
Chapter 3
Fuzzy Logic System-Based Adaptive
FC for NSV Attitude Dynamics
with Multiple Faults

3.1 Introduction

It is well known that the controlled systems in practical applications may become
faulty due to various reasons. Hence, FD and FTC have received considerable atten-
tion, and obtained significant results in the past decades, see [1–22] and the refer-
ences therein. However, most of the existing results on FD and FTC work under the
restrictive condition that only one actuator or sensor fault occurs at one time. In real
applications, multiple types multiple faults may occur in the controlled system. The
faulty cases include: multiple actuator faults, multiple sensors faults and multiple
actuator and sensor faults. Up to now, few revelent results are reported in literature
[23]. In [23], an actuator fault diagnosis scheme was proposed for a class of affine
nonlinear systems with both known and unknown inputs, which was designed by
making use of the derived input/output relation and the recently developed high-
order sliding-mode robust differentiators. Hence, considering multiple type multiple
faults simultaneously occurred in the controlled system is amotivation of this chapter.

Near space hypersonic vehicle, as a class of vehicle flying in near space which
offers a promising and new, lower cost technology for future spacecraft. It can
advance space transportation and also prompt global strike capabilities. Such com-
plex technological system attracts considerable interests from the control research
community and aeronautical engineering in the past couple of decades and significant
results were reported [24–35]. For such high technological system, it is of course
essential to maintain high reliability against possible faults [36–54].

Recently, T-S fuzzy system was used to describe the NSV attitude dynamics
which are complex nonlinear, multi-variable and strongly coupled ones [24–35].
During the past two decades, the stability analysis for Takagi-Sugeno (T-S) fuzzy
systems has attracted increasing attention [25–27]. In [55], the authors studied the
problem of fault-tolerant tracking control for near-space-vehicle attitude dynamics
with bias actuator fault, where the bias fault was assumed to be unknown constant.
However, in practical application, the fault may be state-dependent, namely, it is a
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unknown functionof systemstate. In this chapter,wewill propose amoregeneral FTC
scheme that handles such state-dependent faults. On the other hand, as a universal
approximation, fuzzy logic system (FLS) played an important role in modeling and
controlling uncertain systems, see [56–61] and the references therein. In this chapter,
we use the above FLSs to approximate the unknown state-dependent gain and bias
faults.

In this chapter, we investigate the problem of fault tolerant control NSV with
multiple state-dependent actuator faults, with the objective to provide an efficient
solution for controlling NSV in faulty situations. Compared with existing literatures,
the following contributions are worth to be emphasized.

(1) The actuator fault model presented in this chapter integrates state-dependent
gain bias faults, which means that a wide class of faults can be handled. The
theoretic developments and results of this chapter are thus valuable in a wide
field of practical applications.

(2) Differing from some design scheme in literature, the fault-tolerant control
scheme does not need the condition that the bounds of the time derivatives of the
faults should be known constants, which thus enlarges the practical application
scope.

(3) In general, the denominator of the fault-tolerant control input contains the esti-
mation of the gain fault. If the denominator is equal to zero, a controller singu-
larity occurs. In the proposed modified FTC scheme, the controller singularity
is avoided without projection algorithm.

The rest of this chapter is organized as follows. In Sect. 3.2, theT-S fuzzymodel for
NSV attitude dynamics is first briefly recalled. Actuator faults are integrated in such
model, and the FTC objective is formulated. In addition, mathematical description
of fuzzy logic system is given. In Sect. 3.3, the main technical results of this chapter
are given, which include fault detection, isolation, and fuzzy logic system-based
fault accommodation in the two cases where system states are available or not. The
NSV application is presented in Sect. 3.4. Simulation results of NSV are presented
to demonstrate the effectiveness of the proposed technique. Finally, Sect. 3.5 draws
the conclusion.

3.2 Problem Statement and Preliminaries

3.2.1 Problem Statement

In this chapter, a NSV attitude dynamics in re-entry phase is given as [62]:

{
Jω̇ = −ΩJω + δ

γ̇ = R(·)ω (3.1)
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Fig. 3.1 The control diagram of NSV

where J ∈ R3×3 is the symmetric positive definite moment of inertia tensor, and
ω = [p, q, r]T = [ω1, ω2, ω3]T is the angular rate vector composed of roll p, pitch q
and yaw rate r, δ = [δe, δα, δr]T ∈ R3×1 is the control surface deflection, δe, δα, δr
are the elevator deflection, the aileron deflection, the rudder deflection, respectively.
The skew symmetric matrix Ω is given by:

Ω =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0

⎤
⎦ (3.2)

In the re-entry phase, R(·) is defined as follows:

R(·) =
⎡
⎣ cosα 0 sin α

sin α 0 − cosα

0 1 0

⎤
⎦ (3.3)

where γ = [φ, β, α]T and φ, β, α are the bank, sideslip, and the attack angles,
respectively. According to the singular perturbation theory, the above six equations
can be expressed in the form of inner loop ω and outer loop γ ; ω and γ are also
respectively called fast loop and slow loop. The control diagram of NSV attitude
dynamics is shown in Fig. 3.1. From the motion law of NSV, it is easy to find that,
the response of the angular rate ω is faster than the one of the attitude angle γ . Based
on time scale principle, we define ω as fast state and γ as slow state, thus system
(3.1) can be divided into the following two subsystems: fast subsystem (3.4a) related
to fast state ω and slow subsystem (3.4b) related slow state γ .

{
ẋω = f (xω) + g(xω)u(t)

yω = xω

(a)

{
ẋγ = f (xγ , t)yω

yγ = xγ

(b)

(3.4)

where f (xω) = J−1Ω(ω)Jxω, g(xω) = J−1, f (xγ ) = R(·), xω = ω, xγ = γ .
The control objectives are,

(1) for the slow subsystem (the outer loop), to design the ideal angular rate yω(=ωd)

such that subsystem output yγ follows the desired reference signal yd whose 1st
derivative are available and bounded;
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(2) for the fast subsystem (the inner loop), to design the control u(t) such that the
angular rate xω follows the ideal angular rate yω(=ωd).

That is to say, the main task is to design proper control input u(t) such that
limt→∞(xω − ωd) = 0 ⇒ limt→∞(γγ − γd) = 0.

A fuzzy linear dynamicmodel has been proposed by Takagi and Sugeno in 1985 to
represent a nonlinear system as an aggregation of local linear input/output relations.
The fuzzy linear model is described by fuzzy IF-THEN rules and will be employed
to deal with the fuzzy control problem for inner loop dynamics described by (3.4a)
in this chapter.

Consider the following T-S fuzzy model composed of a set of fuzzy implications,
where each implication is expressed by a linear state space model. The ith rule of
this T-S fuzzy model is of the following form:

Plant rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{
ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t)
(3.5)

where i = 1, . . . , r, r is the number of the IF-THEN rules, Mij, j = 1, . . . , q is the
fuzzy set, z(t) = [z1(t), . . . , zq(t)]T are the premise variables which are supposed to
be known, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn denotes state vector, u(t) ∈ Rm denotes
control input, Ai ∈ Rn×n, and Bi ∈ Rn×m are local state and control matrices.

The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))[Aix(t) + Biu(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(3.6)

where hi(z(t)) is defined as

hi(z(t)) =

n∏
j=1

Mij[z(t)]
r∑

i=1

n∏
j=1

Mij[z(t)]
, i = 1, 2, . . . , r (3.7)

whereMij[z(t)] is the grade ofmembership of zj(t) inMij. It is assumed in this chapter

that
n∏

j=1
Mij[z(t)] � 0 for all t. Therefore, we have

r∑
i=1

hi(z(t)) = 1, 0 � hi(z(t)) � 1

for all t.
In this chapter, the state feedback control strategy is chosen as a parallel distributed

compensation (PDC), which can be described as follows:
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Control rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

ui(t) = Kix(t) (3.8)

where Ki is the controller gain matrix to be determined later.
The overall fuzzy controller is given as follows:

u(t) =
r∑

i=1

hi(z(t))Kix(t) (3.9)

The control objective under normal conditions is to design a proper state feedback
control input u(t) such that limt→∞(xω − ωd) = 0 ⇒ limt→∞(γγ − γd) = 0.

However, in practical application, actuators may become faulty. Two kinds of
actuator faults are considered: loss of effectiveness of the actuators and actuator bias
faults. The first kind of fault is modeled as follows.

ufi (t) = (1 − ρu
i (x))ui(t), i = 1, . . . ,m, t � tj (3.10)

where ρu
i (x) (0 � ρu

i (x) < 1), which is supposed to be unknown, denotes the
remaining control rate, tj is unknown fault occurrence time. The second kind of
fault, namely actuator bias fault, can be described as:

ufi (t) = ui(t) + dui (x), i = 1, . . . ,m, t � tj (3.11)

where dui (x) denotes a bounded signal. Therefore, the above two kinds of actuator
faults can be uniformly described as

ufi (t) = (1 − ρu
i (x))ui(t) + dui (x), t ≥ tf (3.12)

Furthermore, a more general fault model can be given as:

ufi (t) = (1 − ρu
i (x))ui(t) +

pui∑
j=1

gui,jd
u
i,j(x), t ≥ tf (3.13)

where dui,j(x), i = 1, . . . ,m, j = 1, . . . , pui denotes a bounded signal, pui is a known
positive constant. gui,j denotes an unknown constant. With no restriction, let suppose
pu1 = · · · = pum= p, with p a knownpositive constant. Consider the following notation
aui,j(x) = gui,jd

u
i,j(x), (3.13) can be re-written as follows:

ufi (t) = (1 − ρu
i (x))ui(t) +

p∑
j=1

aui,j(x), t ≥ tf (3.14)
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where the nonlinear functions ρu
i (x), a

u
i,j(x) and the failure time instant tj are

unknown. In this chapter, both bias and gain faults are handled by considering the
general fault model (3.14).

Now, the control objective is re-defined as follows. An active fault tolerant control
approach is proposed to obtain the above tracking objective in normal and faulty
conditions, namely, limt→∞(xω − ωd) = 0. Furthermore, limt→∞(γγ − γd) = 0.
Under normal condition (no fault), a state feedback control input u(t) is designed,
such that limt→∞(xω −ωd) = 0. Meanwhile, the FDI algorithm is working. As soon
as actuator faults are detected and isolated, the fault accommodation algorithm is
activated and a proper fault-tolerant control input u(t) is used such that the tracking
performance (limt→∞(xω − ωd) = 0) is still maintained stable under faulty case.

3.2.2 Mathematical Description of Fuzzy Logic System

FLS consists of four parts: the knowledge base, the fuzzifier, the fuzzy inference
engine working on fuzzy rules, and the defuzzifier. The knowledge base for FLS
comprises a collection of fuzzy if-then rules of the following form:

Rl : if x1 is Al
1 and x2 is Al

2 . . . and xn isAl
n, then y is Bl, l = 1, 2, . . . ,M

where x = [x1, x2, . . . , xn]T ∈ U ⊂ Rn and y are the FLS input and out-
put, respectively. Fuzzy sets Al

i and Bl are associated with the fuzzy functions

μAl
i
(xi) = exp(−(

xi−ali
bli

)2) and μBl (yl) = 1, respectively. M is the rules number.

Through singleton function, center average defuzzification and product inference,
the FLS can be expressed as

y(x) =
{

M∑
l=1

ȳl
(

n∏
i=1

μAl
i
(xi)

)}
/

{
M∑
l=1

(
n∏

i=1

μAl
i
(xi)

)}
(3.15)

where ȳl = maxy∈RμBl . Define the fuzzy basis functions as

ξ l(x) =
[

n∏
i=1

μAl
i
(xi)

]
/

[
M∑
l=1

(
n∏

i=1

μAl
i
(xi)

)]
(3.16)

and define θT = [ȳ1, ȳ2, . . . , ȳM ] = [θ1, θ2, . . . , θM] and ξ = [ξ 1, ξ 2, . . . , ξM]T ,
then FLS (3.15) can be rewritten as

y(x) = θTξ(x) (3.17)
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Lemma 3.1 (Boulkroune et al. [60]) Let f (x) be a continuous function defined on a
compact set Ω . Then for any constant ε > 0, there exists an FLS (3.17) such as

sup
x∈Ω

|f (x) − θTξ(x)| � ε (3.18)

By Lemma 3.1, FLSs are universal approximations, i.e., they can approximate any
smooth function on a compact space. Due to this approximation capability, we can
assume that the nonlinear term f (x) can be approximated as

f (x, θ) = θTξ(x) (3.19)

Define the optimal parameter vector θ∗ as

θ∗ = argmin
θ∈Ω

[sup
x∈U

|f (x) − f (x, θ∗)|]

whereΩ andU are compact regions for θ and x, respectively. Also the FLSminimum
approximation error is defined as

ε = f (x) − θ∗Tξ(x) (3.20)

In this chapter, we use the above fuzzy logic system to approximate the unknown
functions ρu

i (x), a
u
i,j(x), namely, there exist θ∗

ρ,i, θ
∗
α,i,j, ερ,i, εα,i,j such that ρu

i (x) =
θ∗
ρ,iξρ,i(x) + ερ,iaui,j(x) = θ∗

α,i,jξα,i,j(x) + εα,i,j. Now, the following assumptions are
made.

Assumption 3.1 There exist unknown constants ε∗
ρ,i > 0, ε∗

α,i,j > 0 and two known
constants M̄ρ,sk , M̄α,sk ,j such that |ερ,i| � ε∗

ρ,i , |εα,sk ,j| � ε∗
α,i,j , ε

∗
ρ,i � M̄ρ,sk , ε

∗
α,i,j �

M̄α,sk ,j.

Assumption 3.2 There exist known constants Mρ,sk ,Mα,sk ,j such that ||θ∗
ρ,sk

|| �
Mρ,sk , ||θ∗

α,sk ,j
|| � Mα,sk ,j.

3.3 Fault Diagnosis and FLS-Based Fault Accommodation

In this section, the main technical results of this chapter are given. We will first
formulate the fault diagnosis and accommodation problems of the above T-S fuzzy
system. We will then design a bank of SMOs to generate residuals, investigate the
FDI algorithm based on the SMOs, and propose a FTC scheme to tolerate the faults
by compensating for faults.
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3.3.1 Preliminary

Consider the T-S fuzzy faulty system described in (3.6). We assume that only actu-
ator faults occur and no sensor fault is involved. The following assumptions are
considered.

Assumption 3.3 Matrix Bi is of full column rank and the pair (Ai,Ci) is observable.

We first design the fault diagnosis observers to detect and isolate the faults, and
then, propose a FTC method to compensate the faults.

3.3.2 Fault Detection

In order to detect the actuator faults, we design a fuzzy state-space observer for the
system (3.6), which is described as:

Observer rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{ ˙̂x(t) = Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))

ŷ(t) = Cix̂(t)
(3.21)

where Li, i = 1, . . . , r is the observer gain for the ith observer rule.
The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

hi(z(t))[Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))]

ŷ(t) =
r∑

i=1

hi(z(t))Cix̂(t)

(3.22)

Denote
ex(t) = x(t) − x̂(t), ey(t) = y(t) − ŷ(t) (3.23)

then the error dynamics is described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ėx(t) =

r∑
i=1

hi(z(t))[(Ai − LiCi)ex(t)]

ey(t) =
r∑

i=1

hi(z(t))Ciex(t)

(3.24)
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Lemma 3.2 The estimation error ex converges asymptotically to zero if there exist
common matrices P = PT > 0 and Q > 0 with appropriate dimensions such that
the following linear matrix inequality is satisfied:

P(Ai − LiCi) + (Ai − LiCi)
TP � −Q, i = 1, 2, . . . , r (3.25)

Proof Consider the following Lyapunov function

VD = eTx (t)Pex(t)

Differentiating V1 with respect to timet, one has

V̇D(t) =
r∑

i=1

hi(z(t))[eTx (t)(P(Ai − LiC) + (Ai − LiC)TP)ex(t)]

� −
r∑

i=1

hi(z(t))[eTx (t)Qex(t)]

� 0

(3.26)

Because VD(t) ∈ L∞ is a monotonous and non-increasing bounded function,
VD(+∞) exists. Hence, we have

VD(0) − VD(+∞) � −
∫ +∞

0

r∑
i=1

hi(z(t))[eTx (t)Qex(t)],

which means taht ex(t) ∈ L2. Since ex(t), ėx(t) ∈ L∞, using the Lyapunov stability
theory, we obtain lim

t→∞ ex(t) = 0. Furthermore, we have lim
t→∞ ey(t) = 0. The proof is

completed.

From Lemma 3.2, we have

V̇D(t) � −
r∑

i=1

hi(z(t))[eTx (t)Qex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Q)eTx (t)ex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Q)/λmax(P)eTx (t)Pex(t)]

� −hi(z(t))[λmin(Q)/λmax(P)]V (t)

= −κVD(t)

(3.27)
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where κ = λmin(Q)/λmax(P) ∈ R. Hence,

VD(t) � e−κtV (0) (3.28)

Furthermore, we have

λmin(P)||ex(t)||2 � e−κtλmax(P)||ex(0)||2 (3.29)

Therefore the norm of the error vector satisfies

||ex(t)|| �
√

λmax(P)/λmin(P)||ex(0)||e−κt/2 (3.30)

Furthermore, the detection residual can be defined as

J(t) = ||y(t) − ŷ(t)|| (3.31)

From (3.30), it can be seen that the following inequality holds in the healthy case:

J(t) �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2 (3.32)

Then, the fault detection can be performed using the following mechanism:

{
J(t) � Td no fault occurred,

J(t) > Td fault has occurred
(3.33)

where threshold Td is defined as follows.

Td =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2 (3.34)

3.3.3 Fault Isolation

Since the system has m actuators, which maybe become faulty, we have C1
m +C2

m +
· · · + Cm

m possible faulty cases, where Ci
m denotes the number of faulty cases where

there are i faulty actuators within m actuators. Let us define the following symbol,
jki (i = 1, 2, . . . ,m; k = 1, 2, . . . , i) which denotes the situation where the ith actu-
ator fails when there are k possible faulty actuators among the m actuators. Fault
patterns can be described in details as follows.
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Case 1: only an actuator is faulty

ℵ1 : {ℵ1
1
,ℵ2

1
, . . . ,ℵC1

m
1

} = {{j11}, {j12}, . . . , {j1m}}

In this case, there are C1
m fault patterns.

Case 2: only two actuators are faulty

ℵ2 : {ℵ1
2
,ℵ2

2
, . . . ,ℵC2

m
2

} =
{ {j21, j22}, {j21, j23}, . . . , {j21, j2m}, . . . ,

{j22, j23}, {j22, j24}, . . . , {j22, j2m}, . . . {j2m−1, j
2
m}

}

where the number of fault patterns reached a total of C2
m.

Case i: only i actuators are faulty

ℵi : {ℵ1
i
,ℵ2

i
, . . . ,ℵCi

m
i

} = {{ji1, ji2, . . . , jii}, . . . , {j2m−i+1, . . . , j
2
m}}

where the total fault pattern is Ci
m, i = 1, 2, . . . ,m.

Case m: all m actuators are faulty

ℵm : {ℵ1
m
, . . . ,ℵCm

m
m

} = {{ji1, ji2, . . . , jim}}

Here, there is only one fault pattern (Cm
m = 1).

Now, let ℵm = {ℵ1
1
, . . . ,ℵC1

m
1

, . . . ,ℵ1
i
, . . . ,ℵCi

m
i

, . . . ,ℵ1
m
, . . . ,ℵCm

m
m

}. Obviously,
there are C1

m + C2
m + · · · + Cm

m possible fault patterns that are numbered as the 1st,
2nd, N th fault pattern, where N = C1

m + C2
m + · · · + Cm

m .
In this chapter, it is assumed that there d actuators became faulty whose pattern s is

ℵq
d
, namely, s = ℵq

d
. We also assume that the d actuators are the s1th, s2th, . . . , sd th

actuators, where 1 � s1 < s2 < · · · < sd � m. Then the faulty model can be
described as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu(t)−

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [ρu

sk
(x)us

sk
(t) −

p∑
j=1

au
sk ,j

(x)]
⎫⎬
⎭

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(3.35)

where Bi = [bi,1, bi,2, . . . , bi,m], bi,l ∈ Rn×1, 1 � l � m, ρu
sk
(x), au

s,sk
(x), j =

1, 2, . . . , p denote the time profiles of the skth actuator fault, which are described by
(3.14), us

sk
(t) is the desired controller when the skth actuator is healthy.
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Inspired by the SMOs in [63], we are ready to present one of the results of this
chapter. It is assumed that fuzzy observer and fuzzy control systems have the same
premise variables z(t), then the following fuzzy observers are proposed to isolate the
actuator fault.

Isolation Observer Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂xis(t) = Aix̂is(t) + Li(y(t) − ŷis(t)) + Biu(t)+
d∑

k=1

⎧⎨
⎩bi,skμsk [ρ̄u

sk
us
sk
(t) +

p∑
j=1

āu
sk ,j

]
⎫⎬
⎭

ŷis(t) = Cisx̂is(t)

(3.36)

where x̂is(t), ŷis(t) are the sth fuzzy observer’s state and output, respectively. Li is
the observer’s gain matrix for ith observer. The global fuzzy observer is represented
as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂is(t) +
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t)) +
r∑

i=1

hi(z(t))Biu(t)+

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,skμsk [ρ̄usk u

s
sk

(t) +
p∑

j=1

āu
sk ,j

]
⎫⎬
⎭

ŷs(t) =
r∑

i=1

hi(z(t))Cix̂s(t)

μsk = −

r∑
i=1

hi(z(t))Fisk eys(t)

||
r∑

i=1
hi(z(t))Fisk eys(t)||

(3.37)

whereFisk ∈ R1×n is the skth row ofFi ∈ Rm×n, which will be defined later, Li ∈ Rn×n

is chosen such thatAi−LiCi is Hurwitz, exs(t) = xs(t)−x̂s(t) and eys(t) = y(t)−ŷs(t)
are respectively the state error and output error between the plant and the sth SMO
observer. Let l denotes the practical fault pattern where the faulty actuators are the
l1th, l2th, . . . , ld∗ th actuators, 1 � l1 < l2 < · · · < ld∗ � m.

For s = l, namely, d = d∗, l1 = s1, l2 = s2, . . . , ld∗ = sd , the error dynamics is
obtained from (3.35) and (3.36).
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ėxs(t) =
r∑

i=1

hi(z(t))Aieis(t) −
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t))+
r∑

i=1

hi(z(t))
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t) − μsk ρ̄

u
sk
|us

sk
(t)|)+

p∑
j=1

(au
sk ,j

(x) − μsk ā
u
sk ,j

)]

=
r∑

i=1

hi(z(t)){(Ai − LiCi)eis(t)+
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t) − μsk ρ̄

u
sk
|us

sk
(t)|)+

p∑
j=1

(au
sk ,j

(x) − μsk ā
u
sk ,j

)]}

(3.38)

For s 
= l, namely, d 
= d∗ord = d∗ and at least there exists li such that li 
= si, i =
1, 2, . . . , d, we have

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−
∑d∗

k=1
bi,lkρ

u
lk
(x)us

lk
(t) −

∑d

k=1
bi,skμsk ρ̄

u
sk
|us

sk
(t)|) +

p∑
j=1

(
∑d∗

k=1
bi,lk a

u
lk ,j

(x) −
∑d

k=1
bi,skμsk ā

u
sk ,j

)]
(3.39)

The stability of the state error dynamics is guaranteed by the following theorem.

Theorem 3.1 Under Assumptions 3.1–3.3, if there exist a common symmetric pos-
itive definite matrix P and matrices Li,Fi,Q > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

(Ai − LiCi)
TP + P(Ai − LiCi) � −Q (3.40)

PBi = (FiCi)
T (3.41)

Then, when the lth pattern is the actual fault pattern i.e., s = l, we have lim
t→∞ exs = 0,

and for s 
= l, we have lim
t→∞ exs 
= 0.
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Proof (1) For s = l, according to (3.38), we have

ėxs(t) =
r∑

i=1

hi(z(t)){(Ai − LiCi)eis(t)+
∑d

k=1
bi,sk [(−ρu

sk
(x)usk (t) − μsk ρ̄

u
sk
|usk (t)|)+

p∑
j=1

(au
sk ,j

(x) − μsk ā
u
sk ,j

)]}

Define the following Lyapunov function

VI(t) = eTxs(t)Pexs(t) (3.42)

Differentiating V2 with respect to time t, and using (3.40), one has

V̇I(t) = ėTxs(t)Pexs(t) + eTxs(t)Pėxs(t)

� −eTxs(t)Qexs(t) + 2eTxs(t)P
r∑

i=1

hi(z(t))
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t)−

μsk ρ̄
u
sk
|us

sk
(t)|) +

∑d

k=1
(au

sk ,j
(x) − μsk ā

u
sk ,j

)]

From μsk = −
r∑

i=1
hi(z(t))Fisk eysk (t)/||

r∑
i=1

hi(z(t))Fisk eysk (t)|| and (3.41), one has

2eTxs(t)P
r∑

i=1

hi(z(t))
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t) − μsk ρ̄

u
sk
|us

sk
(t)|) � 0,

2eTxs(t)P
r∑

i=1

hi(z(t))
∑d

k=1
(au

sk ,j
(x) − μsk ā

u
sk ,j

) � 0.

Hence,
V̇I(t) � −eTxs(t)Qexs(t) � 0 (3.43)

Because VI(t) ∈ L∞ is a monotonous and non-increasing bounded function,
VI(+∞) exists. Hence, we have VI(0)−VI(+∞) � − ∫ +∞

0 eTxs(t)Qexs(t), i.e.,
exs(t) ∈ L2. Since exs(t) and ėxs(t) ∈ L∞, using the Lyapunov stability theory,
we have lim

t→∞ exs(t) = 0. Thus, we have lim
t→∞ eys(t) = 0.

(2) For s 
= l, it follows from (3.35) and (3.39) that:
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ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−
∑d∗

k1=1
bi,lk1ρ

u
lk1

(x)us
lk
(t) −

∑d

k=1
bi,skμsk ρ̄

u
sk
|us

sk
(t)|)+

p∑
j=1

(
∑d∗

k1=1
bi,lk1a

u
lk1 ,j

(x) −
∑d

k=1
bi,skμsk ā

u
sk ,j

)]

Because matrix Bi is of full column rank (Assumption 3.1), we know that bisk and
bilk1 are linearly independent. Therefore,

lim
t→∞

r∑
i=1

hi(z(t))[(−
∑d∗

k=1
bi,lkρ

u
lk
(x)us

lk
(t) −

∑d

k=1
bi,skμsk ρ̄

u
sk
|us

sk
(t)|) +

p∑
j=1

(
∑d∗

k=1
bi,lk a

u
lk ,j

(x) −
∑d

k=1
bi,skμsk ā

u
sk ,j

)] 
= 0

(3.44)

Thus, we have lim
t→∞ exs(t) 
= 0 and lim

t→∞ eys(t) 
= 0.

From (1) and (2), we obtain the conclusion. This ends the proof.

Now, we denote the residuals between the real system and SMOs as follows:

Js(t) = ∥∥eys(t)∥∥ = ∥∥ŷs(t) − y(t)
∥∥ , 1 � s � m (3.45)

According to Theorem 3.1, when the actual fault pattern is s = l, the residual Js(t)
will tend to zero; while for any s 
= l, Js(t) does not equal zero. Furthermore, from
Lemma 3.2, we have, if l = s,

Js(t) �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (3.46)

and if l 
= s, then

Js(t) >

r∑
i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (3.47)

Hence, the isolation law for actuator fault can be designed as

{
Js(t) � TI , l = s ⇒ the l1th, l2th, . . . , ld th actuators are faulty

Js(t) > TI , l 
= s
(3.48)

where threshold TI is defined as follows.
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TI =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2

Notice that, the denominator of μsk = −
r∑

i=1
hi(z(t))Fisk eysk (t)/||

r∑
i=1

hi(z(t))Fisk

eysk (t)|| in (3.37), contains eys(t). Just as pointed out in [63], the chattering phe-
nomenon occurs when eys(t) → 0 in practice. Inspired by [63], in order to reduce
this chattering in practical applications, we modify SMOs (3.37) by introducing a
positive constantδ as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂is(t) +
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t)) +
r∑

i=1

hi(z(t))Biu(t)+

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,skμsk [ρ̄usk u

s
sk

(t) +
p∑

j=1

āu
sk ,j

]
⎫⎬
⎭

ŷs(t) =
r∑

i=1

hi(z(t))Cix̂s(t)

μ′
sk = −

r∑
i=1

hi(z(t))Fisk eys(t)

||
r∑

i=1
hi(z(t))Fisk eys(t)|| + δ

(3.49)
where δ > 0 ∈ R is a constant. Obviously, the denominator of μ′

sk will converge
asymptotically to δ when eys → 0, which reduces this chattering phenomenon.

3.3.4 Fuzzy Logic Systems-Based Fault Accommodation
with Available System State

After fault isolation, the next task is fault accommodation. Before this task, we inves-
tigate firstly the following normal systems (fault-free), and drive the ideal control
us (t) when all actuators are healthy.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))[Aix(t) + Biu
s(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(3.50)

The parallel distributed compensation (PDC) technique offers a procedure to design
a fuzzy control law from a given T-S fuzzy model. In the PDC design, each control
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rule is designed from the corresponding rule of T-S fuzzy model. The designed fuzzy
controller has the same fuzzy sets as the considered fuzzy system.

Control Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

us
i
(t) = Kix(t)

and the overall fuzzy controller is given as follows:

us(t) =
r∑

i=1

hi(z(t))Kix(t) (3.51)

where the controller gain matrixKi is determined by solving the following condition:

P(Ai+KiBi)+(Ai + KiBi)
TP+(Ai + KiBi)

TPS1P(Ai+KiBi)+PS2P � −Q (3.52)

where P = PT > 0, Q > 0, S1 > 0, S2 > 0 are matrices with appropriate dimen-
sions.

Define tracking error ē = y − ωd . The tracking error dynamics is obtained from
the above equations,

˙̄e = ẏ − ω̇d = Ciẋ − ω̇d =
r∑

i=1

hi(z(t))[CiAix(t) + CiBiu
s(t)] − ω̇d

Because all the states are supposed to be available, we have Ci = Im×m. The tracking
error dynamics can be simplified as follows:

˙̄e = ẋ − ω̇d =
r∑

i=1

hi(z(t))[Aix(t) + BiKix(t) − ω̇d]

=
r∑

i=1

hi(z(t))[(Ai + BiKi)x(t) − ω̇d]

=
r∑

i=1

hi(z(t))[(Ai + BiKi)e(t) + ωd − ω̇d]

(3.53)

Define the following Lyapunov function

V0 = ēTPē

where P = PT > 0.
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Differentiating V0 with respect to time t, leads to

V̇0 =
r∑

i=1

hi(z(t))[eT (t)(P(Ai + KiBi) + (Ai + KiBi)
TP)e(t)] −

r∑
i=1

hi(z(t))[2eT (t)(Ai + KiBi)
TP(ωd − ω̇d)] −

r∑
i=1

hi(z(t))[2eT (t)P(ωd − ω̇d)] +
r∑

i=1

hi(z(t))[2(ωd − ω̇d)
TP(ωd − ω̇d)]

(3.54)
Since

−2ēT (Ai + KiBi)
TP(ωd − ω̇d) � ēT (t)(Ai + KiBi)

TPS1P(Ai + KiBi)ē+
(ωd − ω̇d)

TS−1
1 (ωd − ω̇d)

−2ēTP(ωd − ω̇d) � ēT (t)PS2Pē + (ωd − ω̇d)
TS−1

2 (ωd − ω̇d)

(3.54) can be re-written as follows:

V̇0 �
r∑

i=1

hi(z(t))[ēT (t)Δ1ē(t)]+
r∑

i=1

hi(z(t))[(ωd − ω̇d)
T (S−1

1 + S−1
2 + 2P)(ωd − ω̇d)]

whereΔ1 = P(Ai +KiBi)+ (Ai + KiBi)
TP+ (Ai + KiBi)

TPS1P(Ai +KiBi)+PS2P.
Obviously, if

Δ1 = P(Ai + KiBi) + (Ai + KiBi)
TP + (Ai + KiBi)

TPS1P(Ai + KiBi) + PS2P � −Q,

then

V̇0 � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0 � −λ0V0 + μ0,

where μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T (S−1
1 + S−1

2 + 2P)(ωd − ω̇d)], λ0 = λmin(Q)

λmax(P)
,

Q = QT > 0.
Then, one has d

dt (V0(t)eλ0t) � eλ0tμ0. Furthermore,

0 � V0(t) � μ0

λ0
+ [V0(0) − μ0

λ0
]e−λ0t � μ0

λ0
+ V0(0).



3.3 Fault Diagnosis and FLS-Based Fault Accommodation 61

Therefore, the error system (3.53) is asymptotically stable. Moreover, ē(t) is
semi-globally uniformly ultimately bounded, converging asymptotically to a small
neighborhood of zero, namely, |ē| �

√
α/λmin(P), where α = μ0/λ0 + V0(0).

After obtaining the desired control us(t), we will design fault-tolerant control u(t)
such that the same control objective can be achieved in spite of actuator faults.

On the basis of the desired control us(t), the fault tolerant controller is constructed
as

usk = ussk − ∑p
j=1 âsk ,j(x, θ̂α,sk ,j) − ε̂α,sk ,j

1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk

(3.55)

where θ̂ρ,sk , θ̂α,sk ,j, ρ̂ρ,sk (x, θ̂ρ,sk ), âi,j(x, θ̂α,sk ,j) are the estimations of θ∗
ρ,sk , θ∗

α,sk ,j
,

ρsk (x, θ
∗
ρ,sk ), ask ,j(x, θ

∗
α,sk ,j

), which are used to compensate for the gain and bias faults
ρsk (x), αsk ,j(x), and ρsk (x) = ρsk (x, θ

∗
ρ,sk ) + εsk , ask ,j(x) = ask ,j(x, θ

∗
α,sk ,j

) + εsk ,j,
εsk , εsk ,j are approximation errors, θ∗

ρ,sk , θ
∗
α,sk ,j

are optimal vectors.
Consider the following faulty system

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu
s(t)−

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [ρu

sk
(x)us

sk
(t) −

p∑
j=1

au
sk ,j

(x)]
⎫⎬
⎭

(3.56)

Submitting the fault-tolerant control law (3.55) to the faulty system (3.56), it yields

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu
s(t)+

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [(θ̃Tρ,sk

ξρ,sk (x) + ε̃ρ,sk )κk −
p∑

j=1

θ̃u
α,sk ,j

ξα,sk ,j(x) − ε̃ρ,sk ]
⎫⎬
⎭

(3.57)

where θ̃α,sk ,j = θ̂α,sk ,j − θ∗
α,sk ,j

, κk = (

ussk −
p∑

j=1
[α̂u

α,sk ,j
(x,θ̂α,sk ,j)−ε̂α,sk ,j]

1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk

), θ̃ρ,sk = θ̂ρ,sk − θ∗
ρ,sk .

Further, the error dynamics is obtained:

˙̄e =
r∑

i=1

hi(z(t))[(Ai + BiKi)e(t) + ωd − ω̇d] +

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [(θ̃T

ρ,sk
ξρ,sk (x) + ε̃ρ,sk )κk −

p∑
j=1

θ̃u
α,sk ,j

ξα,sk ,j(x) − ε̃ρ,sk ]
⎫⎬
⎭

(3.58)
Now, an adaptive fault accommodation algorithm is proposed to control the faulty
system. The stability of the error dynamics is guaranteed by the following theorem.
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Theorem 3.2 Under Assumptions 3.1–3.3, if there exist a common symmetric pos-
itive definite matrix P, real matrices Ki and Q > 0, i =1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

P(Ai + KiBi) + (Ai + KiBi)
TP+

(Ai + KiBi)
TPS1P(Ai + KiBi) + PS2P � −Q

(3.59)

Consider the control law (3.55) and the adaptive laws given as follows:

˙̂
θρ,sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η1ē
TPbi,skξ

u
ρ,sk

(x)κk, if ||θ̂ρ,sk || < Mρ,sk or

||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κk � 0;

− η1ē
TPbi,skξ

u
ρ,sk

(x)κk + η1ē
TPbi,skκk

θρ,skθ
T
ρ,sk

||θ̂if ||2
ξ u

ρ,sk
(x),

if ||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κk < 0

(3.60)

˙̂
θα,sk ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2ē
TPbi,skξ

u
α,sk ,j

(x), if ||θ̂α,sk ,j|| < Mα,sk ,j

or ||θ̂α,sk ,j|| = Mα,sk ,j and −η2ē
TPbi,skξ

u
α,sk ,j

(x) � 0;

η2ē
TPbi,skξ

u
α,sk ,j

(x) + η2ē
TPbi,sk

θ̂α,sk ,j θ̂
T
α,sk ,j

||θ̂α,sk ,j||2
ξ u

α,sk ,j
(x),

if ||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x) < 0

(3.61)

˙̂ερ,sk =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄ρ,sk and −η3ē

TPbi,skκk > 0

or ε̂ρ,sk = −M̄ρ,sk and −η3ē
TPbi,skκk < 0;

− η3ē
TPbi,skκk, otherwise

(3.62)

˙̂εα,sk ,j =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄α,sk ,j and η4ē

TPbi,sk > 0

ε̂α,sk ,j = −M̄α,sk ,j and η4ē
TPbi,sk < 0;

η4ē
TPbi,sk , otherwise

(3.63)

where ηi > 0, i = 1, . . . , 4 denote the adaptive rates, then the error system (3.59)
is asymptotically stable. Moreover, ē(t), θ̃ρ,sk and θ̃α,sk ,j are semi-globally uniformly
ultimately bounded, converging asymptotically to a small neighborhood of zero,
namely, ||ē|| �

√
α/λmin(P), ||θ̃ρ,sk || �

√
2η1α, and ||θ̃α,sk ,j|| �

√
2η2α, where

α =μ0

λ0
+V (0),λ = min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

},μ =
r∑

i=1
hi(z(t))(

2
η2

θ̄2
ρ,sk

+
p∑

j=1

2
η2

θ2
α,sk ,j

)+μ0,

and μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T (S−1
1 + S−1

2 + 2P)(ωd − ω̇d)].
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Proof Define the following smooth function

V = V1 + V2 + V3 + V4 + V5

where

V1 = ēTPē, V2 =
r∑

i=1

hi(z(t))(
1

2η1
θ̃T
ρ,sk θ̃ρ,sk )

V3 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

2η2
θ̃T
α,sk ,j θ̃α,sk ,j), V4 =

r∑
i=1

p∑
j=1

hi(z(t))(
1

2η3
ε̃2ρ,sk )

V5 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

2η4
ε2α,sk ,j)

Differentiating V with respect to time t, it leads to

V̇ = V̇1 + V̇2 + V̇3 + V̇4 + V̇5

where

V̇1 � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0 +
r∑

i=1

hi(z(t))2ē
TP

d∑
k=1

bi,sk [(θ̃T
ρ,skξ

u
ρ,sk

(x) + ε̃ρ,sk )κ]+

r∑
i=1

hi(z(t))2ē
TP

d∑
k=1

bi,sk [
p∑

j=1

θ̃T
α,sk ,jξ

u
α,sk ,j

(x) + ε̃α,sk ,j]

V̇2 =
r∑

i=1

hi(z(t))
1

η1
θ̃T

ρ,sk

˙̃
θρ,sk , V̇3 =

r∑
i=1

p∑
j=1

hi(z(t))
θ̃T

α,sk ,j

˙̃
θα,sk ,j

η2

V̇4 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

η3
ε̃ρ,sk

˙̂ερ,sk ), V̇5 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

η4
ε̃α,sk ,j

˙̂εα,sk ,j)

Since usk = (ussk −
∑p

j=1 âsk ,j(x,θ̂α,sk ,j)−ε̂α,sk ,j)

1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk

, then



64 3 Fuzzy Logic System-Based Adaptive FC for NSV …

ufsk = (1 − ρsk (x))usk +
∑p

j=1
ask ,j(x)

= ussk −
∑p

j=1
θ̃α,sk ,jξα,sk ,j(x) −

∑p

j=1
ε̃α,sk,j + θ̃ρ,skΔ + ερ,skΔ

= ussk −
∑p

j=1
θ̃α,sk ,jξα,sk ,j +

∑p

j=1
ε̃α,sk,j + θ̃ρ,skΔ + ε̃ρ,skΔ

where Δ = ussk −
∑p

j=1 âsk ,j(x,θ̂α,sk ,j)−ε̂ρ,sk ,j

1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk

. Furthermore, one has

V̇ � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0 +
r∑

i=1

hi(z(t))2ē
TP

d∑
k=1

bi,sk [θ̃T
ρ,sk (ξ

u
ρ,sk

(x)Δ + 1

η1

˙̃
θρ,sk ) − ε̃ρ,sk (Δ + 1

η3

˙̃ερ,sk )−
p∑

j=1

θ̃T
α,sk ,j(ξ

u
α,sk ,j

(x) −
˙̃
θα,sk ,j

η2
) −

p∑
j=1

ε̃α,sk ,j(1 −
˙̃
θα,sk ,j

η2
)]

Substituting the adaptive laws (3.60–3.63) into the above equation, it yields

V̇ � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0

Since ||θ̂ρ,sk || � Mρ,sk , ||θ̂α,sk ,j|| � Mα,sk ,j, which can be guaranteed by using the
adaptive laws (3.60) and (3.61), when Assumptions 3.1 and 2.2 (i.e., ||θ∗

ρ,sk
|| � Mρ,sk ,

||θ∗
α,sk ,j

|| � Mα,sk ,j) are satisfied, one has

V̇ ≤= λV (t) + μ

where μ =
r∑

i=1
hi(z(t))[ 4

η1
M2

ρ,sk
+

p∑
j=1

4
η2
M2

α,sk ,j
+ 4

η3
M̄2

ρ,sk +
p∑

j=1

4
η4
M̄2

α,sk ,j
)] + μ0, λ =

min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

}.
Then, one has, d

dt (V (t)eλt) � eλtμ. Furthermore,

0 � V (t) � μ

λ
+ [V (0) − μ

λ
]e−λt � μ

λ
+ V (0)

Let α = μ

λ
+ V (0), one has |ē| �

√
α

λmin(P)
, |θ̃ρ,sk | �

√
2η1α, and |θ̃α,sk ,j| �

√
2η2α.

This ends the proof.

http://dx.doi.org/10.1007/978-3-319-52530-3_2
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3.3.5 Modified Fault Accommodation with Available System
State

In the above subsection, the fault tolerant controller was constructed as

usk = ussk − ∑p
j=1 âsk ,j(x, θ̂α,sk ,j) − ε̂α,sk ,j

1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk

Unfortunately, theremay exist controller singularitywhen1−ρ̂sk (x, θ̂ρ,sk )−ε̂ρ,sk = 0.
In order to avoid such singularity, the fault tolerant controller is modified as

follows

usk = (1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk )(u
s
sk − ∑p

j=1 âsk ,j(x, θ̂α,sk ,j) − ε̂α,sk ,j)

(1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk )
2 + ε

(3.64)

where ε > 0 ∈ R is a design constant. Correspondingly, the adaptive laws inTheorem
3.2 are re-designed as follows

˙̂
θρ,sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′, if ||θ̂ρ,sk || < Mρ,skor

||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′ � 0;

− η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′ + η1ē
TPbi,skκ

′ θρ,skθ
T
ρ,sk

||θ̂if ||2
ξ u

ρ,sk
(x),

if ||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′ < 0

(3.65)

˙̂
θα,sk ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2ē
TPbi,skξ

u
α,sk ,j

(x), if ||θ̂α,sk ,j|| < Mα,sk ,j or

||θ̂α,sk ,j|| = Mα,sk ,j and −siθ̂
T
if ξif � 0;

η2ē
TPbi,skξ

u
α,sk ,j

(x) + η2ē
TPbi,sk

θ̂α,sk ,j θ̂
T
α,sk ,j

||θ̂α,sk ,j||2
ξ u

α,sk ,j
(x),

if ||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x) < 0,

(3.66)

˙̂εα,sk ,j =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄α,sk ,j and − η4ē

TPbi,sk > 0

or ε̂α,sk ,j = −M̄α,sk ,j and − η4ē
TPbi,sk < 0

η4ē
TPbi,sk , otherwise

(3.67)

˙̂ερ,sk =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄ρ,sk and −η3ē

TPbi,skκ
′ > 0

or ε̂ρ,sk = −M̄ρ,sk and −η3ē
TPbi,skκ

′ < 0,

− η3ē
TPbi,skκ

′, otherwise

(3.68)
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where κ ′ =
(1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk )[ussk −

p∑
j=1

θ̂T
α,sk ,j

ξ u
α,sk ,j

(x)]

(1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk )
2+ε

, ηl > 0, l = 1, . . . , 4 denote the

adaptive rates.
Now, a modified adaptive fault accommodation algorithm is proposed to control

the faulty system. The stability of the error dynamics is guaranteed by the following
theorem.

Theorem 3.3 Under Assumptions 3.1–3.3, if there exist a common symmetric posi-
tive definite matrix P, real matrices Ki and Q > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

P(Ai + KiBi) + (Ai + KiBi)
TP+

(Ai + KiBi)
TPS1P(Ai + KiBi) + PS2P � −Q

(3.69)

when the control law (3.64) and adaptive laws (3.65–3.68) are applied, the error sys-
tem (3.58) is asymptotically stable. Moreover ē(t), θ̃ρ,sk and θ̃α,sk ,j are semi-globally
uniformly ultimately bounded, converging asymptotically to a small neighborhood
of zero, namely, ||ē|| �

√
α/λmin(P), ||θ̃ρ,sk || �

√
2η1α, and ||θ̃α,sk ,j|| �

√
2η2α

where λ = min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

}, μ =
r∑

i=1
hi(z(t))(

2
η2

θ̄2
ρ,sk

+
p∑

j=1

2
η2

θ̄2
α,sk ,j

) + μ0, and

μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T (S−1
1 + S−1

2 + 2P)(ωd − ω̇d) + ω], α = μ

λ
+ V (0).

Proof Similar to the proof of Theorem 3.2, it is easy to obtain the conclusion. The
detailed proof is omitted.

3.3.6 FLSs-Based Fault Accommodation with Unavailable
System State

Notice that, the FTC (3.55) and the modified FTC (3.64) are designed under the
condition that system states are measurable. In fact, in some situations, system state
may be unavailable, and the above FTC (3.55) and (3.64) do not work. In this case,
observers (3.21) and (3.22) may be used to obtain the estimation x̂ of system state x,
and design the following observer-based FTC.

usk = (1 − ρ̂sk (x̂, θ̂ρ,sk ) − ε̂ρ,sk )(u
s
sk − ∑p

j=1 âsk ,j(x̂, θ̂α,sk ,j) − ε̂α,sk ,j)

(1 − ρ̂sk (x̂, θ̂ρ,sk ) − ε̂ρ,sk )
2 + ε

(3.70)
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Correspondingly, the adaptive laws in Theorem 3.3 are re-designed as follows:

˙̂
θρ,sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η1ē
TPbi,skξ

u
ρ,sk

(x̂)ω, if ||θ̂ρ,sk || < Mρ,sk or

||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x̂)ω � 0;
− η1ē

TPbi,skξ
u
ρ,sk

(x̂)ω+

η1ē
TPbi,skω

θρ,skθ
T
ρ,sk

||θ̂if ||2
ξ u

ρ,sk
(x̂),

if ||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x̂)ω < 0

(3.71)

˙̂
θα,sk ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2ē
TPbi,skξ

u
α,sk ,j

(x̂), if ||θ̂α,sk ,j|| < Mα,sk ,j or

||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x̂) � 0;

η2ē
TPbi,skξ

u
α,sk ,j

(x̂) + η2ē
TPbi,sk

θ̂α,sk ,j θ̂
T
α,sk ,j

||θ̂α,sk ,j||2
ξ u

α,sk ,j
(x̂),

if ||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x̂) < 0

(3.72)

˙̂ερ,sk =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄ρ,sk and − η3ē

TPbi,skω > 0

or ε̂ρ,sk = −M̄ρ,sk and − η3ē
TPbi,skω < 0;

− η1ē
TPbi,skω, otherwise

(3.73)

˙̂εα,sk ,j =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄α,sk ,j and − η4ē

TPbi,sk > 0 or

ε̂α,sk ,j = −M̄α,sk ,j and − η3ē
TPbi,sk < 0;

η4ē
TPbi,sk , otherwise

(3.74)

where ω =
(1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk )[ussk −

p∑
j=1

θ̂T
α,sk ,j

ξ u
α,sk ,j

(x̂)]

(1−ρ̂sk (x̂,θ̂ρ,sk )−ε̂ρ,sk )
2+ε

, ηl > 0, l = 1, . . . , 4 denote the

adaptive rates.
Now, an observer-based adaptive fault accommodation algorithm is proposed to

control the faulty system. The stability of the error dynamics is guaranteed by the
following theorem.

Theorem 3.4 Under Assumptions 3.1–3.3, if there exist a common symmetric posi-
tive definite matrix P, real matrices Ki and Q > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

P(Ai+KiBi)+(Ai + KiBi)
TP+(Ai + KiBi)

TPS1P(Ai+KiBi)+PS2P � −Q (3.75)

when the control law (3.70) and adaptive laws (3.71–3.74) are applied, then
the error system (3.58) is asymptotically stable. Moreover ē(t), θ̃ρ,sk and θ̃α,sk ,j
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are semi-globally uniformly ultimately bounded, converging asymptotically to a
small neighborhood of zero, namely, ||ē|| �

√
α/λmin(P), ||θ̃ρ,sk || �

√
2η1α,

and ||θ̃α,sk ,j|| �
√
2η2α, where α = μ/λ + V (0), λ = min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

},
μ =

r∑
i=1

hi(z(t))(
2
η2

θ̄2
ρ,sk

+
p∑

j=1

2
η2

θ̄2
α,sk ,j

) + μ0, and μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T ·
(S−1

1 + S−1
2 + 2P)(ωd − ω̇d) + ω].

Proof Similar to the proof of Theorem 3.2, it is easy to obtain the conclusion. The
detailed proof is omitted.

3.4 Simulation Results

To verify the effectiveness of the proposed method, we consider the re-entry phase
of a NSV with the altitude H = 40 km and speed V = 2500m/s as the initial states.
The symmetric, positive definite moment of inertia tensor is given as follows:

J =
⎡
⎣ 554486 0 −23002

0 1136949 0
−23002 0 1376852

⎤
⎦

Consider that the nonlinearity of NSV re-entry attitude dynamics mainly comes
from attack angle α and attitude angular velocity ω. In NSV re-entry phase α ∈
[0, π/4], we assume that α has two related fuzzy sets {α = 0} and {α = π/4}, the
corresponding membership functions are given by:

Mω=0 = (1 − 1

1 + exp[−6 − 28ω)] )
1

1 + exp[6 − 28ω)]

Mω=−0.5 = (
1

1 + exp[6 + 28ω)] ),Mω=0.5 = (1 − 1

1 + exp[−6 + 28ω)] )

We choose six operating points:

[α,ω] ∈ {[0,−0.5], [0, 0], [0, 0.5], [π/4,−0.5], [π/4, 0], [π/4, 0.5]}

Under the membership functions and the six operating points, six plant rules and six
control rules can be defined. All Ai and Bi can be obtained by substituting the six
operating points to f (xω), g(xω). The detailed matrix parameters are given in [62].
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Rule 1: IF ω is about − 0.5 rad/s and α is about 0 rad, THEN

ẋ(t) = A1x(t) + B1u, y(t) = C1x(t)

Rule 2: IF ω is about − 0.5 rad/s and α is about π /4 rad, THEN

ẋ(t) = A2x(t) + B2u, y(t) = C2x(t)

Rule 3: IF ω is about 0 rad/s and α is about 0 rad, THEN

ẋ(t) = A3x(t) + B3u, y(t) = C3x(t)

Rule 4: IF ω is about 0 rad/s and α is about π /4 rad, THEN

ẋ(t) = A4x(t) + B4u, y(t) = C4x(t)

Rule 5: IF ω is about 0.5 rad/s and α is about 0 rad, THEN

ẋ(t) = A5x(t) + B5u, y(t) = C5x(t)

Rule 6: IF ω is about0.5 rad/s and α is about π /4 rad, THEN

ẋ(t) = A6x(t) + B6u, y(t) = C6x(t)

The initial conditions are taken as follows: ω(0) = [0, 0, 0]T , γ (0) = [0, 0, 0]T
and the tracking command is chosen as ωd = [0, 0, 0]T , γd = [1, 0, 2]T during the
re-entry phase. The parameters are taken as in [62] and will not be described in detail
here. We consider the case where only two actuators fail at one time:

uf1(t) =
⎧⎨
⎩
u1(t), t < 5s

(1 − ρ1(x))(u1(t) +
∑p

j=1
g1,j f1,j(x)), t � 5s

uf2(t) =
⎧⎨
⎩
u2(t), t < 5

(1 − ρ2(x))(u2(t) +
∑p

j=1
g2,j f2,j(x)), t � 5

uf3(t) = u3(t)

where ρ1(x) = 0.4 cos(x1), p = 1, g1,1 = 0.4, f1,1(x) = cos(x3), ρ2(x) =
0.4 sin(x2), g2,1 = 0.4, f2,1(x) = cos(x3). By using Matlab toolbox to solve the
matrices inequalities (3.25), one can obtain the fault diagnostic observer gains Li.
By solving (3.52), one can obtain the positive definite symmetric matrix P and the
nominal controller gainsKi. Therefore, one can design the ideal control (3.51). Using
the ideal control input (3.51), we can design fault-tolerant controller (3.55), the mod-
ified fault-tolerant (3.64) and the observer-based fault-tolerant control (3.70). In this
example, we assume that the system state is not fully measured and thus the observer
(3.22) is used to estimate the system state. Consequently, the observer-based fault-
tolerant control input (3.70) is used to control the faulty system. The simulation
results are presented in Figs. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9. From Fig. 3.2,
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Fig. 3.2 The observer errors time responses: e1, e2, e3
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Fig. 3.3 State responses of NSV attitude dynamics under normal conditions

it is seen that, under normal operating condition, observation errors globally asymp-
totically converge to zero. If no actuator fails, the system states globally asymptoti-
cally converge to zero, as shown in Fig. 3.3. Figure3.4 shows that, when an actuator
fault occurs, when keeping the normal controller, the system states deviate signifi-
cantly from zero. However, as shown in Fig. 3.5, using the proposed FTC (3.70), the
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Fig. 3.4 State responses of NSV attitude dynamics without FTC
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Fig. 3.5 State responses of NSV attitude dynamics with observer-based FTC (3.70)

system states globally asymptotically converge to zero. From Figs. 3.6, 3.7, 3.8 and
3.9, we can clearly draw the conclusion that both gain faults and bias faults can be
approximated accurately and promptly by FLSs.
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Fig. 3.6 The estimation
error of bias fault g1,1f1,1(x)
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Fig. 3.7 The estimation
error of gain fault ρ1(x)
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3.5 Conclusions

In this chapter, the problem of fault tolerant control for NSV with multiple state-
dependent faultswas studied.Wefirst designed a bank of SMOs to detect and estimate
the fault. Comparedwith some results in literature, the proposed fault accommodation
scheme is designed to online approximate not only bias faults but also gain faults.
Moreover, it can accommodate multiple actuator faults simultaneously. In addition,
the adaptive fault accommodation algorithm removes the classical assumption that
the time derivative of the output errors should be known. Simulation results of NSV
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Fig. 3.8 The estimation
error of bias fault g2,1f2,1(x)

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

5

t/s

Fig. 3.9 The estimation
error of gain fault ρ2(x)
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show that the designed fault detection, isolation and estimation algorithms as well as
the fault-tolerant control scheme have good dynamic performances in the presence
of multiple actuator faults.
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