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Preface

With the development technology, modern control systems, such as flight control
systems, become more and more complex and involve an increasing number of
actuators and sensors. These physical components may become faulty which may
cause system performance deterioration, may lead to instability that can further
produce catastrophic accidents. In order to improve system reliability and to
guarantee system stability in all situations, many effective fault-tolerant control
(FTC) approaches including fault diagnosis (FD) have been proposed in literature.
Among the faults occurred in the controlled systems, the actuator faults and sensor
faults are common. Up to now, for the actuator faults and sensor faults, many
relevant results have been obtained in the literature. However, these theoretical
studies are not perfect, and there still are problems of actuator faults and sensor
faults, which are worth to be further deeply investigated due to its academic
meaning as well as its practical one:

1. Motivation from academic research

Infinite-number-integrated-fault model. Most of the existing works on FD
and FTC in literature only considered bias faults, while gain faults have not
attracted enough attention. From the theoretical point of view, it is possible that
bias and gain faults simultaneously occur in systems. Furthermore, the fault
number may be infinite. Hence, it is necessary to propose a novel general fault
model, which can describe infinite-number-faults and deal with time-varying
bias fault and gain fault.

Singularity of fault-tolerant controller. In order to compensate for actuator
gain fault, the denominator of the fault-tolerant control input contains the esti-
mation of the gain fault. If the denominator is equal to zero, a controller sin-
gularity occurs. Hence, a novel FTC scheme must be designed to avoid the
controller’s singularity.

FTC against un-model fault. The actuator (sensor) bias and gain faults have an
affine-like appearance of the control input (system output). The un-modeled
faults have no traditional affine appearance. Furthermore, the existing results on
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the bias and gain faults in literature cannot be directly extended to FD and FTC
against the un-modeled faults. Therefore, it is necessary to design novel FTC
algorithm for the un-modeled faults.

Computation complexity in backstepping design procedure. To control
including FTC for the unknown nonlinear systems in or transformable to
parameter strict-feedback form, adaptive backstepping technique is a powerful
tool. However, computation complexity caused by analytic computation of the
higher derivatives of virtual control signals must be faced. Hence, how to reduce
the computation becomes crucial issue in controller design.

2. Motivation from practical application

Decision threshold and algorithm. In some existing works, the asymptotic
value of the state estimation error between the system state x and fault detection
observer state x̂, i.e., limt!1ðxðtÞ � x̂ðtÞÞ ¼ limt!1 exðtÞ ¼ exð1Þ, is consid-
ered as an fault occurrence indicator. However, exð1Þ is not available in
practice, and exð1Þ 6¼ 0 cannot practically be considered as fault indicator.
Hence, designing a more practical and efficient decision threshold and algorithm
becomes more important and urgent.

Multi-type multi-fault isolation. In practical applications, multiple faults
maybe simultaneously occur in the controlled systems. However, most of the
results on FD in literature works under the restrictive condition that only one
actuator or sensor fault occurs at one time, cannot be extended to the case where
multiple actuator and sensor faults simultaneously occur. Therefore, it is a need
for such case to design a novel FD observer to isolate multiple-type multiple
faults occurred simultaneously.

Fault detection for time-delay systems. Most of fault detection observers of
time-delay systems in literature contain time delay. If the time delay is
unknown, then the observers are not reasonable and do not work in the practical
applications. Hence, how to avoid the above shortcoming and design a proper
observer for dynamical systems becomes important and practically useful.

Time delay due to fault diagnosis. There is always some level of time to
detect, isolate and estimate the faults occurred in the systems. The time interval
is called as the time delay due to fault diagnosis in this book. When faults occur,
the faulty system works under the nominal control until the faults are diagnosed
and fault accommodation is performed, which may cause severe loss of per-
formance and stability. Hence, in the practical applications, the time delay due
to FD should be derived strictly, and its adverse effect on the system perfor-
mance should also be analyzed, and a proper solution is given to minimize its
adverse effect.

This book provides recent theoretical results and applications of fault diag-
nosis and FTC for dynamic systems, including uncertain or certain systems,
linear or nonlinear systems. Combining adaptive control technique with the
other control technique or approaches, this book investigates the problem of FD
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and FTC for uncertain dynamic systems including linear and nonlinear systems
with or without time delay.

This book intends to provide the readers a good understanding of FD and
FTC based on adaptive control technology. The book can be used as a reference
for the academic research on FD and FTC or used in Ph.D. study of control
theory and engineering. The knowledge background for this monograph would
be some undergraduate and graduate courses on linear system theory, nonlinear
system theory, and FD and FTC control technology and theory.

Yangzhou, China Qikun Shen
Nanjin, China Bin Jiang
Melbourne, Australia Peng Shi
November 2015
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Chapter 1
Introduction

1.1 FD and FTC Against Actuator and/or Sensor Faults

With the development technology, modern control systems, such as flight control
systems, become more and more complex and involve an increasing number of
actuators and sensors. These physical components may become faulty which may
cause system performance deterioration, may lead to instability that can further
produce catastrophic accidents.

To improve system reliability and guarantee system stability in all situations,
FD and fault accommodation methods have become attractive topics which received
considerable attentionduring the past twodecades as it canbe attested by the abundant
literatures [1–20].

Fault diagnosis including fault detection and isolation (FDI) [1, 6–9, 20] is used
to detect faults and diagnosis their location and significance in a system [1]. It has the
following tasks: fault detection, fault isolation and fault estimation. Fault detection is
to make a decision, e.g., faults occur in the controlled systems or not. Fault isolation
is used to determine the location of the faults, namely, which physical component
has become faulty. The last task in FD is to estimate the size of the fault.

Fault tolerant control aims at preserving the functionalities of a faulty systemwith
acceptable performances. FTC can be achieved in two ways, namely, passive and
active ways [1]. Passive FTC uses feedback control law that is robust with respect to
possible system faults [21–33].Generally speaking, passiveFTC ismore conservative
[1]. In order to relax the conservatism of the passive FTC approach, active FTC
method is developed. Active FTC relies on a FD module process to monitor the
performance of the controlled system, and to detect, isolate and estimate the faults in
the controlled system [34–45]. Accordingly, the control law is reconfigured online.

In recent years, by using adaptive control technology, various FD and FTC
approachers including passive and active FTC have been developed, and abundant
results on adaptive FD and FTC can be found in literature [21–45].

© Springer International Publishing AG 2017
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on Adaptive Control Approach, Studies in Systems, Decision and Control 91,
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2 1 Introduction

It is well known that, among the faults occurred in the controlled systems, actuator
and sensor faults are common. In practical application, actuator and sensor faults have
two kinds of faults, namely, bias faults and gain faults [46–52]. Bias fault model can
be described as:{

Actuator fault : uf (t) = u(t) + fu(x, u, t), t ≥ tf

Sensor fault : yf (t) = y(t) + fy(y, t), t ≥ tf
(1.1)

where tf is an unknown fault occurrence time; u and uf denote actuator input and
output, respectively; y and yf denote systemoutput and actual obtained systemoutput,
respectively; fu(x, u, t) and fy(y, t) denote actuator and sensor fault, respectively,
which are commonly assumed to be unknown but bounded signal. Actuator and
sensor gain faults have the following form,

{
Actuator fault : uf (t) = (1 − ρu(x, u, t))u(t), t ≥ tf

Sensor fault : yf (t) = (1 − ρy(y, t))y(t), t ≥ tf
(1.2)

where tf denotes an unknown fault occurrence time; u and uf denote actuator input
and output, respectively; y and yf denote system output and actual obtained system
out, respectively; 0 � ρu(x, u, t) � 1 and 0 � ρy(y, t) � 1 are unknown, which
denote the remaining control rate and measurable part, respectively.

Recently, an integrated fault model is reported, which contains the above two
kinds of faults [52, 53]. It can be uniformly described as:

{
Actuator fault : uf (t) = (1 − ρu(x, u, t))u(t) + fu(x, u, t), t ≥ tf

Sensor fault : yf (t) = (1 − ρy(t))y(t) + fy(t), t ≥ tf
(1.3)

Very recently, a so-called infinite-number-faults model was reported [60], which can
be described as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Actuator fault : uf (t) = (1 − ρu(x, u, t))u(t) +
pu∑
j=1

fu,j(x, u, t), t ≥ tf

Sensor fault : yf (t) = (1 − ρy(y, t))y(t) +
py∑
j=1

fy,j(y, t), t ≥ tf

(1.4)

where fu,j(t) (j = 1, . . . , pu) and fy,j(t) (j = 1, . . . , py) denote bounded signal, pu
and pu are known positive constants.

From (1.1)–(1.4), it is easily seen that the actuator and sensor faults have an affine-
like appearance of control input and/or system output. That is to say, the fault can be
expressed explicitly as gain and/or bias fault [54–56], which is called modeled fault
(MF) in this book. Unfortunately, there exist some cases in practical applications
where the faults cannot be expressed in the above affine-like form [57–59]. The fault
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model can be described as follows:{
Actuator fault : uf = f (x, u), t ≥ tf

Sensor fault : yf (t) = f (y), t ≥ tf
(1.5)

where f (x, u) and f (y) are two unknown nonlinear smooth function, with tf being
unknown fault occurrence time. Obviously, fault model described by (1.5) has no the
traditional affine-like appearance of control input and/or system output. The fault is
called un-modeled fault (UMF).

Although abundant results on FD and FTC against actuator and/or sensor faults
have been obtained in literature, FD and FTC for dynamic systems still need to be
deeply investigated due to their academic meaning as well as practical one, and there
exist many open problems to be solved, which is the topic of this book.

• FD and FTC against infinite-number-integrated-faults:
In most of the existing works in literature only considered bias faults, while gain
faults have not attracted enough attention. From the theoretical point of view, it is
possible that time-vary bias fault and time-vary gain fault simultaneously occur in
the controlled systems. Further, the number of the faults occurred in systemsmaybe
infinite. Hence, it is necessary to propose a novel infinite-number-integrated-fault
model and design corresponding FD and FTC algorithms. In addition, the denom-
inator of the fault-tolerant control input contains the estimation of the gain fault. If
the denominator is equal to zero, a controller singularity occurs. Hence, controller
singularity should be considered, and a novel FTC scheme must be designed to
avoid the singularity problem.

• Multi-type multi-fault isolation:
In the practical applications, multiple type multiple faults maybe simultaneously
occur in the controlled systems. However, most of the results on FD and FTC in
literature works under the restrictive condition that only one actuator fault occurs
at one time. What’s more, the results cannot be easily extended to the case where
multiple actuator faults simultaneously occur. Therefore, it is a need for such case
to design a novel FD algorithm to isolate multiple faults occurred simultaneously.

• FD and FTC against un-modeled fault:
Since un-modeled fault has no traditional affine-like appearance of control input
or system output, the results concerning onMF cannot be extended directly to FTC
against UMF. Under some restrictive conditions, some researchers investigated the
problem of FTC against UMFs, and only a few results were obtained in literature.
In [57], the problem of adaptive FTC for nonlinear systems with actuator MF was
investigated. However, the results are only applicable to second-order nonlinear
systems rather than more general high-order systems, which limit their practi-
cal applications. In [58, 59], robust detection and isolation schemes for UMFs
were addressed. However, these FDI schemes worked under the condition that
the system state variables and control inputs were bounded before and after the
occurrence of a fault, which is too restrictive. In addition, the UMF was assumed
to be a known function about control input and system state with an unknown gain.
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Hence, how to control more general high-order nonlinear systems with UMFs is
still an important and open problem, which motivates us for this study.

• Computation complexity in backstepping design procedure:
For the unknown nonlinear systems in or transformable to parameter strict-
feedback form, adaptive backstepping technique is a powerful tool. At standard
backstepping design procedure, analytic computation of the higher derivatives of
virtual control signals is necessary, which leads to a so-called computation com-
plexity especially when the system dimension increases. Hence, how to reduce the
computation becomes crucial issue in controller design.

1.2 Fault Detection for Time-Delay Systems

Time delay phenomenon often exists in the practical applications because of informa-
tion transmission. It has been proven that such time delaywill causes the performance
degradation of the controlled systems, even instability. Hence, the control problem
of time delay systems, including FTC, always is a hot topic Over the past decade
[61–73]. Stability analysis of the time delay systems can be divided into two classes:
time-dependent and time-independent results. The former is dependent on the size
of time delay, while the latter does relay on thecite time delay. Generally speaking,
time-dependent results are more conservative than the time-independent results.

Recently, FD and FTC for the time delay systems has drawn wide attentions [74–
82, 87]. In order to compensate for these faults, various fault-tolerant control (FTC)
methods are proposed. Among these FTC methods, active FTC methods is more
common, important and useful. Fault detection [83–86] is the first and important step
in active FTC method. For time delay systems, however, most of the FD observers
proposed in literature have a major shortcoming that the fault detection observers
contain the unknown time delay terms. For example, consider a simple system

{
ẋ(t) = Ax(t) + Adx(t − d) + Bu

y(t) = Cx(t)
(1.6)

where x, y and u denote state, output and control input, respectively; A, Ad, B and
C are known real matrices with appropriate dimensions; time delay d is a constant.
In most of the existing results such as [9], fault detection observer often is designed
for (1.6) as follows:

{ ˙̂x(t) = Ax̂(t) + Adx̂(t − d) + Bu + L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)
(1.7)

whereL is observer gainmatrix,whichwill be designed.Notice that, the first equation
in (1.7) contains time delay term x̂(t−d). Obviously, if d is unknown, then observer
(1.7) is not reasonable and does not work in the practical applications.
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Fig. 1.1 The fault diagnosis and accommodation time sequence

Hence, how to avoid the above shortcoming and design a proper observer for time
delay systems becomes important and practically useful.

1.3 Analysis of Time Delay Due to Fault Diagnosis

In general, active FTC framework includes the following steps: fault detection, fault
isolation, fault estimation and fault accommodation. The fault diagnosis and accom-
modation time sequence can be seen in Fig. 1.1. From Fig. 1.1, it is easily seen that
each step need some time. The time interval is called as time delay due to FD in
this book.

Generally speaking, it is under the condition that the fault occurred in system
can immediately be detected and isolated that an active fault tolerant control law is
designed [91]. In fact, there is always some time delay. Furthermore, when a fault
occurs, the faulty system works under the nominal control until the fault is detected,
isolated and fault accommodation is performed. That is to say, the considered system
is always controlled by the faulty actuators during [tF, tA]. Obviously, it will degrades
the system performances even damage the system. However, its effect is not studied
enough, and there are only few results reported in literature [88–91]. Hence, the
time delay due to FD should be derived strictly, and its adverse effect on the system
performance should also be analyzed and a proper solution to minimize its adverse
effect is given.

1.4 Organization of the Book

This book presents several fundamental problems of FD and FTC for dynamic sys-
tems. Combining adaptive control technique with the other control techniques or
approaches, a basic theoretical framework is formed towards the issues of FD and
FTC of dynamic system. In order to conveniently reading this book, some prelimi-
naries including same or similar lemmas are introduced in different chapters. This
book contains ten chapters, which exploit several independent yet related topics in
the detail.



6 1 Introduction

Chapter 2 addresses the problem of fault tolerant control for T-S fuzzy systems
with single actuator faults. A general actuator fault model with infinite number of
faults is proposed, which integrates time-varying bias faults and time-varying gain
faults. Then, sliding mode observers are designed to provide a bank of residuals
for fault detection and isolation, and a novel fault diagnostic algorithm is proposed,
which removes the classical assumption that the time derivative of the output errors
should be known as in some existing work. Further, a novel fault estimation observer
is designed. Utilizing the estimated actuator fault, an accommodation scheme is
proposed to compensate for the effect of the fault.

Chapter 3 investigates the fault tolerant control problem of near space vehicle
attitude dynamics with multiple actuator faults, which is described by a T-S fuzzy
model. Firstly, an integrated state-dependant actuator fault model with infinite num-
ber of faults is proposed to simultaneously deal with state-dependent bias and gain
faults. Then, sliding mode observers are designed to provide a bank of residuals for
fault detection and isolation. Based on Lyapunov stability theory, a fault diagnostic
strategy is proposed. Further, for the two cases where the state is available or not,
two accommodation schemes are proposed to compensate for the effect of the faults.

Chapter 4 focuses on the problem of fuzzy adaptive tracking control for a class
of uncertain nonlinear strict-feedback systems with actuator fault. The actuator fault
is assumed to have not only time-varying gain fault but also time-varying bias fault.
Combining command filtered backstepping design with the integral-type Lyapunov
function andutilizingNussbaum-type gain technique, an adaptive fuzzy fault-tolerant
control scheme is proposed to guarantee that the resulting closed-loop system is
asymptotically bounded with the tracking error converging to a neighborhood of the
origin. The control scheme requires only virtual control and its first one derivative
instead of them and their higher derivatives in backstepping design procedures.

In Chap.5, we consider the problem of fault-tolerant dynamic surface control
for a class of uncertain nonlinear systems with actuator faults and propose an active
fault-tolerant control scheme.Using theDSC technique, a novel fault diagnostic algo-
rithm is proposed, which removes the classical assumption that the time derivative
of the output error should be known. Further, an accommodation scheme is proposed
to compensate for both actuator time-varying gain and bias faults, and avoids the
controller singularity. In addition, the proposed controller guarantees that all sig-
nals of the closed-loop system are semi-globally uniformly ultimately bounded, and
converge to a small neighborhood of the origin.

Chapter 6 discusses the problem of fault-tolerant control for a class of uncertain
nonlinear high-order systems with actuator faults, and propose an observer-based
FTC scheme. Adaptive fuzzy observers are designed to provide a bank of residuals
for fault detection and isolation. Using a backstepping approach, a novel fault diag-
nosis algorithm is proposed, which removes the classical assumption that the time
derivative of the output error should be known. Further, an accommodation scheme
is proposed to compensate for the effect of the fault, where it is not needed to know
the bounds of the time derivative of the fault. The proposed controller guarantees

http://dx.doi.org/10.1007/978-3-319-52530-3_2
http://dx.doi.org/10.1007/978-3-319-52530-3_3
http://dx.doi.org/10.1007/978-3-319-52530-3_4
http://dx.doi.org/10.1007/978-3-319-52530-3_5
http://dx.doi.org/10.1007/978-3-319-52530-3_6
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that all signals of the closed-loop system are semi-globally uniformly ultimately
bounded and converge to a small neighborhood of the origin by appropriately choos-
ing designed parameters.

In Chap.7, the problem of adaptive active fault-tolerant control for a class of
nonlinear systems with unknown actuator fault is investigated. The actuator fault is
assumed to have no traditional affine appearance of the system state variables and
control input. The useful property of the basis function of the radial basis function
neural network, which will be used in the design of the fault tolerant controller, is
explored. Based on the analysis of the design of normal and passive fault tolerant
controllers, by using the implicit function theorem, a novel neural networks-based
active fault-tolerant control scheme with fault alarm is proposed. Comparing with
results in literature, the fault-tolerant control scheme can minimize the time delay
between fault occurrence and accommodation that is called the time delay due to
fault diagnosis, and reduce the adverse effect on system performance. In addition,
the FTC scheme has the advantages of a passive fault-tolerant control scheme as
well as the traditional active fault-tolerant control scheme’s properties. Furthermore,
the fault-tolerant control scheme requires no additional fault detection and isolation
model which is necessary in the traditional active fault-tolerant control scheme.

Chapter 8 discusses the problem of fault-tolerant control against actuator fault,
derives the time spent at each steps in fault diagnosis which is called as the time
delay due to fault diagnosis and quantitatively analyzes its effect on the faulty sys-
tems performance. A novel fault diagnosis algorithm is first proposed. The proposed
fault tolerant controller guarantees that all signals in the closed-loop system are semi-
globally uniformly ultimately bounded. What’s more, the analytical expression of
the time delay is derived strictly. Further, the quantitative analysis of system perfor-
mance which is degraded by the time delay is developed, and the conditions that the
magnitudes of the faults should be satisfied such that the faulty system controlled by
the normal controller remains bounded even stable during the time delay are derived.
In addition, the corresponding solution to the adverse effect of the time delay is
proposed.

Chapter 9 investigates the fault detection of uncertain systemswith unknown time-
delay constant, and design a novel adaptive neural network-based fault detection
observer, where not only the system states but also the unknown time delay can
be estimated. Furthermore, comparing with the existing works where an asymptotic
value is taken as an indicator to determinewhether faults occur or not, amore efficient
fault detection mechanism is proposed.

In Chap.10, several future research directions are predicated.
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64. Ye, D., Yang, G.H.: Adaptive fault-tolerant dynamic output feedback control for a class of

linear time-delay systems. Int. J. Control Autom. Syst. 6(2), 149–159 (2008)
65. Moon, Y.S., Park, P., Kwon,W.H., Lee, Y.S.: Delay-dependent robust stabilization of uncertain

state-delayed systems. Int. J. Control 74(14), 1447–1455 (2001)
66. Fridman, E., Shaked, U.: An improved stabilization method for linear time-delay systems.

IEEE Trans. Autom. Control 47(11), 1931–1937 (2002)
67. Xu, S., Lam, J., Zou, Y.: Simplified descriptor system approach to delay-dependent stability

and performance analyses for time-delay systems. IEE Proc. Control Theory Appl. 152(2),
147–151 (2005)

68. Jing, X.-J., Tan, D.-L., Wang, Y.-C.: An LMI approach to stability of systems with severe
time-delay. IEEE Trans. Autom. Control 49(7), 1192–1195 (2004)

69. Suplin, V., Fridman, E., Shaked, U.: A projection approach to H control of time-delay systems.
In: Proceedings of 43rd IEEE Conference of Decision and Control, Atlantis, Bahamas, USA,
December, pp. 4548–4553 (2004)

70. Xu, S., Lam, J., Zou, Y.: New results on delay-dependent robust H∞ control for systems with
time-varying delays. Automatica 42(2), 343–348 (2006)

71. Xu, S., Lam, J., Zhong, M.: New exponential estimates for time-delay systems. IEEE Trans.
Autom. Control 51(9), 1501–1505 (2006)

72. Xu, S., Lam, J.:On equivalence and efficiencyof certain stability criteria for time-delay systems.
IEEE Trans. Autom. Control 52(1), 95–101 (2007)

73. Mu, M., He, Y., She, J.H.: Stability Analysis and Robust Control of Time-Delay Systems.
Science Press Beijing and Springer, Berlin (2010)

74. Du, D., Jiang, B., Shi, P.: Fault estimation and accommodation for switched systems with
time-varying delay. Int. J. Control Autom. Syst. 9(3), 442–451 (2011)

75. Du, D., Jiang, B., Shi, P.: Robust l2 − l∞ filter for uncertain discrete switched time-delay
systems. Circuits Syst. Signal Procss. 29(5), 925–940 (2010)



References 11

76. Chen, W., Saif, M.: Fault detection and accommodation in nonlinear time-delay systems. In:
Proceedings of the American Control Conference, vol. 5, pp. 4255–4260 (2003)

77. You, F.Q., Tian, Z.H., Shi, S.J.: Senor fault diagnosis of time-delay systems based on adaptive
observer. J. Harbin Inst. Technol. (new Series) 13(5), 621–625 (2006)

78. Gao, F., Zhang, H.Y.: Stability of time-delay fault tolerant control systems with Markovian
parameters. J. Beijing Univ. Aeronaut. Astronaut. 32(5), 566–570 (2006)

79. Wang, S.H.: Fault-tolerant control of time-delay systems. Lect. Notes Electr. Eng. 138, 837–845
(2012)

80. Shen, Q., Jiang, B., Cocquempot, V.: Fault tolerant control for T-S fuzzy systems with appli-
cation to near space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Syst. 20(4),
652–665 (2012)

81. Liu, P., Zhou, D.H.: Robust fault tolerant control of uncertain time-delay systems. Progr. Nat.
Sci. 13(3), 464–469 (2003)

82. Ye, D., Yang, G.H.: Adaptive actuator fault compensation for nonlinear time-delay systems.
In: Proceedings of the 6thWorld Congress on Intelligent Control and Automation, June 21–23,
Dalian, China, pp. 285–289 (2006)

83. Jiang, X.F., Xu,W.L., Han, Q.L.: Observer-based fuzzy control design with adaptation to delay
parameter for time-delay systems. Fuzzy Sets Syst. 152(3), 637–649 (2005)

84. Zhao, H., Zhong, M., Hang, Z.M.: H∞ fault detection for linear discrete time-varying systems
with delayed state. IET Theory Appl. 4(11), 2303–2314 (2010)

85. Zhang, K., Jiang, B., Cocquempot, V.: Fast adaptive fault estimation and accommodation for
nonlinear time-varying delay systems. Asian J. Control 11(6), 643–652 (2009)

86. Lam, J., Gao, H., Wang, C.: H∞ model reduction of linear systems with distributed delay. IEE
Proc.: Control Theory Appl. 152(6), 662–674 (2005)

87. Bai, L., Tian, Z., Shi, S.: Robust fault detection for a class of nonlinear time-delay systems. J.
Frankl. Inst. 344(6), 873–888 (2007)

88. Belcastro, C.M.: Performance analysis on fault tolerant control system. IEEE Trans. Control
Syst. Technol. 14(5), 920–925 (2006)

89. Yang, H., Jiang, B., Staroswiecki, M.: Supervisory fault tolerant control for a class of uncertain
nonlinear systems. Automatica 45(10), 2319–2324 (2009)

90. Staroswiecki,M., Yang, H., Jiang, B.: Progressive accommodation of parametric faults in linear
quadratic control. Automatica 43(12), 2070–2076 (2006)

91. Shin, J.-Y., Wu, N.E., Belcastro, C.M.: Adaptive linear parameter varying control synthesis for
actuator failure. J. Guide Control Dyn. 27(5), 787–794 (2004)



Chapter 2
Fault Tolerant Control for T-S Fuzzy Systems
with Application to NSHV

2.1 Introduction

Modern control systems, such as NSHV that is considered in this chapter, become
more and more complex and involve an increasing number of actuators and sensors.
These physical componentsmay become faulty which can cause system performance
deterioration and lead to instability that can further produce catastrophic accidents.
To improve system reliability and guarantee system stability in all situations, FDI
and fault accommodation methods have become attractive topics which received
considerable attentionduring the past twodecades as it canbe attested by the abundant
literature [1–20]. Fault tolerant control (FTC) aims at preserving the functionalities
of a faulty system with acceptable performances. FTC can be achieved in two ways
namely passive and active ways. The former uses feedback control laws that are
robust with respect to possible system faults. On the other hand, the latter uses a FDI
module and accommodation techniques.

It is valuable to point out that, although there are abundant results in literature,most
results concerning actuator faults reported in the literature only considered bias faults.
Gain faults did not attract enough attention, whichmotivates this chapter. In addition,
in some existing work, estimation error limt→∞ ex(t) = ex(∞)was considered as an
indicator, by which the faulty system can be distinguished from the normal system.
That is to say, if ex(∞) = 0, then the system is healthy; if ex(∞) �= 0, the system is
faulty.However, ex(∞) is not available in practice, and ex(∞) �= 0 can not practically
be considered as fault indicator. Another motivation of this work is thus to provide
a fault indicator with an associated decision algorithm which is efficient in practical
application.

The concept of near space hypersonic vehicle was first proposed by American air
force in a military exercise called “Schrieffer” in 2005. NSHV is a class of vehicle
flying in near space which offers a promising and new, lower cost technology for
future spacecraft. It can advance space transportation and also prompt global strike
capabilities. Such complex technological system attracts considerable interests from
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the control research community and aeronautical engineering in the past couple of
decades and significant results were reported [21–32]. For such high technological
system, with great economical and societal issues, it is of course essential to main-
tain high reliability against possible faults. One of the difficulties to deal with FTC
for NSHV is that the dynamics are complex nonlinear, multi-variable and strongly
coupled ones. To solve the difficulties, T-S fuzzy system was used to describe the
NSHV attitude dynamics [33]. During the past two decades, the stability analysis for
Takagi-Sugeno (T-S) fuzzy systems has attracted increasing attention [34–42]. These
studies combine the flexibility of fuzzy logic theory and rigorous mathematical the-
ory of linear/nonlinear systems into a unified framework. The important advantage of
a T-S fuzzy system is its universal approximation of any smooth nonlinear function
by a “blending” of some local linear models, which greatly facilitates the analysis
and synthesis of the complex nonlinear system. Lots of stability criteria of T-S fuzzy
systems have been expressed in terms of linear matrix inequalities (LMIs) via various
stability analysis methods (see [43–50] and the references therein). In [51], authors
studied the problem of fault-tolerant tracking control for near-space-vehicle attitude
dynamics with bias actuator fault, where the bias fault was assumed to be unknown
constant. However, in practical application, the fault may be time-varying, which
motivates this chapter.

In this chapter, we investigate the problem of fault tolerant control for T-S fuzzy
systems with actuator time-varying faults, with the objective to provide an efficient
solution for controlling NSHV in faulty situations. Compared with some existing
work, there are four main contributions that are worth to be emphasized.

1. The actuator fault model presented in this chapter integrates not only time-varying
gain faults, but also time-varying bias faults, which means that a wide class of
faults can be handled. The theoretic developments and results of this chapter are
thus valuable in a wide field of practical applications.

2. An adaptive fault estimation algorithm is proposedwhere the commonassumption
that the derivative of the output errors with respect to time should be known is
removed and the parameter drift phenomenon is prevented even in the presence
of bounded disturbances.

3. Compared with some results, a decision threshold for FDI is defined and applied
on an online computable fault indicator and not on an asymptotic value of a
criterion, which means the decision algorithm is thus more practical.

4. The proposed fault estimation observer is designed to online estimate not only
bias faults but also gain faults.

The rest of the chapter of this chapter is organized as follows. In Sect. 2.2, the
T-S fuzzy model is first briefly recalled. Actuator faults are integrated in such model
and the FTC objective is formulated. In Sect. 2.3, the main technical results of this
chapter are given, which include fault detection, isolation, estimation and fault-
tolerant control scheme. The NSHV application is presented in Sect. 2.4. The T-S
fuzzy model is employed to approximate the nonlinear NSHV attitude dynamics and
simulation results of NSHV are presented to demonstrate the effectiveness of the
proposed technique. Finally, Sect. 2.5 draws the conclusion.
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2.2 Problem Statement and Preliminaries

Consider the following T-S fuzzy model composed of a set of fuzzy implications,
where each implication is expressed by a linear state space model. The ith rule of
this T-S fuzzy model is of the following form:

Plant Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{
ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t)
(2.1)

where i = 1, . . . , r, r is the number of the IF-THEN rules, Mij, j = 1, . . . , q is the
fuzzy set, z(t) = [z1(t), . . . , zq(t)]T are the premise variables which are supposed to
be known, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn, u(t) ∈ Rm,Ai ∈ Rn×n, and Bi ∈ Rn×m.

The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) + Biu(t))

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.2)

where hi(z(t)) is defined as

hi(z(t)) =

n∏
j=1

Mij[z(t)]
r∑

i=1

n∏
j=1

Mij[z(t)]
, i = 1, 2, . . . , r (2.3)

where Mij[z(t)] is the grade of membership of zj(t) in Mij. It is assumed in this

chapter that
∏n

j=1 Mij[z(t)] � 0 for all t. Therefore, we have
r∑

i=1
hi(z(t)) = 1, 0 �

hi(z(t)) � 1 for all t.
In this chapter, the state feedback control strategy is chosen as a parallel distributed

compensation (PDC), which can be described as follows:
Control Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

ui(t) = Kix(t) (2.4)

where Ki is the controller gain matrix to be determined later.
The overall fuzzy controller is given as follows:

u(t) =
r∑

i=1

hi(z(t))Kix(t) (2.5)
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The control objective under normal conditions is to design a proper state feedback
control controller u(t) such that the system (2.2) is stable.

However, in practical application, actuators may become faulty. Bias faults and
gain faults are two kinds of actuator faults commonly occurring in practice. An
actuator bias fault can be described as:

ufi (t) = ui(t) + fi(t), i = 1, . . . ,m (2.6)

where fi(t) denotes a bounded signal, and an actuator gain fault can be described as:

ufi (t) = (1 − ρi(t))ui(t), i = 1, . . . ,m (2.7)

where 0 � ρi(t) � 1which is supposed to be unknown, denotes the remaining control
rate. Therefore, the above two kinds of actuator faults can be uniformly described
as:

ufi (t) = (1 − ρi(t))ui(t) + fi(t) (2.8)

Furthermore, a more general fault model can be given as:

ufi (t) = (1 − ρi(t))ui(t) +
pi∑
j=1

gi.jfi,j(t) (2.9)

where fi,j(t), i = 1, . . . ,m, j = 1, . . . , pi denotes a bounded signal, pi is a known
positive constant. gi,j denotes an unknown constant. With no restriction, let suppose
p1 = p2 = · · · = pm = p, with p a known positive constant. Consider the following
notation: [ai,j(t) = gi.jfi,j(t). Then, (2.9) can be re-written as follows:

ufi (t) = (1 − ρi(t))ui(t) +
p∑

j=1

ai,j(t) (2.10)

Denote
Γ (t) = diag(ρ1(t), . . . , ρm(t)) (2.11)

F(t) = [f1, f2, . . . , fm]T , fi =
p∑

j=1

ai,j(t) (2.12)

Then, we have
uf (t) = (I − Γ (t))(u(t) + F(t)), t > tf (2.13)

where the failure time instant tj is unknown, and I denotes identity matrix with
appropriate dimensions. In this chapter, both bias and gain faults are handled by
considering the general fault model (2.13).
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Notice that, in the following, just for the sake of notational simplicity, we will use
hi, ρi and ai,j to denote hi(z(t)), ρi(t) and ai,j(t).

Now, the control objective is re-defined as follows. An active fault tolerant control
approach is proposed to make system (2.2) stable in normal and faulty conditions.
Under normal condition (no fault), a state feedback control input u(t) is designed,
such that the system (2.2) is stable. Meanwhile, the FDI algorithm is working. As
soon as an actuator fault is detected and isolated, the fault estimation algorithm is
activated. The obtained fault estimation is used to design a proper control inputu(t),
such that the system (2.2) is still maintained stable under faulty case.

Remark 2.1 In the literature, many chapters consider actuator faults. However, most
of them only considered bias faults. Gain faults have not attracted enough attention.
In [51], a class of bias fault was studied, where the fault was assumed to be an
unknown constant. However, in practical application, the fault may be time-varying.
Equation (2.10) is a deterministic but uncertain actuator model which represents a
class of practical actuator faults such as actuator gain variations and measurement
errors. In fact, the fault model in [51] can be described by (2.10). If ρi(t) = 0, then
the model (10) becomes the bias fault model. If ρi(t) is an unknown constant and
fi(t) = 0, then the model (2.10) denotes the constant bias faults model. Hence, the
proposed actuator fault model (2.10) is more general and has wider practical use than
the classical ones.

2.3 Fault Diagnosis and Accommodation

In this section, the main technical results of this chapter are given. We will first
formulate the fault diagnosis and accommodation problem of the above T-S fuzzy
system. We will then design a bank of SMOs to generate residuals, investigate the
FDI algorithm based on the SMOs, and propose a FTC scheme to tolerate the fault
using estimated fault information.

2.3.1 Preliminary

Consider the T-S fuzzy faulty system described in (2.2).We assume that only actuator
faults occur and no sensor fault is involved. For simplicity, we consider the case that
only one single actuator is faulty at one time. The actuator fault diagnosis problem
is formulated as: with the available outputy, we propose an observer based scheme
to identify the faulty actuator, and then estimate the fault.

To solve the problem, we will design a bank of SMOs with desired actuator fault
detection and fault estimation properties. Thus, the following assumptions are made
in this chapter.
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Assumption 2.1 Matrix Bi is of full column rank and the pair (Ai,Ci) is observable.

Assumption 2.2 There exist known positive constants ρ̄i, ¯̄ρi, ρ̄1, ρ̄2, such that
|ρi(t)| � ρ̄i and |ρ̇i(t)| � ¯̄ρi, ρ̄1= max{ρ̄1, ρ̄2, . . . , ρ̄m}, ρ̄2 = max{ ¯̄ρ1, ¯̄ρ2, . . . , ¯̄ρm},
i = 1, . . . ,m.

Assumption 2.3 There exist known positive constants ā1, ā2, āi,j, ¯̄ai,j, such
that |ai,j(t)| � āi,j and |ȧi,j(t)| � ¯̄ai,j, ā1 = max{ā1,1, . . . , āi,p, . . . , ām,1, . . . , ām,p},
ā2 = max{ ¯̄a1,1, . . . , ¯̄ai,p, . . . , ¯̄am,1, . . . , ¯̄am,p}, i = 1, . . . ,m, j = 1, . . . , p.

Our actuator fault diagnosis and accommodation scheme consists of FDI and
FTC. We first design the fault diagnosis observer utilizing SMOs to detect, isolate
and estimate the fault, and then, propose a FTC method to compensate the fault.

2.3.2 Fault Detection

In order to detect the actuator faults, we design a fuzzy state-space observer for the
system (2.8), which is described as:

Observer Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{ ˙̂x(t) = Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))

ŷ(t) = Cix̂(t)
(2.14)

where Li, i = 1, . . . , r is the observer gain for the ith observer rule.
The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

hi(z(t))(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))

ŷ(t) =
r∑

i=1

hi(z(t))Cix̂(t)

(2.15)

Denote
ex = x(t) − x̂(t), ey = y(t) − ŷ(t) (2.16)

then the error dynamics is described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ėx =

r∑
i=1

hi(z(t))(Ai − LiCi)ex(t))

ey =
r∑

i=1

hi(z(t))Ciex(t)

(2.17)
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Lemma 2.1 The estimation error ex converges asymptotically to zero if there exist
matrices P = PT > 0 and Qi > 0 with appropriate dimensions such that the follow-
ing linear matrix inequality is satisfied:

P(Ai − LiCi) + (Ai − LiCi)
TP � −Qi,∀i = 1, 2, . . . , r (2.18)

Proof Consider the following Lyapunov function

V1 = eTx (t)Pex(t)

Differentiating V1 with respect to time t, one has

V̇1(t) =
r∑

i=1

hi(z(t))[eTx (t)(P(Ai − LiC) + (Ai − LiC)TP)ex(t)]

� −
r∑

i=1

hi(z(t))[eTx (t)Qiex(t)]

� 0

(2.19)

BecauseV1(t) ∈ L∞ is amonotonous and non-increasing bounded function,V1(+∞)

exists. Hence, we have V1(0)− V1(+∞)� − ∫ +∞
0

r∑
i=1

hi(z(t))[eTx (t)Qiex(t)], i.e.,
ex(t) ∈ L2. And since ex(t), ėx(t) ∈ L∞, using the Lyapunov stability theory, we
obtain lim

t→∞ ex(t) = 0. Furthermore, we have lim
t→∞ ey(t) = 0. The proof is completed.

From Lemma 1.1, we have

V̇1(t) � −
r∑

i=1

hi(z(t))[eTx (t)Qiex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Qi)e
T
x (t)ex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Qi)/λmax(P)eTx (t)Pex(t)]

� −hi(z(t))[λmin(Qi)/λmax(P)]V (t) = −κV (t)

(2.20)

where κ = min( λmin(Q1)

λmax(P)
,

λmin(Q2)

λmax(P)
, . . . ,

λmin(Qr)

λmax(P)
) ∈ R.

Hence,
V1(t) � e−κtV (0) (2.21)

Furthermore, we have

λmin(P)||ex(t)||2 � e−κtλmax(P)||ex(0)||2 (2.22)

http://dx.doi.org/10.1007/978-3-319-52530-3_1
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Therefore the norm of the error vector satisfies

||ex(t)|| �
√
e−κtλmax(P)

λmin(P)
||ex(0)||

= √
λmax(P)/λmin(P)||ex(0)||e−κt/2

(2.23)

Furthermore, the detection residual can be defined as:

J = ||y(t) − ŷ(t)|| (2.24)

From (2.23), it can be seen that the following inequality holds in the healthy case:

J �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2 (2.25)

Then, the fault detection can be performed using the following mechanism:

{
J � Td no fault occurred,

J > Td fault has occurred
(2.26)

where threshold Td is defined as follows:

Td =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2.

Remark 2.2 It is easy to find from (2.20) that, if no actuator fault occurs, we have
limt→∞ ex = 0. If there is an actuator fault, then limt→∞ ex �= 0. Therefore, in some
existing work, the fault detection is carried out as:

{
limt→∞ex = 0, no fault occurred

limt→∞ex �= 0, fault has occurred
(2.27)

and the above observer given by (2.15) was referred to as the fault detection observer
for the system described by (2.2). However, it is valuable to point out that ex(∞)

is not available in practice, thus ex(∞) �= 0 cannot be considered as an indicator of
fault occurrence. That is to say, the above fault detection (2.27) does not work in
practical applications. Therefore, the mechanism (2.26) is more efficient for fault
detection in practical cases.
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2.3.3 Fault Isolation

Since the system has m actuators and it is assumed that only one single fault occurs
at one time, we have m possible faulty cases in total. When the sth (1 � s � m)
actuator is faulty, the faulty model can be described as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu(t)−
r∑

i=1

hi(z(t))bi,s[ρs(t)us(t) −
p∑

j=1

as,j(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.28)

where Bi = [bi,1, bi,2, . . . , bi,m], bi,l ∈ Rn×1, 1 � l � m. ρs(t), as,j(t), j = 1,
2, . . . , p denote the time profiles of the sth actuator fault, which are described by
(2.10), us(t) is the desired controller when the sth actuator is healthy. Inspired by the
SMOs in [52], we are ready to present one of the results of this chapter. It is assumed
that fuzzy observer and fuzzy control systems have the same premise variables z(t),
then the following fuzzy observers are proposed to isolate the actuator fault.

IsolationObserver Rule i: IF z1(t)isMi1 and . . . zq(t) isMiq, THEN⎧⎪⎪⎨
⎪⎪⎩

˙̂xis(t) = Aix̂is(t) + Li(y(t) − ŷis(t)) + Biu(t) + bi,sμs[ρ̄s|us(t)| +
p∑

j=1

ās,j]

ŷis(t) = Cisx̂is(t)
(2.29)

where x̂is(t), ŷis(t) are the sth fuzzy observer’s state and output, respectively. Li is
the observer’s gain matrix for ith observer. The global fuzzy observer is represented
as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂is(t) +
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t))+
r∑

i=1

hi(z(t))Biu(t) +
r∑

i=1

hi(z(t))bi,sμs[ρ̄s|us(t)| +
p∑

i=1

ās,j]

ŷs(t) =
r∑

i=1

hi(z(t))Cix̂s(t)

μs = −
r∑

i=1

hi(z(t))Fiseys(t)/||
r∑

i=1

hi(z(t))Fiseys(t)||

(2.30)
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whereFis ∈ R1×n is the sth row ofFi ∈ Rm×n, whichwill be defined later,Li ∈ Rn×n is
chosen such thatAi − LiCi isHurwitz, exs(t) = xs(t) − x̂s(t) and eys(t) = y(t) − ŷs(t)
are respectively the state error and output error between the plant and the sth SMO
observer.

For s = l, the error dynamics is obtained from (2.28) and (2.30).

ėxs(t) =
r∑

i=1

hi(z(t))Aieis(t) −
r∑

i=1

hi(z(t))Li(y(t)−

ŷis(t)) +
r∑

i=1

hi(z(t))bi,s[(−ρs(t)us(t) − μsρ̄s·

|us(t)|) +
p∑

j=1

(as,j(t) − μsās,j)]

=
r∑

i=1

hi(z(t)){(Ai − LiCi)eis(t) + bi,s[(−ρs(t)·

us(t) − μsρ̄s|us(t)|) +
p∑

j=1

(as,j(t) − μsās,j)]}

(2.31)

For s �= l, we have

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−bi,lρl(t)ul(t) − bi,sμsρ̄s|us(t)|)+
p∑

j=1

(bi,lal,j(t) − bi,sμsās,j)]

(2.32)

The stability of the state error dynamics is guaranteed by the following theorem.

Theorem 2.1 Under Assumptions 2.1–2.3, if there exist a common symmetric pos-
itive definite matrix P and matrices Li, Fi, and Qi > 0, i = 1, 2, . . . , r with appro-
priate dimensions, such that the following conditions hold,

(Ai − LiCi)
TP + P(Ai − LiCi) � −Qi, (2.33)

PBi = (FiCi)
T . (2.34)

Then, when the lth actuator is faulty, for s = l, limt→∞exs = 0, and for s �= l,
limt→∞exs �= 0.
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Proof (1) For s = l, according to (2.31), we have

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))bi,s[(−μsρ̄s|us(t)| − ρs(t)us(t))−
p∑

j=1

μsās,j +
p∑

j=1

as,j(t)]

Define the following Lyapunov function

V2(t) = eTxs(t)Pexs(t) (2.35)

Differentiating V2 with respect to time t, and using (2.33), one has

V̇2(t) = ėTxs(t)Pexs(t) + eTxs(t)Pėxs(t)

� −eTxs(t)Qiexs(t) + 2eTxs(t)P
r∑

i=1

hi(z(t))bi,s·

[(−μsρ̄s|us(t)| − ρs(t)us(t)) −
p∑

j=1

μsās,j +
p∑

j=1

as,j(t)]

From μs = −
r∑

i=1
hi(z(t))Fiseys(t)/||

r∑
i=1

hi(z(t))Fiseys(t)|| and (2.34), one has

2eTxs(t)P
r∑

i=1

hi(z(t))bi,s(−μsρ̄s|us(t)| − ρs(t)us(t)) � 0,

2eTxs(t)P
r∑

i=1

hi(z(t))bi,s(−
p∑

j=1

μsās,j +
p∑

j=1

as,j(t)) � 0.

Hence,
V̇2(t) � −eTxs(t)Qiexs(t) � 0 (2.36)

BecauseV2(t) ∈ L∞ is amonotonous andnon-increasing bounded function,V2(+∞)

exists. Hence, we have V2(0) − V2(+∞) � − ∫ +∞
0 eTxs(t)Qiexs(t), i.e. exs(t) ∈ L2.

Since exs(t) and ėxs(t) ∈ L∞, using theLyapunov stability theory,wehave limt→∞exs(t)
= 0. Thus, we have limt→∞eys(t) = 0.
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(2) For s �= l, it follows from (2.28) and (2.30) that:

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−bi,lρl(t)ul(t) − bi,sμsρ̄s|us(t)|)+
p∑

j=1

(bi,lal,j(t) − bi,sμsās,j)]

Because matrix Bi is of full column rank (Assumption 2.1), we know that bis and bil
are linearly independent. Therefore,

lim
t→∞

r∑
i=1

hi(z(t))[(−bi,lρl(t)ul(t) − bi,sμsρ̄s|us(t)|) +
p∑

j=1

(bi,lal,j(t) − bi,sμsās,j) �= 0

(2.37)
Thus, we have limt→∞exs(t) �= 0 and limt→∞eys(t) �= 0.

From (1) and (2), we obtain the conclusions. This ends the proof.

Now, we denote the residuals between the real system and SMOs as follows:

Js(t) = ∥∥eys(t)∥∥ = ∥∥ŷs(t) − y(t)
∥∥ , 1 � s � m (2.38)

According to Theorem 2.1, when the lth actuator is faulty, i.e., s = l, the residual
Js(t) must tend to zero; while for any s �= l, basically, Js(t) does not equal zero.
Furthermore, from Lemma 2.1, we have, if l = s, then

Js(t) �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (2.39)

and if l �= s, then

Js(t) >

r∑
i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (2.40)

Hence, the isolation law for actuator fault can be designed as

{
Js(t) � TI , l = s ⇒ the lth actuator is faulty

Js(t) > TI , l �= s
(2.41)
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where threshold TI is defined as follows:

TI =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2.

Note that, μs = −∑r
i=1 hi(z(t))Fiseys(t)/||∑r

i=1 hi(z(t))Fiseys(t)|| in (2.30), which

denominator contains eys(t). Just as pointed out in [52], the chattering phenomenon
occurswhen eys(t) → 0 in practice. Inspired by [52], in order to reduce this chattering
in practical applications, we modify SMOs (2.30) by introducing a positive constant
δ as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂s(t) −
r∑

i=1

hiLi(ŷs(t) − y(t)) +
r∑

i=1

hi(z(t))Biu(t) −
r∑

i=1

hi(z(t))μ
′
s[ρ̄s|us(t)| +

p∑
j=1

ās,j]

ŷs(t) =
r∑

i=1

hi(z(t))Cisx̂s(t)

μ′
s = −

r∑
i=1

hi(z(t))Fiseys(t)/(||
r∑

i=1

hi(z(t))Fiseys(t)|| + δ)

(2.42)

where δ > 0 ∈ R is a constant, s = 1, 2, . . . ,m. Obviously, the denominator of μ′
s

will converge asymptotically to δ when eys(t) → 0, which reduces this chattering
phenomenon.

From the above analysis, it is easy to find that, a suitable threshold δ must be
selected such that Js(s = l) tends to be very small when the lth actuator is faulty,
while other residuals Js(s �= l) are not equal to zero on any small time intervals.
Thus, the modified SMOs can not only decrease the chattering problem in practice,
but also can realize fault diagnosis successfully.

2.3.4 Fault Estimation

After fault isolation, we can estimate the fault. Assume the sth (1 � s � m) actuator
is faulty, the faulty system can be described as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1

hi(z(t))Aix(t) +
r∑

i=1

hi(z(t))Biu(t) −
r∑

i=1

hi(z(t))bi,s[ρsus(t) −
p∑

j=1

as,j(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.43)
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To estimate the fault, an observer is presented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

hi(z(t))Aix̂(t) +
∑r

i=1
hi(z(t))Biu(t)−

r∑
i=1

hi(z(t))bi,s[ρ̂sus(t) −
p∑

j=1

âs,j] +
r∑

i=1

hi(z(t))Li(y(t) − ŷ(t))

ŷ(t) =
r∑

i=1

hi(z(t))Cix(t)

(2.44)

where ρ̂s, âs,j are the estimate values of ρs(t), as,j(t) at time t.

Remark 2.3 Many results about observer design were reported in literature. For
faulty systems with only bias fault fa described as follows:

{
ẋ(t) = Ax(t) + B(u(t) + fa)

ŷ(t) = Cx(t)

an observer is classically designed in the following form of

{ ˙̂x(t) = Ax̂(t) + B(u(t) + f̂a) + L(y(t) − ŷ(t))

ŷ(t) = Cx̂(t)

Let ex(t) = x(t) − x̂(t), then the error dynamics is described by

ėx(t) = (A − LC)ex(t) + B(fa − f̂a)

where f̂a denotes the estimation of fa. However, in this chapter, actuator bias faults
and gain faults are both considered, the above observer does not work. The novel
observer (2.44) is proposed in order to estimate the two kinds of faults.

Using (2.43) and (2.44), the error dynamics is obtained:

ėx(t) =
r∑

i=1

hi(z(t))[(Ai − LiCi)ex(t))] −
r∑

i=1

hi(z(t))bi,s[ρ̃sus −
p∑

j=1

ãs,j] (2.45)

where ex(t) = x(t) − x̂(t), ρ̃s = ρs(t) − ρ̂s, ãs,j = as,j(t) − âs,j.
Now, an adaptive fault diagnostic algorithm is proposed to estimate the actuator

fault. The stability of the error dynamics is guaranteed by the following theorem.

Theorem 2.2 Under Assumptions 2.1–2.3, if there exist a common symmetric posi-
tive definite matrix P, real matrices Li and Qi > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold,
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P(Ai + LiCi) + (Ai + LiCi)
TP < −Qi (2.46)

PBi = (FiCi)
T (2.47)

˙̂ρ i =
{
0, ρ̂i = ρ̄1 and − 2η1Fi,sey > 0 or ρ̂i = −ρ̄1 and − 2η1Fi,sey < 0

− 2η1Fi,seyus, otherwise
(2.48)

˙̂ai,j =
{
0, âi,j > ā1 and 2η2Fi,sey > 0 or âi,j < −ā1 and 2η2Fi,sey < 0

2η2Fi,sey, otherwise
(2.49)

where i = 1, . . . ,m, j = 1, . . . , p, Fis ∈ R1×n is the sth row of Fi ∈ Rm×n, η1 >

0, η2 > 0 denote the adaptive rates, then the error system (2.45) is asymptotically sta-
ble.Moreover, ex(t), ρ̃s and ãs,j are semi-globally uniformly ultimately bounded, con-
verging asymptotically to a small neighborhood of zero, namely, |ex| �

√
α/λmin(P),

|ρ̃i| �
√
2η1α, and |g̃i,j| �

√
2η2α, where

μ0 =
r∑
l

hl(z(t))(
2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
),

λ0 = min{λmin(Q1)

λmax(P)
, . . . ,

λmin(Qr)

λmax(P)
, 1}

and α = μ0/λ0 + V (0).

Proof Define the following smooth function

V = V1 + V2 + V3 (2.50)

V1 = eTx (t)Pex(t) (2.51)

V2 =
r∑

i=1

hi(z(t))(
1

2η1
ρ̃2
s (t)) (2.52)

V3 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

2η2
a2s,j(t)) (2.53)

Differentiating V, Vi, i = 1, 2, 3 with respect to time t, leads to

V̇ = V̇1 + V̇2 + V̇3 (2.54)
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V̇1 =
r∑

i=1

hi(z(t))[eTx (t)(P(Ai − LiCi) + (Ai − LiCi)
TP)ex(t)]−

r∑
i=1

hi(z(t))[2eTx (t)Pbi,sρ̃sus −
p∑

j=1

2eTx (t)Pbi,sãs,j]
(2.55)

V̇2 =
r∑

i=1

hi(z(t))(
1

η1
ρ̃s

˙̃ρs) =
r∑

i=1

hi(z(t))(
1

η1
ρ̃s(ρ̇s − ˙̂ρs)

=
r∑

i=1

hi(z(t))
1

η1
ρ̃sρ̇s −

r∑
i=1

hi(z(t))
1

η1
ρ̃s

˙̂ρs

(2.56)

V̇3 =
r∑

i=1

p∑
j=1

hi(z(t))
ãs,j ˙̃as,j

η2
=

r∑
i=1

p∑
j=1

hi(z(t))
ãs,j(ȧs,j − ˙̂as,j)

η2

=
r∑

i=1

p∑
j=1

hi(z(t))
ãs,j ȧs,j

η2
−

r∑
i=1

p∑
j=1

hi(z(t))
ãs,j ˙̂as,j

η2

(2.57)

Substituting (2.55–2.57) into (2.54), it yields

V̇ = −
r∑

i=1

hi(z(t))e
T
x Qiex +

r∑
i=1

hi(z(t))
1

η1
ρ̃sρ̇s +

r∑
i=1

p∑
j=1

hi(z(t))
1

η2
ãs,j ȧs,j−

r∑
i=1

hi(z(t))ρ̃s(2e
T
x Pbi,sus + 1

η1

˙̂ρs) +
r∑

i=1

p∑
j=1

hi(z(t))ãs,j(2e
T
x Pbi,s − 1

η2

˙̂as,j)

(2.58)
Substituting (2.48, 2.49) into (2.58), it yields

V̇ = −
r∑

i=1

hi(z(t))e
T
x Qiex +

r∑
i=1

hi(z(t))
1

η1
ρ̃sρ̇s +

r∑
i=1

p∑
j=1

hi(z(t))
1

η2
ãs,j ȧs,j

(2.59)
Since

ρ̃iρ̇i

η1
= − ρ̃2

i

η1
+ ρ̃i(ρ̃i + ρ̇i)

η1
= − ρ̃2

i

η1
+ (ρi − ρ̂i)(ρi − ρ̂i + ρ̇i)

η1

� − ρ̃2
i

η1
+ (|ρi| + |ρ̂i|)(|ρi| + |ρ̂i| + |ρ̇i|)

η1
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p∑
j=1

ãi,j ȧi,j
η2

= −
p∑

j=1

ã2i,j
η2

+
p∑

j=1

ã2i,j
η2

+
p∑

j=1

ãi,j ȧi,j
η2

� −
p∑

j=1

ã2i,j
η2

+
p∑

j=1

(|ai,j| + |âi,j|)(|ai,j| + |âi,j| + |ȧi,j|)
η2

and |ρ̂i(t)| � ρ̄1 and |âi,j(t)| � ā1, which can be guaranteed by using the adaptive
laws (2.48) and (2.49), and Assumptions 2.2 and 2.3 (i.e., |ρi(t)| � ρ̄1, |ρ̇i(t)| � ρ̄2,
|ai,j(t)| � ā1, and |ȧi(t)| � ā2) are satisfied, one has

ρ̃iρ̇i

η1
� − ρ̃2

i

η1
+ 2ρ̄1(2ρ̄1 + ρ̄2)

η1

p∑
j=1

ãi,j ȧi,j
η2

� −
p∑

j=1

ã2i,j
η2

+
p∑

j=1

2ā1(2ā1 + ā2)

η2

Hence, from (2.59), one has

V̇ �
r∑

l=1

hl(z(t))[−eTx Qiex − ρ̃2i
η1

−
p∑

j=1

ã2i,j
η2

+2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
]

�
r∑
l

hl(z(t))[−eTx Qiex − ρ̃2i
η1

−
p∑

j=1

ã2i,j
η2

+2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
]

�
r∑

l=1

hl(z(t))[−eTx Qiex − ρ̃2i
η1

−
p∑

j=1

ã2i,j
η2

+ μ]

�
r∑

l=1

hl(z(t))[−λmin(Qi)e
T
x ex − ρ̃2i

2η1
−

p∑
j=1

ã2i,j
2η2

+ μ]

�
r∑

l=1

hl(z(t))[−λmin(Qi)

λmax(P)
eTx Pex − ρ̃2i

2η1
−

p∑
j=1

ã2i,j
2η2

+ μ]

� −λ0V (t) + μ0
(2.60)

where

μ = 2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
,

μ0 =
r∑
l

hl(z(t))(
2ρ̄1(2ρ̄1 + ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1 + ā2)

η2
),
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λ0 = min{ λmin(Q1)

λmax(P)
, λmin(Q2)

λmax(P)
, . . . , λmin(Qr)

λmax(P)
, 1}. Then, one has, d

dt (V (t)eλ0t) � eλ0tμ0.

Furthermore, 0 � V (t) � μ0

λ0
+ [V (0) − μ0

λ0
]e−λ0t � μ0

λ0
+ V (0)Letα = μ0

λ0
+ V (0),

one has |ex| �
√

α
λmin(P)

, |ρ̃i| �
√
2η1α, and |ãi,j| �

√
2η2α. This ends the proof.

Remark 2.4 If there exist two known constants fmin, fmax such that fmin � |f (t)| �
fmax, then the fault f (t) can be approximated by the following form

f (t) = 1

2
(fmax − fmin)(1 − tanh ζ ) + fmin (2.61)

where ζ is an unknown constant. Thus, the fault f (t) is estimated through the esti-
mation of ζ̂ , namely

f̂ (t) = 1

2
(fmax − fmin)(1 − tanh ζ̂ ) + fmin (2.62)

This method prevents the phenomenon of parameter drift in the presence of bounded
disturbances because of | tanh ς̂ | < 1, and ensures fmin � |f̂ (t)|� fmax.

2.3.5 Fault Accommodation

After that the fault information is obtained, wewill consider the fault-tolerant control
problem of system (2.2), and design a fault-tolerant control law to recover the control
system’s dynamics performance when an actuator fault occurs. Firstly, we consider
the fuzzy control problem for the following nominal system without actuator faults:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) + Biu(t))

y(t) =
r∑

i=1

hi(z(t))Cix(t)

The parallel distributed compensation technique offers a procedure to design a fuzzy
control law from a given T-S fuzzy model. In the PDC design, each control rule
is designed from the corresponding rule of T-S fuzzy model. The designed fuzzy
controller has the same fuzzy sets as the considered fuzzy system.

Control Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

ui(t) = Kix(t)
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and the overall fuzzy controller is given as follows:

u(t) =
r∑

i=1

hi(z(t))Kix(t)

where the controller gain matrix Ki is determined by solving the following LMI:

P(Ai + BiKi) + (Ai + BiKi)
TP < −Qi (2.63)

where P = PT > 0 and Qi > 0 are matrices with appropriate dimensions.
On the basis of the estimated actuator fault, the fault tolerant controller is con-

structed as

us = (uNs − ∑pi
j=1 âi,j)

(1 − ρ̂s)
(2.64)

where uNs is the sth normal control input, ρ̂s, âi,j are the estimations of ρs, ai,j, which
are used to compensate for the gain fault and bias fault.

Theorem 2.3 Consider system (2.2) under Assumptions 2.1–2.3. If there exist a
common symmetric positive definite matrix P, real matrices Li and Qi > 0, i =
1, 2, . . . , r with appropriate dimensions, such that the following conditions hold

P(Ai − LiCi) + (Ai − LiCi)
TP < −Qi (2.65)

PBi = (FiCi)
T (2.66)

˙̂ρi =
{
0, ρ̂i = ρ̄1 and − 2η1Fi,sey > 0 or ρ̂i = −ρ̄1 and − 2η1Fi,sey < 0

− 2η1Fi,seyus, otherwise
(2.67)

˙̂ai,j =
{
0, âi,j > ā1 and 2η2Fi,sey > 0 or âi,j < −ā1 and 2η2Fi,sey < 0

2η2Fi,sey, otherwise
(2.68)

where i = 1, . . . ,m, j = 1, . . . , p, Then system (2.2) is asymptotically stable under
the feedback FTC (2.65) and all signals involved in the closed-loop system are
semi-globally uniformly ultimately bounded, converging asymptotically to a small
neighborhood of zero, namely,

|e| �
√

α/λmin(P), |ρ̃i| �
√
2η1α, |ãi,j| �

√
2η2α,

where λ0 = min{ λmin(Q1)

λmax(P)
, . . . , λmin(Qr)

λmax(P)
, 1}, μ0=

r∑
l
hl(z(t))[ 2ρ̄1(2ρ̄1+ρ̄2)

η1
+

p∑
j=1

2ā1(2ā1+ā2)
η2

], α = V (0) + μ0/λ0.
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Proof Similar to the proof of Theorem2.2, it is easy to obtain the conclusions of
Theorem2.3. The detailed proof is thus omitted here.

2.4 Simulation Results

2.4.1 NSHV Modeling and Analysis

Considering the longitudinal flight mode of NSHV, a mathematical model for a
genericNSHVdeveloped atNASALangleyResearchCenter is presented in [53]. The
longitudinal dynamics of NSHV can be described by a set of differential equations
involving its velocity V , flight-path angle γ , altitude h, angle of attack α and pitch
rate q as

V̇ = T cosα − D

m
− u sin γ

r2
(2.69)

γ̇ = L + T sin α

mV
+ (μ − V r2) cos γ

V r2
(2.70)

ḣ = V sin γ (2.71)

α̇ = q − γ̇ (2.72)

q̇ = Myy

Iyy
(2.73)

where L = q̄SCL,D = q̄SCD,T = q̄SCT , r = h + Re, Myy = q̄Sc̄[CM(α) + CM

(δe) + CM(q)], CL = 0.6203α, CD = 0.6450α2 + 0.0043378α + 0.003772, CM

(δe)= ce(δe − α), CM(q) = (c̄/2V )q(−6.796α2 + 0.3015α − 0.2289),CM(α) =
−0.035· α2 + 0.036617(1 + ΔCMα)α + 5.3261e − 06, and

CT =
{
0.02576δT ,when δT < 1

0.0224 + 0.00336δT , when δT > 1
.

The parameters are the aircraft mass m, the gravitational constant μ, the moments
of inertia Iyy and the pitch moment coefficients. The aerodynamic coefficients and
inertia data are coupled with state variables and control inputs. The control input
vector is u(t) = [δe, δT ]T , where δe is the elevator detection, and δT is the throttle
setting, respectively. The longitudinal model of the NSHV described by (2.69–2.73)
can be written in the following affine nonlinear form:

{
ẋ(t) = f (x) + g(x)u(t)

y(t) = Cx(t)
(2.74)
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where x(t) = [V, γ, h, α, q]T ∈ Rn denotes state vector, u(t) = [δe, δT ]T ∈ Rm

denotes the control input vector, and y(t) is the output vector.
In this section, some simulation results are presented to demonstrate the effective-

ness of the proposed techniques. For the purpose of this study, the aerodynamic coef-
ficients are simplified around the cruising flight mode. The nominal flight of NSHV
is at a trimmed cruise conditions: Mach = 15, V = 15060 ft/s and h = 110000 ft/s.

If each state variable is selected as a premise variable, then the number of fuzzy
rules will become too large. However, from the property of NSHV, we know that the
angle of attack α is a key variable affecting the nonlinear character of NSHV, and the
velocityV has constraint relationship to the altitude h, and the pitch angle θ = α + γ .
Similar to [53], we select x̄ = [V, θ, q]T as a new state vector. As a result, we denote
z1 = V , z2 = α + γ , z3 = q, and select z1, z2 and z3 as premise variables for the T-S
fuzzy system model. Hence, it can not only reduce the number of fuzzy rules but
also well approximate the nonlinear system and characterize the NSHV model [7].
Furthermore, we assume

z1 ∈ (6000 16000) m/s, z2 ∈ (−0.5 0.5) rad/s, z3 ∈ (−0.5 0.5) rad/s.

Suppose that each premise variable has two associated fuzzy sets:

{z1 = 6000, 16000}; {z2 = −0.5, 0.5}; {z3 = −0.5, 0.5}

The corresponding fuzzy membership functions are defined as

Mz1=6000 = exp[−(z1/ς1)
2],Mz1=16000 = 1 − Mz1=6000

Mz2=−0.5 = 1

1 + exp[((z2)2 − σ)/ς2]
, Mz2=0.5 = 1 − Mz2=−0.5

Mz3=−0.5 = exp[−(
z3
ς3

− σ̄ )],Mz3=−0.5 = 1 − Mz3=−0.5

where the unknown parameters σ, σ̄ , ς1, ς2, ς3 should be selected to symmetrically
cover the space of the input variables.

We choose eight working points of NSHV as follows:

[z1, z2, z3]T =:

⎧⎪⎨
⎪⎩

[6000,−0.5, 0.5], [6000, 0.5, 0.5], [6000,−0.5,−0.5]
[6000, 0.5,−0.5], [5000,−0.5, 0.5], [16000, 0.5, 0.5]
[16000, 0.5,−0.5], [6000,−0.5, 0.5]

The parameters of the membership are selected as: σ = 0.15, σ̄ = 4, ς1 = 3200,
ς2 = 0.05, ς3 = 0.4.

Then, eight plant rules and corresponding control rules can be obtained. We give
the first rule as an example, and the other rules have the similar form.
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Rule 1: IF z1 is about 6000m/s and z2 is about −0.5 rad/s and z3 is about
−0.5 rad/s , THEN

˙̄x(t) = A1x̄(t) + B1u(t), y(t) = Cx̄(t)

where Ai and Bi, i = 1, 2, . . . , 8 can be easily obtained by the substitution of each
of the eight operating points to f (x) and g(x).

In this study, we assume that only an actuator is faulty at one time. We consider:
Case 1:

uf1(t) = u1(t),

uf2(t) =
⎧⎨
⎩
y2(t), t < 5

(1 − ρ2(t))(y2(t) +
∑p

j=1
g2,jf2,j(t)), t � 5

where ρ2(t) = 0.4 sin(π t), p = 1, g2,1 = 0.4, f2,1(t) = cos(t).
In order to compare with the results in [6, 8], we consider the following cases.
Case 2 (Bias fault) [24]:

uf1(t) = u1(t),

uf2(t) = u2(t) + f2,1(t), f2,1(t) =

⎧⎪⎨
⎪⎩

0, t < 4s

5, t � 4s

5 + 2(t − 7), t � 7s

where ρ2(t) = 0, p = 1, g2,1 = 1.
Case 3 (Gain fault) [51]:

uf1(t) = u1(t),

uf2(t) = (1 − ρ2(t))u2(t), ρ2(t) =
{
0, t < 2s

0.4, t � 2s

where ρ2(t) = 0, p = 0, g2,1 = 0.

Remark 2.5 If each state variable of the near space hypersonic vehicle (NSHV)
model is selected as premise variable, then the number of fuzzy rules becomes too
large, which leads to the increasing amount of computing and thus affects the setting
time of the closed loop system. In order to reduce the number of fuzzy rules, taking
into account the main characteristics of NSHV, we select x̄ = [V, θ, q]T as premise
variables where θ = α + γ . As pointed out in [52], it can not only reduce the number
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of fuzzy rules but it provides also a good approximation of the nonlinear system. As a
result, it can achieve satisfactory accuracy and dynamic performance of the proposed
fault tolerant control.

2.4.2 Simulation Results

By using Matlab toolbox to solve the matrices inequalities (2.18), one can obtain the
fault diagnostic observer gains Li. By solving (2.64) and (2.67), one can obtain the
positive definite symmetric matrix P and the nominal controller gains Ki. Due to the
space limitation, only the common matrix P, and the matrices Q1, L1,K1 of the first
working point of NSHV are given here. Therefore, one can design the fault-tolerant
controller (2.65).

P = 1.0e + 005 *⎡
⎢⎢⎢⎢⎢⎢⎣

3.4852 − 0.0000 0.0000 0.0000 0.0000

− 0.0000 3.4852 0.0000 0.0000 − 0.0000

0.0000 0.0000 3.4852 0.0000 0.0000

0.0000 0.0000 0.0000 3.4852 − 0.0000

0.0000 − 0.0000 0.0000 − 0.0000 3.4852

⎤
⎥⎥⎥⎥⎥⎥⎦

Q1 = 1.0e + 005 *⎡
⎢⎢⎢⎢⎢⎢⎣

3.4852 − 0.0000 − 0.0000 0.0001 − 0.0006

0.0000 3.4852 − 0.0000 − 0.0000 0.0000

0.0000 0.0000 3.4852 − 0.0000 0.0000

− 0.0001 0.0000 0.0000 3.4852 0.0001

0.0006 − 0.0000 − 0.0000 − 0.0001 3.4852

⎤
⎥⎥⎥⎥⎥⎥⎦

K1 =
[
9.4165 44487.8491 0.8575 181.5760 1.6392

5.6423 18484.9800 -0.5165 85.75630 0.7744

]

L1 = 1.0e + 008 *⎡
⎢⎢⎢⎢⎢⎢⎣

− 0.0035 − 0.1100 − 0.0003 0.0354 0.0003

− 0.1100 − 0.0035 6.9356 0.0000 0.0000

− 0.0003 6.9356 − 0.0035 − 0.0000 − 0.0000

0.0354 0.0000 0.0000 − 0.0035 − 0.7706

0.0003 − 0.0000 0.0000 − 0.7706 − 0.7755

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 2.1 The observer errors
time responses: e1, e2, e3
(healthy case)
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Fig. 2.2 Fault detection
residual J with threshold
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The simulation results are presented in Figs. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and
2.9. FromFig. 2.1, it is easy to see that, under normal operating condition, observation
errors globally asymptotically converge to zero. In this chapter, it is assumed that
the error system is stable before fault occurrence, namely, ex(0) = 0, ēxs(0) = 0,
||ex(0)||e−κt/2 ∗√

λmax(P)/λmin(P) = 0. Hence, in the ideal situation, the detection
thresholdTd and the isolation threshold TI can be select as Td = TI = 0. However,
there may exist noise and disturbance in practical situation. In the simulations, a
white noise, with zero mean and standard deviation which is equal to 0.1, is added
on each output. As a result, the detection threshold Td and the isolation threshold
TI can be selected as Td = 0.1,TI = 0.1 according to the definition of detection
residual and isolation residuals. Figure2.2 shows that, when an actuator fault occurs
in the system, an alarm is generated since the residual signal deviates significantly
from zero.Meanwhile, the SMOs quickly isolate the fault, as shown in Fig. 2.3. From
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Fig. 2.3 Fault detection
residuals J1, J2 with
threshold
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Fig. 2.4 Time responses of
the observer errors: e1, e2, e3
(no compensation for fault)
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Fig. 2.4, we can see that, when an actuator fault occurs, with no fault compensation,
the observation errors do not converge zero. However, compensating for the fault,
the error system becomes stable, as shown in Fig. 2.5. From Figs. 2.6 and 2.7, we
can clearly draw the conclusion that both gain faults and bias faults can be estimated
accurately and promptly.

Compared with [24, 51], because a clear definition of threshold for fault detection
and isolation is provided, it is easy to detect and isolate the faults. The fault estimation
observer presented in this paper has the following two properties. On the one hand,
differing from the classical fault estimation schemes in [24, 51, 52], where only bias
faults or gain faults can be estimated, it is designed to estimate the two types of
faults. On the other hand, from Figs. 2.8 and 2.9, it is obvious that it can estimate the
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Fig. 2.5 Time responses of
the observer errors: e1, e2, e3
(with compensation for fault)
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Fig. 2.6 The gain fault
ρ2(t) = 0.4 sin(π t) and its
estimation ρ̂2(t)
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types of faults considered in [24, 51] and the fault estimation algorithm has better
performances. From the above simulation results, it can be seen that, by the proposed
fault detection and isolation observer, an actuator fault can be quickly detected and
isolated, and using the fault estimation algorithm, the fault can be estimated online,
which can be used to compensate for the fault and to ensure the stability of the
closed-loop system in spite of actuator fault.
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Fig. 2.7 The bias fault
f2(t) = 0.4 cos(t) and its
estimation f̂2(t)
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Fig. 2.8 The fault and its
estimation (Case 2)
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Remark 2.6 From the simulation results, it can be seen that (i) the proposed FDI/FTC
scheme is effective because the fault can be detected, estimated and accommodated
quickly, and (ii) the performance of our algorithm is better than that presented in the
literature.
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Fig. 2.9 The fault and its
estimation (Case 3)
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2.5 Conclusions

In this paper, the problem of fault tolerant control for T-S fuzzy systemswith actuator
faults is studied. We first design a bank of SMOs to detect and estimate the fault and
a sufficient condition for the existence of SMOs is derived. Simulation results of
NSHV show that the designed fault detection, isolation and estimation algorithms
and fault-tolerant control scheme have good dynamic performances in the presence
of actuator faults.
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Chapter 3
Fuzzy Logic System-Based Adaptive
FC for NSV Attitude Dynamics
with Multiple Faults

3.1 Introduction

It is well known that the controlled systems in practical applications may become
faulty due to various reasons. Hence, FD and FTC have received considerable atten-
tion, and obtained significant results in the past decades, see [1–22] and the refer-
ences therein. However, most of the existing results on FD and FTC work under the
restrictive condition that only one actuator or sensor fault occurs at one time. In real
applications, multiple types multiple faults may occur in the controlled system. The
faulty cases include: multiple actuator faults, multiple sensors faults and multiple
actuator and sensor faults. Up to now, few revelent results are reported in literature
[23]. In [23], an actuator fault diagnosis scheme was proposed for a class of affine
nonlinear systems with both known and unknown inputs, which was designed by
making use of the derived input/output relation and the recently developed high-
order sliding-mode robust differentiators. Hence, considering multiple type multiple
faults simultaneously occurred in the controlled system is amotivation of this chapter.

Near space hypersonic vehicle, as a class of vehicle flying in near space which
offers a promising and new, lower cost technology for future spacecraft. It can
advance space transportation and also prompt global strike capabilities. Such com-
plex technological system attracts considerable interests from the control research
community and aeronautical engineering in the past couple of decades and significant
results were reported [24–35]. For such high technological system, it is of course
essential to maintain high reliability against possible faults [36–54].

Recently, T-S fuzzy system was used to describe the NSV attitude dynamics
which are complex nonlinear, multi-variable and strongly coupled ones [24–35].
During the past two decades, the stability analysis for Takagi-Sugeno (T-S) fuzzy
systems has attracted increasing attention [25–27]. In [55], the authors studied the
problem of fault-tolerant tracking control for near-space-vehicle attitude dynamics
with bias actuator fault, where the bias fault was assumed to be unknown constant.
However, in practical application, the fault may be state-dependent, namely, it is a
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unknown functionof systemstate. In this chapter,wewill propose amoregeneral FTC
scheme that handles such state-dependent faults. On the other hand, as a universal
approximation, fuzzy logic system (FLS) played an important role in modeling and
controlling uncertain systems, see [56–61] and the references therein. In this chapter,
we use the above FLSs to approximate the unknown state-dependent gain and bias
faults.

In this chapter, we investigate the problem of fault tolerant control NSV with
multiple state-dependent actuator faults, with the objective to provide an efficient
solution for controlling NSV in faulty situations. Compared with existing literatures,
the following contributions are worth to be emphasized.

(1) The actuator fault model presented in this chapter integrates state-dependent
gain bias faults, which means that a wide class of faults can be handled. The
theoretic developments and results of this chapter are thus valuable in a wide
field of practical applications.

(2) Differing from some design scheme in literature, the fault-tolerant control
scheme does not need the condition that the bounds of the time derivatives of the
faults should be known constants, which thus enlarges the practical application
scope.

(3) In general, the denominator of the fault-tolerant control input contains the esti-
mation of the gain fault. If the denominator is equal to zero, a controller singu-
larity occurs. In the proposed modified FTC scheme, the controller singularity
is avoided without projection algorithm.

The rest of this chapter is organized as follows. In Sect. 3.2, theT-S fuzzymodel for
NSV attitude dynamics is first briefly recalled. Actuator faults are integrated in such
model, and the FTC objective is formulated. In addition, mathematical description
of fuzzy logic system is given. In Sect. 3.3, the main technical results of this chapter
are given, which include fault detection, isolation, and fuzzy logic system-based
fault accommodation in the two cases where system states are available or not. The
NSV application is presented in Sect. 3.4. Simulation results of NSV are presented
to demonstrate the effectiveness of the proposed technique. Finally, Sect. 3.5 draws
the conclusion.

3.2 Problem Statement and Preliminaries

3.2.1 Problem Statement

In this chapter, a NSV attitude dynamics in re-entry phase is given as [62]:

{
Jω̇ = −ΩJω + δ

γ̇ = R(·)ω (3.1)
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Fig. 3.1 The control diagram of NSV

where J ∈ R3×3 is the symmetric positive definite moment of inertia tensor, and
ω = [p, q, r]T = [ω1, ω2, ω3]T is the angular rate vector composed of roll p, pitch q
and yaw rate r, δ = [δe, δα, δr]T ∈ R3×1 is the control surface deflection, δe, δα, δr
are the elevator deflection, the aileron deflection, the rudder deflection, respectively.
The skew symmetric matrix Ω is given by:

Ω =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0

⎤
⎦ (3.2)

In the re-entry phase, R(·) is defined as follows:

R(·) =
⎡
⎣ cosα 0 sin α

sin α 0 − cosα

0 1 0

⎤
⎦ (3.3)

where γ = [φ, β, α]T and φ, β, α are the bank, sideslip, and the attack angles,
respectively. According to the singular perturbation theory, the above six equations
can be expressed in the form of inner loop ω and outer loop γ ; ω and γ are also
respectively called fast loop and slow loop. The control diagram of NSV attitude
dynamics is shown in Fig. 3.1. From the motion law of NSV, it is easy to find that,
the response of the angular rate ω is faster than the one of the attitude angle γ . Based
on time scale principle, we define ω as fast state and γ as slow state, thus system
(3.1) can be divided into the following two subsystems: fast subsystem (3.4a) related
to fast state ω and slow subsystem (3.4b) related slow state γ .

{
ẋω = f (xω) + g(xω)u(t)

yω = xω

(a)

{
ẋγ = f (xγ , t)yω

yγ = xγ

(b)

(3.4)

where f (xω) = J−1Ω(ω)Jxω, g(xω) = J−1, f (xγ ) = R(·), xω = ω, xγ = γ .
The control objectives are,

(1) for the slow subsystem (the outer loop), to design the ideal angular rate yω(=ωd)

such that subsystem output yγ follows the desired reference signal yd whose 1st
derivative are available and bounded;



46 3 Fuzzy Logic System-Based Adaptive FC for NSV …

(2) for the fast subsystem (the inner loop), to design the control u(t) such that the
angular rate xω follows the ideal angular rate yω(=ωd).

That is to say, the main task is to design proper control input u(t) such that
limt→∞(xω − ωd) = 0 ⇒ limt→∞(γγ − γd) = 0.

A fuzzy linear dynamicmodel has been proposed by Takagi and Sugeno in 1985 to
represent a nonlinear system as an aggregation of local linear input/output relations.
The fuzzy linear model is described by fuzzy IF-THEN rules and will be employed
to deal with the fuzzy control problem for inner loop dynamics described by (3.4a)
in this chapter.

Consider the following T-S fuzzy model composed of a set of fuzzy implications,
where each implication is expressed by a linear state space model. The ith rule of
this T-S fuzzy model is of the following form:

Plant rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{
ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t)
(3.5)

where i = 1, . . . , r, r is the number of the IF-THEN rules, Mij, j = 1, . . . , q is the
fuzzy set, z(t) = [z1(t), . . . , zq(t)]T are the premise variables which are supposed to
be known, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn denotes state vector, u(t) ∈ Rm denotes
control input, Ai ∈ Rn×n, and Bi ∈ Rn×m are local state and control matrices.

The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))[Aix(t) + Biu(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(3.6)

where hi(z(t)) is defined as

hi(z(t)) =

n∏
j=1

Mij[z(t)]
r∑

i=1

n∏
j=1

Mij[z(t)]
, i = 1, 2, . . . , r (3.7)

whereMij[z(t)] is the grade ofmembership of zj(t) inMij. It is assumed in this chapter

that
n∏

j=1
Mij[z(t)] � 0 for all t. Therefore, we have

r∑
i=1

hi(z(t)) = 1, 0 � hi(z(t)) � 1

for all t.
In this chapter, the state feedback control strategy is chosen as a parallel distributed

compensation (PDC), which can be described as follows:
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Control rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

ui(t) = Kix(t) (3.8)

where Ki is the controller gain matrix to be determined later.
The overall fuzzy controller is given as follows:

u(t) =
r∑

i=1

hi(z(t))Kix(t) (3.9)

The control objective under normal conditions is to design a proper state feedback
control input u(t) such that limt→∞(xω − ωd) = 0 ⇒ limt→∞(γγ − γd) = 0.

However, in practical application, actuators may become faulty. Two kinds of
actuator faults are considered: loss of effectiveness of the actuators and actuator bias
faults. The first kind of fault is modeled as follows.

ufi (t) = (1 − ρu
i (x))ui(t), i = 1, . . . ,m, t � tj (3.10)

where ρu
i (x) (0 � ρu

i (x) < 1), which is supposed to be unknown, denotes the
remaining control rate, tj is unknown fault occurrence time. The second kind of
fault, namely actuator bias fault, can be described as:

ufi (t) = ui(t) + dui (x), i = 1, . . . ,m, t � tj (3.11)

where dui (x) denotes a bounded signal. Therefore, the above two kinds of actuator
faults can be uniformly described as

ufi (t) = (1 − ρu
i (x))ui(t) + dui (x), t ≥ tf (3.12)

Furthermore, a more general fault model can be given as:

ufi (t) = (1 − ρu
i (x))ui(t) +

pui∑
j=1

gui,jd
u
i,j(x), t ≥ tf (3.13)

where dui,j(x), i = 1, . . . ,m, j = 1, . . . , pui denotes a bounded signal, pui is a known
positive constant. gui,j denotes an unknown constant. With no restriction, let suppose
pu1 = · · · = pum= p, with p a knownpositive constant. Consider the following notation
aui,j(x) = gui,jd

u
i,j(x), (3.13) can be re-written as follows:

ufi (t) = (1 − ρu
i (x))ui(t) +

p∑
j=1

aui,j(x), t ≥ tf (3.14)
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where the nonlinear functions ρu
i (x), a

u
i,j(x) and the failure time instant tj are

unknown. In this chapter, both bias and gain faults are handled by considering the
general fault model (3.14).

Now, the control objective is re-defined as follows. An active fault tolerant control
approach is proposed to obtain the above tracking objective in normal and faulty
conditions, namely, limt→∞(xω − ωd) = 0. Furthermore, limt→∞(γγ − γd) = 0.
Under normal condition (no fault), a state feedback control input u(t) is designed,
such that limt→∞(xω −ωd) = 0. Meanwhile, the FDI algorithm is working. As soon
as actuator faults are detected and isolated, the fault accommodation algorithm is
activated and a proper fault-tolerant control input u(t) is used such that the tracking
performance (limt→∞(xω − ωd) = 0) is still maintained stable under faulty case.

3.2.2 Mathematical Description of Fuzzy Logic System

FLS consists of four parts: the knowledge base, the fuzzifier, the fuzzy inference
engine working on fuzzy rules, and the defuzzifier. The knowledge base for FLS
comprises a collection of fuzzy if-then rules of the following form:

Rl : if x1 is Al
1 and x2 is Al

2 . . . and xn isAl
n, then y is Bl, l = 1, 2, . . . ,M

where x = [x1, x2, . . . , xn]T ∈ U ⊂ Rn and y are the FLS input and out-
put, respectively. Fuzzy sets Al

i and Bl are associated with the fuzzy functions

μAl
i
(xi) = exp(−(

xi−ali
bli

)2) and μBl (yl) = 1, respectively. M is the rules number.

Through singleton function, center average defuzzification and product inference,
the FLS can be expressed as

y(x) =
{

M∑
l=1

ȳl
(

n∏
i=1

μAl
i
(xi)

)}
/

{
M∑
l=1

(
n∏

i=1

μAl
i
(xi)

)}
(3.15)

where ȳl = maxy∈RμBl . Define the fuzzy basis functions as

ξ l(x) =
[

n∏
i=1

μAl
i
(xi)

]
/

[
M∑
l=1

(
n∏

i=1

μAl
i
(xi)

)]
(3.16)

and define θT = [ȳ1, ȳ2, . . . , ȳM ] = [θ1, θ2, . . . , θM] and ξ = [ξ 1, ξ 2, . . . , ξM]T ,
then FLS (3.15) can be rewritten as

y(x) = θTξ(x) (3.17)
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Lemma 3.1 (Boulkroune et al. [60]) Let f (x) be a continuous function defined on a
compact set Ω . Then for any constant ε > 0, there exists an FLS (3.17) such as

sup
x∈Ω

|f (x) − θTξ(x)| � ε (3.18)

By Lemma 3.1, FLSs are universal approximations, i.e., they can approximate any
smooth function on a compact space. Due to this approximation capability, we can
assume that the nonlinear term f (x) can be approximated as

f (x, θ) = θTξ(x) (3.19)

Define the optimal parameter vector θ∗ as

θ∗ = argmin
θ∈Ω

[sup
x∈U

|f (x) − f (x, θ∗)|]

whereΩ andU are compact regions for θ and x, respectively. Also the FLSminimum
approximation error is defined as

ε = f (x) − θ∗Tξ(x) (3.20)

In this chapter, we use the above fuzzy logic system to approximate the unknown
functions ρu

i (x), a
u
i,j(x), namely, there exist θ∗

ρ,i, θ
∗
α,i,j, ερ,i, εα,i,j such that ρu

i (x) =
θ∗
ρ,iξρ,i(x) + ερ,iaui,j(x) = θ∗

α,i,jξα,i,j(x) + εα,i,j. Now, the following assumptions are
made.

Assumption 3.1 There exist unknown constants ε∗
ρ,i > 0, ε∗

α,i,j > 0 and two known
constants M̄ρ,sk , M̄α,sk ,j such that |ερ,i| � ε∗

ρ,i , |εα,sk ,j| � ε∗
α,i,j , ε

∗
ρ,i � M̄ρ,sk , ε

∗
α,i,j �

M̄α,sk ,j.

Assumption 3.2 There exist known constants Mρ,sk ,Mα,sk ,j such that ||θ∗
ρ,sk

|| �
Mρ,sk , ||θ∗

α,sk ,j
|| � Mα,sk ,j.

3.3 Fault Diagnosis and FLS-Based Fault Accommodation

In this section, the main technical results of this chapter are given. We will first
formulate the fault diagnosis and accommodation problems of the above T-S fuzzy
system. We will then design a bank of SMOs to generate residuals, investigate the
FDI algorithm based on the SMOs, and propose a FTC scheme to tolerate the faults
by compensating for faults.
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3.3.1 Preliminary

Consider the T-S fuzzy faulty system described in (3.6). We assume that only actu-
ator faults occur and no sensor fault is involved. The following assumptions are
considered.

Assumption 3.3 Matrix Bi is of full column rank and the pair (Ai,Ci) is observable.

We first design the fault diagnosis observers to detect and isolate the faults, and
then, propose a FTC method to compensate the faults.

3.3.2 Fault Detection

In order to detect the actuator faults, we design a fuzzy state-space observer for the
system (3.6), which is described as:

Observer rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN{ ˙̂x(t) = Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))

ŷ(t) = Cix̂(t)
(3.21)

where Li, i = 1, . . . , r is the observer gain for the ith observer rule.
The overall fuzzy system is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x(t) =
r∑

i=1

hi(z(t))[Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t))]

ŷ(t) =
r∑

i=1

hi(z(t))Cix̂(t)

(3.22)

Denote
ex(t) = x(t) − x̂(t), ey(t) = y(t) − ŷ(t) (3.23)

then the error dynamics is described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ėx(t) =

r∑
i=1

hi(z(t))[(Ai − LiCi)ex(t)]

ey(t) =
r∑

i=1

hi(z(t))Ciex(t)

(3.24)
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Lemma 3.2 The estimation error ex converges asymptotically to zero if there exist
common matrices P = PT > 0 and Q > 0 with appropriate dimensions such that
the following linear matrix inequality is satisfied:

P(Ai − LiCi) + (Ai − LiCi)
TP � −Q, i = 1, 2, . . . , r (3.25)

Proof Consider the following Lyapunov function

VD = eTx (t)Pex(t)

Differentiating V1 with respect to timet, one has

V̇D(t) =
r∑

i=1

hi(z(t))[eTx (t)(P(Ai − LiC) + (Ai − LiC)TP)ex(t)]

� −
r∑

i=1

hi(z(t))[eTx (t)Qex(t)]

� 0

(3.26)

Because VD(t) ∈ L∞ is a monotonous and non-increasing bounded function,
VD(+∞) exists. Hence, we have

VD(0) − VD(+∞) � −
∫ +∞

0

r∑
i=1

hi(z(t))[eTx (t)Qex(t)],

which means taht ex(t) ∈ L2. Since ex(t), ėx(t) ∈ L∞, using the Lyapunov stability
theory, we obtain lim

t→∞ ex(t) = 0. Furthermore, we have lim
t→∞ ey(t) = 0. The proof is

completed.

From Lemma 3.2, we have

V̇D(t) � −
r∑

i=1

hi(z(t))[eTx (t)Qex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Q)eTx (t)ex(t)]

� −
r∑

i=1

hi(z(t))[λmin(Q)/λmax(P)eTx (t)Pex(t)]

� −hi(z(t))[λmin(Q)/λmax(P)]V (t)

= −κVD(t)

(3.27)
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where κ = λmin(Q)/λmax(P) ∈ R. Hence,

VD(t) � e−κtV (0) (3.28)

Furthermore, we have

λmin(P)||ex(t)||2 � e−κtλmax(P)||ex(0)||2 (3.29)

Therefore the norm of the error vector satisfies

||ex(t)|| �
√

λmax(P)/λmin(P)||ex(0)||e−κt/2 (3.30)

Furthermore, the detection residual can be defined as

J(t) = ||y(t) − ŷ(t)|| (3.31)

From (3.30), it can be seen that the following inequality holds in the healthy case:

J(t) �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2 (3.32)

Then, the fault detection can be performed using the following mechanism:

{
J(t) � Td no fault occurred,

J(t) > Td fault has occurred
(3.33)

where threshold Td is defined as follows.

Td =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||Ci||||ex(0)||e−κt/2 (3.34)

3.3.3 Fault Isolation

Since the system has m actuators, which maybe become faulty, we have C1
m +C2

m +
· · · + Cm

m possible faulty cases, where Ci
m denotes the number of faulty cases where

there are i faulty actuators within m actuators. Let us define the following symbol,
jki (i = 1, 2, . . . ,m; k = 1, 2, . . . , i) which denotes the situation where the ith actu-
ator fails when there are k possible faulty actuators among the m actuators. Fault
patterns can be described in details as follows.
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Case 1: only an actuator is faulty

ℵ1 : {ℵ1
1
,ℵ2

1
, . . . ,ℵC1

m
1

} = {{j11}, {j12}, . . . , {j1m}}

In this case, there are C1
m fault patterns.

Case 2: only two actuators are faulty

ℵ2 : {ℵ1
2
,ℵ2

2
, . . . ,ℵC2

m
2

} =
{ {j21, j22}, {j21, j23}, . . . , {j21, j2m}, . . . ,

{j22, j23}, {j22, j24}, . . . , {j22, j2m}, . . . {j2m−1, j
2
m}

}

where the number of fault patterns reached a total of C2
m.

Case i: only i actuators are faulty

ℵi : {ℵ1
i
,ℵ2

i
, . . . ,ℵCi

m
i

} = {{ji1, ji2, . . . , jii}, . . . , {j2m−i+1, . . . , j
2
m}}

where the total fault pattern is Ci
m, i = 1, 2, . . . ,m.

Case m: all m actuators are faulty

ℵm : {ℵ1
m
, . . . ,ℵCm

m
m

} = {{ji1, ji2, . . . , jim}}

Here, there is only one fault pattern (Cm
m = 1).

Now, let ℵm = {ℵ1
1
, . . . ,ℵC1

m
1

, . . . ,ℵ1
i
, . . . ,ℵCi

m
i

, . . . ,ℵ1
m
, . . . ,ℵCm

m
m

}. Obviously,
there are C1

m + C2
m + · · · + Cm

m possible fault patterns that are numbered as the 1st,
2nd, N th fault pattern, where N = C1

m + C2
m + · · · + Cm

m .
In this chapter, it is assumed that there d actuators became faulty whose pattern s is

ℵq
d
, namely, s = ℵq

d
. We also assume that the d actuators are the s1th, s2th, . . . , sd th

actuators, where 1 � s1 < s2 < · · · < sd � m. Then the faulty model can be
described as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu(t)−

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [ρu

sk
(x)us

sk
(t) −

p∑
j=1

au
sk ,j

(x)]
⎫⎬
⎭

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(3.35)

where Bi = [bi,1, bi,2, . . . , bi,m], bi,l ∈ Rn×1, 1 � l � m, ρu
sk
(x), au

s,sk
(x), j =

1, 2, . . . , p denote the time profiles of the skth actuator fault, which are described by
(3.14), us

sk
(t) is the desired controller when the skth actuator is healthy.
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Inspired by the SMOs in [63], we are ready to present one of the results of this
chapter. It is assumed that fuzzy observer and fuzzy control systems have the same
premise variables z(t), then the following fuzzy observers are proposed to isolate the
actuator fault.

Isolation Observer Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂xis(t) = Aix̂is(t) + Li(y(t) − ŷis(t)) + Biu(t)+
d∑

k=1

⎧⎨
⎩bi,skμsk [ρ̄u

sk
us
sk
(t) +

p∑
j=1

āu
sk ,j

]
⎫⎬
⎭

ŷis(t) = Cisx̂is(t)

(3.36)

where x̂is(t), ŷis(t) are the sth fuzzy observer’s state and output, respectively. Li is
the observer’s gain matrix for ith observer. The global fuzzy observer is represented
as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂is(t) +
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t)) +
r∑

i=1

hi(z(t))Biu(t)+

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,skμsk [ρ̄usk u

s
sk

(t) +
p∑

j=1

āu
sk ,j

]
⎫⎬
⎭

ŷs(t) =
r∑

i=1

hi(z(t))Cix̂s(t)

μsk = −

r∑
i=1

hi(z(t))Fisk eys(t)

||
r∑

i=1
hi(z(t))Fisk eys(t)||

(3.37)

whereFisk ∈ R1×n is the skth row ofFi ∈ Rm×n, which will be defined later, Li ∈ Rn×n

is chosen such thatAi−LiCi is Hurwitz, exs(t) = xs(t)−x̂s(t) and eys(t) = y(t)−ŷs(t)
are respectively the state error and output error between the plant and the sth SMO
observer. Let l denotes the practical fault pattern where the faulty actuators are the
l1th, l2th, . . . , ld∗ th actuators, 1 � l1 < l2 < · · · < ld∗ � m.

For s = l, namely, d = d∗, l1 = s1, l2 = s2, . . . , ld∗ = sd , the error dynamics is
obtained from (3.35) and (3.36).
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ėxs(t) =
r∑

i=1

hi(z(t))Aieis(t) −
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t))+
r∑

i=1

hi(z(t))
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t) − μsk ρ̄

u
sk
|us

sk
(t)|)+

p∑
j=1

(au
sk ,j

(x) − μsk ā
u
sk ,j

)]

=
r∑

i=1

hi(z(t)){(Ai − LiCi)eis(t)+
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t) − μsk ρ̄

u
sk
|us

sk
(t)|)+

p∑
j=1

(au
sk ,j

(x) − μsk ā
u
sk ,j

)]}

(3.38)

For s 
= l, namely, d 
= d∗ord = d∗ and at least there exists li such that li 
= si, i =
1, 2, . . . , d, we have

ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−
∑d∗

k=1
bi,lkρ

u
lk
(x)us

lk
(t) −

∑d

k=1
bi,skμsk ρ̄

u
sk
|us

sk
(t)|) +

p∑
j=1

(
∑d∗

k=1
bi,lk a

u
lk ,j

(x) −
∑d

k=1
bi,skμsk ā

u
sk ,j

)]
(3.39)

The stability of the state error dynamics is guaranteed by the following theorem.

Theorem 3.1 Under Assumptions 3.1–3.3, if there exist a common symmetric pos-
itive definite matrix P and matrices Li,Fi,Q > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

(Ai − LiCi)
TP + P(Ai − LiCi) � −Q (3.40)

PBi = (FiCi)
T (3.41)

Then, when the lth pattern is the actual fault pattern i.e., s = l, we have lim
t→∞ exs = 0,

and for s 
= l, we have lim
t→∞ exs 
= 0.
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Proof (1) For s = l, according to (3.38), we have

ėxs(t) =
r∑

i=1

hi(z(t)){(Ai − LiCi)eis(t)+
∑d

k=1
bi,sk [(−ρu

sk
(x)usk (t) − μsk ρ̄

u
sk
|usk (t)|)+

p∑
j=1

(au
sk ,j

(x) − μsk ā
u
sk ,j

)]}

Define the following Lyapunov function

VI(t) = eTxs(t)Pexs(t) (3.42)

Differentiating V2 with respect to time t, and using (3.40), one has

V̇I(t) = ėTxs(t)Pexs(t) + eTxs(t)Pėxs(t)

� −eTxs(t)Qexs(t) + 2eTxs(t)P
r∑

i=1

hi(z(t))
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t)−

μsk ρ̄
u
sk
|us

sk
(t)|) +

∑d

k=1
(au

sk ,j
(x) − μsk ā

u
sk ,j

)]

From μsk = −
r∑

i=1
hi(z(t))Fisk eysk (t)/||

r∑
i=1

hi(z(t))Fisk eysk (t)|| and (3.41), one has

2eTxs(t)P
r∑

i=1

hi(z(t))
∑d

k=1
bi,sk [(−ρu

sk
(x)us

sk
(t) − μsk ρ̄

u
sk
|us

sk
(t)|) � 0,

2eTxs(t)P
r∑

i=1

hi(z(t))
∑d

k=1
(au

sk ,j
(x) − μsk ā

u
sk ,j

) � 0.

Hence,
V̇I(t) � −eTxs(t)Qexs(t) � 0 (3.43)

Because VI(t) ∈ L∞ is a monotonous and non-increasing bounded function,
VI(+∞) exists. Hence, we have VI(0)−VI(+∞) � − ∫ +∞

0 eTxs(t)Qexs(t), i.e.,
exs(t) ∈ L2. Since exs(t) and ėxs(t) ∈ L∞, using the Lyapunov stability theory,
we have lim

t→∞ exs(t) = 0. Thus, we have lim
t→∞ eys(t) = 0.

(2) For s 
= l, it follows from (3.35) and (3.39) that:
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ėxs(t) =
r∑

i=1

hi(z(t))(Ai − LiCi)eis(t)+
r∑

i=1

hi(z(t))[(−
∑d∗

k1=1
bi,lk1ρ

u
lk1

(x)us
lk
(t) −

∑d

k=1
bi,skμsk ρ̄

u
sk
|us

sk
(t)|)+

p∑
j=1

(
∑d∗

k1=1
bi,lk1a

u
lk1 ,j

(x) −
∑d

k=1
bi,skμsk ā

u
sk ,j

)]

Because matrix Bi is of full column rank (Assumption 3.1), we know that bisk and
bilk1 are linearly independent. Therefore,

lim
t→∞

r∑
i=1

hi(z(t))[(−
∑d∗

k=1
bi,lkρ

u
lk
(x)us

lk
(t) −

∑d

k=1
bi,skμsk ρ̄

u
sk
|us

sk
(t)|) +

p∑
j=1

(
∑d∗

k=1
bi,lk a

u
lk ,j

(x) −
∑d

k=1
bi,skμsk ā

u
sk ,j

)] 
= 0

(3.44)

Thus, we have lim
t→∞ exs(t) 
= 0 and lim

t→∞ eys(t) 
= 0.

From (1) and (2), we obtain the conclusion. This ends the proof.

Now, we denote the residuals between the real system and SMOs as follows:

Js(t) = ∥∥eys(t)∥∥ = ∥∥ŷs(t) − y(t)
∥∥ , 1 � s � m (3.45)

According to Theorem 3.1, when the actual fault pattern is s = l, the residual Js(t)
will tend to zero; while for any s 
= l, Js(t) does not equal zero. Furthermore, from
Lemma 3.2, we have, if l = s,

Js(t) �
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (3.46)

and if l 
= s, then

Js(t) >

r∑
i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2 (3.47)

Hence, the isolation law for actuator fault can be designed as

{
Js(t) � TI , l = s ⇒ the l1th, l2th, . . . , ld th actuators are faulty

Js(t) > TI , l 
= s
(3.48)

where threshold TI is defined as follows.
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TI =
r∑

i=1

hi(z(t))
√

λmax(P)/λmin(P)||eys(0)||e−κt/2

Notice that, the denominator of μsk = −
r∑

i=1
hi(z(t))Fisk eysk (t)/||

r∑
i=1

hi(z(t))Fisk

eysk (t)|| in (3.37), contains eys(t). Just as pointed out in [63], the chattering phe-
nomenon occurs when eys(t) → 0 in practice. Inspired by [63], in order to reduce
this chattering in practical applications, we modify SMOs (3.37) by introducing a
positive constantδ as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs(t) =
r∑

i=1

hi(z(t))Aix̂is(t) +
r∑

i=1

hi(z(t))Li(y(t) − ŷis(t)) +
r∑

i=1

hi(z(t))Biu(t)+

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,skμsk [ρ̄usk u

s
sk

(t) +
p∑

j=1

āu
sk ,j

]
⎫⎬
⎭

ŷs(t) =
r∑

i=1

hi(z(t))Cix̂s(t)

μ′
sk = −

r∑
i=1

hi(z(t))Fisk eys(t)

||
r∑

i=1
hi(z(t))Fisk eys(t)|| + δ

(3.49)
where δ > 0 ∈ R is a constant. Obviously, the denominator of μ′

sk will converge
asymptotically to δ when eys → 0, which reduces this chattering phenomenon.

3.3.4 Fuzzy Logic Systems-Based Fault Accommodation
with Available System State

After fault isolation, the next task is fault accommodation. Before this task, we inves-
tigate firstly the following normal systems (fault-free), and drive the ideal control
us (t) when all actuators are healthy.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ(t) =

r∑
i=1

hi(z(t))[Aix(t) + Biu
s(t)]

y(t) =
r∑

i=1

hi(z(t))Cix(t)

(3.50)

The parallel distributed compensation (PDC) technique offers a procedure to design
a fuzzy control law from a given T-S fuzzy model. In the PDC design, each control
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rule is designed from the corresponding rule of T-S fuzzy model. The designed fuzzy
controller has the same fuzzy sets as the considered fuzzy system.

Control Rule i: IF z1(t) isMi1 and . . . zq(t) isMiq, THEN

us
i
(t) = Kix(t)

and the overall fuzzy controller is given as follows:

us(t) =
r∑

i=1

hi(z(t))Kix(t) (3.51)

where the controller gain matrixKi is determined by solving the following condition:

P(Ai+KiBi)+(Ai + KiBi)
TP+(Ai + KiBi)

TPS1P(Ai+KiBi)+PS2P � −Q (3.52)

where P = PT > 0, Q > 0, S1 > 0, S2 > 0 are matrices with appropriate dimen-
sions.

Define tracking error ē = y − ωd . The tracking error dynamics is obtained from
the above equations,

˙̄e = ẏ − ω̇d = Ciẋ − ω̇d =
r∑

i=1

hi(z(t))[CiAix(t) + CiBiu
s(t)] − ω̇d

Because all the states are supposed to be available, we have Ci = Im×m. The tracking
error dynamics can be simplified as follows:

˙̄e = ẋ − ω̇d =
r∑

i=1

hi(z(t))[Aix(t) + BiKix(t) − ω̇d]

=
r∑

i=1

hi(z(t))[(Ai + BiKi)x(t) − ω̇d]

=
r∑

i=1

hi(z(t))[(Ai + BiKi)e(t) + ωd − ω̇d]

(3.53)

Define the following Lyapunov function

V0 = ēTPē

where P = PT > 0.
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Differentiating V0 with respect to time t, leads to

V̇0 =
r∑

i=1

hi(z(t))[eT (t)(P(Ai + KiBi) + (Ai + KiBi)
TP)e(t)] −

r∑
i=1

hi(z(t))[2eT (t)(Ai + KiBi)
TP(ωd − ω̇d)] −

r∑
i=1

hi(z(t))[2eT (t)P(ωd − ω̇d)] +
r∑

i=1

hi(z(t))[2(ωd − ω̇d)
TP(ωd − ω̇d)]

(3.54)
Since

−2ēT (Ai + KiBi)
TP(ωd − ω̇d) � ēT (t)(Ai + KiBi)

TPS1P(Ai + KiBi)ē+
(ωd − ω̇d)

TS−1
1 (ωd − ω̇d)

−2ēTP(ωd − ω̇d) � ēT (t)PS2Pē + (ωd − ω̇d)
TS−1

2 (ωd − ω̇d)

(3.54) can be re-written as follows:

V̇0 �
r∑

i=1

hi(z(t))[ēT (t)Δ1ē(t)]+
r∑

i=1

hi(z(t))[(ωd − ω̇d)
T (S−1

1 + S−1
2 + 2P)(ωd − ω̇d)]

whereΔ1 = P(Ai +KiBi)+ (Ai + KiBi)
TP+ (Ai + KiBi)

TPS1P(Ai +KiBi)+PS2P.
Obviously, if

Δ1 = P(Ai + KiBi) + (Ai + KiBi)
TP + (Ai + KiBi)

TPS1P(Ai + KiBi) + PS2P � −Q,

then

V̇0 � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0 � −λ0V0 + μ0,

where μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T (S−1
1 + S−1

2 + 2P)(ωd − ω̇d)], λ0 = λmin(Q)

λmax(P)
,

Q = QT > 0.
Then, one has d

dt (V0(t)eλ0t) � eλ0tμ0. Furthermore,

0 � V0(t) � μ0

λ0
+ [V0(0) − μ0

λ0
]e−λ0t � μ0

λ0
+ V0(0).
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Therefore, the error system (3.53) is asymptotically stable. Moreover, ē(t) is
semi-globally uniformly ultimately bounded, converging asymptotically to a small
neighborhood of zero, namely, |ē| �

√
α/λmin(P), where α = μ0/λ0 + V0(0).

After obtaining the desired control us(t), we will design fault-tolerant control u(t)
such that the same control objective can be achieved in spite of actuator faults.

On the basis of the desired control us(t), the fault tolerant controller is constructed
as

usk = ussk − ∑p
j=1 âsk ,j(x, θ̂α,sk ,j) − ε̂α,sk ,j

1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk

(3.55)

where θ̂ρ,sk , θ̂α,sk ,j, ρ̂ρ,sk (x, θ̂ρ,sk ), âi,j(x, θ̂α,sk ,j) are the estimations of θ∗
ρ,sk , θ∗

α,sk ,j
,

ρsk (x, θ
∗
ρ,sk ), ask ,j(x, θ

∗
α,sk ,j

), which are used to compensate for the gain and bias faults
ρsk (x), αsk ,j(x), and ρsk (x) = ρsk (x, θ

∗
ρ,sk ) + εsk , ask ,j(x) = ask ,j(x, θ

∗
α,sk ,j

) + εsk ,j,
εsk , εsk ,j are approximation errors, θ∗

ρ,sk , θ
∗
α,sk ,j

are optimal vectors.
Consider the following faulty system

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu
s(t)−

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [ρu

sk
(x)us

sk
(t) −

p∑
j=1

au
sk ,j

(x)]
⎫⎬
⎭

(3.56)

Submitting the fault-tolerant control law (3.55) to the faulty system (3.56), it yields

ẋs(t) =
r∑

i=1

hi(z(t))Aixs(t) +
r∑

i=1

hi(z(t))Biu
s(t)+

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [(θ̃Tρ,sk

ξρ,sk (x) + ε̃ρ,sk )κk −
p∑

j=1

θ̃u
α,sk ,j

ξα,sk ,j(x) − ε̃ρ,sk ]
⎫⎬
⎭

(3.57)

where θ̃α,sk ,j = θ̂α,sk ,j − θ∗
α,sk ,j

, κk = (

ussk −
p∑

j=1
[α̂u

α,sk ,j
(x,θ̂α,sk ,j)−ε̂α,sk ,j]

1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk

), θ̃ρ,sk = θ̂ρ,sk − θ∗
ρ,sk .

Further, the error dynamics is obtained:

˙̄e =
r∑

i=1

hi(z(t))[(Ai + BiKi)e(t) + ωd − ω̇d] +

r∑
i=1

hi(z(t))
d∑

k=1

⎧⎨
⎩bi,sk [(θ̃T

ρ,sk
ξρ,sk (x) + ε̃ρ,sk )κk −

p∑
j=1

θ̃u
α,sk ,j

ξα,sk ,j(x) − ε̃ρ,sk ]
⎫⎬
⎭

(3.58)
Now, an adaptive fault accommodation algorithm is proposed to control the faulty
system. The stability of the error dynamics is guaranteed by the following theorem.
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Theorem 3.2 Under Assumptions 3.1–3.3, if there exist a common symmetric pos-
itive definite matrix P, real matrices Ki and Q > 0, i =1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

P(Ai + KiBi) + (Ai + KiBi)
TP+

(Ai + KiBi)
TPS1P(Ai + KiBi) + PS2P � −Q

(3.59)

Consider the control law (3.55) and the adaptive laws given as follows:

˙̂
θρ,sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η1ē
TPbi,skξ

u
ρ,sk

(x)κk, if ||θ̂ρ,sk || < Mρ,sk or

||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κk � 0;

− η1ē
TPbi,skξ

u
ρ,sk

(x)κk + η1ē
TPbi,skκk

θρ,skθ
T
ρ,sk

||θ̂if ||2
ξ u

ρ,sk
(x),

if ||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κk < 0

(3.60)

˙̂
θα,sk ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2ē
TPbi,skξ

u
α,sk ,j

(x), if ||θ̂α,sk ,j|| < Mα,sk ,j

or ||θ̂α,sk ,j|| = Mα,sk ,j and −η2ē
TPbi,skξ

u
α,sk ,j

(x) � 0;

η2ē
TPbi,skξ

u
α,sk ,j

(x) + η2ē
TPbi,sk

θ̂α,sk ,j θ̂
T
α,sk ,j

||θ̂α,sk ,j||2
ξ u

α,sk ,j
(x),

if ||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x) < 0

(3.61)

˙̂ερ,sk =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄ρ,sk and −η3ē

TPbi,skκk > 0

or ε̂ρ,sk = −M̄ρ,sk and −η3ē
TPbi,skκk < 0;

− η3ē
TPbi,skκk, otherwise

(3.62)

˙̂εα,sk ,j =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄α,sk ,j and η4ē

TPbi,sk > 0

ε̂α,sk ,j = −M̄α,sk ,j and η4ē
TPbi,sk < 0;

η4ē
TPbi,sk , otherwise

(3.63)

where ηi > 0, i = 1, . . . , 4 denote the adaptive rates, then the error system (3.59)
is asymptotically stable. Moreover, ē(t), θ̃ρ,sk and θ̃α,sk ,j are semi-globally uniformly
ultimately bounded, converging asymptotically to a small neighborhood of zero,
namely, ||ē|| �

√
α/λmin(P), ||θ̃ρ,sk || �

√
2η1α, and ||θ̃α,sk ,j|| �

√
2η2α, where

α =μ0

λ0
+V (0),λ = min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

},μ =
r∑

i=1
hi(z(t))(

2
η2

θ̄2
ρ,sk

+
p∑

j=1

2
η2

θ2
α,sk ,j

)+μ0,

and μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T (S−1
1 + S−1

2 + 2P)(ωd − ω̇d)].
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Proof Define the following smooth function

V = V1 + V2 + V3 + V4 + V5

where

V1 = ēTPē, V2 =
r∑

i=1

hi(z(t))(
1

2η1
θ̃T
ρ,sk θ̃ρ,sk )

V3 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

2η2
θ̃T
α,sk ,j θ̃α,sk ,j), V4 =

r∑
i=1

p∑
j=1

hi(z(t))(
1

2η3
ε̃2ρ,sk )

V5 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

2η4
ε2α,sk ,j)

Differentiating V with respect to time t, it leads to

V̇ = V̇1 + V̇2 + V̇3 + V̇4 + V̇5

where

V̇1 � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0 +
r∑

i=1

hi(z(t))2ē
TP

d∑
k=1

bi,sk [(θ̃T
ρ,skξ

u
ρ,sk

(x) + ε̃ρ,sk )κ]+

r∑
i=1

hi(z(t))2ē
TP

d∑
k=1

bi,sk [
p∑

j=1

θ̃T
α,sk ,jξ

u
α,sk ,j

(x) + ε̃α,sk ,j]

V̇2 =
r∑

i=1

hi(z(t))
1

η1
θ̃T

ρ,sk

˙̃
θρ,sk , V̇3 =

r∑
i=1

p∑
j=1

hi(z(t))
θ̃T

α,sk ,j

˙̃
θα,sk ,j

η2

V̇4 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

η3
ε̃ρ,sk

˙̂ερ,sk ), V̇5 =
r∑

i=1

p∑
j=1

hi(z(t))(
1

η4
ε̃α,sk ,j

˙̂εα,sk ,j)

Since usk = (ussk −
∑p

j=1 âsk ,j(x,θ̂α,sk ,j)−ε̂α,sk ,j)

1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk

, then
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ufsk = (1 − ρsk (x))usk +
∑p

j=1
ask ,j(x)

= ussk −
∑p

j=1
θ̃α,sk ,jξα,sk ,j(x) −

∑p

j=1
ε̃α,sk,j + θ̃ρ,skΔ + ερ,skΔ

= ussk −
∑p

j=1
θ̃α,sk ,jξα,sk ,j +

∑p

j=1
ε̃α,sk,j + θ̃ρ,skΔ + ε̃ρ,skΔ

where Δ = ussk −
∑p

j=1 âsk ,j(x,θ̂α,sk ,j)−ε̂ρ,sk ,j

1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk

. Furthermore, one has

V̇ � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0 +
r∑

i=1

hi(z(t))2ē
TP

d∑
k=1

bi,sk [θ̃T
ρ,sk (ξ

u
ρ,sk

(x)Δ + 1

η1

˙̃
θρ,sk ) − ε̃ρ,sk (Δ + 1

η3

˙̃ερ,sk )−
p∑

j=1

θ̃T
α,sk ,j(ξ

u
α,sk ,j

(x) −
˙̃
θα,sk ,j

η2
) −

p∑
j=1

ε̃α,sk ,j(1 −
˙̃
θα,sk ,j

η2
)]

Substituting the adaptive laws (3.60–3.63) into the above equation, it yields

V̇ � −
r∑

i=1

hi(z(t))[ēT (t)Qē(t)] + μ0

Since ||θ̂ρ,sk || � Mρ,sk , ||θ̂α,sk ,j|| � Mα,sk ,j, which can be guaranteed by using the
adaptive laws (3.60) and (3.61), when Assumptions 3.1 and 2.2 (i.e., ||θ∗

ρ,sk
|| � Mρ,sk ,

||θ∗
α,sk ,j

|| � Mα,sk ,j) are satisfied, one has

V̇ ≤= λV (t) + μ

where μ =
r∑

i=1
hi(z(t))[ 4

η1
M2

ρ,sk
+

p∑
j=1

4
η2
M2

α,sk ,j
+ 4

η3
M̄2

ρ,sk +
p∑

j=1

4
η4
M̄2

α,sk ,j
)] + μ0, λ =

min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

}.
Then, one has, d

dt (V (t)eλt) � eλtμ. Furthermore,

0 � V (t) � μ

λ
+ [V (0) − μ

λ
]e−λt � μ

λ
+ V (0)

Let α = μ

λ
+ V (0), one has |ē| �

√
α

λmin(P)
, |θ̃ρ,sk | �

√
2η1α, and |θ̃α,sk ,j| �

√
2η2α.

This ends the proof.

http://dx.doi.org/10.1007/978-3-319-52530-3_2
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3.3.5 Modified Fault Accommodation with Available System
State

In the above subsection, the fault tolerant controller was constructed as

usk = ussk − ∑p
j=1 âsk ,j(x, θ̂α,sk ,j) − ε̂α,sk ,j

1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk

Unfortunately, theremay exist controller singularitywhen1−ρ̂sk (x, θ̂ρ,sk )−ε̂ρ,sk = 0.
In order to avoid such singularity, the fault tolerant controller is modified as

follows

usk = (1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk )(u
s
sk − ∑p

j=1 âsk ,j(x, θ̂α,sk ,j) − ε̂α,sk ,j)

(1 − ρ̂sk (x, θ̂ρ,sk ) − ε̂ρ,sk )
2 + ε

(3.64)

where ε > 0 ∈ R is a design constant. Correspondingly, the adaptive laws inTheorem
3.2 are re-designed as follows

˙̂
θρ,sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′, if ||θ̂ρ,sk || < Mρ,skor

||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′ � 0;

− η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′ + η1ē
TPbi,skκ

′ θρ,skθ
T
ρ,sk

||θ̂if ||2
ξ u

ρ,sk
(x),

if ||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x)κ ′ < 0

(3.65)

˙̂
θα,sk ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2ē
TPbi,skξ

u
α,sk ,j

(x), if ||θ̂α,sk ,j|| < Mα,sk ,j or

||θ̂α,sk ,j|| = Mα,sk ,j and −siθ̂
T
if ξif � 0;

η2ē
TPbi,skξ

u
α,sk ,j

(x) + η2ē
TPbi,sk

θ̂α,sk ,j θ̂
T
α,sk ,j

||θ̂α,sk ,j||2
ξ u

α,sk ,j
(x),

if ||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x) < 0,

(3.66)

˙̂εα,sk ,j =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄α,sk ,j and − η4ē

TPbi,sk > 0

or ε̂α,sk ,j = −M̄α,sk ,j and − η4ē
TPbi,sk < 0

η4ē
TPbi,sk , otherwise

(3.67)

˙̂ερ,sk =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄ρ,sk and −η3ē

TPbi,skκ
′ > 0

or ε̂ρ,sk = −M̄ρ,sk and −η3ē
TPbi,skκ

′ < 0,

− η3ē
TPbi,skκ

′, otherwise

(3.68)
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where κ ′ =
(1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk )[ussk −

p∑
j=1

θ̂T
α,sk ,j

ξ u
α,sk ,j

(x)]

(1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk )
2+ε

, ηl > 0, l = 1, . . . , 4 denote the

adaptive rates.
Now, a modified adaptive fault accommodation algorithm is proposed to control

the faulty system. The stability of the error dynamics is guaranteed by the following
theorem.

Theorem 3.3 Under Assumptions 3.1–3.3, if there exist a common symmetric posi-
tive definite matrix P, real matrices Ki and Q > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

P(Ai + KiBi) + (Ai + KiBi)
TP+

(Ai + KiBi)
TPS1P(Ai + KiBi) + PS2P � −Q

(3.69)

when the control law (3.64) and adaptive laws (3.65–3.68) are applied, the error sys-
tem (3.58) is asymptotically stable. Moreover ē(t), θ̃ρ,sk and θ̃α,sk ,j are semi-globally
uniformly ultimately bounded, converging asymptotically to a small neighborhood
of zero, namely, ||ē|| �

√
α/λmin(P), ||θ̃ρ,sk || �

√
2η1α, and ||θ̃α,sk ,j|| �

√
2η2α

where λ = min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

}, μ =
r∑

i=1
hi(z(t))(

2
η2

θ̄2
ρ,sk

+
p∑

j=1

2
η2

θ̄2
α,sk ,j

) + μ0, and

μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T (S−1
1 + S−1

2 + 2P)(ωd − ω̇d) + ω], α = μ

λ
+ V (0).

Proof Similar to the proof of Theorem 3.2, it is easy to obtain the conclusion. The
detailed proof is omitted.

3.3.6 FLSs-Based Fault Accommodation with Unavailable
System State

Notice that, the FTC (3.55) and the modified FTC (3.64) are designed under the
condition that system states are measurable. In fact, in some situations, system state
may be unavailable, and the above FTC (3.55) and (3.64) do not work. In this case,
observers (3.21) and (3.22) may be used to obtain the estimation x̂ of system state x,
and design the following observer-based FTC.

usk = (1 − ρ̂sk (x̂, θ̂ρ,sk ) − ε̂ρ,sk )(u
s
sk − ∑p

j=1 âsk ,j(x̂, θ̂α,sk ,j) − ε̂α,sk ,j)

(1 − ρ̂sk (x̂, θ̂ρ,sk ) − ε̂ρ,sk )
2 + ε

(3.70)
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Correspondingly, the adaptive laws in Theorem 3.3 are re-designed as follows:

˙̂
θρ,sk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η1ē
TPbi,skξ

u
ρ,sk

(x̂)ω, if ||θ̂ρ,sk || < Mρ,sk or

||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x̂)ω � 0;
− η1ē

TPbi,skξ
u
ρ,sk

(x̂)ω+

η1ē
TPbi,skω

θρ,skθ
T
ρ,sk

||θ̂if ||2
ξ u

ρ,sk
(x̂),

if ||θ̂ρ,sk || = Mρ,sk and η1ē
TPbi,skξ

u
ρ,sk

(x̂)ω < 0

(3.71)

˙̂
θα,sk ,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2ē
TPbi,skξ

u
α,sk ,j

(x̂), if ||θ̂α,sk ,j|| < Mα,sk ,j or

||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x̂) � 0;

η2ē
TPbi,skξ

u
α,sk ,j

(x̂) + η2ē
TPbi,sk

θ̂α,sk ,j θ̂
T
α,sk ,j

||θ̂α,sk ,j||2
ξ u

α,sk ,j
(x̂),

if ||θ̂α,sk ,j|| = Mα,sk ,j and −ēTPbi,skξ
u
α,sk ,j

(x̂) < 0

(3.72)

˙̂ερ,sk =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄ρ,sk and − η3ē

TPbi,skω > 0

or ε̂ρ,sk = −M̄ρ,sk and − η3ē
TPbi,skω < 0;

− η1ē
TPbi,skω, otherwise

(3.73)

˙̂εα,sk ,j =

⎧⎪⎨
⎪⎩
0, if ε̂ρ,sk = M̄α,sk ,j and − η4ē

TPbi,sk > 0 or

ε̂α,sk ,j = −M̄α,sk ,j and − η3ē
TPbi,sk < 0;

η4ē
TPbi,sk , otherwise

(3.74)

where ω =
(1−ρ̂sk (x,θ̂ρ,sk )−ε̂ρ,sk )[ussk −

p∑
j=1

θ̂T
α,sk ,j

ξ u
α,sk ,j

(x̂)]

(1−ρ̂sk (x̂,θ̂ρ,sk )−ε̂ρ,sk )
2+ε

, ηl > 0, l = 1, . . . , 4 denote the

adaptive rates.
Now, an observer-based adaptive fault accommodation algorithm is proposed to

control the faulty system. The stability of the error dynamics is guaranteed by the
following theorem.

Theorem 3.4 Under Assumptions 3.1–3.3, if there exist a common symmetric posi-
tive definite matrix P, real matrices Ki and Q > 0, i = 1, 2, . . . , r with appropriate
dimensions, such that the following conditions hold

P(Ai+KiBi)+(Ai + KiBi)
TP+(Ai + KiBi)

TPS1P(Ai+KiBi)+PS2P � −Q (3.75)

when the control law (3.70) and adaptive laws (3.71–3.74) are applied, then
the error system (3.58) is asymptotically stable. Moreover ē(t), θ̃ρ,sk and θ̃α,sk ,j
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are semi-globally uniformly ultimately bounded, converging asymptotically to a
small neighborhood of zero, namely, ||ē|| �

√
α/λmin(P), ||θ̃ρ,sk || �

√
2η1α,

and ||θ̃α,sk ,j|| �
√
2η2α, where α = μ/λ + V (0), λ = min{ λmin(Q)

λmax(P)
, 1
2η1

, 1
2η2

},
μ =

r∑
i=1

hi(z(t))(
2
η2

θ̄2
ρ,sk

+
p∑

j=1

2
η2

θ̄2
α,sk ,j

) + μ0, and μ0 =
r∑

i=1
hi(z(t))[(ωd − ω̇d)

T ·
(S−1

1 + S−1
2 + 2P)(ωd − ω̇d) + ω].

Proof Similar to the proof of Theorem 3.2, it is easy to obtain the conclusion. The
detailed proof is omitted.

3.4 Simulation Results

To verify the effectiveness of the proposed method, we consider the re-entry phase
of a NSV with the altitude H = 40 km and speed V = 2500m/s as the initial states.
The symmetric, positive definite moment of inertia tensor is given as follows:

J =
⎡
⎣ 554486 0 −23002

0 1136949 0
−23002 0 1376852

⎤
⎦

Consider that the nonlinearity of NSV re-entry attitude dynamics mainly comes
from attack angle α and attitude angular velocity ω. In NSV re-entry phase α ∈
[0, π/4], we assume that α has two related fuzzy sets {α = 0} and {α = π/4}, the
corresponding membership functions are given by:

Mω=0 = (1 − 1

1 + exp[−6 − 28ω)] )
1

1 + exp[6 − 28ω)]

Mω=−0.5 = (
1

1 + exp[6 + 28ω)] ),Mω=0.5 = (1 − 1

1 + exp[−6 + 28ω)] )

We choose six operating points:

[α,ω] ∈ {[0,−0.5], [0, 0], [0, 0.5], [π/4,−0.5], [π/4, 0], [π/4, 0.5]}

Under the membership functions and the six operating points, six plant rules and six
control rules can be defined. All Ai and Bi can be obtained by substituting the six
operating points to f (xω), g(xω). The detailed matrix parameters are given in [62].
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Rule 1: IF ω is about − 0.5 rad/s and α is about 0 rad, THEN

ẋ(t) = A1x(t) + B1u, y(t) = C1x(t)

Rule 2: IF ω is about − 0.5 rad/s and α is about π /4 rad, THEN

ẋ(t) = A2x(t) + B2u, y(t) = C2x(t)

Rule 3: IF ω is about 0 rad/s and α is about 0 rad, THEN

ẋ(t) = A3x(t) + B3u, y(t) = C3x(t)

Rule 4: IF ω is about 0 rad/s and α is about π /4 rad, THEN

ẋ(t) = A4x(t) + B4u, y(t) = C4x(t)

Rule 5: IF ω is about 0.5 rad/s and α is about 0 rad, THEN

ẋ(t) = A5x(t) + B5u, y(t) = C5x(t)

Rule 6: IF ω is about0.5 rad/s and α is about π /4 rad, THEN

ẋ(t) = A6x(t) + B6u, y(t) = C6x(t)

The initial conditions are taken as follows: ω(0) = [0, 0, 0]T , γ (0) = [0, 0, 0]T
and the tracking command is chosen as ωd = [0, 0, 0]T , γd = [1, 0, 2]T during the
re-entry phase. The parameters are taken as in [62] and will not be described in detail
here. We consider the case where only two actuators fail at one time:

uf1(t) =
⎧⎨
⎩
u1(t), t < 5s

(1 − ρ1(x))(u1(t) +
∑p

j=1
g1,j f1,j(x)), t � 5s

uf2(t) =
⎧⎨
⎩
u2(t), t < 5

(1 − ρ2(x))(u2(t) +
∑p

j=1
g2,j f2,j(x)), t � 5

uf3(t) = u3(t)

where ρ1(x) = 0.4 cos(x1), p = 1, g1,1 = 0.4, f1,1(x) = cos(x3), ρ2(x) =
0.4 sin(x2), g2,1 = 0.4, f2,1(x) = cos(x3). By using Matlab toolbox to solve the
matrices inequalities (3.25), one can obtain the fault diagnostic observer gains Li.
By solving (3.52), one can obtain the positive definite symmetric matrix P and the
nominal controller gainsKi. Therefore, one can design the ideal control (3.51). Using
the ideal control input (3.51), we can design fault-tolerant controller (3.55), the mod-
ified fault-tolerant (3.64) and the observer-based fault-tolerant control (3.70). In this
example, we assume that the system state is not fully measured and thus the observer
(3.22) is used to estimate the system state. Consequently, the observer-based fault-
tolerant control input (3.70) is used to control the faulty system. The simulation
results are presented in Figs. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9. From Fig. 3.2,
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Fig. 3.2 The observer errors time responses: e1, e2, e3
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Fig. 3.3 State responses of NSV attitude dynamics under normal conditions

it is seen that, under normal operating condition, observation errors globally asymp-
totically converge to zero. If no actuator fails, the system states globally asymptoti-
cally converge to zero, as shown in Fig. 3.3. Figure3.4 shows that, when an actuator
fault occurs, when keeping the normal controller, the system states deviate signifi-
cantly from zero. However, as shown in Fig. 3.5, using the proposed FTC (3.70), the
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Fig. 3.4 State responses of NSV attitude dynamics without FTC

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t/s

St
at

e 
x(

t)

x1
x2
x3

Fig. 3.5 State responses of NSV attitude dynamics with observer-based FTC (3.70)

system states globally asymptotically converge to zero. From Figs. 3.6, 3.7, 3.8 and
3.9, we can clearly draw the conclusion that both gain faults and bias faults can be
approximated accurately and promptly by FLSs.
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Fig. 3.6 The estimation
error of bias fault g1,1f1,1(x)
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Fig. 3.7 The estimation
error of gain fault ρ1(x)
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3.5 Conclusions

In this chapter, the problem of fault tolerant control for NSV with multiple state-
dependent faultswas studied.Wefirst designed a bank of SMOs to detect and estimate
the fault. Comparedwith some results in literature, the proposed fault accommodation
scheme is designed to online approximate not only bias faults but also gain faults.
Moreover, it can accommodate multiple actuator faults simultaneously. In addition,
the adaptive fault accommodation algorithm removes the classical assumption that
the time derivative of the output errors should be known. Simulation results of NSV
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Fig. 3.8 The estimation
error of bias fault g2,1f2,1(x)
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Fig. 3.9 The estimation
error of gain fault ρ2(x)
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show that the designed fault detection, isolation and estimation algorithms as well as
the fault-tolerant control scheme have good dynamic performances in the presence
of multiple actuator faults.
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Chapter 4
Command Filtered Adaptive Fuzzy
Backstepping FTC Against Actuator Fault

4.1 Introduction

Fuzzy control has found extensive applications formodeling nonlinear systems in the
past 10years. According to the fuzzy approximation theorem of the fuzzy logic sys-
tems (FLSs) [1–6], researchers proposed many approximation-based adaptive fuzzy
control design methods for nonlinear systems (see, e.g., [7–12] and the references
therein).

It has been proved that adaptive backstepping technique is a powerful tool to solve
tracking or regulation control problems of unknown nonlinear systems in or trans-
formable to parameter strict-feedback form [13]. For such systems, many adaptive
fuzzy backstepping controllers have been developed (see, e.g., [14–19] and the ref-
erences therein), where FLSs or neural networks are used to approximate unknown
nonlinear smooth functions. It is well known that, however, in standard backstepping
design procedure, analytic computation of the first derivatives of virtual control sig-
nals αi (i = 1, 2, . . . , n − 1), i.e., α̇i , is necessary. Note that, the computation of α̇i

requires the higher derivatives of α̇ j , j = 0, 1, . . . , i−1.Obviously, as systemdimen-
sion, i.e., n, increases, the computation of α̇i becomes increasingly complicated. This
limits the theoretical results’ field of practical applications. Hence, how to reduce
the computation of α̇i is crucial issue in controller design, which is a motivation of
this chapter. In addition, the aforementioned approaches required the knowledge of
the desired trajectory yd(t) and the first n derivatives, i.e., y(i)

d (t), i = 1, 2, . . . , n
should be available. It is important to note that in some important applications (e.g.,
land vehicle or aircraft) the desired trajectory may be generated by a planner, an
outer-loop, or a user input device that does not provide higher derivatives. Relaxing
the assumption motivates us for this work.

On the other hand, actuators, sensors or other system components in practical
engineering fail frequently, which can cause system performance deterioration and
lead to instability that can further produce catastrophic accidents. Thus, many effec-
tive fault tolerant control (FTC) approaches have been proposed to improve system
reliability and to guarantee system stability in all situations [20–39].
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In this chapter, a bank of command filters (see, e.g., [40, 41] and the references
therein) are proposed to respectively generate the first derivations of the desired
trajectory and virtual control signals. Then, by using backstepping technique, a robust
adaptive fuzzy controller is proposed to guarantee that the tracking error converges
to a neighborhood of the origin, where FLSs are utilized to approximate the unknown
functions. The contributions form our work are generalized the following aspects:

(1) The desired trajectory and only its first derivative are necessary for the control
scheme presented in this chapter, which is more reasonable in practical appli-
cations. The theoretic results of this chapter are thus valuable in a wide field of
practical applications;

(2) Compared with the existing literatures concerning the standard backstepping
design, the control scheme presented in this chapter does not need to compute the
higher derivatives of virtual control signals in backstepping design procedures,
which decreases the computation complexity;

(3) Different from some results in literature where all system functions are known,
the system functions considered in this chapter are unknown. In particular, the
signs of control gain functions are also unknown.

(4) The actuator fault model that is presented in this chapter integrates not only
unknown gain faults, but also unknown bias faults,where both faults are depen-
dent on the system state and will be approximated by FLSs.

The rest of this chapter is organized as follows. Section4.2 formulates the problem
under investigation. Nussbaum type gain and mathematical description of FLSs are
also provided. In addition, some basic assumptions and preliminary results are given.
InSect. 4.3, themain technical results of this chapter are given,where commandfilters
and adaptive fuzzy controller are designed, and the closed-loop system’s stability
analysis is developed. A numerical example is presented in Sect. 4.4. Simulation
results are presented to demonstrate the effectiveness of the proposed technique.
Finally, Sect. 4.5 draws the conclusion.

4.2 Problem Statement and Preliminaries

4.2.1 Problem Statement

Considers the following uncertain nonlinear systems:

⎧⎨
⎩

ẋi = fi (x̄i ) + gi (x̄i )xi+1 + di (x̄i+1, t), i = 1, 2, . . . , n − 1;
ẋn = fn(x̄n) + gn(x̄n)u(t) + dn(x̄n, t);
y = x1

(4.1)
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where x̄i = (x1, . . . , xi )
T ∈ Ri , i = 1, . . . , n is the state; y denotes the output;

u ∈ R is the input; fi (·) ∈ R and gi (·) ∈ R, i = 1, . . . , n are the unknown smooth
functions; di (·, t), i = 1, . . . , n, denote the unknown dynamic disturbances.

In practical applications, actuators may fail. The fault model considered in this
chapter can be described as follows:

u f = g f (x̄n)u + b f (x̄n), t > tF (4.2)

where g f (x̄n) and b f (x̄n) are smooth functions, which denote unknown gain fault
and bias fault, respectively; tF is an unknown fault occurrence time.

Control objective is to design an adaptive fuzzy controller by backstepping with
command filter for system (4.1) such that output y can track accurately the desired
trajectory yd as possible regardless of actuator fault and unknown dynamic distur-
bances.

To design appropriate controller, the following lemma and some assumptions are
given.

Lemma 4.1 ([42]) For ∀x ∈ R, |x | − tanh(x/δ)x ≤ 0.2785δ, where δ > 0 ∈ R.

Assumption 4.1 There exist known constants gi0 > 0 ∈ R and gi1 > 0 ∈ R such
that gi1 � |gi (x̄i )| � gi0 > 0,∀x̄i ∈ Ri , i = 1, 2, . . . , n.

Assumption 4.2 There exist unknown constant p∗
i and known smooth positive func-

tion φi (x̄i ) such that |di (·, t)| ≤ p∗
i φi (x̄i ).

Assumption 4.3 The desired trajectory yd(t) and its first derivative are bounded and
available.

Assumption 4.4 g f (x̄n) is bounded, i.e., there exist known constants g f 0 > 0 ∈ R
and g1 > 0 ∈ R such that g f 1 ≥ |g(x̄n)| ≥ g f 0.

Remark 4.1 In literature, the existing results concerning the trajectory tracking prob-
lems of the strict-feedback systems require the classical assumption that the desired
trajectory yd(t) and the first n derivatives, i.e., y(i)

d (t), i = 0, 1, . . . , n should be
available. Just stated in Introduction, in some important applications (e.g., land vehi-
cle or aircraft) the desired trajectory may be generated by a planner, an outer-loop, or
a user input device that does not provide higher derivatives. Thus, in such case, these
results do not work. Assumption 4.3 in this chapter is more reasonable in practical
applications.

4.2.2 Nussbaum Type Gain

Any continuous function N (s) : R → R is a function of Nussbaum type if it has the
following properties:
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(1) lim
s→+∞ sup 1

s

∫ s
0 N (ς)dς = +∞;

(2) lim
s→−∞ inf 1

s

∫ s
0 N (ς)dς = −∞

For example, the continuous functions ς2 cos(ς), ς2 sin(ς), and eς2
cos((π/2)ς)

verify the above properties and are thus Nussbaum-type functions [43].The even
Nussbaum function eς2

cos((π/2)ς) is used throughout this chapter.

Lemma 4.2 ([44]) Let V (·) and ς(·) be smooth functions defined on [0, t f ) with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. If the
following inequality holds:

V (t) ≤ c0 +
∫ t

0
(gN (ς) + 1)ς̇dτ ,∀t ∈ [0, t f )

where g 	= 0 is a constant, and c0 represents a suitable constant, then V (t), ς(t) and∫ t
0 gN (ς)ς̇dτ must be bounded on[0, t f ).

Lemma 4.3 ([45]) Let V (·) and ς(·) be smooth functions defined on [0, t f ) with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. For
∀t ∈ [0, t f ), if the following inequality holds,

V (t) ≤ c0 + e−c1t
∫ t

0
g(τ )N (ς)ς̇ec1τ dτ + e−c1t

∫ t

0
ς̇ec1τ dτ

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the
unknown closed intervals I := [l−1, l+1]with 0 /∈ I , and c0 represents some suitable
constant, then V (t), ς(t) and

∫ t
0 g(τ )N (ς)ς̇dτ must be bounded on [0, t f ).

4.2.3 Mathematical Description of Fuzzy Logic Systems

A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier, the
fuzzy inference engine working on fuzzy rules, and the defuzzifier. The knowledge
base for FLS comprises a collection of fuzzy if-then rules of the following form:

Rl : i f x1 is Al
1 and x2 is Al

2 . . . and xn is Al
n,

then y is Bl , l = 1, 2, . . . , M

where x = [x1, . . . , xn]T ⊂ Rn and y are the FLS input and output, respec-
tively. Fuzzy sets Al

i and Bl are associated with the fuzzy functions μAl
i
(xi ) =

exp(−(
xi −al

i

bl
i

)
2
) and μBl (yl) = 1, respectively. M is the rules number. Through sin-

gleton function, center average defuzzification and product inference, the FLS can
be expressed as:
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y(x) =
M∑

l=1

ȳl

(
n∏

i=1

μAl
i
(xi )

)
/

M∑
l=1

(
n∏

i=1

μAl
i
(xi )

)

where ȳl = maxy∈RμBl . Define the fuzzy basis functions as:

ξl(x) =
n∏

i=1

μAl
i
(xi )

M∑
l=1

(
n∏

i=1

/μAl
i
(xi )

)

and define θT = [ȳ1, ȳ2, . . . , ȳM ] = [θ1, θ2, . . . , θM ] and ξ(x)= [ξ1(x), . . . , ξM (x)]T ,
then the above FLS can be rewritten as:

y(x) = θT ξ(x)

Lemma 4.4 ([5, 6]) Let f (x) be a continuous function defined on a compact set Ω .
Then for any constant ε > 0, there exists a FLS such as

sup
x∈Ω

| f (x) − θT ξ(x)| ≤ ε

By Lemma 4.4, we know, FLS can approximate any smooth function on a com-
pact space. Due to this approximation capability, we can assume that the nonlinear
function f (x) can be approximated as

f (x, θ) = θT ξ(x)

Define the optimal parameter vector θ∗ as

θ∗ = argmin
θ∈Ω

[sup
x∈U

| f (x) − f (x, θ∗)|]

whereΩ andU are compact regions for θ and x , respectively. Also the FLSminimum
approximation error is defined as:

ε = f (x) − θ∗T ξ(x)

From Lemma 4.4, the following assumption is made.

Assumption 4.5 There exist an unknown real bounded constant ε∗ > 0 such that
|ε| ≤ ε∗ on compact sets Ω and U .

In this chapter, we use the above FLS to approximate the unknown function
hi (zi ), (i = 1, . . . , n) will defined later, namely, there exists θ∗

i and εi such that

hi (zi ) = θ∗T
i ξi (zi ) + εi
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From Assumption4.5, there exists an unknown positive real constant εi such that
|εi | ≤ ε∗

i .
For notational simplicity, we use • to denote •(·). For example, fi is the abbrevi-

ation of fi (x̄i ).

4.3 Design of Adaptive Fuzzy Controller
and Stability Analysis

Define
zi = xi − αi−1, i = 1, 2, . . . , n (4.3)

where α0=yd , αi−1 (i = 2, . . . , n) is a virtual control which will be designed at each
step, αn = u is actual control input. The recursive design procedure contains n steps.
From Step 1 to Step n − 1, αi (i = 1, . . . , n − 1) is designed at each step. Finally an
overall control law u(αn) is constructed at Step n.

In order to estimate the virtual control αi−1 (i = 2, . . . , n), define the following
command filter

ω̇i = −ηω(ωi − αi−1), i = 2, . . . , n (4.4)

where ηω > 0 is a design parameter. Let us define the estimation error signal vi as

vi = ωi − αi−1, i = 2, . . . , n

Remark 4.2 The command filter (4.4) is constructed to avoid the computation of the
higher derivatives of αi−1, i = 2, . . . , n. It should be pointed out that the error vi

will be compensated at Step n in this chapter.

Step 1:
Now, consider z1-subsystem: z1 = x1 − α0. Form (4.1) and (4.3), one has

ż1 = f1(x̄1) + g1(x̄1)x2 + d1(x̄2, t) − ẏd

= f1(x̄1) + g1(x̄1)z2 + g1(x̄1)α1 + d1(x̄2, t) − ẏd
(4.5)

Define the following function

Vz1 =
∫ z1

0

σ

|g1(σ + yd)|dσ (4.6)

From the integral-type mean value theorem, it can be known that, there exists a
constant λ1 ∈ (0, 1) such that Vz1 = z12/2g(λ1z1 + yd). Hence, from Assumption
4.1, we have
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z12

2g10
� Vz1 � z12

2g11
> 0

which means that, Vz1 is a positive definite function of variable z1.

Since
∂|g−1(σ+yd )|

∂ yd
= ∂|g−1(x̄,σ+yd )|

∂σ
, we can obtain

V̇z1 = z1
|g1(x1)| ż1 +

∫ z1

0
σ

[
∂

∣∣g−1(σ + yd)
∣∣

∂ yd
ẏd

]
dσ

= z1
|g1(x1)| ż1 + ẏd

[
z1

|g1(x1)| −
∫ z1

0

[
1∣∣g−1(σ + yd)

∣∣dσ

]]

= z1
|g1(x1)| [ f1(x̄1) + g1(x̄1)z2 + g1(x̄1)α1 + d1(x̄2, t) − ẏd ]+

ẏd

[
z1

|g1(x1)| −
∫ z1

0

1∣∣g−1(σ + yd)
∣∣dσ

]
(4.7)

Let z̄1 = (x1, ω1, ω̇1)
T and

h1(z̄1) = f1(x1)

|g1(x1)| + ω̇1

z1

∫ z1

0

[
1∣∣g−1(σ + ω1)

∣∣dσ

]
(4.8)

Δ1(z̄1, α0, α̇0, ω1, ω̇1) = ẏd

z1

∫ z1

0

[
1∣∣g−1(σ + yd )

∣∣dσ

]
− ω̇1

z1

∫ z1

0

[
1∣∣g−1(σ + ω1)

∣∣dσ

]

(4.9)
Note that, hi (z̄1) will be approximated by FLSs on a compact set Ωz1 as: h1(z1) =
θ∗T
1 ξ1(z̄1)+ε1(z̄1). FromAssumption 4.5,we know, there exists an unknown constant

ε∗
1 such that |ε1(z̄1)| ≤ ε∗

1 .
Then, we have

V̇z1 = z1[ g1(x̄1)

|g1(x1)| z2 + g1(x̄1)

|g1(x1)|α1 + d1(x̄2, t)

|g1(x1)| + h1(z̄1)] + Δ1(z̄1, α0, α̇0, ω1, ω̇1)

(4.10)
Virtual control α1 is defined as follows:

α1 = N (ς1)[k1z1 + h1(z1, θ̂1) + b̂1ϕ̄1(x1) tanh(
z1ϕ̄1(x̄1)

η1
)] (4.11)

ς̇1 = k1z2
1
+ h1(z1, θ̂1)z1 + b̂1ϕ̄1(x1)z1 tanh(

z1ϕ̄1(x̄1)

η1
) (4.12)
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where k1 > 1 is a design parameter; h1(z1, θ̂1) = θ̂T
1 ξ1(z̄1) and θ̂1 are estimates of

θ∗T
1 ξ1(z̄1) and θ∗

1 , respectively; b̂1 is an estimate of b∗
1

= max{ε∗
1
,

p∗
1

g10
}, ϕ̄1(x̄1) =

1 + ϕ1(x̄1).
Hence, from Lemma 4.1 and Assumptions 4.1 and 4.2, (4.7) can be further devel-

oped as follows:

V̇z1 � g1(x̄1)

|g1(x1)| z1z2 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 − ς̇1 + p∗
1ϕ1(x̄1)

g10
|z1| + h1(z̄1)z1

= −k1z2
1

+ g1(x̄1)

|g1(x1)| z1z2 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 + h1(z̄1)z1 − h1(z1, θ̂1)z1−

b̂1ϕ̄1(x1)z1 tanh(
z1ϕ̄1(x̄1)

η1
) + p∗

1ϕ1(x̄1)

g10
|z1|

� −k1z2
1

+ 1

4
z22 + z2

1
+ g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 − θ̃1ξ1(z̄1)z1+

b∗
1[|z1| ϕ̄1(x̄1) − z1ϕ̄1(x̄1) tanh(

z1ϕ̄1(x̄1)

η1
)] − b̃1ϕ̄1(x1)z1 tanh(

z1ϕ̄1(x̄1)

η1
)

= −(k1 − 1)z2
1

+ 1

4
z22 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1 − θ̃1ξ1(z̄1)z1 + b∗
1[|z1| ϕ̄1(x̄1)−

z1ϕ̄1(x̄1) tanh(
z1ϕ̄1(x̄1)

η1
)] − b̃1ϕ̄1(x1)z1 tanh(

z1ϕ̄1(x̄1)

η1
) + Δ1

(4.13)
where θ̃1 = θ∗

1 − θ1, b̃1 = b∗
1 − b1.

Consider the following function

V1(t) = Vz1 + 1

2
θ̃T
1 Γ −1

1 θ̃1 + 1

2λ1
b̃2
1

(4.14)

Adaptive laws are defined as follows:

˙̂
θ1 = Γ1[z1ξ1(z̄1) − σ1θ̂1] (4.15)

˙̂b1 = λ1[z1ϕ̄1(x̄1) tanh(
z1ϕ̄1(x̄1)

η1
) − σb1b̂1] (4.16)

where Γ1 is a positive matrix with appropriate dimensions, σ1 > 0, σb1 > 0, η1 > 0
and λ1 > 0 are design parameters.

Differentiating V1 with respect to time t and considering (4.9)–(4.12), we have

V̇1 � − (k1 − 1)z2
1
+ 1

4
z22 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇1+
0.2785η1b∗

1 − σ1θ̃
T
1
θ̂1 − σb1b̃1b̂1 + Δ1

(4.17)

where Lemma 4.1 is used, namely, 0 � |x |−x tanh( x
ε
) � 0.2785ε, ∀ε > 0,∀x ∈ R.
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Since

σ1θ̃
T
1 θ̂1 � −

σ1

∥∥∥θ̃1

∥∥∥2

2
+ σ1

∥∥θ∗
1

∥∥2

2
, σb1b̃1b̂1 � −σb1b̃2

1

2
+ σb1b∗

1
2

2
(4.18)

then (4.17) can be derived as

V̇1 � −c1V1 + 1

4
z22 + g1(x̄1)

|g1(x1)| z1N (ς1)ς̇1 + ς̇ + cε1 + Δ1 (4.19)

where

cε1 = 0.2785η1b∗
1
+ σ1

∥∥θ∗
1

∥∥2

2
+ σb1b∗

1
2

2

c1 = min{2(k1 − 1)g10,
σ1

λmin(Γ
−1
1 )

,
σb1

λ1
}

Further, we have

d

dt
(V1(t)e

c1t ) � 1

4
ec1t z2

2
+ g1(x)

|g1(x)| N (ς1)ς̇1ec1t + ς̇1ec1t + cε1ec1t + Δ1e
c1t (4.20)

Let ρ1 = cε1/c1, and integrating both the sides of the above inequality (4.20), it
yields

V1(t) � ρ1 + [V1(0) − ρ1]e−c1t + e−c1t
∫ t

0

1

4
ec1t z2

2
dτ+

e−c1t
∫ t

0
(

g1(x)

|g1(x)| N (ς1) + 1)ec1t ς̇1dτ + e−c1t
∫ t

0
ec1tΔ1dτ

� ρ1 + V1(0) + e−c1t
∫ t

0

1

4
ec1t z2

2
dτ+

e−c1t
∫ t

0
(

g1(x)

|g1(x)| N (ς1) + 1)ec1t ς̇1dτ + e−c1t
∫ t

0
ec1tΔ1dτ

(4.21)

Obviously, if there are not e−c1t
∫ t
0

1
4ec1t z2

2
dτ and e−c1t

∫ t
0 ec1tΔ1dτ in (4.21), then,

from Lemmas 4.2 and 4.3, it can be obtained that V1(t), ς1, θ̂1, b̂1 are bounded in
[0, t f ). On the other hand, if it can be proved that z2(t) is bounded in [0, t f ), from
the following inequality

e−c1t
∫ t

0

1

4
ec1t z2

2
dτ � 1

4
e−c1t sup

τ∈[0,t]
[z22(τ )]

∫ t

0
ec1t dτ � 1

4c1
e−c1t sup

τ∈[0,t]
[z22(τ )]

(4.22)
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we can obtain that e−c1t
∫ t
0

1
4ec1t z2

2
dτ is bounded. From Lemmas 2 and 3, we further

obtain that V1(t), ς1, θ̂1, b̂1 also are bounded in [0, t f ).
Furthermore, from [43], the same results can be obtained when t f = +∞.
Notice that, the boundedness of z2 will be considered in the next step, and the

error e−c1t
∫ t
0 ec1tΔ1dτ will be compensated in Step n.

Remark 4.3 In [41], the error between ω−1 and α0 is not considered in the stability
analysis of the overall closed-loop system. Since there exists a difference between
them, the effect of the error should be considered in the closed-loop system stability
analysis. If not, the stability analysis is not complete.

Remark 4.4 It is valuable to point out, the signs of the control gain functions con-
sidered in this chapter are unknown as well as the control coefficients, which means
that the system model is more general and the results obtained in this chapter thus
have a great significance both on theory and on practical implication.

Step i (i = 2, 3, . . . , n − 1):
In this step, consider the subsystem: zi = xi − αi−1. From (4.1) and (4.3), we

have
żi = fi (x̄i ) + gi (x̄i )zi+1 + gi (x̄i )αi + d1(x̄2, t) − α̇i−1 (4.23)

Define the following Lyapunov function

Vzi =
∫ zi

0

σ

|gi (x̄i−1, σ + αi−1)|dσ (4.24)

Similar to the analysis in the first step, it can be easily seen that Vzi is a positive
definite function of zi . Since

∂
∣∣g−1

i (x̄i−1, σ + αi−1)
∣∣

∂αi−1
= ∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂σ

(4.25)

and from the derivation rule of compound function, we have

V̇zi = zi

|gi (x̄i )| żi+
∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂ x̄i−1

˙̄xi−1 + ∂
∣∣g−1

i (x̄i−1, σ + αi−1)
∣∣

∂αi−1
α̇i−1

]
dσ

= zi

|gi (x̄i )| żi +
∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
+

α̇i−1

∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂αi−1

dσ

]

= zi

|gi (x̄i )| żi +
∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
+
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α̇i−1

∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂σ

dσ

]

= zi

|gi (x̄i )| żi +
∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
+

α̇i−1zi

|g(x)| + α̇i−1

∫ zi

0

1∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣dσ

(4.26)

From the definition of the error between the commandfilter’s state and virtual control,
we know, αi−1 = ωi −vi . Replacing αi−1 in (4.26) by ωi −vi , from (4.1) and (4.26),
we have

V̇zi = zi

|gi (x̄i )| ( fi (x̄i ) + gi (x̄i )zi+1 + gi (x̄i )αi + d1(x̄2, t) − α̇i−1)+
∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
+ α̇i−1zi

|gi (x̄i )|+

α̇i−1

∫ zi

0

1∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣dσ

= zi

|gi (x̄i )| (gi (x̄i )zi+1 + gi (x̄i )αi + d1(x̄2, t)) + hi (z̄i )zi + Δi

(4.27)

where z̄i = (x̄ T
i
, ωi , ω̇i )

T ∈ Ωz̄i ⊂ Ri+2,

hi (z̄i ) = fi (x̄i )

|gi (x̄i )| + 1

zi

∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + ωi )

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
+

ω̇i

zi

∫ zi

0

1∣∣g−1
i (x̄i−1, σ + ωi )

∣∣dσ

(4.28)

Δi =
∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
+

α̇i−1

∫ zi

0

1∣∣g−1
i (x̄i−1, σ + αi−1)

∣∣dσ−

1

zi

∫ zi

0
σ

[
∂

∣∣g−1
i (x̄i−1, σ + ωi )

∣∣
∂ x̄i−1

˙̄xi−1dσ

]
− ω̇i

zi

∫ zi

0

1∣∣g−1
i (x̄i−1, σ + ωi )

∣∣dσ

(4.29)
Note that, hi (z̄i ) will be approximated by FLSs on a compact set Ωzi as: hi (zi ) =
θ∗T

i ξi (z̄i )+εi (z̄i ). FromAssumption 4.5, we know, there exists an unknown constant
ε∗

i such that |εi (z̄i )| ≤ ε∗
i .
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The following virtual control is designed as follows:

αi = N (ςi )[ki zi + hi (z̄i , θ̂i ) + b̂i ϕ̄(x̄i ) tanh(
zi ϕ̄(x̄i )

ηi
)] (4.30)

ς̇i = ki z
2
i + hi (z̄i , θ̂i )zi + b̂i ϕ̄(x̄i )zi tanh(

zi ϕ̄(x̄i )

ηi
)] (4.31)

where ki > 11
4 is a design parameter; hi (z̄i , θ̂i ) = θ̂T

i ξi (z̄i ) is an estimate of θ∗T
i ξi (z̄i );

b̂i is an estimate of b∗
i , b∗

i
= max{ε∗

i
,

p∗
i

g10
}, ϕ̄i (x̄i ) = 1 + ϕi (x̄i ).

Remark 4.5 It seems strange that ki is set to be ki > 11
4 . The purpose of “

1
4” is to

compensate for the term 1
4 z2i which derived in the previous step.

Similar to (4.13), substituting (4.30) and (4.31) into (4.27) and re-arranging it, we
have

V̇zi � − (k1 − 1)z2
i
+ 1

4
z2i+1 + gi (x̄i )

|gi (x̄i )| zi N (ςi )ς̇i + ς̇i − θ̃iξi (z̄i )zi+

b∗
i [|zi | ϕ̄i (x̄i ) − zi ϕ̄i (x̄i ) tanh(

zi ϕ̄i (x̄i )

ηi
)] − b̃i ϕ̄i (xi )zi tanh(

zi ϕ̄i (x̄i )

ηi
) + Δi

(4.32)
where θ̃i = θ∗

i
− θ̂i and b̃i = b∗

i
− b̂i .

Consider the following Lyapunov function

Vi (t) = Vi−1 + Vzi + 1

2
θ̃T

i Γ −1
i θ̃i + 1

2λi
b̃2

i (4.33)

The following adaptive laws are designed as follows:

˙̂
θi = Γi [ziξi (z̄i ) − σi θ̂i ] (4.34)

˙̂bi = λi [zi ϕ̄i (x̄i ) tanh(
zi ϕ̄i (x̄i )

ηi
) − σbi b̂i ] (4.35)

where Γi is a positive definite matrix, and ηi > 0, σi > 0, σbi > 0 and λi > 0 are
design parameters.

Similar Step 1, differentiating Vi with respect to time t and considering (4.34)
and (4.35), from Lemma 4.1, one has

V̇i �V̇i−1 − (ki − 1
1

4
)z2

i
+ 1

4
z2i+1 + gi (x̄i )

|gi (x̄i )| zi N (ςi )ς̇i + ς̇i+
0.2785ηi b

∗
i − σi θ̃

T
i
θ̂i − σbi b̃i b̂i + Δi

(4.36)
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Since σi θ̃
T
i θ̂i � − σi‖θ̃i‖2

2 + σi‖θ∗
i ‖2

2 and σbi b̃i b̂i � − σbi b̃2
i

2 + σbi b∗
i
2

2 , then let cεi =
(0.2785ηi b∗

i + σi‖θ∗
i ‖2

2 + σbi b∗
i
2

2 , ci = min{2(ki −11
4 )gi0,

σi

λmin(Γ
−1

i )
, σbi

λi
} and considering

(4.17), then (4.36) can be developed as follows:

V̇i �
∑i

j=1
(−c j Vj + g j (x̄ j )∣∣g j (x̄ j )

∣∣ z j N (ς j )ς̇ j + ς̇ j + cε j ) +
∑i

j=1
Δ j (4.37)

Further, we have

d

dt
(Vi (t)e

ci t ) � 1

4
eci t z2

i+1
+ [

∑i

j=1
(

g j (x̄ j )∣∣g j (x̄ j )
∣∣ z j N (ς j )ς̇ j + ς̇ j + cε j )]eci t +

∑i

j=1
Δ j eci t

(4.38)
As doing in the first step, integrating both the sides of (4.38), we have

Vi (t) �ρi + Vi (0) + e−ci t
∫ t

0

1

4
eci t z2

i+1
dτ+

e−ci t
∑i

j=1

∫ t

0
(

g j (x̄ j )∣∣g j (x̄ j )
∣∣ N (ς j ) + 1)eci t ς̇ j dτ + e−ci t

∑i

j=1

∫ t

0
eci tΔ j dτ

(4.39)

where ρi =
∑i

j=1 cε j

ci
.

Similar to step 1, if zi+1 is proved to be bounded and
∑i

j=1 Δ j = 0, then, from

Lemmas 4.2 and 4.3, one has, e−ci t
∫ t
0

1
4eci t z2

i+1
dτ is bounded, and Vi (t), ςi , θ̂i , b̂i

further are bounded in [0,+∞).
Note that, the boundedness of zi+1 will be considered in the next step while∑i
j=1 Δ j = 0 will be compensated in the last step.

Remark 4.6 From the aforementioned analysis, it is easily seen that virtual control
laws αi are continuous functions of variables x̄i , z̄i , ω1, ω̇1 and θ̂i . Since these
variables are available, the first derivative of αi , i.e., α̇i , can be obtained by analytical
computation. However, just stated in Introduction section, as system dimension, i.e.,
n, increases, the computation of the higher derivatives of αi becomes increasingly
complicated. In this chapter, by using command filter (4.4), only its first derivative
is utilized, which reduce such computation complexity.

Step n:
Now, consider zn-subsystem: zn = xn − αn−1. Form (4.1)–(4.3), one has

żn = fn(x̄n) + gn(x̄n)g f (x̄n)u + gn(x̄n)b f (x̄n) − α̇n−1

= f̄n(x̄n) + ḡn(x̄n)u − α̇n−1
(4.40)

where f̄n(x̄n) = fn(x̄n) + gn(x̄n)b f (x̄n) and ḡn(x̄n) = gn(x̄n)g f (x̄n).
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Define the following Lyapunov function

Vzn =
∫ zn

0

σ

|ḡn(x̄n−1, σ + αn−1)|dσ (4.41)

From the analysis in the previous step, Vzn is a positive definite function of zn .
Similar to the previous steps, differentiating Vzn with respect to time t , one has

V̇zn � zn

|ḡn(x̄n)| (ḡn(x̄n)u + dn(x̄n, t)) + h′
n(z̄n)zn + Δn (4.42)

where

h′
n(z̄n) = f̄n(x̄n)

|ḡn(x̄n)| + 1

zn

∫ zn

0
σ

[
∂

∣∣ḡ−1
n (x̄n, σ + ωn)

∣∣
∂ x̄n

˙̄xndσ

]
+

ω̇n

zn

∫ zn

0

1∣∣ḡ−1
n (x̄n, σ + ωn)

∣∣dσ

(4.43)

Δn =
∫ zn

0
σ

⎡
⎣∂

∣∣∣ḡ−1
n (x̄n, σ + αn−1)

∣∣∣
∂ x̄n

˙̄xndσ

⎤
⎦ + α̇n−1

∫ zi

0

1∣∣∣ḡ−1
n (x̄n−1, σ + αn−1)

∣∣∣dσ−

1

zn

∫ zi

0
σ

⎡
⎣∂

∣∣∣ḡ−1
n (x̄n, σ + ωn)

∣∣∣
∂ x̄n

˙̄xndσ

⎤
⎦ − ω̇n

zn

∫ zn

0

1∣∣∣ḡ−1
n (x̄n, σ + ωn)

∣∣∣dσ

(4.44)
Adding and subtracting

∑n−1
j=1 Δ j in the right side of (4.42), we have

V̇zn � zn ḡn(x̄n)

|ḡn(x̄n)| u + |zn| ρ∗ + |zn|
gn0

p∗
nϕn(xn) + h′

n(z̄n)zn +
∑n

j=1
Δ j −

∑n−1

j=1
Δ j

(4.45)

Remark 4.7 The purpose of “adding and subtracting
∑n−1

j=1 Δ j” is to remove the

error terms
∑n−1

j=1 Δ j (4.37), which is introduced by command filter (4.4) in the
previous n − 1 steps.

It is easily seen that Δ j ( j = 1, . . . , n) is a function of variables x̄ j , z̄ j , ᾱ j , ˙̄α j ,
ω̄ j and ˙̄ω j , where x̄ j = (x1, . . . , x j )

T , z̄ j = (z1, . . . , z j )
T , ᾱ j = (α0, . . . , α j−1)

T ,
˙̄α j = (α̇0, . . . , α̇ j−1)

T , ω̄ j = (ω1, . . . , ω j )
T , ˙̄ω j = (ω̇1, . . . , ω̇ j )

T . Let

h(Z̄n) = h′(Z̄n) +
∑n−1

j=1
Δ j

where Z̄n = (x̄ T
n , z̄T

n , ᾱT
n , ˙̄αT

n , ω̄T
n , ˙̄ωT

n )T .
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From the previous analysis, it is seen that h′(Z̄n) and Δ j are smooth, which
means that h(Z̄n) also is smooth. Hence, FLSs can be utilized to approximate it in
the form: h(Z̄n) = θ∗T

n ξn(Z̄n) + εn(Z̄n). From Assumption 5, we know, there exists
an unknown constant ε∗

n such that |εn(Z̄n)| ≤ ε∗
n .

The actual control is defined as follows:

u = N (ςn)[knzn + hn(Z̄n, θ̂n) + b̂nϕ̄(x̄n) tanh(
znϕ̄(x̄n)

ηn
)] (4.46)

ς̇n = knz2n + hn(Z̄n, θ̂n)zn + b̂nϕ̄(x̄n)zn tanh(
znϕ̄(x̄n)

ηn
)] (4.47)

where kn > 1
4 is a design parameter; hn(Z̄n, θ̂n) = θ̂T

n ξn(Z̄n) is an estimate of

θ∗T
n ξn(Z̄n); b̂n is an estimate of b∗

n
= max{ε∗

n
,

p∗
n

g10
}; ϕ̄n(x̄n) = 1 + ϕn(x̄n).

Substituting (4.46) and (4.47) into (4.45), it yields

V̇zn � − knz2
n
+ ḡn(x̄n)

|ḡn(x̄n)| zn N (ςn)ς̇n + ς̇n − θ̃nξn(z̄n)zn −
∑n−1

j=1
Δ j+

b∗
n[|zn| ϕ̄n(x̄n) − znϕ̄n(x̄n) tanh(

znϕ̄n(x̄n)

ηn
)] − b̃nϕ̄n(xn)zn tanh(

znϕ̄n(x̄n)

ηn
)

(4.48)
where θ̃n = θ∗

n − θ̂n and b̃n = b∗
n − b̂n .

Define the following Lyapunov function

Vn(t) = Vn−1 + Vzn + 1

2
θ̃T

n Γ −1
n θ̃n + 1

2λn
b̃2

n (4.49)

The following adaptive laws are defined as:

˙̂
θn = Γn[znξn(Z̄n) − σn θ̂n] (4.50)

˙̂bn = λn[znϕ̄n(x̄n) tanh(
znϕ̄n(x̄n)

ηn
) − σbnb̂n] (4.51)

where Γn is a positive definite matrix, ηn > 0, σn > 0, σbn > 0 and λn > 0 are
design parameters.

Differentiating Vn with respect to time t and considering (4.50), (4.51) andLemma
4.1, similar to the previous steps, one has

V̇n � V̇n−1−knz2
n
+ ḡn(x̄n)

|ḡn(x̄n)| N (ςn)ς̇n+ς̇n+0.2785ηnb∗
n−σn θ̃

T
n θ̂n− σbnb̃nb̂n (4.52)
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From Young’s inequality, we have

σn θ̃
T
n θ̂n � −

σn

∥∥∥θ̃n

∥∥∥2

2
+ σn

∥∥θ∗
n

∥∥2

2
, σbnb̃nb̂n � −σbnb̃2

n

2
+ σbnb∗

n
2

2
(4.53)

Let cεn = 0.2785ηnb∗
n + σn‖θ∗

n ‖2

2 + σbnb∗
n
2

2 , then (4.52) can be derived as

V̇n �V̇n−1 − 2kn |ḡn(x̄n)| Vn + ḡn(x̄n)

|ḡn(x̄n)|mv(t)N (ςn)ς̇n + ς̇n+

cεn −
σn

∥∥∥θ̃n

∥∥∥2

2
−

σbn

∥∥∥b̃n

∥∥∥2

2

(4.54)

Let
cn = min{2kn ḡn0,

σn

λmin(Γ
−1

n )
,
σbn

λn
}

from the analysis in the previous steps, then (4.54) can be further developed as
follows:

V̇n �
n∑

i=1

[ ḡi (x̄i )

|ḡi (x̄i )| N (ςi )ς̇i + ς̇i + cεi ] (4.55)

Further, we have

d

dt
(Vn(t)e

cnt ) � ecnt
n∑

i=1

[ ḡi (x̄i )

|ḡi (x̄i )| N (ςi )ς̇i + ς̇i + cεi ] (4.56)

where ḡi (·) = gi (·), i = 1, . . . , n − 1.

Let ρn =
∑n

j=1 cε j

cn
. Similar to the previous steps, integrating both the sides of the

above inequality, we have

Vn(t) � ρn + [Vn(0) − ρn]e−cn t + e−cn t
∫ t

0
[ecnt

∑n

i=1
(

ḡi (x̄i )

|ḡi (x̄i )| N (ςi ) + 1)ς̇i ]dτ

� ρn + Vn(0) + e−cn t
∫ t

0
[ecnt

∑n

i=1
(

ḡi (x̄i )

|ḡi (x̄i )| N (ςi ) + 1)ς̇i ]dτ

(4.57)
From Lemmas 4.2 and 4.3, it is easily seen that Vn(t), ςn, θ̂n, b̂n are bounded in
[0, t f ). From [43], the same results can be obtained in [0,+∞). Thus, it can be
obtained that zn is bounded in [0,+∞), which means that zn−1 in (n − 1)th step is
bounded. Doing the same reasoning, we finally obtained that all zi (t), i = 1, 2, . . . n
are bounded.
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From the definitions of Vzi and Vi , i = 1, . . . , n, we known

Vn(t) =
∑n

i=1
[Vzi + 1

2
θ̃T

i Γ −1
i θ̃i + 1

2λi
b̃2

i ] (4.58)

From the previous analysis, we have

z2i
2gi1

≤ Vzi =
∫ zi

0

σ

|gi (x̄i−1, σ + αi−1)|dσ ≤ z2i
2gi0

(4.59)

Hence, from (4.57–4.59), we have

|z̄i | � √
μ, ‖θ i‖2 � μ

λmin(Γ
−1

i )
, b2

i � λiμ
2, i = 1, 2, . . . , n, ∀t � 0

where μ = 2ḡmax(ρn + Vn(0) + Nn), g̃max = max
1�i�n

ḡi1 > 0, ḡi1 = gi1, i =
1, . . . , n − 1, ḡn1 = gn1g f 1,

Nn = lim
t→+∞

∑n

i=1

[
e−cn t

∫ t

0
(

ḡi (x̄i )

|ḡi (x̄i )| N (ςi ) + 1)ecnt ς̇ndτ

]
(4.60)

The above design procedures and analysis are summarized in the following theorem.

Theorem 4.1 Consider system (4.1) and fault (4.2). If Assumptions 4.1–4.5 hold,
command filters (4.4), actual control defined by (4.46) and (4.47), and the adap-
tation laws (4.15), (4.16), (4.34), (4.35), (4.50) and (4.51) are employed, then the
closed-loop system is asymptotically bounded with the tracking error converging to
a neighborhood of the origin.

Proof From the aforementioned analysis, it is easy to obtain the conclusion. The
detailed proof is omitted here.

4.4 Illustrative Example

In this example, a class of nonlinear systems are described as follows:

⎧⎪⎨
⎪⎩

ẋ1 = x1 + (1 + 0.5 sin(x2
1 ))x2 + 0.2x1 sin(x2t)

ẋ2 = x1x2 + (3 − cos(x1x2))u + 0.1 cos(0.5x2t)

y = x1

(4.61)
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From (4.61), it is easily seen that, g10 = 0.5, g11 = 1.5, g20 = 2, g21 = 4, p∗
1 = 0.2,

ϕ1 = x1, p∗
2 = 0.1 and ϕ2 = 1, which means that Assumptions 4.1 and 4.2 hold. In

this work, the desired trajectory yd = 0.1 sin(t). Obviously, Assumption 4.3 holds.
The actuator fault considered in this simulation research is described as follows:

u f = (1 − 0.5 sin(x2))u + cos(x1x2)

Obviously, g f 0 = 0.5 and g f 1 = 1.5, which means that Assumption 4.4 holds.

Fig. 4.1 The time profiles of
system output y and desired
signal yd
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Fig. 4.2 The time profiles of
tracking error
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Fig. 4.3 The time profiles of
control input signal
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The control objective is to construct an adaptive state feedback controller for
nonlinear system (4.61) such that the system output y tracks the desired reference
signal yd with all the signals in the resulting closed-loop system being asymptotically
bounded.

For this work, the following parameters are given as follows: k1 = k2 = 3, Γ1 =
Γ2 = diag1, 1, 1, 1, 1, 1, 1, 1, 1, 1, λ1 = λ2 = 1, η1 = η2 = 0.01, σb1 = σb1 = 0.1,
θi ∈ R10, i = 1, 2 are taken randomly in interval (0,1]. Initial state x(0) is set as
(0.2, 0.1)T . The sample time is 0.08s.

Simulation results are shown in Figs. 4.1, 4.2 and 4.3. From Fig. 4.1, we can find
that system (4.61) has good tracking performance. Figure4.2 shows that the tracking
error converges to a neighborhood of the origin. Meanwhile, the boundedness of
control input signal is shown in Fig. 4.3.

4.5 Conclusions

In this chapter, an adaptive fuzzy tracking fault-tolerant control problem of a class of
uncertain strict-feedback nonlinear systemswith actuator fault has been investigated.
FLSs are used to approximate the unknownnonlinear functions. By applying adaptive
command filtered backstepping recursive design, integral-type Lyapunov function
method and Nussbaum-type gain technique, an adaptive fuzzy control scheme is
proposed to guarantee that the closed-loop system is asymptotically bounded with
the tracking error converging to a neighborhood of the origin.
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Chapter 5
Adaptive Fuzzy Fault-Tolerant DSC
for a Class of Nonlinear Systems

5.1 Introduction

For strict-feedback systems, backstepping technique is commonly used to solve
tracking or regulation control problem, and various adaptive backstepping control
approaches have been developed for controlling uncertain nonlinear systems [1–13].
As stated in the Chap.4, there exists a so-called computation complexity problem
in convenient backstpping design procedures. Especially, the increasing of the sys-
tem dimension produces a complexity explosion in traditional backstepping design
methods. In order to overcome this problem, an original DSC scheme was proposed
in [14–18], where the complexity was reduced by introducing the first-order filter
in each step of the backstepping design. However, if actuator faults occur, then the
control schemes in [14–18] do not guarantee the closed-loop system stability or cor-
rect tracking performances. One motivation of our work is thus to provide an active
fault-tolerant control scheme which guarantees the closed-loop system stability and
maintains satisfactory control performances in all situations. Another motivation is
also to provide a control scheme that is applicable in practical applications where
both the values and signs of control gain are not known. In addition, investigating
both actuator time-varying bias and gain faults motivates this chapter.

In this chapter, we investigate the problem of tracking control for a class of
nonlinear uncertain systems with complete unknown control gains and propose an
active FTCagainst actuator faults. Comparedwith existingworks, the followingmain
contributions are worth to be emphasized. (1) The proposed FTC scheme considers
both gain and bias faults simultaneously and does not need the conditions that the
bounds of the varying faults and their time derivatives are known constants, which
thus enlarges the practical application range of themethod. (2) The proposed adaptive
fault accommodation algorithm does not need the classical assumption that the time
derivative of the output errors must be known. (3) A decision threshold for FDI is
defined and applied on an online computable fault indicator and not on an asymptotic
value of a criterion which is not available in practice. The decision algorithm is thus
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more practical. (4) In general, the denominator of the fault tolerant control input
contains the estimate of the gain fault. If the denominator is equal to zero, a controller
singularity occurs. In the proposed FTC scheme, the controller singularity is avoided.
(5) The proposed active FTC scheme does not require the a priori knowledge of this
sign.

The rest of this chapter is organized as follows. In Sect. 5.2, the problem formula-
tion, Nussbaum-type function and mathematical description of FLS are introduced.
Actuator faults are integrated in such problem and the FTC objective is formulated.
In Sect. 5.3, the main technical results of this chapter are given, which include fault
detection, isolation, estimation and fault-tolerant control scheme. An aircraft con-
trol application is presented in Sect. 5.4. These simulation results demonstrate the
effectiveness of the proposed technique. Finally, Sect. 5.5 draws the conclusion.

5.2 Problem Statement and Mathematical
Description of FLS

5.2.1 Problem Statement

Consider the following nonlinear system

⎧⎨
⎩

˙̄x = f̄0(x̄) +
∑l

i=1
θi f̄i(x̄) +

∑m

j=1
μj ḡj(x̄)uj

ȳ = h(x̄)
(5.1)

where x̄ ∈ Rn is the state, ȳ ∈ R is the output, and uj ∈ R, j = 1, 2, . . . ,m are
the plant control signals, f̄i(·) ∈ Rn, i = 0, 1, . . . , l, ḡj(·) ∈ Rn, j = 1, . . . ,m and
h(·) ∈ R are smooth functions, θi ∈ R, i = 1, . . . , l and μj �= 0, j = 1, . . . ,m are
unknown constants.

Control objective is to design adaptive controllers for system (1) to guarantee
boundedness of the closed-loop signals and asymptotic tracking of a given reference
output signal yd ∈ R by ȳ, yd ∈ ∏{(yd, ẏd, ÿd) : y2d + ẏ2d + ÿ2d ≤ B0},B0 > 0 ∈ R
denotes a known constant.

Actuator fault model considered can be described as follows:

ufj = ρj(x̄)uj + f uj (x̄), t ≥ tj, j = 1, . . . ,m (5.2)

where unknown functions ρj(x̄) ∈ [0, 1] and f uj (x̄) denote the remaining control
rate and a bounded signal, respectively, tj is unknown fault occurrence time. Denote

u = [u1, . . . , um]T , uf = [uf1, . . . , ufm]T , ρu(x̄) = diag(ρ1(x̄), . . . , ρm(x̄)), Fu(x) =
[f u1 (x̄), . . . , f um(x̄)]T , then, on has

uf = ρu(x̄)u + Fu(x̄) (5.3)
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Now, the control objective is re-defined as follows: An active FTC approach is pro-
posed to obtain the above tracking objective in healthy and faulty conditions. Under
healthy condition, control input u is designed, such that the system output ȳ can track
asymptotically the reference signal yd . Meanwhile, the FDI algorithm is working. As
soon as an actuator fault is detected and isolated, the fault accommodation algorithm
is activated and a proper fault-tolerant control input u is used such that the tracking
performance is still maintained stable.

Assumption 5.1 [19] ḡj(x̄) ∈ span{ḡ0(x̄)}, ḡ0(x̄) ∈ Rn, for j = 1, . . . ,m, and the
nominal system ˙̄x = f̄0(x̄)+ F̄(x̄)θ + ḡ0(x̄)u0, ȳ = h(x̄)with u0 ∈ R, is transformable
into the parametric-strict-feedback (PSF) form with relative degree ρ, where F̄(x̄) =
[f̄1, f̄2, . . . , f̄l]T , θ = [θ1, θ2, . . . , θl]T .

As presented in [19], based on Assumption 5.1, there exists a diffeomorphism
Tr : [xT , ηT ]T = Tr(x̄), x ∈ Rρ and η ∈ Rγ , ρ + γ = n such that system (1) can be
transformed into the following form.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi = xi+1 + ϕ1(x[i])θ, i = 1, 2, . . . , ρ − 1

ẋρ = ϕ0(x, η) + ϕT
ρ
(x, η)θ + βT (x, η)μu

η̇ = ψ1(x, η) + ψ2(x, η)θ

y = x1

(5.4)

where x[i] = [x1, x2, . . . , xi]T , x = [x1, x2, . . . , xρ]T and u = [u1, . . . , um]T denote
the measurable state vector and input, μ = diag(μ1, . . . , μm), μj, j = 1, . . . ,m
denote unknown constants, βT = [β1, . . . , βm]T , βi = Lḡi(x̄)L

ρ−1
f̄0(x̄)

h(x̄), i = 1, . . . ,m,
where Lf p is the Lie derivative of a scalar function p(x) along the vector field f (x) =
[f1(x), . . . , fn(x)]T , defined as Lf p = ∑n

i=1 (
∂p
∂x1

)fi,

ϕi = [Lf1(x̄)Li−1
f0(x̄)

h(x̄), . . . ,Lfi(x̄)L
i−1
f0(x̄)

h(x̄)]T , i = 1, . . . , ρ − 1,

ϕρ = [Lf1(x̄)Lρ−1
f0(x̄)

h(x̄), . . . ,Lfi(x̄)L
ρ−1
f0(x̄)

h(x̄)]T ,

ϕ0 = Lρ

f0(x̄)
h(x̄), ψ1 = ∂Tz

∂x
f0(x̄), ψ2 = ∂Tz

∂x
F̄(x̄).

In order to solve the actuator failure compensation problem, the following assump-
tions are needed:

Assumption 5.2 [19] The zero dynamics η̇ = ψ1(x, η)+ψ2(x, η)θ is input-to-state
stable with respect to x as the input, η is measurable and βj(x, η) �= 0, j = 1, . . . ,m.

Assumption 5.3 The signs of μj, j = 1, . . . ,m are unknown.
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Let fi(x[i]) = ϕi(x[i])θ , fρ(x, η) = ϕ0(x, η) + ϕT
ρ
(x, η)θ gT (x, η) = βT (x, η)

μ = [g1(x, η), . . . , gm(x, η)]T , then (5.4) can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi = xi+1 + fi(x[i]), i = 1, . . . , ρ − 1

ẋρ = fρ(x, η) + gT (x, η)u

η̇ = ψ1(x, η) + ψ2(x, η)θ

y = x1

Further, one has ⎧⎪⎨
⎪⎩
ẋ = Ax + Hy + f + BgT (x, η)u

η̇ = ψ1(x, η) + ψ2(x, η)θ

y = x1

(5.5)

where A =
⎡
⎢⎣

−h1
...

−hρ

Iρ−1

0 . . . 0

⎤
⎥⎦ ,H =

⎡
⎢⎣
h1
...

hρ

⎤
⎥⎦ ,B =

⎡
⎢⎣
0
...

1

⎤
⎥⎦, f = [f1, . . . , fρ]T , hi ∈ R, i =

1, . . . , ρ are chosen such that A is a strict Hurwitz matrix.
Considering fault model (5.3), the faulty system can be described as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi = xi+1 + fi(x[i]), i = 1, 2, . . . , ρ − 1

ẋρ = fρ(x, η) + gT (x, η)ρu(x)u(t) + gT (x, η)Fu(x)

η̇ = ψ1(x, η) + ψ2(x, η)θ

y = x1

(5.6)

5.2.2 Nussbaum Type Gain

Any continuous function N(s) : R → R is a function of Nussbaum type if it has the
following properties:

(1) lim
s→+∞ sup 1

s

∫ s
0 N(ς)dς = +∞,

(2) lim
s→−∞ inf 1

s

∫ s
0 N(ς)dς = −∞

For example, the continuous functions ς2 cos(ς), ς2 sin(ς), and eς2
cos((π/2)ς)

verify the above properties and are thus Nussbaum-type functions [20]. The even
Nussbaum function eς2

cos((π/2)ς) is used throughout this chapter.

Lemma 5.1 [21, 22] Let V (·) and ς(·) be smooth functions defined on [0, tf ) with
V (t) ≥ 0,∀t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. If the
following inequality holds:



5.2 Problem Statement and Mathematical Description of FLS 103

V (t) ≤ c0 +
∫ t

0
(gN(ς) + 1)ς̇dτ ,∀t ∈ [0, tf )

where g �= 0 is a constant, and c0 represents a suitable constant, then V (t), ς(t) and∫ t
0 gN(ς)ς̇dτ must be bounded on [0, tf ).
Lemma 5.2 [22] Let V (·) and ς(·) be smooth functions defined on [0, tf ) with
V (t) ≥ 0,∀t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. For
∀t ∈ [0, tf ), if the following inequality holds,

V (t) ≤ c0 + e−c1t
∫ t

0
g(τ )N(ς)ς̇ec1τdτ + e−c1t

∫ t

0
ς̇ec1τdτ

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the
unknown closed intervals I := [l−1, l+1] with 0 /∈ I, and c0 represents some suitable
constant, then V (t), ς(t) and

∫ t
0 g(τ )N(ς)ς̇dτ must be bounded on [0, tf ).

5.2.3 Mathematical Description of Fuzzy Logic Systems

A FLS consists of four parts: the knowledge base, the fuzzifier, the fuzzy inference
engine working on fuzzy rules, and the defuzzifier. The knowledge base for FLS
comprises a collection of fuzzy if-then rules of the following form:

Rl : if x1 is A
l
1 . . . and xn is A

l
n, then y is Bl

whereAl
i, i = 1, 2, . . . , n, l = 1, 2, . . . ,M are fuzzy sets andBl is the fuzzy singleton

for the output in the lth rule,M is the rules number. Through singleton fuzzifier, center
average defuzzification and product inference [23], the FLS output can be expressed
as

y(x) =
M∑
l=1

yl
(

n∏
i=1

μAl
i
(xi)

)
/

M∑
l=1

(
n∏

i=1

μAl
i
(xi)

)

where μAl
i
(xi) is the membership function of the fuzzy set Al

j.
Define the fuzzy basis functions as

ξ l(x) =
[

n∏
i=1

μAl
i
(xi)

]
/

M∑
l=1

(
n∏

i=1

μAl
i
(xi)

)

Define θT = [y1, y2, . . . , yM ] = [θ1, θ2, . . . , θM] and ξ = [ξ 1, ξ 2, . . . , ξM]T , then
the FLS output can be rewritten as

y(x) = θTξ(x) (5.7)
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The stability results obtained in FLS control literature are semi-global in the sense
that, as long as the input variables x of the FLS remainwithin some pre-fixed compact
set Ω , where the compact set can be made as large as desired, there exist controllers
with sufficiently large number of FLS rules such that all the signals in the closed-loop
remain bounded.

Lemma 5.3 [24, 25] Let f (x) be a continuous function defined on a compact set Ω .
Then for any constant ε > 0, there exists a FLS (5.7) such as sup

x∈Ω

|f (x)−θTξ(x)| ≤ ε.

By Lemma 5.3, the FLS (5.7) can approximate any smooth function on a compact
set to any degree of accuracy. Similar to [7], by the FLS (5.7), fi(x), i = 1, . . . , ρ −
1, fρ(x), gj(x, η), ρgj(x, η) = gj(x, η)ρj(x) and ρfj(x, η) = gj(x, η)f uj (x), j =
1, . . . ,m are approximated as:

f̂i(x̂, θ̂fi) = θ̂T
fi ξfi(x̂[i]), f̂ρ(x̂, θ̂f ρ) = θ̂T

f ρξf ρ(x̂, η),

ρ̂fj(x̂, η, θ̂T
f ρj) = θ̂T

f ρjξf ρj(x̂, η),

ĝj(x̂, η) = θ̂T
gjξgj(x̂, η), ρ̂gj(x̂, η, θ̂T

gρj) = θ̂T
gρjξgρj(x̂, η),

where x̂, θ̂fi, θ̂gj, θ̂f ρj, θ̂gρj are the estimates of x, θ∗
fi , θ∗

gj, θ∗
f ρj, θ

∗
gρj, respectively. Let us

define the optimal parameter vectors θ∗
fi , i = 1, . . . , ρ, θ∗

gj, θ
∗
f ρj and θ∗

gρj, j = 1, . . . ,m
as

θ∗
fi = arg min

θfi∈Ωf

[ sup
x∈U,x̂∈Û

|fi(x[i]) − f̂i(x̂[i], θ̂T
fi )|]

θ∗
f ρ = arg min

θf ρ∈Ωf

[ sup
x∈U,x̂∈Û

|fρ(x) − f̂ (x̂, θ̂T
f ρ)|]

θ∗
gj = arg min

θgj∈Ωg

[ sup
x∈U,x̂∈Û

|gj(x, η) − ĝgj(x̂, η, θ̂T
gj)|],

θ∗
f ρj = arg min

θf ρj∈Ωf ρ

[ sup
x∈U,x̂∈Û

|ρf ρj(x, η) − ρ̂f ρj(x̂, η, θ̂T
f ρj)|]

θ∗
gρj = arg min

θgρj∈Ωgρ

[ sup
x∈U,x̂∈Û

|ρgj(x, η) − ρ̂gj(x̂, η, θ̂T
gρj)|]

where Ωf ,Ωg,Ωgρ,Ωf ρ,U and Û are compact regions for θ̂fi, θ̂gj, θ̂f ρj, θ̂gρj, x and
x̂. The FLS minimum approximation errors are defined as

εfi = f (x[i]) − θ∗T
fi ξfi(x̂[i]), εf ρ = fρ(x) − θ∗T

f ρ ξf ρ(x̂, η)

εgj = gj(x, η) − θ∗T
gj ξgj(x̂, η), εgρj = ρgj(x, η) − θ∗T

gρjξgρj(x̂, η),
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εf ρj = ρfj(x, η) − θ∗T
f ρjξf ρj(x̂, η), δgj = gj(x, η) − θ̂T

gjξgj(x̂, η),

δfi = f (x[i]) − θ̂T
fi ξfi(x̂[i]), δf ρ = fρ(x) − θ̂T

f ρξf ρ(x̂, η)

δgρj = ρgj(x, η) − θ̂T
gρjξgρj(x̂, η), δf ρj = ρfj(x, η) − θ̂T

f ρjξf ρj(x̂, η)

In order to simplify the notations in the following, let ξfi, ξf ρ, ξgj, ξgρj and ξf ρj
denote ξfi(x̂[i]), ξf ρ(x̂, η), ξgj(x̂, η), ξgρj(x̂, η) and ξf ρj(x̂, η), respectively. Now, the
following assumptions are made.

Assumption 5.4 [23, 26, 27] There exist known positive real constants M̄εfi,

M̄εgj, M̄εf ρj, M̄εgρj,Mfi,Mgj,Mf ρj,Mgρj, M̄δfi, M̄δgj, M̄δf ρj and M̄δgρj such that
|εfi| ≤ M̄εfi, |εgj| ≤ M̄εgj, |εf ρj| ≤ M̄εf ρj, |εgρj| ≤ M̄εgρj, ||θ∗

fi
|| ≤ Mfi, ||θ∗

gj
|| ≤

Mgj, ||θ∗
gρj

|| ≤ Mgρj, ||θ∗
f ρj

|| ≤ Mf ρj, |δfi| ≤ M̄δfi, |δgi| ≤ M̄δgj, |δf ρj| ≤ M̄δf ρj and

|δgρj| ≤ M̄δgρj, where i = 1, . . . , ρ and j = 1, . . . ,m.

5.3 Main Results

5.3.1 Stability Control in Fault-Free Case and Fault
Detection

Since the system states are not all measured, the following observer is constructed
to estimate the system states.

˙̂x = Ax̂ + Hy + f̂ + BĝTu, ŷ = Cx̂ (5.8)

where f̂ T = [f̂1, . . . , f̂ρ], ĝT = [ĝ1, . . . , ĝm], ε̂Tg = [ε̂g1, . . . , ε̂gm], f̂i, ε̂fi, i =
1, . . . , ρ and ĝj, ε̂gj, j = 1, . . . ,m denote the estimates of fi and gj, C = [1 0 . . . 0].
Let x̂ = [x̂1, x̂2, . . . , x̂ρ]T and e = x − x̂, the error dynamics can be written as:

ė = Ae + d + Bdg, ey = Ce (5.9)

where d = [d1, . . . , dρ]T , di = δfi = fi − f̂i, dg = ∑m
j=1 δgjuj = ∑m

j=1(gj − ĝj)
uj.

In the following, based on the previous section, we will incorporate the DSC
technique into an adaptive fuzzy control design scheme for the ρ-order system
described by (5.8). Similar to the traditional backstepping design method, the recur-
sive design procedure contains ρ steps. From Step 1 to Step ρ, virtual control
laws αi−1, i = 2, . . . , ρ are designed at each step. Finally overall control laws uj,
j = 1, . . . ,m are constructed at step ρ.
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Step 1: Let S1 = x̂1 − yd . Then, it follows form (5.8) that

Ṡ1 = ˙̂x1 − ẏd = x̂2 + θ̂T
f 1ξf 1 + θ̃T

f 1ξf 1 + εf 1 − δf 1 − ẏd (5.10)

Choose a virtual control α1 as follows:

α1 = − k1S1 − [f̂1 − ẏd + (M̄εf 1 + M̄δf 1) tanh(S1(M̄εf 1 + M̄δf 1)/w)] (5.11)

Here and in the following, ki > 0 ∈ R, i = 1, . . . , ρ are design parameters, w > 0 ∈
R is a constant. Introduce a new state variable z2 and let α1 pass through a first-order
filter with time constant ε2 to obtain z2,

ε2ż2 + z2 = α1, z2(0) = α1(0) (5.12)

Here and in the following, εi > 0 ∈ R, i = 1, . . . , ρ − 1 are design parameters.
Step i (i = 2, . . . , ρ − 1): Consider ˙̂xi = x̂i+1 + f̂i + hie1. Define the ith error

surface Si to be Si = x̂i − zi, then

Ṡi = ˙̂xi − żi = x̂i+1 + θ̂T
fi ξfi + hie1 − żi + θ̃T

fi ξfi + εfi − δfi (5.13)

Choose a virtual control αi as follows:

αi = − kiSi − [f̂i − żi + (M̄εfi + M̄δfi) tanh(Si(M̄εfi + M̄δfi)/w)] (5.14)

Introduce a new state variable zi+1 and let αi pass through a first-order filter with
constant εi+1 to obtain zi+1

εi+1żi+1 + zi+1 = αi, zi+1(0) = αi(0) (5.15)

Step ρ: Consider ˙̂xρ = f̂ρ + hρe1 + ĝT u.
Define the ρth error surface Sρ to be Sρ = x̂ρ − zρ , then

Ṡρ = ˙̂xρ − żρ = f̂ρ + hρe1 + ĝT u − żρ

= θ̂T
f ρξf ρ + hρe1 + ĝT u − żρ + θ̃T

f ρξf ρ + εf ρ − δf ρ + ĝT u
(5.16)

Finally, let the final control αρj, j = 1, . . . ,m be as follows:

αρj = uj = [N(ς)(kρSρ + Δ

Sρ

)]/m, ς̇ = −kρS
2
ρ − Δ (5.17)

where
Δ =

∑ρ

i=1
[|Si|(M̄εfi + M̄δfi) + ηfi

2η1
θ∗T
fi θ∗

fi + ηgj

2η2
θ∗T
gj θ∗

gj] +

μe + (ρ − 1)σ1/2 + Sρ θ̂
T
f ρξf ρ+

∑ρ−1

i=1
Si+1ki+1e1
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Just as pointed out in [22], for the above control (5.17), controller singularity may
occur since Δ/Sρ is not well defined at Sρ = 0. Similar to [22], let define ΩcSρ ⊂ Ω

andΩ0
cSρ

s.t.ΩcSρ := {Sρ

∣∣ |Sρ | < cSρ
},Ω0

cSρ
:= Ω−ΩcSρ , where cSρ

> 0 is a constant
that can be chosen arbitrarily small and “−” is used to denote the complement of set
B in set A as A − B := {x|x ∈ A and x /∈ B}. Thus, the final control αρj = uj, j =
1, . . . ,m can be modified as

uj =

⎧⎪⎨
⎪⎩
N(ς)[kρSρ + Δ

Sρ

]/m, ς̇ = kρS
2
ρ + Δ, Sρ ∈ Ω0

cSρ

0, Sρ ∈ ΩcSρ

(5.18)

In the following, we will give the closed-loop system stability analysis. The closed-
loop system in the new coordinates Si, zi can be expressed as follows:

Ṡ1 = x̂2 + θ̂T
f 1ξf 1 + θ̃T

f 1ξf 1 + εf 1 − δf 1 − ẏd

Ṡi = x̂i+1 + θ̂T
fi ξfi + hie1 − żi + θ̃T

fi ξfi + εfi − δfi

Ṡρ = θ̃T
f ρξf ρ + hρe1 + ĝT u − żρ + θ̃T

f ρξf ρ + εf ρ − δf ρ

ε2ż2 + z2 = α1, z2(0) = α1(0)

εi+1żi+1 + zi+1 = αi, zi+1(0) = αi(0), i = 2, . . . , ρ − 1

Define
y2 = z2 − α1

= k1S1 + f̂1 + (M̄εf 1 + M̄δf 1) tanh(S1/w) + z2 − ẏd
(5.19)

yi+1 = zi+1 − αi

= kiSi + f̂i − żi − (M̄εfi + M̄δfi) tanh(
Si(M̄εfi + M̄δfi)

w
) + zi+1 + yi

εi

(5.20)

where i = 2, . . . , ρ − 1. From (5.11), (5.14), (5.18)–(5.20), one has

Ṡ1 = ˙̂x1 − ẏd = S2 − k1S1 + y2 + θ̃T
f 1ξf 1 + εf 1 − δf 1 (5.21)

Ṡi = ˙̂xi − żi = Si+1 − kiSi + hie1 + yi+1 + θ̃T
fi ξfi + εfi − δfi (5.22)

Ṡρ = θ̂T
f ρξf ρ + hρe1 + ĝT u − żρ + θ̃T

f ρξf ρ + εf ρ − δf ρ (5.23)
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Since żi = (αi − zi+1)/εi = −yi/εi, i = 2, . . . , ρ − 1, it gives

ẏ2 = ż2 − α̇1 = −y2/ε2 + B2 (5.24)

where

χ1 =
∂

(
2 tanh( S1(M̄εf 1+M̄δf 1)

w )(M̄εf 1 + M̄δf 1)
)

∂(x̂1, . . . , x̂ρ)

⎡
⎢⎣
x̂1
...

x̂ρ

⎤
⎥⎦

B2 = k1Ṡ1 + ˙̂
θT
f 1ξf 1 + θ̂T

f 1
∂ξf 1

∂ x̂1
+ χ − ÿd

which is a continuous function. Similarly, for i = 2, . . . , ρ − 1,

ẏi+1 = −yi+1/εi+1 + Bi+1 (5.25)

where

Bi+1 = kiṠi + ˙̂
θT
fi ξfi + θ̂T

fi

∂ξfi

∂(x̂1, . . . , x̂i)

⎡
⎢⎣
x̂1
...

x̂i

⎤
⎥⎦ + ẏi

εi
+ χi

is a continuous function, χi =
∂

(
2 tanh(

Si (M̄εfi+M̄δfi)

w )(M̄εfi+M̄δfi)

)
∂(x̂1,...,x̂ρ)

⎡
⎢⎣
x̂1
...

x̂ρ

⎤
⎥⎦ .

Differentiating Ve = eTPe with respect to time t and considering (5.9) and
Assumption 5.4, it leads to

V̇e ≤ eT (PA + ATP + 2λPP)e + μe (5.26)

where λ > 0 ∈ R is a design parameter, and it is assumed that |uj| ≤ ūj, ūj > 0 ∈ R,
μe = (

∑ρ

i=1 M̄
2
δfi + ∑m

j=1 M̄δgjū2j )/(4λ). Notice that, this assumption seems to be
strict. However, in many practical systems, such as flight control systems considered
in this chapter, control input is bounded. Hence, this assumption is reasonable in
some case. In addition, λ can be chosen to be a larger constant such that μe ≤ μ̄e,
μ̄e > 0 ∈ R.

If for a given constant λ matrices P = PT > 0, Q > 0 are chosen appropriately
such that PA + ATP + 2λPP ≤ −Q, then,

V̇e = −eTQe + μe = −geVe + μe (5.27)

where ge = λmin(Q)/λmax(P).
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Consider the following Lyapunov function

V1 = Ve+
1

2
[
∑ρ

i=1
(S2i + 1

η1
θ̃T
fi θ̃fi + 1

η2
θ̃T
gj θ̃gj) +

∑ρ−1

k=1
y2k+1]

where η1 > 0, η2 > 0 are design constants, θ̃fi = θ*
fi − θ̂fi, θ̃gj = θ*

gj − θ̂gj.
Differentiating V1 with respect to time t, it leads to

V̇1 ≤
∑ρ−1

i=1
(SiSi+1 − kiS

2
i + Siyi+1) + Sρ θ̂

T
f ρξf ρ + V̇e +

∑ρ−1

k=1
(−y2k+1

εk+1
+ |yk+1Bk+1|) +

∑ρ−1

i=1
Si+1ki+1e1 +∑ρ

i=1
Siθ̃

T
fi ξfi +

∑ρ

i=1
Si(εfi − δfi)+

Sρ

∑m

j=1
(ĝj + εgj − δgj)uj + Sρ

∑m

j=1
θ̃T
gjξgjuj −∑ρ

i=1

1

2η1
θ̃T
fi

˙̂
θfi −

∑m

j=1

1

2η2
θ̃T
gj

˙̂
θ gj

(5.28)

Define ˙̂
θfi, i = 1, . . . , ρ, ˙̂

θ gj, j = 1, . . . ,m as follows

˙̂
θfi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2η1Siξfi − ηfiθ̂fi, if ||θ̂fi|| < Mfi or ||θ̂fi|| = Mfi

and 2η1Siξfi − ηfiθ̂fi ≥ 0;

2η1Siξfi − ηfiθ̂fi + (2η1Si
θ̂fiθ̂

T
fi

||θ̂fi||2
ξfi − ηfi

θ̂fiθ̂
T
fi

||θ̂fi||2
θ̂fi)

if ||θ̂fi|| = Mfi and 2η1Siξfi − ηfiθ̂fi < 0

(5.29)

˙̂
θ gj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η2Sρξgjuj − ηgj θ̂gj, if ||θ̂gj|| < Mgj or ||θ̂gj|| = Mgj

and 2η2Sρξgjuj − ηgj θ̂gj ≥ 0;

2η2Sρξgjuj − ηgj θ̂gj + (2η2Sρ

θ̂gj θ̂
T
gj

||θ̂gj||2
ξgjuj − ηgj·

θ̂gj θ̂
T
gj

||θ̂gj||2
θ̂gj), if||θ̂gj|| = Mgjand2η2Sρξgjuj − ηgj θ̂gj < 0

(5.30)

where ηfi > 0, ηgj > 0 are design constants, uj is a bounded control input which is
applied simultaneously to the jth actuator in the system (5.5) and the observer (5.8).
Applying Young’s Inequality, one has

ηfiθ̃
T
fi θ̂fi/(η1) ≤ −ηfiθ̃

T
fi θ̃fi/(2η1) + ηfiθ

∗T
fi θ∗

fi /(2η1)
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ηεfiε̃fiε̂fi/η1 ≤ −ηεfiε̃
2
fi/(2η1) + ηεfi(ε

∗
fi)

2
/(2η1)

ηg,iθ̃
T
gj θ̂gj/η2 ≤ −ηgj θ̃

T
gj θ̃gj/(2η2) + ηgjθ

∗T
gj θ∗

gj/(2η2)

ηεgj ε̃gj ε̂gj/η2 ≤ −ηεgj ε̃
2
gj/(2η2) + ηεgj(ε

∗
gj)

2
/(2η2)

Substituting the above inequalities into (5.28), it yields

V̇1 ≤
∑ρ−1

i=1
(SiSi+1 − kiS

2
i + Siyi+1) + Sρ θ̂

T
f ρξf ρ +

∑ρ−1

k=1
(−y2k+1

εk+1
+ |yk+1Bk+1|) + Sρ θ̂

T
f ρξf ρ +

∑ρ−1

i=1
Si+1ki+1e1 + V̇e +

∑ρ

i=1
Si(εfi − δfi) +

Sρ

∑m

j=1
(ĝj + εgj − δgj)uj −

∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi −

∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi −

∑m

j=1

ηgj

2η2
θ̃T
gj θ̃gj +∑ρ

i=1

ηfi

2η1
θ∗T
fi θ∗

fi +
∑m

j=1

ηgj

2η2
θ∗T
gj θ∗

gj

(5.31)

From Young’s Inequality, one has

SiSi+1 ≤ S2i + S2i+1/4, Siyi+1 ≤ S2i + y2i+1/4

|yk+1Bk+1| ≤ y2k+1B
2
k+1/σ1 + σ1/2, ∀σ1 > 0 ∈ R

(5.32)

where σ1 > 0 ∈ R is a design parameter. Substituting (5.32) to (5.31), yields

V̇1 ≤
∑ρ−1

i=1
[1
4
S2i+1 + (2 − ki)S

2
i ] + (ρ − 1)σ1

2
+ Sρ θ̂

T
f ρξf ρ +

∑ρ−1

i=1
Si+1ki+1e1 + V̇e +

∑ρ−1

k=1
(
1

4
− 1

εk+1
+ B2

k+1

2σ1
)y2k+1 +∑ρ

i=1
Si(εfi − δfi) + Sρ

∑m

j=1
(ĝj + εgj − δgj)uj −∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi −

∑m

j=1

ηgj

2η2
θ̃T
gj θ̃gj +∑ρ

i=1

ηfi

2η1
θ∗T
fi θ∗

fi +
∑m

j=1

ηgj

2η2
θ∗T
gj θ∗

gj

(5.33)

As pointed out in [15], since for any B0 > 0 and p > 0 the sets

Π0 := {(yd, ẏd, ÿd) : y2d + ẏ2d + ÿ2d ≤ B0}
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Πi := {
∑ρ

l=1
(S2l (0) + θ̃T

fl (0)θ̃fl(0)) +
∑m

j=1
θ̃T
gj(0)θ̃gj(0)+∑i

k=1
y2k+1(0) + 2eT (0)e(0) ≤ 2vp}, i = 1, . . . , ρ

are compact,Π0×Πi is also compact. Thus, |Bi+1| has amaximumMi+1 onΠ0×Πi,
v = max{1, η1, η2, 1/λmin(P)}.

Choose

k1 = 2 + β0, ki = 2
1

4
+ β0, kρ = 1

1

4
+ β0,

1

εk+1
= 1

4
+ M2

k+1

2σ1
+ β0 (5.34)

where k = 1, . . . , ρ − 1, i = 2, . . . , ρ − 1β0 > 0 ∈ R is a constant. Thus, from
(5.27), (5.33) and (5.34), one has

V̇1 ≤ −
∑ρ

i=1
β0S

2
i −

∑ρ−1

k=1
β0y

2
k+1 − geVe −

∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi +

∑m

j=1

ηgj

2η2
θ̃T
gj θ̃gj +

(ρ − 1)σ1

2
+ Sρ θ̂

T
f ρξf ρ +

∑ρ−1

i=1
Si+1ki+1e1 +

∑ρ

i=1
|Si|(M̄εfi + M̄δfi)+∑ρ

i=1

ηfi

2η1
θ∗T
fi θ∗

fi +
∑m

j=1

ηgj

2η2
θ∗T
gj θ∗

gj +

μe + Sρ

∑m

j=1
(ĝj + εgj − δgj)uj

Define Δ = μe + (ρ−1)σ1

2 + Sρ θ̂
T
f ρξf ρ+

∑ρ−1
i=1 Si+1ki+1e1+∑ρ

i=1 [|Si|(M̄εfi − M̄δfi) +
ηfi
2η1

θ∗T
fi θ∗

fi ] + ∑m
j=1

ηgj

2η2
θ∗T
gj θ∗

gj, then, one has

V̇1 ≤ −
∑ρ

i=1
β0S

2
i −

∑ρ−1

k=1
β0y

2
k+1 − geVe −

∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi −

∑m

j=1

ηgj

2η2
θ̃T
gj θ̃gj + Δ + Sρ

∑m

j=1
(ĝj + εgj − δgj)uj

(5.35)

Substituting control laws (5.18) into (5.35), it leads to

V̇1 ≤ −gV1 +
∑m

j=1
(hDjN(ς) + 1)ς̇ (5.36)

where g = min{β0, ge,
ηf 1
2η1

, . . . ,
ηf ρ
2η1

,
ηg1

2η2
, . . . ,

ηgm

2η2
} and hDj = (ĝj +εgj −δgj). Apply-

ing Lemma 5.2, we can conclude that, V1(t),
∫ t
0

∑m
j=1 (hDjN(ς) + 1)e−gτ ς̇dτ and

ς(t) are SGUUB on [0, tf ). According to Proposition 2 in [20], if the solution of
the closed-loop system is bounded, then tf = +∞. Let μ̄1 be the upper bound of∫ t
0

∑m
j=1 (hDjN(ς) + 1)e−gτ ς̇dτ , we have the following inequalities:
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∫ t

0

∑m

j=1
e−gt(hDjN(ς) + 1)e−gτ ς̇dτ ≤

t∫
0

∑m

j=1
(hDjN(ς) + 1)e−gτ ς̇dτ ≤ μ̄1.

Thus, (5.36) becomes
V̇1 ≤ −gV1 + μ̄1 (5.37)

Solving inequality (5.37) gives

0 ≤ V1(t) ≤ μ̄1

g
+ [V1(0) − μ̄1

g
]e−gt ≤ μ̄1

g
+ V1(0) = μ1 (5.38)

which means that V1(t) is bounded by μ1. Thus, all signals of the closed-loop
system, i.e., Si(t), θ̃fi, θ̃gj, ε̃fi, ε̃gj and yi are uniformly ultimately bounded, i.e. for
i = 1, . . . , ρ, j = 1, . . . ,m,

√
2μ1, |yi| ≤ √

2μ1, ||θ̃fi|| ≤ √
2η1μ1, |ε̃fi| ≤ √

2η1μ1,

||θ̃gj|| ≤ √
2η2μ1, |ε̃gj| ≤ √

2η2μ1, ||e|| ≤ √
μ1/λmin(P).

Now, the following theorem guarantees the existence of the observer (5.8) and
the corresponding tracking performance.

Theorem 5.1 Consider system (5.5) and observer (5.8) under Assumptions 5.1–5.4,
the virtual control (5.11), (5.14) and (5.18), the adaptive laws (5.29) and (5.30). If
matrices H,Q > 0, P = PT > 0 and constant λ > 0 ∈ R are chosen such that

PA + ATP + 2λPP ≤ −Q (5.39)

for all initial conditions satisfying

Πi :=

⎧⎪⎨
⎪⎩

∑ρ

l=1
(S2l (0) + θ̃T

fl (0)θ̃fl(0))+∑m

j=1
θ̃T
gj(0)θ̃gj(0) +

∑i

k=1
y2k+1(0) + 2eT (0)e(0) ≤ 2vp

⎫⎪⎬
⎪⎭ ,

i = 1, . . . , ρ, ki, εk are chosen as (5.34), then we can guarantee the following
properties under bounded initial conditions: (i) All signals in the closed-loop system
are globally uniformly ultimately bounded (ii) The vectors Si, θ̃fi, ε̃fi, i = 1, . . . , ρ,

and θ̃gj, ε̃gj, j = 1, . . . ,m remain in the compact set Ω1, specified as

Ω1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Si, yi, θ̃fi, ε̃fi, θ̃gj, ε̃gj)
∣∣∣∑ρ

i=1
(S2i + θ̃T

fi θ̃fj + ε̃2fi

η1
)+

∑m

j=1

(θ̃T
gj θ̃gj + ε̃2gj)

η2
+

∑ρ−1

k=1
y2k+1 + 2λmin(P)eTe ≤ 2μ1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where μ1 can be adjusted by appropriately choosing the design parameter such as
η1, η2, ηfi, ηεfi, ηgj, ηεgj and σ1,w, β0.
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Proof From the above analysis, it is easy to obtain the conclusion. The detailed proof
is omitted here.

From Theorem 5.1, all signals of the closed-loop system belong to the following
setΩ1. Therefore, the detection residual can be defined as J = |yd(t)− x̂1(t)| = |S1|.
Obviously, it is seen that the following inequality holds in the healthy case: J ≤√
2μ1. Then, the fault detection can be performed using the following mechanism:

{
J ≤ Td no fault occurred,

J > Td fault has occurred

where threshold Td = √
2μ1.

5.3.2 Fault Isolation and Estimation

Since the system has m actuators and it is assumed that only one single fault occurs
at one time, we have m possible faulty cases in total. When the sth (1 ≤ s ≤ m)
actuator is faulty, the faulty model can be described as: ufs = ρs(x)us + f us (x). The
faulty system can be described as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi = ẋi+1 + fi, i = 1, 2, . . . , ρ − 1

ẋρ = fρ +
∑ρ

j=1,j �=s
gjuj + gsρsus + gsf

u
s

η̇ = ψ1(x, η) + ψ2(x, η)θ

y = x1

(5.40)

where fi = fi(x[i]), i = 1, 2, . . . , ρ − 1, fρ = fρ(x, η), gi = gi(x, η), us is the sth
actuator’s desired control input when the sth actuator is healthy, ts is the unknown
fault occurrence time.

After a fault has been detected, the isolation scheme is activated. Inspired by [28],
the following m nonlinear adaptive fuzzy observers are considered:

˙̂xs = Ax̂s + Hys + f̂ + B(
∑m

j=1,j �=s
ĝjuj + ĝρsus + f̂ρs) (5.41)

where x̂s = [x̂s1, . . . , x̂sρ]T is the observer state; f̂i = θ̂T
fi ξfi, i = 1, . . . , ρ and

ĝj = θ̂T
gjξgj, j = 1, . . . ,m, j �= r, which are the estimates of fi and gj; ĝρs = θ̂T

gρsξgρs

and f̂ρs = θ̂T
f ρsξf ρs are the estimates of gsρs and gsf us .
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It is assumed that r (1 ≤ r ≤ m) is the practical fault pattern where the faulty
actuators are the rth actuator.

Let es(t) = x − x̂s is the output error and state error between the faulty plant and
the sth observer, then the error dynamics can be written as follows:

ės = Aes + d + B(dsg + dgρ + df ρ) (5.42)

where dgρ = gρs− ĝs+gr− ĝρr , df ρ = fρs− f̂s+fr− f̂ρr , ĝρr . In the following, similar
to the previous section, stability analysis will be conducted using DSC method. The
case (s = r) is first considered.

(1) s = r: Similar to the previous section,wewill propose an adaptiveDSCscheme
for system (5.41). The recursive design procedure contains ρ steps. From Step 1 to
Step ρ, virtual control laws αi−1, i = 2, . . . , ρ are designed at each step. Finally
overall control laws uj, j = 1, . . . ,m are constructed at step ρ. Let us define dynamic
surfacesSi, i = 1, . . . , ρ, virtual control lawsαi, first-order filters εi+1żi+1+zi+1 = αi

and yi+1, i = 1, . . . , ρ−1 as in the previous section.Note that, the difference between
the observer (5.8) and (5.41) lies in the last equality, i.e.,

˙̂xρ = f̂ρ + hρe1 +
∑m

j=1
ĝjuj

˙̂xsρ = f̂sρ + hsρe1 +
∑m

j=1,j �=s
ĝjuj + ĝρsus + f̂ρs

Thus, Ṡi, i = 1, . . . , ρ − 1 have same expressions as in the previous section, only
Ṡρ is different, which is expressed as follows.

Ṡρ = ˙̂xsρ − żρ

= θ̂T
f ρξf ρ + hρe1 +

∑m

j=1,j �=s
ĝjuj + ĝρsus + f̂ρs − żρ + θ̃T

f ρξf ρ + εf ρ − δf ρ

(5.43)
Hence, αρj, j = 1, . . . ,m are defined as follows:

αρj = uj = [N(ς)(kρSρ + Δs/Sρ)]/m, ς̇ = −kρS
2
ρ − Δs (5.44)

where

Δs =μe + (ρ − 1)σ1

2
+ Sρ(f̂ρ+f̂ρs)+

∑ρ−1

i=1
Si+1ki+1e1 +∑ρ

i=1
[|Si|(M̄εfi + M̄δfi)+ ηfi

2η1
θ∗T
fi θ∗

fi ] + M̄εf ρs + M̄δf ρs +∑m

j=1

ηgj

2η2
θ∗T
gj θ∗

gj +
ηf ρs

2η3
θ∗T
f ρsθ

∗
f ρs + ηgρs

2η4
θ∗T
gρsθ

∗
gρs
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Differentiating Vse = eTs Pes with respect to time t and considering (5.42) and
Assumption 5.4, it leads to

V̇se ≤ −eTQe + μe = −geVe + μse (5.45)

where ge = λmin(Q)

λmax(P)
, μse = [∑ρ

i=1 M̄
2
δfi + M̄2

δf ρs+
∑m

j=1 M̄
2
δgjū

2
j + M̄2

δgρsū
2
s ]/λ.

Consider the following Lyapunov function

V2 =
∑ρ

i=1
S2i /2 +

∑ρ−1

k=1
y2k+1/2 + Vse+

∑ρ

i=1
θ̃T
fi θ̃fi/(2η1) +∑m

j=1
θ̃T
gj θ̃gj/(2η2) + θ̃T

f ρsθ̃f ρs/(2η3) + θ̃T
gρsθ̃gρs/(2η4)

where η3 > 0, η4 > 0 are design parameters, θ̃f ρs=θ*
f ρs − θ̂f ρs, θ̃gρs=θ*

gρs − θ̂gρs.
Differentiating V2 with respect to time t, it leads to

V̇2 ≤
∑ρ−1

i=1
(SiSi+1 − kiS

2
i + Siyi+1) +

∑ρ−1

i=1
Si+1ki+1e1 + V̇se +

Sρ(θ̂
T
f ρξf ρ + θ̂T

f ρξf ρ) +
∑ρ−1

k=1
(−y2k+1

εk+1
+ |yk+1Bk+1|)+∑ρ

i=1
Siθ̃

T
fi ξfi +

∑ρ

i=1
Si(εfi − δfi) + Sρ(εf ρs − δf ρs)+

Sρ

∑m

j=1,j �=s
(ĝj + εgj − δgj + θ̃T

gjξgj)uj + Sρ θ̃
T
gρsξgρsus −

Sρ(ĝs + εgρs − δgρs)us −
∑ρ

i=1

1

2η1
θ̃T
fi

˙̂
θfi −

∑m

j=1,j �=s

1

2η2
θ̃T
gj

˙̂
θ gj − 1

2η3
θ̃T
f ρs

˙̂
θ f ρs − 1

2η4
θ̃T
gρs

˙̂
θ gρs

(5.46)

Adaptive laws ˙̂
θfi, i = 1, . . . , ρ, ˙̂

θ gj, j = 1, . . . ,m, j �= s are defined as (5.29) and

(5.30) in the previous section. Here, only ˙̂
θ f ρs and

˙̂
θ gρs are defined as follows:

˙̂
θ f ρs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η3Sρξf ρs − ηf ρsθ̂f ρs, if||θ̂f ρs|| < Mf ρsor

|θ̂f ρs|| = Mf ρs and 2η3Sρξf ρs − ηf ρsθ̂f ρs ≥ 0;

2η3Sρξf ρs − ηf ρsθ̂f ρs + (2η3Sρ

θ̂f ρsθ̂
T
f ρs

||θ̂f ρs||2
ξf ρs−

ηf ρs
θ̂f ρsθ̂

T
f ρs

||θ̂f ρs||2
θ̂f ρs), if ||θ̂f ρs|| = Mf ρs and

2η3Sρξf ρs − ηf ρsθ̂f ρs < 0

(5.47)
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˙̂
θ gρs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η4Sρξgρsus − ηgρsθ̂gρs, if ||θ̂gρs|| < Mgρs or

||θ̂gρs|| = Mgρs and 2η4Sρξgρsus − ηgρsθ̂gρs ≥ 0;

2η4Sρξgρsus − ηgρsθ̂gρs + (2η4Sρ

θ̂gρsθ̂
T
gρs

||θ̂gρs||2
ξgρsus −

ηgρs

θ̂gρsθ̂
T
gρs

||θ̂gρs||2
θ̂gρs), if ||θ̂gρs|| = Mgρs

and 2η4Sρξgρsus − ηgρsθ̂gρs < 0

(5.48)

where ηf ρs > 0, ηgρs > 0 are design constants.
Applying Young’s inequality, one has

ηf ρsθ̃
T
f ρsθ̂gρs/η3 ≤ −ηf ρs(θ̃

T
f ρsθ̃f ρs − θ∗T

f ρsθ
∗
f ρs)/(2η3)

ηgρsθ̃
T
gρsθ̂gρs/η4 ≤ −ηgρs(θ̃

T
gρsθ̃gρs − θ∗T

gρsθ
∗
gρs)/(2η4)

Substituting the above inequalities into (5.46), yields

V̇2 ≤
∑ρ−1

i=1
(SiSi+1 − kiS

2
i + Siyi+1)+Sρ(θ̂

T
f ρξf ρ + θ̂T

f ρξf ρ)+
∑ρ−1

k=1
(−y2k+1

εk+1
+ |yk+1Bk+1|) +

∑ρ−1

i=1
Si+1ki+1e1 + V̇se +∑ρ

i=1
Si(εfi − δfi) + Sρ(εf ρs − δf ρs) + Sρ(ĝs + εgρs −

δgρs)us+Sρ

∑m

j=1,j �=s
(ĝj + εgj − δgj)uj −∑ρ

i=1

ηfi

2η1
(θ̃T

fi θ̃fi − θ∗T
fi θ∗

fi ) − 1

2η3
θ̃T
f ρsθ̃f ρs −∑m

j=1,j �=s

ηgj

2η2
(θ̃T

gj θ̃gj − θ∗T
gj θ∗

gj) − 1

2η4
θ̃T
gρsθ̃gρs +

ηf ρs

2η3
θ∗T
f ρsθ

∗
f ρs + ηgρs

2η4
θ∗T
gρsθ

∗
gρs

(5.49)

From Young’s Inequality, one has

SiSi+1 ≤ S2i + S2i+1/4, Siyi+1 ≤ S2i + y2i+1/4,

|yk+1Bk+1| ≤ y2k+1B
2
k+1/σ1 + σ1/2, ∀σ1 > 0 ∈ R

where σ1 > 0 ∈ R is a design parameter. Thus, one has
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V̇2 ≤
∑ρ−1

i=1
[1
4
S2i+1 + (2 − ki)S

2
i ] +

∑ρ−1

k=1
(
1

4
− 1

εk+1
+

B2
k+1

2σ1
)y2k+1 + (ρ − 1)σ1

2
+ Sρ(θ̂

T
f ρξf ρ + θ̂T

f ρξf ρ)+
∑ρ−1

i=1
Si+1ki+1e1 + V̇se +

∑ρ

i=1
Si(εfi − δfi)+

Sρ(εf ρs − δf ρs) + Sρ

∑m

j=1,j �=s
(ĝj + εgj − δgj)uj +

Sρ(ĝs + εgρs − δgρs)us −
∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi −

∑m

j=1,j �=s

ηgj

2η2
θ̃T
gj θ̃gj +

∑ρ

i=1

ηfi

2η1
θ∗T
fi θ∗

fi +
∑m

j=1,j �=s

ηgj

2η2
θ∗T
gj θ∗

gj −
1

2η3
θ̃T
f ρsθ̃f ρs − 1

2η4
θ̃T
gρsθ̃gρs +

ηf ρs

2η3
θ∗T
f ρsθ

∗
f ρs + ηgρs

2η4
θ∗T
gρsθ

∗
gρs

As pointed out in [15], since for any B0 > 0 and p > 0 the sets

Π0 := {(yd, ẏd, ÿd) : y2d + ẏ2d + ÿ2d ≤ B0}

Πi := {
∑ρ

l=1
(S2l (0) + θ̃T

fl (0)θ̃fl(0)) + θ̃T
f ρs(0)θ̃f ρs(0)+∑m

j=1
θ̃T
gj(0)θ̃gj(0) + θ̃T

f ρs(0)θ̃f ρs(0) +
∑i

k=1
y2k+1(0)+

2eT (0)e(0) ≤ 2vsp}
, i = 1, . . . , ρ

are compact,Π0×Πi is also compact. Thus, |Bi+1| has amaximumMi+1 onΠ0×Πi,
vs = max{1/λmin(P), 1, η1, η2, η3,η4}.

Choose k1 = 2 + β0, ki = 21
4 + β0, kρ = 11

4 + β0, 1
εk+1

= 1
4 + M2

k+1

2σ1
+ β0,

k = 1, . . . , ρ − 1, i = 2, . . . , ρ − 1, where β0 > 0 ∈ R is a constant. Thus, from
(5.45), one further has

V̇2 ≤ −
∑ρ

i=1
β0S

2
i −

∑ρ−1

k=1
β0y

2
k+1 − geVe −

∑ρ

i=1

ηfi

2η1
θ̃T
fi θ̃fi −

∑m

j=1,j �=s

ηgj

2η2
θ̃T
gj θ̃gj −

1

2η3
θ̃T
f ρsθ̃f ρs − 1

2η4
θ̃T
gρsθ̃gρs + Δs +

Sρ

∑m

j=1,j �=s
(ĝj + εgj − δgj)uj + Sρ(ĝs + εgρs − δgρs)us

Substituting (5.44) into the above inequality, it leads to

V̇2 ≤ −gsV1 + (hsN(ς) + 1)ς̇ (5.50)
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where
hs =

∑m

j=1,j �=s
(ĝj + εgj − δgj) + ĝρs + εgρs − δgρs,

gs = min{β0, gse,
ηf 1

2η1
, . . . ,

ηf ρ

2η1
,

ηg1

2η2
, . . . ,

ηgm

2η2
,
ηf ρs

2η3
,
ηgρs

2η4
}.

Applying Lemma 5.2, we conclude that,
∫ t
0 (hsN(ς) + 1)e−gτ ς̇dτ , V2(t) and ς(t)

are SGUUB on [0, tf ). According to Proposition 2 in [20], if the solution of the
closed-loop system is bounded, then tf = +∞. Let μ̄2 be the upper bound of∫ t
0 (hsN(ς) + 1) · e−gτ ς̇dτ , we have the following inequalities:

∫ t

0
e−gτ (hsN(ς) + 1)e−gτ ς̇dτ ≤

∫ t

0
(hsN(ς) + 1)e−gτ ς̇dτ ≤ μ̄2

Thus, (5.50) becomes V̇2 ≤ −gsV2 + μ̄2. Further, one has

0 ≤ V2(t) ≤ μ̄2

gs
+ [V2(0) − μ̄2

gs
]e−gst ≤ μ̄2

gs
+ V2(0) = μ2 (5.51)

which means that V2(t) is bounded byμ2. Thus, all signals of the closed-loop system
are uniformly ultimately bounded, i.e. |Si| ≤ √

2μ2, |yi| ≤ √
2μ2, ||θ̃fi|| ≤ √

2η1μ2,
||θ̃gj|| ≤ √

2η2μ2, ||θ̃f ρs|| ≤ √
2η3μ2, ||θ̃gρs|| ≤ √

2η4μ2, ||e|| ≤ √
μ2/λmin(P).

That is to say, Si(t), θ̃fi, θ̃gj, θ̃gρs, θ̃f ρs belong to Ω2 defined as:

Ω2 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Si, yi, θ̃fi, θ̃gj, θ̃f ρs, θ̃gρs)
∣∣∣∑ρ

i=1
(S2i + θ̃T

fi θ̃fj/η1)+∑m

j=1,j �=s
θ̃T
gj θ̃gj/η2 + θ̃T

f ρsθ̃f ρs/η3 + θ̃T
gρsθ̃gρs/η4 +∑ρ−1

k=1
y2k+1 + 2λmin(P)eTe ≤ 2μ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2) For s �= r, one has dgρ = (gρs− ĝs)us+(gr − ĝρr)ur , df ρ = gsf us − θ̂T
f ρrξf ρr . From

adaptive laws (5.29), (5.30), (5.47) and (5.48), it is found out that, ˙̂
θ gρr �= ˙̂

θ gρs,
˙̂
θ f ρr �=

˙̂
θ f ρs. Thus, both (gρs − ĝs)us + (gr − ĝρr)ur and gsf us − θ̂T

f ρrξf ρr do not converge to

zero, i.e., limt→∞[(gρs− ĝs)us+(gr− ĝρr)ur] �= 0 and limt→∞(gsf us − θ̂T
f ρrξf ρr) �= 0.

As a result, basically, all signals of the closed-loop systems such as Si do not remain
in Ω2 using the above control law and adaptive laws. Therefore, from the above
analysis, we can not obtain (5.50). Furthermore, we can not obtain (5.51). Hence,
we can draw a conclusion that all signals involved in the closed-loop systems do not
converge to the set Ω2, i.e., Si(t), θ̃fi, θ̃gj, θ̃gρs, θ̃f ρs do not belong to Ω2.
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Now, the control procedures are ended. The above design procedures are summa-
rized in the following theorem.

Theorem 5.2 Consider the faulty system (5.40) and observers (5.41) under Assump-
tions 5.1–5.4, fault model (5.3) adaptive laws (5.29), (5.30), (5.47) and (5.48)
and control law (5.44), If matrices H,Q > 0 and P = PT > 0 are such that
PA + ATP + 2λPP ≤ −Q, for all initial conditions satisfying

Πi :=

⎧⎪⎨
⎪⎩

∑ρ

l=1
(S2l (0)+θ̃T

fl (0)θ̃fl(0)) + θ̃T
gρs(0)θ̃gρs(0) +

∑i

k=1
y2k+1(0) +∑m

j=1
θ̃T
gj(0)θ̃gj(0) + 2eT (0)e(0) + θ̃T

f ρs(0)θ̃f ρs(0) ≤ 2vsp,

⎫⎪⎬
⎪⎭
(5.52)

ki, εi are chosen as follows: k1 = 2 + β0, ki = 21
4 + β0, kρ = 11

4 + β0,
1

εk+1
=

1
4 +M2

k+1

2σ1
+ β0, k = 1, . . . , ρ − 1, i = 2, . . . , ρ − 1, then, when the sth actuator is

faulty, for s = r, the closed-loop system is semi-globally uniformly ultimately stable
and all signals involved in the closed-loop systems converge to a small neighborhood
of the origin Ω2, and for s �= r, all signals involved in the closed-loop systems do
not converge to the set Ω2.

Now, we denote the residuals between the real system and isolation estimators as
follows:

Js(t) = ∥∥ŷs(t) − y(t)
∥∥ = |S1|, 1 ≤ s ≤ m

According to Theorem 5.2, when the rth actuator is faulty, i.e., s = r, the residual
Js(t) must tend to Ω2, while for any s �= r, basically, Js(t) does not belong to Ω2.

Hence, the isolation law for actuator fault can be designed as

{
Js(t) ≤ TI , l = s ⇒ the lth actuator is faulty

Js(t) > TI , l �= s

where threshold TI is defined as TI = √
2μ2.

5.3.3 Fault Accommodation

After that the fault information is obtained, wewill consider the fault-tolerant control
problem, and design a fault-tolerant control law to recover the control system’s
dynamics performance when an actuator fault occurs. Firstly, we consider the fuzzy
control problem for the following nominal system without actuator faults:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi = ẋi+1 + fi(x[i]), i = 1, 2, . . . , ρ − 1

ẋρ = f (x, η) + gT (x, η)u

η̇ = ψ1(x, η) + ψ2(x, η)θ

y = x1

(5.53)

From Theorem 5.1, we can see that, under Assumptions 5.1–5.4, if matrices Q > 0
and P = PT > 0 are chosen such that PA+ ATP + 2λPP ≤ −Q, and virtual control
law (5.11), (5.14) and (5.17), and adaptive laws (5.29) and (5.30) are adopted, then,
the closed-loop system is SGUUB stable, and all signals involved in the closed-loop
systems converge to a small neighborhood of the originΩ1, which can be adjusted by
appropriately choosing the design parameter. On the basis of the estimated actuator
fault, the fault tolerant controller is constructed as

us = ρ̂gs(u
N
s − ρ̂fs(x))/(ρ̂

2
gs

+ εu) (5.54)

where ρ̂gs and ρ̂fs are the estimates of ρgs = gs(x, η)ρs(x) and ρfs = gs(x, η)f us (x),
εu > 0 ∈ R is a design parameter, uNs is the sth desired control input under the healthy
condition.

Theorem 5.3 Consider faulty system (5.52) under Assumptions 5.1–5.4, fault model
(5.3), virtual control law (5.11), (5.14) and (5.17), and adaptive laws (5.29) and
(5.30). If there exists a matrix P = PT > 0 with appropriate dimensions, such that

PA + ATP + 2λPP ≤ −Q

then, system (5.52) is asymptotically stable under the feedback FTC (5.53) and all
signals involved in the closed-loop system are semi-globally uniformly ultimately
bounded, converging asymptotically to a small neighborhood of the origin.

Proof Similar to the proof of Theorem 5.1, it is easy to obtain the conclusions of
Theorem 3. The detailed proof is thus omitted here.

5.4 Application to Aircraft Longitudinal Motion Dynamics

In this section, for the purpose of demonstrating the application of the proposed
fault tolerant control scheme, we apply it to accommodate failure for an aircraft
longitudinal motion dynamics. The aircraft longitudinal motion dynamics of the
twin otter can be described as follows:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̇ = [Fx cos(α) + Fz sin(α)]/m
α̇ = q + [−Fx sin(α) + Fz cos(α)]/(mV )

θ̇ = q

q̇ = M/Iy

(5.55)

where V is the velocity, α is the attack angle, θ is the pitch angle and q is the pitch
rate,m is themass, Iy is themoment of inertia,Fx = q̄SCx(α, q, δe1, δe2)+T1 cos γ1+
T2 cos γ2 −mg sin(θ), Fz = q̄SCz(α, q, δe1, δe2)+T1 sin γ1 +T2 sin γ2 −mg cos(θ),
M = q̄cSCm(α, q, δe1, δe2). For which q̄ = ρV 2/2 is the dynamic pressure, ρ is the
air density, S is the wing area, c is the mean chord, T1 and T2 are independent thrusts
with corresponding thrust misalignments γ1 and γ2.Cx,Cz,Cm are of the polynomial
form defined as in (5.3–5.6), δe1 and δe2 are the elevator angles of an augmented two-
pieces elevator used as two actuators for failure compensation study. The notations
through the model (5.54) are illustrated as [1]. Choosing V, α, θ and q as the states
x1, x2, x3 and x4, and δe1, δe2,T1,T2 as the inputs u1, u2, u3, u4, as shown in [29, 30],
there exists a diffeomorphism [ηT , xT ]T = T(χ) = [T1(χ),T2(χ), x3, x4]T such that
(5.55) can be transform into the PSF form, i.e.,⎧⎨

⎩
ẋ3 = x4

ẋ4 = ϑTφ(x) +
∑2

i=1
bix

2
1ui

and the zero dynamics ξ̇ = φ(ξ, χ) + �(ξ, χ)ϑ , where ϑ ∈ R4 is an unknown
constant vector. Relative degree is o = 2. The parameters in the simulation study
are set based on the data sheet in [2, 3]. The fault case considered in this example is
modeled as

uf1(t) =
{
u1(t), t < 2

(1 − ρ1(x))u1(t) + f u1 (x), t ≥ 2
, uf2(t) = u2(t)

where ρ1(x) = 0.4 cos(x3), f u1 (x) = 0.2 + sin(x2). Initial values of system state are
chosen as x1(0) = 0.1, x2(0) = −0.1, x3(0) = 0.1, x4(0) = −0.1. Firstly, Matlab
LMI control toolbox is used to solve the matrix inequality (5.39). Therefore, one
can design the desired control (5.18) and further design the fault-tolerant controller
(5.53). Consequently, the observer-based fault-tolerant control input (5.53) is used to
control the faulty system. Figure5.1 shows that the tracking errors can asymptotically
converge to a small neighborhood of the origin. When an actuator fault occurs at 2s,
keeping the normal controller, both tracking errors deviate significantly from zero
as shown in Fig. 5.2. However, as shown in Fig. 5.3, when the proposed FTC (5.53)
is activated at about 2.2 s, the better convergence performance is obtained, which
illustrates the effectiveness of the proposed FTC scheme.
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Fig. 5.1 Tracking error under normal condition
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Fig. 5.2 Tracking error under faulty condition without FTC
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Fig. 5.3 Tracking error under faulty condition without FTC

5.5 Conclusions

In this chapter, an adaptive fuzzy tracking fault-tolerant control problem of a class of
uncertain strict-feedback nonlinear systemswith actuator fault has been investigated.
FLSs are used to approximate the unknownnonlinear functions. By applying adaptive
command filtered backstepping recursive design, integral-type Lyapunov function
method and Nussbaum-type gain technique, an adaptive fuzzy control scheme is
proposed to guarantee that the closed-loop system is asymptotically bounded with
the tracking error converging to a neighborhood of the origin.
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Chapter 6
Adaptive Fault Tolerant Backstepping
Control for High-Order Nonlinear Systems

6.1 Introduction

It is well known that system physical components may become faulty which may
cause system performance deterioration or worth, may lead to instability that can
further produce catastrophic accidents. The fault effects require to be compensated
to enhance the reliability and safety of the system. Accommodating faults tomaintain
acceptable system performances is particularly important for life-critical systems. In
order to improve system reliability and to guarantee system stability in all situations,
many effective FTC approaches have been proposed the literature.

Fuzzy logic systems (FLSs), as universal function approximators, have been
widely used tomodel the nonlinearitieswith arbitrary preciseness.Due to the capabil-
ity, fuzzy logic systems are also adopted to solve identification and control problems
in nonlinear systems [1–6]. Various adaptive fuzzy control approaches, based on the
feedback linearization, were developed for controlling uncertain nonlinear systems.
Robust adaptive backstepping control [1, 5–10] and observer-based backstepping
control [11–13] attracted much attention frommany researchers, and many excellent
results were obtained during the past decades.

Recently, stable control problems of high-order systems attracted the interest of
many researchers [14–19]. In [14], the authors presented a continuous feedback
solution to the problem of global strong stabilization, for genuine nonlinear systems
that may not be stabilized, even locally, by a smooth feedback. The same authors
extended their results in [15], where they investigated the reference tracking problem
in nonlinear systems with disturbances. However, the control schemes in [14, 15]
do not guarantee the closed-loop systems’ stability or better tracking performance
under faulty conditions.

In this chapter, we investigate the problem of active FTC for a class of high-order
nonlinear uncertain systems with actuator gain faults. Compared with some existing
works, the following main contributions are worth to be emphasized:

© Springer International Publishing AG 2017
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(1) In literature, results concerning FTC in the literature like [20–31] consider the
1-order systems. This chapter extends the results to the more general systems, i.e.,
so-called high-order systems as [32–37], and an observer-based active fault-tolerant
backstepping control scheme is proposed.

(2)Differing from the classical backstepping technology, our fault-tolerant control
scheme does not need computing the high order derivatives of virtual control signal
at each step of backstepping design procedure, which thus reduces the computation
complexity.

(3) In general, the denominator of the fault-tolerant control law contains the esti-
mate of the gain fault. If the denominator equals zero, a singularity occurs. In the
proposedFTCscheme, the controller singularity is avoidedwithout using a projection
algorithm.

(4) In contrast with [20–25], the proposed FTC scheme does not require the a
priori knowledge of the signs of control gain terms.

The rest of this chapter is organized as follows. In Sect. 6.2, the problem formula-
tion, Nussbaum-type function and mathematical description of FLS, are introduced.
Actuator faults are described and the FTC objectives are formulated. In Sect. 6.3,
the main technical results of this chapter are given, which include fault detection,
isolation, estimation and fault-tolerant control scheme design. The aircraft control
application is presented in Sect. 6.4 and simulation results are given and demonstrate
the effectiveness of the proposed technique. Finally, Sect. 6.5 draws the conclusion.

6.2 Problem Formulation and Mathematical
Description of FLSs

In this section, we will formulate control problem. Then, the FLS description is
introduced.

6.2.1 Problem Statement

Considers the following nonlinear systems:

⎧⎪⎪⎨
⎪⎪⎩
ẋi = x p

i+1
, i = 1, . . . , n − 1

ẋn = f (x) +
∑m

j=1
g j (x)u

p
j

y = x1

(6.1)

where x = [x1, x2, . . . , xn]T ∈ Rn denotes the state vector, y = x1 denotes the
system output, u j ∈ R, j = 1, 2, . . . ,m denote control inputs, p ≥ 1 is a known
positive odd number, f (x) ∈ R denotes an unknown continuous smooth function,
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g j (x) ∈ R, j = 1, . . . ,m are complete unknown control gain functions, i.e., the
value and sign of g j (x) are both unknown.

Remark 6.1 System (6.1) is more general than the considered system in [18] which
was described as ẋi = x p

i+1
, i = 1, . . . , n−1 and ẋn = u p. In addition, since actuator

faultswere not considered in [18], only one actuatorwas used. In this chapter, the FTC
problem will be considered. In order to ensure the dependability of the controlled
system, redundant actuators are added which leads to an over-actuated system.

In practical application, actuators may become faulty. In this chapter, actuator
loss-of-effectiveness failures are considered, which can be modeled as follows.

u f
j = k j (x)u j , j = 1, . . . ,m, t ≥ t j (6.2)

where unknown function k j (x) denotes the remaining control rate, t j is unknown
fault occurrence time.

The control objectives, which are valid in normal (no fault) and faulty conditions,
are to design the proper control inputs u = [u1, . . . , um]T which ensure that the sys-
tem output can track asymptotically the reference model signal yd with the tracking
error converging to a small neighborhood of the origin and the closed-loop system
is uniformly ultimately bounded (SGUUB). Under normal condition (no fault), u is
designed to ensure boundedness of the closed-loop signals and asymptotic stability.
Meanwhile, the FDI algorithm is working. As soon as actuator faults are detected
and isolated, the fault accommodation algorithm is activated and a proper FTC input
u is used such that the tracking performance is still maintained stable under faulty
situation.

In order to design an appropriate controller, the following lemmas are introduced.

Lemma 6.1 ([38]) ∀q > 1, being an odd integer, a, b ∈ R, the following inequality
holds:

|a + b|q ≤ (|a| + |b|)q ≤ 2q−1|aq + bq | (6.3)

Lemma 6.2 ([38]) ∀m > 0 ∈ R,∀n > 0 ∈ R and r(x, y) > 0 ∈ R, the following
inequality holds:

|x |m |y|n ≤ m

m + n
r(x, y)|x |m+n + n

m + n
r− m

n (x, y)|y|m+n (6.4)

Lemma 6.3 ([11]) For α ∈ Rna , β ∈ Rnb , M ∈ Rna×nb , and arbitrary matrices

X ∈ Rna×na , Y ∈ Rna×nb , Z ∈ Rnb×nb , if

[
X Y
Y T Z

]
> 0, then

− 2αT Mβ ≤
[
α

β

]T [
X Y − M

YT − MT Z

] [
α

β

]
(6.5)
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6.2.2 Nussbaum Type Gain

Any continuous function N (s) : R → R is a function of Nussbaum type if it has the
following properties:

lim
s→+∞ sup

1

s

∫ s

0
N (ς)dς = +∞ (6.6)

lim
s→−∞ inf

1

s

∫ s

0
N (ς)dς = −∞ (6.7)

For example, the continuous functions ς2 cos(ς), ς2 sin(ς), and eς2
cos((π/2)ς)

verify the above properties and are thus Nussbaum-type functions [39]. The even
Nussbaum function eς2

cos((π/2)ς) is used throughout this chapter.

Lemma 6.4 ([40, 41]) Let V (·) and ς(·) be smooth functions defined on [0, t f )with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. If the
following inequality holds:

V (t) ≤ c0 +
∫ t

0
(gN (ς) + 1)ς̇dτ ,∀t ∈ [0, t f ) (6.8)

where g �= 0 is a constant, and c0 represents a suitable constant, then V (t), ς(t)

and
∫ t
0 gN (ς)ς̇dτ must be bounded on [0, t f ).

Lemma 6.5 ([41]) Let V (·) and ς(·) be smooth functions defined on [0, t f ) with
V (t) ≥ 0,∀t ∈ [0, t f ), and N (·) be an even smooth Nussbaum-type function. For
∀t ∈ [0, t f ), if the following inequality holds,

V (t) ≤ c0 + e−c1t
∫ t

0
g(τ )N (ς)ς̇ec1τdτ + e−c1t

∫ t

0
ς̇ec1τdτ (6.9)

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the
unknown closed intervals I := [l−1, l+1]with 0 /∈ I , and c0 represents some suitable
constant, then V (t), ς(t) and

∫ t
0 g(τ )N (ς)ς̇dτ must be bounded on [0, t f ).

6.2.3 Mathematical Description of FLSs

A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier, the
fuzzy inference engine working on fuzzy rules, and the defuzzifier. The knowledge
base for FLS comprises a collection of fuzzy if-then rules of the following form:

Rl : i f x1 is Al
1 and x2 is Al

2 · · · and xn is Al
n,

then y is Bl , l = 1, 2, . . . , M
(6.10)
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where x = [x1, . . . , xn]T ⊂ Rn and y are the FLS input and output, respec-
tively. Fuzzy sets Al

i and Bl are associated with the fuzzy functions μAl
i
(xi ) =

exp(−(
xi−ali
bli

)
2
) and μBl (yl) = 1, respectively. M is the rules number. Through sin-

gleton function, center average defuzzification and product inference [42], the FLS
can be expressed as:

y(x) =
M∑
l=1

ȳl
(

n∏
i=1

μAl
i
(xi )

)
/

M∑
l=1

(
n∏

i=1

μAl
i
(xi )

)
(6.11)

where ȳl = maxy∈RμBl . Define the fuzzy basis functions as:

ξl(x) =
n∏

i=1

μAl
i
(xi )

M∑
l=1

(
n∏

i=1

/μAl
i
(xi )

)

and define θT = [ȳ1, ȳ2, . . . , ȳM ] = [θ1, θ2, . . . , θM ] and ξ(x) = [ξ1(x), . . . ,
ξM (x)]T , then the above FLS can be rewritten as:

y(x) = θT ξ(x) (6.12)

The stability results obtained in FLS control literature are semi-global in the sense
that, as long as the input variable of the FLS remains within some pre-fixed compact
set, where the compact set can be made as large as desired, there exist controllers
with sufficiently large number of FLS rules such that all the signals in the closed-loop
remain bounded.

Lemma 6.6 ([5, 6]) Let f (x) be a continuous function defined on a compact set Ω .
Then for any constant ε > 0, there exists a FLS such as

sup
x∈Ω

| f (x) − θT ξ(x)| ≤ ε

In this chapter, using FLS, the unknown functions f (x), g j (x) and gkj (x), j =
1, 2, . . . ,m, are approximated as

f̂ (x) = θ̂T
f ξ f (x), f̂ (x̂) = θ̂T

f ξ f (x̂)

ĝ j (x) = θ̂T
g jξg j (x), ĝ j (x̂) = θ̂T

g jξg j (x̂)

ĝk j (x) = θ̂T
gk jξgk j (x), ĝk j (x̂) = θ̂T

gk jξgk j (x̂)

Let define the optimal parameter vector θ∗
f , θ

∗
g j and θ∗

gk j as
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θ∗
f = arg min

θ∈Ω f

[ sup
x∈U,x̂∈Û

| f (x) − f̂ (x̂)|]

θ∗
g j = arg min

θg j∈Ωg j

[ sup
x∈U,x̂∈Û

|g j (x) − ĝg j (x̂, )|]

θ∗
gk j = arg min

θgk j∈Ωgk j

[ sup
x∈U,x̂∈Û

|gkj (x) − ĝk j (x̂)|]

whereΩ f ,Ωg j ,Ωgk j ,U and Û are compact regions for θ̂ f , θ̂g j , θ̂gk j , x and x̂ , respec-
tively; θ̂ f , θ̂g j , θ̂gk j and x̂ are the estimates of θ∗

f , θ
∗
g j , θ

∗
gk j and x , respectively. Similar

to [11–13], The FLSminimum approximation errors and actual approximation errors
are defined as

ε f = f (x) − θ∗T
f ξ f (x̂), δ f = f (x) − θ̂T

f ξ f (x̂)

εg j = g j (x) − θ∗T
g j ξg j (x̂), δg j = g j (x) − θ̂T

g jξg j (x̂)

εgk j = gkj (x) − θ∗T
gk jξgk j (x̂), δgk j = gkj (x) − θ̂T

gk jξgk j (x̂)

Now, the following assumptions are made.

Assumption 6.1 There exist unknownpositive real constants ε∗
f , δ

∗
f , ε

∗
g j , δ

∗
g j , ε

∗
gk j , δ

∗
gk j

and known positive real constants M̄ε f , M̄δ f , M̄εg j , M̄εgk j , such that |ε f | ≤ ε∗
f , ε

∗
f ≤

M̄ε f , |δ f | ≤ δ∗
f , δ

∗
f ≤ M̄δ f , |εg j | ≤ ε∗

g j , ε∗
g j ≤ M̄εg j , |εgk j | ≤ ε∗

gk j , ε
∗
gk j ≤ M̄gk j .

Assumption 6.2 There exist known positive real constants Mθ f , Mθg j and Mgkj

such that ||θ∗
f
|| ≤ Mθ f , ||θ∗

g j
|| ≤ Mθg j and ||θ∗

gk j
|| ≤ Mθgk j .

In order to facilitate the descriptions, in the following, f (x), g(x), gkj (x), f̂ (x̂),
ĝ(x̂), ĝk j (x̂), ξ f (x̂), ξg j (x̂) and ξgk j (x̂) are abbreviated to f , g, gkj , f̂ , ĝ, ĝk j , ξ f , ξg j
and ξgk j , respectively.

6.3 Main Results

In this section, the main technical results of this chapter are given. We will first
consider the stability control problemof system (6.1) under normal conditions, design
a bank of observers to generate residuals, investigate the FDI algorithm based on the
observers, and propose a FTC scheme to tolerate the fault using estimated fault
information.
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6.3.1 Fault Detection

In order to detect the fault, the following observer is constructed.

⎧⎪⎪⎨
⎪⎪⎩

˙̂xi = x̂ p
i+1

+ li (y − ŷ), i = 1, . . . , n − 1

˙̂xn = f̂ +
∑m

j=1
[ĝ j + ε̂g j ]u p

j + ln(y − ŷ)

ŷ = x̂1 = Cx̂

(6.13)

where li , i = 1, . . . , n are constant parameters that will be designed later.
Let x̂ = [x̂1, x̂2, . . . , x̂n]T and define observer errors ei = xi − x̂i , i = 1, . . . , n,

then observer error dynamics can be described as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ėi = x p
i+1

− x̂ p
i+1

= (ei+1 + x̂i+1)
p − x̂ p

i+1
− li (y − ŷ)

= ep
i+1

− li (y − ŷ) +
∑p

l=1
Cl

pe
l
i+1 x̂

p−l
i+1

ėn = f − f̂ +
∑m

j=1
(g j − ĝ j − ε̂g j )u

p
j − ln(y − ŷ)

(6.14)

Using the notation e = x − x̂ , the above error dynamics can be re-written as:

ė = Aep + Rep − L(y − ŷ) + d + B(d f + dg) (6.15)

where ep = [ep1 , . . . , epn ]T , di =∑p
l=1 C

l
pe

l
i+1 x̂

p−l
i+1 , i = 1, . . . n − 1, d f = f − f̂ =

δ f , dg =∑m
j=1 (g j − ĝ j − ε̂g j )u

p
i , and

A =
⎡
⎢⎣

−r1
...

−rn

I
0 · · · 0

⎤
⎥⎦ , R =

⎡
⎢⎣
r1
...

rn

⎤
⎥⎦ , L =

⎡
⎢⎣
l1
...

ln

⎤
⎥⎦ ,C =

⎡
⎢⎣
1
...

0

⎤
⎥⎦

T

, d =
⎡
⎢⎣
d1
...

0

⎤
⎥⎦ , B =

⎡
⎢⎣
0
...

1

⎤
⎥⎦

In the followingwewill use the backstepping technique to design the fault-tolerant
controller.

Define

z1 = x̂1 − yd , zi = x̂i − αi−1(x̂1, . . . , x̂i−1), i = 2, 3, . . . , n (6.16)

where α0 = 0, zn+1 = 0, and αi−1, i = 1, . . . , n − 1 are virtual controls which will
be designed at each step, αn = u is the actual control input. The recursive design
procedure contains n steps. From Step 1 to Step n−1, virtual control αi−1 is designed
at each step. Finally an overall control law u is constructed at step n.
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Step 1:
From z1 = x̂1 − yd , one has

ż1 = ˙̂x1 − ẏd = x̂ p
2 = (z2 + α1)

p + l1(y − ŷ) − ẏd

= α
p
1 +

∑p

j=1
C j

pz
j
2α

p− j
1 + l1(y − ŷ) − ẏd

(6.17)

Define

V1 = V11 + Ve, V11 = 1

2
z21, Ve = eT Pe

where P = PT > 0 denotes a matrix with appropriate dimensions. Differentiating
V11with respect to time t leads to

V̇11 = z1 ż1 = z1α
p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + z1l1(y − ŷ) − z1 ẏd (6.18)

Notice that, p + 1 ≥ 2 is an even number. Differentiating Ve with respect to time
t , from Lemma6.3, it leads to

V̇e = 2eT [P(A + K ) + (A + K )T P]ep + 2eT Pd + 2eT PBd f − eT (PLC + CT LT P)e

≤
[

e
ep

]T [ X − PLC − CT LT P Y + P(A + R)

Y T + (A + R)T P Z

] [
e
ep

]
+ 2eT P(d + Bd f + Bdg)

(6.19)

where X , Y , Z denote matrices with appropriate dimensions, and

[
X Y
Y T Z

]
> 0.

From Lemma6.2, one has

∑p

k=1
Ck

pe
k
2 x̂

p−k
2 ≤

∑p

k=1
Ck

p

k

p
|e2|p · σ +

∑p

k=1
Ck

p

p − k

p
|x̂2|p · σ

−
(

k
p−k

)

=
[∑p

k=1
Ck

p

k

p
σ

]
· |e2|p +

[∑p

k=1
Ck

p

p − k

p
σ

−
(

k
p−k

)]
· |x̂2|p

= we1|e2|p + we2|x̂2|p
(6.20)

where we1 =
[∑p

k=1 C
k
p
k
pσ
]
, we2 =

[∑p
k=1 C

k
p
p−k
p σ

−
(

k
p−k

)]
.

Define
σ = p

λ
∑p

k=1 C
k
pk

where λ > 1 is a design parameter. Since 0 < σ ≤ 1, one has we1|e2|p ≤ 1
λ
|e2|p.

Therefore, ∑p

k=1
Ck

pe
k
2 x̂

p−k
2 ≤ 1

λ
|e2|p + we2|x̂2|p.
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Further one has

(
∑p

k=1
Ck

pe
k
2 x̂

p−k
2 )

2 ≤ 2

λ2
(|e2|p)2 + 2(we2)

2(|x̂2|p)2.

Similarly, one has

(
∑p

k=1
Ck

pe
k
i x̂

p−k
i )

2 ≤ 2

λ2
|ei |p + 2(we2)

2(|x̂i |p)2, i = 2, . . . , n

Hence,

dT d ≤ [1
λ

|e2|p + we2|x̂2|p, . . . , 1
λ

|en|p + we2|x̂n|p, 0]

⎡
⎢⎢⎢⎣

1
λ
|e2|p + we2|x̂2|p

...
1
λ
|en|p + we2|x̂n|p

0

⎤
⎥⎥⎥⎦

=
∑n

i=2

2

λ2
(|ei |p)2 + 2(we2)

2(|x̂i |p)2

= 2

λ2

∑n

i=2
(|ei |p)2 +

∑n

i=2
2(we2)

2(|x̂i |p)2

= [|e2|p, . . . , |en|p, 0]

⎡
⎢⎢⎢⎣

|e2|p
...

|en|p
0

⎤
⎥⎥⎥⎦+

∑n

i=2
2(we2)

2(|x̂i |p)2

= [|e1|p, |e2|p, . . . , |en|p]

⎡
⎢⎢⎢⎣

|e1|p
|e2|p

...

|en|p

⎤
⎥⎥⎥⎦− (e1

p)
2 +
∑n

i=2
2(we2)

2(|x̂i |p)2

= eTp ep − (e1
p)

2 +
∑n

i=2
2(we2)

2(|x̂i |p)2

From Young’s inequality, one has

eT Pd ≤ eT P PT e + dT d ≤ eT P Pe + eTp ep − (e1
p)

2 +
∑n

i=2
2(we2)

2(|x̂i |p)2

2eT BPd f = eT PBδ f ≤ eT P Pe + δ2f ≤ eT P PT e + (δ∗
f )

2 ≤ eT P Pe + (M̄δ f )
2
.

Further, one has

V̇e ≤
[
e
ep

]T [X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

] [
e
ep

]
+ Δ̄0 + 2eT PBdg
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where Δ̄0 = −(e1 p)
2 +∑n

i=2 2(we2)
2(|x̂i |p)2 + (M̄δ f )

2
, I denotes identity matrix

with appropriate dimensions.
Hence, one has

V̇1 ≤z1α
p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + z1l1(y − ŷ) − z1 ẏd + Δ0 + 2eT PBdg+[

e
ep

]T [X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

] [
e
ep

]

Obviously, if matrices X , Y , Z , Q > 0 and P = PT > 0 are chosen appropriately

such that

[
X Y
Y T Z

]
> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T PT Z + I

]
≤ −Q

where I denotes identity matrix with appropriate dimensions, then,

V̇1 ≤ z1α
p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + z1l1(y − ŷ) − z1 ẏd + Δ̄0+

2eT PBdg −
[
e
ep

]T
Q

[
e
ep

]

≤ − λmin(Q)

2λmax(P)
eT Pe + z1α

p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 +

z1l1(y − ŷ) − z1 ẏd + Δ̄0 + 2eT PBdg

(6.21)

Let Δ0 = z1l1(y − ŷ) − z1 ẏd + Δ̄0, one has

V̇1 ≤ − λmin(Q)

2λmax(P)
eT Pe + z1α

p
1 + z1

∑p

j=1
C j

pz
j
2α

p− j
1 + Δ0 + 2eT PBdg (6.22)

Thus, virtual control α1 can be modified as

α1 =

⎧⎪⎪⎨
⎪⎪⎩

p

√
(−1

2
z1 − Δ0

z1
, z1 ∈ Ω0

cz1

0, z1 ∈ Ωcz1

(6.23)

Remark 6.2 In general, virtual control α1 can be chosen as follows

α1 = p

√
(−1

2
z1 − Δ0

z1
(6.24)
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Just as pointed out in [41], for the above virtual control (6.23), controller sin-
gularity may occur since Δ0

z1
is not well defined at z1 = 0. Therefore, care must

be taken to guarantee the boundedness of the control. It is noted that the controller
singularity takes place at the point z1 = 0, where the control objective is supposed
to be achieved. From a practical point of view, once the system reaches its origin,
no control action should be taken for less power consumption. As z1 = 0 is hard to
detect owing to the existence of measurement noise, it is more practical to relax our
control objective of convergence to a “ball” rather than to the origin.

Similar to [41], let define Ωczi
⊂ Ω and Ω0

czi
s.t.

Ωczi
:= { zi | |zi | < czi }Ω0

czi
:= Ω − Ωczi

, i = 1, . . . ,m

where czi > 0 is a constant that can be chosen arbitrarily small and “-" is used to
denote the complement of set B in set A as A − B := {x |x ∈ A and x /∈ B}. Thus,
virtual control α1 can be modified as (6.23).

Step 2.
Since z2 = x̂2 − α1, one has

ż2 = ˙̂x2 − ∂α1

∂ x̂1
(x̂ p

2 + li (y − ŷ)) = x̂ p
3 − ∂α1

∂ x̂1
x̂ p
2 − ∂α1

∂ x̂1
l1(y − ŷ)

= (z3 + α2)
p − ∂α1

∂ x̂1
(z2 + α1)

p − ∂α1

∂ x̂1
li (y − ŷ)

= α
p
2 +

∑p

j=1
C j

pz
j
3α

p− j
2 − ∂α1

∂ x̂1

∑p

j=0
C j

pz
j
2α

p− j
1 − ∂α1

∂ x̂1
l1(y − ŷ)

(6.25)

Define

V2 = V1 + 1

2
z22

Differentiating V2 with respect to time t , leads to

V̇2 ≤V̇1 + ż2z2 = − λmin(Q)

2λmax(P)
eT Pe − 1

2
z21 + z1

∑p

j=1

[
C j
pα

p− j
1 z j2

]
+ z2α

p
2 +

z2
∑p

j=1
C j
pz

j
3α

p− j
2 − z2

∂α1

∂ x̂1

∑p

j=0
C j
pz

j
2α

p− j
1 − z2

∂α1

∂ x̂1
l1(y − ŷ) + 2eT PBdg

Let

Δ1 =
{
z1
∑p

j=1

[
C j

p|α p− j
1 z j−1

2 |
]
+∂α1

∂ x̂1

∑p

j=0
C j

p|z j2α p− j
1 | + |z2|∂α1

∂ x̂1
l1(y − ŷ)|

}
(6.26)

V̇2 ≤ − λmin(Q)

2λmax(P)
eT Pe − 1

2
z21 + Δ1 + z2α

p
2 + z2

∑p

j=1
C j

pz
j
3α

p− j
2 + 2eT PBdg

(6.27)
Similarly, choose a virtual control as follows
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α2 =

⎧⎪⎪⎨
⎪⎪⎩

p

√
(−1

2
z2 − Δ1

z2
, z2 ∈ Ω0

cz2

0, z2 ∈ Ωcz2

(6.28)

Substituting α2 into (6.27), it yields

V̇2 ≤ − λmin(Q)

2λmax(P)
eT Pe − 1

2
z21 − 1

2
z22 + z2

∑p

j=1
C j

pz
j
3α

p− j
2 + 2eT PBdg

(6.29)
Step k:
Since zk = x̂k − αk−1, one has

żk = ˙̂xk −
∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

= x̂ p
k+1 −

∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

= (zk+1 + αk)
p −
∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

= α
p
k +

∑p

j=1
C j

pz
j
k+1α

p− j
k −

∑k−1

l=1

∂αk−1

∂ x̂l
(x̂ p

l+1 + ll+1(y − ŷ))

(6.30)

Define

Vk = Vk−1 + 1

2
z2k

Differentiating Vk with respect to time t , leads to

V̇k � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑k−1

i=1
z2i + Δk−1 + zkα

p
k +

zk
∑p

j=1
C j

pz
j
k+1α

p− j
k + 2eT PBdg

(6.31)

where

Δk−1 =

⎧⎪⎨
⎪⎩
zk−1

∑p

j=1

[
C j

p|α p− j
k−1 z

j−1
k |
]
+

∑k−1

i=1

∂αk−1

∂ x̂i
[
∑p

l=0
Cl

p|zlkα p−l
k−1| + |li (y − ŷ)|]

⎫⎪⎬
⎪⎭ .

Just as αk−1, virtual control αk is chosen as follows

αk =

⎧⎪⎪⎨
⎪⎪⎩

p

√
(−1

2
zk − Δk−1

zk
, zk ∈ Ω0

czk

0, zk ∈ Ωczk

(6.32)
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Substituting αk into (6.28), yields

V̇k � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑k

i=1
z2i +

∑p

j=1
C j

pz
j
k+1α

p− j
k + 2eT PBdg (6.33)

Step n:
Since zn = x̂n − αn−1, one has

żn = ˙̂xn −
∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

= f̂ +
∑m

j=1
(ĝ j + ε j )u

p
j + ln(y − ŷ) −

∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

= f − δ f +
∑m

j=1
(ĝ j + ε j )u

p
j + ln(y − ŷ) −

∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

= θ̃Tf ξ f + θ̂Tf ξ f + γ f +
∑m

j=1
(ĝ j + ε j )u

p
j + ln(y − ŷ)−

∑n−1

l=1

∂αn−1

∂ x̂l
(x̂ pl+1 + ll+1(y − ŷ))

(6.34)

Define

Vn = Vn−1 + 1

2
z2n + 1

2η1
θ̃T
f θ̃ f + 1

2η2
γ̃ 2
f + 1

2η3

∑m

j=1
(θ̃T

g j θ̃g j + ε̃2g j ) (6.35)

where γ ∗
f = ε∗

f + δ∗
f , γ̃ f = γ ∗

f − γ̂ f , θ̃ f = θ∗
f − θ̂ f , γ̃ f = γ ∗

f − γ̂ f , θ̃g j = θ∗
g j −

θ̂g j , ε̃g j = ε∗
g j − ε̂g j , θ̂ f , γ̂ f , θ̂g j , ε̂g j are the estimates of θ∗

f , γ
∗
f , θ

∗
g j , ε

∗
g j , and η1 >

0, η2 > 0, η3 > 0 are adaptive rates.

Differentiating Vn with respect to time t , leads to

V̇n � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n−1

i=1
z2i + zn θ̃

T
f ξ f + |zn |γ̃ f + zn

∑m

j=1
(ĝ j + ε̂ j )u

p
j +

Δn−1 − 1

η1
θ̃Tf

˙̂
θ f − 1

η2
γ̃ f

˙̂γ f + 2eT Pdg − 1

η3

∑m

j=1
(θ̃Tgj

˙̂
θg j + ε̃g j

˙̂εg j )

� − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n−1

i=1
z2i + zn

∑m

j=1
(ĝ j + ε̂ j )u

p
j + Δn−1 + 2eT Pdg−

1

η3

∑m

j=1
(θ̃Tgj

˙̂
θg j + ε̃g j

˙̂εg j ) + θ̃Tf (znξ f − 1

η1

˙̂
θ f ) + γ̃ f (|zn | − 1

η2

˙̂γ f )

where
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Δn−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn−1

∑p

j=1

[
C j

p|α p− j
n−1 z

j−1
n |
]

+ zn(θ̂
T
f ξ f (x̂, v) + ln(y − ŷ)+

∑n−1

i=1

∂αn−1

∂ x̂i
[
∑p

j=0
C j

p|z jkα p− j
k−1 | + |li (y − ŷ)|]−

∑n−1

j=1

∂αn−1

∂ x̂ j
(x̂ p

j+1 + l j+1(y − ŷ)) + |zn|γ̂ f

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Since

2eT PBdg =
∑m

j=1
2eT Pn(g j − ĝ j − ε̂g j )u

p
j

=
∑m

j=1
2eT Pn(θ

∗T
g j ξg j + εg j − θ̂T

g jξg j − ε̂g j ))u
p
j )

=
∑m

j=1
2eT Pn θ̃

T
g jξg j u

p
j +∑m

j=1
2eT Pn(ε

∗
g j − ε̂g j )u

p
j +
∑m

j=1
2eT Pn(εg j − ε∗

g j )u
p
j

=
∑m

j=1
2eT Pn θ̃

T
g jξg j u

p
j +
∑m

j=1
2eT Pn ε̃g j u

p
j +∑m

i=1
2eT Pn(εg j − ε∗

g j )u
p
j

from the above inequality, one has

V̇n � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n−1

i=1
z2i + zn θ̃

T
f ξ f + |zn |γ̃ f + zn

∑m

j=1
(ĝ j + ε̂ j )u

p
j +

Δn−1 +
∑m

j=1
2eT Pn(θ̃

T
gj ξg j + ε̃g j )u

p
j +

∑m

i=1
2eT Pn(εg j − ε∗

g j )u
p
j −

1

η1
θ̃Tf

˙̂
θ f − 1

η2
γ̃ f

˙̂γ f − 1

η3

∑m

j=1
(θ̃Tgj

˙̂
θg j + ε̃g j

˙̂εg j )

= − λmin(Q)

2λmax(P)
eT Pe +

∑m

j=1
[zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]u pj −
∑m

j=1
[θ̃Tgj (2eT Pnξg j u

p
j −

˙̂
θg j

η3
) + ε̃g j (2e

T Pnu
p
j −

˙̂εg j
η3

)]+

θ̃Tf (znξ f − 1

η1

˙̂
θ f ) + γ̃ f (|zn | − 1

η2

˙̂γ f ) −
∑n−1

i=1 z2i
2

+ Δn−1

(6.36)

Choose control law αn,i , i = 1, 2, . . . ,m and adaptation functions ˙̂
θ f , ˙̂γ f ,

˙̂
θg j , ˙̂εg j

as follows:

αn,i = ui = αk =

⎧⎪⎨
⎪⎩

p

√
N (ς)(− 1

2 zn − Δn−1

zn
)

m
, zk ∈ Ω0

czn

0, zk ∈ Ωczn

(6.37)
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where ς̇ = − 1
2 z

2
n − Δn−1,

˙̂
θ f = η1znξ f − η f θ̂ f (6.38)

˙̂γ f = η2|zn| − ηγ γ̂ f (6.39)

˙̂
θT
g j = 2η3e

T Pnξg j u
p
j + ηg j θ̂g j (6.40)

˙̂εg j = 2η3e
T Pnu

p
j + ηg j ε̂g j (6.41)

and η f > 0, ηγ > 0, ηg j > 0 are design parameters, u j is a bounded control
input which is applied simultaneously to the i th actuator in the system (6.1) and the
observer (6.13).

Applying Young’s inequality, one has

η f

η1
θ̃T
f θ̂ f = η f

η1
θ̃T
f (θ∗

f − θ̃ f ) = −η f

η1
θ̃T
f θ̃ f + η f

η1
θ̃T
f θ∗

f � − η f

2η1
θ̃T
f θ̃ f + η f

2η1
θ∗T
f θ∗

f ,

ηγ

η2
γ̃ f γ̂ f = ηγ

η2
γ̃ f (γ

∗
f − γ̃ f ) = −ηγ

η2
γ̃ 2
f + ηγ

η2
γ̃ f γ

∗
f � − ηγ

2η2
γ̃ 2
f + (

ηγ

2η2
γ ∗
f )

2,

ηg j

η1
θ̃Tgj θ̂g j = ηg j

η1
θ̃Tgj (θ

∗
g j−θ̃g j ) = −ηg j

η1
θ̃Tgj θ̃g j+

ηg j

η1
θ̃Tgj θ

∗
g j � − ηg j

2η1
θ̃Tgj θ̃g j+

ηg j

2η1
θ∗T
gj θ∗

g j

ηg j

η3
ε̃g j ε̂g j = ηg j

η3
ε̃g j (ε

∗
g j − ε̃g j ) = −ηg j

η3
ε̃2g j + ηg j

η3
ε̃g jε

∗
g j � −ηg,i

2η3
ε̃2g j + ηg j

2η3
(ε∗

g j )
2

Substituting the above inequalities into (6.36), it yields

V̇n � − λmin(Q)

2λmax(P)
eT Pe − 1

2

∑n

i=1
z2i +∑m

i=1
{zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]N (ς)ς̇ + ς̇}
� −gVn + η f

2η1
θ∗T
f θ∗

f + (
ηγ

2η2
γ ∗
f )

2 +
∑m

j=1
(
ηg j

2η1
θ∗T
g j θ∗

g j + ηg j

2η3
(ε∗

g j )
2
)+∑m

i=1
{zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]N (ς)ς̇ + ς̇}
� −gVn + η f

2η1
M2

θ f + ηγ

2η2
(M̄ε f + M̄δ f )

2 +
∑m

j=1
(
ηg j

2η1
M2

θg j + ηg j

2η3
M̄2

εg j )∑m

j=1
{zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]N (ς)ς̇ + ς̇}
� −gVn + μ + hN (ς) + 1)ς̇

(6.42)
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where

g = min{ λmin(Q)

2λmax(P)
,
1

2
,

η f

2η1
,

ηγ

2η2
,

ηg1

2η3
, . . . ,

ηgm

2η3
},

μ = η f

2η1
M2

θ f + ηγ

2η2
(M̄ε f + M̄δ f )

2 +
∑m

j=1

ηg j

2η3
(M̄2

θg j + M̄2
εg j ),

h =
∑m

j=1
[zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )].

The above control design procedures and analysis are summarized in the following
theorem.

Theorem 6.1 Consider nonlinear system (6.1) under Assumptions6.1 and 6.2, con-
trol law (6.37) and adaptive laws (6.38–6.41). If matrices X, Y , Z, Q > 0 and

P = PT > 0 are such that

[
X Y
Y T Z

]
> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

]
� −Q (6.43)

we can guarantee the following properties under bounded initial conditions
(1) all signals in the closed-loop system are semi-globally uniformly ultimately

bounded;
(2) the vectors zi remain in the compact set Ω0

zi , i = 1, 2, . . . , n specified as

Ω0
zi :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(zi , θ̃ f , γ̃ f , θ̃g j , ε̃g j , e)
∣∣∣ |zi | �

√
2μ̄, ||θ̃ f || �

√
2η1μ̄,

|γ̃ f | �
√
2η2μ̄, ||θ̃g j || �

√
2η3μ̄,

|ε̃g j | �
√
2η3μ̄, ||e|| �

√
μ̄

λmin(P)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

whose size is μ̄ = μ

g + cg + Vn(0) > 0, which can be adjusted by appropriately
choosing the design parameters η1, η2, η3, η f , ηγ , ηg,1, . . . , ηg,m.

Proof Since V̇n � −gVn + μ + hN (ς) + 1)ς̇ , one has

Vn(t) � μ

g
+ [Vn(0) − μ

g
]e−gt + e−gt

t∫
0

(hN (ς) + 1)e−gτ ς̇dτ

� μ

g
+ Vn(0)e

−gt + e−gt

t∫
0

(hN (ς) + 1)e−gτ ς̇dτ

(6.44)
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Applying Lemma6.5, we can conclude that, Vn(t),
t∫
0

(hN (ς) + 1)e−gτ ς̇dτ and

ς(t) are SGUUB on [0, t f ). According to Proposition 2 in [39], if the solution of
the closed-loop system is bounded, then t f = +∞. Let cg be the upper bound of
t∫
0

(hN (ς) + 1)e−gτ ς̇dτ , we have the following inequalities:

e−gt

t∫
0

(hN (ς) + 1)e−gτ ς̇dτ �
t∫

0

(hN (ς) + 1)e−gτ ς̇dτ � cg

Thus, (6.44) becomes

Vn(t) � μ

g
+ cg + Vn(0) = μ̄ (6.45)

Hence, if matrices X , Y , Z , Q and positive definite symmetric matrices P are

chosen appropriately such that

[
X Y
Y T Z

]
> 0 and (6.38) holds, then, the proposed

control input (6.37) can ensure that Vn(t) is bounded, namely, the closed-loop system
is semi-globally uniformly ultimately bounded. Noting the definitions of Vn(t) and
zi , i = 1, 2, . . . , n, we have 1

2 z
2
i � Vn(t) � μ̄ and 1

2η1
θ̃T
f θ̃ f � μ̄. Furthermore,

we have |zi | �
√
2μ̄, ||θ̃ f || �

√
2η1μ̄. Similarly, we have |γ̃ f | �

√
2η2μ̄, ||θ̃g,i || �√

2η3μ̄, |ε̃g,i | �
√
2η3μ̄, ||e|| �

√
μ̄

λmin(P)
. From the above analysis, we can conclude

that there do exist compact sets Ω0
zi such that zi ∈ Ω0

zi ,∀t � 0. The proof is
completed.

From Theorem6.1, one has

||e|| �
√

2μ̄

λmin(P)
(6.46)

Furthermore, the detection residual can be defined as

J = ||y(t) − ŷ(t)|| (6.47)

From (6.46), it can be seen that the following inequality holds in the healthy case:

J � ||C ||
√

2μ̄

λmin(P)
(6.48)
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Then, the fault detection can be performed using the following mechanism:

{
J � Td no fault occurred,

J > Td fault has occurred
(6.49)

where threshold Td is defined as follows:

Td = ||C ||
√

2μ̄

λmin(P)
(6.50)

6.3.2 Fault Isolation and Estimation

Since the system has m actuators and it is assumed that only one actuator becomes
faulty at one time, we havem possible faulty cases in total.When the sth (1 � s � m)
actuator is faulty, the faulty model can be described as:

u f
s = ρs(x)us (6.51)

The faulty system (6.1) can be described as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋs,i = x p

s,i+1
, i = 1, . . . , n − 1

ẋs,n = f +
∑m

j=1
j �=s

g ju
p
j − gsρ

p
s u

p
s

ys = xs,1

(6.52)

After a fault has been detected, the isolation scheme is activated. Now, the fol-
lowing m nonlinear fault isolation observers are designed as follows:

⎧⎪⎪⎨
⎪⎪⎩

˙̂xs,i = x̂ p
s,i+1 + lsi (ys − ŷs), i = 1, . . . , n − 1

˙̂xs,n = θ̂T
f ξ f +

∑m

j=1, j �=r
[ĝg + ε̂g j ]u p

j + lsn(y − ŷ) + (θ̂T
gkrξ + ε̂gkr )u

p
r

ŷs = x̂s,1 = Cx̂s
(6.53)

where lsi , i = 1, 2, . . . , n, s = 1, 2 · · · .m are constants, which will be designed
later, θ̂T

gρ,rξgρ,r (x̂s, v) is the estimate of gr (x, v)ρ
p
r (xr ), r = 1, . . . ,m.

Let x̂s = [x̂s,1, x̂s,2, . . . , x̂s,n]T , the error terms es = xs − x̂s and eys = ys − ŷs
are respectively the state error and output error between the faulty plant and the sth
observer. The above error dynamics can be re-written as:

ės = Ase
p
s + Rse

p
s − Ls(ys − ŷs) + ds + Bs(d f + dg + ρs) (6.54)
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where esp = [eps,1, . . . , eps,n]T , d f = f − θ̂T
f ξ f , ρs = gsk

p
s u

p
s − [θ̂T

gkrξgkr + ε̂gkr ]u p
r ,

dg =∑m
i=1

i �=s,i �=r
(g j − ĝ j − ε̂g j )u

p
j and

A =
⎡
⎢⎣

−r1
...

−rn

I
0 · · · 0

⎤
⎥⎦ , Rs =

⎡
⎢⎣
r1
...

rn

⎤
⎥⎦ , Ls =

⎡
⎢⎣
ls1
...

lsn

⎤
⎥⎦ ,Cs =

⎡
⎢⎣
1
...

0

⎤
⎥⎦

T

,

ds =
⎡
⎢⎣
∑p

k=1 C
k
pe

k
2 x̂

p−k
s,2

...

0

⎤
⎥⎦ , Bs =

⎡
⎢⎣
0
...

1

⎤
⎥⎦

Similar to the previous subsection, differentiating Vse = eTs Pses with respect to
time t and using (6.20) and (6.54), it leads to

V̇se = eTs Ps ės + ėTs Pses

= 2eTs [Ps(As + Rs) + (As + Rs)
T Ps]eps +

2eTs Ps(d + Bsd f + Bsdg + Bsρs) − eTs (PsLsCs + CT
s L

T
s Ps)es

From Young’s inequality, one has

eTs Psd ≤ eTs Ps Pses + dT d

≤ eTs Ps Pses + eTspesp − (es,1
p)

2 +
∑n

i=2
2(we2)

2(|x̂s,i |p)2

2eTs Ps Bsd f = eTs Ps Bsd f ≤ eTs Ps Pses + d2
f ≤ eTs Ps Pses + (δ∗

f )
2

≤ eTs Ps Pses + (M̄δ f )
2

Furthermore, one has

V̇se ≤
[
es
eps

]T [Xs − PsLsCs − CT
s L

T
s Ps + Ps Ps Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

] [
es
eps

]
+

Δ0 + 2eTs Ps Bs(dg + ρs)

(6.55)
where Δ0 = −(eps,1)

2 +∑n
i=2 2(we2)

2(|x̂s,i |p)2 + (M̄δ f )
2
.

In the following, stability analysis will be given at two cases, i.e., s = r or s �= r .
Case 1: s = r
Since
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2eTs Ps Bs(ρs + dg) = 2eTs Psn[
∑m

j=1, j �=s
(g j − ĝ j − ε̂g j )u

p
j + (gks − ĝks − ε̂gks)u

p
s ]

= 2eTs Psn(
∑m

j=1, j �=s
(θ∗T
gj ξg j + εg j − θ̂Tgj ξg j − ε̂g j )u

p
j +

(θ∗T
gksξgks + εgks − θ̂Tgksξgks − ε̂gks)u

p
s )

=
∑m

j=1, j �=s
2eTs Psn θ̃

T
gj ξg j u

p
j +

∑m

j=1, j �=s
2eTs Psn ε̃g j u

p
j +∑m

j=1, j �=s
2eTs Psn(εg j − ε̂∗

g j )u
p
j +

2eTs Psn θ̃
T
gksξgksu

p
s + 2eTs Psn ε̃gksu

p
s + 2eTs Psn(εgks − ε̂∗

gks)u
p
s

(6.56)

V̇se ≤
[
es
eps

]T [Xs − PsLsCs − CT
s L

T
s Ps + 2Ps PT

s Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

] [
es
eps

]
+

Δ0 +
∑m

j=1, j �=s
2eTs Psn θ̃

T
g jξg j u

p
j +
∑m

j=1, j �=s
2eTs Psn ε̃g j u

p
j +∑m

j=1, j �=s
2eTs Psn(εg j − ε̂∗

g j )u
p
j +

2eTs Psn θ̃
T
gksξgksu

p
s + 2eTs Psn ε̃gksu

p
s + 2eTs Psn(εgks − ε̂∗

gks)u
p
s

(6.57)
where Psn is the nth column of Ps .

Similar to the above subsection, define

zs,1 = xs,1 = ys

zs,i = x̂s,i − αs,i−1(x̂s,1, . . . , x̂s,i−1), i = 2, 3, . . . , n

Vs,1 = Vs,11 + Vse, Vs,11 = 1

2
z2s,1

Vs,i = Vs,i−1 + 1

2
z2s,i−1, i = 2, 3, . . . , n

and choose a virtual control αs,i , i = 1, 2, . . . , n− 1 and practical control αs,nj , j =
1, . . . ,m as follows

αs,1 =

⎧⎪⎪⎨
⎪⎪⎩

p

√
(−1

2
zs,1 − Δ0

zs,1
, zs,1 ∈ Ω0

cs,zs1

0, zs,1 ∈ Ωcs,zs1

(6.58)

αs,2 =

⎧⎪⎪⎨
⎪⎪⎩

p

√
(−1

2
zs,2 − Δ1

zs,2
, zs,2 ∈ Ω0

cs,zs2

0, zs,2 ∈ Ωcs,zs2

(6.59)
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αs,k =

⎧⎪⎪⎨
⎪⎪⎩

p

√
(−1

2
zs,k − Δk−1

zs,k
, zs,k ∈ Ω0

cs,zk

0, zs,k ∈ Ωcs,zk

(6.60)

αs,nj = u j =

⎧⎪⎨
⎪⎩

p

√
N (ς)(− 1

2 zs,n − Δn−1

zn
)

m
, zs,k ∈ Ω0

czs,zn

0, zs,k ∈ Ωcs,zn

(6.61)

where ς̇ = − 1
2 z

2
s,n − Δn−1, Ωcs,zi

, i = 1, . . . , n are defined as Ωczk
in the previous

subsection. The adaptive laws are designed as follows:

˙̂
θ f = 2η1e

T
s Pnξ f + η f θ̂ f (6.62)

˙̂γ f = η2|zn| + ηγ γ̂ f (6.63)

˙̂
θ g j = 2η3e

T
s Pnξg j u

p
j + ηg j θ̂g j (6.64)

˙̂εg j = 2η3e
T
s Pnu

p
j + ηg j ε̂g j (6.65)

˙̂
θ gks = 2η4e

T
s Pnξgksu

p
s + ηgks θ̂gks (6.66)

˙̂εgks = 2η4e
T
s Pnu

p
s + ηgks ε̂gks (6.67)

where u j is a bounded control input which is applied simultaneously to the j th
actuator in the system (6.1) and the observer (6.53), and η1 > 0, η2 > 0, η3 >

0, η4 > 0, η f > 0, ηγ > 0, ηgks > 0, ηg j > 0, ηgks > 0 are design parameters.
Define

Vs =Vs,n + 1

2η1
θ̃T
f θ̃ f + 1

2η2
γ̃ 2
f +

1

2η3

∑m

j=1, j �=s
(θ̃T

g j θ̃g j + ε̃2g j ) + 1

2η4
(θ̃T

gks θ̃gks + ε2gks)

(6.68)

Similar to the previous subsection, differentiating Vs with respect to time t , one
has

V̇s ≤V̇s,n + 1

η1
θ̃T
f

˙̂
θ f + 1

η2
γ̃ f

˙̂γ f +
1

η4
(θ̃T

gks
˙̂
θ gks + ε̃gks ˙̂εgks)+

1

η3

∑m

j=1, j �=s
[θ̃T

g j
˙̂
θ g j + ε̃g j ˙̂εg j ]

(6.69)
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It is obvious that if[
Xs − PsLsCs − CT

s L
T
s Ps + 2Ps Ps Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

]
< −Qs (6.70)

where X , Y , Z denote matrices with appropriate dimensions, respectively, and[
X Y
Y T Z

]
> 0, matrix Qs > 0, then from (6.69), one has

V̇s ≤V̇s,n −
[
es
eps

]T
Qs

[
es
eps

]
+ Δ0 +

∑m

j=1, j �=s
2eTs Psn θ̃

T
g jξg j u

p
j +∑m

j=1, j �=s
2eTs Psn ε̃g j u

p
j +
∑m

j=1, j �=s
2eTs Psn(εg j − ε̂∗

g j )u
p
j +

2eTs Psn θ̃
T
gksξgksu

p
s + 2eTs Psn ε̃gksu

p
s + 2eTs Psn(εgks − ε̂∗

gks)u
p
s +

θ̃T
f

˙̂
θ f

η1
+ γ̃ f

˙̂γ f

η2
+
∑m

j=1, j �=s [θ̃T
g j

˙̂
θ g j + ε̃g j ˙̂εg j ]

η3
+

θ̃T
gks

˙̂
θ gks + ε̃gks ˙̂εgks

η4

(6.71)

Similar to (6.42) in the above subsection, considering (6.62–6.67), from (6.71),
one has

V̇s ≤ −gsVs + μ̄s + (h̄(x̂)N (ς)ς̇ + ς̇ ) (6.72)

where

μs = η f

2η1
M2

θ f + η f

2η1
(M̄ε f + M̄δ f )

2 +
∑m

j=1, j �=s

ηg j

2η3
(M̄2

θg j + M̄2
εg j )+

ηgks

2η4
(M̄2

θgks + M̄2
εgks)

gs = min{1
2
,

η f

2η1
,

ηγ

2η2
,

ηg1

2η3
, . . . ,

ηgm

2η3
,
ηgks

2η4
,

λmin(Q)

2λmax(P)
}

h̄(x̂) =
∑m

j=1, j �=s
[zn(ĝ j + ε̂g j ) + 2eT Pn(εg j − ε∗

g j )]+
zn(ĝks + ε̂gks) + 2eT Pn(εgks − ε∗

gks)

Since V̇s ≤ −gsVs + μ̄s + (h̄(x̂)N (ς)ς̇ + ς̇ ), one has

Vs(t) ≤ μ̄s

gs
+ [Vs(0) −

μ
� s

gs
]e−gs t + e−gt

t∫
0

(h̄(x̂)N (ς) + 1)ς̇e−gsτ ς̇dτ

≤ μ̄s

gs
+ Vs(0)e

−gs t + e−gs t

t∫
0

(h̄(x̂)N (ς) + 1)ς̇e−gsτ ς̇dτ

(6.73)
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Applying Lemma6.5, we can conclude that, Vn(t),
t∫
0

(h̄(x̂)N (ς) + 1)ς̇e−gτ ς̇dτ

and ς(t) are SGUUB on [0, t f ). According to Proposition 2 in [39], if the solution
of the closed-loop system is bounded, then t f = +∞. Let cg be the upper bound of
t∫
0
h̄(x̂)(N (ς) + 1)ς̇e−gsτ ς̇dτ , we have the following inequalities:

e−gs t

t∫
0

(h̄(x̂)N (ς) + 1)ς̇e−gsτ ς̇dτ ≤ cg

Thus, (6.73) becomes

Vs(t) ≤ μ̄s

gs
+ cg + Vs(0) = μs (6.74)

Hence, if matrices Xs , Ys , Zs, Qs and the positive definite symmetric matrix Ps

are chosen appropriately such that

[
Xs Ys
Y T
s Zs

]
> 0 and (6.74) holds, then, the proposed

control input (6.61) and adaptive laws (6.62–6.67) can ensure that Vs(t) is bounded,
namely, the closed-loop system is semi-globally uniformly ultimately bounded. That
is to say, all signals of the closed-loop system remain the following compact set Ω1,

Ω1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(zi , θ̃ f , γ̃ f , θ̃g j , ε̃g j , θ̃gks, ε̃gks, e)
∣∣∣ |zi | ≤ √2μs, ||θ̃ f || ≤ √2η1μs,

|γ̃ f | ≤ √2η2μs, ||θ̃g j || ≤ √2η3μs, |ε̃g j | ≤ √2η3μs,

||θ̃gks || ≤ √2η4μs, |ε̃gks | ≤ √2η4μs, ||e|| ≤
√

μs

λmin(Ps)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Case 2: s �= r
Since s �= r , from the faulty (6.52) and the observer (6.53), one has

2eTs Ps Bsρs = 2eTs Ps Bs[(gks − ĝs − ε̂gs)u
p
s + (gr − ĝkr − ε̂gkr )u

p
r ] (6.75)

From the adaptive laws (6.64–6.67), one has

˙̂
θ gs �= ˙̂

θ gks, ˙̂εgs �= ˙̂εgks, ˙̂
θ gr �= ˙̂

θ gkr , ˙̂εgr �= ˙̂εgkr
It is noted that 2eTs Ps Bs[(gks − ĝs − ε̂gs)u

p
s + (gr − ĝkr − ε̂gkr )u

p
r ] varies infinitely

since ˙̂
θ gs �= ˙̂

θ gks,
˙̂
θ gr �= ˙̂

θ gkr , ˙̂εgs �= ˙̂εgks and ˙̂εgr �= ˙̂εgkr , which further cause that
Vs(t) varies infinitely. As a result, basically, all signals of the closed-loop systems
such as esi do not remain Ω1 using the above control law and adaptive laws.

The above design procedure and analysis are summarized in the following theo-
rem.
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Theorem 6.2 Consider the faulty system (6.52) under Assumptions6.1 and 6.2, with
virtual controls (6.58–6.60), control law (61) and adaptive laws (6.62–6.67). If matri-

ces Xs, Ys , Zs , Qs > 0 and Ps = PT
s > 0 are such that

[
Xs Ys
Y T
s Zs

]
> 0 and

[
Xs − PsLsCs − CT

s L
T
s Ps + 2Ps Ps Ys + Ps(As + Rs)

Y T
s + (As + Rs)

T Ps Zs + I

]
< −Qs (6.76)

then, we can guarantee the following properties under bounded initial conditions,
when the rth actuator is faulty,

(1) for s = r , the closed-loop system is semi-globally uniformly ultimately stable,
and all signals involved in the closed-loop systems remain a small neighborhood of
the origin, i.e., Ω1 specified as

Ω1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(zi , θ̃ f , γ̃ f , θ̃g j , ε̃g j , θ̃gks, ε̃gks, e)
∣∣∣ |zi | ≤ √2μs, ||θ̃ f || ≤ √2η1μs,

|γ̃ f | ≤ √2η2μs, ||θ̃g j || ≤ √2η3μs, |ε̃g j | ≤ √2η3μs,

||θ̃gks || ≤ √2η4μs, |ε̃gks | ≤ √2η4μs, ||e|| ≤
√

μs

λmin(Ps)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2) s �= r , all signals of the closed-loop systems do not remain the compact set
Ω1.

Remark 6.3 It is valuable to point out that, if the design parameters such as
ηi , i = 1, . . . , 4, η f , ηγ , ηgks, ηg j , j = 1, . . . ,m are appropriately chosen, μs is
small enough, and all signals of the closed-loop system converge to a smaller neigh-
borhood of the origin, which means that better control performance is obtained.

Now, we denote the residuals between the real system and isolation estimators as
follows:

Js(t) = ∥∥ŷs(t) − y(t)
∥∥ = ||Ce(t)||, 1 ≤ s ≤ m (6.77)

According to Theorem 6.2, when the r th actuator is faulty, i.e., s = r , the residual
es(t) must tend to Ω1; while for any s �= r , basically, es(t) does not belong to Ω1.
Hence, the isolation law for actuator fault can be designed as

{
Js(t) ≤ TI , s = r ⇒ the r th actuator is faulty

Js(t) > TI , s �= r
(6.78)

where threshold TI is defined as follows.

TI = ||C ||
√

μs

λmin(Ps)
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6.3.3 Fault Accommodation

After that the fault information is obtained, wewill consider the fault-tolerant control
problem of system (6.1), and design a fault-tolerant control law to recover the control
system’s dynamics performance when an actuator fault occurs. Firstly, we consider
the fuzzy control problem for the following nominal system without actuator faults:

⎧⎪⎪⎨
⎪⎪⎩
ẋi = x p

i+1
, i = 1, . . . , n − 1

ẋn = f (x) +
∑m

j=1
g j (x)u

p
j

y = x1

Consider matrices X , Y , Z , Q > 0 and P = PT > 0 such that

[
X Y
Y T Z

]
> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

]
≤ −Q

virtual control laws (6.58–6.60), control input (6.61) and adaptive laws (6.62–6.67).
From Theorem 6.1, under Assumptions6.1 and 6.2, the closed-loop system is

semi-globally uniformly ultimately stable, and all signals involved in the closed-
loop systems converge to a small neighborhood of the origin.

On the basis of the estimated actuator fault, the fault tolerant controller is con-
structed as

us = ρ̂suN
s

ρ̂2
s

+ εu
(6.79)

where εu > 0 is a design parameter, uN
s is the sth desired control input under healthy

condition, ρ̂s is the estimate of gsks , which is used to compensate for the gain fault ks .

Theorem 6.3 Consider the high-order system (6.1) under Assumptions6.1 and 6.2,
fault model (6.2), virtual and practical control laws (6.58–6.61) and adaptive laws
(6.62–6.67). If there exist matrices X, Y , Z, Q > 0 and P = PT > 0 with appro-

priate dimensions, such that

[
X Y
Y T Z

]
> 0 and

[
X − PLC − CT LT P + 2PP Y + P(A + R)

Y T + (A + R)T P Z + I

]
≤ −Q (6.80)

then, the faulty system (6.1) is asymptotically stable under the feedback FTC (6.79)
and all signals involved in the closed-loop system are semi-globally uniformly ulti-
mately bounded, converging asymptotically to a small neighborhood of zero, i.e.

||θ̃ f || ≤ √
2ηs f μs , ||θ̃g j || ≤ √

2ηg jμs , ||θ̃gρ,s || ≤ √
2ηgksμs , ||e|| ≤

√
2μs

λmin(Ps )
,

where
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μs = μ̄s

gs
+ cg + Vs(0), gs = min{1

2
,

η f

2η1
,

ηγ

2η2
,
ηg1

2η3
, . . . ,

ηgm

2η3
,
ηgks

2η4
,
ηgks

2η4
,
λmin(Q)

λmax(P)
},

μ̄s = η f

2η1
M2

θ f + ηγ

2η2
(M̄2

ε f + M̄2
δ f )+∑m

j=1, j �=s

ηg j

η3
[M̄2

θg j + M̄2
εg j ] + ηgks

2η4
M2

θgks + ηgks

2η4
M̄2

εgks

Proof Similar to the proof of Theorem6.1, it is easy to obtain the conclusions of
Theorem 3. The detailed proof is thus omitted here.

6.4 Simulation Results

In this section, a practical aircraft longitudinal motion dynamics, which can be
described as a 1-order nonlinear system, namely p = 1, and a high-order numerical
example where p = 3, are taken to show the effectiveness of the proposed fault
tolerant control scheme.

6.4.1 An Application to Aircraft Longitudinal Motion
Dynamics

In this subsection, we apply the proposed FTC scheme to diagnose and accommodate
failures in an aircraft longitudinal motion dynamics. The aircraft longitudinal motion
dynamics of the twin otter [43] can be described as 1-order nonlinear system as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ = Fx cos(α) + Fz sin(α)

m

α̇ = q + −Fx sin(α) + Fz cos(α)

mV
θ̇ = q

q̇ = M

Iy

(6.81)

where V is the velocity, αis the angle of attack, θ is the angle of pitch andq is the pitch
rate, m is the mass, Iy is the moment of inertia, and Fx = q̄ SCx (α, q, δe1, δe2) +
T1 cos γ1+T2 cos γ2−mg sin(θ), Fz = q̄ SCz(α, q, δe1, δe2)+T1· sin γ1+T2 sin γ2−
mg cos(θ), M = q̄cSCm(α, q, δe1, δe2), where q̄ = 1

2ρV
2 is the dynamic pressure,

ρ is the air density, S is the wing area, c is the mean chord, T1 and T2 are independent
thrusts with corresponding thrust misalignments γ1 and γ2. The functionsCx ,Cz,Cm

are of the polynomial form: Cx = Cx1α +Cx2α
2+ Cx3 +Cx4 (d1δe1 + d2δe2),Cz =

Cz1α + Cx2α
2 + Cz3 + Cz4 (d1δe1 + d2δe2) + Cx5q, Cm = Cm1α + Cm2α

2 + Cm3+
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Cm4 (d1δe1 + d2δe2)+Cm5q,where δe1 and δe2 are the elevator angles of an augmented
two-pieces elevators used as two actuators u1 and u2 for failure compensation study.
Choosing V, α, θ and q as the states x1, x2, x3 and x4, and δe1, δe2, T1, T2 as the inputs
u1, u2, u3, u4, (6.81) will be put into the state form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = (cT1 φ0(x2)x
2
1 + φ1(x)) cos(x2)+

+ (cT2 φ0(x2)x
2
1 + φ2(x)) sin(x2)+

d1g1(x)u1 + d2g1(x)u2 + g31(x)u3 + g41(x)u4

ẋ2 = x4 − (cT1 φ0(x2)x1 + φ1(x)
1

x1
) sin(x2)+

(cT2 φ0(x2)x1 + φ2(x)
1

x1
) cos(x2)+

d1g2(x)u1 + d2g2(x)u2 + g32(x)u3 + g42(x)u4
ẋ3 = x4

ẋ4 = θTϕ(x) + b1x
2
1u1 + b2x

2
1u2

(6.82)

where
φ0(x2) = [x2, x22 , 1]T , φ1(x) = p0 sin(x3)

φ2(x) = p1x4x
2
1 + p0 sin(x3),

g1(x) = a1x
2
1 cos(x2) + a2x

2
1 sin(x2)

g2(x) = −a1x1 sin(x2) + a2x1 sin(x2)

g31(x) = cos(γ1) cos(x2) + sin(γ1) sin(x2)

g41(x) = cos(γ2) cos(x2) + sin(γ2) sin(x2)

g32(x) = − cos(γ1)
sin(x2)

x1
+ sin(γ1)

cos(x2)

x1

g42(x) = − cos(γ2)
sin(x2)

x1
+ sin(γ2)

cos(x2)

x1

ϕ(x) = [x21 x2, x21 x22 , x21 , x21 x4]T

and θ, p1, a1, a2, , b1, b2, c1, c2, d1, d2, γ1, γ2 are unknown constant parameters
while p0 is the gravity constant which is known. There exists a diffeomorphism
[ξ, x]T = T (χ) = [T1(χ), T2(χ), x3, x4]T such that (6.82) can be transform into the
parameter-strict-feedback form, where the positive odd number p = 1

⎧⎨
⎩
ẋ3 = x4

ẋ4 = ϑTφ(x) +
∑2

i=1
bi x

2
1ui

(6.83)
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and the zero dynamics ξ̇ = φ(ξ, χ) + Φ(ξ, χ)ϑ , where ϑ ∈ R4 is an unknown
constant vector. The relative degree o equals 2. The aircraft parameters in the
simulation study are chosen based on the data sheet in [44]: m = 4600 kg,
Iy = 31027 kg m2, S = 39.2 m2, c = 1.98 m, Tx = 4864 N , Tz = 212 N ,
ρ = 0.7377 kg/m3 at the altitude of 5000 m, and for the 0◦ flap setting. In addi-
tion, Cx1 = 0.39,Cx2 = 2.9099,Cx3 = −0.0758,Cx4 = 0.0961, Cz1 = −7.0186,
Cz2 = 4.1109, Cz3 = −0.3112, Cz4 = −0.2340, Cz5 = −0.1023, Cm1 = −0.8789,
Cm2 = −3.852, Cm3 =−0.0108,Cm4 = −1.8987, Cm5 = −0.6266 are unknown
constants. Reference signal yd is set as yd = e−0.05t · sin(0.2t). The initial states
and estimates are set as χ(0) = [75, 0, 0, 15, 0]T = e−0.05t sin(0.2t), ϑ̂(0) =
[0, 0,−0.004, 0]. It is assumed that the zero dynamics ξ̇ = φ(ξ, χ) + Φ(ξ, χ)ϑ is
input-to-state stable with respect tox taken as the input. In addition, bi , i = 1, . . . ,m
are assumed to be complete unknown, i.e., these values and signs are both unknown.

The fault case considered in this example is modeled as

u f
1 (t) =

{
u1(t), t < 10

(1 − ρ1(x))u1(t), t ≥ 10
, u f

2 (t) = u2(t)

where ρ1(x) = 0.4 cos(x3).
Firstly, the matrices inequality (6.43) are transformed to LMI, then by using

Matlab toolbox to solve the matrices inequalities, one can obtain symmetric matrix
X,Y, Z , P, Q, Xs,Ys, Zs, Ps, Qs and the nominal controller gains Ki . Therefore,
one can design the desired control (6.37). Using this desired control, we can design
fault-tolerant controller (6.79). In this example, we assume that the system state is
not fully measured and thus the observer (6.53) is used to estimate the system state.
Consequently, the observer-based fault-tolerant control (6.79) is used to control the
faulty system. The simulation results are presented in Figs. 6.1, 6.2, 6.3, 6.4, 6.5
and 6.6. From Figs. 6.1 and 6.2, it is seen that, under normal operating condition,
the system states globally asymptotically converge to a small neighborhood of the
origin. Figures6.3 and 6.4 show that, when an actuator fault occurs, when keeping
the normal controller, the system states deviate significantly from the neighborhood.
However, as shown inFigs. 6.5 and6.6, using the proposedFTC (6.79), better tracking
performance is obtained, again.

6.4.2 A High-Order Numerical Example

Consider the following high-order nonlinear system

{
ẋ1 = x32
ẋ2 = u31 + u32

(6.84)
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Fig. 6.1 Time response of the velocity without fault

Fig. 6.2 Time response of the attack of angle, the pitch angle and the pitch rate without fault

The fault case considered in this example is modeled as

u f
1 (t) =

{
u1(t), t < 10

(1 − ρ1(x))u1(t), t ≥ 10
u f
2 (t) = u2(t)
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Fig. 6.3 Time response of the velocity without FTC

Fig. 6.4 Time response of the attack of angle, the pitch angle and the pitch rate without FTC

where ρ1(x) = 0.8 cos(2+x1+x2), the fault occurs at time t = 10s. As expected, we
can find that system output y follows well yd = 0 as shown in Fig. 6.7. Meanwhile,
Figs. 6.8 and 6.9 illustrate that, under the faulty condition, the system output y does
not converge to the desired reference signal without FTC, however, using FTC, the
system has better tracking performance.



6.4 Simulation Results 157

Fig. 6.5 Time response of the velocity with FTC

Fig. 6.6 Time response of the attack of angle, the pitch angle and the pitch rate with FTC
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Fig. 6.7 State response under normal condition

Fig. 6.8 State response under faulty condition without FTC
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Fig. 6.9 State response under faulty condition with FTC

6.5 Conclusions

In this chapter, the fault-tolerant control problem for a class of uncertain nonlinear
systems in presence of actuator faults is discussed.Wefirst design a bank of observers
to detect, isolate and estimate the fault. Then a sufficient condition for the existence
of an FDI observer is derived. Simulation show that the designed fault detection,
isolation and estimation algorithms and fault-tolerant control scheme have better
dynamic performances in the presence of actuator faults.
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Chapter 7
Neural Network-Based Fault Tolerant
Control Scheme Against Un-modeled Fault

7.1 Introduction

In control systems [1–34], actuator, sensor or component faults frequently occur,
which can cause system performance deterioration and lead to instability that can
further produce catastrophic accidents. Thus, to improve system reliability and to
guarantee system stability in healthy and faulty situations, many effective fault-
tolerant control (FTC) approaches have been proposed [1–3, 27–29]. In general,
the FTC strategies can be categorized into two classes: passive approach and active
approach. Passive FTC methods are robust control techniques with respect to an a
priori fixed set of faults [21–33]. Active methods consist of online reconfiguring or
reconstructing the controller to recover the stability and system performance as soon
as a diagnostic algorithm has detected the presence of a fault [34, 35].

However, in most of the results about FTC or fault detection and isolation (FDI) in
literature, the considered actuator or sensor faults are traditional affine appearances of
the control input or system output. That is to say, the fault can be expressed explicitly
as gain and/or bias fault, which is called modeled fault (MF) in this chapter. For
example, the actuator fault can be described as: u f = g f u + b f , where g f ∈ [0, 1)
and b f ∈ R denote the remaining control rate and bias fault, respectively. Notice that,
g f and b f may be constants or functions of time t or the system state x . Unfortunately,
there exist some cases in practical applications where the fault cannot be expressed in
the above form. This class of faults is called un-modeled fault (UMF) in this chapter.
What’s more, the results concerning on FTC against MF cannot be extended directly
to FTC against UMF. Hence, the design of fault tolerant controller of systems with
UMF is more challenging. To our best knowledge, up to now, there are only a few
results reported in the literature. In [36], the problem of adaptive FTC for nonlinear
systems with actuator NF was investigated. However, the results are only applicable
to second-order nonlinear systems rather than more general high-order systems,
which limit their practical applications. In [37, 38], robust detection and isolation
schemes for nonlinear faults were addressed. However, these FDI schemes worked
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under the condition that the system state variables and control inputs were bounded
before and after the occurrence of a fault, which is too restrictive. In addition, the
UMF was assumed to be a known function about control input and system state with
an unknown gain. Hence, how to control more general high-order nonlinear systems
with actuator UMF still is an important and open problem, which motivates us for
this study.

On the other hand, the active FTCscheme requires the fault information,which can
be obtained by fault diagnosis (FD). However, FD takes time to performance, which
means that there is some time delay between fault occurrence and fault accommoda-
tion. In this chapter, such time delay is called the time delay due to FD (TDDTFD).
What is worst, during the time delay interval, the considered system is always con-
trolled by the normal controller, which is designed under healthy conditions without
considering any faults. As stated in [39], in general, an active FTC law is designed
based on an open-loop system modeled as a function of fault parameters under the
assumption that they are immediately identified by an FDI model. As previously
pointed out, there is always some time needed to diagnose the fault occurring in
the system. When a fault occurs, the faulty system works under the normal control
until the fault is diagnosed and fault accommodation is performed, which may cause
severe loss of performance and stability. Hence, it is important to analyze the effect
of the time delay and to minimize its impact to the system. Unfortunately, only a few
results have considered the TDDTFD’s adverse effect on the stability of the system.
The work in [37–41] investigated the effect and provided some effective approaches.
However, the results in [37–41] worked well only under some restrictive conditions.
Therefore, another motivation of our work in this chapter is to minimize TDDTFD
and to reduce the adverse effect.

In this chapter, we investigate the problem of adaptive active FTC for a class of
nonlinear systems with unknown actuator UMF. The design of the normal and fault
tolerant controllers is first analyzed. Then a novel neural networks-basedFTCscheme
with fault alarm is proposed by using the implicit function theorem. Compared with
existing results, this chapter makes the following contributions:

(1) The actuator fault considered in this chapter is assumed to have no-affine
appearance of the system state variables and control input, which makes the control
problem more challenging;

(2) Compared with [36] where only second-order systems without external dis-
turbance were investigated, we study the adaptive FTC problem of a class of more
general high-order nonlinear systems in this chapter;

(3) In [37, 38] the system state and control variables were bounded before and
after the occurrence of a fault and the UMF was a known function of control input
and system state with an unknown gain. The FTC scheme proposed in this chapter
removes these assumptions. The theoretical developments and results of this chapter
are thus valuable in wider practical applications; and

(4) The proposed scheme has the advantage of having the property of the passive
FTC scheme as well as the traditional active FTC scheme that minimizes TDDTFD
and reduces the adverse effect. Moreover, the FTC scheme doesn’t require the FDI
model which is necessary in the traditional active FTC scheme.
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The rest of this chapter is organized as follows. In Sect. 7.2, the FTC objective
is formulated. In addition, the actuator fault model and mathematical description of
neural networks are given. In Sect. 7.3, the main technical results of this chapter are
given, which include the designs of the normal controller, the traditional passive fault
tolerant controller and novel adaptive fault tolerant controller. The example is pre-
sented in Sect. 7.4. Simulation results are presented to demonstrate the effectiveness
of the proposed technique. Finally, Sect. 7.5 draws the conclusion.

7.2 Problem Statement and Description of NNs

In this section, we will first formulate the fault-tolerant control problem of a class
of nonlinear systems. Then, neural networks (NNs) are introduced and their mathe-
matical description is given.

7.2.1 Problem Statement

Consider the following nonlinear system

⎧⎪⎨
⎪⎩
ẋi = xi+1, i = 1, 2, . . . , n − 1

ẋn = f0(x) + u + d(t)

y = x1

(7.1)

where x = [x1, . . . , xn]T , u ∈ R and y ∈ R are the state variables, system input and
output, respectively. The nonlinear function f0(x) ∈ R is unknown and smooth, and
d(t) denotes the external bounded disturbance.

The control objective is to design an adaptive controller that generates u such
that the system output y tracks as accurately a desired trajectory yd(t) as possible,
regardless of the disturbance d(t).

Define xd = [xd1, . . . , xdn]T , where xdi = y(i−1)
d (t), i = 1, . . . , n.

The actuator failure model considered in this chapter can be described as

u f = f (x, u), t ≥ t f (7.2)

where f (x, u) is a nonlinear smooth function, with t f being unknown fault occur-
rence time.

Remark 7.1 In the literature, there are fruitful results about FD, FDI and FTC [42–
48]. However, most of them only pay attention to MF. In general, two kinds of
actuator explicit faults are considered: part loss of effectiveness of the actuators and
actuator bias faults. They can be commonly described as
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u f = g f u, u f = u + b f

and can be uniformly described as

u f = g f u + b f

where g f (0 ≤ g f < 1) and b f denote, respectively, the remaining control rate and
bias fault, which may be constants or functions about time t or system state x . In
addition, they are assumed to be bounded. However, in some cases, the fault cannot
always be described in the above affine form. The results as in [42–48] thus cannot
be applied in such cases. Therefore, it becomes very necessary to investigate UMF.

Define the tracking errors e as follows

e = x − xd = [e1, . . . , en]T (7.3)

Obviously, the control objective is that for any given target orbit yd(t), an adaptive
fault tolerant controller u is designed to guarantee that the tracking error e is as small
as possible despite both the actuator fault and the external disturbance.

Define the filtered function s as follows:

s =
∑n−1

i=1
ci ei (t) + en(t) (7.4)

where ci = Ci−1
n−1a

n−i , i = 1, 2, . . . , n, Ci−1
n−1 = (n−1)(n−2)···(n−i+1)

(i−1)(i−2)···1 , and a > 0 ∈ R
denotes a design parameter.

To design an appropriate controller, for the system in (7.1) and the fault model in
(7.2), the following lemma and some assumptions are used.

Lemma 7.1 Let s be defined by (7.4).
(1) If s = 0, then limt→∞ e(t) = 0;
(2) If |s| ≤ a and e(0) ∈ Ωa, then e(t) ∈ Ωa, ∀t ≥ 0;
(3) If |s| ≤ a and e(0) /∈ Ωa, then ∃T = (m − 1)λ, 	 ∀t ≥ T , e(t) ∈ Ωa, where
Ωa = {e(t)| |ei | ≤ 2( j−1)λ j−ma, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, with λ > 0 ∈ R
and a > 0 ∈ R denoting the design parameters.

Assumption 7.1 There exists a known constant d̄ > 0 ∈ R, such that |d(t)| ≤ d̄ .

Assumption 7.2 There exists an unknown constant Md > 0 ∈ R such that xd ∈
Ωd = {xd |||xd || ≤ Md} ⊂ Rn .

Assumption 7.3 The sign of ∂ f (x,u)

∂u is known and there exist unknown constants

bl > 0 ∈ R, l = 0, 1, 2 such that b0 ≤ | ∂ f (x,u)

∂u | ≤ b1 and | ∂2 f (x,u)

∂u2 | ≤ b2. Without

loss of generality, it is assumed that ∂ f (x,u)

∂u > 0.

Remark 7.2 The purpose of Assumption7.1 is to reduce the complexity of the nor-
mal controller. In fact, in the following FTC design in Sect. 7.2, Assumption7.1 is
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removed where using an adaptive control technique. Assumption7.3 seems to be
restrictive. However, most of fault models in literature satisfy the assumption. In
fact, for UMF with the boundary assumption, i.e.,

f (x, u) = g f u + b f

where b0 ≤ g f < b1, Assumption7.3 is naturally satisfied, i.e.,

b0 ≤ |∂ f (x, u)

∂u
| = |g f | ≤ b1, 0 = |∂

2 f (x, u)

∂u2
| ≤ b2

Obviously, if the assumption that the traditional MFs are bounded is extended to
UMFs, then Assumption7.3 is also needed. In addition, it is worth pointing out that
bl is only needed for analysis purpose, the exact value of bl is not required in the
controller design.

7.2.2 Mathematical Description of Neural Networks

Neural networks (NNs) have been widely used in modeling and controlling of non-
linear systems because of their capabilities of nonlinear function approximation,
learning, and fault tolerance. The feasibility of applying NNs to unknown dynamic
systems control has been demonstrated in many studies [49]. In this chapter, we use
the radial basis function NNs presented in [49]

h(z,W ) = WT S(z)

to approximate a continuous function h(z) : Rn+2 → R, where the weight vector
W , the basis function vector S(z) are defined as follows: W = [W1,W2, . . . ,WN ]T ,
S(z) = [s1(z), s2(z), . . . , sN (z)]T with N is the number of the NNs nodes. The func-
tion si (z) = exp(−(

∑pi
j=1 (z − ai j )

2)/(μi )
2), μi > 0 is the center of the receptive

field, and ai j is the width of the Gaussian function. Let

ΩW = {W : ‖W‖ ≤ wm},W ∗
i

= arg min
W∈ΩW

[ sup
z∈ΩZ

|h(z,W ) − h(z)|]

where wm > 0 is a design parameter. For a continuous function h(z), we can obtain
h(z) = W ∗T S(z) + ε∗(z), whereW ∗ and ε∗(z) denote the optimal weight vector and
the optimal approximation error. Define two compact sets Ωz and Ωc as follows:

Ωz =
{ [

xT , s, γ
]T |x ∈ Ω , xd ∈ Ωd

}
Ωc = {x ||s| ≤ cs, xd ∈ Ωd}
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where γ = ∑n−1
i=1 ci ei+1 − x (n)

d ,Ω ∈ Rn is a enough large compact set, and cs > 0 ∈
R denotes a design parameter.

From the universal approximation results stated in [49], we know that NNs can
approximate any continuous function to any accuracy on a compact set. Hence, the
following assumption is made in this chapter.

Assumption 7.4 There exist an unknown constant ε > 0 ∈ R, such that |ε∗(z)| ≤ ε.

For notational simplicity, we use • to denote •(·). For example, d is the abbrevi-
ation of d(t).

7.3 Design of Adaptive NNs-Based Fault Tolerant
Controller

In this section, the main technical results are presented. First, the normal control
scheme is examined in its healthy condition. Then, the passive FTC scheme is inves-
tigated to compensate for actuator faults. Finally, a novel FTC scheme is proposed
to guarantee the control objective is met, despite the presence of actuator faults.

7.3.1 Design of Normal Controller (Fault-Free Condition)

In the healthy case, the system is described as follows:

{
ẋi = xi+1, i = 1, . . . , n − 1

ẋn = f0(x) + u + d(t)

From (7.4), one has
ṡ = f0(x) + u + d(t) + γ

In the following, NNs are used to approximate the function f0(x) as W ∗T
0 S0(x) +

ε∗
0(x), Ŵ0 and ε̂0 are the estimates of the optimal weight vector W ∗

0 and ε0, respec-
tively, where |ε∗

0(x)| ≤ ε0, ε0 > 0 ∈ R is an unknown constant.
Define the following function

V0 = s2/2 + (W̃ T
0 W̃ + ε̃20)/(2η0)

where W̃0 = W ∗
0 − Ŵ0, ε̃0 = ε0 − ε̂0, and η0 > 0 ∈ R is an adaptive rate.

Differentiating V0 with respect to time t , one has

V̇0 ≤sW ∗T
0 S0(x) + |s|ε0 + su + |s|(d̄ + |γ |) − W̃ T

0
˙̂W 0/η0 − ε̃0 ˙̂ε0/η0 (7.5)
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The control and adaptive laws are designed as follows:

u = −Ŵ T
0 S0(x) − |s|(ε̂0 + d̄ + |γ |) − s/2

˙̂W 0 = η0sS0(x) + η1Ŵ0

˙̂ε0 = η0|s| + η1ε̂0

where η1 > 0 is a design parameter. Substituting the above control and adaptive laws
into (7.5), yields

V̇0 ≤ −1

2
s2 − η1

η0
(W̃ T

0 Ŵ0 + ε̃0ε̂0)

Since
−η1

η0
W̃ T

0 Ŵ0 ≤ − η1

2η0
W̃ T

0 W̃0 + η1

2η0
w2

m

−η1

η0
ε̃0ε̂0 ≤ − η1

2η0
ε̃20 + η1

2η0
ε20 ≤ − η1

2η0
ε̃20 + η1

2η0
ε̄20

one has

V̇0 ≤ −1

2
s2 − η1

2η0
W̃ T

0 W̃0 − η1

2η0
ε̃20 + η1

2η0
w2

m + η1

2η0
ε̄20

≤ −λ0V0 + μ0

where λ0 = min{1, η1}, μ0 = η1
2η0

w2
m + η1

2η0
ε̄20, ε̄0 > 0 ∈ R is the upper boundary of

ε0 and assumed to be known.

Remark 7.3 The assumption that there exists a known constant ε̄0 such that ε0 ≤ ε̄0
seems restrictive. However, we should point out that themain objective in this chapter
is to control faulty systemswith the fault given in (7.2), not the nominal systems (7.1).
In order to reduce the normal controller’s complexity, the assumption is made in this
chapter. In fact, the assumption can be removed using such techniques as adaptive
control.

Furthermore, we have the condition that

0 ≤ V0(t) ≤ μ0/λ0 + (V0(0) − μ0/λ0)e
−λ0t ≤ μ0/λ0 + V0(0)

Since s2/2 ≤ V0, then

|s(t)| ≤ √
2(μ0/λ0 + V0(0)) = a

Similarly,
||W̃0|| ≤ √

η0a, |ε̃0| ≤ √
η0a
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From Lemma7.1, one has
e ∈ Ωa

where Ωa = {e(t)| |ei | ≤ 2iλi−na, i = 1, 2, . . . , n}.
The above analysis is summarized in the following Theorem.

Theorem 7.1 Consider the healthy nonlinear system (7.1) with Assumptions7.1, 7.2
and 7.4. If the following control and adaptive laws are employed

u = −Ŵ T
0 S0(x) − |s|(ε̂0 + d̄ + |γ |) − s/2 (7.6)

˙̂W 0 = η0sS0(x) + η1Ŵ0 (7.7)

˙̂ε0 = η0|s| + η1ε̂0 (7.8)

then the closed-loop system is globally asymptotically bounded, all signals in the
closed-loop system converge to the small neighborhood of origin Ω0 defined as
Ω0 = {(s, W̃0, ε̃0, ei )| |s| ≤ a, ||W̃0|| ≤ √

η0a, |ε̃0| ≤ √
η0a, |ei | ≤ 2iλi−na,

i = 1, . . . , n}.
Proof From the above analysis, it is easy to obtain the conclusions.

From Theorem7.1, one has

0 ≤ s2/2 = V0(t) ≤ μ0/λ0 + (V0(0) − μ0/λ0)e
−λ0t

From the practical point of view, the tracking objective is obtained if |s(t)| ≤√
2δ0, where δ0 > 0 ∈ R is a designed parameter. Let

δ0 = V0(t) ≤ μ0/λ0 + (V0(0) − μ0/λ0)e
−λ0ts

one has

ts =
− ln

(
δ0− μ0

λ0

V0(0)− μ0
λ0

)
λ0

(7.9)

We obtain from the above analysis that the tracking error e converges to a small
neighborhood of the origin Ω ′

a = {e(t)| |ei | ≤ 2iλi−n
√
2δ0, i = 1, 2, . . . , n}, i.e.,

e ∈ Ω ′
a . Obviously, it is after ts , i.e., t ≥ ts , that the tracking control objective is

obtained. The time interval [0, ts] is spent to stabilize the tracking error dynamics,
which is named as stabilization time (ST) in this chapter.

Remark 7.4 In the literature, it is not required generally to develop the analytical
expression for ST. In this chapter, it is given because it will be used to design the
FTC scheme with fault alarm.
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7.3.2 Design of Passive Adaptive Fault Tolerant Controller

From (7.1), (7.2) and (7.4), one has

ṡ = f0(x) + f (x, u) + d + γ (7.10)

where γ = ∑n−1
i=1 ci ei+1 − x (n)

d .
Because of ∂ f (x,u)

∂u �= 0, by the implicit function theorem, there exists an ideal
control u∗(x), such that

f0(x) + f (x, u∗) = 0

By the mean value theorem, one has

f (x, u) = f (x, u∗) +
∫ 1

0

∂ f (x, uλ)

∂uλ

dλ(u − u∗)

where λ ∈ [0, 1], and
uλ = λu + (1 − λ)u∗ (7.11)

Hence, (7.10) can be rewritten as follows:

ṡ = f0(x) + b(x, u)[(u − u∗) + γ + d

b(x, u)
] (7.12)

where

b(x, u) =
∫ 1

0

∂ f (x, uλ)

∂uλ

dλ (7.13)

From (7.3) and (7.4), one has

xn = en + xdn = s −
∑n−1

i=1
ci ei (t) + xdn

Furthermore, u∗(x) and b(x, u) can be rewritten as follows:

u∗(x) = u∗(x1, x2, . . . , xn−1, s + γ1)

b(x, u) = b(x1, x2, . . . , xn−1, s + γ1, u)

where γ1 = −∑n−1
i=1 ci ei (t) + xdn .

To obtain the above control objective, the desired control law is employed as
follows:

u = −k(xn, s)s + Ŵ T S(z) + ur (7.14)
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where z = [x1, x2, . . . , xn−1, sgn(|xn|), s, 1]T , NNs are used to approximate a
unknown continuous function ϕ(z) defined later by (7.42) as ϕ(z) = Ŵ ∗T S(z) +
ε∗(z), Ŵ is the estimate of W ∗ at time t , k(xn, s) and ur are defined by (7.45) and
(7.46), respectively.

Define the following Lyapunov function

V1(t) =
∫ s

0

[∫ 1

0
β(uλσ )dλ

]−1

σdσ (7.15)

where

β(uλσ ) = ∂ f (x, uλσ )

∂uλσ

(7.16)

uλσ = λuσ + (1 − λ)u∗(x1, x2, . . . , xn−1, s + γ1) (7.17)

uσ = −k(σ + γ1, σ )σ + Ŵ T S(zσ ) (7.18)

zσ = (x1, . . . , xn−1, σ + γ1, sgn(σ )|σ + γ1|, σ, 1)T (7.19)

Since 0 < b0 ≤ ∂ f (x,u)

∂u ≤ b1, then

V1 ≤
∫ s

0

1

b0
σdσ = s2

2b0
, V1 ≥

∫ s

0

1

b1
σdσ = s2

2b1
(7.20)

It is obvious that V1 is a positive function with the property: V1 → 0 as s → 0
and V1 → ∞ as s → ∞.

Differentiating V1 with respect to time t , one has

V̇1 =s

[∫ 1

0
β(uλσ )dλ

]−1

ṡ + γ̇1

∫ s

0

∂
[∫ 1

0 β(uλσ )dλ
]−1

∂γ1
σdσ−

∫ s

0

⎧⎪⎨
⎪⎩

∑n−1
i=1

∫ 1
0

∂β(uλσ )

∂uλσ

∂uλσ

∂xi
ẋi dλ[∫ 1

0 β(uλσ )dλ
]2

⎫⎪⎬
⎪⎭ σdσ−

∫ s

0

⎧⎪⎨
⎪⎩

∫ 1
0

∂β(uλσ )

∂uλσ
( ∂uλσ

∂Ŵ
)
T ˙̂Wdλ[∫ 1

0 β(uλσ )dλ
]2

⎫⎪⎬
⎪⎭ σdσ

(7.21)

From ∂(σ+γ1)

∂σ
= ∂(σ+γ1)

∂γ1
, it gives

∂

[∫ 1

0
β(uλσ )dλ

]−1

/∂γ1 = ∂

[∫ 1

0
β(uλσ )dλ

]−1

/∂σ (7.22)
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Furthermore, one has

∫ s

0

∂
[∫ 1

0 β(uλσ )dλ
]−1

∂σ
σdσ = s

b(x, u)
−

∫ s

0

[∫ 1

0
β(uλσ )dλ

]−1

dσ
(7.23)

From Assumption7.3 and (7.16), one has

β(x, uλσ ) = ∂ f (x, uλσ )

∂uλσ

≥ b0 (7.24)

It follows that ∫ 1

0
β(uλσ )dλ ≥

∫ 1

0
b0dλ = b0 (7.25)

By (7.24) and (7.25) and ẋi = xi+1, one has

V̇1 ≤ sṡ

b(x, u)
+ γ̇1s

b(x, u)
+

∣∣∣∣γ̇1
∫ s

0

1

b0
dσ

∣∣∣∣+
1

b20

∫ s

0

∑n−1

i=1

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

∂uλσ

∂xi
xi+1dλ

∣∣∣∣σdσ+
1

b20

∫ s

0

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

(
∂uλσ

∂Ŵ
)
T ˙̂Wdλ

∣∣∣∣ σdσ

(7.26)

From (7.17) and (7.18), one has

∂uλσ

∂xi
= λ

uσ

∂xi
+ (1 − λ)

∂u∗(x)
∂xi

= λ
∂

[
Ŵ T S(zσ )

]
∂xi

+ (1 − λ)
∂u∗(x)

∂xi

(7.27)

where u∗(x) = u∗(x1, x2, . . . , xn−1, s + γ1). Thus, one has∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

∂uλσ

∂xi
xi+1dλ

∣∣∣∣ ≤
∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

λdλ

∣∣∣∣
∣∣∣∣∣∣
∂

[
Ŵ T S(zσ )

]
∂xi

xi+1

∣∣∣∣∣∣+∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

(1 − λ)dλ

∣∣∣∣ ·
∣∣∣∣∂u∗(x)

∂xi
xi+1

∣∣∣∣

(7.28)
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From (7.16)–(7.18) and Assumption7.3, one has

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

λdλ

∣∣∣∣ ≤
∫ 1

0
b2λdλ = b2

2
(7.29)

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

(1 − λ)dλ

∣∣∣∣ ≤
∫ 1

0
b2(1 − λ)dλ = b2

2
(7.30)

From (7.29) and (7.30), we can further derive (7.28) as

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

∂uλσ

∂xi
xi+1dλ

∣∣∣∣ ≤

b2
2

∣∣∣∣∣∣
∂

[
Ŵ T S(zσ )

]
∂xi

xi+1

∣∣∣∣∣∣ + b2
2

·
∣∣∣∣∂u∗(x)

∂xi
xi+1

∣∣∣∣
(7.31)

From the basis function’s definition, one has

∂si (zσ )

∂x j
= −2(x j − ai j )

μ2
i

exp(−
∑N

j=1 (z − ai j )
2

(μi )
2 ) (7.32)

Since

exp

[
−

∑N
j=1 (z − ai j )

2

(μi )
2

]
≤ exp(

−(x j − ai j )
2

(μi )
2 )

then ∣∣∣∣∂si (zσ )

∂x j

∣∣∣∣ ≤ 2|x j − ai j |
μ2
i

exp(
−(x j − ai j )

2

(μi )
2 )

Obviously, if 2|x j−ai j |
μi

=
√

1
2 , then

∣∣∣ ∂si (zσ )

∂x j

∣∣∣ has the maximum value, i.e.,
∣∣∣ ∂si (zσ )

∂x j

∣∣∣ ≤
√
2

μi
exp(− 1

2 ). From the above analysis, we know that there exists a constant wi0 > 0,
such that ∣∣∣∣∣∣

∂
[
Ŵ T S(zσ )

]
∂xi

xi+1

∣∣∣∣∣∣ ≤
∣∣∣∣Ŵ T ∂ [S(zσ )]

∂xi

∣∣∣∣ |xi+1| ≤ wi0|xi+1| (7.33)

wherewi0 = sup||Ŵ ||≤wm
{∑l

i=1 (
√
2/μi ) exp(−1/2)|ŵi |}. It is necessary to point out,

||Ŵ || ≤ wm is guaranteed in the following adaptive law (7.47). Furthermore, (7.28)
can be re-expressed as follows:
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∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

∂uλσ

∂xi
xi+1dλ

∣∣∣∣ ≤ b2
2

(wi0|xi+1| +
∣∣∣∣∂u∗(x)

∂xi
xi+1

∣∣∣∣) (7.34)

Therefore,

1

b20

∫ s

0

∑n−1

i=1

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

∂uλσ

∂xi
xi+1dλ

∣∣∣∣σdσ

≤ 1

b20

∫ s

0

n−1∑
i=1

(
b2
2

wi0|xi+1| + b2
2

∣∣∣∣∂u∗(x)
∂xi

xi+1

∣∣∣∣)σdσ

= b2s

4b20

∑n−1

i=1
(wi0|xi+1|) + b2

2b20

∫ s

0

∑n−1

i=1
(

∣∣∣∣∂u∗(x)
∂xi

xi+1

∣∣∣∣)σdσ

(7.35)

In addition, because
∂uλσ

∂Ŵ
= λ

∂uσ

∂Ŵ
= λS(zσ ) (7.36)

one has ∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

(
∂uλσ

∂Ŵ
)
T ˙̂Wdλ

∣∣∣∣
≤

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

λd

∣∣∣∣ ∣∣∣ST (zσ )
˙̂W
∣∣∣ ≤ b2

2

∣∣∣ST (zσ )
˙̂W
∣∣∣

(7.37)

Furthermore,

1

b20

∫ s

0

∣∣∣∣
∫ 1

0

∂β(uλσ )

∂uλσ

(
∂uλσ

∂Ŵ
)
T ˙̂Wdλ

∣∣∣∣ σdσ ≤ b2
2b20

∫ s

0

∣∣∣ST (zσ )
˙̂W
∣∣∣ σdσ (7.38)

From (7.12), (7.26), (7.35) and (7.38), one has

V̇1 ≤s[u − u∗] +
∣∣∣∣γ + d

b0
s

∣∣∣∣ + b2s2

4b20

∑n−1

i=1
wi0|xi+1|+

b2
2b20

(

∫ s

0

∑n−1

i=1

∣∣∣∣∂u∗(x)
∂xi

xi+1

∣∣∣∣σdσ +
∫ s

0

∣∣∣ST (zσ )
˙̂W
∣∣∣ σdσ)

(7.39)

Since u∗(x) = u∗(x1, . . . , xn−1, s + γ1), one has

b2
2b20

∫ s

0

∑n−1

i=1

∣∣∣∣∂u∗(x)
∂xi

xi+1

∣∣∣∣σdσ

= b2s2

2b20

∫ 1

0

∑n−1

i=1

∣∣∣∣∂u∗(x1, . . . , xn−1, λs + γ1)

∂xi
xi+1

∣∣∣∣λdλ

(7.40)
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Hence

V̇1 ≤s(−k(xn, s) + Ŵ T S(z) + ur − ϕ(z)) +
∣∣∣∣γ + d

b0
s

∣∣∣∣+
b2s2

4b20

∑n−1

i=1
wi0|xi+1| + b2

2b20

∫ s

0

∣∣∣ST (zσ )
˙̂W
∣∣∣ σdσ

(7.41)

where

ϕ(z) = u∗(x) − b2s

2b20

∫ 1

0

∑n−1

i=1

∣∣∣∣∂u∗(x)
∂xi

xi+1

∣∣∣∣λdλ (7.42)

Since ϕ(z) is a continuous function with respect to time t , it can be approximated
by NNs as follows:

ϕ(z) = W ∗T S(z) + ε∗(z)

Therefore,

V̇1 ≤ − s(k(xn, s) − ur ) + k1[ s
2

4

∑n−1

i=1
wi0|xi+1|+

1

2

∫ s

0

∣∣∣ST (zσ )
˙̂W
∣∣∣ σdσ ] + k2 |γ s| + k3|s|+

s
(
Ŵ T S(z) − W ∗T S(z)

)
+ |s|ε

(7.43)

where k1 = b2/b20, k2 = 1/b0, k3 = d̄/b0.
Adopting the control law:

u = −k(xn, s)s + Ŵ T S(z) + ur (7.44)

where
k(xn, s) = s + k̂1(ηW Ns2sgn(s) + s

4

∑n−1

i=1
wi0|xi+1|) (7.45)

ur = − k̂2 |γ s| − k̂3|s| − |s|ε̂ (7.46)

where k̂l , l = 1, 2, 3 and ε̂ are the estimates of kl , l = 1, 2, 3 and ε at time t , respec-
tively, |ε∗(z)| ≤ ε, ηW > 0 ∈ R will be defined later.

Employing the following adaptive laws:
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˙̂W =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ηW S(z)s, if
∥∥∥Ŵ∥∥∥ < wm

or
∥∥∥Ŵ∥∥∥ = wm and −Ŵ

T
S(z)s ≤ 0;

− ηW S(z)s + ηW
Ŵ Ŵ T S(z)s∥∥∥Ŵ∥∥∥2 ,

if
∥∥∥Ŵ∥∥∥ = wm and −Ŵ

T
S(z)s > 0

(7.47)

˙̂ε = ηε |s| (7.48)

˙̂k1 = η1(ηW Ns2sgn(s) + s

4

∑n−1

i=1
wi0|xi+1|) (7.49)

˙̂k2 = η2 |γ s| (7.50)

˙̂k3 = η3 |s| (7.51)

where ηl > 0 ∈ R, l = W, 1, 2, 3 are the adaptive rates.
For system (7.1) with actuator fault (7.2), by using the above control and adaptive

laws, we give the following theorem.

Theorem 7.2 Consider nonlinear system (7.1) and the actuator fault (7.2) with
Assumptions7.1–7.4. If the control law (7.44) with (7.45) and (7.46) and the adaptive
laws (7.47)–(7.51) are employed, then the closed-loop system is globally asymptot-
ically stable, satisfying limt→∞||e(t)|| = 0 ⇔ limt→∞|ek(t)| = 0, k = 1, 2, . . . , n.

Proof BeforeTheorem7.2 is proven,wegive theproof of the inequality |ST (zσ )
˙̂W | ≤

2ηW N |s|, where N is the numbers of RBF NNs nodes.

By (7.47), it is easy to find that ˙̂W depends on the states.
(1) If ||Ŵ || < wm or ||Ŵ || = wm and Ŵ T S(zσ )s ≤ 0, then

|ST (zσ )
˙̂W | ≤ ηW ST (zσ )S(zσ )|s|

Since |si (zσ )| < 1, |ST (zσ )S(zσ )| ≤ N . Therefore, one has

|ST (zσ )
˙̂W | ≤ ηW N |s| ≤ 2ηW N |s|

(2) If ||Ŵ || = wm and Ŵ T S(zσ )s > 0, then

|ST (zσ )
˙̂W | ≤ ηW |[ST (zσ )S(zσ ) + ST (zσ )Ŵ Ŵ T S(zσ )

||Ŵ ||2
]s|
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Since |si (zσ )| < 1, |ST (zσ )S(zσ )| ≤ N . Therefore,

ST (zσ )Ŵ Ŵ T S(zσ ) ≤ ||Ŵ ||1

Noticing that ||Ŵ ||21 ≤ N ||Ŵ ||2, one has

|ST (zσ )
˙̂W | ≤ ηW |s|(N + ||Ŵ ||21

||Ŵ ||2
) ≤ 2ηW N |s|

Hence, by (1) and (2), it results in

b2
2b20

∫ s

0

∣∣∣ST (zσ )
˙̂W
∣∣∣ σdσ ≤ b2

2b20

∫ s

0
2ηW N |s|σdσ

= ηW
b2N

b20
|s3|

(7.52)

Now we give the proof of Theorem7.2. Define

V = V1 + 1

2ηW
W̃ T W̃ + 1

2ηε

ε̃2 +
∑3

i=1

1

2ηi
k̃2i

where W̃ = W ∗ − Ŵ , ε̃ = ε − ε̂, k̃i = ki − k̂i , i = 1, 2, 3.
Differentiating V with respect to time t , yields

V̇ (t) = V̇1 − 1

ηW
W̃ T ˙̂W − 1

ηε

ε̃ ˙̂ε −
∑3

i=1

1

2ηi
k̃i

˙̂ki (7.53)

Substituting the control law (7.44) and the adaptive laws (7.47)–(7.51) into (7.53),
yields

V̇ ≤ −s2 ≤ 0 (7.54)

Because V (t) is a monotonous and non-increasing bounded function,V (+∞)

exists,
∫ +∞
0 s2(t)dt ≤ V (0) − V (+∞), i.e., s ∈ L2. And since s, ṡ ∈ L∞, by using

Babalat’s Lemma, the following result is obtained:

limt→∞s(t) = 0

Furthermore, one has limt→∞|ek(t)| = 0, k = 1, 2, . . . , n.

Remark 7.5 RegardingAssumption7.1 and k3 = d̄/b0, it is easily seen thatAssump-
tion7.1 is not necessary for designing the passive FTC because k3 = d̄/b0 can be
estimated by (7.51).
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Remark 7.6 The analysis in this subsection looks similar to that in [36], where
second-order systems were considered. However, the systems considered in this
chapter are more general and the design of the fault tolerant control scheme for such
systems is more challenging than that in [36]. In addition, we will propose a novel
active FTC scheme, which has wider application potentials.

7.3.3 Design of Novel Adaptive Fault Tolerant Controller

In the previously two subsections, the normal and passive fault tolerant controllers are
designed. In this subsection, we will construct a novel FTC scheme, which contains
both the advantages of the classical passive and active FTC schemes. Let us start by
recalling the passive and active FTC’s property.

Passive FTC is robust control techniques with respect to an a priori fixed set of
faults. Compared with active FTC, this approach is simpler, but more conservative.
In order to relax the conservatism of the passive FTC approach, active FTCmethod is
developed. In general, active fault tolerant control framework includes the following
steps: fault detection, isolation, estimation and accommodation. It is well known that
each step in the framework takes some time to complete.

In this chapter, the time delay between fault occurrence and fault accommodation
is called as TDDTFD. It is necessary to point out that, the considered system is always
controlled by the faulty actuators during the time delay interval, which degrades the
system performances and even damages the system. Hence, it is very important to
minimize its adverse effort on the considered systems’ performance when proposing
a proper solution.

In the following, wewill propose a novel fault tolerant controller. First, we assume
that the fault occurrence time t f is larger than the system stabilization time ts , i.e.,
t f > ts . That is to say, the tracking objective has been obtained before the actuator
fault occurrence.

Form Theorem7.1, we know that it is after ts , i.e., t ≥ ts , that the tracking error
has converged to a small neighborhood of the origin Ω ′

a , i.e., |ei (t)| ∈ Ω ′
a , which

means that the tracking control objective has been met. In other words, under the
normal controller, V0(t) ≤ δ0, t ≥ ts in the healthy case.

Define the following function

I (V0) =
{
1, if V0(t) > δ0 and t ≥ ts;
0, otherwise

Now, based on Theorems7.1 and 7.2, the fault tolerant controller is designed as
follows:

u = (1 − I (V0))unormal + I (V0)uPFTC (7.55)
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where unormal = −Ŵ T
0 S0(x) − |s|ε̂0 − |s|(d̄ + |γ |) − 1

2 s, uPFTC = −k(xn, s)s +
Ŵ T S(z)) + ur . Correspondingly, the adaptive laws should be modified as follows:

˙̂W 0 = (1 − I (V0))(η0sS0(x) + η10Ŵ0) (7.56)

˙̂ε0 = (1 − I (V0))(η0s + η10ε̂0) (7.57)

˙̂W =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− I (V0)ηW S(z)s, if ||Ŵ || < wm

or ||Ŵ || = wm and −Ŵ
T
S(z)s ≤ 0;

− I (V0)(ηW S(z)s + ηW
Ŵ Ŵ T S(z)s

||Ŵ ||2
),

if ||Ŵ || = wm and −Ŵ
T
S(z)s > 0

(7.58)

˙̂ε = I (V0)ηε |s| (7.59)

˙̂k1 = I (V0)η1(ηW Ns2sgn(s) + s

4

∑n−1

i=1
wi0|xi+1|) (7.60)

˙̂k2 = I (V0)η2 |γ s| (7.61)

˙̂k3 = I (V0)η3 |s| (7.62)

From (7.55), we can see that only one of the two controllers, i.e., unormal and
uPFTC , works at any one time. In fact, the fault occurred in the system can be
detected and the switch between unormal and uPFTC can be decided by the value of
the function I (V0). Therefore, I (V0) is called fault alarm.

The following theorem summarizes the aforementioned analysis.

Theorem 7.3 Consider system (7.1) and actuator fault (7.2) with Assumptions7.1–
7.4. If the control law (7.55) and the adaptive laws (7.56)–(7.62) are employed, then
the close-loop system is asymptotical stable with resulting tracking error converging
to a small neighborhood of the origin.

From the above analysis and the proofs of Theorems 1 and 2, it is easy to obtain
the conclusion. The detailed proof is omitted here.

Remark 7.7 In fact, unormal and uPFTC denote the normal controller (7.6) and the
passive fault tolerant controller (7.44), respectively. Obviously, the fault tolerant
controller (7.55) can be constructed directly from (7.6) and (7.44) and there is no
additional cost on the design and implementation of the controller (7.55).
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Remark 7.8 Notice that, if I (V0) = 0, which means that the actuator is healthy and
the tracking error does not converge to a small neighborhood of the origin Ω0,
i.e., |ei (t)| /∈ Ω0, the normal controller (7.6) works while the fault tolerant controller
(7.44) does not; if I (V0) = 1,whichmeans a fault has occurred, then the fault tolerant
controller (7.44) is activated. By using (7.44), one can meet the control objective as
shown in Theorem7.2. Obviously, the function I (V0) can detect fault, which is why
it is called as fault alarm.

7.4 Simulation

In this example, a system is described as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ1 = x2

ẋ2 = 1 − e−x1

1 + e−x1
− (x22 + 2x1) sin(x2) + u + d

y = x1

(7.63)

where d(t) = 0.5 sin(10t), xd = sin t + cos(0.5t). It is easily seen that b0 = 0.25,
b2 = 2025, and b3 = 1.5. For thiswork,we use the following parameters:ηε = ηW =
ηi = 2, i = 1, 2, 3, x(0) = (0.6, 0.5)T , W ∈ R10 are taken randomly in an interval
(0, 1], and the sample time is 0.08s.

In order to demonstrate the efficiency of the developed techniques, the following
three faultmodels are considered. In addition, for comparingwith the results obtained
in this simulation, the fault occurrence time T f = 10s.

Case 1: bias faults
Bias faults are common in practical applications. They can be described as follows:

u f =
{
u, t < 10

u + b f , t ≥ T f

In general, depending on whether the value of b f is constant or not, the faults can
be categorized into two classes: constant bias faults and time-varying faults. In this
simulation, it is assumed that b f = 2 cos(x1x2).

Simulation results are shown in Figs. 7.1, 7.2, 7.3 and 7.4. From Fig. 7.1, using
the proposed fault tolerant controller (7.55), the good tracking performance has
been obtained while the tracking errors globally asymptotically converge to a small
neighborhood of the origin shown in Fig. 7.2. Figures7.3 and 7.4 show the simulation
results using the fault tolerant control scheme in [50]. Comparing Figs. 7.1 and 7.2
with Figs. 7.3 and 7.4, it is clear that the time delay due to FD in the fault tolerant
control scheme proposed in this chapter is smaller than that in [50].
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Fig. 7.1 The time profiles of y and yd with (7.55)
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Fig. 7.2 The time profiles of tracking errors with (7.55)

Case 2: gain faults

Another class of common faults are gain faults, which are considered in [6, 16–18].
It is commonly described as:

u f =
{
u, t < 10

g f u, t ≥ T f
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Fig. 7.3 The time profiles of y and yd under the control scheme in [50]
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Fig. 7.4 The time profiles of tracking errors under the control scheme in [50]

where 0 < g f ≤ 1. Similar to bias faults, according to whether g f is constant or not,
they can be categorized into two classes: constant gain faults and time-varying faults.
In this simulation, we set g f = 1 + 0.2 sin(u).

Simulation results are shown in Figs. 7.5, 7.6, 7.7 and 7.8. From Fig. 7.5, using
the proposed fault tolerant controller (7.55), good tracking performance has been
obtained while the tracking errors globally asymptotically converge to a small neigh-
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Fig. 7.5 The time profiles of y and yd with (7.55)
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Fig. 7.6 The time profiles of tracking errors with (7.55)

borhood of the origin shown in Fig. 7.6. On the other hand, using the fault tolerant
control scheme in [50], we obtain different results, which are shown in Figs. 7.7 and
7.8. Comparing with Figs. 7.5, 7.6, 7.7 and 7.8, it is easily seen that the time delay
due to FD in the fault tolerant control scheme proposed in this chapter is smaller than
that in [50].
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Fig. 7.7 The time profiles of y and yd under the control scheme in [50]
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Fig. 7.8 The time profiles of tracking errors under the control scheme in [50]

Case 3: complex faults

In Cases 1 and 2, only gain faults or bias faults are considered. We now consider
complex faults, which contain not only gain faults but also bias faults. The considered
fault model can be described as follows:
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Fig. 7.9 The time profiles of y and yd with (7.55)
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Fig. 7.10 The time profiles of tracking errors with (7.55)

u f =
{
u, t < 10

g f u + b f , t ≥ T f

In this simulation, we use g f = 1 + 0.2 sin(u) and b f = 2 cos(x1x2).
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Fig. 7.11 The time profiles of y and yd under the control scheme in [50]
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Fig. 7.12 The time profiles of tracking errors under the control scheme in [50]

Simulation results are shown in Figs. 7.9, 7.10, 7.11 and 7.12. Figure6.9 shows the
response of y and yd using the proposed fault tolerant controller (7.55), good tracking
performance has been obtained while the tracking errors globally asymptotically
converge to a small neighborhood of the origin shown in Fig. 7.10. However, if the
FTC scheme in [50] is used, then the simulation results shown in Figs. 7.11 and

http://dx.doi.org/10.1007/978-3-319-52530-3_6
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7.12 are obtained. From Figs. 7.9, 7.10, 7.11 and 7.12, it can be easily seen that the
time delay due to FD in the fault tolerant control scheme proposed in this chapter is
smaller than that in [50].

From the simulation results in Cases 1–3, it can readily verify that the control
scheme proposed in this chapter can minimize the time delay due to FD.

7.5 Conclusions

In this chapter, we have investigated the problem of adaptive FTC for a class of
nonlinear systems with unknown actuator un-modeled actuator faults. The design
of the normal and fault tolerant controller is first analyzed. Then a novel neural
networks-based FTC scheme with fault alarm is proposed by using implicit function
theorem. The proposed scheme has the advantage of passive FTC scheme as well
as traditional active FTC scheme’s property and minimizes TDDTFD and its the
adverse effect. Moreover, the FTC scheme doesn’t require the FDI model which is
needed in the typical active FTC scheme.
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Chapter 8
Performance Analysis of the Effect of Time
Delay Due to Fault Diagnosis

8.1 Introduction

In modern control mechanisms, various systems components such as actuators, sen-
sors and processors may undergo abrupt failures during plant operation. To improve
system reliability and to guarantee system stability in all situations, many effective
fault-tolerant control (FTC) approaches including passive FTC and active FTC have
been proposed in literature. Active FTC uses a fault detection and isolation (FDI)
module and accommodation techniques. Generally speaking, there is always some
level of time delay, which is called as the time delay due to fault diagnosis (FD) in
this chapter, to detect, isolate and estimate the faults occurred in the systems [1].
When a fault occurs, the faulty system works under the nominal control until the
fault is detected, isolated and fault accommodation is performed, which may cause
severe loss of performance and stability. To our best knowledge, there are few chap-
ters considering the time delay’s adverse effect on the stability of the system. [2–5]
tried to investigate the problem. However, the results in [2–5] were obtained under
some restrictive conditions. Furthermore, the analytical expression of the time delay
due to FD did not be given explicitly in [2–5], which motivates this chapter, again.

In this chapter, we investigate the problem of FTC for a class of uncertain systems
with actuator time-varying faults. The time delay due to FD is derived strictly, and
it‘s effect on system performance is analyzed. Compared with the existing results in
the literatures, see for example, [2–5], the contribution from our work is as follows:
(i) The timedelay due toFD is derived strictly and its analytical expression is provided
explicitly. In addition, its adverse effect on the system performance is analyzed and
a proper solution to minimize its adverse effect is given; and (ii) The conditions that
the magnitudes of the faults should be satisfied such that the faulty system controlled
nominal controller maybe bounded even stable during the time delay interval are
derived; and
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The rest of this chapter is organized as follows. In Sect. 8.2, Actuator faults are
integrated in such model and the FTC objective is formulated. In Sect. 8.3, a FTC
scheme is given, which include fault detection, isolation, estimation and fault accom-
modation. In Sect. 8.4, the analysis of the effect of the time delay due to FD is devel-
oped. Simulation results of a fourth-order lateral F-8 aircraft model are presented to
demonstrate the effectiveness of the proposed technique in Sect. 8.5. Finally, Sect. 8.6
draws the conclusions.

8.2 Problem Statement

Consider the following system

{
ẋ(t) = Ax(t) + Bu(t) + H(x(t))

y(t) = Cx(t)
(8.1)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn , u(t) = [u1(t), · · · , um(t)]T ∈ Rm and
y(t) = [y1(t), · · · , yq(t)]T ∈ Rq denote system measurable state vector, control
input and system output, respectively, A, B and C are known real matrices with
appropriate dimensions, H(x(t)) = [h1(x(t)), · · · , hn(x(t))]T ∈ Rn , hi (x(t)) ∈ R
(i = 1, · · · , n) is an unknown nonlinear smooth function, which denotes the uncer-
tainty and modelling error.

Actuators may fail. In this chapter, the considered fault model can be described
as follows:

u f
i (t) = ui (t) + fi (t), t > tF (8.2)

where fi denotes an unknown but bounded signal, tF is an unknown fault occurrence
time.

The main task in this chapter is (i) to design FTC scheme for system (1) such
that its states can follow those of a reference model under both normal and faulty
conditions; (ii) to quantitatively analyze the time delay due to FD influence on the
system performance. A fault tolerant scheme is first proposed to detect, isolate,
estimate and accommodate faults occurred in the system controlled. Meanwhile, the
time delay is derived strictly and its analytical expression is provided explicitly. Then,
the analysis of system performance degraded by the time delay is developed, and the
conditions that the magnitudes of the faults should be satisfied such that the faulty
system controlled by the normal controller remains bounded even stable during the
time delay interval are derived. In addition, the corresponding solution to the adverse
effect of the time delay is proposed.

The reference model has the form as follows:{
ẋm(t) = Am x(t) + Br(t)

ym(t) = Cx(t)
(8.3)
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where xm(t) = [xm1(t), · · · , xmn(t)]T ∈ Rn , r(t) ∈ Rm and ym(t) ∈ Rq denote the
state vector, input and output of the reference model, respectively, Am, B and C are
known real matrices with appropriate dimensions.

Under normal system operation (fault-free), subtracting the reference model from
the system (8.1), it follows that

˙̃x(t) = Am x̃(t) + (A − Am)x(t) + B[u(t) − r(t)] + H(x) (8.4)

where x̃(t) = x(t) − xm(t), representing the tracking error.
For the system (8.1) and fault model (8.2), the following assumptions are made

in this chapter.

Assumption 8.1 Matrix B is of full column rank and the pair (A, B) is controllable
and (A, C) is observable.

Assumption 8.2 fi (t) and ḟi (t) are bounded, i.e., | fi (t)| ≤ f1, | ḟi (t)| ≤ f2, where
f1 > 0 and f2 > 0 are known real constants.

As a universal approximation, fuzzy logic systems (FLSs) have been widely used
in control field. In this chapter, the unknown smooth function hi (x) will be approxi-
mated by FLSs as follows: hi (x, θi ) = θ∗T

i ξi (x), where θ∗
i denotes the optimal para-

meter vector and ξi (x) is the fuzzy basis function,which defined as in [6–11].Optimal
approximation error is defined as εi = hi (x) − θi

∗T ξi (x).

Assumption 8.3 εi and θ∗
i
are bounded, i.e., |εi | ≤ ε∗

i , ε∗
i ≤ Miε, and ||θ∗

i
|| ≤ Miθ ,

where ε∗
i > 0 is an unknown real constant, Miε > 0 and Miθ > 0 are known real

constants.

Remark 8.1 In general, H(x(t)) in (8.1) is assumed to be satisfied so-calledmatching
condition in literature. This condition is strict and not always satisfied in practical
applications. This chapter, however, removes this condition.

In the following, for the convenience of notation, •(·) is simplified into •. For
example, x is the abbreviations of x(t).

8.3 Main Results

In the section, a FTC framework, which includes the following steps: fault detection,
isolation, estimation and accommodation, is proposed. Meanwhile, the time spent at
each step in FD is derived strictly.

8.3.1 Fault Detection

A normal state feedback controller is firstly designed to guarantee the tracking error
asymptotical converges to a compact set under the healthy condition (fault-free).
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Take the tracking error as residual signal. After the tracking error has converged to
a compact set, if the residual abruptly becomes large and does not belong to the
compact set, then it can be concluded that a fault occurs in the system. The following
result is given to explain the detailed design procedures.

Theorem 8.1 Under Assumptions 8.1–8.3, if there exist matrices K , P = PT > 0,
F and Q > 0 with appropriate dimensions such that the following condition holds

P(Am + BK ) + (Am + BK )T P ≤ −Q (8.5)

and the following adaptive and control laws are applied,

˙̂
θ i = 2x piξi (x) − ηθ θ̂i (8.6)

˙̂εi = 2x pi sgn(x̃ pi ) − ηεε̂i (8.7)

u = K x̃ + r − B+([A − Am]x + Ĥ + sgn(x̃ T P)ε̂) (8.8)

then, the error dynamics (8.4) is stable and all signals in the closed-loop system are
asymptotically bounded belonging to a neighborhood of the origin, i.e., Ω defined
as follows:

Ω =
{

(x̃, θ̃i , ε̃i )| ||x̃ || ≤ √
α/λmin(P), ||θ̃i || ≤√

2α|ε̃i | ≤ √
2α, i = 1, 2, · · · , n

}

where Ĥ = [ĥ1, · · · , ĥn]T
, ε̂ = [ε̂1, · · · , ε̂n]T , ĥi = θ̂T

i ξi (x), θ̂i and ε̂i are the esti-
mate values of hi , θ∗

i and ε∗
i , sgn(x̃ T P) = diag{sgn(x̃ p1), · · · , sgn(x̃ pn)}, x̃ pi is

the i th entry of x̃ T P, ηθ > 0 ∈ R and ηε > 0 ∈ R are design parameters, B+ is the
generalized inverse matrix of matrix B.

Proof Define V = x̃ T P x̃ + ∑n
i=1 (θ̃T

i θ̃i + ε̃2i )/2, where θ̃i = θ∗
i − θ̂i , ε̃i = ε∗

i − ε̂i .
Differentiating V with respect to time t , one has

V̇ =x̃ T (P(Am + BK ) + (Am + BK )T P)x̃+
2x̃ T P H − 2x̃ T P(Ĥ + sgn(x̃ T P)ε̂)−∑n

i=1
(ηθ θ̃

T
i

˙̂
θ i + ηεε̃i

˙̂εi )

Since
2x̃ T P H − 2x̃ T P(Ĥ + sgn(x̃ T P)ε̂)

≤
∑n

i=1
2x̃ pi (θ̃

T
i ξi (x) + sgn(x̃ pi )ε̃i )

from (8.5)–(8.7), one has

V̇ ≤ −x̃ T Qx̃ +
∑n

i=1
(ηθ θ̃

T
i θ̂i + ηεε̃i ε̂i )
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Since θ̃T
i θ̂i ≤ −θ̃T

i θ̃i/2 + θ∗T
i θ∗

i /2 and ε̃i ε̂i ≤ −ε̃2i /2 + (ε∗
i )

2/2, from Assumption
8.3, one further has

V̇ ≤ −x̃ T Qx̃ −
∑n

i=1
(ηθ θ̃

T
i θ̃i + ηεε̃

2
i )/2 + μ = −λV + μ

where μ = ∑n
i=1

ηθ M2
iθ +ηε M2

iε
2 and λ = { λmin(Q)

λmax(P)
,

ηθ

2 ,
ηε

2 }.
Since d

dt (V (t)eλt ) ≤ eλtμ, one has

V (t) ≤ μ/λ + (V (0) − μ/λ)e−λt ≤ μ/λ + V (0) (8.9)

Let α = μ/λ + V (0), one has ||x̃ || ≤ √
α/λmin(P), ||θ̃i || ≤ √

2α, and |ε̃i | ≤ √
2α,

which imply that all signals in the closed-loop system is asymptotical bounded
belonging to the compact set Ω .

From (8.9), it is easy to find that V (t) has the following property: It decreases
while time t increases. Since λmin(P)x̃ T x̃ ≤ x̃ T P x̃ ≤ V (t) one further has

||x̃ || ≤
√

(μ/λ + [V (0) − μ/λ]e−λt )/λmin(P)

Now, the residual is chosen as JD = ‖x̃‖ = ‖x − xm‖. Choose δD > 0 ∈ R and let

δD =
√

μ/λ+[V (0)−μ/λ]e−λt0

λmin(P)
, then one has

t0 = −
[
ln

λmin(P)δD − μ/λ

[V (0) − μ/λ]
]

/λ

It is necessary to indicate that, it is assumed that there is no any fault occurred
in actuators in the early stage in this chapter. A fault detection can be performed
conveniently utilizing the following mechanism:

{
JD > δD and t > t0 fault has occurred;

otherwise no fault occurred

Remark 8.2 Once faults occur at t = tF > t0, system state x varies at once, and
the residual JD thus has the same change, generally speaking, becomes greater
than JD(t0). Hence, the faults are almost immediately detected, where tF is fault
occurrence time. That is to say, fault detection time tD ≈ tF . Therefore, using the
mechanism, there is almost no additional time spent to detect fault.
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8.3.2 Fault Isolation

Since it is assumed that only one single actuator fails at one time, there are m faulty
cases. For each faulty case, we design an observer. The norm of the observer error
between the actual system state and each observer state is defined as a residual signal.
Hence, m residual signals are obtained. Then, residual signals are evaluated. For the
residual signals, only one is smaller than a given value (called as threshold) while
the others are larger than the threshold. Therefore, the fault is isolated. The details
is given in the following.

When the sth (1 ≤ s ≤ m) actuator is faulty, the faulty system can be described
as: {

ẋs = Axs + Bu + bs fs + H

ys = Cxs
(8.10)

where B = [b1, · · · , bm], bi ∈ Rn×1, 1 ≤ i ≤ m, fs is the time profiles of the sth
actuator fault described by (8.2).

The following observers are constructed to isolate the fault.

⎧⎪⎨
⎪⎩

˙̂xr = Ax̂r + L(ys − ŷr ) + Bu + r = 1, · · · , m

brμr f1 + Ĥ + sgn(eT
sr P)M̂ξ

ŷr = Cx̂r

(8.11)

where x̂r , ŷr are the r th observer’s state and output, respectively,μr = eT
sr P/||eT

sr P||,
L ∈ Rn×n is chosen such that A − LC isHurwitz, Ĥ = [ĥ1, · · · , ĥn]T

, ĥi = θ̂T
i ξi (x̂),

M̂ξ = [M̂1ξ , · · · , M̂nξ ]T
, M̂iξ and θ̂i are the estimate values of H , hi , Mξ =

[M1ξ , · · · , Mnξ ]T , Miξ and θ∗
i , Miξ will be defined later, sgn(eT

sr P) = diag
{sgn(ep1), · · · , sgn(epn)}, epi is the i th element of the vector eT

sr P , esr = xs − x̂r

denotes the state error between the faulty plant (10) and the r th observer (11),
P = PT > 0 denotes matrix, which will be defined later.

From (8.10) and (8.11), the error dynamics is obtained:
For s = r ,

ėsr =(A − LC)esr + bs( fs − μs f1) + H−
Ĥ − sgn(eT

sr P)M̂ξ

(8.12)

For s �= r ,
ėsr =(A − LC)esr + bs fs − brμr f1 + H−

Ĥ − sgn(eT
sr P)M̂ξ

(8.13)

Theorem 8.2 Under Assumptions 8.1–8.3, if there exist matrices L , Q > 0 and
P = PT > 0 with appropriate dimensions, such that the following conditions hold,



8.3 Main Results 197

P(A − LC) + (A − LC)T P ≤ −Q (8.14)

and the following adaptive laws are applied,

˙̂
θ i = 2epiξi (x̂) − ηθ θ̂i (8.15)

˙̂Miξ = 2epi sgn(epi ) − ηM M̂iξ (8.16)

then when the rth actuator is faulty, for s = r , limt→∞esr ∈ ΩI , and for s �= r ,
limt→∞esr /∈ ΩI , where ηM > 0 ∈ R and

ΩI =
{

(esr , θ̃i , M̃iξ )| ||esr || ≤ √
αI /λmin(P),

||θ̃i || ≤ √
2αI , |M̃iξ | ≤ √

2αI , i = 1, · · · , n

}

Proof Define VI = eT
sr Pesr + ∑n

i=1 (θ̃T
i θ̃i + M̃2

iξ )/2.
(1) For s = r , differentiating VI with respect to time t , and using (8.12), one has

V̇I ≤ − eT
sr Qesr + 2eT

sr Pbs( fs − μs f1)+
2eT

sr P(H − Ĥ) −
∑n

i=1
(θ̃T

i
˙̂
θ i + M̂iξ

˙̂Miξ )

Fromμs = −eT
sr P/||eT

sr P|| andAssumption8.2, onehas 2eT
sr Pbs(−μs f1 + fs) ≤ 0.

Since the abstract value of each entry of ξ T
i (x) is less than 1 [11], one has

2eT
sr P(H − Ĥ) ≤

∑n

i=1
2epi (θ̃

T
i ξi (x̂) + sgn(epi )M̃iξ )

where Miξ = √
2N ||θ∗

i || + ∑n
i=1 ε∗

i , N is the number of fuzzy rule. And since
2eT

sr Pbs( fs − μs f1) ≤ 0, one further has

V̇I ≤ − eT
sr Qesr +

∑n

i=1
2epi (θ̃

T
i ξi (x̂) + sgn(epi )M̃iξ )−∑n

i=1
(θ̃T

i
˙̂
θ i + M̃iξ

˙̂Miξ )

Similar to Theorem 8.1, substituting (8.15) and (8.16) into the above inequality, it
yields

V̇I ≤ − eT
sr Qesr −

∑n

i=1
(θ̃T

i θ̃i + M̃2
iξ )/2+∑n

i=1
(ηθθ

∗T
i θ∗

i + ηM(Miξ )
2)/2

From Assumption 8.3, one has

V̇I ≤ −λVI + μ
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where
λ = {λmin(Q)/λmax(P), ηθ/2, ηε/2},

μ =
∑n

i=1
(ηθ M2

iθ + ηM(
√
2N Miθ +

∑n

i=1
Miε)

2
)/2.

Since d
dt (V (t)eλt ) ≤ eλtμ, one has

0 ≤ VI (t) ≤ μ

λ
+ [VI (tD) − μ

λ
]e−λt ≤ μ

λ
+ VI (tD) (8.17)

Let αI = μ

λ
+ VI (tD), one has ||esr || ≤ √

αI /λmin(P), ||θ̃i || ≤ √
2αI , and |M̃iξ | ≤√

2αI , which imply that all signals in the closed-loop system is asymptotically
bounded belonging to compact set ΩI .

(2) For s �= r , according to (8.13), one has

ėsr = (A − LC)esr + bs fs − brμr f1 + H − Ĥ − sgn(eT
sr P)M̂ξ

Because matrix B is of full column rank (Assumption 8.1), bs and br are linearly
independent. Therefore, the following inequalities do not always hold

2eT
sr P(−brμr f1 + bs fs) ≤ 0

What’s worst, 2eT
sr P(−brμr f1 + bs fs) varies infinitely since bs and br are linearly

independent, which further cause that VI (t) varies infinitely. Thus, limt→∞esr /∈ ΩI .
From (1) and (2), we obtain the conclusions.

Now, denote the residuals between (8.10) and (8.11) as follows:

Jsr = ‖esr‖ = ∥∥xs − x̂r

∥∥ , 1 ≤ r ≤ m (8.18)

From Theorem 8.2, if s = r , then one has

λmin(P)||esr (t)||2 ≤ e−λI tλmax(P)||esr (tD)||2

Jsr ≤ √
λmax(P)/λmin(P)||esr (tD)||e−λt/2

If s �= r , from Theorem 8.1, one has

Jsr >
√

λmax(P)/λmin(P)||esr (tD)||e−λt/2

Therefore, fault isolation can be performed conveniently using the following mech-
anism: {

Jsr ≤ TI , r = s ⇒ the r th actuator is faulty

Jsr > TI , r �= s
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where the threshold TI is defined as TI = √
λmax(P)/λmin(P)||esr (tD)||e−λt/2. Fur-

ther, let δI = √
λmax(P)/λmin(P)||esr (tD)||e−λtI /2, one has

tI = −
(
2 ln

δI√
λmax(P)/λmin(P)||esr (tD)||

)
/λ (8.19)

From the above analysis, we can obtain, if fault occurred at t = tF in the sth actuators
has been detected at t = tD , the fault can be isolated at t = tI . Obviously, the time
interval [tD, tI ] is spent to isolate the fault, which is named as fault isolation time
(FIT).

8.3.3 Fault Estimation

Assuming the sth (1 ≤ s ≤ m) actuator is faulty. The faulty system can be described
as: {

ẋ = Ax + Bu + bs fs + H

y = Cx
(8.20)

To estimate the fault, an observer is presented as follows:

{ ˙̂x = Ax + Bu + bs f̂s + L(y − ŷ) + Ĥ + sgn(eT P)M̂ξ

ŷ = Cx̂
(8.21)

where f̂s is the estimate values of the fault fs(t) at time t , M̂ξ is defined as in (8.11).
Define e = x − x̂ and f̃s = fs − f̂s , then error dynamics is obtained:

ė = (A − LC)e + bs f̃s + H − Ĥ − sgn(eT P)M̂ξ (8.22)

Now, the stability of the error dynamics is analyzed to obtain the fault estimation.
The details are given by the following theorem.

Theorem 8.3 Under Assumptions 8.1–8.3, if there exist real matrices P = PT > 0,
L , F and Q > 0with appropriate dimensions, such that the following conditions hold

P(A − LC) + (A − LC)T P < −Q (8.23)

and the adaptive laws are adopted

˙̂f s =

⎧⎪⎪⎨
⎪⎪⎩
0, if f̂s = f1 and 2η1e

T Pbs > 0 or

f̂s = − f1 and 2η1e
T Pbs < 0;

2η1e
T Pbs, otherwise

(8.24)
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˙̂
θ i = 2epiξi (x̂) − ηθ θ̂i (8.25)

˙̂Miξ = 2epi sgn(epi ) − ηM M̂iξ (8.26)

where bs is the sth column of B, η1 > 0 denote the adaptive rates, then, the error
dynamics (8.22) is asymptotically stable and all signals involved in the closed-loop
system are semi-globally uniformly ultimately bounded, converging asymptotically
to a small neighborhood of the origin ΩE defined as follows:

ΩE =
{

(e, θ̃i , M̃iξ , f̃s )| ||e|| ≤ √
α/λmin(P),

| f̃s | ≤ √
2η1α, ||θ̃i || ≤ √

2α, |M̃iξ | ≤ √
2α

}

where α = μE/λE + VE (tI ), λE = min{ λmin(Q)

λmax(P)
, ηθ/2, ηε/2, 1}, μE = 2 f1(2 f1 +

f2)/η2 + μ and μ = ∑n
i=1 (ηθ M2

iθ + ηM(
√
2N Miθ + ∑n

i=1 Miε)
2
)/2.

Proof Define the following smooth function

VE = eT Pe + 1

2η1
f̃ 2s + 1

2

∑n

i=1
(θ̃T

i θ̃i + M̃2
iξ ) (8.27)

Differentiating VE with respect to time t , considering (8.23)–(8.26), similar to
Theorem8.2, yields

V̇E ≤ −eT Qe + 1

η1
f̃s ḟs −

∑n

i=1
(ηθ θ̃

T
i θ̃i + ηεε̃

2
i )/2 + μ (8.28)

where μ = ∑n
i=1 (ηθ M2

iθ + ηM(
√
2N Miθ + Miε)

2
)/2. Since | f̂s | ≤ f1, which can

be guaranteed by using the adaptive laws (8.24), and Assumption 8.2 (i.e., | fs(t)| ≤
f1, and | ḟs(t)| ≤ f2) are satisfied, one has

f̃s ḟs

η1
≤ − f̃ 2s

η1
+ 2 f1(2 f1+ f2)

η1
. Hence, (8.30)

can been rewritten as follows

V̇E ≤ −λE VE (t) + μE

where λE = min{λmin(Q)/λmax(P), ηθ/2, ηM/2, 1/η1} and μE = 2 f1(2 f1 + f2)/
η1 + μ. Then, one has, d

dt (VE (t)eλE t ) ≤ eλE tμE . Furthermore,

0 ≤ VE (t) ≤ μE

λE
+ [VE (tI ) − μE

λE
]e−λE t ≤ μe

λE
+ VE (tI )

Letα = μE

λE
+ VE (0), one has ||ex || ≤ √

α/λmin(P), ||θ̃i || ≤ √
2α, |M̃iξ | ≤ √

2α and

| f̃s | ≤ √
2η2α. This ends the proof.
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From Theorem 8.3, one has

λmin(P)||e(t)||2 ≤ VE (t) ≤ μE

λE
+ (VE (tI ) − μE

λE
)e−λE t

||e(t)|| ≤
√

μE

λE
+ (λmax(P)||es(tI )||2 − μE

λE
)e−λE t

λmin(P)

From the engineer point of view, the estimation objective is obtained when ||e(t)|| ≤
δE , where δE > 0 ∈ R. Let

δE =
√

μE

λE
+ (λmax(P)||es(tI )||2 − μE

λE
)e−λE tE

λmin(P)

one has tE = −(ln
λmin(P)|δ2E − μE

λE

(λmax(P)||es (tI )||2− μE
λE

)
)/λE . From the above analysis, up to t = tE ,

the fault occurred in the sth actuator which has been detected and isolated at the
point-in-time t = tD and t = tI , has been estimated. Obviously, the time interval
[tI , tE ] is spent to estimate the fault, which is named as fault estimation time (FET).

8.3.4 Fault Accommodation

On the basis of the estimated actuator fault and Theorem 7.1, the fault tolerant
controller is constructed as

us = uN
s − f̂s (8.29)

where uN
s is the sth normal control input, f̂s are the estimations of fs , which are used

to compensate for the fault.
Notice that, in this chapter, it is assumed that fault accommodation is activated

immediately as soon as fault has been estimated. That is to say, controller switching
is assumed to do not take any time.

8.4 Analysis of Time Delay’s Effect on Systems
Performance

In Sect. 8.3, the mathematic development of the time spent at each step of FTC has
been derived strictly and its analytical expression has been given. In this section, the
level of the adverse effect of the time delay due to FD is firstly analyzed during the
time interval [tF , tE ], and the corresponding solutions are proposed to minimize the
effect.

http://dx.doi.org/10.1007/978-3-319-52530-3_7
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Fig. 8.1 The fault diagnosis and accommodation time sequence

In order to describe clearly the problem, let us recall the procedures of FTC. In
general, FTC framework includes the following steps: fault detection, fault isola-
tion, fault estimation and fault accommodation (Fig. 8.1). Each step need some time.
Clearly, the time spent to FD contains not only FDI but also the other steps. Thus, in
this chapter, the time delay is called as time delay due to FD. It is necessary to point
out that, the considered system is always controlled by the faulty actuators during
[tF , tA], which degrades the system performances even damage the system. Hence, it
is very important to analyze its adverse effort on the considered systems performance
and to propose a proper solution.

It is assumed that only an actuator is faulty.Without lost of generality, it is assumed
that the i th actuator is faulty (u f

i = ui + fi ). Then the faulty system can be described
as follows:

ẋ = Ax + Bu + B Fi + H

where vector Fi ∈ Rm×1 is the vector whose i th component equals to fi (t) and the
others equal to zero.

Similar to Theorem 8.1, differentiating V = x̃ T P x̃ + ∑n
i=1 (θ̃T

i θ̃i + ε̃2i )/2 with
respect to time t , and considering control law u = K x̃ + r − B+([A − Am]x + Ĥ +
sgn(x̃ T P)ε̂), inequality (8.5) and adaptive laws (8.6) and (8.7), one has

V̇ ≤ − x̃ T Qx̃ + 2x̃ T P Bi fi −
∑n

i=1
(ηθ θ̃

T
i θ̃i+

ηεε̃
2
i )/2 +

∑n

i=1
(ηθθ

∗T
i θ∗

i + ηε(ε
∗
i )

2
)/2

(8.30)

where Bi is the i th column of B.
Note that, compared with Theorem 8.1, there exists an additional term 2x̃ T P Bi fi

in (8.30) that degrades directly the system performance. In order to show the degree
of its adverse effect on the system performance, the above inequality (8.30) is been
further derived as follows:

V̇ ≤ −λV + λmax(S−1)||Bi fi ||2 + μ (8.31)

where λ = min{ λmin(Q)

λmax(P)
− λmax(P S P), ηθ/2, ηε/2, 1/2}, μ = ∑n

i=1(ηθ M2
iθ + ηε

M2
iε)/2, matrix S = S−1 > 0 with appropriate dimensions. Obviously, if the fault

fi (t) satisfies the following property:
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| fi (t)| ≤ f1 <

√
p(λ − λmax(P S P)) + μ

λmax(S−1)||Bi ||2 (8.32)

where V (tF ) ≤ p, p ≥ 0 ∈ R denotes a constant, one has V̇ (t) ≤ 0 on V (tF ) = p.
Thus, V (t) ≤ p is an invariant set, i.e., if V (tF ) ≤ p, then V (t) ≤ p for ∀t ∈
[tF , tE ]. Further, from (8.32), it is easy to find that V (t) is also bounded by
λmax(S−1)||Bi ||2 f1

2 + μ.
On the other hand, if the fault fi (t) does not satisfy the property (8.32), then

one does not have the following conclusion: V̇ (t) ≤ 0 on V (tF ) = p. That is to say,

if f1 >

√
p(λ−λmax(P S P))+μ

λmax(S−1)||Bi ||2 , controlled by nominal controller defined by (8.8), the
tracking error between the faulty system and the reference model does not belong to
the compact set Ω during the time interval [tF , tE ].
Remark 8.3 It is necessary to point out that, it is during the time interval [tF , tE ]
that the stability of the faulty system is investigated. The initiation condition is set at
the point-in-timet = tF , not at the time point t = 0. Thus, the conclusion obtained
is, V (t) ≤ p for allt ∈ [tF , tE ], not for all t ≥ 0.

In the following, it is assumed that the fault fi (t) satisfies the property (32), and
wewill try to seek a proper solution to guarantee the tracking error between the faulty
system controlled by the normal controller and the reference model still belongs to
an acceptable small neighborhood of the origin during the time interval [tF , tE ].

Integrating (8.31) on the time interval [tF , tE ], one has

V (tE ) ≤ � + (V (tF ) − �)e−(λ−λmax (P S P))(tE −tF )

where� = λmax(S−1)||Bi ||2 f12+μ

λ−λmax(P S P)
. Since λmin(P)||x̃ ||2 = λmin(P)x̃ T x̃ ≤ x̃ T P x̃ , one has

λmin(P)||x̃ ||2 ≤ μ1

λ1
+ [V (0) − μ1

λ1
]e−λ1t

where μ1 = λmax(S−1)||Bi ||2 f12 + μ and λ1 = λ − λmax(P S P).
Further, one has, for ∀t ∈ [tF , tE ],

||x̃ || ≤√
� + (λmax(P)||x(tF )||2 − �)e−(λ−λmax(P S P))(t−tF )

λmin(P)

(8.33)

On the other hand, from Theorem 8.1, one has

V (t) ≤ μ/λ + (V (0) − μ/λ)e−λt ≤ μ/λ + V (0)
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Further, one has, for ∀t ∈ [tF , tE ],

||x̃(t)|| ≤
√

μ

λ
+ (λmax(P)||x̃(tF )||2 − μ

λ
)e−λ(t−tF )

λmin(P)
(8.34)

where
α = μ/λ + V (0), λ = {λmin(Q)/λmax(P), ηθ/2, ηε/2}

μ =
∑n

i=1
(ηθ M2

iθ + ηε M2
iε)/2.

Compared (8.33)with (8.34), one canfind, the additional term2xT (t)P Bi fi (t)not
only decreases the convergence rate of the state tracking error, where the convergence
rate e−λ(t−tF ) has decreased to e−(λ−λmax(P S P))(t−tF ), but also enlarges the bound of
the convergence set Ω defined as follows: ∀t ∈ [tF , tE ],

Ω =

⎧⎪⎨
⎪⎩

x̃(t)| ||x̃(t)|| ≤√
μ

λ
+ (λmax(P)||x̃(tF )||2 − μ

λ
)e−λ(t−tF )

λmin(P)

⎫⎪⎬
⎪⎭

which has been replaced by the set Ω ′ defined as follows: for ∀t ∈ [tF , tE ],

Ω ′ =

⎧⎪⎨
⎪⎩

x̃(t)| ||x̃(t)|| ≤√

 + (λmax(P)||x̃(tF )||2 − 
)e−(λ−λmax(P S P))(t−tF )

λmin(P)

⎫⎪⎬
⎪⎭

Therefore, the nominal control should be modified to guarantee the stability of
the faulty system for all t ∈ [tF , tE ].

From the above analysis, if the fault satisfies the property (8.32) and matrices
P = PT > 0, S = ST > 0, K and Q > 0 are chosen such that P(Am + BK ) +
(Am + BK )T P + P S P < −Q, then, one has

V̇ ≤ −λ1V (t) + μ1

where λ1 = λ − λmax(P S P), μ1 = λmax(S−1)||Bi ||2 f1
2 + μ. Further, one has, for

t ∈ [tE , tF ]
||x̃(t)|| ≤

√
μ1

λ1
+ (λmax(P)||x̃(tF )||2 − μ1

λ1
)e−λ1(t−tF )

λmin(P)

Theorem 8.4 Consider the tracking error dynamics (8.4) with actuator fault (8.2)
satisfied (32), Assumptions 8.1–8.3. If matrices P = PT > 0, S = ST > 0, K and
Q > 0 are chosen such that
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P(Am + BK ) + (Am + BK )T P + P S P < −Q (8.35)

and the following adaptive and modified normal control laws are applied,

˙̂
θ i = 2x piξi (x) − ηθ θ̂i (8.36)

˙̂εi = 2x pi sgn(x pi ) − ηεε̂i (8.37)

u = K x̃ + r − B+([A − Am]x + Ĥ + sgn(x̃ T P)ε̂) (8.38)

then, for all t ∈ [tF , tE ], the tracking error dynamics (4) still is stable with state
tracking error asymptotically converging at the convergence rate e−λ1(t−tF ) to the
compact set Ω1, specified as,

Ω1 =

⎧⎪⎨
⎪⎩

x̃(t)| ||x̃(t)|| ≤√
μ1

λ1
+ (λmax(P)||x̃(tF )||2 − μ1

λ1
)e−λ1(tE −tF )

λmin(P)

⎫⎪⎬
⎪⎭

Proof From the aforementioned analysis, it is easy to obtain the conclusion. The
detailed proof is omitted here.

Remark 8.4 It should be mentioned that, if (8.35) holds, then the inequality (8.5)
holds, too, which means that, the modified nominal controller which satisfies (8.35),
still guarantees that the healthy system (1) has good tracking performance during
[0, tF ).

8.5 Experimental Results

To demonstrate the effectiveness of the proposed approach, an unmanned helicopter
platform THeli260 shown in Fig. 8.2, is used in the experimental study. In gen-
eral, unmanned helicopter includes four independent input signals, namely lon-
gitudinal, latitudinal, heave and heading inputs. The internal dynamics includes
main rotor flapping dynamics, heading rate gyro dynamics, force/moment dynamics
and translational dynamics. The mathematical description of helicopters is essen-
tially nonlinear and time variant, which can be approximated in a linear form with
nonlinear uncertain terms as in literatures such as [12] and [13]. The system can
be divided into three subsystems, namely tip-path-plane subsystem, heave-heading
subsystem, and position-velocity subsystem. The position-velocity subsystem can
be described by (8.1), where the state x = [x1, x2, x3, x4]T = [px , py, vx , vy]T , the
input u = [u1, u2]T = [θ, φ]T , and
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Fig. 8.2 THeli260 unmanned helicopter

A =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 Rvx 0
0 0 0 Rvy

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
0 0

−g 0
0 g

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣

0
0

Raas

Rbas

⎤
⎥⎥⎦

These variables’ specification is given as follows: px is latitudinal position, py is
longitudinal position, vx is latitudinal velocity, vy is longitudinal velocity, θ is roll
angle,φ is pitch angle, as Latitudinal flapping angle, bs is longitudinal flapping angle,
bs is longitudinal flapping angle, and g is gravity constant.

THeli260’s diameters of main rotor and tail rotor are 1.77 and 0.27m respectively.
In this study, an external avionics system is designed and installed to update the vehi-
cle to an autonomousflight platform,which includes flight controller, flight computer,
barometer, ultrasound unit, wireless router, et al. its total weight is about 10kg. For
this THeli260, Ra = −9.81, Rb = 9.81, Rvx = −0.0076 and Rvy = −0.0093.

The ultimate objective in this chapter is for the helicopter to track a predefined
position trajectory xm(t), which are the states of the following model defined as (3)
with

Am =

⎡
⎢⎢⎣

−3.598 14.8468 −35.18 −21.96
−0.0377 −0.1397 5.884 −0.3269
0.0688 −1.0011 −0.2163 0.0814
0.9947 0.1027 0 0

⎤
⎥⎥⎦

Bm = B, Cm = C, r = [sin(t) cos(t)]T

We consider the case where only an actuator fails at one time:

u f
1 (t) = u1(t), u f

2 (t) =
{

u2(t), t < 20

u2(t) + 1.2 sin(t), t ≥ 20
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Fig. 8.3 State tracking error under the nominal condition
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Fig. 8.4 State tracking error under the faulty condition with FTC

The experimental results are presented in Figs. 8.3, 8.4, 8.5 and 8.6. From Fig. 8.3, it
is seen that, if no actuator fails, the tracking errors globally asymptotically converge
to a small neighborhood of the origin. From Fig. 8.4, it is easy to find out that by
using the proposed FTC (8.29), the state tracking errors become globally asymp-
totically bounded. Under the condition that the fault satisfies the condition (8.32),
the modified normal control (8.38) is employed and the result is obtained shown
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Fig. 8.5 State tracking errors with the modified controller (8.38)
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Fig. 8.6 State tracking error under the FTC approach in [14]

in Fig. 8.5. Comparing Fig. 8.4 with Fig. 8.5, it can been seen that better tracking
performance during the time delay due to FD can be obtained by using the modified
normal control (8.38), while the normal control (8.29) cannot guarantee the same
better performance. This means that the time delay’s adverse effect on the system
performance ismore serious, and further indicates themodified normal control (8.38)
can alleviate the adverse effect of the time delay due to FD.



8.5 Experimental Results 209

To compare with the works in [14], using the FTC approach in [14] where the
nonlinear term H(x(t)) was not considered, the controlled system is not stable even
in the fault-free case, as shown in Fig. 8.6. This further illustrates the effectiveness
of the FTC approach presented in this chapter.

8.6 Conclusions

In this chapter, the problem of FTC against actuator time-varying faults is investi-
gated, and an FTC scheme is proposed to guarantee that all signals in the closed-loop
system are globally asymptotically bounded. At the same time, the time delay due to
FD is derived strictly. Further, the analysis of control performance degraded by the
time delay is developed, and the conditions that the magnitudes of the faults should
be satisfied such that the faulty system controlled by the normal controller remains
good tracking performance during the time delay interval are derived. In addition,
the corresponding solution to the adverse effect of the time delay is proposed.
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Chapter 9
Adaptive Fault Detection for Uncertain
Time-Delay Systems

9.1 Introduction

Time delay phenomenon often exists in the practical applications because of informa-
tion transmission. It has been proven that such time delaywill causes the performance
degradation of the controlled systems, even instability. Hence, the research of such
class of time delayed systems has become a hot issue on [1–6]. Design of observer
including fault detection observer is an important and challenging problem. Themain
difficulty lies in handling the time delay [7]. For example, consider a simple system

{
ẋ(t) = Ax(t) + Adx(t − d) + Bu

y(t) = Cx(t)
(9.1)

where x, y and u denote state, output and control input, respectively; A, Ad , B and
C are known real matrices; d is a constant. In most of the existing results such as
[8], its observer often is designed as:

{ ˙̂x(t) = Ax̂(t) + Ad x̂(t − d) + Bu + L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)
(9.2)

where L is observer gain matrix. Notice that, the first equation in (9.2) contains
time delay term x̂(t − d). Obviously, if d is unknown, then observer (9.2) is not
reasonable and does not work in practical applications. Hence, how to avoid the
above shortcoming and design a proper observer for dynamical systems becomes
important and practically useful, which is the first motivation of our work.

On the other hand, faults/failures inevitable occur in the system parts such as
actuators and sensors, which will lead to the decreasing of the system performance.
In order to compensate for these faults/failures, various fault-tolerant control (FTC)
methods are proposed [9–68]. Among these FTC methods, active FTC methods
is more common and important useful [43–53]. Fault detect (FD) is the first and
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important step in active FTC method [9]. In general, the so-called FD observer is
designed to detect the faults occurred in the system. Recently, the FD problem of time
delay systems has drawn wide attentions. For time delay systems, however, most of
the FD observers proposed in literature are similar to (9.2), which also have the same
shortcoming, i.e., the FD observers contain the unknown time delay terms. In [8],
an asymptotic value of the norm of state estimation error vector is taken as a fault
indicator. However, the asymptotic value cannot be accessed in practical applications.
Therefore, how to design an efficient FD mechanism is another motivation of this
work.

Uncertainty/nonlinearity is common in the controlled systems. In general, as [8],
the uncertainty is assumed to be known and to satisfy the so-called Lipschitz con-
dition. Indeed, under the condition, control design and system stability analysis are
simplified largely. It should be pointed out that, however, this condition could not
be always satisfied in practical applications. Hence, how to efficiently detect the
fault occurred in nonlinear systems where the uncertainties do not satisfy Lipschitz
condition is particularly valuable and helpful, which also motivate us for this work.

In this chapter, based on the above-mentioned works, the FD problem of time
delay systems is considered, where neural networks (NNs) [59, 69, 70] are used to
approximate the unknown smooth functions. Compared with the existing results, the
contributions of our work are as follows:

(1) First, a novel adaptive neural networks-based fault detection observer is con-
structed for a class of uncertain time delay systems. In the observer design, by using a
suitable adaptation mechanism, the real value of time delay can be estimated online,
which means that the conditions (the time delay should be known) and shortcoming
(the fault detection observer contains the unknown time delay) are removed.

(2) Next, different from [8] where the uncertainty was assumed to satisfy the
Lipschitz condition, the condition is relaxed in ourwork, and it is just required that the
normof the uncertainty is less than the sumof unknown functions. Thus, the algorithm
proposed in this chapter can be used in the widespread practical applications.

(3) Furthermore, a novel fault detection mechanism is proposed, which is more
efficient for FD under practical conditions.

The rest of this chapter is organized as follows. Section9.2 gives the problem for-
mulation and the preliminaries of neural networks are presented. In Sect. 9.3, a novel
adaptive NNs-based fault detection observer is proposed. In Sect. 9.4, simulations
are presented. Finally, Sect. 9.5 draws the conclusions.

9.2 Problem Statement and Description of NNs

In this section, we will first formulate the fault detection problem. Then, the mathe-
matical description of NNs is introduced.
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9.2.1 Problem Statement

Consider the time-delayed system

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Adx(t − d) + Bu(t) + g(x(t), x(t − d); t)
y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [− d̄, 0]
(9.3)

where x(t) ∈ Rn is state, u(t) ∈ Rm is input and y(t) denote output; A, Ad , B and
C are known real matrices with appropriate dimensions; d ∈ R is unknown and
satisfies 0 < d ≤ d̄, d̄ is a known real constant;

g(·) = [g1(·), g2(·); · · · , gn(·)]T ∈ Rn,

gi (·) = gi (x(t), x(t − d); t) ∈ R, i = 1, 2, . . . , n are the uncertainties, which
denote model uncertainty, external disturbance, time-varying parameter variation,
and system nonlinearity; ϕ(t) is an arbitrarily known continuous bounded function.

Throughout this chapter, (A,C) is assumed to be observable and only system
output y is measurable.

In this chapter, the faulty system can be described as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = Ax(t) + Adx(t − d) + Bu(t)+
g(x(t), x(t − d); t) + f (x(t), u(t); t)

y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [−d̄, 0]
(9.4)

where f (·) ∈ Rn denotes the unknown faults occurred in actuators or the other
system components.

The aim of this chapter in this chapter is to design a suitable adaptive observer
and more efficient fault detection mechanism for system (9.3) to detect the occurred
faults.

For notational convenience, let us define the following notations: gi = gi (·) and
g = [g1, g2, · · · , gn]T . In addition, �(t) will be abbreviated as �.

Assumption 9.1 There exist two unknown smooth functions gi1(x(t)) ≥ 0 ∈ R,
gi2(x(t − d)) ≥ 0 ∈ R and an unknown real constant gi3 ≥ 0 satisfying

|gi | ≤ gi1(x(t)) + gi2(x(t − d)) + gi3.

Assumption 9.2 Time delay d is bounded, namely, there exist two known real con-
stants d̄ > 0 ∈ R and d > 0 ∈ R such d < d ≤ d̄.

Remark 9.1 In [8], the nonlinear function gi was assumed to be known satisfying
the Lipschitz condition. However, this condition could be not always satisfied in
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practical applications. In such case, the results in [8] would not work. In this chapter,
the condition is replaced by Assumption 9.1. What’s important, it is not necessary
that gi1, gi2 and gi3 are known, which relaxes largely the condition in [8]. Thus, the
proposedmethod in this chapter can be used in the widespread practical applications.

9.2.2 Mathematical Description of NNs

NNs have been widely used in controlling of nonlinear systems due to their capabil-
ities of nonlinear function approximation [69]. In this chapter, RBF NNs

h(Z , θ) = θT ξ(Z)

will be used to approximate a smooth function h(Z), where the weight vector θ , the
basis function vector ξ(Z) are defined as follows:

θ = (θ1, θ2, . . . , θN )T ,

ξ(Z) = (ξ1(Z), ξ2(Z), . . . , ξN (Z))T ,

θi (Z) = exp(−(
∑p

j=1
(z j − ai j )

2)/(μi )
2),

μi > 0 denotes the width of the receptive field, and ai j denotes the center of the
Gaussian function, z j denotes the j th element of Z , p denotes the dimension of Z ,
N is the number of the NNs nodes.

In this chapter, for i = 1, . . . , n, gi1(x(t)) and gi2(x(t − d)) are approximated by
NNs as:

ĝi1(x̂(t), θ̂i1) = θ̂T
i1ξi1(x̂(t))

ĝi2(x̂(t − d̂), θ̂i2) = θ̂T
i2ξi2(x̂(t − d̂))

Optimal parameter vectors θ∗
gi1 and θ∗

gi2 are defined as

θ∗
i1 = arg min

θi1∈Ωi1

[ sup
x∈U,x̂∈Û

|gi1(x(t)) − θ̂T
i1ξi1(x̂(t))|]

θ∗
i2 = arg min

θi2∈Ωi2

[ sup
x∈U,x̂∈Û

|gi2(x(t − d)) − θ̂T
i2ξi2(x̂(t − d̂))|]

where Ωi1, Ωi2,U and Û are compact regions for θ̂i1, θ̂i2, x and x̂ , d̂, θ̂i1 and θ̂i2 are
the estimates of d, θ∗

i1 and θ∗
i2, respectively.

The NNs minimum approximation errors are defined as
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εi1 = gi1(x(t)) − θ∗T
i1 ξi1(x̂(t)),

εi2 = gi2(x(t − d)) − θ∗T
i2 ξi2(x̂(t − d̂)).

Now, the following assumptions are made throughout this chapter.

Assumption 9.3 |εi1| ≤ ε∗
i1 and |εi2| ≤ ε∗

i2 , where ε∗
i1 > 0 ∈ R and ε∗

i2 > 0 ∈ R are
unknown constants.

9.3 Fault Detection Observer Design

For (9.3), the FD observer is designed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x(t) = Ax̂(t) + Ad x̂(t − d̂) + AdΔ1 + Bu(t)+
L(ŷ(t) − y(t)) + sgn(eTy F)ĝ + Δ2

ŷ(t) = Cx̂(t)

x̂(t) = 0, t ∈ [− d̄, 0]

(9.5)

where x̂(t) ∈ Rn is observer state, u(t) ∈ Rm is observer control input, and ŷ(t) is
observer output;

sgn(eTy F) = diag{sgn(eTy F1), . . . , sgn(eTy Fn)}

ĝ = ĝ1 + ĝ2 + ĝ3

ĝ1 = [ĝ11, . . . , ĝn1]T

ĝ2 = [ĝ12, . . . , ĝn2]T

ĝ3 = [ĝ13, . . . , ĝn3]T

ĝi1 (= ĝi1(x(t))), ĝi2 (= ĝi2(x(t− d̂))) and ĝi3 are the estimates of unknown smooth
functions gi1, gi2 and unknown constant gi3, respectively; gi1, gi2 and gi3 are defined
in Assumption 9.1, Fi (i= 1, 2, . . . , n) is the i th column of matrix F , which satisfies
the following condition

(FTC)T = P (9.6)

real matrix P = PT > 0 will be defined later, ey = y − ŷ, d̂ is an estimate of d, Δ1

and Δ2 are robust terms to be defined later.
Denote

ex (t) = x(t) − x̂(t), ed = x(t − d) − x̂(t − d̂)
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Then, from (9.3) and (9.5), the observer error dynamics can be described as follows:

ėx (t) = (A − LC)ex (t) + Adx(t − d) − Ad x̂(t − d̂)+
g̃ − AdΔ1 − Δ2

= (A − LC)ex (t) + Adx(t − d) − Ad x̂(t − d̂)−
Ad x̂(t − d) + Ad x̂(t − d) + g̃ − AdΔ1 − Δ2

= (A − LC)ex (t) + Adex (t − d) + Ad x̂(t − d)−
Ad x̂(t − d̂) + g̃ − AdΔ1 − Δ2

(9.7)

where g̃ = [g̃1, . . . , g̃n]T and

g̃i = gi − sgn(eTy Fi )(ĝi1 + ĝi2 + ĝi3),

Note that, Ad x̂(t − d) is added to and subtracted from the right side of (9.7).
Remark 3: Many researchers study the observer design of time-delayed systems

in literature. For example, consider

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Adx(t − d) + Bu(t)

y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [−d̄, 0]

where x , y and u denote the system state, output and input, d > 0 ∈ R denotes the
time delay. In general, as doing in [8], the FD observer was given as:

⎧⎪⎨
⎪⎩

˙̂x(t) = Ax̂(t) + Ad x̂(t − d) + Bu(t) + L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t)

x̂(t) = 0, t ∈ [− d̄, 0]

then we obtain the error dynamics

ėx (t) = (A − LC)ex (t) + Adex (t − d)

However, as Jiang pointed out in [7], the shortcoming of the aforementioned observer
is that d must be known. If not, the observer does not work in the practical applica-
tions. Hence, for avoiding the shortcoming, a novel fault detection observer (9.5) is
designed in this chapter.

Define the following smooth function

VDex = eTx (t)Pex (t) (9.8)

where P = PT > 0 is defined as in (9.6).
Differentiating VDex with respect to time t , we have
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V̇Dex =eTx (t)(P(A − LC) + (A − LC)T P)ex (t)+
2eTx (t)PAdex (t − d) + 2eTx (t)PAd(x̂(t − d)−
x̂(t − d̂)) + 2eTx (t)Pg̃ − 2eTx (t)P(AdΔ1 + Δ2)

(9.9)

From Young’s inequality, we have

2eTx (t)PAdex (t − d)

≤ eTx (t)PAd S
−1AT

d Pex (t) + eTx (t − d)Sex (t − d)
(9.10)

where real matrix S = ST > 0.
From Assumption 9.1, it follows

2eTx (t)Pg̃

=
∑n

i=1
2eTx (t)Pi g̃i

=
∑n

i=1
2eTx (t)Pi (gi − sgn(eTy Fi )ĝi )

≤
∑n

i=1
(|2eTx (t)Pi ||gi | − sgn(eTy Fi )2e

T
x (t)Pi ĝi )

where Pi is the i th column of matrix P .
From (9.6), we know, P = (FTC)T and P = PT > 0. Further, we have

eTx (t)Pi = eTy (t)Fi

Hence, we have

2eTx (t)Pg̃

≤
∑n

i=1
|2eTy (t)Fi ||gi | −

∑n

i=1
|2eTy (t)Fi |ĝi

≤
∑n

i=1
|2eTy (t)Fi |(gi1 + gi2 + gi3)−∑n

i=1
|2eTy (t)Fi |(ĝi1 + ĝi2 + ĝi3)

=
∑n

i=1
|2eTy (t)Fi |(g̃i1 + g̃i2 + g̃i3)

=
∑n

i=1
|2eTy (t)Fi |[θ∗T

i1 ξi1(x̂(t)) + εi1(x̂(t))−
θ̂i1ξi1(x̂(t)) + θ∗T

i2 ξi2(x̂(t − d̂))+
εi2(x̂(t − d̂)) − θ̂i2ξi2(x̂(t − d̂)) + g̃i3]

≤
∑n

i=1
|2eTy (t)Pi |(θ̃T

i1ξi1 + θ̃T
i2ξi2 + g̃i3)+∑n

i=1
|2eTy (t)Fi |(ε∗

i1 + ε∗
i2)

(9.11)
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where θ̃i1 = θ∗
i1 − θ̂i1, θ̃i2 = θ∗

i2 − θ̂i2, ξi1 and ξi2 are the abbreviations of ξi (x̂(t))
and ξi2(x̂(t − d̂)), respectively.

Substituting (9.10) and (9.11) into (9.9), it yields

V̇Dex ≤eTx (t)(P(A − LC) + (A − LC)T P)ex (t)−
2eTx (t)P(AdΔ1 + Δ2)+
eTx (t)PAd S

−1AT
d Pex (t)+

eTx (t − d)Sex (t − d)+
2eTx (t)PAd(x̂(t − d) − x̂(t − d̂))+∑n

i=1
|2eTy (t)Fi |(θ̃T

i1ξi1 + θ̃T
i2ξi2 + g̃i3)+∑n

i=1
|2eTy (t)Fi |(ε∗

i1 + ε∗
i2)

(9.12)

Define the following smooth function

VD1 =VDex +
∫ t

t−d
eTx (s)Sex (s)ds+

∑n

i=1
[ 1

2η1
θ̃T
i1θ̃i1 + 1

2η2
θ̃T
i2θ̃i2]+∑n

i=1
[ 1

2η3
g̃2i3 + 1

2η4
ε̃2i ]

(9.13)

where ε̃i = ε∗
i − ε̂i , ε∗

i = ε∗
i1 +ε∗

i2, ε̂i is the estimate of ε∗
i , ηl > 0 ∈ R, l = 1, 2, 3, 4

are adaptive rates, I is an identity matrix.
Differentiating VD1 with respect to time t , it yields

V̇D1 =V̇Dex + eTx (t)Sex (t)−
eTx (t − d)(S + 2I )ex (t − d)−∑n

i=1
[ 1
η1

θ̃T
i1

˙̂
θ i1 + 1

η2
θ̃T
i2

˙̂
θ i2]−

∑n

i=1
[ 1
η3

g̃i3 ˙̂gi3 + 1

η4
ε̃i ˙̂εi ]

(9.14)

Substituting (9.12) into (9.14), it yields
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V̇D1 ≤ eTx (t)Ξ1ex (t) − 2eTx (t)P(AdΔ1 + Δ2)+
2eTx (t)PAd(x̂(t − d) − x̂(t − d̂))+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
[|2eTy (t)Fi |ε∗

i − 1

η4
ε̃i ˙̂εi ]

(9.15)

where
Ξ1 = (P(A − LC) + (A − LC)T P + PAd S

−1AT
d P + S) (9.16)

Now, Δ1 and Δ2 are designed as follows:

Δ1 = sgn(eTy (t)FAd)(|x̂(t − d̂)| + |x̂m |)
Δ2 = sgn(eTy (t)F)ε̂

(9.17)

where
sgn(eTy FAd) = diag{sgn(eTy FAd1), . . . , sgn(eTy FAdn)},

sgn(eTy (t)F) = diag{sgn(eTy F1), . . . , sgn(eTy Fn)},

FAdi and Fi , i = 1, . . . , n, denote the i th column of matrix FAd and F , respectively,

|x̂(t − d̂)| = [|x̂1(t − d̂)|, · · · , |x̂n(t − d̂)|]T ,

|x̂m | = [x̂m1, . . . , x̂mn]T ,

x̂mi = max0≤τ≤d̄{|x̂i (t − τ)|}, i = 1, . . . , n,

matrix F satisfies (9.6), while FAd satisfies the following condition

PAd = (FT
AdC)

T
, (9.18)

and
ε̂ = [ε̂1, . . . , ε̂n]T

From (9.6), (9.17) and (9.18), we have

− 2eTx (t)PAdΔ1 + 2eTx (t)PAd(x̂(t − d) − x̂(t − d̂)) ≤ 0 (9.19)
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2eTx (t)PΔ2 =
∑n

i=1
|2eTy (t)Fi |ε̂i (9.20)

Substituting (9.19) and (9.20) into (9.15) and considering (9.6) and (9.18), one has

V̇D1 ≤eTx (t)Ξ1ex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )

(9.21)

In order to derive the adaptive law of d̂ , d̃eTy (t)ey(t) is added to and subtracted from
the the right hand of (9.21), then, we have

V̇D1 ≤ eTx (t)Ξ1ex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )+
d̃eTy (t)ey(t) − d̃eTy (t)ey(t)

(9.22)

where d̃ = d − d̂.
Since ey = Cex , we have

d̃eTy (t)ey(t) = d̃eTx (t)CTCex (t)

And since
d̃ = d − d̂ and eTx (t)CTCex (t) ≥ 0,

we have
d̃eTy (t)ey(t) = d̃eTx (t)CTCex (t)

= (d − d̂)eTx (t)CTCex (t)

= deTx (t)CTCex (t) − d̂eTx (t)CTCex (t)

≤ d̄eTx (t)CTCex (t)
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where the properties: 0 ≤ d ≤ d̄ (Assumption 9.2) and 0 ≤ d̂ , are used. Note that,
0 ≤ d ≤ d̂ ≤ d̄ is ensured by adaptive law (9.31). Further,

V̇D1 ≤ eTx (t)(Ξ1 + d̄CTC)ex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTx (t)Pi | − 1

η4

˙̂εi )−
d̃eTy (t)ey(t)

(9.23)

If Q > 0 ∈ Rn×n , L ∈ Rn×n and P = PT > 0 ∈ Rn×n are chosen to satisfy the
following inequality,

P(A − LC) + (A − LC)T P+
PAd S

−1AT
d P + S + d̄CTC ≤ −Q

(9.24)

then (9.23) can be developed as follows:

V̇D1 ≤ − eTx (t)Qex(t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )−
d̃eTy (t)ey(t)

(9.25)

Define the following Lyapunov function

VD = VD1 + 1

2η5
d̃2

where η5 > 0 is a design parameter.
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Differentiating VD with respect to time t and considering (9.25), it yields

V̇D ≤ − eTx (t)Qex (t)+∑n

i=1
[θ̃T

i1(|2eTy (t)Fi |ξi1 − 1

η1

˙̂
θ i1)]+

∑n

i=1
[θ̃T

i2(|2eTy (t)Fi |ξi2 − 1

η2

˙̂
θ i2)]+

∑n

i=1
[g̃i3(|2eTy (t)Fi | − 1

η3

˙̂gi3)]+∑n

i=1
ε̃i (|2eTy (t)Fi | − 1

η4

˙̂εi )−

d̃(eTy (t)ey(t) + 1

η5

˙̂d)

(9.26)

Define the following adaptive laws

˙̂
θ i1 = η1|2eTy (t)Fi |ξi1 − σ1

ˆ̂
θi1 (9.27)

˙̂
θ i2 = η2|2eTy (t)Fi |ξi2 − σ2

ˆ̂
θi2 (9.28)

˙̂gi3 = η3|2eTy (t)Fi | − σ3
ˆ̂gi3 (9.29)

˙̂εi = η4|2eTy (t)Fi | − σ4
ˆ̂εi (9.30)

˙̂d =

⎧⎪⎪⎨
⎪⎪⎩

κ, if d ≤ d̂ ≤ d̄ or

(d̂ = d̄ or d̂ = d) and d̂κ ≤ 0

0, if (d̂ = d̄ or d̂ = d) and d̂κ > 0

, d < d̂(0) < d̄ (9.31)

where i = 1, . . . , n, σl > 0, l = 1, . . . , 5 are design parameters, κ = −η5eTy (t)

ey(t) − σ5d̂.
Note that, under the initial condition that d < d̂(0) < d̄ , the adaptive law (9.31)

can guarantees that
d ≤ d̂(t) ≤ d̄, for t ≥ 0

In fact, it is easily derived by lyapunov stability theory. Let us define the following
Lyapunov function

Vd = 1

2
d̂2
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Differentiating Vd with respect to time t , we have

V̇d = d̂ ˙̂d

The following analysis will be derived in two cases.
Case 1: the first condition of (9.31) holds
Since

d ≤ d̂ ≤ d̄ or (d̂ = d̄ or d̂ = d) and d̂κ ≤ 0

we have
V̇d = d̂κ = d̂(−η5e

T
y (t)ey(t) − σ5d̂) ≤ 0

Case 2: the second condition of (9.31) holds
Because

(d̂ = d̄ or d̂ = d) and d̂κ > 0

we have
V̇d = d̂ · 0 = 0

From Cases 1 and 2, using Lyapunov stability theory, we have the following results,

d ≤ d̂(t) ≤ d̄, for t ≥ 0.

Note that,
0 = −η5e

T
y (t)ey(t) − σ5d̂ − (−η5e

T
y (t)ey(t) − σ5d̂)

Thus, the adaptive law (9.31) can be rewritten as follows:

˙̂d =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ, if d ≤ d̂ ≤ d̄ or

(d̂ = d̄ or d̂ = d) and d̂κ ≤ 0

− η5e
T
y (t)ey(t) − σ5d̂ − (−η5e

T
y (t)ey(t) − σ5d̂),

if (d̂ = d̄ or d̂ = d) and d̂κ > 0

Substituting adaptive laws (9.27)–(9.31) into (9.26), it yields

V̇D ≤ − eTx (t)Qex (t) + I d̃(−η5e
T
y (t)ey(t) − σ5d̂)+∑n

i=1
(σ1θ̃

T
i1θ̂i1 + σ2θ̃

T
i2θ̂i2)+∑n

i=1
(σ3g̃i3ĝi3 + σ4ε̃i ε̂i ) + σ5d̃ d̂

(9.32)

where I = 0 (or 1), if the first (second) condition of (9.31) holds.
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If the second condition of (9.31) holds, namely,

(d̂ = d̄ or d̂ = d) and d̂κ > 0

then
I d̃(−η5e

T
y (t)ey(t) − σ5d̂)

= I d̃
d̂d̂

d̂2
(−η5e

T
y (t)ey(t) − σ5d̂)

Note that,

d̃ d̂ = 1

2
[d2 − d̂2 − (d − d̂)2] (9.33)

If d̂ = d̄ and d̂(−η5eTy (t)ey(t) − σ5d̂) > 0, then

d̃ d̂ < 0

On the other hand, if d̂ = 0 and d̂(−η5eTy (t)ey(t) − σ5d̂) > 0, then

d̃ d̂ = 0

Hence, we have
d̃d̂ ≤ 0

And since d̂κ = d̂(−η5eTy (t)ey(t) − σ5d̂) > 0, we have

I d̃(−η5e
T
y (t)ey(t) − σ5d̂) ≤ 0

Therefore, (9.32) can be further derived as

V̇D ≤ − eTx (t)Qex (t)+∑n

i=1
(σ1θ̃

T
i1θ̂i1 + σ2θ̃

T
i2θ̂i2)+∑n

i=1
(σ3g̃i3ĝi3 + σ4ε̃i ε̂i ) + σ5d̃d̂

(9.34)

Since θ̃i1 = θ∗
i1 − θ̂i1, using Young’s inequality, we have

σ1θ̃
T
i1θ̂i1 = σ1θ̃

T
i1(θ

∗
i1 − θ̃i1)

= −σ1θ̃
T
i1θ̃i1 + σ1θ̃

T
i1θ

∗
i1

≤ −1

2
σ1θ̃

T
i1θ̃i1 + 1

2
σ1θ

∗T
i1 θ∗

i1

(9.35)
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Similarly, we have

σ2θ̃
T
i2θ̂i2 ≤ −1

2
σ2θ̃

T
i2θ̃i2 + 1

2
σ2θ

∗T
i2 θ∗

i2 (9.36)

σ3g̃i3ĝi3 ≤ −1

2
σ3g̃

2
i3 + 1

2
σ3g

2
i3 (9.37)

σ4ε̃i ε̂i ≤ −1

2
σ4ε̃

2
i + 1

2
σ4ε

2
i (9.38)

σ5d̃d̂ ≤ −1

2
σ5d̃

2 + 1

2
σ5d̄

2 (9.39)

Since
λmin(Q)eTx (t)ex (t) ≤ eTx (t)Qex(t)

then substituting (9.34)–(9.38) into (9.33), it yields

V̇D ≤ − λmin(Q)eTx (t)ex (t)−∑n

i=1
(

σ1

2η1
θ̃T
i1θ̃i1 + σ2

2η2
θ̃T
i2θ̃i2)−∑n

i=1
(

σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i ) − σ5

2η5
d̃2+∑n

i=1
(

σ1

2η1
θ∗T
i1 θ∗

i1 + σ2

2η2
θ∗T
i2 θ∗

i2)+∑n

i=1
(

σ3

2η3
g2i3 + σ4

2η4
ε∗2
i ) + σ5

2η5
d̄2

(9.40)

Let
μ =

∑n

i=1
(

σ1

2η1
θ∗T
i1 θ∗

i1 + σ2

2η2
θ∗T
i2 θ∗

i2)+∑n

i=1
(

σ3

2η3
g2i3 + σ4

2η4
ε∗2
i ) + σ5

2η5
d̄2

then (9.39) can be re-written as follows:

V̇D ≤ − λmin(Q)eTx (t)ex (t)−∑n

i=1
(

σ1

2η1
θ̃T
i1θ̃i1 + σ2

2η2
θ̃T
i2θ̃i2)−∑n

i=1
(

σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i ) − σ5

2η5
d̃2 + μ

(9.41)
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It can be seen from (9.40) that, if

λmin(Q)eTx (t)ex (t) + σ5

2η5
d̃2+∑n

i=1
(

σ1

2η1
θ̃T
i1θ̃i1 + σ2

2η2
θ̃T
i2θ̃i2 + σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i ) ≥ μ

then V̇D < 0. Hence, set Ω defined as:

Ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ex ,

θ̃i1,

θ̃i2,

g̃i3,

d̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λmin(Q)eTx ex + σ5

2η5
d̃2+∑n

i=1

σ1

2η1
θ̃T
i1θ̃i1+∑n

i=1

σ2

2η2
θ̃T
i2θ̃i2)+∑n

i=1
(

σ3

2η3
g̃2i3 + σ4

2η4
ε̃2i )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is an invariable set. This implies that ex , θ̃i1, θ̃i2, g̃i3 and d̃ are asymptotically bounded,
namely,

||θ̃i1|| ≤
√
2η1μ

σ1
, ||θ̃i2|| ≤

√
2η2μ

σ2
, ||g̃i3|| ≤

√
2η3μ

σ3
,

||ex || ≤
√

μ

λmin(Q)
,

||ε̃i || ≤
√
2η4μ

σ4
, |d̃| ≤

√
2η5μ

σ5

It is necessary to point out that the size ofΩ can become arbitrarily small by adjusting
the parameters: σi and ηi , i = 1, 2, . . . , 5.

Now, the following theorem is given to summarize the above design procedures
and analysis.

Theorem 9.1 Consider system (9.1) and observer (9.5) with Assumptions 1 and 2,
if there exist matrices L, F, FAd , Q > 0, S > 0 and P = PT > 0 satisfying (9.6),
(9.18) and (9.24), and adaptive laws (9.27)–(9.31) are used, then error dynamics
(9.7) is asymptotically bounded with all the signals in the closed-systems converging
to an adjustable neighborhood of the origin.

Proof From the above analysis, it is easy to obtain the conclusions. The detailed
proof is thus omitted here.

From Theorem 9.1, we have

||ex || ≤
√

μ

λmin(Q)
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Let us define detection residual

R(t) = ||y(t) − ŷ(t)|| = ||Cex (t)||

Obviously, in the free-fault case, one has

R(t) ≤ ||C ||
√

μ

λmin(Q)

Hence, by using the following mechanism, fault detection can be performed,

{
R(t) ≤ Td no fault occurred,

R(t) > Td fault has occurred
(9.42)

where Td = ||C ||
√

μ

λmin(Q)
.

Remark 9.2 It can been seen that, if there is no fault in the controlled system, then
limt→∞ex (t) = 0. If some actuator faults occur in system, then limt→∞ex (t) �= 0.
Thus, in some existing works, the fault detection is designed as:

{
limt→∞ex (t) = 0, no fault occurred

limt→∞ex (t) �= 0, fault has occurred

observer (9.5) was taken to as the FDobserver of system (9.1). However, ex (∞) is not
available in practice applications. Thus, ex (∞) �= 0 cannot be seen as an indicator
to detect fault occurrence or not. Hence, (9.32) is more efficient mechanism for FD
in practical applications.

9.4 Simulation Results

The following time delayed system is considered:

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Adx(t − d) + Bu(t) + g

y(t) = Cx(t)

x(t) = ϕ(t), t ∈ [− d̄, 0]

where

A =
[−4 0
1 0.5

]
, Ad =

[−0.1 0
0.2 0.2

]
, B =

[
0
1

]
,

C =
[
0.5 0
0 1

]
, g =

[
x1(t)sin(x2) + x2(t − d)sin(x1)
x2(t)cos(x1) + x1(t − d)cos(x2)

]
,
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time delay d = 0.5, φ(t) = e−1 − 0.1e−t .
In this simulation, it is assumed that the fault occurs at 6s in the system.
Note that (9.19) can be transformed to the the following linear matrix inequality

(LMI), [
PA − YC + AT P − CTY T + S + Q PAd

AT
d P −S−1

]
< 0

where Y = PL . By solving this LMI, we can have:

P =
[
1.7096 0.0590
0.0590 1.5033

]
, Q =

[
1.7414 0

0 1.7414

]
,

Y =
[
–5.9088 0.2191
1.0779 1.6224

]
, L =

[
–3.4856 0.0911
0.8537 1.0756

]

and

F =
[
2.5102 0.0590
0.1180 1.5033

]

The simulation results are shown in Figs. 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7 and 9.8.
From Fig. 9.1, It can be seen that the state observe errors are bounded, which implies
that the proposed observer has a better convergent property, while Fig. 9.2 shows the
residual signal asymptotically converges to the small neighborhood of the origin.
Figures9.3, 9.4, 9.5 and 9.6 also show the closed-loop system signals are bounded.
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Fig. 9.1 The state observer errors (no fault)
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Fig. 9.2 The residual signal (no fault)
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Fig. 9.3 The norm of θ̂11 (no fault)

However, when a fault occurs in the system, Fig. 9.7 shows that, the residual signal
significantly deviates from the origin, and the alarm occurs. Correspondingly, the
state observe errors significantly deviates from the origin, too, shown in Fig. 9.8.
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Fig. 9.5 The norm of θ̂13 (no fault)
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Fig. 9.6 Trajectory of d̂ (no fault)
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9.5 Conclusions

In this chapter, the fault detection problem of uncertain time-delayed systems is
studied. To overcome the shortcoming in existing works where the exact value of
time delay needs to be known, a novel adaptive NNs-based fault detection observer
is designed, which can estimate online the unknown time delay with system state.
Simulation results show the effectiveness of the technique proposed in this chapter.
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Chapter 10
Conclusion and Future Research Directions

10.1 Conclusions

With the development technology, modern control systems, such as flight control
systems, become more and more complex and involve an increasing number of actu-
ators and sensors. These physical components may become faulty which may cause
system performance deterioration, may lead to instability that can further produce
catastrophic accidents. Hence, the study of fault diagnosis and fault tolerant control
for dynamic systems has important theoretical and practical application significance.
This book focuses on the issues of adaptive fault diagnosis and fault tolerant control
for uncertain systems including linear and nonlinear systems. Themain contributions
presented in this book include

1. A general composite fault model with infinite number of faults is proposed, which
can deals with both time-varying gain and bias faults, and FD and FTC for nonlin-
ear systemswith such faults occurred in one ormultiple actuators are investigated,
respectively.

2. The FD and FTC problem of uncertain strict-feedback systems is considered.
Based on adaptive technology and other control techniques and/or methods, two
modifiedbacksteppingFDandFTCschemes are proposed,where the computation
complexity is significantly reduced.

3. By using the implicit function theorem and exploring the useful property of the
basis function of the radial basis function neural network, FD and fault compen-
sation for un-modeled faults are discussed.

4. The fault detection problem of uncertain time-delay systems is considered, and
a novel adaptive fault detection observer is proposed, which can estimate the
unknown time delay.

5. The time delay due to fault diagnosis and isolation (FDI) and its influence on the
controlled systems performance are quantitatively analyzed.
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10.2 Future Research Directions

Fault diagnosis and fault tolerant control for uncertain systems is a hot research topic
that has important both academic meaning as well as practical one. This book has
presented several recent results and applications on this topic. There exist still a
great number of crucial and fundamental issues to be exploited, which are open and
challenging. To the best of our knowledge, some problems are listed as follows.

1. Research on FD and FTC for nonlinear time-delay systems
Although Chap. 9 of this book has considered a class of time-delay systems
and proposed some FD and FTC methods, the FD and FTC problem of time-
delay systems, in particular, nonlinear time-delay systems is still challenging.
How to design FD observer for the nonlinear time-delay systems is one of main
difficulties, which deserves further research.

2. Research on FD and FTC for networked multi-agent systems
Cooperative or distributed control of multi-agent systems has attracted exten-
sive attention from the control community for the last decades. Although fruitful
results are and obtained in literature, most of the existing works only focus on the
healthy case, namely, there is no any faults in networked multi-agent systems. In
fact, networked multi-agent systems are more complex than single-agent systems
because they have a great number of physical components. Obviously, multi-
agent systems are quite likely to be faulty. Hence, FD and FTC for networked
multi-agent systems is necessary and important.

3. Research on discrete-time systems
This book focuses on continuous-time systems.Discrete systems including certain
and uncertain, linear and nonlinear systems are of interest in many practical
systems, e.g., digital control systems, networked control systems, etc. Although
fruitful results have been obtained for discrete systems, their stability analysis in
the presence of faults would become much more difficult. The research on on FD
and FTC for discrete-time systems is still interesting.

4. Research on FD and FTC for switched nonlinear systems
Switched systems, in particular, switched nonlinear time-delay systems, are used
to model many practical systems. Due to the existence of switching and a time
delay, the stability analysis of switched time-delay systems has new challenges,
especially when the systems are faulty. Although there are abundant results on
FD and FTC for switched systems reported in literature, most of them only focus
on actuator or sensor faults. The other faults, for example, the faults occurred in
the switching single, are not investigated deeply.

5. Research on FD and FTC using Filippov-framework
In control theory, system dynamics is usually described by the first order dif-
ferential equation on system state and control input. Note that, it is under the
assumption on the smoothness of the vector field that most of the existing results
in analysis and control of dynamical systems are established, namely, the right
hand side of the differential equation must be continuously differentiable.

http://dx.doi.org/10.1007/978-3-319-52530-3_9


10.2 Future Research Directions 239

However, when a fault occurs in system, the right hand side of the differential
equationdoes not remain continuously differentiable, andbecomesdiscontinuous.
That is to say, the above assumption does not hold, and the systems controlled
become discontinuous systems. Although there are many researchers begin to
consider systematic design problem with the Filippov framework in recent years,
they do not investigated the faults occurred systems. Therefore, it is still a chal-
lenging problem to establish an analysis approach with the Filippov framework
for FTC systems.
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