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Chapter 2
Geospatial Analysis Requires a Different Way 
of Thinking: The Problem of Spatial 
Heterogeneity

Bin Jiang 

Abstract Geospatial analysis is very much dominated by a Gaussian way of 
thinking, which assumes that things in the world can be characterized by a well-
defined mean, i.e., things are more or less similar in size. However, this assumption 
is not always valid. In fact, many things in the world lack a well-defined mean, and 
therefore there are far more small things than large ones. This paper attempts to 
argue that geospatial analysis requires a different way of thinking – a Paretian way 
of thinking that underlies skewed distribution such as power laws, Pareto and 
lognormal distributions. I review two properties of spatial dependence and spatial 
heterogeneity, and point out that the notion of spatial heterogeneity in current spa-
tial statistics is only used to characterize local variance of spatial dependence or 
regression. I subsequently argue for a broad perspective on spatial heterogeneity, 
and suggest it be formulated as a scaling law. I further discuss the implications of 
Paretian thinking and the scaling law for better understanding geographic forms and 
processes, in particular while facing massive amounts of social media data. In the 
spirit of Paretian thinking, geospatial analysis should seek to simulate geographic 
events and phenomena from the bottom up rather than correlations as guided by 
Gaussian thinking.
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2.1  Introduction

Geospatial analysis, or spatial statistics in particular, has been dominated by a 
Gaussian way of thinking, which assumes that things are more or less similar in 
size, and can be characterized by a well-behaved mean. Based on this assumption, 
extremes are rare; if extremes do exist, they can be mathematically transformed into 
normal things (e.g., by taking logarithms or square roots). This Gaussian thinking is 
widespread, and has dominated the sciences for a very long time. However, Gaussian 
thinking has been challenged and been accused of misrepresenting our world 
(Mandelbrot and Hudson 2004; Taleb 2007). Indeed, many things in the world are 
not well behaved or lack of a well-behaved mean. This can seen from the extreme 
events such as the September 11 attacks. The extent of devastation of such events 
was enormous and beyond any predictions and estimations. This is the same for 
many geographic features, which exhibit a pretty skewed or heavy-tailed distribu-
tion such as power laws and lognormal distributions. The heavy-tailed distributions 
imply that there are far more small geographic features than large ones, namely 
scaling of geographic space.

A power law distribution is often referred to as scale free, literally meaning a 
lack of average for characterizing the sizes of things (Barabási and Albert 1999). 
The power law distribution has been given different formats for it was discovered by 
different scientists in different disciplines over the past 100 years. Among several 
alternatives, Zipf’s law (1949) and the Pareto distribution (Pareto 1897) are the two 
formats most frequently referred to in the literature. Zipf’s law, with respect to city 
sizes, implies that there are far more small cities than large ones, while the Pareto 
distribution indicates that there are far more poor people than rich people, or equiva-
lently far more ordinary people than extraordinary people. The Pareto distribution 
has been popularized as the 80/20 principle (Koch 1999) or the long tail theory 
(Anderson 2006) in the popular science and business literature. The heavy-tailed 
distribution, including power laws, lognormal and others similar, is what underlies 
the new way of thinking I want to advocate in this paper. The central argument is 
that geospatial analysis requires a new way of thinking radically different from 
Gaussian thinking, and spatial heterogeneity should be formulated as a scaling law 
of geography.

This is an unprecedented time when we face increasing rich geographic data 
sources based not only on the legacy of traditional cartography and remote sensing 
imagery, but also emerging from various social media such as Flickr, Twitter, and 
OpenStreetMap, collectively known as volunteered geographic information 
(Goodchild 2007). Today, one can amass gigabytes of an entire country’s data for 
geospatial analysis and computing, for both data volumes and computing capacity 
have increased dramatically. However, our mindsets, subsequently our analysis 
methods, have been relatively slower to adapt the rapid changes (Mayer-Schonberger 
and Cukier 2013). For example, we tend to sample data rather than take all data for 
geospatial analysis; we tend to transform skewed data into “normal” by taking loga-
rithms for example. The sampling and logarithm transformation have distorted the 
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underlying property of the data before the data can yield insights. The old way of 
thinking, Gaussian thinking, that relies on a well-defined mean to characterize geo-
graphic features, is a major barrier to achieving deep and new insights into geo-
graphic forms and processes.

Many analytical techniques have been developed, in both standard and spatial 
statistics, to address outliers, to measure skewness and autocorrelation, and to test 
significance. However, what I want to argue in this paper is not these techniques per 
se, but something radical in the way of thinking. Gaussian thinking, based on the 
assumption of independent things in a simple, static, and equilibrium world, is 
essentially a typical linear thinking, which implies that small cause small effect, 
large cause large effect, and the whole is equal to the sum of its parts. This linear 
thinking is a simple way of thinking guided by the reductionism philosophy, and for 
understanding a simple world in essence (see Sect. 2.2.2 for more details). The 
reader may argue that spatial statistics differs from standard statistics in spatial 
dependence or spatial autocorrelation. It is indeed true, but the notion of spatial 
dependence or autocorrelation does not help us to go beyond Gaussian thinking 
assumed by standard statistics, for we tend to characterize things by a well-defined 
mean with a limited variance. It is well recognized that geographic forms are fractal 
rather than Euclidean, and geographic processes are nonlinear rather than linear 
(Batty and Longley 1994; Chen 2009). In other words, a geographic system is a 
complex nonlinear world, in which there is the butterfly effect, and the whole is 
greater than the sum of its parts. In this paper, I attempt to argue that the Paretian 
way of thinking, founded on the assumption of interdependent things in a complex, 
dynamic, and nonequilibrium world, is more appropriate for geospatial analysis, 
and for better understanding geographic forms and processes. Geospatial analysis, 
while facing increasing amounts of social media data, should seek to uncover the 
underlying mechanisms through simulations from the bottom up rather than simple 
causality or correlations.

The remainder of this paper is organized as follows. Section 2.2 introduces, in a 
pedagogic manner, two distinct statistic distributions, namely Gaussian- and 
Paretian-like distributions, with a particular focus on the underlying ways of think-
ing. Section 2.3 reviews two unique properties of spatial dependence and spatial 
heterogeneity, and points out that the notion of spatial heterogeneity in current spa-
tial statistics is only used to characterize local variance of spatial dependence. I 
therefore argue, in Sect. 2.4, that spatial heterogeneity should be formulated as a 
scaling law, and suggest some effective ways of detecting and revealing the scaling 
law and pattern for geographic features. I further discuss, in Sect. 2.5, some deep 
implications of Paretian thinking and the scaling law before draw a summary in 
Sect. 2.6.
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2.2  Two Distinct Distributions and the Underlying Ways 
of Thinking

In this section, I first illustrate statistical differences between a homogenous 
Gaussian-like distribution and a heterogeneous Paretian-like distribution (Note the 
‘homogenous’ is relative to the ‘heterogeneous’; see Sect. 2.2.1 for more details), 
using temperature and population of major US cities, and based respectively on 
histograms and rank-size plots. The temperature is the annual average maximum 
during 1981–2010, taken from the site: http://www.prism.oregonstate.edu/products/
matrix.phtml, while the population is according to the 2010 US census. I then elabo-
rate on the underlying ways of thinking or world views associated with the two 
categories of distributions.

2.2.1  Gaussian- Versus Paretian-Like Distributions

If we carefully examine two variables  – temperature and population  – of 720 
major U.S. cities with population greater than 50,000 people, we can see that the 
two variables are very distinct. Although not a normal distribution, the tempera-
ture can be well characterized by its mean 20.6 (Fig. 2.1a). One can estimate a 
city’s temperature fairly accurate and precise based on the mean value, since the 
highest is 31.6, and the lowest is 9.3. In other words, the mean 20.6 is a typical 
temperature for US cities. The distribution that can be characterized by a well-
defined mean is referred to as a Gaussian-like distribution including for example 
the binomial and Poisson distributions. This temperature distribution can be fur-
ther assessed from the detailed statistics as shown in Table 2.1 (the temperature 
column). The range between the highest (31.6) and the lowest (9.3) is not very big 
(22.3), and the ratio of the highest to the lowest is as little as 3.4. The two  measures 
of central tendency – mean and median – are the same. The standard deviation is 

Fig. 2.1 Histograms of (a) the temperature, and (b) the population of U.S. cities (Note: the two 
distinct distributions indicate respectively Gaussian-like and Paretian-like distributions)
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4.9, about one quarter of the range. This statistical picture of the temperature is 
very distinct from that of the city size or population.

The histogram of the population is extremely right skewed (Fig.  2.1b). This 
extreme skewness is reflected in several parameters: a wide range (8,273,676), a 
huge ratio (166), and a large standard deviation (393,004). In such a significantly 
skewed distribution, the mean of 157,467 make little sense for characterizing the 
population. In other words, the mean of 157,467 does not represent a typical size of 
the U.S. cities, since the largest city is as big as 8 millions, while the smallest city is 
as small as 50,000. The right skewed histogram indicates that there are far more 
small cities than large ones in the U.S. No wonder that the two measures of central 
tendency – mean and median – differ from each other significantly; refer to Table 2.1 
(the population column) for more details. The standard statistics, or the histogram 
in particular, is little effective for describing data with a heavy-tailed distribution 
such as city sizes. Instead, power law based statistics, or rank-size plots in particu-
lar, should be adopted for characterizing this kind of data.

Instead of plotting temperature and population on the x-axis (as in the histo-
grams), they are plotted on the y-axis, while the x-axis is the ranking order. This 
way of plotting is called rank-size plot, or rank-size distribution (Zipf 1949). The 
largest city (in terms of population) ranks number one, followed by the second larg-
est, and so on. The same arrangement is made for the temperature; the highest tem-
perature city ranks number one, followed by the second highest, and so on. The two 
distribution lines look very different; the temperature curve drops gradually, and 
then reaches quickly the minimum, while the population curve drops quickly and 
then gradually approaches the minimum (Fig. 2.2). Note that the red parts in the 
figure are those above the averages, called the head, while those below the averages, 
called the tail, are shown in blue. More specifically, 362 cities (approximately 50%) 
are above the average temperature 20.6, while only 146 cities (approximately 20%) 
are above the average city size 157,467. Clearly, a heavy or long tail (80% in the 
tail) exists for the population distribution, but a short tail (50%) for the temperature 
distribution. Generally, a heavy-tailed distribution possesses an inbuilt imbalance 
between the head and the tail (e.g., a 70/30 or 80/20 relationship). This imbalance 
indicates a nonlinear relationship between the head and the tail. Such an inbuilt 

Table 2.1 Statistics about 
temperature and population 
of U.S. cities

Statistics Temperature Population

Minimum 9.3 50,056
Maximum 31.6 8,323,732
Range 22.3 8,273,676
Ratio 3.4 166
Mean 20.6 157,467
Median 20.6 82,115
Mode 14.9 62,820
St. Dev. 4.9 393,004
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imbalance, or nonlinearity, is clearly missing in a Gaussian-like distribution with a 
well-balanced relationship between the head and the tail (e.g., 50/50).

2.2.2  The Underlying Ways of Thinking

The differences between the two distributions lie fundamentally in different ways of 
thinking, or different ways of viewing the world, rather than different techniques 
associated with each distribution. Technically, data with a Paretian-like distribution 
can be easily transformed into a Gaussian-like distribution, e.g., by taking loga-
rithms. Gaussian thinking implies more or less similar things in a simple, static, and 
equilibrium world, while Paretian thinking believes in far more small things than 
large ones in a dynamic, complex, and nonequilibrium world (McKelvey and 
Andriani 2005; see Table 2.2). Standard statistics teaches us that if the probability 
of an event is small, then the event occurs rarely. The event can be considered an 
outlier that is literally distant from the rest of the data. However, in Paretian think-
ing, an event of small probability, or the highly improbable, has a significant impact 
(e.g., the September 11 attacks) and thus be ranked highly.

In Gaussian thinking, the world does not change much, and all changes occur 
around a stable and well-defined mean. Thus, the presumed Gaussian world is static, 

Fig. 2.2 Rank-size plots of (a) the temperature, and (b) the population of the U.S. cities (Note: 
values above and below the averages are respectively in red and blue; clearly, there is a short head 
and a long tail for the population, forming an unbalanced contrast, while the values above and 
below the averages are more or less the same for the temperature)

Table 2.2 Comparison 
between the two ways of 
thinking

Gaussian thinking Paretian thinking

With a mean (or scale) Without a mean (or scale-free)
Static Dynamic
Simple Complex
Equilibrium Non-equilibrium
Linear Nonlinear
Predictable Unpredictable
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simple, linear, and predictable. The Newtonian physics is sufficient to understand 
and deal with the Gaussian world. Why does such a predictable world exist? Such a 
world reflects a lack of interaction and competition among individual agents; every 
agent acts independently without influences upon or affects from others. This 
assumption is fundamental to standard statistics, and of course appropriate for many 
events in the world like human heights. Spatial statistics differentiate it from stan-
dard statistics in spatial dependence, but it does not change fundamentally the 
underlying way of thinking – Gaussain thinking with a well-defined mean for char-
acterizing things. On the other hand, in Paretian thinking, the world is full of sur-
prises, and changes are often dramatic and unexpected. Thus, there is no stable and 
well-defined mean for characterizing the surprises and changes. The presumed 
Paretian world is essentially dynamic, complex, nonlinear, and unpredictable. This 
unpredictable world is founded on the assumption that everything is related to, or 
interdependent with, everything else. This interdependence assumption implies that 
cooperation and competition would eventually lead to unbalanced results character-
ized by a long-tail distribution (c.f. Sect. 2.3 for more discussions).

Nature is awash with phenomena such as trees, rivers, mountains, clouds, coast-
lines, and earthquakes that exhibit power laws or heavy-tailed distributions in gen-
eral (Mandelbrot 1982; Schroeder 1991; Bak 1996). Accordingly, power law has 
been formulated as a fundamental law in various disciplines such as physics, biol-
ogy, economics, computer science, and linguistics. People’s daily activities are also 
governed by power laws (Barabási 2010), indicating bursty behaviors of human 
mobility or activities in general. Power laws are a signature of complex systems that 
are evolved in nonlinear manners, i.e., small causes often have disproptional large 
effects. For instance, the top 10% of the most connected streets account for 90% of 
traffic flows (Jiang 2009). In a 21-block area of Philadelphia, 70% of the marriages 
occurred between people who lived no more than 30% of that distance apart (Zipf 
1949).

The examination of the two ways of thinking suggests that Paretian-like distribu-
tion, or Paretian thinking in general, appears more appropriate for understanding 
geographic forms and processes, for dependence is a key property of spatial statis-
tics (c.f., Sect. 2.3 for more details). In spite of spatial dependence being its key 
property, spatial statistics is still unfortunately very much dominated by Gaussian 
thinking. The very notion of spatial heterogeneity refers to local variance of spatial 
dependence, but from global to local, or from one single correlation coefficient to 
multiple coefficients (c.f., Sect. 2.3 for more details). In the remainder of this paper, 
we review two spatial properties of dependence and heterogeneity, and argue that 
spatial heterogeneity is ubiquitous, and it should be formulated as a scaling law. 
And we further discuss some deep implications of the scaling law and Paretian 
thinking for better understanding of geographic forms and processes in the era of 
big data.

2 Geospatial Analysis Requires a Different Way of Thinking: The Problem of Spatial…



30

2.3  Spatial Properties of Dependence and Heterogeneity

It is well known that in contrast to the independence assumption of standard statis-
tics, geographic phenomena or events are not random or independent. Geographic 
events are more likely to occur in some locations than others (spatial heterogeneity), 
and nearby events are more similar than distant events (spatial dependence). Both 
spatial heterogeneity and spatial dependence are referred to as spatial properties, 
indicating respectively that geographic events are related to their locations and to 
their neighboring events. Spatial dependence is widely known or formulated as the 
first law of geography: “Everything is related to everything else, but near things are 
more related than distant things” (Tobler 1970). For example, your housing price is 
likely to be similar (positive correlation) to those of your neighbors. Similarly, the 
elevations of two locations 10 m apart are likely to be more similar than the eleva-
tions of two locations of 100 m apart. Note that “likely” indicates a statistical rather 
than a deterministic property; one can always find exceptions in statistical trends.

Spatial heterogeneity refers to no average location that can characterize the 
Earth’s surface (Anselin 1989; Goodchild 2004). This is indeed true, while for 
example referring to the diversity of landscapes and species (animals and plants) on 
the Earth’s surface (Wu and Li 2006; Bonner 2006). This diversity or heterogeneity 
indicates uneven geographic and statistical distributions involving both landscapes 
and species – that is, a mix of concentrations of multiple species (biological), terrain 
formations (geological), environmental characteristics (such as rainfall, tempera-
ture, and wind) on the one hand, and various concentrations of various types of 
species on the other. A variety of habitats such as different topographies, soil types, 
and climates can accommodate a greater number of species. These are the natural 
environments of the Earth’s surface. Spatial heterogeneity in geography also con-
cerns human-made built environments created by human activities such as industri-
alization and urbanization, and in particular, for example, the diversity of human 
settlements or cities in particular. Given the diversity or spatial heterogeneity of the 
Earth’s surface, homogeneous Gaussian-like distribution is unlikely to be the right 
means to characterize complex geographic features.

Spatial dependence and spatial heterogeneity are properties to spatial data and 
geospatial analysis (Anselin 1989; Griffith 2003), and probably the two most impor-
tant principles of geographic information science (GIScience). Goodchild (2004) 
has been a key advocator for formulating general principles for GIScience. On sev-
eral occasions, he has made insightful remarks on spatial heterogeneity or spatial 
properties in general. His definition of spatial heterogeneity as “no average loca-
tion” is in effect the notion of scale-free used to characterize things that exhibit a 
power law or heavy-tailed distribution (Barabási and Albert 1999). On the other 
hand, he stated, with respect to spatial heterogeneity, that all locations are unique, 
due to which geography might be better considered as an idiographic science, study-
ing the unique properties of places (Goodchild 2004). However, I argue, in contrast 
to Goodchild, that spatial heterogeneity makes geography a nomothetic science. 
This is because spatial heterogeneity itself is a law – the scaling law, implying that 
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there are far more small geographic features than large ones. Spatial heterogeneity 
is a kind of hidden order, which appears disordered on the surface, but possesses a 
deep order beneath. This kind of hidden order can be characterized by a power law 
or a heavy-tailed distribution in general.

Current spatial statistics suffers from what I call ‘spatial heterogeneity paradox’. 
Spatial heterogeneity is defined as no average location, but we tend to use a well- 
defined mean or average to characterize locations. This paradox implies that our 
mindsets are still constrained by Gaussian thinking. The current notion of spatial 
heterogeneity refers to local variance of spatial dependence or regression. This can 
be seen from the development of local spatial statistics and local statistical models 
that initially brought spatial heterogeneity into spatial statistics (Anselin 1989). 
Local spatial statistics concern local variants of spatial autocorrelation or regres-
sion, a measure to spatial dependence, including, for example, the local statistical 
models (Getis and Ord 1992), the LISA techniques (Anselin 1995), and 
geographically- weighted regression (Fotheringham et al. 2002). The shifting per-
spective of spatial autocorrelation from global to local brings new insights into spa-
tial dependence, or the heterogeneity of spatial dependence. However, all these 
techniques and models are essentially based on Gaussian statistics, using a well- 
defined mean with a limited variance. To paraphrase Mandelbrot (Mandelbrot and 
Hudson 2004), spatial heterogeneity refers to ‘wild’ variances, but Gaussian-like 
distribution can only characterize ‘mild’ variances.

Human activities are the major forces behind spatial heterogeneity in the built 
environments. While carrying out activities, human beings (and their interventions) 
must respect the spatial heterogeneity of Nature – that is, harmonize with rather 
than damage the natural environments. Geographic information concerning urban 
and human geography captures essentially spatial variations of the built environ-
ments, which demonstrate ‘wild’ heterogeneity as well. For example, Zipf’s law on 
city sizes (Zipf 1949) mainly concerns such a spatial variation. Thus, I argue, in 
contrast to the conventional view, that dependence, or more precisely interdepen-
dence, is a first-order effect, while heterogeneity is a second-order effect. Let us do 
a thought experiment. Imagine that once upon a time, there were no cities, only 
scattered villages. Over time, large cities gradually emerge through the interactions 
of villages, so do mega cities through the interactions of cities. The interactions 
(competition and cooperation) of villages and cities are actually those of people act-
ing individually and/or collectively. These interactions are what we mean by depen-
dence and interdependence. Eventually, there are far more small cities than large 
ones through for example the mechanism of “the rich get richer.” This observation 
is the same for the wealth distribution among individuals in a country; far more poor 
people than rich people, or far more ordinary people than extraordinary people 
(Epstein and Axtell 1996). The interactions among people and cities reflect the 
interdependence effect in the formation and evolution of cities and city systems, and 
the built environments in general.
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2.4  Spatial Heterogeneity as a Scaling Law

The subtitle of this paper ‘The Problem of Spatial Heterogeneity’ is an homage to 
the classic work ‘The Problem of Spatial Autocorrelation’ (Cliff and Ord 1969), 
which popularized the concept of spatial dependence. Similarly, spatial heterogene-
ity under Gaussian thinking is indeed a problem because the Earth’s surface cannot 
be characterized by a well-defined mean. However, in the Paretian way of thinking, 
spatial heterogeneity is not a problem, but the norm. Spatial heterogeneity should be 
formulated as a scaling law in geography.

2.4.1  Ubiquity of the Scaling Law in Geography

Geographic features are unevenly or abnormally distributed, so the scaling pattern 
of far more small things than large ones is widespread in geography (Pumain 2006). 
The scaling pattern has another name called fractal (Mandelbrot 1982). Fractal- 
related research in geography has concentrated too much on concepts such as fractal 
dimension and self-similarity. In fact, the scaling law is fundamental to all of these 
concepts. In this regard, Salingaros and West (1999) formulated a universal rule for 
city artifacts; there are far more small city artifacts than large ones, due to which the 
image of the city can be formed in human minds (Jiang 2013b). With the increasing 
availability of geographic information, the scaling law has been observed and exam-
ined in a wide range of geographic phenomena including, for example, street lengths 
and connectivity (Carvalho and Penn 2004; Jiang 2009), building heights (Batty 
et al. 2008), street blocks (Lämmer 2006; Jiang and Liu 2012), population densities 
(Schaefer and Mahoney 2003; Kyriakidou et al. 2011), and airport sizes and con-
nectivity (Guimerà et al. 2005). Interestingly, the scaling of geographic space has 
had an enormous effect on human activities; human activities and interactions in 
geographic space exhibit power law distributions as well (Brockmann et al. 2006; 
Gonzalez et al. 2008; Jiang et al. 2009). Table 2.3 provides a synoptic view of the 
ubiquity of power laws in geography, noting that the references listed are non- 
exhaustive, but for example only.

Despite its ubiquity, ironically the scaling law, or the Paretian way of thinking in 
general, has not been well received in geospatial analysis as elaborated earlier in the 
text. Current geospatial analysis adopts a well-defined mean or average to charac-
terize spatial heterogeneity. The two closely related concepts of scale and scaling 
must be comprehended together, i.e., many different scales, ranging from the small-
est to the largest, form a scaling hierarchy. This comprehension should be added, as 
a fourth one, into the three meanings of scale in geography: cartographic, analysis, 
and phenomenon (Montello 2001); see more elaborations in this recent paper (Jiang 
and Brandt 2016). The essence of power laws is the scaling pattern, in which there 
are far more small scales than large ones. This scaling pattern reflects the true pic-
ture of spatial heterogeneity or that of the Earth’s surface.
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2.4.2  Detecting the Scaling Law

What were claimed to be power laws in the literature could be actually lognormal, 
exponential, or other similar distributions, because the detection of power laws can 
be very tricky. Given a power law relationship y = xα, it can be transformed into the 
logarithm scales, i.e., ln(y) = a ⋅ ln(x), indicating that the logarithms of the two vara-
ibles x and y have a linear relationship. Conventionally, an ordinary least squares 
(OLS) based method was widely used for the detection. In the fractal literature, the 
box-counting method is usually used to compute the fractal dimension, which is the 
de facto power law exponent, and its computation is also based on OLS. There are 
at least two issues surrounding the power law detection. The first is that the OLS 
based method is found to be less reliable for detecting a power law, so a maximum 
likelihood method has been developed (Clauset et al. 2009). It was found that many 
claims on power laws in the literature are likely to be lognormal or other degener-
ated formats such as a power law with an exponential cutoff. For the sake of read-
ability, this paper does not cover mathematical details on heavy-tailed distributions 
and their detection; interested readers can refer to Clauset et al. (2009) and the refer-
ences therein. The second is that even with the OLS-based method, the definition of 
fractal dimension is so strict that many geographic features are excluded from being 
fractal (Jiang and Yin 2014). Given the circumstance, the authors have recently pro-
vided a rather relaxed definition of fractals, i.e., a geographic feature is fractal if and 
only if the scaling pattern of far more small things than large ones recurs multiple 
times. The number of times plus one is referred to as ht-index (Jiang and Yin 2014), 
an alternative index of fractal dimension for characterizing complexity of fractals or 
geographic features in particular.

Table 2.3 Power laws in geographic features or phenomena

Geographic phenomena References (for example)

City sizes Zipf (1949), Krugman (1996), and Jiang and Jia (2011)
Fractals in cities or geographic 
space

Goodchild and Mark (1987) and Batty and Longley (1994)

Coast lines and mountains Mandelbrot (1967) and Bak (1996)
Hydrological networks Hack (1957), Horton (1945), Maritan et al. (1996), and 

Pelletier (1999)
Urban and architectural space Salingaros and West (1999)
Street lengths and connectivity Carvalho and Penn (2004) and Jiang (2009)
Building heights Batty et al. (2008)
Street blocks Lämmer (2006) and Jiang and Liu (2012)
Population density Schaefer and Mahoney (2003) and Kyriakidou et al. (2011)
Airport sizes and connectivity Guimerà et al. (2005)
Human mobility Brockmann et al. (2006), Gonzalez et al. (2008), and Jiang 

et al. (2009)

2 Geospatial Analysis Requires a Different Way of Thinking: The Problem of Spatial…



34

The idea behind the relaxed definition of fractals, or the ht-index, is pretty simple 
and straightforward. It is based on the head/tail breaks (Jiang 2013a), a new classi-
fication scheme for data with a heavy-tailed distribution. Given a variable whose 
distribution is right skewed, compute its arithmetic mean, and subsequently split its 
values into two unbalanced parts: those above the mean in the head, and those 
below the mean in the tail. The values above the mean are a minority, while the 
values below are a majority. The ranking and breaking process continues for the 
head part progressively and iteratively until the values in the head no longer meet 
the condition of far more small things than large ones. This way both the number of 
classes and the class intervals are naturally and automatically derived based on the 
inherent hierarchy of data. Eventually, the number of classes, or equivalently the 
ht-index, indicates hierarchical levels of the values. One can simply rely on an 
Excel sheet for the computation of the ht-index. As an example, Fig. 2.3 illustrates 
the scaling pattern of the US cities, discussed earlier in Sect. 2.2.1, and it has the 
ht-index of 7.

2.4.3  Revealing the Scaling Pattern

The head/tail breaks can effectively reveal or visualize the scaling pattern if the data 
itself exhibits a heavy-tailed distribution. This is because the head/tail breaks was 
developed initially for revealing the inherent scaling hierarchy or the scaling pat-
tern. In this regard, conventional classification methods, mainly guided by Gaussian 
thinking, failed to reveal the scaling pattern. For example, the most widely used 
classification natural breaks (Jenks 1967), which is set as a default in ArcGIS, is 
based on the principle of minimizing within-classes variance, and maximizing 
between-classes variance. It sounds very natural. In some case like the US cities, the 
classification result of the natural breaks may look very similar to the one by natural 
breaks (Fig. 2.3). However, this is just by chance. Essentially, the natural breaks is 
motivated by Gaussian thinking; each class is characterized by a well-defined mean 
with a limited or minimized variance. In a contrast, the head/tail breaks is motivated 
by Paretian thinking, and for data with a Paretian-like or heavy-tailed distribution. 
The iteratively or recursively defined averages are used as meaningful cutoffs for 
differentiating hierarchical levels.

The reader probably has got used to the US terrain surface (Fig. 2.4a), which is 
based on the natural breaks. It is commonly seen in geography and cartography 
textbooks and atlases. However, I want to challenge this conventional wisdom, 
arguing that the natural breaks based visualization is little natural. I contend that the 
head/tail breaks derived visualization is more natural, since it reflects the underlying 
scaling pattern of far more small things than large ones (Fig. 2.4b). The things here 
are referred to individual locations, or more specifically, far more low locations than 
high locations. The left visualization, which distorted the scaling pattern, appears 
having far more high locations than the visualization to the right, or equivalently far 
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more high locations than what it actually has. The visualization to the right reflects 
well the underling scaling pattern. This can be further seen from the corresponding 
histograms of the individual classes of the two classifications (Fig. 2.4c, d). What is 
illustrated by the left histogram is “more low locations than high ones” which is a 
linear relationship, rather than “far more low locations than high ones”, which is a 
nonlinear relationship. For the left histogram, each pair of the adjacent bars from 
left to right does not constitute an unbalanced contrast of majority versus minority. 
For example, the first pair of bars of the left histogram shows a well-balanced con-
trast of 7–6; in a contrast, the first pair of the right histogram is unbalanced, 14–5. 
Therefore, the right histogram indicates clearly “far more low locations than high 
ones”. Interestingly, the scaling pattern remains unchanged with respect to different 
scales of digital elevation models (Lin 2013).

Fig. 2.3 Scaling pattern of US cities with ht-index equal 7 (Note: the four insets from the left to 
the right provide the enlarged view respectively for San Francisco, Los Angeles, Chicago and 
New York regions)
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2.5  Implications of Paretian Thinking and the Scaling Law

Current geospatial analysis concentrates more on geographic forms, but less on why 
the forms. The forms illustrated are mostly limited to whether they are random, or 
to what extent they are auto-correlated. As to why the forms, it is usually ended up 
with simple regressions and causalities. This way of geospatial analysis is much like 
short-term weather forecasting. Despite its usefulness, the short-term weather fore-
cast adds little to understanding the complex behavior of weather – the long-term 
weather beyond 2 or 3 weeks. In essence, the long-term weather, or climate change 
in general, is unpredictable, just like earthquakes and many other events in Nature 
and society (Bak 1996). If the real world is unpredictable, what can we do as scien-
tists? We can simulate interactions of things from the bottom up in order to under-
stand the underlying mechanisms, which would help improve predictions. In this 
regard, the emerging social media, in particular location-based social media, pro-
vide valuable data for validating the simulation results (Jiang and Miao 2015). The 
data, unlike traditional statistical or census data that are mainly aggregated, are not 
only big in size, but are collected at individual levels. The data are not only at indi-
vidual levels, but linked in time and among individuals. The data can help track the 
trajectories of individuals and their associations in space and over time. For this 
kind of social media data, the scaling law and fractals should be the norm.

Current spatial statistics constrained by Gaussian thinking show critical limita-
tions for analyzing or getting insights into big data (Mayer-Schonberger and Cukier 

Fig. 2.4 The scaling pattern of US terrain surface is distorted by the natural breaks, but revealed 
by the head/tail breaks

B. Jiang



37

2013). What are illustrated by spatial statistics, either patterns or associations, can 
be compared to the mental images of the elephant in the minds of the blind men. 
These images reflect local truths, and are indeed correct partially, but they did not 
reflect the whole of the elephant. Geospatial analysis should go beyond illustrating 
spatial autocorrelation, either globally or locally, but towards uncovering the under-
lying scaling or fractal patterns. Geographic features are essentially and ultimately 
scaling or fractal. Therefore, any patterns deviating from the scaling pattern or that 
can be characterized by a well-defined mean are either wrong or biased.

Geographic forms (or phenomena) are not the outcomes of simple processes but 
the results of complex processes with positive feedbacks. In the built environments, 
human interventions (interdependence and interactions) of various kinds are the 
major effects of spatial heterogeneity. As famously stated by Winston Churchill 
(1874–1965), “we shape our buildings, and thereafter they shape us”. This state-
ment should be comprehended in a progressive and recursive manner. This compre-
hension, which underlies Paretian thinking, is essentially a complex system 
perspective for exploring the underlying processes related to geographic forms 
(e.g., Benguigui and Czamanski 2004; Blumenfeld-Lieberthal and Portugali 2010). 
In this regard, complexity science has developed a range of tools such as discrete 
models, complex networks, scaling hierarchy, fractal geometry, self-organized criti-
cality, and chaos theory (Newman 2011). All these modeling tools attempt to reveal 
the underlying mechanisms, linking surface complex forms (or complexity) to the 
underlying mechanisms (or deep simplicity) through simulations from the bottom 
up, rather than simple descriptions of forms or of geographic forms in particular.

Paretian thinking represents a paradigm shift. Shifting from the sands to the ava-
lanches (Bak 1996), and from the street segments to the natural streets (Jiang 2009), 
enables us to see something interesting and exciting, i.e., from the things of limited 
sizes to the things of all sizes. The things of all sizes imply a scaling pattern across 
all scales. Recognition of the scaling pattern helps us to better understand the under-
lying universal form of geographic features. This scaling pattern can further be 
linked to the underlying geographic processes that are dynamic, nonlinear, and 
bottom-up in nature. This view would position geography in the family of science, 
since we geographers are interested in not only what things look like (the forms) but 
also why things look that way (the processes). Spatial heterogeneity is thus not a 
problem but an underlying scaling law of geography.

2.6  Concluding Summary

This paper argues that geospatial analysis requires a different way of thinking, or 
world view in general, that underlies the Paretian-like distribution of geographic 
features. We put the two distinct views in comparison: more or less similar things in 
a simple, static, and equilibrium world on the one hand, and far more small things 
than large ones in a complex, dynamic, and non-equilibrium world on the other. 
Geospatial analysis has been dominated by Gaussian statistics with a well-defined 
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mean for characterizing spatial variation (‘mild’ variance so to speak). Despite its 
ubiquity in geography, the Paretian-like heavy-tailed distribution, or the underlying 
way of thinking in general, has not been well received in geospatial analysis. The 
current geospatial analysis mainly focuses on how spatial variation deviates from a 
random pattern, and measuring spatial auto-correlation from global to local (the 
current spatial heterogeneity), but leaves the underlying processes unexplored. This 
way of geospatial analysis is inadequate for understanding geographic forms and 
processes, in particular while facing increasing amounts of social media data.

No average location exists on the Earth’s surface. Instead, there are far more 
small things than large ones in geographic space; small things are a majority while 
large things are a minority. Importantly, the pattern of far more small things than 
large ones recurs multiple times (Jiang and Yin 2014). This recurring scaling pattern 
reflects the true image of spatial heterogeneity that lacks a well-defined mean 
(‘wild’ variance so to speak). Spatial heterogeneity is indeed a problem in Gaussian 
thinking, but it is a law or scaling law in Paretian thinking. In the spirit of Paretian 
thinking and the scaling law, geospatial analysis should seek to simulate individuals 
and individual interactions from the bottom up rather than simple correlations and 
causalities. In this connection, complexity tools such as complex networks, agent- 
based modeling, and fractal/scaling provide effective means for geospatial analysis 
of complex geographic phenomena.
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