
Chapter 4
Command Filtered Adaptive Fuzzy
Backstepping FTC Against Actuator Fault

4.1 Introduction

Fuzzy control has found extensive applications formodeling nonlinear systems in the
past 10years. According to the fuzzy approximation theorem of the fuzzy logic sys-
tems (FLSs) [1–6], researchers proposed many approximation-based adaptive fuzzy
control design methods for nonlinear systems (see, e.g., [7–12] and the references
therein).

It has been proved that adaptive backstepping technique is a powerful tool to solve
tracking or regulation control problems of unknown nonlinear systems in or trans-
formable to parameter strict-feedback form [13]. For such systems, many adaptive
fuzzy backstepping controllers have been developed (see, e.g., [14–19] and the ref-
erences therein), where FLSs or neural networks are used to approximate unknown
nonlinear smooth functions. It is well known that, however, in standard backstepping
design procedure, analytic computation of the first derivatives of virtual control sig-
nals αi (i = 1, 2, . . . , n − 1), i.e., α̇i , is necessary. Note that, the computation of α̇i

requires the higher derivatives of α̇ j , j = 0, 1, . . . , i−1.Obviously, as systemdimen-
sion, i.e., n, increases, the computation of α̇i becomes increasingly complicated. This
limits the theoretical results’ field of practical applications. Hence, how to reduce
the computation of α̇i is crucial issue in controller design, which is a motivation of
this chapter. In addition, the aforementioned approaches required the knowledge of
the desired trajectory yd(t) and the first n derivatives, i.e., y(i)

d (t), i = 1, 2, . . . , n
should be available. It is important to note that in some important applications (e.g.,
land vehicle or aircraft) the desired trajectory may be generated by a planner, an
outer-loop, or a user input device that does not provide higher derivatives. Relaxing
the assumption motivates us for this work.

On the other hand, actuators, sensors or other system components in practical
engineering fail frequently, which can cause system performance deterioration and
lead to instability that can further produce catastrophic accidents. Thus, many effec-
tive fault tolerant control (FTC) approaches have been proposed to improve system
reliability and to guarantee system stability in all situations [20–39].
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In this chapter, a bank of command filters (see, e.g., [40, 41] and the references
therein) are proposed to respectively generate the first derivations of the desired
trajectory and virtual control signals. Then, by using backstepping technique, a robust
adaptive fuzzy controller is proposed to guarantee that the tracking error converges
to a neighborhood of the origin, where FLSs are utilized to approximate the unknown
functions. The contributions form our work are generalized the following aspects:

(1) The desired trajectory and only its first derivative are necessary for the control
scheme presented in this chapter, which is more reasonable in practical appli-
cations. The theoretic results of this chapter are thus valuable in a wide field of
practical applications;

(2) Compared with the existing literatures concerning the standard backstepping
design, the control scheme presented in this chapter does not need to compute the
higher derivatives of virtual control signals in backstepping design procedures,
which decreases the computation complexity;

(3) Different from some results in literature where all system functions are known,
the system functions considered in this chapter are unknown. In particular, the
signs of control gain functions are also unknown.

(4) The actuator fault model that is presented in this chapter integrates not only
unknown gain faults, but also unknown bias faults,where both faults are depen-
dent on the system state and will be approximated by FLSs.

The rest of this chapter is organized as follows. Section4.2 formulates the problem
under investigation. Nussbaum type gain and mathematical description of FLSs are
also provided. In addition, some basic assumptions and preliminary results are given.
InSect. 4.3, themain technical results of this chapter are given,where commandfilters
and adaptive fuzzy controller are designed, and the closed-loop system’s stability
analysis is developed. A numerical example is presented in Sect. 4.4. Simulation
results are presented to demonstrate the effectiveness of the proposed technique.
Finally, Sect. 4.5 draws the conclusion.

4.2 Problem Statement and Preliminaries

4.2.1 Problem Statement

Considers the following uncertain nonlinear systems:

⎧
⎨

⎩

ẋi = fi (x̄i ) + gi (x̄i )xi+1 + di (x̄i+1, t), i = 1, 2, . . . , n − 1;
ẋn = fn(x̄n) + gn(x̄n)u(t) + dn(x̄n, t);
y = x1

(4.1)
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where x̄i = (x1, . . . , xi )
T ∈ Ri , i = 1, . . . , n is the state; y denotes the output;

u ∈ R is the input; fi (·) ∈ R and gi (·) ∈ R, i = 1, . . . , n are the unknown smooth
functions; di (·, t), i = 1, . . . , n, denote the unknown dynamic disturbances.

In practical applications, actuators may fail. The fault model considered in this
chapter can be described as follows:

u f = g f (x̄n)u + b f (x̄n), t > tF (4.2)

where g f (x̄n) and b f (x̄n) are smooth functions, which denote unknown gain fault
and bias fault, respectively; tF is an unknown fault occurrence time.

Control objective is to design an adaptive fuzzy controller by backstepping with
command filter for system (4.1) such that output y can track accurately the desired
trajectory yd as possible regardless of actuator fault and unknown dynamic distur-
bances.

To design appropriate controller, the following lemma and some assumptions are
given.

Lemma 4.1 ([42]) For ∀x ∈ R, |x | − tanh(x/δ)x ≤ 0.2785δ, where δ > 0 ∈ R.

Assumption 4.1 There exist known constants gi0 > 0 ∈ R and gi1 > 0 ∈ R such
that gi1 � |gi (x̄i )| � gi0 > 0,∀x̄i ∈ Ri , i = 1, 2, . . . , n.

Assumption 4.2 There exist unknown constant p∗
i and known smooth positive func-

tion φi (x̄i ) such that |di (·, t)| ≤ p∗
i φi (x̄i ).

Assumption 4.3 The desired trajectory yd(t) and its first derivative are bounded and
available.

Assumption 4.4 g f (x̄n) is bounded, i.e., there exist known constants g f 0 > 0 ∈ R
and g1 > 0 ∈ R such that g f 1 ≥ |g(x̄n)| ≥ g f 0.

Remark 4.1 In literature, the existing results concerning the trajectory tracking prob-
lems of the strict-feedback systems require the classical assumption that the desired
trajectory yd(t) and the first n derivatives, i.e., y(i)

d (t), i = 0, 1, . . . , n should be
available. Just stated in Introduction, in some important applications (e.g., land vehi-
cle or aircraft) the desired trajectory may be generated by a planner, an outer-loop, or
a user input device that does not provide higher derivatives. Thus, in such case, these
results do not work. Assumption 4.3 in this chapter is more reasonable in practical
applications.

4.2.2 Nussbaum Type Gain

Any continuous function N (s) : R → R is a function of Nussbaum type if it has the
following properties:
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(1) lim
s→+∞ sup 1

s

∫ s
0 N (ς)dς = +∞;

(2) lim
s→−∞ inf 1

s

∫ s
0 N (ς)dς = −∞

For example, the continuous functions ς2 cos(ς), ς2 sin(ς), and eς2
cos((π/2)ς)

verify the above properties and are thus Nussbaum-type functions [43].The even
Nussbaum function eς2

cos((π/2)ς) is used throughout this chapter.

Lemma 4.2 ([44]) Let V (·) and ς(·) be smooth functions defined on [0, t f ) with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. If the
following inequality holds:

V (t) ≤ c0 +
∫ t

0
(gN (ς) + 1)ς̇dτ ,∀t ∈ [0, t f )

where g 	= 0 is a constant, and c0 represents a suitable constant, then V (t), ς(t) and
∫ t
0 gN (ς)ς̇dτ must be bounded on[0, t f ).

Lemma 4.3 ([45]) Let V (·) and ς(·) be smooth functions defined on [0, t f ) with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. For
∀t ∈ [0, t f ), if the following inequality holds,

V (t) ≤ c0 + e−c1t
∫ t

0
g(τ )N (ς)ς̇ec1τ dτ + e−c1t

∫ t

0
ς̇ec1τ dτ

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the
unknown closed intervals I := [l−1, l+1]with 0 /∈ I , and c0 represents some suitable
constant, then V (t), ς(t) and

∫ t
0 g(τ )N (ς)ς̇dτ must be bounded on [0, t f ).

4.2.3 Mathematical Description of Fuzzy Logic Systems

A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier, the
fuzzy inference engine working on fuzzy rules, and the defuzzifier. The knowledge
base for FLS comprises a collection of fuzzy if-then rules of the following form:

Rl : i f x1 is Al
1 and x2 is Al

2 . . . and xn is Al
n,

then y is Bl , l = 1, 2, . . . , M

where x = [x1, . . . , xn]T ⊂ Rn and y are the FLS input and output, respec-
tively. Fuzzy sets Al

i and Bl are associated with the fuzzy functions μAl
i
(xi ) =

exp(−(
xi −al

i

bl
i

)
2
) and μBl (yl) = 1, respectively. M is the rules number. Through sin-

gleton function, center average defuzzification and product inference, the FLS can
be expressed as:
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y(x) =
M∑

l=1

ȳl

(
n∏

i=1

μAl
i
(xi )

)

/

M∑

l=1

(
n∏

i=1

μAl
i
(xi )

)

where ȳl = maxy∈RμBl . Define the fuzzy basis functions as:

ξl(x) =
n∏

i=1

μAl
i
(xi )

M∑

l=1

(
n∏

i=1

/μAl
i
(xi )

)

and define θT = [ȳ1, ȳ2, . . . , ȳM ] = [θ1, θ2, . . . , θM ] and ξ(x)= [ξ1(x), . . . , ξM (x)]T ,
then the above FLS can be rewritten as:

y(x) = θT ξ(x)

Lemma 4.4 ([5, 6]) Let f (x) be a continuous function defined on a compact set Ω .
Then for any constant ε > 0, there exists a FLS such as

sup
x∈Ω

| f (x) − θT ξ(x)| ≤ ε

By Lemma 4.4, we know, FLS can approximate any smooth function on a com-
pact space. Due to this approximation capability, we can assume that the nonlinear
function f (x) can be approximated as

f (x, θ) = θT ξ(x)

Define the optimal parameter vector θ∗ as

θ∗ = argmin
θ∈Ω

[sup
x∈U

| f (x) − f (x, θ∗)|]

whereΩ andU are compact regions for θ and x , respectively. Also the FLSminimum
approximation error is defined as:

ε = f (x) − θ∗T ξ(x)

From Lemma 4.4, the following assumption is made.

Assumption 4.5 There exist an unknown real bounded constant ε∗ > 0 such that
|ε| ≤ ε∗ on compact sets Ω and U .

In this chapter, we use the above FLS to approximate the unknown function
hi (zi ), (i = 1, . . . , n) will defined later, namely, there exists θ∗

i and εi such that

hi (zi ) = θ∗T
i ξi (zi ) + εi
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From Assumption4.5, there exists an unknown positive real constant εi such that
|εi | ≤ ε∗

i .
For notational simplicity, we use • to denote •(·). For example, fi is the abbrevi-

ation of fi (x̄i ).

4.3 Design of Adaptive Fuzzy Controller
and Stability Analysis

Define
zi = xi − αi−1, i = 1, 2, . . . , n (4.3)

where α0=yd , αi−1 (i = 2, . . . , n) is a virtual control which will be designed at each
step, αn = u is actual control input. The recursive design procedure contains n steps.
From Step 1 to Step n − 1, αi (i = 1, . . . , n − 1) is designed at each step. Finally an
overall control law u(αn) is constructed at Step n.

In order to estimate the virtual control αi−1 (i = 2, . . . , n), define the following
command filter

ω̇i = −ηω(ωi − αi−1), i = 2, . . . , n (4.4)

where ηω > 0 is a design parameter. Let us define the estimation error signal vi as

vi = ωi − αi−1, i = 2, . . . , n

Remark 4.2 The command filter (4.4) is constructed to avoid the computation of the
higher derivatives of αi−1, i = 2, . . . , n. It should be pointed out that the error vi

will be compensated at Step n in this chapter.

Step 1:
Now, consider z1-subsystem: z1 = x1 − α0. Form (4.1) and (4.3), one has

ż1 = f1(x̄1) + g1(x̄1)x2 + d1(x̄2, t) − ẏd

= f1(x̄1) + g1(x̄1)z2 + g1(x̄1)α1 + d1(x̄2, t) − ẏd
(4.5)

Define the following function

Vz1 =
∫ z1

0

σ

|g1(σ + yd)|dσ (4.6)

From the integral-type mean value theorem, it can be known that, there exists a
constant λ1 ∈ (0, 1) such that Vz1 = z12/2g(λ1z1 + yd). Hence, from Assumption
4.1, we have
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z12

2g10
� Vz1 � z12

2g11
> 0

which means that, Vz1 is a positive definite function of variable z1.

Since
∂|g−1(σ+yd )|

∂ yd
= ∂|g−1(x̄,σ+yd )|

∂σ
, we can obtain

V̇z1 = z1
|g1(x1)| ż1 +

∫ z1

0
σ

[
∂

∣
∣g−1(σ + yd)

∣
∣

∂ yd
ẏd

]

dσ

= z1
|g1(x1)| ż1 + ẏd

[
z1

|g1(x1)| −
∫ z1

0

[
1

∣
∣g−1(σ + yd)

∣
∣
dσ

]]

= z1
|g1(x1)| [ f1(x̄1) + g1(x̄1)z2 + g1(x̄1)α1 + d1(x̄2, t) − ẏd ]+

ẏd

[
z1

|g1(x1)| −
∫ z1

0

1
∣
∣g−1(σ + yd)

∣
∣
dσ

]

(4.7)

Let z̄1 = (x1, ω1, ω̇1)
T and

h1(z̄1) = f1(x1)

|g1(x1)| + ω̇1

z1

∫ z1

0

[
1

∣
∣g−1(σ + ω1)

∣
∣
dσ

]

(4.8)

Δ1(z̄1, α0, α̇0, ω1, ω̇1) = ẏd

z1

∫ z1

0

[
1

∣
∣g−1(σ + yd )

∣
∣
dσ

]

− ω̇1

z1

∫ z1

0

[
1

∣
∣g−1(σ + ω1)

∣
∣
dσ

]

(4.9)
Note that, hi (z̄1) will be approximated by FLSs on a compact set Ωz1 as: h1(z1) =
θ∗T
1 ξ1(z̄1)+ε1(z̄1). FromAssumption 4.5,we know, there exists an unknown constant

ε∗
1 such that |ε1(z̄1)| ≤ ε∗

1 .
Then, we have

V̇z1 = z1[ g1(x̄1)

|g1(x1)| z2 + g1(x̄1)

|g1(x1)|α1 + d1(x̄2, t)

|g1(x1)| + h1(z̄1)] + Δ1(z̄1, α0, α̇0, ω1, ω̇1)

(4.10)
Virtual control α1 is defined as follows:

α1 = N (ς1)[k1z1 + h1(z1, θ̂1) + b̂1ϕ̄1(x1) tanh(
z1ϕ̄1(x̄1)

η1
)] (4.11)

ς̇1 = k1z2
1
+ h1(z1, θ̂1)z1 + b̂1ϕ̄1(x1)z1 tanh(

z1ϕ̄1(x̄1)

η1
) (4.12)



84 4 Command Filtered Adaptive Fuzzy Backstepping FTC Against Actuator Fault

where k1 > 1 is a design parameter; h1(z1, θ̂1) = θ̂T
1 ξ1(z̄1) and θ̂1 are estimates of

θ∗T
1 ξ1(z̄1) and θ∗

1 , respectively; b̂1 is an estimate of b∗
1

= max{ε∗
1
,

p∗
1

g10
}, ϕ̄1(x̄1) =

1 + ϕ1(x̄1).
Hence, from Lemma 4.1 and Assumptions 4.1 and 4.2, (4.7) can be further devel-

oped as follows:

V̇z1 � g1(x̄1)

|g1(x1)| z1z2 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 − ς̇1 + p∗
1ϕ1(x̄1)

g10
|z1| + h1(z̄1)z1

= −k1z2
1

+ g1(x̄1)

|g1(x1)| z1z2 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 + h1(z̄1)z1 − h1(z1, θ̂1)z1−

b̂1ϕ̄1(x1)z1 tanh(
z1ϕ̄1(x̄1)

η1
) + p∗

1ϕ1(x̄1)

g10
|z1|

� −k1z2
1

+ 1

4
z22 + z2

1
+ g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 − θ̃1ξ1(z̄1)z1+

b∗
1[|z1| ϕ̄1(x̄1) − z1ϕ̄1(x̄1) tanh(

z1ϕ̄1(x̄1)

η1
)] − b̃1ϕ̄1(x1)z1 tanh(

z1ϕ̄1(x̄1)

η1
)

= −(k1 − 1)z2
1

+ 1

4
z22 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 − θ̃1ξ1(z̄1)z1 + b∗
1[|z1| ϕ̄1(x̄1)−

z1ϕ̄1(x̄1) tanh(
z1ϕ̄1(x̄1)

η1
)] − b̃1ϕ̄1(x1)z1 tanh(

z1ϕ̄1(x̄1)

η1
) + Δ1

(4.13)
where θ̃1 = θ∗

1 − θ1, b̃1 = b∗
1 − b1.

Consider the following function

V1(t) = Vz1 + 1

2
θ̃T
1 Γ −1

1 θ̃1 + 1

2λ1
b̃2
1

(4.14)

Adaptive laws are defined as follows:

˙̂
θ1 = Γ1[z1ξ1(z̄1) − σ1θ̂1] (4.15)

˙̂b1 = λ1[z1ϕ̄1(x̄1) tanh(
z1ϕ̄1(x̄1)

η1
) − σb1b̂1] (4.16)

where Γ1 is a positive matrix with appropriate dimensions, σ1 > 0, σb1 > 0, η1 > 0
and λ1 > 0 are design parameters.

Differentiating V1 with respect to time t and considering (4.9)–(4.12), we have

V̇1 � − (k1 − 1)z2
1
+ 1

4
z22 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1+
0.2785η1b∗

1 − σ1θ̃
T
1
θ̂1 − σb1b̃1b̂1 + Δ1

(4.17)

where Lemma 4.1 is used, namely, 0 � |x |−x tanh( x
ε
) � 0.2785ε, ∀ε > 0,∀x ∈ R.
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Since

σ1θ̃
T
1 θ̂1 � −

σ1

∥
∥
∥θ̃1

∥
∥
∥
2

2
+ σ1

∥
∥θ∗

1

∥
∥2

2
, σb1b̃1b̂1 � −σb1b̃2

1

2
+ σb1b∗

1
2

2
(4.18)

then (4.17) can be derived as

V̇1 � −c1V1 + 1

4
z22 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇ + cε1 + Δ1 (4.19)

where

cε1 = 0.2785η1b∗
1
+ σ1

∥
∥θ∗

1

∥
∥2

2
+ σb1b∗

1
2

2

c1 = min{2(k1 − 1)g10,
σ1

λmin(Γ
−1
1 )

,
σb1

λ1
}

Further, we have

d

dt
(V1(t)e

c1t ) � 1

4
ec1t z2

2
+ g1(x)

|g1(x)| N (ς1)ς̇1ec1t + ς̇1ec1t + cε1ec1t + Δ1e
c1t (4.20)

Let ρ1 = cε1/c1, and integrating both the sides of the above inequality (4.20), it
yields

V1(t) � ρ1 + [V1(0) − ρ1]e−c1t + e−c1t
∫ t

0

1

4
ec1t z2

2
dτ+

e−c1t
∫ t

0
(

g1(x)

|g1(x)| N (ς1) + 1)ec1t ς̇1dτ + e−c1t
∫ t

0
ec1tΔ1dτ

� ρ1 + V1(0) + e−c1t
∫ t

0

1

4
ec1t z2

2
dτ+

e−c1t
∫ t

0
(

g1(x)

|g1(x)| N (ς1) + 1)ec1t ς̇1dτ + e−c1t
∫ t

0
ec1tΔ1dτ

(4.21)

Obviously, if there are not e−c1t
∫ t
0

1
4ec1t z2

2
dτ and e−c1t

∫ t
0 ec1tΔ1dτ in (4.21), then,

from Lemmas 4.2 and 4.3, it can be obtained that V1(t), ς1, θ̂1, b̂1 are bounded in
[0, t f ). On the other hand, if it can be proved that z2(t) is bounded in [0, t f ), from
the following inequality

e−c1t
∫ t

0

1

4
ec1t z2

2
dτ � 1

4
e−c1t sup

τ∈[0,t]
[z22(τ )]

∫ t

0
ec1t dτ � 1

4c1
e−c1t sup

τ∈[0,t]
[z22(τ )]

(4.22)
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we can obtain that e−c1t
∫ t
0

1
4ec1t z2

2
dτ is bounded. From Lemmas 2 and 3, we further

obtain that V1(t), ς1, θ̂1, b̂1 also are bounded in [0, t f ).
Furthermore, from [43], the same results can be obtained when t f = +∞.
Notice that, the boundedness of z2 will be considered in the next step, and the

error e−c1t
∫ t
0 ec1tΔ1dτ will be compensated in Step n.

Remark 4.3 In [41], the error between ω−1 and α0 is not considered in the stability
analysis of the overall closed-loop system. Since there exists a difference between
them, the effect of the error should be considered in the closed-loop system stability
analysis. If not, the stability analysis is not complete.

Remark 4.4 It is valuable to point out, the signs of the control gain functions con-
sidered in this chapter are unknown as well as the control coefficients, which means
that the system model is more general and the results obtained in this chapter thus
have a great significance both on theory and on practical implication.

Step i (i = 2, 3, . . . , n − 1):
In this step, consider the subsystem: zi = xi − αi−1. From (4.1) and (4.3), we

have
żi = fi (x̄i ) + gi (x̄i )zi+1 + gi (x̄i )αi + d1(x̄2, t) − α̇i−1 (4.23)

Define the following Lyapunov function

Vzi =
∫ zi

0

σ

|gi (x̄i−1, σ + αi−1)|dσ (4.24)

Similar to the analysis in the first step, it can be easily seen that Vzi is a positive
definite function of zi . Since

∂
∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂αi−1
= ∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂σ
(4.25)

and from the derivation rule of compound function, we have

V̇zi = zi

|gi (x̄i )| żi+
∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂ x̄i−1

˙̄xi−1 + ∂
∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂αi−1
α̇i−1

]

dσ

= zi

|gi (x̄i )| żi +
∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

+

α̇i−1

∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂αi−1
dσ

]

= zi

|gi (x̄i )| żi +
∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

+
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α̇i−1

∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂σ
dσ

]

= zi

|gi (x̄i )| żi +
∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

+

α̇i−1zi

|g(x)| + α̇i−1

∫ zi

0

1
∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣
dσ

(4.26)

From the definition of the error between the commandfilter’s state and virtual control,
we know, αi−1 = ωi −vi . Replacing αi−1 in (4.26) by ωi −vi , from (4.1) and (4.26),
we have

V̇zi = zi

|gi (x̄i )| ( fi (x̄i ) + gi (x̄i )zi+1 + gi (x̄i )αi + d1(x̄2, t) − α̇i−1)+
∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

+ α̇i−1zi

|gi (x̄i )|+

α̇i−1

∫ zi

0

1
∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣
dσ

= zi

|gi (x̄i )| (gi (x̄i )zi+1 + gi (x̄i )αi + d1(x̄2, t)) + hi (z̄i )zi + Δi

(4.27)

where z̄i = (x̄ T
i
, ωi , ω̇i )

T ∈ Ωz̄i ⊂ Ri+2,

hi (z̄i ) = fi (x̄i )

|gi (x̄i )| + 1

zi

∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + ωi )
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

+

ω̇i

zi

∫ zi

0

1
∣
∣g−1

i (x̄i−1, σ + ωi )
∣
∣
dσ

(4.28)

Δi =
∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

+

α̇i−1

∫ zi

0

1
∣
∣g−1

i (x̄i−1, σ + αi−1)
∣
∣
dσ−

1

zi

∫ zi

0
σ

[
∂

∣
∣g−1

i (x̄i−1, σ + ωi )
∣
∣

∂ x̄i−1

˙̄xi−1dσ

]

− ω̇i

zi

∫ zi

0

1
∣
∣g−1

i (x̄i−1, σ + ωi )
∣
∣
dσ

(4.29)
Note that, hi (z̄i ) will be approximated by FLSs on a compact set Ωzi as: hi (zi ) =
θ∗T

i ξi (z̄i )+εi (z̄i ). FromAssumption 4.5, we know, there exists an unknown constant
ε∗

i such that |εi (z̄i )| ≤ ε∗
i .
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The following virtual control is designed as follows:

αi = N (ςi )[ki zi + hi (z̄i , θ̂i ) + b̂i ϕ̄(x̄i ) tanh(
zi ϕ̄(x̄i )

ηi
)] (4.30)

ς̇i = ki z
2
i + hi (z̄i , θ̂i )zi + b̂i ϕ̄(x̄i )zi tanh(

zi ϕ̄(x̄i )

ηi
)] (4.31)

where ki > 11
4 is a design parameter; hi (z̄i , θ̂i ) = θ̂T

i ξi (z̄i ) is an estimate of θ∗T
i ξi (z̄i );

b̂i is an estimate of b∗
i , b∗

i
= max{ε∗

i
,

p∗
i

g10
}, ϕ̄i (x̄i ) = 1 + ϕi (x̄i ).

Remark 4.5 It seems strange that ki is set to be ki > 11
4 . The purpose of “

1
4” is to

compensate for the term 1
4 z2i which derived in the previous step.

Similar to (4.13), substituting (4.30) and (4.31) into (4.27) and re-arranging it, we
have

V̇zi � − (k1 − 1)z2
i
+ 1

4
z2i+1 + gi (x̄i )

|gi (x̄i )| zi N (ςi )ς̇i + ς̇i − θ̃iξi (z̄i )zi+

b∗
i [|zi | ϕ̄i (x̄i ) − zi ϕ̄i (x̄i ) tanh(

zi ϕ̄i (x̄i )

ηi
)] − b̃i ϕ̄i (xi )zi tanh(

zi ϕ̄i (x̄i )

ηi
) + Δi

(4.32)
where θ̃i = θ∗

i
− θ̂i and b̃i = b∗

i
− b̂i .

Consider the following Lyapunov function

Vi (t) = Vi−1 + Vzi + 1

2
θ̃T

i Γ −1
i θ̃i + 1

2λi
b̃2

i (4.33)

The following adaptive laws are designed as follows:

˙̂
θi = Γi [ziξi (z̄i ) − σi θ̂i ] (4.34)

˙̂bi = λi [zi ϕ̄i (x̄i ) tanh(
zi ϕ̄i (x̄i )

ηi
) − σbi b̂i ] (4.35)

where Γi is a positive definite matrix, and ηi > 0, σi > 0, σbi > 0 and λi > 0 are
design parameters.

Similar Step 1, differentiating Vi with respect to time t and considering (4.34)
and (4.35), from Lemma 4.1, one has

V̇i �V̇i−1 − (ki − 1
1

4
)z2

i
+ 1

4
z2i+1 + gi (x̄i )

|gi (x̄i )| zi N (ςi )ς̇i + ς̇i+
0.2785ηi b

∗
i − σi θ̃

T
i
θ̂i − σbi b̃i b̂i + Δi

(4.36)



4.3 Design of Adaptive Fuzzy Controller and Stability Analysis 89

Since σi θ̃
T
i θ̂i � − σi‖θ̃i‖2

2 + σi‖θ∗
i ‖2

2 and σbi b̃i b̂i � − σbi b̃2
i

2 + σbi b∗
i
2

2 , then let cεi =
(0.2785ηi b∗

i + σi‖θ∗
i ‖2

2 + σbi b∗
i
2

2 , ci = min{2(ki −11
4 )gi0,

σi

λmin(Γ
−1

i )
, σbi

λi
} and considering

(4.17), then (4.36) can be developed as follows:

V̇i �
∑i

j=1
(−c j Vj + g j (x̄ j )

∣
∣g j (x̄ j )

∣
∣
z j N (ς j )ς̇ j + ς̇ j + cε j ) +

∑i

j=1
Δ j (4.37)

Further, we have

d

dt
(Vi (t)e

ci t ) � 1

4
eci t z2

i+1
+ [

∑i

j=1
(

g j (x̄ j )
∣
∣g j (x̄ j )

∣
∣
z j N (ς j )ς̇ j + ς̇ j + cε j )]eci t +

∑i

j=1
Δ j eci t

(4.38)
As doing in the first step, integrating both the sides of (4.38), we have

Vi (t) �ρi + Vi (0) + e−ci t
∫ t

0

1

4
eci t z2

i+1
dτ+

e−ci t
∑i

j=1

∫ t

0
(

g j (x̄ j )
∣
∣g j (x̄ j )

∣
∣

N (ς j ) + 1)eci t ς̇ j dτ + e−ci t
∑i

j=1

∫ t

0
eci tΔ j dτ

(4.39)

where ρi =
∑i

j=1 cε j

ci
.

Similar to step 1, if zi+1 is proved to be bounded and
∑i

j=1 Δ j = 0, then, from

Lemmas 4.2 and 4.3, one has, e−ci t
∫ t
0

1
4eci t z2

i+1
dτ is bounded, and Vi (t), ςi , θ̂i , b̂i

further are bounded in [0,+∞).
Note that, the boundedness of zi+1 will be considered in the next step while∑i
j=1 Δ j = 0 will be compensated in the last step.

Remark 4.6 From the aforementioned analysis, it is easily seen that virtual control
laws αi are continuous functions of variables x̄i , z̄i , ω1, ω̇1 and θ̂i . Since these
variables are available, the first derivative of αi , i.e., α̇i , can be obtained by analytical
computation. However, just stated in Introduction section, as system dimension, i.e.,
n, increases, the computation of the higher derivatives of αi becomes increasingly
complicated. In this chapter, by using command filter (4.4), only its first derivative
is utilized, which reduce such computation complexity.

Step n:
Now, consider zn-subsystem: zn = xn − αn−1. Form (4.1)–(4.3), one has

żn = fn(x̄n) + gn(x̄n)g f (x̄n)u + gn(x̄n)b f (x̄n) − α̇n−1

= f̄n(x̄n) + ḡn(x̄n)u − α̇n−1
(4.40)

where f̄n(x̄n) = fn(x̄n) + gn(x̄n)b f (x̄n) and ḡn(x̄n) = gn(x̄n)g f (x̄n).
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Define the following Lyapunov function

Vzn =
∫ zn

0

σ

|ḡn(x̄n−1, σ + αn−1)|dσ (4.41)

From the analysis in the previous step, Vzn is a positive definite function of zn .
Similar to the previous steps, differentiating Vzn with respect to time t , one has

V̇zn � zn

|ḡn(x̄n)| (ḡn(x̄n)u + dn(x̄n, t)) + h′
n(z̄n)zn + Δn (4.42)

where

h′
n(z̄n) = f̄n(x̄n)

|ḡn(x̄n)| + 1

zn

∫ zn

0
σ

[
∂

∣
∣ḡ−1

n (x̄n, σ + ωn)
∣
∣

∂ x̄n

˙̄xndσ

]

+

ω̇n

zn

∫ zn

0

1
∣
∣ḡ−1

n (x̄n, σ + ωn)
∣
∣
dσ

(4.43)

Δn =
∫ zn

0
σ

⎡

⎣
∂

∣
∣
∣ḡ−1

n (x̄n, σ + αn−1)
∣
∣
∣

∂ x̄n
˙̄xndσ

⎤

⎦ + α̇n−1

∫ zi

0

1
∣
∣
∣ḡ−1

n (x̄n−1, σ + αn−1)
∣
∣
∣
dσ−

1

zn

∫ zi

0
σ

⎡

⎣
∂

∣
∣
∣ḡ−1

n (x̄n, σ + ωn)

∣
∣
∣

∂ x̄n
˙̄xndσ

⎤

⎦ − ω̇n

zn

∫ zn

0

1
∣
∣
∣ḡ−1

n (x̄n, σ + ωn)

∣
∣
∣
dσ

(4.44)
Adding and subtracting

∑n−1
j=1 Δ j in the right side of (4.42), we have

V̇zn � zn ḡn(x̄n)

|ḡn(x̄n)| u + |zn| ρ∗ + |zn|
gn0

p∗
nϕn(xn) + h′

n(z̄n)zn +
∑n

j=1
Δ j −

∑n−1

j=1
Δ j

(4.45)

Remark 4.7 The purpose of “adding and subtracting
∑n−1

j=1 Δ j” is to remove the

error terms
∑n−1

j=1 Δ j (4.37), which is introduced by command filter (4.4) in the
previous n − 1 steps.

It is easily seen that Δ j ( j = 1, . . . , n) is a function of variables x̄ j , z̄ j , ᾱ j , ˙̄α j ,
ω̄ j and ˙̄ω j , where x̄ j = (x1, . . . , x j )

T , z̄ j = (z1, . . . , z j )
T , ᾱ j = (α0, . . . , α j−1)

T ,
˙̄α j = (α̇0, . . . , α̇ j−1)

T , ω̄ j = (ω1, . . . , ω j )
T , ˙̄ω j = (ω̇1, . . . , ω̇ j )

T . Let

h(Z̄n) = h′(Z̄n) +
∑n−1

j=1
Δ j

where Z̄n = (x̄ T
n , z̄T

n , ᾱT
n , ˙̄αT

n , ω̄T
n , ˙̄ωT

n )T .
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From the previous analysis, it is seen that h′(Z̄n) and Δ j are smooth, which
means that h(Z̄n) also is smooth. Hence, FLSs can be utilized to approximate it in
the form: h(Z̄n) = θ∗T

n ξn(Z̄n) + εn(Z̄n). From Assumption 5, we know, there exists
an unknown constant ε∗

n such that |εn(Z̄n)| ≤ ε∗
n .

The actual control is defined as follows:

u = N (ςn)[knzn + hn(Z̄n, θ̂n) + b̂nϕ̄(x̄n) tanh(
znϕ̄(x̄n)

ηn
)] (4.46)

ς̇n = knz2n + hn(Z̄n, θ̂n)zn + b̂nϕ̄(x̄n)zn tanh(
znϕ̄(x̄n)

ηn
)] (4.47)

where kn > 1
4 is a design parameter; hn(Z̄n, θ̂n) = θ̂T

n ξn(Z̄n) is an estimate of

θ∗T
n ξn(Z̄n); b̂n is an estimate of b∗

n
= max{ε∗

n
,

p∗
n

g10
}; ϕ̄n(x̄n) = 1 + ϕn(x̄n).

Substituting (4.46) and (4.47) into (4.45), it yields

V̇zn � − knz2
n
+ ḡn(x̄n)

|ḡn(x̄n)| zn N (ςn)ς̇n + ς̇n − θ̃nξn(z̄n)zn −
∑n−1

j=1
Δ j+

b∗
n[|zn| ϕ̄n(x̄n) − znϕ̄n(x̄n) tanh(

znϕ̄n(x̄n)

ηn
)] − b̃nϕ̄n(xn)zn tanh(

znϕ̄n(x̄n)

ηn
)

(4.48)
where θ̃n = θ∗

n − θ̂n and b̃n = b∗
n − b̂n .

Define the following Lyapunov function

Vn(t) = Vn−1 + Vzn + 1

2
θ̃T

n Γ −1
n θ̃n + 1

2λn
b̃2

n (4.49)

The following adaptive laws are defined as:

˙̂
θn = Γn[znξn(Z̄n) − σn θ̂n] (4.50)

˙̂bn = λn[znϕ̄n(x̄n) tanh(
znϕ̄n(x̄n)

ηn
) − σbnb̂n] (4.51)

where Γn is a positive definite matrix, ηn > 0, σn > 0, σbn > 0 and λn > 0 are
design parameters.

Differentiating Vn with respect to time t and considering (4.50), (4.51) andLemma
4.1, similar to the previous steps, one has

V̇n � V̇n−1−knz2
n
+ ḡn(x̄n)

|ḡn(x̄n)| N (ςn)ς̇n+ς̇n+0.2785ηnb∗
n−σn θ̃

T
n θ̂n− σbnb̃nb̂n (4.52)
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From Young’s inequality, we have

σn θ̃
T
n θ̂n � −

σn

∥
∥
∥θ̃n

∥
∥
∥
2

2
+ σn

∥
∥θ∗

n

∥
∥2

2
, σbnb̃nb̂n � −σbnb̃2

n

2
+ σbnb∗

n
2

2
(4.53)

Let cεn = 0.2785ηnb∗
n + σn‖θ∗

n ‖2

2 + σbnb∗
n
2

2 , then (4.52) can be derived as

V̇n �V̇n−1 − 2kn |ḡn(x̄n)| Vn + ḡn(x̄n)

|ḡn(x̄n)|mv(t)N (ςn)ς̇n + ς̇n+

cεn −
σn

∥
∥
∥θ̃n

∥
∥
∥
2

2
−

σbn

∥
∥
∥b̃n

∥
∥
∥
2

2

(4.54)

Let
cn = min{2kn ḡn0,

σn

λmin(Γ
−1

n )
,
σbn

λn
}

from the analysis in the previous steps, then (4.54) can be further developed as
follows:

V̇n �
n∑

i=1

[ ḡi (x̄i )

|ḡi (x̄i )| N (ςi )ς̇i + ς̇i + cεi ] (4.55)

Further, we have

d

dt
(Vn(t)e

cnt ) � ecnt
n∑

i=1

[ ḡi (x̄i )

|ḡi (x̄i )| N (ςi )ς̇i + ς̇i + cεi ] (4.56)

where ḡi (·) = gi (·), i = 1, . . . , n − 1.

Let ρn =
∑n

j=1 cε j

cn
. Similar to the previous steps, integrating both the sides of the

above inequality, we have

Vn(t) � ρn + [Vn(0) − ρn]e−cn t + e−cn t
∫ t

0
[ecnt

∑n

i=1
(

ḡi (x̄i )

|ḡi (x̄i )| N (ςi ) + 1)ς̇i ]dτ

� ρn + Vn(0) + e−cn t
∫ t

0
[ecnt

∑n

i=1
(

ḡi (x̄i )

|ḡi (x̄i )| N (ςi ) + 1)ς̇i ]dτ

(4.57)
From Lemmas 4.2 and 4.3, it is easily seen that Vn(t), ςn, θ̂n, b̂n are bounded in
[0, t f ). From [43], the same results can be obtained in [0,+∞). Thus, it can be
obtained that zn is bounded in [0,+∞), which means that zn−1 in (n − 1)th step is
bounded. Doing the same reasoning, we finally obtained that all zi (t), i = 1, 2, . . . n
are bounded.



4.3 Design of Adaptive Fuzzy Controller and Stability Analysis 93

From the definitions of Vzi and Vi , i = 1, . . . , n, we known

Vn(t) =
∑n

i=1
[Vzi + 1

2
θ̃T

i Γ −1
i θ̃i + 1

2λi
b̃2

i ] (4.58)

From the previous analysis, we have

z2i
2gi1

≤ Vzi =
∫ zi

0

σ

|gi (x̄i−1, σ + αi−1)|dσ ≤ z2i
2gi0

(4.59)

Hence, from (4.57–4.59), we have

|z̄i | � √
μ, ‖θ i‖2 � μ

λmin(Γ
−1

i )
, b2

i � λiμ
2, i = 1, 2, . . . , n, ∀t � 0

where μ = 2ḡmax(ρn + Vn(0) + Nn), g̃max = max
1�i�n

ḡi1 > 0, ḡi1 = gi1, i =
1, . . . , n − 1, ḡn1 = gn1g f 1,

Nn = lim
t→+∞

∑n

i=1

[

e−cn t
∫ t

0
(

ḡi (x̄i )

|ḡi (x̄i )| N (ςi ) + 1)ecnt ς̇ndτ

]

(4.60)

The above design procedures and analysis are summarized in the following theorem.

Theorem 4.1 Consider system (4.1) and fault (4.2). If Assumptions 4.1–4.5 hold,
command filters (4.4), actual control defined by (4.46) and (4.47), and the adap-
tation laws (4.15), (4.16), (4.34), (4.35), (4.50) and (4.51) are employed, then the
closed-loop system is asymptotically bounded with the tracking error converging to
a neighborhood of the origin.

Proof From the aforementioned analysis, it is easy to obtain the conclusion. The
detailed proof is omitted here.

4.4 Illustrative Example

In this example, a class of nonlinear systems are described as follows:

⎧
⎪⎨

⎪⎩

ẋ1 = x1 + (1 + 0.5 sin(x2
1 ))x2 + 0.2x1 sin(x2t)

ẋ2 = x1x2 + (3 − cos(x1x2))u + 0.1 cos(0.5x2t)

y = x1

(4.61)
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From (4.61), it is easily seen that, g10 = 0.5, g11 = 1.5, g20 = 2, g21 = 4, p∗
1 = 0.2,

ϕ1 = x1, p∗
2 = 0.1 and ϕ2 = 1, which means that Assumptions 4.1 and 4.2 hold. In

this work, the desired trajectory yd = 0.1 sin(t). Obviously, Assumption 4.3 holds.
The actuator fault considered in this simulation research is described as follows:

u f = (1 − 0.5 sin(x2))u + cos(x1x2)

Obviously, g f 0 = 0.5 and g f 1 = 1.5, which means that Assumption 4.4 holds.

Fig. 4.1 The time profiles of
system output y and desired
signal yd
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Fig. 4.2 The time profiles of
tracking error
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Fig. 4.3 The time profiles of
control input signal
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The control objective is to construct an adaptive state feedback controller for
nonlinear system (4.61) such that the system output y tracks the desired reference
signal yd with all the signals in the resulting closed-loop system being asymptotically
bounded.

For this work, the following parameters are given as follows: k1 = k2 = 3, Γ1 =
Γ2 = diag1, 1, 1, 1, 1, 1, 1, 1, 1, 1, λ1 = λ2 = 1, η1 = η2 = 0.01, σb1 = σb1 = 0.1,
θi ∈ R10, i = 1, 2 are taken randomly in interval (0,1]. Initial state x(0) is set as
(0.2, 0.1)T . The sample time is 0.08s.

Simulation results are shown in Figs. 4.1, 4.2 and 4.3. From Fig. 4.1, we can find
that system (4.61) has good tracking performance. Figure4.2 shows that the tracking
error converges to a neighborhood of the origin. Meanwhile, the boundedness of
control input signal is shown in Fig. 4.3.

4.5 Conclusions

In this chapter, an adaptive fuzzy tracking fault-tolerant control problem of a class of
uncertain strict-feedback nonlinear systemswith actuator fault has been investigated.
FLSs are used to approximate the unknownnonlinear functions. By applying adaptive
command filtered backstepping recursive design, integral-type Lyapunov function
method and Nussbaum-type gain technique, an adaptive fuzzy control scheme is
proposed to guarantee that the closed-loop system is asymptotically bounded with
the tracking error converging to a neighborhood of the origin.
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