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Chapter 8      
Lessons and Challenges in Land Change 
Modeling Derived from Synthesis  
of Cross-Case Comparisons                                      

Robert Gilmore Pontius Jr., Jean-Christophe Castella, Ton de Nijs, 
Zengqiang Duan, Eric Fotsing, Noah Goldstein, Kasper Kok, Eric Koomen, 
Christopher D. Lippitt, William McConnell, Alias Mohd Sood, 
Bryan Pijanowski, Peter Verburg, and A. Tom Veldkamp

Abstract  This chapter presents the lessons and challenges in land change modeling 
that emerged from years of reflection and numerous panel discussions at scientific 
conferences concerning a collaborative cross-case comparison in which the authors 
have participated. We summarize the lessons as nine challenges grouped under three 
themes: mapping, modeling, and learning. The mapping challenges are: to prepare 
data appropriately, to select relevant resolutions, and to differentiate types of land 
change. The modeling challenges are: to separate calibration from validation, to pre-
dict small amounts of change, and to interpret the influence of quantity error. The 
learning challenges are: to use appropriate map comparison measurements, to learn 
about land change processes, and to collaborate openly. To quantify the pattern vali-
dation of predictions of change, we recommend that modelers report as a percentage 
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of the spatial extent the following measurements: misses, hits, wrong hits and false 
alarms. The chapter explains why the lessons and challenges are essential for the 
future research agenda concerning land change modeling.

Keywords  CLUE • CLUE-S • Environment Explorer • Geomod • Land 
Transformation Model • Land change • Land Use Scanner • LUCC • Map • Model 
• Prediction • SAMBA • SLEUTH • Validation

8.1  �Introduction

The first author of this chapter extended an open invitation to the community of land 
change modelers to participate in a cross-case comparison of spatially explicit land 
change modeling applications. The focus was the assessment of pattern validation 
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of the mapped output of such models, so the invitation requested that participants 
submit for any case study three maps of land categories: (1) a reference map of an 
initial time 1 that a land change model used for calibration, (2) a reference map of a 
subsequent time 2 that could be used for validation, and (3) a prediction map of 
same time 2 that the land change model produced. Ultimately, we compiled 13 cases 
from nine countries, which were submitted from seven different laboratories. 
Pontius et al. (2008) derived and applied metrics to compare those various cases. We 
presented our work at several scientific conferences. Pontius et al. (2008) has been 
cited more than 396 times as of September 2017 according to scholar.google.com, 
thus has had a substantial influence on the constantly growing field of land change 
modeling (Paegelow et  al. 2013). A frequent initial reaction that audiences have 
when they first hear about our exercise is to ask “Which model is best?” However, 
the exercise never intended to rank the models. The audience’s unintended reaction 
has been one of the inspirations for this follow-up chapter. The popularity of the 
question indicates that we must be careful to interpret the results properly, because 
the purpose of the exercise can be easily misinterpreted. We have found that the 
exercise’s methods and results inspire quite disparate conclusions from various sci-
entists. The purpose of the exercise was to gain insight into the scientific process of 
modeling, in order to learn the most from our modeling efforts. Therefore, this 
chapter shares the lessons that survived after years of reflection on both participa-
tion in the cross-case comparison and interactions with colleagues.

Figure 8.1 shows how we think of the lessons in terms of the flows and feed-
backs of information among the various components of modeling. The figure begins 
with the landscape in the upper left corner. Scientists create data to summarize the 
landscape. There is a tremendous amount of information that scientists can derive 
from simply analyzing the maps from two or more time points (Aldwaik and 
Pontius 2013; Runfola and Pontius 2013). Scientists anticipate that they can learn 
even more by engaging in a modeling procedure that produces a dynamic simula-
tion of land change. Scientists usually use a conceptual understanding of landscape 
dynamics to guide the selection or production of algorithms that express those 
dynamics. This chapter uses the word “model” to refer to such a set of algorithms, 
and the word “case” to refer to an application of the model to a particular study site. 
One way to assess a case is to examine the output that the model produces. 
Ultimately, a major purpose of the analysis is for scientists to learn from the mea-
surements of the data and the outputs from the model. Scientists can use this learn-
ing to revise the mapping, the modeling and/or the measurements of the data and 
the model’s output. The components of Fig. 8.1 reflect the structure of this chapter 
in that this chapter’s Methods section summarizes the techniques to measure both 
the data and the model’s output, while the subsequent Results and Discussion sec-
tion presents the most important lessons, organized under the themes of mapping, 
modeling, and learning.

8  Lessons and Challenges in Land Change Modeling Derived from Synthesis…

http://google.com


146

8.2  �Methods

All of the models have been published in peer-reviewed journals and books. Raster 
maps have been submitted by scientists from the laboratories that developed the 
models. Collectively, the sample of models and their applications cover a range of 
some of the most common modeling techniques such as statistical regression, cel-
lular automata, and machine learning. SAMBA is the single agent-based model in 
the collection. Table 8.1 offers specific characteristics of the nine models used for 
the 13 cases. These cases offer illustrations of these models that have been applied 
with various objectives, extents and resolutions. The model characteristics in 
Table 8.1 are necessary for proper interpretation. Geomod, Logistic Regression, and 
Land Transformation Model (LTM) use maps for which each pixel shows the land 
as either undeveloped or developed. These three models predict a single transition 
from the undeveloped category to the developed category. The other six models use 
maps of more than two categories to predict multiple transitions. For seven of the 
models, the user can set exogenously the quantity of each land cover category for 
the predicted map, and then the model predicts the spatial allocation of the land 
categories. SLEUTH and SAMBA do not have this characteristic. The cases that 
derive from LTM, CLUE-S, and CLUE use the quantity of each category in the 
reference map of time 2 as input to the model. For these cases, the model is assured 
to simulate the correct quantity of each category at time 2, thus the purpose of the 

Fig. 8.1  Conceputal diagram to illustrate flows and feedbacks of information among components 
and procedures for a systematic analysis. Rectangles are components of the research system; dia-
monds are procedures; the oval is the modeler whose learning can inform methods of mapping, 
modeling and measuring

R.G. Pontius Jr. et al.
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modeling application is to predict the spatial allocation of change. Most of the mod-
els are designed to use pixels that are categorized as exactly one category, while 
Land Use Scanner, Environment Explorer and CLUE can use heterogeneous mixed 
pixels for both input and output.

Both Land Use Scanner and Environment Explorer are applied to the entire 
country of The Netherlands. One substantial difference between these two cases is 
that the number of categories in the output map for the application of Land Use 
Scanner is eight, while the number of categories for the application of Environment 
Explorer is 15. LTM, CLUE-S, and CLUE are applied to more than one study area, 
which allows us to see variation in how a single model can behave in various case 
studies. Our sample does not include cases of how a single model can produce vari-
ous outputs for a single extent depending on how the model is parameterized. The 
possible variation due to parameterization of a single model is one reason why we 
do not rank the performance of the models.

Figure 8.2 shows the mapped results for each of the 13 cases. Each map in 
Fig. 8.2 derives from an overlay of the three maps that a modeler submitted. The 
first 11 of the 13 cases share the same legend, while Costa Rica and Honduras share 
a different legend because those two cases have mixed pixels. We encourage the 
profession to use the following short names for the categories in the legend of 
Fig. 8.2 (Brown et al. 2013). Misses are erroneous pixels due to observed change 
predicted as persistence. Hits are correct pixels due to observed change predicted as 
change. Wrong hits are erroneous pixels due to observed change predicted as change 
to the wrong gaining category. False alarms are erroneous pixels due to observed 
persistence predicted as change. Correct rejections are correct pixels due to observed 
persistence predicted as persistence.

Figure 8.3 summarizes the results where a segmented bar quantifies each case in 
terms of the legend of Fig.  8.2. Each bar is a Venn diagram where one set is the 
observed change and the other set is the predicted change, as the brackets illustrate for 
the case of Perinet. The “figure of merit” is a summary measurement that is a ratio, 
where the numerator is the number of hits and the denominator is the sum of hits, 
wrong hits, misses and false alarms (Pontius et al. 2007, 2011). If the model’s predic-
tion were perfect, then there would be perfect intersection between the observed 
change and the predicted change, in which case the figure of merit would be 100%. If 
there were no intersection between the observed change and the predicted change, 
then the figure of merit would be zero. Figure 8.3 orders the cases in terms of the fig-
ure of merit, which is expressed as a percent at the right of each bar. It is also helpful 
to consider a null model for each case. A null model is a prediction of complete per-
sistence, i.e. no change between time 1 and time 2 (Pontius et al. 2004a). Consequently 
the accuracy of the null model is 100% minus the percent of observed change. 
Figure 8.3 shows that the accuracy of the land change model exceeds the accuracy of 
its corresponding null model for 7 of the 13 cases at the resolution of the raw data.

Figure 8.4 plots for each case the figure of merit versus the percentage of observed 
change. Figure 8.4 reveals two clusters. The tight cluster near the origin shows that 
all of the cases that have a figure of merit less than 15% also have an observed change 
less than 10%. We analyzed many factors that we suspected might explain the predic-
tive power for the 13 cases and found that the percentage of change observed in the 
reference maps had the strongest relationship with predictive accuracy.

R.G. Pontius Jr. et al.
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Fig. 8.2  Maps of misses, hits, wrong hits, false alarms and correct rejections

8  Lessons and Challenges in Land Change Modeling Derived from Synthesis…
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Fig. 8.2  (continued)

We have been soliciting feedback on our exercise since the initial invitation to 
participate in 2004. We have presented our work at five international scientific 
conferences: the 2004 Workshop on the Integrated Assessment of the Land System 
in Amsterdam The Netherlands, the 2005 Open Meeting of the Human Dimensions 
of Global Environmental Change Research Community in Bonn Germany, the 2006 
Meeting of the Association of American Geographers in Chicago USA, the 2007 
World Congress of the International Association for Landscape Ecology in 

R.G. Pontius Jr. et al.
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Fig. 8.3  Misses, hits, wrong hits, and false alarms for pattern validation of 13 cases. Correct rejec-
tions are 100% minus the length of the entire segmented bar. Each bar is a Venn diagram where the 
union of hits and wrong hits is the intersection of observed change and predicted change

Fig. 8.4  Relationship 
between predictive 
accuracy and observed 
change

8  Lessons and Challenges in Land Change Modeling Derived from Synthesis…
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Wageningen The Netherlands, and the 2007 Transatlantic Land Use Conference in 
Washington DC USA. There were panel discussions in Amsterdam, Chicago and 
Wageningen, where authors shared their experiences and audience members shared 
their reactions. The next section of this chapter synthesizes the lessons that have 
withstood more than a decade of examination of this cross-case comparison.

8.3  �Results and Discussion

This section offers nine lessons. Each lesson has implications concerning the agenda 
for future research; therefore each lesson corresponds to a sub-section that articu-
lates a challenge for future modeling efforts. The lessons are grouped under three 
themes: mapping, modeling, and learning. These groupings emerged as the authors 
reflected on the various types of lessons. The first theme demonstrates that the selec-
tion of the spatial extent and the production of the data have a substantial influence 
on the results, so scientists must pay as much attention to the mapping procedure as 
they do to the modeling procedure. This message reinforces known fundamental 
concepts in mapping, which scientists must keep at the front of their minds. The 
second theme concerns the modeling process. The challenges under this second 
theme derive from insights that have emerged specifically as a result of this cross-
case exercise. They have implications for how scientists design and assess modeling 
procedures. The third theme focuses on learning, thus it emphasizes careful reflec-
tion on mapping and modeling. If mapping and modeling are not interpreted prop-
erly, then modelers can exert a tremendous amount of time and energy without 
learning efficiently. This third theme contains ideas for how modelers can maximize 
learning from mapping and modeling.

8.3.1  �Mapping Challenges

8.3.1.1  �To Prepare Data Appropriately

The decisions concerning how to format the data are some of the most influential 
decisions that scientists make. In some cases, scientists adopt the existing format of 
the available data, while in other cases scientists purposely format the data for the 
particular research project. Scientists must think carefully about the purpose of the 
modeling exercise when determining the format of the data. Formatting decisions 
concern the spatial, temporal and categorical scales in terms of both extent and reso-
lution. The apparent complexity of a landscape is a function of how scientists choose 
to envision it, which is reflected in their mapping procedures. If scientists choose a 
great level of detail, then any landscape can appear to be greatly complex; while if 
scientists choose less detail, then the same landscape can appear simpler than what 
the more detailed data portray. For example, the Dutch landscape is not inherently 

R.G. Pontius Jr. et al.
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more complex than the Perinet landscape. However the data for Perinet were for-
matted to show a one-way transition from forest to non-forest while the data for 
Holland(15) were formatted to show multiple transitions among 15 categories based 
on the data formatting decisions of the modelers. One could have attempted to ana-
lyze the Dutch landscape as two categories of built versus non-built, and could have 
attempted to analyze the Perinet data as numerous categories of various types of 
uses and covers. For example, Laney (2002) chose to analyze land change in 
Madagascar at a much finer level of detail and deeper level of complexity than 
McConnell et al. (2004). Anyone can choose a great level of detail for the data that 
will overwhelm the computational and predictive ability of any particular model. 
More detail does not necessarily lead to a more appropriate case study, just as less 
detail does not necessarily lead to a more appropriate case study. Scientists face the 
challenge to select a spatial resolution, spatial extent, temporal resolution, temporal 
extent, and set of categories for which a model can illuminate issues that are rele-
vant for the particular purpose of the inquiry.

Decisions concerning the format and detail of the data are fundamental for 
understanding and evaluating the performance of the model (Dietzel and Clarke 
2004). The Holland(8) case demonstrates this clearly as it relates to the reformatting 
from maps that describe many heterogeneous categories within each pixel to maps 
that describe the single dominant category within each pixel. The Land Use Scanner 
model was run for heterogeneous pixels of 36 categories, and then the output was 
reformatted to homogenous pixels of eight categories for the three-map comparison 
presented in Fig. 8.2. This reformatting is common to facilitate the visualization of 
such mixed pixel data. A major drawback of this reformatting is that it can introduce 
substantial overrepresentation of categories that tend to cover less than the entire 
pixel but more than any other category within the pixel (Loonen and Koomen 2009). 
Consequently, the reformatting can also introduce substantial underrepresentation 
of minority categories. These artifacts due to reformatting can generate more differ-
ences between the maps than the differences that the model generates by its pre-
dicted change. Such biases substantially influenced the analysis of the Holland(8) 
case and caused the apparent error of quantity for the predicted change to be larger 
than the error of quantity for the null model.

Decisions concerning how to format the data are influential, but scientists lack 
clear guidelines concerning how to make such decisions. It makes sense to simplify 
the data to the level that the calibration procedure and validation procedure can 
detect a meaningful signal of land change. It also makes sense to simplify the data 
so that the computer algorithms focus on only the important transitions among cat-
egories, where importance is related to the practical purpose of the modeling exer-
cise. Scientists who attempt to analyze all transitions among a large number of 
categories face substantial challenges. For the Santa Barbara, Holland(8), and 
Holland(15) cases, each particular transition from one category to another category 
in the reference maps occurs on less than 1% of the spatial extent. Each of these 
individual transitions would need to have an extremely strong relationship with the 
independent variables in order for a model to predict them accurately. Scientists can 
alleviate the challenge by aggregation from a set of numerous detailed categories to 

8  Lessons and Challenges in Land Change Modeling Derived from Synthesis…
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a set of fewer coarser categories. Aldwaik et al. (2014) offer an algorithm for how 
to aggregate categories while maintaining the signals of land change.

Decisions concerning the data are related closely to decisions concerning the level 
of complexity of the models. Models that simulate only a one-way transition from one 
category to one other category can be simpler than models that simulate all possible 
transitions among multiple categories. If scientists choose to analyze very detailed 
data, then they may be tempted or forced to use very complex models. It is not clear 
whether it is worthwhile to include great detail in the data and/or in the models, 
because it is not clear whether more detail leads to better information or to more error.

Modelers should consider the certainty of the data, because much of the apparent 
land change between two time points could be due to error in the reference maps at the 
two time points (Enaruvbe and Pontius 2015; Pontius and Lippitt 2006; Pontius and 
Petrova 2010). Participating scientists suspect that error accounts for a substantial 
amount of the observed difference between the two reference maps for Maroua, Kuala 
Lumpur, and Holland(15). Scientists should use data for which there is more variation 
over time due to the dynamics of the landscape than due to map error. This can be 
quite a challenge in situations where map producers are satisfied with 85% accuracy, 
which implies up to 15% error, while many data sets show less than 15% land change.

8.3.1.2  �To Select Relevant Spatial Resolutions

Spatial resolution is a component of data format that warrants special attention 
because: (1) spatial resolution can have a particularly strong influence on results, (2) 
spatial resolution is something that modelers usually can influence, and (3) it is not 
obvious how to select an appropriate spatial resolution. The spatial resolution at 
which landscapes are modeled is often determined by data availability and compu-
tational capacity. For example, if a satellite image dictates the resolution and extent, 
as it did in the Maroua case (Fotsing et al. 2013), then the boundaries of the study 
area and the apparent unit of analysis are determined in part by the satellite imaging 
system, not necessarily by the theoretical or policy imperatives of the modeling 
exercise. Kok et al. (2001) argue that the selection of resolution should take into 
consideration the purpose of the modeling application and the scales of the land 
change processes. For example, the Worcester case uses 30-m resolution data, but 
we know of no stakeholders in Worcester who need a prediction of land change to 
be accurate to within 30 m. Some stakeholders would like to know generally what 
an extrapolation of recent trends would imply over the next decade to within a few 
kilometers, which is a resolution at which Geomod predicts better than a null model 
as revealed by a multiple-resolution analysis of the model’s output. Therefore, it is 
helpful from the standpoint of model performance to measure the accuracy of the 
prediction at resolutions coarser than the resolution of the raw data. Pontius et al. 
(2008) show that 12 of the 13 case studies have more error than correctly predicted 
change at the fine resolution of the raw data. However, for 7 of the 13 cases, most of 
the errors are due to inaccurate spatial allocation over relatively small distances. 
Multiple-resolution analysis shows that the errors shrink when the results are 
assessed at a resolution of 64  times the length of the side of the original pixels. 

R.G. Pontius Jr. et al.
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Errors of spatial allocation shrink as resolution becomes coarser, but errors of quan-
tity are independent of resolution when assessed using an appropriate multiple-
resolution method of map comparison (Pontius et al. 2004a).

If there is more allocation error than correctly predicted change at the resolution of 
the raw data, then it means that the data have a resolution that is finer than the ability 
of the model to predict allocation correctly. This can be a desirable characteristic 
because it means that the modeling exercise is not limited by the coarseness of the 
spatial resolution of the data. If there is more correctly predicted change than alloca-
tion error than at the resolution of the raw data, then it might be an undesirable char-
acteristic because it might mean that the modeling exercise is limited by the coarseness 
of the spatial resolution of the data. The size of the error is larger than the size of 
correctly predicted change for 12 of 13 of our case studies at the spatial resolution of 
the raw data. Some scientists might conclude that the models are not accurate, while 
it may be more appropriate to conclude the data are more detatiled than necessary.

Advances in mapping technology have made it increasingly easy to find data that 
have a resolution finer than is necessary to address various research questions. If 
data are available at the meter resolution, then it does not imply that scientists are 
obligated to simulate changes accurately to within a meter. It might be desirable to 
run the model at a fine resolution, but to analyze the output at coarser resolutions in 
order to find a spatial resolution for which the model predicts sufficiently given the 
goals of the modeling exercise.

8.3.1.3  �To Differentiate Types of Land Change

Scientists should select the types of land change that are of interest before deciding 
which model to use, because some types of land change present particular chal-
lenges for models. It is useful to think of two major types of change: quantity differ-
ence and allocation difference. Quantity difference refers to the difference in the 
size of the categories in the reference maps of time 1 and time 2, while allocation 
difference refers to the difference in the spatial allocation of the categories given the 
quantity difference (Pontius et al. 2004b; Pontius and Millones 2011; Pontius and 
Santacruz 2014). Allocation difference exists when a category experiences loss at 
some places and gain at other places during a time interval. The reference maps for 
Holland(15), Cho Don, Haidian, Honduras and Costa Rica demonstrate more allo-
cation than quantity difference. In particular, Costa Rica demonstrates about ten 
times more allocation than quantity difference. When there is substantial allocation 
difference in the observed data, the model is faced with the challenge to predict 
simultaneous gains in some pixels and losses in other pixels for a single category in 
order to predict the change accurately. This can be much more challenging than to 
predict a one-way transition from one category to one other category. For example, 
the Worcester, Perinet, Detroit, and Twin Cities cases use models that are designed 
to simulate only the gross gain of only one category, while all the other cases use 
models that are designed to allow for simultaneous transitions among several cate-
gories. It is particularly challenging to write an algorithm for situations where more 
than one category competes to gain at a particular pixel.
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8.3.2  �Modeling Challenges

8.3.2.1  �To Separate Calibration from Validation

Calibration is the procedure to set the parameters of a model, based on information 
at or before time 1. Validation is the procedure to assess how the predicted change 
compares to the reference change from time 1 to time 2. Proper validation of tem-
poral prediction requires that calibration must be separate from validation though 
time. However, most of the cases used for calibration some information subsequent 
to time 1 in order to predict the change between time 1 and time 2. In 7 of the 13 
cases, the model’s calibration procedure used information directly from the refer-
ence map of time 2 concerning the quantity of each category. Other cases used 
influential variables, such as protected areas, that derive from contemporary time 
points subsequent to time 1. In these situations, it is impossible to determine whether 
the model’s apparent accuracy indicates its predictive power through time. If a 
model uses information from both time 1 and time 2 for calibration, then the mod-
el’s so-called prediction map of time 2 could be a match with the reference map of 
time 2 because the model parameters might be over fit to the data. The apparent 
accuracy would reflect a level of agreement higher than the level of agreement 
attributable to the model’s predictive power into an unknown future.

There are some practical reasons why modelers use information subsequent to 
time 1 to predict the change between time 1 and time 2. Some reasons relate to the 
purpose of the model; other reasons relate to data availability.

The cases that applied LTM, CLUE-S and CLUE used information directly from 
the reference map of time 2 concerning the quantity of each category, because the 
priority for those applications was to predict the spatial allocation of land change. The 
user can specify the quantity of each category independently from the spatial alloca-
tion for these models, which can be an advantage in allowing them to be used with 
tabular data and other types of models that generate non-spatial information concern-
ing only the quantity of each land category. For example, CLUE-S and CLUE can set 
the quantity of each category by using case-study-specific and scale-specific methods 
ranging from trend extrapolations to complex sectoral models of world trade.

Some models such as SAMBA require information that is available only for 
years after time 1. SAMBA is an agent-based modeling framework that uses infor-
mation from interviews with farmers concerning their land practices. For the Cho 
Don case, these interviews were conducted subsequent to time 2. Furthermore, the 
purpose of the SAMBA model is to explore scenarios with local stakeholders, not to 
predict the precise allocation of land transitions. The SAMBA team has been devel-
oping other methods for process validation of various aspects of their model 
(Castella et al. 2005b; Castella and Verburg 2007).

There are costs associated with separating calibration from validation informa-
tion, because strict separation prohibits the use of some variables that are known to 
influence land change but are available only for time points beyond the calibration 
time interval. The Worcester case accomplished separation between calibration 
information and validation information by restricting the use of independent 
variables. For example, maps of contemporary roads and protected areas are 
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available in digital form, but those maps contain some post-1971 information. The 
scientists for the Worcester application refrained from using these variables that are 
commonly associated with land change. Consequently, the Worcester case uses only 
slope and surficial geology as independent variables. Nevertheless, Pontius and 
Malanson (2005) show that there would not have been much increase in hits by 
using the map of protected areas, because such a map shows the places where 
change is prohibited, not the few places where change is likely to occur.

8.3.2.2  �To Predict Small Amounts of Change

All 13 of the cases have less than 50% observed change, seven of the cases show 
less than 10% observed change, while the Holland(8), Santa Barbara, and Twin 
Cities have less than 4% observed change. Land change during a short time interval 
is usually a rare event, and rare events tend to be difficult to predict accurately. 
Figure 8.4 gives evidence that smaller amounts of change in the reference maps are 
associated with lower levels of predictive accuracy.

The challenge to detect and to predict change is made even more difficult by 
insisting upon rigorous separation of calibration data from validation data, espe-
cially in situations where data are scarce. For example, many models such as 
Environment Explorer are designed to examine change during a calibration interval 
from time 0 to time 1, and then to predict the change during a validation interval 
from time 1 to time 2. The Holland(15) case separates calibration information from 
validation information using this technique, where the calibration interval is only 
7 years and the validation interval is only 4 years. In such situations, models may 
have difficulty in detecting a strong relationship between land change and the 
independent variables during the calibration interval, and the validation measure-
ments may fail to find a strong relationship between the predicted land change and 
the observed land change during the validation interval. One solution would be for 
scientists to invest the necessary effort to digitize maps of historic land cover, so 
scientists can have a longer temporal extent and finer temporal resolution during 
which to calibrate and validate.

8.3.2.3  �To Interpret the Influence of Quantity Error

Models that do not use the correct quantity of each category for time 2 must some-
how predict the quantity for each category for time 2. Modelers need to be aware of 
how error in the prediction of quantity influences other parts of the validation pro-
cess. Models typically fail to predict the correct allocation precisely; so models that 
predict more change are likely to produce more false alarms than models that pre-
dict less change, when assessed at fine spatial resolutions. For example, the 
Worcester case predicts more than the observed amount of change, which leads to 
false alarms. If the model were to predict less than the observed amount of change, 
then its output would have fewer false alarms and more correct rejections. In con-
trast, SLEUTH predicts less than half of the amount of observed change for the 
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Santa Barbara case, thus its error is close to that of a null model. It does not make 
sense to use criteria that reward systematic underestimates or overestimates of the 
quantity of each category. This is a weakness of using the percentage correct and the 
null model as benchmarks for predictive accuracy, and is a reason why Pontius et al. 
(2008) used the figure of merit as a criterion.

It is difficult to evaluate a model’s prediction of spatial allocation when there is 
large error in quantity, especially when the model predicts less than the amount of 
observed change in the reference maps. We can assess the model’s ability to predict 
spatial allocation somewhat when the model predicts the correct quantity, which is 
one reason modelers sometimes use the correct quantity at time 2 for simulation. 
Nevertheless, if we use only one potential realization of the model’s output map, then 
the model’s specification of spatial allocation is confounded with its single specifica-
tion of quantity. The Total Operating Characteristic (TOC) is a quantitative proce-
dure that can be used to measure a model’s ability to specify the spatial allocation of 
land change in a manner that allows the modeler to consider various specifications of 
quantity (Pontius and Si 2014). Scientists can compute the TOC for cases where the 
model generates a map of relative priority for the gain of a particular category, which 
many models do in their intermediate steps. The TOC allows scientists to measure a 
model’s ability to predict the few locations that change and a model’s ability to pre-
dict the majority of locations that persist. The TOC is a recent advancement inspired 
by the Relative Operating Characteristic (Swets 1988; Pontius and Parmentier 2014).

8.3.3  �Learning Challenges

8.3.3.1  �To Use Appropriate Map Comparison Measurements

Scientists have invested a tremendous amount of effort to create elaborate algo-
rithms to model landscape change. We are now at a point in our development as a 
scientific community to begin to answer the next type of question, specifically, 
“How well do these models perform and how do we communicate model perfor-
mance to peers and others?” Therefore, we need useful measurements of map com-
parison and model performance. Pontius et al. (2008) derived a set of metrics to 
compare maps in a manner that we hope is both intellectually accessible and scien-
tifically revealing, because analysis using rigorous and clear measurements is an 
effective way to learn. The initial invitation to participants asked them to submit 
their recommended criteria for map comparison. Few participants submitted any 
criteria, and those who did typically recommended the percentage of pixels in 
agreement between the reference map of time 2 and the prediction map of time 2.

This percentage correct criterion is one that many modelers consider initially. 
However, percentage correct can be extremely misleading, especially for cross-case 
comparisons. Percentage correct fails to consider the landscape dynamics, because 
percentage correct fails to include the reference map of time 1. For example, the 
Santa Barbara case has by far the largest percentage correct, 97%, simply because 
there is very little observed change on the landscape and the model predicts less 
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than the amount of observed change. On the other hand, the Cho Don case has the 
smallest percentage correct, 54%, primarily because the Cho Don case has more 
observed change than any other case. The Perinet case has the largest figure of 
merit, while its percentage correct of 81% ranks just below the median of the 13 
cases. Producer’s Accuracy, User’s Accuracy, and Kappa are other indices of agree-
ment that are extremely common in GIS and can be quite misleading in assessing 
the accuracy of land change models (Pontius and Millones 2011). The figure of 
merit has properties that are more desirable than metrics that are frequently used for 
pattern validation of land change models (Pontius et al. 2007, 2011). We recom-
mend the figure of merit for situations when it is necessary to rank numerous model 
runs with a single measurement. However, a single measurement offers only one bit 
of information thus fails to convey various important aspects of a pattern validation. 
For example, the figure of merit fails to convey the size of the reference change rela-
tive to the size of the predicted change.

We recommend much more highly that modelers report the sizes of misses, hits, 
wrong hits and false alarms, which are the components of the figure of merit. That 
combination of four measures is helpful in a variety of respects. For example, the false 
alarms are fewer than the misses when the model predicts less change than the refer-
ence change; and the false alarms are more than the misses when the model predicts 
more change than the reference change. If there exist false alarms at some locations and 
misses at other locations, then there exists allocation error. It is helpful to distinguish 
allocation error from quantity error, because the two types of error can have different 
implications for practical interpretation depending on the model’s purpose. For exam-
ple, if the purpose of the model is to simulate total carbon dioxide emissions due to 
deforestation, then allocation error is less important than quantity error for spatial 
extents where forest biomass is homogeneous (Gutierrez-Velez and Pontius 2012).

We need to continue to invest effort to improve methods of map comparison. The 
Map Comparison Kit includes a variety of new tools (Visser and de Nijs 2006). 
Modules in the GIS software TerrSet allow scientists to compare maps where the 
pixels have simultaneous partial membership to several categories, which is essential 
for multiple resolution comparison (Pontius and Connors 2009). The free software R 
contains packages that land change scientist will find helpful. The TOC package 
computes the Total Operating Characteristic (Pontius and Si 2014). The diffeR pack-
age gives components of difference at multiple spatial resolutions for two maps that 
show a single variable, such as maps from times 1 and 2 (Pontius and Santacruz 
2014). Moulds et al. (2015) created in R the lulcc package, which performs a variety 
of operations, including the multiple resolution calculation of misses, hits, wrong 
hits, false alarms and correct rejections as derived by Pontius et al. (2011).

8.3.3.2  �To Learn About Land Change Processes

During the panel discussions, participants agreed that a main purpose of modeling 
land use and cover change (LUCC) is to increase understanding of processes of 
LUCC, and that scientists should design a research agenda in order to maximize 

8  Lessons and Challenges in Land Change Modeling Derived from Synthesis…



160

learning concerning such processes, not merely to increase predictive accuracy. 
Therefore, scientists should strive to glean from a validation exercise useful lessons 
about the processes of land change and about the next steps in the research agenda.

Some attendees at the panel discussions expressed concern that this chapter’s 
validation exercises focus too much on prediction to the exclusion of increasing our 
understanding of the underlying processes of LUCC.  Many scientists profess to 
seek explanation, not necessarily prediction. Some scientists think that a model can 
predict accurately for the wrong reasons; in addition these scientists think a model 
can capture the general LUCC processes, but not necessarily predict accurately due 
to inherent unpredictability of the processes. These participants reminded the audi-
ence that pattern validation examines the output maps from the simulation models 
but does not examine whether the structure of the algorithm matches theory con-
cerning the processes of change. Process validation is required to validate the struc-
ture of the algorithm for process based models, especially when path dependence 
plays a role (Brown et al. 2005).

Other scientists see pattern validation as a means to distinguish better explana-
tions from poorer explanations concerning the LUCC processes. For these other 
scientists, pattern validation allows a modeler to gain insight concerning the degree 
to which the simulated change is similar to the observed change. Furthermore, sci-
entists must test the degree to which the past is useful to predict the future because 
this allows scientists to measure the scales at which LUCC processes are stable over 
time. A model’s failure to predict accurately may indicate that the process of land 
change is non-stationary in time and/or space, in which case pattern validation can 
reveal information that is helpful to learn about LUCC processes (Chen and Pontius 
2010; Pontius and Neeti 2010). Thus there is need for new methods, such as Intensity 
Analysis, that test for stationarity at various levels, even before any predictive model 
is run (Aldwaik and Pontius 2013; Runfola and Pontius 2013). If scientists interpret 
the validation procedure in an intelligent manner, then they can perhaps learn more 
from inaccurate predictions than from accurate ones. Consequently, inaccurate 
predictions do not mean that the model is a failure, because validation can lead to 
learning regardless of the revealed level of accuracy.

This difference in views might explain the variation in the LUCC modeling com-
munity concerning how best to proceed. One group thinks that models are too sim-
ple so that future work should consider more variables and develop more complex 
algorithms so the models can generate a multitude of possible outcomes. A second 
group insists that such an approach would only exacerbate an existing problem that 
models are already too complicated to allow for clear communication, even among 
experts. From this second perspective, contemporary models lack aspects of scien-
tific rigor that would not be corrected by making the models more complex. For 
example, many models fail to separate calibration information from validation 
information, fail to apply useful methods of map comparison, and fail to measure 
how scale influences the analysis. For this second group of scientists, it would be 
folly to make more complicated algorithms and to include more variables before we 
tackle basic issues, because we will not be able to measure whether more complex 
models actually facilitate learning about LUCC processes until we develop and use 

R.G. Pontius Jr. et al.



161

helpful measures of model performance. This apparent tension could be resolved if 
the scientists who develop more complex models collaborate with the scientists who 
develop clearer methods of model assessment.

8.3.3.3  �To Collaborate Openly

Participants at the panel sessions found the discussions particularly helpful because 
the sessions facilitated open and frank cross-laboratory communication. Many con-
ference participants expressed gratitude to the co-authors who submitted their maps 
in a spirit of openness for the rest of the community to analyze in ways that were not 
specified a priori. The design of the exercise encouraged participation and open col-
laboration because it was clear to the participants that the analysis was not attempt-
ing to answer the question “Which model is best?”

Some participants in the conference discussions reported that they have felt pro-
fessional pressure to claim that their models performed well in order for their manu-
scripts to be accepted for publication in peer-reviewed journals. We hope that this 
chapter opens the door for honest and helpful reporting about modeling results. In 
particular, we hope that editors and reviewers will learn as much from this study as 
the conference participants did, so that future literature includes useful information 
about model assessment. The criterion for acceptance of manuscripts should be 
rigor of method and clarity of presentation, not results concerning predictive accu-
racy, and certainly not vacuous claims of success.

There is clearly a desire to continue this productive collaboration because it 
greatly increases learning. One particularly constructive suggestion is to build a 
LUCC data digital library so that scientists would have access to each others’ data, 
models, and modeling results. The data would be peer-reviewed and have metadata 
sufficient so that anyone could perform cross-model comparison with any of the 
entries in the library. In order for this to be successful, scientists need sufficient 
motivation to participate, which requires funding and professional recognition for 
participation.

8.4  �Conclusions

The collective experience of the co-authors supports the statement that all models 
are wrong but some are useful (Box 1979). All 13 of the models are wrong in the 
respect that the outputs have errors. Errors in pattern validation mean that the pat-
terns extrapolated from the calibration time interval were not stationary with the 
patterns observed during the validation time interval. These errors are a reflection of 
the landscape as much as they are a reflection of the model. If the scientists interpret 
the results in a useful manner, then scientists can learn; and if scientists learn from 
a model, then the model was successful at advancing science. It is essential to use 
measurements that can be interpreted with respect to a model’s intended purposes in 
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order to facilitate learning. Clarity and rigor are necessary to establish procedures 
and measurements for informative judgments concerning model performance. This 
chapter illuminates common pitfalls and offers guidance for ways to overcome the 
pitfalls. Specifically, we recommend modelers report the sizes of misses, hits, wrong 
hits, and false alarms. Those four measurements are based on the mathematical 
ideas concerning the intersection of sets, which are regularly taught to elementary 
school students. If scientists meet the challenges specified in this chapter, then we 
are likely to learn efficiently, because meeting these challenges can help scientists 
prioritize a research agenda for land change science. To facilitate open collabora-
tion, we have made the raster maps used in this cross-case comparison available for 
free at www.clarku.edu/~rpontius.
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