
Chapter 2
Fault Tolerant Control for T-S Fuzzy Systems
with Application to NSHV

2.1 Introduction

Modern control systems, such as NSHV that is considered in this chapter, become
more and more complex and involve an increasing number of actuators and sensors.
These physical componentsmay become faulty which can cause system performance
deterioration and lead to instability that can further produce catastrophic accidents.
To improve system reliability and guarantee system stability in all situations, FDI
and fault accommodation methods have become attractive topics which received
considerable attentionduring the past twodecades as it canbe attested by the abundant
literature [1–20]. Fault tolerant control (FTC) aims at preserving the functionalities
of a faulty system with acceptable performances. FTC can be achieved in two ways
namely passive and active ways. The former uses feedback control laws that are
robust with respect to possible system faults. On the other hand, the latter uses a FDI
module and accommodation techniques.

It is valuable to point out that, although there are abundant results in literature,most
results concerning actuator faults reported in the literature only considered bias faults.
Gain faults did not attract enough attention, whichmotivates this chapter. In addition,
in some existing work, estimation error limt→∞ ex(t) = ex(∞)was considered as an
indicator, by which the faulty system can be distinguished from the normal system.
That is to say, if ex(∞) = 0, then the system is healthy; if ex(∞) �= 0, the system is
faulty.However, ex(∞) is not available in practice, and ex(∞) �= 0 can not practically
be considered as fault indicator. Another motivation of this work is thus to provide
a fault indicator with an associated decision algorithm which is efficient in practical
application.

The concept of near space hypersonic vehicle was first proposed by American air
force in a military exercise called “Schrieffer” in 2005. NSHV is a class of vehicle
flying in near space which offers a promising and new, lower cost technology for
future spacecraft. It can advance space transportation and also prompt global strike
capabilities. Such complex technological system attracts considerable interests from
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the control research community and aeronautical engineering in the past couple of
decades and significant results were reported [21–32]. For such high technological
system, with great economical and societal issues, it is of course essential to main-
tain high reliability against possible faults. One of the difficulties to deal with FTC
for NSHV is that the dynamics are complex nonlinear, multi-variable and strongly
coupled ones. To solve the difficulties, T-S fuzzy system was used to describe the
NSHV attitude dynamics [33]. During the past two decades, the stability analysis for
Takagi-Sugeno (T-S) fuzzy systems has attracted increasing attention [34–42]. These
studies combine the flexibility of fuzzy logic theory and rigorous mathematical the-
ory of linear/nonlinear systems into a unified framework. The important advantage of
a T-S fuzzy system is its universal approximation of any smooth nonlinear function
by a “blending” of some local linear models, which greatly facilitates the analysis
and synthesis of the complex nonlinear system. Lots of stability criteria of T-S fuzzy
systems have been expressed in terms of linear matrix inequalities (LMIs) via various
stability analysis methods (see [43–50] and the references therein). In [51], authors
studied the problem of fault-tolerant tracking control for near-space-vehicle attitude
dynamics with bias actuator fault, where the bias fault was assumed to be unknown
constant. However, in practical application, the fault may be time-varying, which
motivates this chapter.

In this chapter, we investigate the problem of fault tolerant control for T-S fuzzy
systems with actuator time-varying faults, with the objective to provide an efficient
solution for controlling NSHV in faulty situations. Compared with some existing
work, there are four main contributions that are worth to be emphasized.

1. The actuator fault model presented in this chapter integrates not only time-varying
gain faults, but also time-varying bias faults, which means that a wide class of
faults can be handled. The theoretic developments and results of this chapter are
thus valuable in a wide field of practical applications.

2. An adaptive fault estimation algorithm is proposedwhere the commonassumption
that the derivative of the output errors with respect to time should be known is
removed and the parameter drift phenomenon is prevented even in the presence
of bounded disturbances.

3. Compared with some results, a decision threshold for FDI is defined and applied
on an online computable fault indicator and not on an asymptotic value of a
criterion, which means the decision algorithm is thus more practical.

4. The proposed fault estimation observer is designed to online estimate not only
bias faults but also gain faults.

The rest of the chapter of this chapter is organized as follows. In Sect. 2.2, the
T-S fuzzy model is first briefly recalled. Actuator faults are integrated in such model
and the FTC objective is formulated. In Sect. 2.3, the main technical results of this
chapter are given, which include fault detection, isolation, estimation and fault-
tolerant control scheme. The NSHV application is presented in Sect. 2.4. The T-S
fuzzy model is employed to approximate the nonlinear NSHV attitude dynamics and
simulation results of NSHV are presented to demonstrate the effectiveness of the
proposed technique. Finally, Sect. 2.5 draws the conclusion.
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2.2 Problem Statement and Preliminaries

Consider the following T-S fuzzy model composed of a set of fuzzy implications,
where each implication is expressed by a linear state space model. The ith rule of
this T-S fuzzy model is of the following form:

Plant Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{
ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t)
(2.1)

where i = 1, . . . , r, r is the number of the IF-THEN rules, Mij, j = 1, . . . , q is the
fuzzy set, z(t) = [z1(t), . . . , zq(t)]T are the premise variables which are supposed to
be known, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn, u(t) ∈ Rm,Ai ∈ Rn×n, and Bi ∈ Rn×m.

The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) + Biu(t))

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.2)

where hi(z(t)) is defined as

hi(z(t)) =

n∏
j=1

Mij[z(t)]
r∑

i=1

n∏
j=1

Mij[z(t)]
, i = 1, 2, . . . , r (2.3)

where Mij[z(t)] is the grade of membership of zj(t) in Mij. It is assumed in this

chapter that
∏n

j=1 Mij[z(t)] � 0 for all t. Therefore, we have
r∑

i=1
hi(z(t)) = 1, 0 �

hi(z(t)) � 1 for all t.
In this chapter, the state feedback control strategy is chosen as a parallel distributed

compensation (PDC), which can be described as follows:
Control Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

ui(t) = Kix(t) (2.4)

where Ki is the controller gain matrix to be determined later.
The overall fuzzy controller is given as follows:

u(t) =
r∑

i=1

hi(z(t))Kix(t) (2.5)
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The control objective under normal conditions is to design a proper state feedback
control controller u(t) such that the system (2.2) is stable.

However, in practical application, actuators may become faulty. Bias faults and
gain faults are two kinds of actuator faults commonly occurring in practice. An
actuator bias fault can be described as:

ufi (t) = ui(t) + fi(t), i = 1, . . . ,m (2.6)

where fi(t) denotes a bounded signal, and an actuator gain fault can be described as:

ufi (t) = (1 − ρi(t))ui(t), i = 1, . . . ,m (2.7)

where 0 � ρi(t) � 1which is supposed to be unknown, denotes the remaining control
rate. Therefore, the above two kinds of actuator faults can be uniformly described
as:

ufi (t) = (1 − ρi(t))ui(t) + fi(t) (2.8)

Furthermore, a more general fault model can be given as:

ufi (t) = (1 − ρi(t))ui(t) +
pi∑
j=1

gi.jfi,j(t) (2.9)

where fi,j(t), i = 1, . . . ,m, j = 1, . . . , pi denotes a bounded signal, pi is a known
positive constant. gi,j denotes an unknown constant. With no restriction, let suppose
p1 = p2 = · · · = pm = p, with p a known positive constant. Consider the following
notation: [ai,j(t) = gi.jfi,j(t). Then, (2.9) can be re-written as follows:

ufi (t) = (1 − ρi(t))ui(t) +
p∑

j=1

ai,j(t) (2.10)

Denote
Γ (t) = diag(ρ1(t), . . . , ρm(t)) (2.11)

F(t) = [f1, f2, . . . , fm]T , fi =
p∑

j=1

ai,j(t) (2.12)

Then, we have
uf (t) = (I − Γ (t))(u(t) + F(t)), t > tf (2.13)

where the failure time instant tj is unknown, and I denotes identity matrix with
appropriate dimensions. In this chapter, both bias and gain faults are handled by
considering the general fault model (2.13).
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Notice that, in the following, just for the sake of notational simplicity, we will use
hi, ρi and ai,j to denote hi(z(t)), ρi(t) and ai,j(t).

Now, the control objective is re-defined as follows. An active fault tolerant control
approach is proposed to make system (2.2) stable in normal and faulty conditions.
Under normal condition (no fault), a state feedback control input u(t) is designed,
such that the system (2.2) is stable. Meanwhile, the FDI algorithm is working. As
soon as an actuator fault is detected and isolated, the fault estimation algorithm is
activated. The obtained fault estimation is used to design a proper control inputu(t),
such that the system (2.2) is still maintained stable under faulty case.

Remark 2.1 In the literature, many chapters consider actuator faults. However, most
of them only considered bias faults. Gain faults have not attracted enough attention.
In [51], a class of bias fault was studied, where the fault was assumed to be an
unknown constant. However, in practical application, the fault may be time-varying.
Equation (2.10) is a deterministic but uncertain actuator model which represents a
class of practical actuator faults such as actuator gain variations and measurement
errors. In fact, the fault model in [51] can be described by (2.10). If ρi(t) = 0, then
the model (10) becomes the bias fault model. If ρi(t) is an unknown constant and
fi(t) = 0, then the model (2.10) denotes the constant bias faults model. Hence, the
proposed actuator fault model (2.10) is more general and has wider practical use than
the classical ones.

2.3 Fault Diagnosis and Accommodation

In this section, the main technical results of this chapter are given. We will first
formulate the fault diagnosis and accommodation problem of the above T-S fuzzy
system. We will then design a bank of SMOs to generate residuals, investigate the
FDI algorithm based on the SMOs, and propose a FTC scheme to tolerate the fault
using estimated fault information.

2.3.1 Preliminary

Consider the T-S fuzzy faulty system described in (2.2).We assume that only actuator
faults occur and no sensor fault is involved. For simplicity, we consider the case that
only one single actuator is faulty at one time. The actuator fault diagnosis problem
is formulated as: with the available outputy, we propose an observer based scheme
to identify the faulty actuator, and then estimate the fault.

To solve the problem, we will design a bank of SMOs with desired actuator fault
detection and fault estimation properties. Thus, the following assumptions are made
in this chapter.
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Assumption 2.1 Matrix Bi is of full column rank and the pair (Ai,Ci) is observable.

Assumption 2.2 There exist known positive constants ρ̄i, ¯̄ρi, ρ̄1, ρ̄2, such that
|ρi(t)| � ρ̄i and |ρ̇i(t)| � ¯̄ρi, ρ̄1= max{ρ̄1, ρ̄2, . . . , ρ̄m}, ρ̄2 = max{ ¯̄ρ1, ¯̄ρ2, . . . , ¯̄ρm},
i = 1, . . . ,m.

Assumption 2.3 There exist known positive constants ā1, ā2, āi,j, ¯̄ai,j, such
that |ai,j(t)| � āi,j and |ȧi,j(t)| � ¯̄ai,j, ā1 = max{ā1,1, . . . , āi,p, . . . , ām,1, . . . , ām,p},
ā2 = max{ ¯̄a1,1, . . . , ¯̄ai,p, . . . , ¯̄am,1, . . . , ¯̄am,p}, i = 1, . . . ,m, j = 1, . . . , p.

Our actuator fault diagnosis and accommodation scheme consists of FDI and
FTC. We first design the fault diagnosis observer utilizing SMOs to detect, isolate
and estimate the fault, and then, propose a FTC method to compensate the fault.

2.3.2 Fault Detection

In order to detect the actuator faults, we design a fuzzy state-space observer for the
system (2.8), which is described as:

Observer Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{ ˙̂x(t) = Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))

ŷ(t) = Cix̂(t)
(2.14)

where Li, i = 1, . . . , r is the observer gain for the ith observer rule.
The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

hi(z(t))(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))

ŷ(t) =
r∑

i=1

hi(z(t))Cix̂(t)

(2.15)

Denote
ex = x(t) − x̂(t), ey = y(t) − ŷ(t) (2.16)

then the error dynamics is described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ėx =

r∑
i=1

hi(z(t))(Ai − LiCi)ex(t))

ey =
r∑

i=1

hi(z(t))Ciex(t)

(2.17)
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Lemma 2.1 The estimation error ex converges asymptotically to zero if there exist
matrices P = PT > 0 and Qi > 0 with appropriate dimensions such that the follow-
ing linear matrix inequality is satisfied:

P(Ai − LiCi) + (Ai − LiCi)
TP � −Qi,∀i = 1, 2, . . . , r (2.18)

Proof Consider the following Lyapunov function

V1 = eTx (t)Pex(t)

Differentiating V1 with respect to time t, one has

V̇1(t) =
r∑

i=1

hi(z(t))[eTx (t)(P(Ai − LiC) + (Ai − LiC)TP)ex(t)]

� −
r∑

i=1

hi(z(t))[eTx (t)Qiex(t)]

� 0

(2.19)

BecauseV1(t) ∈ L∞ is amonotonous and non-increasing bounded function,V1(+∞)

exists. Hence, we have V1(0)− V1(+∞)� − ∫ +∞
0

r∑
i=1

hi(z(t))[eTx (t)Qiex(t)], i.e.,
ex(t) ∈ L2. And since ex(t), ėx(t) ∈ L∞, using the Lyapunov stability theory, we
obtain lim

t→∞ ex(t) = 0. Furthermore, we have lim
t→∞ ey(t) = 0. The proof is completed.

From Lemma 1.1, we have

V̇1(t) � −
r∑

i=1

hi(z(t))[eTx (t)Qiex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Qi)e
T
x (t)ex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Qi)/λmax(P)eTx (t)Pex(t)]

� −hi(z(t))[λmin(Qi)/λmax(P)]V (t) = −κV (t)

(2.20)

where κ = min( λmin(Q1)

λmax(P)
,

λmin(Q2)

λmax(P)
, . . . ,

λmin(Qr)

λmax(P)
) ∈ R.

Hence,
V1(t) � e−κtV (0) (2.21)

Furthermore, we have

λmin(P)||ex(t)||2 � e−κtλmax(P)||ex(0)||2 (2.22)

http://dx.doi.org/10.1007/978-3-319-52530-3_1
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Therefore the norm of the error vector satisfies

||ex(t)|| �
√
e−κtλmax(P)

λmin(P)
||ex(0)||

= √
λmax(P)/λmin(P)||ex(0)||e−κt/2

(2.23)

Furthermore, the detection residual can be defined as:

J = ||y(t) − ŷ(t)|| (2.24)

From (2.23), it can be seen that the following inequality holds in the healthy case:

J �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2 (2.25)

Then, the fault detection can be performed using the following mechanism:

{
J � Td no fault occurred,

J > Td fault has occurred
(2.26)

where threshold Td is defined as follows:

Td =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2.

Remark 2.2 It is easy to find from (2.20) that, if no actuator fault occurs, we have
limt→∞ ex = 0. If there is an actuator fault, then limt→∞ ex �= 0. Therefore, in some
existing work, the fault detection is carried out as:

{
limt→∞ex = 0, no fault occurred

limt→∞ex �= 0, fault has occurred
(2.27)

and the above observer given by (2.15) was referred to as the fault detection observer
for the system described by (2.2). However, it is valuable to point out that ex(∞)

is not available in practice, thus ex(∞) �= 0 cannot be considered as an indicator of
fault occurrence. That is to say, the above fault detection (2.27) does not work in
practical applications. Therefore, the mechanism (2.26) is more efficient for fault
detection in practical cases.



2.3 Fault Diagnosis and Accommodation 21

2.3.3 Fault Isolation

Since the system has m actuators and it is assumed that only one single fault occurs
at one time, we have m possible faulty cases in total. When the sth (1 � s � m)
actuator is faulty, the faulty model can be described as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu(t)−
r∑

i=1

hi(z(t))bi,s[ρs(t)us(t) −
p∑

j=1

as,j(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.28)

where Bi = [bi,1, bi,2, . . . , bi,m], bi,l ∈ Rn×1, 1 � l � m. ρs(t), as,j(t), j = 1,
2, . . . , p denote the time profiles of the sth actuator fault, which are described by
(2.10), us(t) is the desired controller when the sth actuator is healthy. Inspired by the
SMOs in [52], we are ready to present one of the results of this chapter. It is assumed
that fuzzy observer and fuzzy control systems have the same premise variables z(t),
then the following fuzzy observers are proposed to isolate the actuator fault.

IsolationObserver Rule i: IF z1(t)isMi1 and . . . zq(t) isMiq, THEN⎧⎪⎪⎨
⎪⎪⎩

˙̂xis(t) = Aix̂is(t) + Li(y(t) − ŷis(t)) + Biu(t) + bi,sμs[ρ̄s|us(t)| +
p∑

j=1

ās,j]

ŷis(t) = Cisx̂is(t)
(2.29)

where x̂is(t), ŷis(t) are the sth fuzzy observer’s state and output, respectively. Li is
the observer’s gain matrix for ith observer. The global fuzzy observer is represented
as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂is(t) +
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t))+
r∑

i=1

hi(z(t))Biu(t) +
r∑

i=1

hi(z(t))bi,sμs[ρ̄s|us(t)| +
p∑

i=1

ās,j]

ŷs(t) =
r∑

i=1

hi(z(t))Cix̂s(t)

μs = −
r∑

i=1

hi(z(t))Fiseys(t)/||
r∑

i=1

hi(z(t))Fiseys(t)||

(2.30)
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whereFis ∈ R1×n is the sth row ofFi ∈ Rm×n, whichwill be defined later,Li ∈ Rn×n is
chosen such thatAi − LiCi isHurwitz, exs(t) = xs(t) − x̂s(t) and eys(t) = y(t) − ŷs(t)
are respectively the state error and output error between the plant and the sth SMO
observer.

For s = l, the error dynamics is obtained from (2.28) and (2.30).

ėxs(t) =
r∑

i=1

hi(z(t))Aieis(t) −
r∑

i=1

hi(z(t))Li(y(t)−

ŷis(t)) +
r∑

i=1

hi(z(t))bi,s[(−ρs(t)us(t) − μsρ̄s·

|us(t)|) +
p∑

j=1

(as,j(t) − μsās,j)]

=
r∑

i=1

hi(z(t)){(Ai − LiCi)eis(t) + bi,s[(−ρs(t)·

us(t) − μsρ̄s|us(t)|) +
p∑

j=1

(as,j(t) − μsās,j)]}

(2.31)

For s �= l, we have

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−bi,lρl(t)ul(t) − bi,sμsρ̄s|us(t)|)+
p∑

j=1

(bi,lal,j(t) − bi,sμsās,j)]

(2.32)

The stability of the state error dynamics is guaranteed by the following theorem.

Theorem 2.1 Under Assumptions 2.1–2.3, if there exist a common symmetric pos-
itive definite matrix P and matrices Li, Fi, and Qi > 0, i = 1, 2, . . . , r with appro-
priate dimensions, such that the following conditions hold,

(Ai − LiCi)
TP + P(Ai − LiCi) � −Qi, (2.33)

PBi = (FiCi)
T . (2.34)

Then, when the lth actuator is faulty, for s = l, limt→∞exs = 0, and for s �= l,
limt→∞exs �= 0.
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Proof (1) For s = l, according to (2.31), we have

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))bi,s[(−μsρ̄s|us(t)| − ρs(t)us(t))−
p∑

j=1

μsās,j +
p∑

j=1

as,j(t)]

Define the following Lyapunov function

V2(t) = eTxs(t)Pexs(t) (2.35)

Differentiating V2 with respect to time t, and using (2.33), one has

V̇2(t) = ėTxs(t)Pexs(t) + eTxs(t)Pėxs(t)

� −eTxs(t)Qiexs(t) + 2eTxs(t)P
r∑

i=1

hi(z(t))bi,s·

[(−μsρ̄s|us(t)| − ρs(t)us(t)) −
p∑

j=1

μsās,j +
p∑

j=1

as,j(t)]

From μs = −
r∑

i=1
hi(z(t))Fiseys(t)/||

r∑
i=1

hi(z(t))Fiseys(t)|| and (2.34), one has

2eTxs(t)P
r∑

i=1

hi(z(t))bi,s(−μsρ̄s|us(t)| − ρs(t)us(t)) � 0,

2eTxs(t)P
r∑

i=1

hi(z(t))bi,s(−
p∑

j=1

μsās,j +
p∑

j=1

as,j(t)) � 0.

Hence,
V̇2(t) � −eTxs(t)Qiexs(t) � 0 (2.36)

BecauseV2(t) ∈ L∞ is amonotonous andnon-increasing bounded function,V2(+∞)

exists. Hence, we have V2(0) − V2(+∞) � − ∫ +∞
0 eTxs(t)Qiexs(t), i.e. exs(t) ∈ L2.

Since exs(t) and ėxs(t) ∈ L∞, using theLyapunov stability theory,wehave limt→∞exs(t)
= 0. Thus, we have limt→∞eys(t) = 0.
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(2) For s �= l, it follows from (2.28) and (2.30) that:

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−bi,lρl(t)ul(t) − bi,sμsρ̄s|us(t)|)+
p∑

j=1

(bi,lal,j(t) − bi,sμsās,j)]

Because matrix Bi is of full column rank (Assumption 2.1), we know that bis and bil
are linearly independent. Therefore,

lim
t→∞

r∑
i=1

hi(z(t))[(−bi,lρl(t)ul(t) − bi,sμsρ̄s|us(t)|) +
p∑

j=1

(bi,lal,j(t) − bi,sμsās,j) �= 0

(2.37)
Thus, we have limt→∞exs(t) �= 0 and limt→∞eys(t) �= 0.

From (1) and (2), we obtain the conclusions. This ends the proof.

Now, we denote the residuals between the real system and SMOs as follows:

Js(t) = ∥∥eys(t)∥∥ = ∥∥ŷs(t) − y(t)
∥∥ , 1 � s � m (2.38)

According to Theorem 2.1, when the lth actuator is faulty, i.e., s = l, the residual
Js(t) must tend to zero; while for any s �= l, basically, Js(t) does not equal zero.
Furthermore, from Lemma 2.1, we have, if l = s, then

Js(t) �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (2.39)

and if l �= s, then

Js(t) >

r∑
i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (2.40)

Hence, the isolation law for actuator fault can be designed as

{
Js(t) � TI , l = s ⇒ the lth actuator is faulty

Js(t) > TI , l �= s
(2.41)
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where threshold TI is defined as follows:

TI =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2.

Note that, μs = −∑r
i=1 hi(z(t))Fiseys(t)/||∑r

i=1 hi(z(t))Fiseys(t)|| in (2.30), which

denominator contains eys(t). Just as pointed out in [52], the chattering phenomenon
occurswhen eys(t) → 0 in practice. Inspired by [52], in order to reduce this chattering
in practical applications, we modify SMOs (2.30) by introducing a positive constant
δ as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂s(t) −
r∑

i=1

hiLi(ŷs(t) − y(t)) +
r∑

i=1

hi(z(t))Biu(t) −
r∑

i=1

hi(z(t))μ
′
s[ρ̄s|us(t)| +

p∑
j=1

ās,j]

ŷs(t) =
r∑

i=1

hi(z(t))Cisx̂s(t)

μ′
s = −

r∑
i=1

hi(z(t))Fiseys(t)/(||
r∑

i=1

hi(z(t))Fiseys(t)|| + δ)

(2.42)

where δ > 0 ∈ R is a constant, s = 1, 2, . . . ,m. Obviously, the denominator of μ′
s

will converge asymptotically to δ when eys(t) → 0, which reduces this chattering
phenomenon.

From the above analysis, it is easy to find that, a suitable threshold δ must be
selected such that Js(s = l) tends to be very small when the lth actuator is faulty,
while other residuals Js(s �= l) are not equal to zero on any small time intervals.
Thus, the modified SMOs can not only decrease the chattering problem in practice,
but also can realize fault diagnosis successfully.

2.3.4 Fault Estimation

After fault isolation, we can estimate the fault. Assume the sth (1 � s � m) actuator
is faulty, the faulty system can be described as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

hi(z(t))Aix(t) +
r∑

i=1

hi(z(t))Biu(t) −
r∑

i=1

hi(z(t))bi,s[ρsus(t) −
p∑

j=1

as,j(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.43)
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To estimate the fault, an observer is presented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

hi(z(t))Aix̂(t) +
∑r

i=1
hi(z(t))Biu(t)−

r∑
i=1

hi(z(t))bi,s[ρ̂sus(t) −
p∑

j=1

âs,j] +
r∑

i=1

hi(z(t))Li(y(t) − ŷ(t))

ŷ(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.44)

where ρ̂s, âs,j are the estimate values of ρs(t), as,j(t) at time t.

Remark 2.3 Many results about observer design were reported in literature. For
faulty systems with only bias fault fa described as follows:

{
ẋ(t) = Ax(t) + B(u(t) + fa)

ŷ(t) = Cx(t)

an observer is classically designed in the following form of

{ ˙̂x(t) = Ax̂(t) + B(u(t) + f̂a) + L(y(t) − ŷ(t))

ŷ(t) = Cx̂(t)

Let ex(t) = x(t) − x̂(t), then the error dynamics is described by

ėx(t) = (A − LC)ex(t) + B(fa − f̂a)

where f̂a denotes the estimation of fa. However, in this chapter, actuator bias faults
and gain faults are both considered, the above observer does not work. The novel
observer (2.44) is proposed in order to estimate the two kinds of faults.

Using (2.43) and (2.44), the error dynamics is obtained:

ėx(t) =
r∑

i=1

hi(z(t))[(Ai − LiCi)ex(t))] −
r∑

i=1

hi(z(t))bi,s[ρ̃sus −
p∑

j=1

ãs,j] (2.45)

where ex(t) = x(t) − x̂(t), ρ̃s = ρs(t) − ρ̂s, ãs,j = as,j(t) − âs,j.
Now, an adaptive fault diagnostic algorithm is proposed to estimate the actuator

fault. The stability of the error dynamics is guaranteed by the following theorem.

Theorem 2.2 Under Assumptions 2.1–2.3, if there exist a common symmetric posi-
tive definite matrix P, real matrices Li and Qi > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold,
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P(Ai + LiCi) + (Ai + LiCi)
TP < −Qi (2.46)

PBi = (FiCi)
T (2.47)

˙̂ρ i =
{
0, ρ̂i = ρ̄1 and − 2η1Fi,sey > 0 or ρ̂i = −ρ̄1 and − 2η1Fi,sey < 0

− 2η1Fi,seyus, otherwise
(2.48)

˙̂ai,j =
{
0, âi,j > ā1 and 2η2Fi,sey > 0 or âi,j < −ā1 and 2η2Fi,sey < 0

2η2Fi,sey, otherwise
(2.49)

where i = 1, . . . ,m, j = 1, . . . , p, Fis ∈ R1×n is the sth row of Fi ∈ Rm×n, η1 >

0, η2 > 0 denote the adaptive rates, then the error system (2.45) is asymptotically sta-
ble.Moreover, ex(t), ρ̃s and ãs,j are semi-globally uniformly ultimately bounded, con-
verging asymptotically to a small neighborhood of zero, namely, |ex| �

√
α/λmin(P),

|ρ̃i| �
√
2η1α, and |g̃i,j| �

√
2η2α, where

μ0 =
r∑
l

hl(z(t))(
2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
),

λ0 = min{λmin(Q1)

λmax(P)
, . . . ,

λmin(Qr)

λmax(P)
, 1}

and α = μ0/λ0 + V (0).

Proof Define the following smooth function

V = V1 + V2 + V3 (2.50)

V1 = eTx (t)Pex(t) (2.51)

V2 =
r∑

i=1

hi(z(t))(
1

2η1
ρ̃2
s (t)) (2.52)

V3 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

2η2
a2s,j(t)) (2.53)

Differentiating V, Vi, i = 1, 2, 3 with respect to time t, leads to

V̇ = V̇1 + V̇2 + V̇3 (2.54)



28 2 Fault Tolerant Control for T-S Fuzzy Systems with Application to NSHV

V̇1 =
r∑

i=1

hi(z(t))[eTx (t)(P(Ai − LiCi) + (Ai − LiCi)
TP)ex(t)]−

r∑
i=1

hi(z(t))[2eTx (t)Pbi,sρ̃sus −
p∑

j=1

2eTx (t)Pbi,sãs,j]
(2.55)

V̇2 =
r∑

i=1

hi(z(t))(
1

η1
ρ̃s

˙̃ρs) =
r∑

i=1

hi(z(t))(
1

η1
ρ̃s(ρ̇s − ˙̂ρs)

=
r∑

i=1

hi(z(t))
1

η1
ρ̃sρ̇s −

r∑
i=1

hi(z(t))
1

η1
ρ̃s

˙̂ρs

(2.56)

V̇3 =
r∑

i=1

p∑
j=1

hi(z(t))
ãs,j ˙̃as,j

η2
=

r∑
i=1

p∑
j=1

hi(z(t))
ãs,j(ȧs,j − ˙̂as,j)

η2

=
r∑

i=1

p∑
j=1

hi(z(t))
ãs,j ȧs,j

η2
−

r∑
i=1

p∑
j=1

hi(z(t))
ãs,j ˙̂as,j

η2

(2.57)

Substituting (2.55–2.57) into (2.54), it yields

V̇ = −
r∑

i=1

hi(z(t))e
T
x Qiex +

r∑
i=1

hi(z(t))
1

η1
ρ̃sρ̇s +

r∑
i=1

p∑
j=1

hi(z(t))
1

η2
ãs,j ȧs,j−

r∑
i=1

hi(z(t))ρ̃s(2e
T
x Pbi,sus + 1

η1

˙̂ρs) +
r∑

i=1

p∑
j=1

hi(z(t))ãs,j(2e
T
x Pbi,s − 1

η2

˙̂as,j)

(2.58)
Substituting (2.48, 2.49) into (2.58), it yields

V̇ = −
r∑

i=1

hi(z(t))e
T
x Qiex +

r∑
i=1

hi(z(t))
1

η1
ρ̃sρ̇s +

r∑
i=1

p∑
j=1

hi(z(t))
1

η2
ãs,j ȧs,j

(2.59)
Since

ρ̃iρ̇i

η1
= − ρ̃2

i

η1
+ ρ̃i(ρ̃i + ρ̇i)

η1
= − ρ̃2

i

η1
+ (ρi − ρ̂i)(ρi − ρ̂i + ρ̇i)

η1

� − ρ̃2
i

η1
+ (|ρi| + |ρ̂i|)(|ρi| + |ρ̂i| + |ρ̇i|)

η1
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p∑
j=1

ãi,j ȧi,j
η2

= −
p∑

j=1

ã2i,j
η2

+
p∑

j=1

ã2i,j
η2

+
p∑

j=1

ãi,j ȧi,j
η2

� −
p∑

j=1

ã2i,j
η2

+
p∑

j=1

(|ai,j| + |âi,j|)(|ai,j| + |âi,j| + |ȧi,j|)
η2

and |ρ̂i(t)| � ρ̄1 and |âi,j(t)| � ā1, which can be guaranteed by using the adaptive
laws (2.48) and (2.49), and Assumptions 2.2 and 2.3 (i.e., |ρi(t)| � ρ̄1, |ρ̇i(t)| � ρ̄2,
|ai,j(t)| � ā1, and |ȧi(t)| � ā2) are satisfied, one has

ρ̃iρ̇i

η1
� − ρ̃2

i

η1
+ 2ρ̄1(2ρ̄1 + ρ̄2)

η1

p∑
j=1

ãi,j ȧi,j
η2

� −
p∑

j=1

ã2i,j
η2

+
p∑

j=1

2ā1(2ā1 + ā2)

η2

Hence, from (2.59), one has

V̇ �
r∑

l=1

hl(z(t))[−eTx Qiex − ρ̃2i
η1

−
p∑

j=1

ã2i,j
η2

+2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
]

�
r∑
l

hl(z(t))[−eTx Qiex − ρ̃2i
η1

−
p∑

j=1

ã2i,j
η2

+2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
]

�
r∑

l=1

hl(z(t))[−eTx Qiex − ρ̃2i
η1

−
p∑

j=1

ã2i,j
η2

+ μ]

�
r∑

l=1

hl(z(t))[−λmin(Qi)e
T
x ex − ρ̃2i

2η1
−

p∑
j=1

ã2i,j
2η2

+ μ]

�
r∑

l=1

hl(z(t))[−λmin(Qi)

λmax(P)
eTx Pex − ρ̃2i

2η1
−

p∑
j=1

ã2i,j
2η2

+ μ]

� −λ0V (t) + μ0
(2.60)

where

μ = 2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
,

μ0 =
r∑
l

hl(z(t))(
2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
),
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λ0 = min{ λmin(Q1)

λmax(P)
, λmin(Q2)

λmax(P)
, . . . , λmin(Qr)

λmax(P)
, 1}. Then, one has, d

dt (V (t)eλ0t) � eλ0tμ0.

Furthermore, 0 � V (t) � μ0

λ0
+ [V (0) − μ0

λ0
]e−λ0t � μ0

λ0
+ V (0)Letα = μ0

λ0
+ V (0),

one has |ex| �
√

α
λmin(P)

, |ρ̃i| �
√
2η1α, and |ãi,j| �

√
2η2α. This ends the proof.

Remark 2.4 If there exist two known constants fmin, fmax such that fmin � |f (t)| �
fmax, then the fault f (t) can be approximated by the following form

f (t) = 1

2
(fmax − fmin)(1 − tanh ζ ) + fmin (2.61)

where ζ is an unknown constant. Thus, the fault f (t) is estimated through the esti-
mation of ζ̂ , namely

f̂ (t) = 1

2
(fmax − fmin)(1 − tanh ζ̂ ) + fmin (2.62)

This method prevents the phenomenon of parameter drift in the presence of bounded
disturbances because of | tanh ς̂ | < 1, and ensures fmin � |f̂ (t)|� fmax.

2.3.5 Fault Accommodation

After that the fault information is obtained, wewill consider the fault-tolerant control
problem of system (2.2), and design a fault-tolerant control law to recover the control
system’s dynamics performance when an actuator fault occurs. Firstly, we consider
the fuzzy control problem for the following nominal system without actuator faults:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) + Biu(t))

y(t) =
r∑

i=1

hi(z(t))Cix(t)

The parallel distributed compensation technique offers a procedure to design a fuzzy
control law from a given T-S fuzzy model. In the PDC design, each control rule
is designed from the corresponding rule of T-S fuzzy model. The designed fuzzy
controller has the same fuzzy sets as the considered fuzzy system.

Control Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

ui(t) = Kix(t)
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and the overall fuzzy controller is given as follows:

u(t) =
r∑

i=1

hi(z(t))Kix(t)

where the controller gain matrix Ki is determined by solving the following LMI:

P(Ai + BiKi) + (Ai + BiKi)
TP < −Qi (2.63)

where P = PT > 0 and Qi > 0 are matrices with appropriate dimensions.
On the basis of the estimated actuator fault, the fault tolerant controller is con-

structed as

us = (uNs − ∑pi
j=1 âi,j)

(1 − ρ̂s)
(2.64)

where uNs is the sth normal control input, ρ̂s, âi,j are the estimations of ρs, ai,j, which
are used to compensate for the gain fault and bias fault.

Theorem 2.3 Consider system (2.2) under Assumptions 2.1–2.3. If there exist a
common symmetric positive definite matrix P, real matrices Li and Qi > 0, i =
1, 2, . . . , r with appropriate dimensions, such that the following conditions hold

P(Ai − LiCi) + (Ai − LiCi)
TP < −Qi (2.65)

PBi = (FiCi)
T (2.66)

˙̂ρi =
{
0, ρ̂i = ρ̄1 and − 2η1Fi,sey > 0 or ρ̂i = −ρ̄1 and − 2η1Fi,sey < 0

− 2η1Fi,seyus, otherwise
(2.67)

˙̂ai,j =
{
0, âi,j > ā1 and 2η2Fi,sey > 0 or âi,j < −ā1 and 2η2Fi,sey < 0

2η2Fi,sey, otherwise
(2.68)

where i = 1, . . . ,m, j = 1, . . . , p, Then system (2.2) is asymptotically stable under
the feedback FTC (2.65) and all signals involved in the closed-loop system are
semi-globally uniformly ultimately bounded, converging asymptotically to a small
neighborhood of zero, namely,

|e| �
√

α/λmin(P), |ρ̃i| �
√
2η1α, |ãi,j| �

√
2η2α,

where λ0 = min{ λmin(Q1)

λmax(P)
, . . . , λmin(Qr)

λmax(P)
, 1}, μ0=

r∑
l
hl(z(t))[ 2ρ̄1(2ρ̄1+ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1+ā2)
η2

], α = V (0) + μ0/λ0.
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Proof Similar to the proof of Theorem2.2, it is easy to obtain the conclusions of
Theorem2.3. The detailed proof is thus omitted here.

2.4 Simulation Results

2.4.1 NSHV Modeling and Analysis

Considering the longitudinal flight mode of NSHV, a mathematical model for a
genericNSHVdeveloped atNASALangleyResearchCenter is presented in [53]. The
longitudinal dynamics of NSHV can be described by a set of differential equations
involving its velocity V , flight-path angle γ , altitude h, angle of attack α and pitch
rate q as

V̇ = T cosα − D

m
− u sin γ

r2
(2.69)

γ̇ = L + T sin α

mV
+ (μ − V r2) cos γ

V r2
(2.70)

ḣ = V sin γ (2.71)

α̇ = q − γ̇ (2.72)

q̇ = Myy

Iyy
(2.73)

where L = q̄SCL,D = q̄SCD,T = q̄SCT , r = h + Re, Myy = q̄Sc̄[CM(α) + CM

(δe) + CM(q)], CL = 0.6203α, CD = 0.6450α2 + 0.0043378α + 0.003772, CM

(δe)= ce(δe − α), CM(q) = (c̄/2V )q(−6.796α2 + 0.3015α − 0.2289),CM(α) =
−0.035· α2 + 0.036617(1 + ΔCMα)α + 5.3261e − 06, and

CT =
{
0.02576δT ,when δT < 1

0.0224 + 0.00336δT , when δT > 1
.

The parameters are the aircraft mass m, the gravitational constant μ, the moments
of inertia Iyy and the pitch moment coefficients. The aerodynamic coefficients and
inertia data are coupled with state variables and control inputs. The control input
vector is u(t) = [δe, δT ]T , where δe is the elevator detection, and δT is the throttle
setting, respectively. The longitudinal model of the NSHV described by (2.69–2.73)
can be written in the following affine nonlinear form:

{
ẋ(t) = f (x) + g(x)u(t)

y(t) = Cx(t)
(2.74)
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where x(t) = [V, γ, h, α, q]T ∈ Rn denotes state vector, u(t) = [δe, δT ]T ∈ Rm

denotes the control input vector, and y(t) is the output vector.
In this section, some simulation results are presented to demonstrate the effective-

ness of the proposed techniques. For the purpose of this study, the aerodynamic coef-
ficients are simplified around the cruising flight mode. The nominal flight of NSHV
is at a trimmed cruise conditions: Mach = 15, V = 15060 ft/s and h = 110000 ft/s.

If each state variable is selected as a premise variable, then the number of fuzzy
rules will become too large. However, from the property of NSHV, we know that the
angle of attack α is a key variable affecting the nonlinear character of NSHV, and the
velocityV has constraint relationship to the altitude h, and the pitch angle θ = α + γ .
Similar to [53], we select x̄ = [V, θ, q]T as a new state vector. As a result, we denote
z1 = V , z2 = α + γ , z3 = q, and select z1, z2 and z3 as premise variables for the T-S
fuzzy system model. Hence, it can not only reduce the number of fuzzy rules but
also well approximate the nonlinear system and characterize the NSHV model [7].
Furthermore, we assume

z1 ∈ (6000 16000) m/s, z2 ∈ (−0.5 0.5) rad/s, z3 ∈ (−0.5 0.5) rad/s.

Suppose that each premise variable has two associated fuzzy sets:

{z1 = 6000, 16000}; {z2 = −0.5, 0.5}; {z3 = −0.5, 0.5}

The corresponding fuzzy membership functions are defined as

Mz1=6000 = exp[−(z1/ς1)
2],Mz1=16000 = 1 − Mz1=6000

Mz2=−0.5 = 1

1 + exp[((z2)2 − σ)/ς2]
, Mz2=0.5 = 1 − Mz2=−0.5

Mz3=−0.5 = exp[−(
z3
ς3

− σ̄ )],Mz3=−0.5 = 1 − Mz3=−0.5

where the unknown parameters σ, σ̄ , ς1, ς2, ς3 should be selected to symmetrically
cover the space of the input variables.

We choose eight working points of NSHV as follows:

[z1, z2, z3]T =:

⎧⎪⎨
⎪⎩

[6000,−0.5, 0.5], [6000, 0.5, 0.5], [6000,−0.5,−0.5]
[6000, 0.5,−0.5], [5000,−0.5, 0.5], [16000, 0.5, 0.5]
[16000, 0.5,−0.5], [6000,−0.5, 0.5]

The parameters of the membership are selected as: σ = 0.15, σ̄ = 4, ς1 = 3200,
ς2 = 0.05, ς3 = 0.4.

Then, eight plant rules and corresponding control rules can be obtained. We give
the first rule as an example, and the other rules have the similar form.
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Rule 1: IF z1 is about 6000m/s and z2 is about −0.5 rad/s and z3 is about
−0.5 rad/s , THEN

˙̄x(t) = A1x̄(t) + B1u(t), y(t) = Cx̄(t)

where Ai and Bi, i = 1, 2, . . . , 8 can be easily obtained by the substitution of each
of the eight operating points to f (x) and g(x).

In this study, we assume that only an actuator is faulty at one time. We consider:
Case 1:

uf1(t) = u1(t),

uf2(t) =
⎧⎨
⎩
y2(t), t < 5

(1 − ρ2(t))(y2(t) +
∑p

j=1
g2,jf2,j(t)), t � 5

where ρ2(t) = 0.4 sin(π t), p = 1, g2,1 = 0.4, f2,1(t) = cos(t).
In order to compare with the results in [6, 8], we consider the following cases.
Case 2 (Bias fault) [24]:

uf1(t) = u1(t),

uf2(t) = u2(t) + f2,1(t), f2,1(t) =

⎧⎪⎨
⎪⎩

0, t < 4s

5, t � 4s

5 + 2(t − 7), t � 7s

where ρ2(t) = 0, p = 1, g2,1 = 1.
Case 3 (Gain fault) [51]:

uf1(t) = u1(t),

uf2(t) = (1 − ρ2(t))u2(t), ρ2(t) =
{
0, t < 2s

0.4, t � 2s

where ρ2(t) = 0, p = 0, g2,1 = 0.

Remark 2.5 If each state variable of the near space hypersonic vehicle (NSHV)
model is selected as premise variable, then the number of fuzzy rules becomes too
large, which leads to the increasing amount of computing and thus affects the setting
time of the closed loop system. In order to reduce the number of fuzzy rules, taking
into account the main characteristics of NSHV, we select x̄ = [V, θ, q]T as premise
variables where θ = α + γ . As pointed out in [52], it can not only reduce the number
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of fuzzy rules but it provides also a good approximation of the nonlinear system. As a
result, it can achieve satisfactory accuracy and dynamic performance of the proposed
fault tolerant control.

2.4.2 Simulation Results

By using Matlab toolbox to solve the matrices inequalities (2.18), one can obtain the
fault diagnostic observer gains Li. By solving (2.64) and (2.67), one can obtain the
positive definite symmetric matrix P and the nominal controller gains Ki. Due to the
space limitation, only the common matrix P, and the matrices Q1, L1,K1 of the first
working point of NSHV are given here. Therefore, one can design the fault-tolerant
controller (2.65).

P = 1.0e + 005 *⎡
⎢⎢⎢⎢⎢⎢⎣

3.4852 − 0.0000 0.0000 0.0000 0.0000

− 0.0000 3.4852 0.0000 0.0000 − 0.0000

0.0000 0.0000 3.4852 0.0000 0.0000

0.0000 0.0000 0.0000 3.4852 − 0.0000

0.0000 − 0.0000 0.0000 − 0.0000 3.4852

⎤
⎥⎥⎥⎥⎥⎥⎦

Q1 = 1.0e + 005 *⎡
⎢⎢⎢⎢⎢⎢⎣

3.4852 − 0.0000 − 0.0000 0.0001 − 0.0006

0.0000 3.4852 − 0.0000 − 0.0000 0.0000

0.0000 0.0000 3.4852 − 0.0000 0.0000

− 0.0001 0.0000 0.0000 3.4852 0.0001

0.0006 − 0.0000 − 0.0000 − 0.0001 3.4852

⎤
⎥⎥⎥⎥⎥⎥⎦

K1 =
[
9.4165 44487.8491 0.8575 181.5760 1.6392

5.6423 18484.9800 -0.5165 85.75630 0.7744

]

L1 = 1.0e + 008 *⎡
⎢⎢⎢⎢⎢⎢⎣

− 0.0035 − 0.1100 − 0.0003 0.0354 0.0003

− 0.1100 − 0.0035 6.9356 0.0000 0.0000

− 0.0003 6.9356 − 0.0035 − 0.0000 − 0.0000

0.0354 0.0000 0.0000 − 0.0035 − 0.7706

0.0003 − 0.0000 0.0000 − 0.7706 − 0.7755

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 2.1 The observer errors
time responses: e1, e2, e3
(healthy case)
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Fig. 2.2 Fault detection
residual J with threshold
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The simulation results are presented in Figs. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and
2.9. FromFig. 2.1, it is easy to see that, under normal operating condition, observation
errors globally asymptotically converge to zero. In this chapter, it is assumed that
the error system is stable before fault occurrence, namely, ex(0) = 0, ēxs(0) = 0,
||ex(0)||e−κt/2 ∗√

λmax(P)/λmin(P) = 0. Hence, in the ideal situation, the detection
thresholdTd and the isolation threshold TI can be select as Td = TI = 0. However,
there may exist noise and disturbance in practical situation. In the simulations, a
white noise, with zero mean and standard deviation which is equal to 0.1, is added
on each output. As a result, the detection threshold Td and the isolation threshold
TI can be selected as Td = 0.1,TI = 0.1 according to the definition of detection
residual and isolation residuals. Figure2.2 shows that, when an actuator fault occurs
in the system, an alarm is generated since the residual signal deviates significantly
from zero.Meanwhile, the SMOs quickly isolate the fault, as shown in Fig. 2.3. From
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Fig. 2.3 Fault detection
residuals J1, J2 with
threshold
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Fig. 2.4 Time responses of
the observer errors: e1, e2, e3
(no compensation for fault)
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Fig. 2.4, we can see that, when an actuator fault occurs, with no fault compensation,
the observation errors do not converge zero. However, compensating for the fault,
the error system becomes stable, as shown in Fig. 2.5. From Figs. 2.6 and 2.7, we
can clearly draw the conclusion that both gain faults and bias faults can be estimated
accurately and promptly.

Compared with [24, 51], because a clear definition of threshold for fault detection
and isolation is provided, it is easy to detect and isolate the faults. The fault estimation
observer presented in this paper has the following two properties. On the one hand,
differing from the classical fault estimation schemes in [24, 51, 52], where only bias
faults or gain faults can be estimated, it is designed to estimate the two types of
faults. On the other hand, from Figs. 2.8 and 2.9, it is obvious that it can estimate the
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Fig. 2.5 Time responses of
the observer errors: e1, e2, e3
(with compensation for fault)
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Fig. 2.6 The gain fault
ρ2(t) = 0.4 sin(π t) and its
estimation ρ̂2(t)
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types of faults considered in [24, 51] and the fault estimation algorithm has better
performances. From the above simulation results, it can be seen that, by the proposed
fault detection and isolation observer, an actuator fault can be quickly detected and
isolated, and using the fault estimation algorithm, the fault can be estimated online,
which can be used to compensate for the fault and to ensure the stability of the
closed-loop system in spite of actuator fault.
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Fig. 2.7 The bias fault
f2(t) = 0.4 cos(t) and its
estimation f̂2(t)
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Fig. 2.8 The fault and its
estimation (Case 2)
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Remark 2.6 From the simulation results, it can be seen that (i) the proposed FDI/FTC
scheme is effective because the fault can be detected, estimated and accommodated
quickly, and (ii) the performance of our algorithm is better than that presented in the
literature.
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Fig. 2.9 The fault and its
estimation (Case 3)
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2.5 Conclusions

In this paper, the problem of fault tolerant control for T-S fuzzy systemswith actuator
faults is studied. We first design a bank of SMOs to detect and estimate the fault and
a sufficient condition for the existence of SMOs is derived. Simulation results of
NSHV show that the designed fault detection, isolation and estimation algorithms
and fault-tolerant control scheme have good dynamic performances in the presence
of actuator faults.
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