
Chapter 6
Adaptive Fault Tolerant Backstepping
Control for High-Order Nonlinear Systems

6.1 Introduction

It is well known that system physical components may become faulty which may
cause system performance deterioration or worth, may lead to instability that can
further produce catastrophic accidents. The fault effects require to be compensated
to enhance the reliability and safety of the system. Accommodating faults tomaintain
acceptable system performances is particularly important for life-critical systems. In
order to improve system reliability and to guarantee system stability in all situations,
many effective FTC approaches have been proposed the literature.

Fuzzy logic systems (FLSs), as universal function approximators, have been
widely used tomodel the nonlinearitieswith arbitrary preciseness.Due to the capabil-
ity, fuzzy logic systems are also adopted to solve identification and control problems
in nonlinear systems [1–6]. Various adaptive fuzzy control approaches, based on the
feedback linearization, were developed for controlling uncertain nonlinear systems.
Robust adaptive backstepping control [1, 5–10] and observer-based backstepping
control [11–13] attracted much attention frommany researchers, and many excellent
results were obtained during the past decades.

Recently, stable control problems of high-order systems attracted the interest of
many researchers [14–19]. In [14], the authors presented a continuous feedback
solution to the problem of global strong stabilization, for genuine nonlinear systems
that may not be stabilized, even locally, by a smooth feedback. The same authors
extended their results in [15], where they investigated the reference tracking problem
in nonlinear systems with disturbances. However, the control schemes in [14, 15]
do not guarantee the closed-loop systems’ stability or better tracking performance
under faulty conditions.

In this chapter, we investigate the problem of active FTC for a class of high-order
nonlinear uncertain systems with actuator gain faults. Compared with some existing
works, the following main contributions are worth to be emphasized:
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(1) In literature, results concerning FTC in the literature like [20–31] consider the
1-order systems. This chapter extends the results to the more general systems, i.e.,
so-called high-order systems as [32–37], and an observer-based active fault-tolerant
backstepping control scheme is proposed.

(2)Differing from the classical backstepping technology, our fault-tolerant control
scheme does not need computing the high order derivatives of virtual control signal
at each step of backstepping design procedure, which thus reduces the computation
complexity.

(3) In general, the denominator of the fault-tolerant control law contains the esti-
mate of the gain fault. If the denominator equals zero, a singularity occurs. In the
proposedFTCscheme, the controller singularity is avoidedwithout using a projection
algorithm.

(4) In contrast with [20–25], the proposed FTC scheme does not require the a
priori knowledge of the signs of control gain terms.

The rest of this chapter is organized as follows. In Sect. 6.2, the problem formula-
tion, Nussbaum-type function and mathematical description of FLS, are introduced.
Actuator faults are described and the FTC objectives are formulated. In Sect. 6.3,
the main technical results of this chapter are given, which include fault detection,
isolation, estimation and fault-tolerant control scheme design. The aircraft control
application is presented in Sect. 6.4 and simulation results are given and demonstrate
the effectiveness of the proposed technique. Finally, Sect. 6.5 draws the conclusion.

6.2 Problem Formulation and Mathematical
Description of FLSs

In this section, we will formulate control problem. Then, the FLS description is
introduced.

6.2.1 Problem Statement

Considers the following nonlinear systems:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = x p
i+1

, i = 1, . . . , n − 1

ẋn = f (x) +
∑m

j=1
g j (x)u

p
j

y = x1

(6.1)

where x = [x1, x2, . . . , xn]T ∈ Rn denotes the state vector, y = x1 denotes the
system output, u j ∈ R, j = 1, 2, . . . ,m denote control inputs, p ≥ 1 is a known
positive odd number, f (x) ∈ R denotes an unknown continuous smooth function,
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g j (x) ∈ R, j = 1, . . . ,m are complete unknown control gain functions, i.e., the
value and sign of g j (x) are both unknown.

Remark 6.1 System (6.1) is more general than the considered system in [18] which
was described as ẋi = x p

i+1
, i = 1, . . . , n−1 and ẋn = u p. In addition, since actuator

faultswere not considered in [18], only one actuatorwas used. In this chapter, the FTC
problem will be considered. In order to ensure the dependability of the controlled
system, redundant actuators are added which leads to an over-actuated system.

In practical application, actuators may become faulty. In this chapter, actuator
loss-of-effectiveness failures are considered, which can be modeled as follows.

u f
j = k j (x)u j , j = 1, . . . ,m, t ≥ t j (6.2)

where unknown function k j (x) denotes the remaining control rate, t j is unknown
fault occurrence time.

The control objectives, which are valid in normal (no fault) and faulty conditions,
are to design the proper control inputs u = [u1, . . . , um]T which ensure that the sys-
tem output can track asymptotically the reference model signal yd with the tracking
error converging to a small neighborhood of the origin and the closed-loop system
is uniformly ultimately bounded (SGUUB). Under normal condition (no fault), u is
designed to ensure boundedness of the closed-loop signals and asymptotic stability.
Meanwhile, the FDI algorithm is working. As soon as actuator faults are detected
and isolated, the fault accommodation algorithm is activated and a proper FTC input
u is used such that the tracking performance is still maintained stable under faulty
situation.

In order to design an appropriate controller, the following lemmas are introduced.

Lemma 6.1 ([38]) ∀q > 1, being an odd integer, a, b ∈ R, the following inequality
holds:

|a + b|q ≤ (|a| + |b|)q ≤ 2q−1|aq + bq | (6.3)

Lemma 6.2 ([38]) ∀m > 0 ∈ R,∀n > 0 ∈ R and r(x, y) > 0 ∈ R, the following
inequality holds:

|x |m |y|n ≤ m

m + n
r(x, y)|x |m+n + n

m + n
r− m

n (x, y)|y|m+n (6.4)

Lemma 6.3 ([11]) For α ∈ Rna , β ∈ Rnb , M ∈ Rna×nb , and arbitrary matrices

X ∈ Rna×na , Y ∈ Rna×nb , Z ∈ Rnb×nb , if

[
X Y
Y T Z

]

> 0, then

− 2αT Mβ ≤
[
α

β

]T [
X Y − M

YT − MT Z

] [
α

β

]

(6.5)
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6.2.2 Nussbaum Type Gain

Any continuous function N (s) : R → R is a function of Nussbaum type if it has the
following properties:

lim
s→+∞ sup

1

s

∫ s

0
N (ς)dς = +∞ (6.6)

lim
s→−∞ inf

1

s

∫ s

0
N (ς)dς = −∞ (6.7)

For example, the continuous functions ς2 cos(ς), ς2 sin(ς), and eς2
cos((π/2)ς)

verify the above properties and are thus Nussbaum-type functions [39]. The even
Nussbaum function eς2

cos((π/2)ς) is used throughout this chapter.

Lemma 6.4 ([40, 41]) Let V (·) and ς(·) be smooth functions defined on [0, t f )with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. If the
following inequality holds:

V (t) ≤ c0 +
∫ t

0
(gN (ς) + 1)ς̇dτ ,∀t ∈ [0, t f ) (6.8)

where g �= 0 is a constant, and c0 represents a suitable constant, then V (t), ς(t)

and
∫ t
0 gN (ς)ς̇dτ must be bounded on [0, t f ).

Lemma 6.5 ([41]) Let V (·) and ς(·) be smooth functions defined on [0, t f ) with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. For
∀t ∈ [0, t f ), if the following inequality holds,

V (t) ≤ c0 + e−c1t
∫ t

0
g(τ )N (ς)ς̇ec1τdτ + e−c1t

∫ t

0
ς̇ec1τdτ (6.9)

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the
unknown closed intervals I := [l−1, l+1]with 0 /∈ I , and c0 represents some suitable
constant, then V (t), ς(t) and

∫ t
0 g(τ )N (ς)ς̇dτ must be bounded on [0, t f ).

6.2.3 Mathematical Description of FLSs

A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier, the
fuzzy inference engine working on fuzzy rules, and the defuzzifier. The knowledge
base for FLS comprises a collection of fuzzy if-then rules of the following form:

Rl : i f x1 is Al
1 and x2 is Al

2 · · · and xn is Al
n,

then y is Bl , l = 1, 2, . . . , M
(6.10)
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where x = [x1, . . . , xn]T ⊂ Rn and y are the FLS input and output, respec-
tively. Fuzzy sets Al

i and Bl are associated with the fuzzy functions μAl
i
(xi ) =

exp(−(
xi−ali
bli

)
2
) and μBl (yl) = 1, respectively. M is the rules number. Through sin-

gleton function, center average defuzzification and product inference [42], the FLS
can be expressed as:

y(x) =
M∑

l=1

ȳl
(

n∏

i=1

μAl
i
(xi )

)

/

M∑

l=1

(
n∏

i=1

μAl
i
(xi )

)

(6.11)

where ȳl = maxy∈RμBl . Define the fuzzy basis functions as:

ξl(x) =
n∏

i=1

μAl
i
(xi )

M∑

l=1

(
n∏

i=1

/μAl
i
(xi )

)

and define θT = [ȳ1, ȳ2, . . . , ȳM ] = [θ1, θ2, . . . , θM ] and ξ(x) = [ξ1(x), . . . ,
ξM (x)]T , then the above FLS can be rewritten as:

y(x) = θT ξ(x) (6.12)

The stability results obtained in FLS control literature are semi-global in the sense
that, as long as the input variable of the FLS remains within some pre-fixed compact
set, where the compact set can be made as large as desired, there exist controllers
with sufficiently large number of FLS rules such that all the signals in the closed-loop
remain bounded.

Lemma 6.6 ([5, 6]) Let f (x) be a continuous function defined on a compact set Ω .
Then for any constant ε > 0, there exists a FLS such as

sup
x∈Ω

| f (x) − θT ξ(x)| ≤ ε

In this chapter, using FLS, the unknown functions f (x), g j (x) and gkj (x), j =
1, 2, . . . ,m, are approximated as

f̂ (x) = θ̂T
f ξ f (x), f̂ (x̂) = θ̂T

f ξ f (x̂)

ĝ j (x) = θ̂T
g jξg j (x), ĝ j (x̂) = θ̂T

g jξg j (x̂)

ĝk j (x) = θ̂T
gk jξgk j (x), ĝk j (x̂) = θ̂T

gk jξgk j (x̂)

Let define the optimal parameter vector θ∗
f , θ

∗
g j and θ∗

gk j as
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θ∗
f = arg min

θ∈Ω f

[ sup
x∈U,x̂∈Û

| f (x) − f̂ (x̂)|]

θ∗
g j = arg min

θg j∈Ωg j

[ sup
x∈U,x̂∈Û

|g j (x) − ĝg j (x̂, )|]

θ∗
gk j = arg min

θgk j∈Ωgk j

[ sup
x∈U,x̂∈Û

|gkj (x) − ĝk j (x̂)|]

whereΩ f ,Ωg j ,Ωgk j ,U and Û are compact regions for θ̂ f , θ̂g j , θ̂gk j , x and x̂ , respec-
tively; θ̂ f , θ̂g j , θ̂gk j and x̂ are the estimates of θ∗

f , θ
∗
g j , θ

∗
gk j and x , respectively. Similar

to [11–13], The FLSminimum approximation errors and actual approximation errors
are defined as

ε f = f (x) − θ∗T
f ξ f (x̂), δ f = f (x) − θ̂T

f ξ f (x̂)

εg j = g j (x) − θ∗T
g j ξg j (x̂), δg j = g j (x) − θ̂T

g jξg j (x̂)

εgk j = gkj (x) − θ∗T
gk jξgk j (x̂), δgk j = gkj (x) − θ̂T

gk jξgk j (x̂)

Now, the following assumptions are made.

Assumption 6.1 There exist unknownpositive real constants ε∗
f , δ

∗
f , ε

∗
g j , δ

∗
g j , ε

∗
gk j , δ

∗
gk j

and known positive real constants M̄ε f , M̄δ f , M̄εg j , M̄εgk j , such that |ε f | ≤ ε∗
f , ε

∗
f ≤

M̄ε f , |δ f | ≤ δ∗
f , δ

∗
f ≤ M̄δ f , |εg j | ≤ ε∗

g j , ε∗
g j ≤ M̄εg j , |εgk j | ≤ ε∗

gk j , ε
∗
gk j ≤ M̄gk j .

Assumption 6.2 There exist known positive real constants Mθ f , Mθg j and Mgkj

such that ||θ∗
f
|| ≤ Mθ f , ||θ∗

g j
|| ≤ Mθg j and ||θ∗

gk j
|| ≤ Mθgk j .

In order to facilitate the descriptions, in the following, f (x), g(x), gkj (x), f̂ (x̂),
ĝ(x̂), ĝk j (x̂), ξ f (x̂), ξg j (x̂) and ξgk j (x̂) are abbreviated to f , g, gkj , f̂ , ĝ, ĝk j , ξ f , ξg j
and ξgk j , respectively.

6.3 Main Results

In this section, the main technical results of this chapter are given. We will first
consider the stability control problemof system (6.1) under normal conditions, design
a bank of observers to generate residuals, investigate the FDI algorithm based on the
observers, and propose a FTC scheme to tolerate the fault using estimated fault
information.
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6.3.1 Fault Detection

In order to detect the fault, the following observer is constructed.

⎧
⎪⎪⎨

⎪⎪⎩

˙̂xi = x̂ p
i+1

+ li (y − ŷ), i = 1, . . . , n − 1

˙̂xn = f̂ +
∑m

j=1
[ĝ j + ε̂g j ]u p

j + ln(y − ŷ)

ŷ = x̂1 = Cx̂

(6.13)

where li , i = 1, . . . , n are constant parameters that will be designed later.
Let x̂ = [x̂1, x̂2, . . . , x̂n]T and define observer errors ei = xi − x̂i , i = 1, . . . , n,

then observer error dynamics can be described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ėi = x p
i+1

− x̂ p
i+1

= (ei+1 + x̂i+1)
p − x̂ p

i+1
− li (y − ŷ)

= ep
i+1

− li (y − ŷ) +
∑p

l=1
Cl

pe
l
i+1 x̂

p−l
i+1

ėn = f − f̂ +
∑m

j=1
(g j − ĝ j − ε̂g j )u

p
j − ln(y − ŷ)

(6.14)

Using the notation e = x − x̂ , the above error dynamics can be re-written as:

ė = Aep + Rep − L(y − ŷ) + d + B(d f + dg) (6.15)

where ep = [ep1 , . . . , epn ]T , di =∑p
l=1 C

l
pe

l
i+1 x̂

p−l
i+1 , i = 1, . . . n − 1, d f = f − f̂ =

δ f , dg =∑m
j=1 (g j − ĝ j − ε̂g j )u

p
i , and

A =
⎡

⎢
⎣

−r1
...

−rn

I
0 · · · 0

⎤

⎥
⎦ , R =

⎡

⎢
⎣

r1
...

rn

⎤

⎥
⎦ , L =

⎡

⎢
⎣

l1
...

ln

⎤

⎥
⎦ ,C =

⎡

⎢
⎣

1
...

0

⎤

⎥
⎦

T

, d =
⎡

⎢
⎣

d1
...

0

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0
...

1

⎤

⎥
⎦

In the followingwewill use the backstepping technique to design the fault-tolerant
controller.

Define

z1 = x̂1 − yd , zi = x̂i − αi−1(x̂1, . . . , x̂i−1), i = 2, 3, . . . , n (6.16)

where α0 = 0, zn+1 = 0, and αi−1, i = 1, . . . , n − 1 are virtual controls which will
be designed at each step, αn = u is the actual control input. The recursive design
procedure contains n steps. From Step 1 to Step n−1, virtual control αi−1 is designed
at each step. Finally an overall control law u is constructed at step n.
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Step 1:
From z1 = x̂1 − yd , one has

ż1 = ˙̂x1 − ẏd = x̂ p
2 = (z2 + α1)

p + l1(y − ŷ) − ẏd

= α
p
1 +

∑p

j=1
C j

pz
j
2α

p− j
1 + l1(y − ŷ) − ẏd

(6.17)

Define

V1 = V11 + Ve, V11 = 1

2
z21, Ve = eT Pe

where P = PT > 0 denotes a matrix with appropriate dimensions. Differentiating
V11with respect to time t leads to

V̇11 = z1 ż1 = z1α
p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + z1l1(y − ŷ) − z1 ẏd (6.18)

Notice that, p + 1 ≥ 2 is an even number. Differentiating Ve with respect to time
t , from Lemma6.3, it leads to

V̇e = 2eT [P(A + K ) + (A + K )T P]ep + 2eT Pd + 2eT PBd f − eT (PLC + CT LT P)e

≤
[

e
ep

]T [ X − PLC − CT LT P Y + P(A + R)

Y T + (A + R)T P Z

] [
e
ep

]

+ 2eT P(d + Bd f + Bdg)

(6.19)

where X , Y , Z denote matrices with appropriate dimensions, and

[
X Y
Y T Z

]

> 0.

From Lemma6.2, one has

∑p

k=1
Ck

pe
k
2 x̂

p−k
2 ≤

∑p

k=1
Ck

p

k

p
|e2|p · σ +

∑p

k=1
Ck

p

p − k

p
|x̂2|p · σ

−
(

k
p−k

)

=
[∑p

k=1
Ck

p

k

p
σ

]

· |e2|p +
[∑p

k=1
Ck

p

p − k

p
σ

−
(

k
p−k

)]

· |x̂2|p

= we1|e2|p + we2|x̂2|p
(6.20)

where we1 =
[∑p

k=1 C
k
p
k
pσ
]
, we2 =

[
∑p

k=1 C
k
p
p−k
p σ

−
(

k
p−k

)]

.

Define
σ = p

λ
∑p

k=1 C
k
pk

where λ > 1 is a design parameter. Since 0 < σ ≤ 1, one has we1|e2|p ≤ 1
λ
|e2|p.

Therefore,
∑p

k=1
Ck

pe
k
2 x̂

p−k
2 ≤ 1

λ
|e2|p + we2|x̂2|p.
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Further one has

(
∑p

k=1
Ck

pe
k
2 x̂

p−k
2 )

2 ≤ 2

λ2
(|e2|p)2 + 2(we2)

2(|x̂2|p)2.

Similarly, one has

(
∑p

k=1
Ck

pe
k
i x̂

p−k
i )

2 ≤ 2

λ2
|ei |p + 2(we2)

2(|x̂i |p)2, i = 2, . . . , n

Hence,

dT d ≤ [1
λ

|e2|p + we2|x̂2|p, . . . , 1
λ

|en|p + we2|x̂n|p, 0]

⎡

⎢
⎢
⎢
⎣

1
λ
|e2|p + we2|x̂2|p

...
1
λ
|en|p + we2|x̂n|p

0

⎤

⎥
⎥
⎥
⎦

=
∑n

i=2

2

λ2
(|ei |p)2 + 2(we2)

2(|x̂i |p)2

= 2

λ2

∑n

i=2
(|ei |p)2 +

∑n

i=2
2(we2)

2(|x̂i |p)2

= [|e2|p, . . . , |en|p, 0]

⎡

⎢
⎢
⎢
⎣

|e2|p
...

|en|p
0

⎤

⎥
⎥
⎥
⎦

+
∑n

i=2
2(we2)

2(|x̂i |p)2

= [|e1|p, |e2|p, . . . , |en|p]

⎡

⎢
⎢
⎢
⎣

|e1|p
|e2|p

...

|en|p

⎤

⎥
⎥
⎥
⎦

− (e1
p)

2 +
∑n

i=2
2(we2)

2(|x̂i |p)2

= eTp ep − (e1
p)

2 +
∑n

i=2
2(we2)

2(|x̂i |p)2

From Young’s inequality, one has

eT Pd ≤ eT P PT e + dT d ≤ eT P Pe + eTp ep − (e1
p)

2 +
∑n

i=2
2(we2)

2(|x̂i |p)2

2eT BPd f = eT PBδ f ≤ eT P Pe + δ2f ≤ eT P PT e + (δ∗
f )

2 ≤ eT P Pe + (M̄δ f )
2
.

Further, one has

V̇e ≤
[
e
ep

]T [X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

] [
e
ep

]

+ Δ̄0 + 2eT PBdg
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where Δ̄0 = −(e1 p)
2 +∑n

i=2 2(we2)
2(|x̂i |p)2 + (M̄δ f )

2
, I denotes identity matrix

with appropriate dimensions.
Hence, one has

V̇1 ≤z1α
p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + z1l1(y − ŷ) − z1 ẏd + Δ0 + 2eT PBdg+

[
e
ep

]T [X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

] [
e
ep

]

Obviously, if matrices X , Y , Z , Q > 0 and P = PT > 0 are chosen appropriately

such that

[
X Y
Y T Z

]

> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T PT Z + I

]

≤ −Q

where I denotes identity matrix with appropriate dimensions, then,

V̇1 ≤ z1α
p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + z1l1(y − ŷ) − z1 ẏd + Δ̄0+

2eT PBdg −
[
e
ep

]T

Q

[
e
ep

]

≤ − λmin(Q)

2λmax(P)
eT Pe + z1α

p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 +

z1l1(y − ŷ) − z1 ẏd + Δ̄0 + 2eT PBdg

(6.21)

Let Δ0 = z1l1(y − ŷ) − z1 ẏd + Δ̄0, one has

V̇1 ≤ − λmin(Q)

2λmax(P)
eT Pe + z1α

p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + Δ0 + 2eT PBdg (6.22)

Thus, virtual control α1 can be modified as

α1 =

⎧
⎪⎪⎨

⎪⎪⎩

p

√

(−1

2
z1 − Δ0

z1
, z1 ∈ Ω0

cz1

0, z1 ∈ Ωcz1

(6.23)

Remark 6.2 In general, virtual control α1 can be chosen as follows

α1 = p

√

(−1

2
z1 − Δ0

z1
(6.24)
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Just as pointed out in [41], for the above virtual control (6.23), controller sin-
gularity may occur since Δ0

z1
is not well defined at z1 = 0. Therefore, care must

be taken to guarantee the boundedness of the control. It is noted that the controller
singularity takes place at the point z1 = 0, where the control objective is supposed
to be achieved. From a practical point of view, once the system reaches its origin,
no control action should be taken for less power consumption. As z1 = 0 is hard to
detect owing to the existence of measurement noise, it is more practical to relax our
control objective of convergence to a “ball” rather than to the origin.

Similar to [41], let define Ωczi
⊂ Ω and Ω0

czi
s.t.

Ωczi
:= { zi | |zi | < czi }Ω0

czi
:= Ω − Ωczi

, i = 1, . . . ,m

where czi > 0 is a constant that can be chosen arbitrarily small and “-" is used to
denote the complement of set B in set A as A − B := {x |x ∈ A and x /∈ B}. Thus,
virtual control α1 can be modified as (6.23).

Step 2.
Since z2 = x̂2 − α1, one has

ż2 = ˙̂x2 − ∂α1

∂ x̂1
(x̂ p

2 + li (y − ŷ)) = x̂ p
3 − ∂α1

∂ x̂1
x̂ p
2 − ∂α1

∂ x̂1
l1(y − ŷ)

= (z3 + α2)
p − ∂α1

∂ x̂1
(z2 + α1)

p − ∂α1

∂ x̂1
li (y − ŷ)

= α
p
2 +

∑p

j=1
C j

pz
j
3α

p− j
2 − ∂α1

∂ x̂1

∑p

j=0
C j

pz
j
2α

p− j
1 − ∂α1

∂ x̂1
l1(y − ŷ)

(6.25)

Define

V2 = V1 + 1

2
z22

Differentiating V2 with respect to time t , leads to

V̇2 ≤V̇1 + ż2z2 = − λmin(Q)

2λmax(P)
eT Pe − 1

2
z21 + z1

∑p

j=1

[
C j
pα

p− j
1 z j2

]
+ z2α

p
2 +

z2
∑p

j=1
C j
pz

j
3α

p− j
2 − z2

∂α1

∂ x̂1

∑p

j=0
C j
pz

j
2α

p− j
1 − z2

∂α1

∂ x̂1
l1(y − ŷ) + 2eT PBdg

Let

Δ1 =
{

z1
∑p

j=1

[
C j

p|α p− j
1 z j−1

2 |
]
+∂α1

∂ x̂1

∑p

j=0
C j

p|z j2α p− j
1 | + |z2|∂α1

∂ x̂1
l1(y − ŷ)|

}

(6.26)

V̇2 ≤ − λmin(Q)

2λmax(P)
eT Pe − 1

2
z21 + Δ1 + z2α

p
2 + z2

∑p

j=1
C j

pz
j
3α

p− j
2 + 2eT PBdg

(6.27)
Similarly, choose a virtual control as follows
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α2 =

⎧
⎪⎪⎨

⎪⎪⎩

p

√

(−1

2
z2 − Δ1

z2
, z2 ∈ Ω0

cz2

0, z2 ∈ Ωcz2

(6.28)

Substituting α2 into (6.27), it yields

V̇2 ≤ − λmin(Q)

2λmax(P)
eT Pe − 1

2
z21 − 1

2
z22 + z2

∑p

j=1
C j

pz
j
3α

p− j
2 + 2eT PBdg

(6.29)
Step k:
Since zk = x̂k − αk−1, one has

żk = ˙̂xk −
∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

= x̂ p
k+1 −

∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

= (zk+1 + αk)
p −
∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

= α
p
k +

∑p

j=1
C j

pz
j
k+1α

p− j
k −

∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

(6.30)

Define

Vk = Vk−1 + 1

2
z2k

Differentiating Vk with respect to time t , leads to

V̇k � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑k−1

i=1
z2i + Δk−1 + zkα

p
k +

zk
∑p

j=1
C j

pz
j
k+1α

p− j
k + 2eT PBdg

(6.31)

where

Δk−1 =

⎧
⎪⎨

⎪⎩

zk−1

∑p

j=1

[
C j

p|α p− j
k−1 z

j−1
k |
]
+

∑k−1

i=1

∂αk−1

∂ x̂i
[
∑p

l=0
Cl

p|zlkα p−l
k−1| + |li (y − ŷ)|]

⎫
⎪⎬

⎪⎭
.

Just as αk−1, virtual control αk is chosen as follows

αk =

⎧
⎪⎪⎨

⎪⎪⎩

p

√

(−1

2
zk − Δk−1

zk
, zk ∈ Ω0

czk

0, zk ∈ Ωczk

(6.32)
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Substituting αk into (6.28), yields

V̇k � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑k

i=1
z2i +

∑p

j=1
C j

pz
j
k+1α

p− j
k + 2eT PBdg (6.33)

Step n:
Since zn = x̂n − αn−1, one has

żn = ˙̂xn −
∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

= f̂ +
∑m

j=1
(ĝ j + ε j )u

p
j + ln(y − ŷ) −

∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

= f − δ f +
∑m

j=1
(ĝ j + ε j )u

p
j + ln(y − ŷ) −

∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

= θ̃Tf ξ f + θ̂Tf ξ f + γ f +
∑m

j=1
(ĝ j + ε j )u

p
j + ln(y − ŷ)−

∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

(6.34)

Define

Vn = Vn−1 + 1

2
z2n + 1

2η1
θ̃T
f θ̃ f + 1

2η2
γ̃ 2
f + 1

2η3

∑m

j=1
(θ̃T

g j θ̃g j + ε̃2g j ) (6.35)

where γ ∗
f = ε∗

f + δ∗
f , γ̃ f = γ ∗

f − γ̂ f , θ̃ f = θ∗
f − θ̂ f , γ̃ f = γ ∗

f − γ̂ f , θ̃g j = θ∗
g j −

θ̂g j , ε̃g j = ε∗
g j − ε̂g j , θ̂ f , γ̂ f , θ̂g j , ε̂g j are the estimates of θ∗

f , γ
∗
f , θ

∗
g j , ε

∗
g j , and η1 >

0, η2 > 0, η3 > 0 are adaptive rates.

Differentiating Vn with respect to time t , leads to

V̇n � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n−1

i=1
z2i + zn θ̃

T
f ξ f + |zn |γ̃ f + zn

∑m

j=1
(ĝ j + ε̂ j )u

p
j +

Δn−1 − 1

η1
θ̃Tf

˙̂
θ f − 1

η2
γ̃ f

˙̂γ f + 2eT Pdg − 1

η3

∑m

j=1
(θ̃Tgj

˙̂
θg j + ε̃g j

˙̂εg j )

� − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n−1

i=1
z2i + zn

∑m

j=1
(ĝ j + ε̂ j )u

p
j + Δn−1 + 2eT Pdg−

1

η3

∑m

j=1
(θ̃Tgj

˙̂
θg j + ε̃g j

˙̂εg j ) + θ̃Tf (znξ f − 1

η1

˙̂
θ f ) + γ̃ f (|zn | − 1

η2

˙̂γ f )

where
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Δn−1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zn−1

∑p

j=1

[
C j

p|α p− j
n−1 z

j−1
n |
]

+ zn(θ̂
T
f ξ f (x̂, v) + ln(y − ŷ)+

∑n−1

i=1

∂αn−1

∂ x̂i
[
∑p

j=0
C j

p|z jkα p− j
k−1 | + |li (y − ŷ)|]−

∑n−1

j=1

∂αn−1

∂ x̂ j
(x̂ p

j+1 + l j+1(y − ŷ)) + |zn|γ̂ f

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Since

2eT PBdg =
∑m

j=1
2eT Pn(g j − ĝ j − ε̂g j )u

p
j

=
∑m

j=1
2eT Pn(θ

∗T
g j ξg j + εg j − θ̂T

g jξg j − ε̂g j ))u
p
j )

=
∑m

j=1
2eT Pn θ̃

T
g jξg j u

p
j +

∑m

j=1
2eT Pn(ε

∗
g j − ε̂g j )u

p
j +
∑m

j=1
2eT Pn(εg j − ε∗

g j )u
p
j

=
∑m

j=1
2eT Pn θ̃

T
g jξg j u

p
j +
∑m

j=1
2eT Pn ε̃g j u

p
j +

∑m

i=1
2eT Pn(εg j − ε∗

g j )u
p
j

from the above inequality, one has

V̇n � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n−1

i=1
z2i + zn θ̃

T
f ξ f + |zn |γ̃ f + zn

∑m

j=1
(ĝ j + ε̂ j )u

p
j +

Δn−1 +
∑m

j=1
2eT Pn(θ̃

T
gj ξg j + ε̃g j )u

p
j +

∑m

i=1
2eT Pn(εg j − ε∗

g j )u
p
j −

1

η1
θ̃Tf

˙̂
θ f − 1

η2
γ̃ f

˙̂γ f − 1

η3

∑m

j=1
(θ̃Tgj

˙̂
θg j + ε̃g j

˙̂εg j )

= − λmin(Q)

2λmax(P)
eT Pe +

∑m

j=1
[zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]u pj −
∑m

j=1
[θ̃Tgj (2eT Pnξg j u

p
j −

˙̂
θg j

η3
) + ε̃g j (2e

T Pnu
p
j −

˙̂εg j
η3

)]+

θ̃Tf (znξ f − 1

η1

˙̂
θ f ) + γ̃ f (|zn | − 1

η2

˙̂γ f ) −
∑n−1

i=1 z2i
2

+ Δn−1

(6.36)

Choose control law αn,i , i = 1, 2, . . . ,m and adaptation functions ˙̂
θ f , ˙̂γ f ,

˙̂
θg j , ˙̂εg j

as follows:

αn,i = ui = αk =

⎧
⎪⎨

⎪⎩

p

√

N (ς)(− 1
2 zn − Δn−1

zn
)

m
, zk ∈ Ω0

czn

0, zk ∈ Ωczn

(6.37)
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where ς̇ = − 1
2 z

2
n − Δn−1,

˙̂
θ f = η1znξ f − η f θ̂ f (6.38)

˙̂γ f = η2|zn| − ηγ γ̂ f (6.39)

˙̂
θT
g j = 2η3e

T Pnξg j u
p
j + ηg j θ̂g j (6.40)

˙̂εg j = 2η3e
T Pnu

p
j + ηg j ε̂g j (6.41)

and η f > 0, ηγ > 0, ηg j > 0 are design parameters, u j is a bounded control
input which is applied simultaneously to the i th actuator in the system (6.1) and the
observer (6.13).

Applying Young’s inequality, one has

η f

η1
θ̃T
f θ̂ f = η f

η1
θ̃T
f (θ∗

f − θ̃ f ) = −η f

η1
θ̃T
f θ̃ f + η f

η1
θ̃T
f θ∗

f � − η f

2η1
θ̃T
f θ̃ f + η f

2η1
θ∗T
f θ∗

f ,

ηγ

η2
γ̃ f γ̂ f = ηγ

η2
γ̃ f (γ

∗
f − γ̃ f ) = −ηγ

η2
γ̃ 2
f + ηγ

η2
γ̃ f γ

∗
f � − ηγ

2η2
γ̃ 2
f + (

ηγ

2η2
γ ∗
f )

2,

ηg j

η1
θ̃Tgj θ̂g j = ηg j

η1
θ̃Tgj (θ

∗
g j−θ̃g j ) = −ηg j

η1
θ̃Tgj θ̃g j+

ηg j

η1
θ̃Tgj θ

∗
g j � − ηg j

2η1
θ̃Tgj θ̃g j+

ηg j

2η1
θ∗T
gj θ∗

g j

ηg j

η3
ε̃g j ε̂g j = ηg j

η3
ε̃g j (ε

∗
g j − ε̃g j ) = −ηg j

η3
ε̃2g j + ηg j

η3
ε̃g jε

∗
g j � −ηg,i

2η3
ε̃2g j + ηg j

2η3
(ε∗

g j )
2

Substituting the above inequalities into (6.36), it yields

V̇n � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n

i=1
z2i +

∑m

i=1
{zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]N (ς)ς̇ + ς̇}
� −gVn + η f

2η1
θ∗T
f θ∗

f + (
ηγ

2η2
γ ∗
f )

2 +
∑m

j=1
(
ηg j

2η1
θ∗T
g j θ∗

g j + ηg j

2η3
(ε∗

g j )
2
)+

∑m

i=1
{zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]N (ς)ς̇ + ς̇}
� −gVn + η f

2η1
M2

θ f + ηγ

2η2
(M̄ε f + M̄δ f )

2 +
∑m

j=1
(
ηg j

2η1
M2

θg j + ηg j

2η3
M̄2

εg j )

∑m

j=1
{zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]N (ς)ς̇ + ς̇}
� −gVn + μ + hN (ς) + 1)ς̇

(6.42)
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where

g = min{ λmin(Q)

2λmax(P)
,
1

2
,

η f

2η1
,

ηγ

2η2
,

ηg1

2η3
, . . . ,

ηgm

2η3
},

μ = η f

2η1
M2

θ f + ηγ

2η2
(M̄ε f + M̄δ f )

2 +
∑m

j=1

ηg j

2η3
(M̄2

θg j + M̄2
εg j ),

h =
∑m

j=1
[zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )].

The above control design procedures and analysis are summarized in the following
theorem.

Theorem 6.1 Consider nonlinear system (6.1) under Assumptions6.1 and 6.2, con-
trol law (6.37) and adaptive laws (6.38–6.41). If matrices X, Y , Z, Q > 0 and

P = PT > 0 are such that

[
X Y
Y T Z

]

> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

]

� −Q (6.43)

we can guarantee the following properties under bounded initial conditions
(1) all signals in the closed-loop system are semi-globally uniformly ultimately

bounded;
(2) the vectors zi remain in the compact set Ω0

zi , i = 1, 2, . . . , n specified as

Ω0
zi :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(zi , θ̃ f , γ̃ f , θ̃g j , ε̃g j , e)
∣
∣
∣ |zi | �

√
2μ̄, ||θ̃ f || �

√
2η1μ̄,

|γ̃ f | �
√
2η2μ̄, ||θ̃g j || �

√
2η3μ̄,

|ε̃g j | �
√
2η3μ̄, ||e|| �

√
μ̄

λmin(P)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

whose size is μ̄ = μ

g + cg + Vn(0) > 0, which can be adjusted by appropriately
choosing the design parameters η1, η2, η3, η f , ηγ , ηg,1, . . . , ηg,m.

Proof Since V̇n � −gVn + μ + hN (ς) + 1)ς̇ , one has

Vn(t) � μ

g
+ [Vn(0) − μ

g
]e−gt + e−gt

t∫

0

(hN (ς) + 1)e−gτ ς̇dτ

� μ

g
+ Vn(0)e

−gt + e−gt

t∫

0

(hN (ς) + 1)e−gτ ς̇dτ

(6.44)
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Applying Lemma6.5, we can conclude that, Vn(t),
t∫

0
(hN (ς) + 1)e−gτ ς̇dτ and

ς(t) are SGUUB on [0, t f ). According to Proposition 2 in [39], if the solution of
the closed-loop system is bounded, then t f = +∞. Let cg be the upper bound of
t∫

0
(hN (ς) + 1)e−gτ ς̇dτ , we have the following inequalities:

e−gt

t∫

0

(hN (ς) + 1)e−gτ ς̇dτ �
t∫

0

(hN (ς) + 1)e−gτ ς̇dτ � cg

Thus, (6.44) becomes

Vn(t) � μ

g
+ cg + Vn(0) = μ̄ (6.45)

Hence, if matrices X , Y , Z , Q and positive definite symmetric matrices P are

chosen appropriately such that

[
X Y
Y T Z

]

> 0 and (6.38) holds, then, the proposed

control input (6.37) can ensure that Vn(t) is bounded, namely, the closed-loop system
is semi-globally uniformly ultimately bounded. Noting the definitions of Vn(t) and
zi , i = 1, 2, . . . , n, we have 1

2 z
2
i � Vn(t) � μ̄ and 1

2η1
θ̃T
f θ̃ f � μ̄. Furthermore,

we have |zi | �
√
2μ̄, ||θ̃ f || �

√
2η1μ̄. Similarly, we have |γ̃ f | �

√
2η2μ̄, ||θ̃g,i || �√

2η3μ̄, |ε̃g,i | �
√
2η3μ̄, ||e|| �

√
μ̄

λmin(P)
. From the above analysis, we can conclude

that there do exist compact sets Ω0
zi such that zi ∈ Ω0

zi ,∀t � 0. The proof is
completed.

From Theorem6.1, one has

||e|| �
√

2μ̄

λmin(P)
(6.46)

Furthermore, the detection residual can be defined as

J = ||y(t) − ŷ(t)|| (6.47)

From (6.46), it can be seen that the following inequality holds in the healthy case:

J � ||C ||
√

2μ̄

λmin(P)
(6.48)
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Then, the fault detection can be performed using the following mechanism:

{
J � Td no fault occurred,

J > Td fault has occurred
(6.49)

where threshold Td is defined as follows:

Td = ||C ||
√

2μ̄

λmin(P)
(6.50)

6.3.2 Fault Isolation and Estimation

Since the system has m actuators and it is assumed that only one actuator becomes
faulty at one time, we havem possible faulty cases in total.When the sth (1 � s � m)
actuator is faulty, the faulty model can be described as:

u f
s = ρs(x)us (6.51)

The faulty system (6.1) can be described as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋs,i = x p
s,i+1

, i = 1, . . . , n − 1

ẋs,n = f +
∑m

j=1
j �=s

g ju
p
j − gsρ

p
s u

p
s

ys = xs,1

(6.52)

After a fault has been detected, the isolation scheme is activated. Now, the fol-
lowing m nonlinear fault isolation observers are designed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

˙̂xs,i = x̂ p
s,i+1 + lsi (ys − ŷs), i = 1, . . . , n − 1

˙̂xs,n = θ̂T
f ξ f +

∑m

j=1, j �=r
[ĝg + ε̂g j ]u p

j + lsn(y − ŷ) + (θ̂T
gkrξ + ε̂gkr )u

p
r

ŷs = x̂s,1 = Cx̂s
(6.53)

where lsi , i = 1, 2, . . . , n, s = 1, 2 · · · .m are constants, which will be designed
later, θ̂T

gρ,rξgρ,r (x̂s, v) is the estimate of gr (x, v)ρ
p
r (xr ), r = 1, . . . ,m.

Let x̂s = [x̂s,1, x̂s,2, . . . , x̂s,n]T , the error terms es = xs − x̂s and eys = ys − ŷs
are respectively the state error and output error between the faulty plant and the sth
observer. The above error dynamics can be re-written as:

ės = Ase
p
s + Rse

p
s − Ls(ys − ŷs) + ds + Bs(d f + dg + ρs) (6.54)
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where esp = [eps,1, . . . , eps,n]T , d f = f − θ̂T
f ξ f , ρs = gsk

p
s u

p
s − [θ̂T

gkrξgkr + ε̂gkr ]u p
r ,

dg =∑m
i=1

i �=s,i �=r
(g j − ĝ j − ε̂g j )u

p
j and

A =
⎡

⎢
⎣

−r1
...

−rn

I
0 · · · 0

⎤

⎥
⎦ , Rs =

⎡

⎢
⎣

r1
...

rn

⎤

⎥
⎦ , Ls =

⎡

⎢
⎣

ls1
...

lsn

⎤

⎥
⎦ ,Cs =

⎡

⎢
⎣

1
...

0

⎤

⎥
⎦

T

,

ds =
⎡

⎢
⎣

∑p
k=1 C

k
pe

k
2 x̂

p−k
s,2

...

0

⎤

⎥
⎦ , Bs =

⎡

⎢
⎣

0
...

1

⎤

⎥
⎦

Similar to the previous subsection, differentiating Vse = eTs Pses with respect to
time t and using (6.20) and (6.54), it leads to

V̇se = eTs Ps ės + ėTs Pses

= 2eTs [Ps(As + Rs) + (As + Rs)
T Ps]eps +

2eTs Ps(d + Bsd f + Bsdg + Bsρs) − eTs (PsLsCs + CT
s L

T
s Ps)es

From Young’s inequality, one has

eTs Psd ≤ eTs Ps Pses + dT d

≤ eTs Ps Pses + eTspesp − (es,1
p)

2 +
∑n

i=2
2(we2)

2(|x̂s,i |p)2

2eTs Ps Bsd f = eTs Ps Bsd f ≤ eTs Ps Pses + d2
f ≤ eTs Ps Pses + (δ∗

f )
2

≤ eTs Ps Pses + (M̄δ f )
2

Furthermore, one has

V̇se ≤
[
es
eps

]T [Xs − PsLsCs − CT
s L

T
s Ps + Ps Ps Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

] [
es
eps

]

+
Δ0 + 2eTs Ps Bs(dg + ρs)

(6.55)
where Δ0 = −(eps,1)

2 +∑n
i=2 2(we2)

2(|x̂s,i |p)2 + (M̄δ f )
2
.

In the following, stability analysis will be given at two cases, i.e., s = r or s �= r .
Case 1: s = r
Since
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2eTs Ps Bs(ρs + dg) = 2eTs Psn[
∑m

j=1, j �=s
(g j − ĝ j − ε̂g j )u

p
j + (gks − ĝks − ε̂gks)u

p
s ]

= 2eTs Psn(
∑m

j=1, j �=s
(θ∗T
gj ξg j + εg j − θ̂Tgj ξg j − ε̂g j )u

p
j +

(θ∗T
gksξgks + εgks − θ̂Tgksξgks − ε̂gks)u

p
s )

=
∑m

j=1, j �=s
2eTs Psn θ̃

T
gj ξg j u

p
j +

∑m

j=1, j �=s
2eTs Psn ε̃g j u

p
j +

∑m

j=1, j �=s
2eTs Psn(εg j − ε̂∗

g j )u
p
j +

2eTs Psn θ̃
T
gksξgksu

p
s + 2eTs Psn ε̃gksu

p
s + 2eTs Psn(εgks − ε̂∗

gks)u
p
s

(6.56)

V̇se ≤
[
es
eps

]T [Xs − PsLsCs − CT
s L

T
s Ps + 2Ps PT

s Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

] [
es
eps

]

+

Δ0 +
∑m

j=1, j �=s
2eTs Psn θ̃

T
g jξg j u

p
j +
∑m

j=1, j �=s
2eTs Psn ε̃g j u

p
j +

∑m

j=1, j �=s
2eTs Psn(εg j − ε̂∗

g j )u
p
j +

2eTs Psn θ̃
T
gksξgksu

p
s + 2eTs Psn ε̃gksu

p
s + 2eTs Psn(εgks − ε̂∗

gks)u
p
s

(6.57)
where Psn is the nth column of Ps .

Similar to the above subsection, define

zs,1 = xs,1 = ys

zs,i = x̂s,i − αs,i−1(x̂s,1, . . . , x̂s,i−1), i = 2, 3, . . . , n

Vs,1 = Vs,11 + Vse, Vs,11 = 1

2
z2s,1

Vs,i = Vs,i−1 + 1

2
z2s,i−1, i = 2, 3, . . . , n

and choose a virtual control αs,i , i = 1, 2, . . . , n− 1 and practical control αs,nj , j =
1, . . . ,m as follows

αs,1 =

⎧
⎪⎪⎨

⎪⎪⎩

p

√

(−1

2
zs,1 − Δ0

zs,1
, zs,1 ∈ Ω0

cs,zs1

0, zs,1 ∈ Ωcs,zs1

(6.58)

αs,2 =

⎧
⎪⎪⎨

⎪⎪⎩

p

√

(−1

2
zs,2 − Δ1

zs,2
, zs,2 ∈ Ω0

cs,zs2

0, zs,2 ∈ Ωcs,zs2

(6.59)
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αs,k =

⎧
⎪⎪⎨

⎪⎪⎩

p

√

(−1

2
zs,k − Δk−1

zs,k
, zs,k ∈ Ω0

cs,zk

0, zs,k ∈ Ωcs,zk

(6.60)

αs,nj = u j =

⎧
⎪⎨

⎪⎩

p

√

N (ς)(− 1
2 zs,n − Δn−1

zn
)

m
, zs,k ∈ Ω0

czs,zn

0, zs,k ∈ Ωcs,zn

(6.61)

where ς̇ = − 1
2 z

2
s,n − Δn−1, Ωcs,zi

, i = 1, . . . , n are defined as Ωczk
in the previous

subsection. The adaptive laws are designed as follows:

˙̂
θ f = 2η1e

T
s Pnξ f + η f θ̂ f (6.62)

˙̂γ f = η2|zn| + ηγ γ̂ f (6.63)

˙̂
θ g j = 2η3e

T
s Pnξg j u

p
j + ηg j θ̂g j (6.64)

˙̂εg j = 2η3e
T
s Pnu

p
j + ηg j ε̂g j (6.65)

˙̂
θ gks = 2η4e

T
s Pnξgksu

p
s + ηgks θ̂gks (6.66)

˙̂εgks = 2η4e
T
s Pnu

p
s + ηgks ε̂gks (6.67)

where u j is a bounded control input which is applied simultaneously to the j th
actuator in the system (6.1) and the observer (6.53), and η1 > 0, η2 > 0, η3 >

0, η4 > 0, η f > 0, ηγ > 0, ηgks > 0, ηg j > 0, ηgks > 0 are design parameters.
Define

Vs =Vs,n + 1

2η1
θ̃T
f θ̃ f + 1

2η2
γ̃ 2
f +

1

2η3

∑m

j=1, j �=s
(θ̃T

g j θ̃g j + ε̃2g j ) + 1

2η4
(θ̃T

gks θ̃gks + ε2gks)

(6.68)

Similar to the previous subsection, differentiating Vs with respect to time t , one
has

V̇s ≤V̇s,n + 1

η1
θ̃T
f

˙̂
θ f + 1

η2
γ̃ f

˙̂γ f +
1

η4
(θ̃T

gks
˙̂
θ gks + ε̃gks ˙̂εgks)+

1

η3

∑m

j=1, j �=s
[θ̃T

g j
˙̂
θ g j + ε̃g j ˙̂εg j ]

(6.69)
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It is obvious that if
[
Xs − PsLsCs − CT

s L
T
s Ps + 2Ps Ps Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

]

< −Qs (6.70)

where X , Y , Z denote matrices with appropriate dimensions, respectively, and[
X Y
Y T Z

]

> 0, matrix Qs > 0, then from (6.69), one has

V̇s ≤V̇s,n −
[
es
eps

]T

Qs

[
es
eps

]

+ Δ0 +
∑m

j=1, j �=s
2eTs Psn θ̃

T
g jξg j u

p
j +

∑m

j=1, j �=s
2eTs Psn ε̃g j u

p
j +
∑m

j=1, j �=s
2eTs Psn(εg j − ε̂∗

g j )u
p
j +

2eTs Psn θ̃
T
gksξgksu

p
s + 2eTs Psn ε̃gksu

p
s + 2eTs Psn(εgks − ε̂∗

gks)u
p
s +

θ̃T
f

˙̂
θ f

η1
+ γ̃ f

˙̂γ f

η2
+
∑m

j=1, j �=s [θ̃T
g j

˙̂
θ g j + ε̃g j ˙̂εg j ]

η3
+

θ̃T
gks

˙̂
θ gks + ε̃gks ˙̂εgks

η4

(6.71)

Similar to (6.42) in the above subsection, considering (6.62–6.67), from (6.71),
one has

V̇s ≤ −gsVs + μ̄s + (h̄(x̂)N (ς)ς̇ + ς̇ ) (6.72)

where

μs = η f

2η1
M2

θ f + η f

2η1
(M̄ε f + M̄δ f )

2 +
∑m

j=1, j �=s

ηg j

2η3
(M̄2

θg j + M̄2
εg j )+

ηgks

2η4
(M̄2

θgks + M̄2
εgks)

gs = min{1
2
,

η f

2η1
,

ηγ

2η2
,

ηg1

2η3
, . . . ,

ηgm

2η3
,
ηgks

2η4
,

λmin(Q)

2λmax(P)
}

h̄(x̂) =
∑m

j=1, j �=s
[zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]+
zn(ĝks + ε̂gks) + 2eT Pn(εgks − ε∗

gks)

Since V̇s ≤ −gsVs + μ̄s + (h̄(x̂)N (ς)ς̇ + ς̇ ), one has

Vs(t) ≤ μ̄s

gs
+ [Vs(0) −

μ
� s

gs
]e−gs t + e−gt

t∫

0

(h̄(x̂)N (ς) + 1)ς̇e−gsτ ς̇dτ

≤ μ̄s

gs
+ Vs(0)e

−gs t + e−gs t

t∫

0

(h̄(x̂)N (ς) + 1)ς̇e−gsτ ς̇dτ

(6.73)
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Applying Lemma6.5, we can conclude that, Vn(t),
t∫

0
(h̄(x̂)N (ς) + 1)ς̇e−gτ ς̇dτ

and ς(t) are SGUUB on [0, t f ). According to Proposition 2 in [39], if the solution
of the closed-loop system is bounded, then t f = +∞. Let cg be the upper bound of
t∫

0
h̄(x̂)(N (ς) + 1)ς̇e−gsτ ς̇dτ , we have the following inequalities:

e−gs t

t∫

0

(h̄(x̂)N (ς) + 1)ς̇e−gsτ ς̇dτ ≤ cg

Thus, (6.73) becomes

Vs(t) ≤ μ̄s

gs
+ cg + Vs(0) = μs (6.74)

Hence, if matrices Xs , Ys , Zs, Qs and the positive definite symmetric matrix Ps

are chosen appropriately such that

[
Xs Ys
Y T
s Zs

]

> 0 and (6.74) holds, then, the proposed

control input (6.61) and adaptive laws (6.62–6.67) can ensure that Vs(t) is bounded,
namely, the closed-loop system is semi-globally uniformly ultimately bounded. That
is to say, all signals of the closed-loop system remain the following compact set Ω1,

Ω1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(zi , θ̃ f , γ̃ f , θ̃g j , ε̃g j , θ̃gks, ε̃gks, e)
∣
∣
∣ |zi | ≤ √2μs, ||θ̃ f || ≤ √2η1μs,

|γ̃ f | ≤ √2η2μs, ||θ̃g j || ≤ √2η3μs, |ε̃g j | ≤ √2η3μs,

||θ̃gks || ≤ √2η4μs, |ε̃gks | ≤ √2η4μs, ||e|| ≤
√

μs

λmin(Ps)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Case 2: s �= r
Since s �= r , from the faulty (6.52) and the observer (6.53), one has

2eTs Ps Bsρs = 2eTs Ps Bs[(gks − ĝs − ε̂gs)u
p
s + (gr − ĝkr − ε̂gkr )u

p
r ] (6.75)

From the adaptive laws (6.64–6.67), one has

˙̂
θ gs �= ˙̂

θ gks, ˙̂εgs �= ˙̂εgks, ˙̂
θ gr �= ˙̂

θ gkr , ˙̂εgr �= ˙̂εgkr
It is noted that 2eTs Ps Bs[(gks − ĝs − ε̂gs)u

p
s + (gr − ĝkr − ε̂gkr )u

p
r ] varies infinitely

since ˙̂
θ gs �= ˙̂

θ gks,
˙̂
θ gr �= ˙̂

θ gkr , ˙̂εgs �= ˙̂εgks and ˙̂εgr �= ˙̂εgkr , which further cause that
Vs(t) varies infinitely. As a result, basically, all signals of the closed-loop systems
such as esi do not remain Ω1 using the above control law and adaptive laws.

The above design procedure and analysis are summarized in the following theo-
rem.
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Theorem 6.2 Consider the faulty system (6.52) under Assumptions6.1 and 6.2, with
virtual controls (6.58–6.60), control law (61) and adaptive laws (6.62–6.67). If matri-

ces Xs, Ys , Zs , Qs > 0 and Ps = PT
s > 0 are such that

[
Xs Ys
Y T
s Zs

]

> 0 and

[
Xs − PsLsCs − CT

s L
T
s Ps + 2Ps Ps Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

]

< −Qs (6.76)

then, we can guarantee the following properties under bounded initial conditions,
when the rth actuator is faulty,

(1) for s = r , the closed-loop system is semi-globally uniformly ultimately stable,
and all signals involved in the closed-loop systems remain a small neighborhood of
the origin, i.e., Ω1 specified as

Ω1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(zi , θ̃ f , γ̃ f , θ̃g j , ε̃g j , θ̃gks, ε̃gks, e)
∣
∣
∣ |zi | ≤ √2μs, ||θ̃ f || ≤ √2η1μs,

|γ̃ f | ≤ √2η2μs, ||θ̃g j || ≤ √2η3μs, |ε̃g j | ≤ √2η3μs,

||θ̃gks || ≤ √2η4μs, |ε̃gks | ≤ √2η4μs, ||e|| ≤
√

μs

λmin(Ps)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2) s �= r , all signals of the closed-loop systems do not remain the compact set
Ω1.

Remark 6.3 It is valuable to point out that, if the design parameters such as
ηi , i = 1, . . . , 4, η f , ηγ , ηgks, ηg j , j = 1, . . . ,m are appropriately chosen, μs is
small enough, and all signals of the closed-loop system converge to a smaller neigh-
borhood of the origin, which means that better control performance is obtained.

Now, we denote the residuals between the real system and isolation estimators as
follows:

Js(t) = ∥∥ŷs(t) − y(t)
∥
∥ = ||Ce(t)||, 1 ≤ s ≤ m (6.77)

According to Theorem 6.2, when the r th actuator is faulty, i.e., s = r , the residual
es(t) must tend to Ω1; while for any s �= r , basically, es(t) does not belong to Ω1.
Hence, the isolation law for actuator fault can be designed as

{
Js(t) ≤ TI , s = r ⇒ the r th actuator is faulty

Js(t) > TI , s �= r
(6.78)

where threshold TI is defined as follows.

TI = ||C ||
√

μs

λmin(Ps)
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6.3.3 Fault Accommodation

After that the fault information is obtained, wewill consider the fault-tolerant control
problem of system (6.1), and design a fault-tolerant control law to recover the control
system’s dynamics performance when an actuator fault occurs. Firstly, we consider
the fuzzy control problem for the following nominal system without actuator faults:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = x p
i+1

, i = 1, . . . , n − 1

ẋn = f (x) +
∑m

j=1
g j (x)u

p
j

y = x1

Consider matrices X , Y , Z , Q > 0 and P = PT > 0 such that

[
X Y
Y T Z

]

> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

]

≤ −Q

virtual control laws (6.58–6.60), control input (6.61) and adaptive laws (6.62–6.67).
From Theorem 6.1, under Assumptions6.1 and 6.2, the closed-loop system is

semi-globally uniformly ultimately stable, and all signals involved in the closed-
loop systems converge to a small neighborhood of the origin.

On the basis of the estimated actuator fault, the fault tolerant controller is con-
structed as

us = ρ̂suN
s

ρ̂2
s

+ εu
(6.79)

where εu > 0 is a design parameter, uN
s is the sth desired control input under healthy

condition, ρ̂s is the estimate of gsks , which is used to compensate for the gain fault ks .

Theorem 6.3 Consider the high-order system (6.1) under Assumptions6.1 and 6.2,
fault model (6.2), virtual and practical control laws (6.58–6.61) and adaptive laws
(6.62–6.67). If there exist matrices X, Y , Z, Q > 0 and P = PT > 0 with appro-

priate dimensions, such that

[
X Y
Y T Z

]

> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

]

≤ −Q (6.80)

then, the faulty system (6.1) is asymptotically stable under the feedback FTC (6.79)
and all signals involved in the closed-loop system are semi-globally uniformly ulti-
mately bounded, converging asymptotically to a small neighborhood of zero, i.e.

||θ̃ f || ≤ √
2ηs f μs , ||θ̃g j || ≤ √

2ηg jμs , ||θ̃gρ,s || ≤ √
2ηgksμs , ||e|| ≤

√
2μs

λmin(Ps )
,

where
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μs = μ̄s

gs
+ cg + Vs(0), gs = min{1

2
,

η f

2η1
,

ηγ

2η2
,
ηg1

2η3
, . . . ,

ηgm

2η3
,
ηgks

2η4
,
ηgks

2η4
,
λmin(Q)

λmax(P)
},

μ̄s = η f

2η1
M2

θ f + ηγ

2η2
(M̄2

ε f + M̄2
δ f )+

∑m

j=1, j �=s

ηg j

η3
[M̄2

θg j + M̄2
εg j ] + ηgks

2η4
M2

θgks + ηgks

2η4
M̄2

εgks

Proof Similar to the proof of Theorem6.1, it is easy to obtain the conclusions of
Theorem 3. The detailed proof is thus omitted here.

6.4 Simulation Results

In this section, a practical aircraft longitudinal motion dynamics, which can be
described as a 1-order nonlinear system, namely p = 1, and a high-order numerical
example where p = 3, are taken to show the effectiveness of the proposed fault
tolerant control scheme.

6.4.1 An Application to Aircraft Longitudinal Motion
Dynamics

In this subsection, we apply the proposed FTC scheme to diagnose and accommodate
failures in an aircraft longitudinal motion dynamics. The aircraft longitudinal motion
dynamics of the twin otter [43] can be described as 1-order nonlinear system as
follows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ = Fx cos(α) + Fz sin(α)

m

α̇ = q + −Fx sin(α) + Fz cos(α)

mV
θ̇ = q

q̇ = M

Iy

(6.81)

where V is the velocity, αis the angle of attack, θ is the angle of pitch andq is the pitch
rate, m is the mass, Iy is the moment of inertia, and Fx = q̄ SCx (α, q, δe1, δe2) +
T1 cos γ1+T2 cos γ2−mg sin(θ), Fz = q̄ SCz(α, q, δe1, δe2)+T1· sin γ1+T2 sin γ2−
mg cos(θ), M = q̄cSCm(α, q, δe1, δe2), where q̄ = 1

2ρV
2 is the dynamic pressure,

ρ is the air density, S is the wing area, c is the mean chord, T1 and T2 are independent
thrusts with corresponding thrust misalignments γ1 and γ2. The functionsCx ,Cz,Cm

are of the polynomial form: Cx = Cx1α +Cx2α
2+ Cx3 +Cx4 (d1δe1 + d2δe2),Cz =

Cz1α + Cx2α
2 + Cz3 + Cz4 (d1δe1 + d2δe2) + Cx5q, Cm = Cm1α + Cm2α

2 + Cm3+
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Cm4 (d1δe1 + d2δe2)+Cm5q,where δe1 and δe2 are the elevator angles of an augmented
two-pieces elevators used as two actuators u1 and u2 for failure compensation study.
Choosing V, α, θ and q as the states x1, x2, x3 and x4, and δe1, δe2, T1, T2 as the inputs
u1, u2, u3, u4, (6.81) will be put into the state form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = (cT1 φ0(x2)x
2
1 + φ1(x)) cos(x2)+

+ (cT2 φ0(x2)x
2
1 + φ2(x)) sin(x2)+

d1g1(x)u1 + d2g1(x)u2 + g31(x)u3 + g41(x)u4

ẋ2 = x4 − (cT1 φ0(x2)x1 + φ1(x)
1

x1
) sin(x2)+

(cT2 φ0(x2)x1 + φ2(x)
1

x1
) cos(x2)+

d1g2(x)u1 + d2g2(x)u2 + g32(x)u3 + g42(x)u4
ẋ3 = x4

ẋ4 = θTϕ(x) + b1x
2
1u1 + b2x

2
1u2

(6.82)

where
φ0(x2) = [x2, x22 , 1]T , φ1(x) = p0 sin(x3)

φ2(x) = p1x4x
2
1 + p0 sin(x3),

g1(x) = a1x
2
1 cos(x2) + a2x

2
1 sin(x2)

g2(x) = −a1x1 sin(x2) + a2x1 sin(x2)

g31(x) = cos(γ1) cos(x2) + sin(γ1) sin(x2)

g41(x) = cos(γ2) cos(x2) + sin(γ2) sin(x2)

g32(x) = − cos(γ1)
sin(x2)

x1
+ sin(γ1)

cos(x2)

x1

g42(x) = − cos(γ2)
sin(x2)

x1
+ sin(γ2)

cos(x2)

x1

ϕ(x) = [x21 x2, x21 x22 , x21 , x21 x4]T

and θ, p1, a1, a2, , b1, b2, c1, c2, d1, d2, γ1, γ2 are unknown constant parameters
while p0 is the gravity constant which is known. There exists a diffeomorphism
[ξ, x]T = T (χ) = [T1(χ), T2(χ), x3, x4]T such that (6.82) can be transform into the
parameter-strict-feedback form, where the positive odd number p = 1

⎧
⎨

⎩

ẋ3 = x4

ẋ4 = ϑTφ(x) +
∑2

i=1
bi x

2
1ui

(6.83)
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and the zero dynamics ξ̇ = φ(ξ, χ) + Φ(ξ, χ)ϑ , where ϑ ∈ R4 is an unknown
constant vector. The relative degree o equals 2. The aircraft parameters in the
simulation study are chosen based on the data sheet in [44]: m = 4600 kg,
Iy = 31027 kg m2, S = 39.2 m2, c = 1.98 m, Tx = 4864 N , Tz = 212 N ,
ρ = 0.7377 kg/m3 at the altitude of 5000 m, and for the 0◦ flap setting. In addi-
tion, Cx1 = 0.39,Cx2 = 2.9099,Cx3 = −0.0758,Cx4 = 0.0961, Cz1 = −7.0186,
Cz2 = 4.1109, Cz3 = −0.3112, Cz4 = −0.2340, Cz5 = −0.1023, Cm1 = −0.8789,
Cm2 = −3.852, Cm3 =−0.0108,Cm4 = −1.8987, Cm5 = −0.6266 are unknown
constants. Reference signal yd is set as yd = e−0.05t · sin(0.2t). The initial states
and estimates are set as χ(0) = [75, 0, 0, 15, 0]T = e−0.05t sin(0.2t), ϑ̂(0) =
[0, 0,−0.004, 0]. It is assumed that the zero dynamics ξ̇ = φ(ξ, χ) + Φ(ξ, χ)ϑ is
input-to-state stable with respect tox taken as the input. In addition, bi , i = 1, . . . ,m
are assumed to be complete unknown, i.e., these values and signs are both unknown.

The fault case considered in this example is modeled as

u f
1 (t) =

{
u1(t), t < 10

(1 − ρ1(x))u1(t), t ≥ 10
, u f

2 (t) = u2(t)

where ρ1(x) = 0.4 cos(x3).
Firstly, the matrices inequality (6.43) are transformed to LMI, then by using

Matlab toolbox to solve the matrices inequalities, one can obtain symmetric matrix
X,Y, Z , P, Q, Xs,Ys, Zs, Ps, Qs and the nominal controller gains Ki . Therefore,
one can design the desired control (6.37). Using this desired control, we can design
fault-tolerant controller (6.79). In this example, we assume that the system state is
not fully measured and thus the observer (6.53) is used to estimate the system state.
Consequently, the observer-based fault-tolerant control (6.79) is used to control the
faulty system. The simulation results are presented in Figs. 6.1, 6.2, 6.3, 6.4, 6.5
and 6.6. From Figs. 6.1 and 6.2, it is seen that, under normal operating condition,
the system states globally asymptotically converge to a small neighborhood of the
origin. Figures6.3 and 6.4 show that, when an actuator fault occurs, when keeping
the normal controller, the system states deviate significantly from the neighborhood.
However, as shown inFigs. 6.5 and6.6, using the proposedFTC (6.79), better tracking
performance is obtained, again.

6.4.2 A High-Order Numerical Example

Consider the following high-order nonlinear system

{
ẋ1 = x32
ẋ2 = u31 + u32

(6.84)
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Fig. 6.1 Time response of the velocity without fault

Fig. 6.2 Time response of the attack of angle, the pitch angle and the pitch rate without fault

The fault case considered in this example is modeled as

u f
1 (t) =

{
u1(t), t < 10

(1 − ρ1(x))u1(t), t ≥ 10
u f
2 (t) = u2(t)
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Fig. 6.3 Time response of the velocity without FTC

Fig. 6.4 Time response of the attack of angle, the pitch angle and the pitch rate without FTC

where ρ1(x) = 0.8 cos(2+x1+x2), the fault occurs at time t = 10s. As expected, we
can find that system output y follows well yd = 0 as shown in Fig. 6.7. Meanwhile,
Figs. 6.8 and 6.9 illustrate that, under the faulty condition, the system output y does
not converge to the desired reference signal without FTC, however, using FTC, the
system has better tracking performance.
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Fig. 6.5 Time response of the velocity with FTC

Fig. 6.6 Time response of the attack of angle, the pitch angle and the pitch rate with FTC
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Fig. 6.7 State response under normal condition

Fig. 6.8 State response under faulty condition without FTC
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Fig. 6.9 State response under faulty condition with FTC

6.5 Conclusions

In this chapter, the fault-tolerant control problem for a class of uncertain nonlinear
systems in presence of actuator faults is discussed.Wefirst design a bank of observers
to detect, isolate and estimate the fault. Then a sufficient condition for the existence
of an FDI observer is derived. Simulation show that the designed fault detection,
isolation and estimation algorithms and fault-tolerant control scheme have better
dynamic performances in the presence of actuator faults.
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