
Analysis Meets Geometry: A Tribute to Mikael Passare

Trends in Mathematics, 121–126
c© 2017 Springer International Publishing

A Comparison Principle for Bergman Kernels

Bo Berndtsson
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Abstract. We give a version of the comparison principle from pluripotential
theory where the Monge–Ampère measure is replaced by the Bergman kernel
and use it to derive a maximum principle.

1. Introduction

Let φ and ψ be two plurisubharmonic functions in a complex manifold X , and
let Ω be a relatively compact subdomain in X . Assume that on the boundary of
Ω, φ ≤ ψ, and that inside the domain the Monge–Ampère measures of φ and ψ
satisfy

(ddcφ)n ≥ (ddcψ)n.

Then the maximum principle for the Monge–Ampère equation asserts that the
inequality φ ≤ ψ holds inside the domain Ω too. (Here of course both the inequality
between φ and ψ on the boundary and the Monge–Ampère equation have to be
given a precise meaning.) The maximum principle is easy to prove if the functions
are sufficiently smooth, e.g., of class C2. For non-regular functions the maximum
principle can be derived from the so-called comparison principle (see [2]) of Bedford
and Taylor, which also serves as a substitute for the maximum principle in some
cases. The comparison principle states (again omitting precise assumptions) that∫

{ψ<φ}
(ddcφ)n ≤

∫
{ψ<φ}

(ddcψ)n.

On the other hand it is well known that Monge–Ampère measures often can
be approximated by measures defined by Bergman functions. Suppose that we
have given on our manifold X a positive measure, μ, and consider the L2-space of
holomorphic functions

A2 = A2(X,μ, φ) =

{
h ∈ H(X);

∫
|h|2e−φdμ < ∞

}
,

or its closure in L2(X,μ, φ).
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We denote by Kφ(z, ζ) the Bergman kernel for A2 and let

Bφ(z) = Kφ(z, z)e
−φ

be the Bergman function, also known as the density of states function. It is a
consequence of the asymptotic expansion formula of Tian–Catlin–Zelditch (see
[3]) that we have

lim
k→∞

k−nBkφdμ = cn(dd
cφ)n

if φ is plurisubharmonic and φ and μ are sufficiently regular.We can therefore think
of Bφdμ as an approximation, or perhaps quantization, of the Monge–Ampère
measure of φ.

The main observation in this note is that a version of the comparison principle
holds if we replace the Monge–Ampère operator by the density of states function,
so that ∫

ψ<φ

Bφdμ ≤
∫
ψ<φ

Bψdμ.

As it turns out, this is an almost completely formal phenomenon, and it holds under
very (but not completely) general circumstances. In particular, the plurisubhar-
monicity of φ and ψ plays no role at all, and even the holomorphicity of functions
in A2 enters only in a very weak form, so similar results also hold in many other
situations when we have a well-behaved Bergman kernel, and also if we consider
sections of line bundles instead of scalar-valued functions. However, the setting
of plurisubharmonic weights and holomorphic functions allows a slightly stronger
statement with strict inequality, and in that context our main theorem is as follows.

Theorem 1.1. Let L be a holomorphic line bundle over a complex manifold X, and
let φ and ψ be two, possibly singular, metrics on L. Suppose that ddcφ ≥ −ω and
ddcψ ≥ −ω for some smooth Hermitian (1, 1)-form ω. Assume also that for some
constant C, φ ≤ ψ+C and that μ is given by a strictly positive continuous volume
form. Then ∫

ψ<φ

Bφdμ ≤
∫
ψ<φ

Bψdμ. (1.1)

Moreover, if ∅ �= {ψ < φ} �= X and if Bψ is not identically equal to 0, then strict
inequality holds if the left integral is finite.

A few remarks are in order. The strict inequality is of less importance when
we deal with Monge–Ampère measures, since one can often arrange that by an ad
hoc small perturbation. For Bergman kernels this is less clear and that is the reason
why we mention the (very weak) conditions for strict inequality. The condition that
φ ≤ ψ+C is sometimes phrased as ‘ψ is less singular than φ’, and some condition
like that is necessary. Indeed, if ψ < φ everywhere and we assume X compact, the
two integrals equal the dimensions of the space of sections of L that are square
integrable with respect to the respective metrics. If ψ is more singular than φ it
may well happen that the space of sections that have finite norm measured by ψ
is smaller than the space of sections that have finite norm measured by φ, so the
inequality cannot hold.
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2. The abstract setting

We will first deal with the abstract setting of general L2-spaces with a Bergman
kernel. Let (X,μ) be a measure space, let e−φ be a measurable weight function
on X , and let Hφ be a Hilbert subspace of L2(e−φdμ). We assume that for any
z ∈ X , point evaluation at z is a bounded linear functional on Hφ. Then Hφ has
a Bergman kernel, Kφ(z, ζ) and we denote Bφ(z) = Kφ(z, z)e

−φ.

Theorem 2.1 (Comparison principle for Bergman spaces). Let φ and ψ be two
weight functions on X such that for some constant C, φ ≤ ψ + C. Then∫

ψ<φ

Bφdμ ≤
∫
ψ<φ

Bψdμ. (2.1)

To prove the comparison principle we need a, basically standard, lemma on
derivatives of Bergman kernels.

Proposition 2.2. Let φt be a differentiable family of weight functions with uniformly
bounded derivative with respect to t. Put Kt = Kφt . Then Kt is differentiable with

respect to t. Let K̇t and φ̇t be the derivatives of Kt and φt with respect to t. Then
for z and ζ fixed

K̇t(z, ζ) =

∫
X

φ̇tKt(z, w)Kt(w, ζ)e
−φt(w)dμ(w). (2.2)

Moreover, for the difference quotients we have, if |τ | ≤ 1,

|(Kt+τ (z, z)−Kt(z, z))/τ | ≤ AKt(z, z) (2.3)

for some constant A depending on the sup-norm of φ̇.

Proof. Note first that since φ̇ is bounded, φt − φt+τ is bounded for |τ | ≤ 1. Let
Δ(t, τ) = e−φt − e−φt+τ . Since

Δ(t, τ) =

∫ τ

0

φ̇se
−φt+sds,

|Δ(t, τ)| ≤ A|τ |e−φt if |τ | ≤ 1. Next note that by the reproducing property of
Bergman kernels

(Kt+τ −Kt)(z, ζ) =

∫
X

Kt(z, w)Kt+τ (w, ζ)(e
−φt − e−φt+τ )dμ(w). (2.4)

Hence for |τ | ≤ 1

|(Kt+τ (z, z)−Kt(z, z))/τ | ≤ A

∫
X

|Kt(z, w)Kt+τ (w, z)|e−φtdμ(w).

Since φt − φt+τ is bounded this is less than

A

(∫
X

|Kt(z, w)|2e−φtdμ(w) +

∫
X

|Kt+τ (z, w)|2e−φt+τdμ(w)

)
≤ A′Kt(z, z),

so we have proved (2.3). To prove (2.2) is very easy formally, just differentiating
under the integral sign, but to prove that this is legitimate we have to work a
bit more. We first multiply (2.4) by its conjugate and integrate with respect to ζ.
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Letting f(z, ζ) := (Kt+τ −Kt)(z, ζ) we get∫
|f(z, ζ|2e−φt+τdμ(ζ) =

∫
Kt(z, w)Kt(w

′, z)Δ(t, τ)(w)Δ(t, τ)(w′)

×
∫

Kt+τ (ζ, w
′)Kt+τ (w, ζ)e

−φt+τ (ζ)dμ(ζ)dμ(w)dμ(w′).

Using the reproducing property of Bergman kernels in the inner integral this is∫
Kt(z, w)Kt(w

′, z)Kt+τ (w,w
′)Δ(t, τ)(w)Δ(t, τ)(w′)dμ(w)dμ(w′).

Next we apply (2.4) to the integral with respect to w′ and get∫
f(w, z)Kt(z, w)Δ(t, τ)(w)dμ(w).

Then use that |Δ(t, τ)| ≤ |τ |e−φt and apply Cauchy’s inequality to get∫
|f(z, ζ)|2e−φtdμ(ζ) ≤ A|τ |Kt(z, z). (2.5)

We are now finally ready to prove (2.2). By (2.4)

(Kt+τ −Kt)(z, ζ)/τ =

∫
X

Kt(z, w)Kt+τ (w, ζ)(e
−φt − e−φt+τ )/τdμ(w).

By (2.5) we may replace Kt+τ by Kt in the integral. After that we let τ tend to
zero and get (2.2) by dominated convergence. �

We now turn to the proof of the comparison principle Theorem 2.1. We first
claim that we may assume that φ−ψ is bounded. To see this, let u := ψ−φ so that
u ≥ −C. Put u0 := min(u, 0), ψ0 = φ+ u0. Then ψ0 ≤ ψ and ψ0 − φ is bounded.
By the extremal characterization of Bergman kernels Kψ0(z, z) ≤ Kψ(z, z). On
the other hand, where ψ < φ, u < 0 so u0 = u. Hence ψ0 = ψ and Bψ0 ≤ Bψ.
Moreover ψ < φ if and only if u < 0 which is equivalent to u0 < 0, so ψ < φ if and
only if ψ0 < φ. Hence it suffices to prove the theorem for ψ0 since then∫

ψ<φ

Bφdμ ≤
∫
ψ0<φ

Bψ0dμ ≤
∫
ψ<φ

Bψdμ.

From now on we assume that φ − ψ is bounded and let ρ be a measurable
function on X such that ∫

X

ρ(z)Kφ(z, z)e
−φdμ(z) < ∞.

The same integral with φ replaced by ψ is then also bounded. Let φt = φ+ tu, so
that φ0 = φ and φ1 = ψ. Then we claim that by Proposition 2.2, if

G(t) :=

∫
X

ρ(z)Bφtdμ
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then

G′(t) =
∫
X

−ρ(z)φ̇t(z)Kt(z, z)e
−φtdμ

+

∫
X

∫
X

ρ(z)φ̇t(w)Kt(z, w)Kt(w, z)e
−φt(z)−φt(w)dμ(z)dμ(w).

(2.6)

Again, this follows formally by the proposition and to justify the limit process we
write

(G(t + τ)−G(t)) =

∫
X

ρKt(e
−φt+τ − e−φt)dμ+

∫
X

ρ(Kt+τ −Kt)e
−φt+τdμ.

When we divide by τ and let τ → 0 we see that the first term converges to the
first term of (2.6) by dominated convergence. For the second term we use (2.3) to
conclude that we have dominated convergence in that integral as well.

In the first integral on the right-hand side we insert the reproducing formula
for the Bergman kernel

Kt(z, z) =

∫
X

Kt(z, w)Kt(w, z)e
−φt(w)dμ(w)

which changes the right-hand side to∫
X

∫
X

ρ(z)(φ̇t(w) − φ̇t(z))Kt(z, w)Kt(w, z)e
−φt(z)−φt(w)dμ(z)dμ(w).

We can write this more symmetrically as

(1/2)

∫
X

∫
X

(ρ(z)− ρ(w))(φ̇t(w) − φ̇t(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w).

(2.7)

Now recall that φt = φ+ tu so φ̇t = u. Let ρ be the characteristic function of the
set where ψ − φ = u < 0. Then (2.7) becomes

(1/2)

∫ ∫
{u(z)<0<u(w)}

(u(w) − u(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w)

−(1/2)

∫ ∫
{u(w)<0<u(z)}

(u(w) − u(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w).

Again using symmetry we get

d

dt

∫
u<0

Bφtdμ (2.8)

=

∫ ∫
{u(z)<0<u(w)}

(u(w)− u(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w).

Clearly this expression is non-negative, so we have proved Theorem 2.1.

Remark. Since the Bergman function Bφ(z) = Kφ(z, z)e
−φ does not change if

we add a constant to φ, we also have that
∫
ψ<φ+c

Bφdμ ≤
∫
ψ<φ+c

Bψdμ for any

constant c, as soon as the sets {ψ < φ+ c} and {ψ > φ+ c} are both nonempty.
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3. The proof of Theorem 1.1

It is now an easy matter to deduce Theorem 1.1 from Theorem 2.1. First we note
that the setting of line bundles instead of scalar-valued functions causes no extra
difficulties. Indeed the proof goes through in the same way with only nominal
changes. Alternatively, we could use that any line bundle has a discontinuous
trivializing section and since continuity played no role in the proof, the line bundle
case follows. It remains to prove that we have strict inequality if Bψ is non trivial
and ∅ �= {ψ < φ} �= X . For this it suffices to show that the right-hand side of (2.8)
is strictly positive. But

V := {(z, w);u(w) < 0 < u(z)}
is by assumption nonempty. Moreover, this set is open for the plurifine topology
and therefore has positive Lebesgue measure, [1]. Hence it has positive μ-measure
if μ is given by a strictly positive continuous density. From this it follows that
Kt(z, w) is different from zero almost everywhere on V , since it is holomorphic
with respect to z and w (this is the only place we use holomorphicity), so it
follows that the derivative of G is strictly positive.

Finally we give a ‘maximum principle’ for Bergman kernels which follows
from Theorem 1.1 in the same way that the Monge–Ampère maximum principle
follows from the classical comparison principle.

Theorem 3.1. Under the same assumptions as in Theorem 1.1, let Ω �= X be a
subset of X such that Bφ ≥ Bψ on Ω. Assume that φ ≤ ψ on X \ Ω. Then φ ≤ ψ
everywhere.

Proof. Assume the set U where ψ < φ is nonempty. Then U is a subset of Ω, and
Ω is not equal to X . This contradicts Theorem 1.1. �
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