and

ces X, Y5, Zg, Qg > 0 and Py = PXT > 0 are such that

_ _TyT
[xé_ P,L,C; — CILT P, + 2P, P, Y, + P(A, + Rs)} —0,  (676)

YT + (A + R P Zo+1

then, we can guarantee the following properties under bounded initial conditions,
when the rth actuator is faulty,

(1) for s = r, the closed-loop system is semi-globally uniformly ultimately stable,
and all signals involved in the closed-loop systems remain a small neighborhood of
the origin, i.e., §21 specified as

(@12 7. 71 By g7 Bt B O 12| = V2085, 16511 = V2miss,
@2, = 4 1771 < V2mape, 1611 < V2nm3pa, 18| < anus,
||0gk5|| =V 2774/1«3’ |8gks| =V 2774:“’57 ||e|| =

mm(P )

(2) s # r, all signals of the closed-loop systems do not remain the compact set
2.

Remark 6.3 1t is valuable to point out that, if the design parameters such as
ni,i = 1,...,4, 05,0y, Neks> Ngj» J = 1, ..., m are appropriately chosen, fi; is
small enough, and all signals of the closed-loop system converge to a smaller neigh-
borhood of the origin, which means that better control performance is obtained.

Now, we denote the residuals between the real system and isolation estimators as
follows:

5 () =y =1ICe®l, 1 < s<m (6.77)

According to Theorem 6.2, when the rth actuator is faulty, i.e., s = r, the residual
es(t) must tend to £2;; while for any s # r, basically, e, (¢) does not belong to £2;.
Hence, the isolation law for actuator fault can be designed as

{ Jy(t) < T;, s = r = the rth actuator is faulty 6.78)

Jg(@t)>T,s #r

where threshold 77 is defined as follows.

T, = [IC], | 2
)hmin(Ps)
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6.3.3 Fault Accommodation

After that the fault information is obtained, we will consider the fault-tolerant control
problem of system (6.1), and design a fault-tolerant control law to recover the control
system’s dynamics performance when an actuator fault occurs. Firstly, we consider
the fuzzy control problem for the following nominal system without actuator faults:

xi=xf i=1,....n—1
i+1
= fO+D g
y=x1
. . T XY
Consider matrices X, Y, Z, Q > 0and P = P' > 0 such that yT 7 > 0 and

X—PLC—-CTLTP+2PP Y+ P(A+R) < 0
YT+ (A+R'P Z+1 =

virtual control laws (6.58—6.60), control input (6.61) and adaptive laws (6.62-6.67).
From Theorem 6.1, under Assumptions 6.1 and 6.2, the closed-loop system is
semi-globally uniformly ultimately stable, and all signals involved in the closed-
loop systems converge to a small neighborhood of the origin.
On the basis of the estimated actuator fault, the fault tolerant controller is con-
structed as
psu)

Us = <
p* + &y

(6.79)

where &, > 0is a design parameter, u" is the sth desired control input under healthy
condition, gy is the estimate of g;ky, which is used to compensate for the gain fault k;.

Theorem 6.3 Consider the high-order system (6.1) under Assumptions 6.1 and 6.2,
fault model (6.2), virtual and practical control laws (6.58—6.61) and adaptive laws
(6.62—6.67). If there exist matrices X, Y, Z, Q > 0 and P = PT > 0 with appro-

yT §i| > 0 and

priate dimensions, such that [
X —PLC—CTLTP+2PP Y+ P(A+R)

[ YT+ (A+R)TP Z+1 =-0 (6.80)

then, the faulty system (6.1) is asymptotically stable under the feedback FTC (6.79)

and all signals involved in the closed-loop system are semi-globally uniformly ulti-

mately bounded, converging asymptotically to a small neighborhood of zero, i.e.

16511 < V2010 1011 < /2000 g sll < 2ngisits, llell < /s,

where
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i 1 ng my ngl Ngm Ngks Ngks Amin(Q)
Hs *+C + Vs(0), gs = min{, —=—, ~——, =, ..., ; |2
e 272017 2 203" 2037 2ma " 2ma Amax (P)
— n 77
Ms =_fM2 L ( f)+
2m
" ngl 2 nng Ngks =2
Zj:l,j#? s (Mg, + M1+ 2= Mégks + 5 s S Mg

Proof Similar to the proof of Theorem6.1, it is easy to obtain the conclusions of
Theorem 3. The detailed proof is thus omitted here.

6.4 Simulation Results

In this section, a practical aircraft longitudinal motion dynamics, which can be
described as a 1-order nonlinear system, namely p = 1, and a high-order numerical
example where p = 3, are taken to show the effectiveness of the proposed fault
tolerant control scheme.

6.4.1 An Application to Aircraft Longitudinal Motion
Dynamics

In this subsection, we apply the proposed FTC scheme to diagnose and accommodate
failures in an aircraft longitudinal motion dynamics. The aircraft longitudinal motion
dynamics of the twin otter [43] can be described as 1-order nonlinear system as
follows:

( V= F, cos(a) + F, sin(w)

m
X —F, sin(a) + F, cos(x)
a=qg+
. mV (6.81)
0=gq
.M

Lq B Iy

where Vis the velocity, ais the angle of attack, 6 is the angle of pitch andgq is the pitch
rate, m is the mass, I, is the moment of inertia, and Fy = ¢SCx(c, q, 81, 802) +
Ticosy1+Trcos yp—mgsin(0), F, = gSC.(a, g, Se1, 8e2) + 11 siny1 +To siny, —
mgcos(@), M = qcSCp, (e, q, 8e1, Se2), Where g = %,OVZ is the dynamic pressure,
p is the air density, S is the wing area, c¢ is the mean chord, 7} and 7, are independent
thrusts with corresponding thrust misalignments y; and y,. The functions C,, C., C,,
are of the polynomial form: C, = C,ja + C0*+ Cy3 + Cyy (d18e1 + dad,2).C. =
C.1o + Crr0? + Co3 + Cog (di8e1 + dod2) + Cisq, Coy = Ci + Cppar® + Criz+
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Coa (d1801 + dr802)+Ci5q, where 8.1 and §,; are the elevator angles of an augmented
two-pieces elevators used as two actuators #; and u, for failure compensation study.
Choosing V, «, 6 and g as the states x;, x, x3 and x4, and 8.1, 8.2, T1, 1> as the inputs

uy, us, U3, ug, (6.81) will be put into the state form:

where

and 0, py,ai,az,, by, by, c1,c2,d1,do, y1, y» are unknown constant parameters
while pg is the gravity constant which is known. There exists a diffeomorphism
£, x17 =T (x) = [Ti(x), To(x), x3, x4]" such that (6.82) can be transform into the
parameter-strict-feedback form, where the positive odd number p = 1

[ %1 = (c] go(x2)x] + p1(x)) cos(x2)+

+ (X po(x2)x] + pa(x)) sin(xa)+

digi()uy + dogi(x)us + g31(x)uz + ga1 (x)uy

1
%2 = x4 — (cf po(x2)x1 + ¢1(x)x—l) sin(x2)+

1
(¢ po(x2)x1 + ¢>z(x)x—1) cos(x2)+

di1g(x)uy + dago(x)usz + g3 (x)us + gar(x)uy

)'63:)64

| X4 = 0T p(x) + b1x12u1 + b2x12u2

Go(x2) = [x2, 33, 11", 1 (x) = py sin(x3)
$2(x) = p1xaxi + posin(x3),
g1(x) = ale cos(xy) + azxf sin(x;)
&2(x) = —a1x; sin(xz) + azx; sin(xy)

g31(x) = cos(yy) cos(xz) + sin(y;) sin(xy)
841(x) = cos(y2) cos(xz) + sin(y2) sin(xz)

g326) = —cos(7) T2 4 ginyy) <202
X1 X
gunx) = — cos(yz)sm(xZ) + Sin(y2)005(x2)

X1

2 2.2 .2 2 4T
px) = [x1x27 X1X7, x17x1x4]

)'63:)64

2
X4 = 19T¢(x) + Zi*l b,-x%u,'
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and the zero dynamics £ = @&, x) + D(E, ), where ¥ € R* is an unknown
constant vector. The relative degree o equals 2. The aircraft parameters in the
simulation study are chosen based on the data sheet in [44]: m = 4600 kg,
I, = 31027kgm?*, S = 392m? ¢ = 1.98m, T, = 4864 N, T, = 212 N,
o = 0.7377 kg/m? at the altitude of 5000 m, and for the 0° flap setting. In addi-
tion, Cy; = 0.39, Cyxp, = 2.9099, C,3 = —0.0758, C,4 = 0.0961, C,; = —7.0186,
C,, =4.1109, C;3 = —0.3112, C4 = —0.2340, C,5s = —0.1023, C,,;; = —0.8789,
Cnr = —3.852, C,;3 =—0.0108, C,,4s = —1.8987, C,,5 = —0.6266 are unknown
constants. Reference signal y,is set as y; = e~%%. sin(0.2¢). The initial states
and estimates are set as x(0) = [75,0,0,15,0]" = ¢ %% gin(0.27), $(0) =
[0, 0, —0.004, 0]. It is assumed that the zero dynamics E=¢E x)+ PE, YV is
input-to-state stable with respect tox taken as the input. In addition, b;,i = 1,...,m
are assumed to be complete unknown, i.e., these values and signs are both unknown.
The fault case considered in this example is modeled as

oo jm@, <10 Fon
o= [ (1= pu(e). = 107 120710

where p;(x) = 0.4 cos(x3).

Firstly, the matrices inequality (6.43) are transformed to LMI, then by using
Matlab toolbox to solve the matrices inequalities, one can obtain symmetric matrix
X, Y, Z, P, Q, X;,Y, Zs, P, Qs and the nominal controller gains K;. Therefore,
one can design the desired control (6.37). Using this desired control, we can design
fault-tolerant controller (6.79). In this example, we assume that the system state is
not fully measured and thus the observer (6.53) is used to estimate the system state.
Consequently, the observer-based fault-tolerant control (6.79) is used to control the
faulty system. The simulation results are presented in Figs.6.1, 6.2, 6.3, 6.4, 6.5
and 6.6. From Figs.6.1 and 6.2, it is seen that, under normal operating condition,
the system states globally asymptotically converge to a small neighborhood of the
origin. Figures 6.3 and 6.4 show that, when an actuator fault occurs, when keeping
the normal controller, the system states deviate significantly from the neighborhood.
However, as shown in Figs. 6.5 and 6.6, using the proposed FTC (6.79), better tracking
performance is obtained, again.

6.4.2 A High-Order Numerical Example

Consider the following high-order nonlinear system

. 3

X1 = X

LT (6.84)
Xo = uj + U,
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The fault case considered in this example is modeled as

ui(t), t <10

i) =
(I = pr(x)ui(t), t =10 uy (1) = ux(1)

ul (1) =
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where p; (x) = 0.8 cos(2+x| +x,), the fault occurs at time t = 10s. As expected, we
can find that system output y follows well y; = 0 as shown in Fig. 6.7. Meanwhile,
Figs. 6.8 and 6.9 illustrate that, under the faulty condition, the system output y does
not converge to the desired reference signal without FTC, however, using FTC, the
system has better tracking performance.
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6.5 Conclusions

In this chapter, the fault-tolerant control problem for a class of uncertain nonlinear
systems in presence of actuator faults is discussed. We first design a bank of observers
to detect, isolate and estimate the fault. Then a sufficient condition for the existence
of an FDI observer is derived. Simulation show that the designed fault detection,
isolation and estimation algorithms and fault-tolerant control scheme have better
dynamic performances in the presence of actuator faults.
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