
Analysis Meets Geometry: A Tribute to Mikael Passare

Trends in Mathematics, 111–120
c© 2017 Springer International Publishing

On the Optimal Regularity of Weak Geodesics
in the Space of Metrics on a Polarized Manifold

Robert J. Berman

To the memory of Mikael Passare

Abstract. Let (X,L) be a polarized compact manifold, i.e., L is an ample line
bundle over X and denote by H the infinite-dimensional space of all positively
curved Hermitian metrics on L equipped with the Mabuchi metric. In this
short note we show, using Bedford–Taylor type envelope techniques developed
in the authors previous work [3], that Chen’s weak geodesic connecting any
two elements in H are C1,1-smooth, i.e., the real Hessian is bounded, for any
fixed time t, thus improving the original bound on the Laplacians due to Chen.
This also gives a partial generalization of Blocki’s refinement of Chen’s regu-
larity result. More generally, a regularity result for complex Monge–Ampère
equations over X ×D, for D a pseudoconvex domain in Cn is given.

1. Introduction

Let X be an n-dimensional compact complex manifold equipped with a Kähler
form ω and denote by [ω] the corresponding cohomology class in H2(X,R). The
space of all Kähler metrics in [ω] may be identified with the space H(X,ω) of all
Kähler potentials, modulo constants, i.e., the space of all functions u on X such
that

ωu := ω + ddcu,

(
ddc :=

i

2π
∂∂̄

)
is positive, i.e., defines a Kähler form on X. Mabuchi introduced a natural Rie-
mannian metric on H(X,ω) [21], where the squared norm of a tangent vector
v ∈ C∞(X) at u is defined by

g|u(v, v) :=
ˆ
X

v2ωn
u (1.1)

The main case of geometric interest is when the cohomology class [ω] is in-
tegral, which equivalently means that it can be realized as the first Chern class
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c1(L) of an ample line bundle L over the projective algebraic manifold X. Then
the space H(X,ω) may be identified with the space H(L) of all positively curved
metrics φ on the line bundle L and as pointed by Donaldson [15] the space H(L)
may then be interpreted as the symmetric space dual of the group Ham(X,ω) of
Hamiltonian diffeomorphisms of (X,ω). Under this (formal) correspondence the
geodesics in H(X,ω) correspond to one-parameter subgroups in the (formal) com-
plexification of Ham(X,ω) and this motivated Donaldson’s conjecture concerning
the existence of geodesics in H(X,ω), connecting any two given elements.

However, Donaldson’s existence problem has turned out to be quite subtle.
In fact, according to the recent counter-examples in [20, 11] the existence of bona
fide geodesic segments fails in general. On the other hand, there always exists a
(unique) weak geodesic ut connecting given points u0 and u1 in H(X,ω) defined
as follows. First recall that, by an important observation of Semmes [23] and
Donaldson [15], after a complexification of the variable t, the geodesic equation for
ut on X× [0, 1] may be written as the following complex Monge–Ampère equation
on a domain M := X ×D in X × C for the function U(x, t) := ut(x) :

(π∗ω + ddcU)n+1 = 0. (1.2)

As shown by Chen [9], with complements by Blocki [8], for any smoothly
bounded domain D in C the corresponding boundary value problem on M admits
a unique solution U such that π∗ω + ddcU is a positive current with coefficients
in L∞, satisfying the equation 1.2 almost everywhere. In particular, when D is an
annulus in C this construction gives rise to the notion of a weak geodesic curve ut

in the space of all functions u such that ωu is a positive current with coefficients
in L∞ (the latter regularity equivalently means that the Laplacian of u is in L∞).
In particular, by standard linear elliptic estimates, U is “almost C1,1” in the sense
that U is in the Hölder class C1,α for any α < 1. As shown by Blocki [8], in the
case when X admits a Kähler metric with non-negative holomorphic bisectional
curvature Chen’s regularity result can be improved to give that U is C1,1-smooth.
However, the assumption on X appearing in Blocki’s result is very strong and
essentially implies that X is a homogeneous manifold. In this short note we point
out that, in the case when the given Kähler class [ω] is an integral the function ut

on X is in general, for any fixed t, in C1,1(X), i.e., its first derivatives are Lipschitz
continuous. More precisely, the real Hessian of ut has bounded coefficients with a
bound which is independent of t :

Theorem 1.1. For any integral Kähler class [ω] the weak geodesic ut connecting
any two points u0 and u1 in the space H(X,ω) of ω-Kähler potentials has the
property that, for any fixed t, the function ut is in C1,1(X). More precisely, the
upper bound on the sup norm on X of the real Hessian of ut only depending on
an upper bound of sup norms of the real Hessians of u0 and u1.

This regularity result should be compared with recent results of Darvas–
Lempert [11] showing that the solution U(x, t) := ut(x) is not, in general, C2-
smooth up to the boundary of M in (more precisely ddcU is not represented by



On the Optimal Regularity of Weak Geodesics 113

a continuous form). However, the argument in [11], which is inspired by a similar
argument in the case of M = D for a pseudoconvex domain D in C2 due to
Bedford–Fornaess [1], does not seem to exclude the possibility that U be C2-
smooth in the interior of M. Anyway, the latter scenario appears to be highly
unlikely in view of the explicit counter-example of Gamelin–Sibony [17] to interior
C2-regularity for the case when D is the unit-ball in C2. Note also that, since
the bounds on the real Hessian of ut are controlled by the Hessians of u0 and u1

the previous theorem shows that PSH(X,ω) ∩ C1,1(X) is closed with respect to
weak geodesics. By the very recent work of Darvas [10] and Guedj [18] this the
latter property equivalently means that PSH(X,ω) ∩ C1,1(X) defines a geodesic
subspace of the metric completion of the space H equipped with the Mabuchi
metric.

The starting point of the proof of Theorem 1.1 is the well-known Perron type
envelope representation of the solution to the Dirichlet problem for the complex
Monge–Ampère operator. The proof, which is inspired by Bedford–Taylor’s ap-
proach in their seminal paper [2], proceeds by a straightforward generalization of
the technique used in [3] to establish the corresponding regularity result for cer-
tain envelopes of positively curved metrics in a line bundle L → X (which can
be viewed as solutions to a free boundary value problem for the complex Monge–
Ampère equation on X). In fact, the situation here is considerably simpler than
the one in [3] which covers the case when the line bundle L is merely big (the C1,1-
regularity then holds on the ample locus of L in X) and one of the motivations for
the present note is to highlight the simplicity of the approach in [3] in the present
situation (see also [22] for other generalizations of [3]). But it should be stressed
that, just as in [3], the results can be generalized to more general line bundles. For
example, by passing to a smooth resolution, Theorem 1.1 be generalized to show
that the weak geodesic connecting any two smooth metrics with non-negative cur-
vature current on an ample line bundle L over a singular compact normal complex
variety X is C1,1-smooth on the regular locus of X (for a fixed “time”).

As it turns out one can formulate a general result (Theorem 2.1 below) which
contains both Theorem 1.1 and the corresponding regularity result in [3]. In par-
ticular, the latter result covers the case when the domain D is the unit disc (or
more generally, the unit ball in Cn, where the following more precise regularity
result holds:

Theorem 1.2. For any integral Kähler class [ω] on a compact complex manifold X
the solution U to the Dirichlet problem for the complex Monge–Ampère equation
1.2 with C2-boundary data, ω-psh along the slices {t} ×X, is C1,1-smooth in the
interior of X ×D, if D is the unit disc in C.

As pointed out by Donaldson [15] the boundary value problem appearing in
the previous theorem can be viewed as an infinite-dimensional analog of a standard
boundary value problem for holomorphic discs in the complexification of a compact
Lie group G or more precisely the classical factorization theorem for loops in G
(recall that the role of G in the present infinite-dimensional setting is played by
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the group Ham(X,ω) of Hamiltonian diffeomorphisms). As shown by Donaldson
[16] the solution U is in general not smooth and Donaldson raised the problem of
studying the singularities of Chen’s weak solution; the paper can thus be seen as
one step in this direction.

One potentially useful consequence of the regularity results in Theorems 1.1,
1.2 is that, for a fixed “time” t the differential of ut (which geometrically repre-
sents the connection one form of the corresponding metric on the line bundle L) is
Lipschitz continuous and in particular differentiable on X − E, where the excep-
tional set E is a null set for the Lebesgue measure. For example, it then follows
from the results in [3] that the corresponding scaled Bergman kernel Bk(x, x)/k

n,
attached to high tensor powers L⊗k, converges when k → ∞ point-wise on X −E
to the density of ωn

ut
. By a circle of ideas going back to Yau such Bergman ker-

nels can be used to approximate differential geometric objects in Kähler geome-
try. Accordingly, the precise C1,1-regularity established in the present paper will
hopefully find applications in Kähler geometry in the future. In fact, one of the
initial motivations for writing the present note came from a very recent joint work
with Bo Berndtsson [5] where Bergman kernel asymptotics are used to establish
the convexity of Mabuchi’s K-energy along weak geodesics and where the precise
C1,1-regularity was needed at an early stage of the work. Eventually it turned that
Chen’s regularity, or more precisely the fact that ut has a bounded Laplacian, is
sufficient to get the point-wise convergence of Bk/k

n for some subsequence away
from some (non-explicit) null set E (see Theorem 2.1 in [5]) which is enough to
run the approximation argument. But with a bit of imagination one could envisage
future situations where the more precise C1,1-regularity would be needed.

Let us finally point out that in a very recent article Darvas and Rubinstein
[12] consider psh-envelopes of functions of the form f = min{f1, f2, . . . , fm}. Such
envelopes appear in the Legendre transform type formula for weak geodesics in-
troduced in [12] which has remarkable applications to the study of the completion
of the Mabuchi metric space [10]. The same technique from [3] we describe here
implies C1,1-regularity of such envelopes in the case the Kähler class is integral
(see the first point in Section 2.3). In [12] the authors give a different proof of this
result (still using [3]) and also prove a Laplacian bound in the case of a general
Kähler class.

2. C1,1-regularity of solutions to complex Monge–Ampère
equations over products

2.1. Notation: quasi-psh functions vs metrics on line bundles

Here we will briefly recall the notion for (quasi-) psh functions and metrics on line
bundles that we will use. Let (X,ω0) be a compact complex manifold of dimension
n equipped with a fixed Kähler form ω0, i.e., a smooth real positive closed (1, 1)-
form on X. Denote by PSH(X,ω0) be the space of all ω0-psh functions u on X,
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i.e., u ∈ L1(X) and u is (strongly) upper-semicontinuous (usc) and

ωu := ω0 +
i

2π
∂∂̄u := ω0 + ddcu ≥ 0,

holds in the sense of currents.

We will writeH(X,ω0) for the interior of PSH(X,ω0)∩C∞(X), i.e., the space
of all Kähler potentials (w.r.t ω0). In the integral case, i.e., when [ω] = c1(L) for
a holomorphic line bundle L → X, the space PSH(X,ω0) may be identified with
the space HL of (singular) Hermitian metrics on L with positive curvature current.
We will use additive notion for metrics on L, i.e., we identify a Hermitian metric
‖·‖ on L with its “weight” φ. Given a covering (Ui, si) of X with local trivializing
sections si of L|Ui

the object φ is defined by the collection of open functions φ|Ui

defined by

‖si‖2 = e−φ|Ui .

The (normalized) curvature ω of the metric ‖·‖ is the globally well-defined (1, 1)-
current defined by the following local expression:

ω = ddcφ|Ui
.

The identification between HL and PSH(X,ω0) referred to above is obtained by
fixing φ0 and identifying φ with the function u := φ− φ0, so that ddcφ = ωu.

2.2. The C1,1-regularity of weak geodesics

Let (X,ω) be a compact Kähler manifold and D a domain in Cn. Set M := X×D
and denote by π the natural projection from M to X. Given a continuous function
f on ∂M(= X×∂D) we define the following point-wise Perron type upper envelope
on the interior of M :

U := P (f) := sup{V : V ∈ F}, (2.1)

where F denotes the set of all V ∈ PSH(M,π∗ω) such that V|∂M ≤ f on the
boundary ∂M (in a point-wise limiting sense). In the case when D is a smoothly
bounded pseudoconvex domain and f is ω-psh in the “X-directions”, i.e., f(·, t) ∈
PSH(X,ω) it was shown in [4] that P (f) is continuous up to the boundary of
M and U then coincides with the unique solution of the Dirichlet problem for
the corresponding complex Monge–Ampère operator with boundary data f, in
the weak sense of pluripotential theory [2]. Here we will establish the following
higher-order regularity result for the envelope P (f) :

Theorem 2.1. Let (X,ω0) be an n-dimensional integral compact Kähler manifold
manifold and D a bounded domain in Cm and set M := X × D. Then, given f
a function on ∂M such that f(·, τ) is in C1,1(X), with a uniform bound on the
corresponding real Hessians, the function uτ := P (f)|X×{τ} is in C1,1(X) and
satisfies

sup
X

|∇2uτ |ω0 ≤ C,
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where |∇2uτ |ω0 denotes the point-wise norm of the real Hessian matrix of the
function uτ on X defined with respect to the Kähler metric ω0. Moreover, the
constant C only depends on an upper bound on the sup norm of the real Hessians
of fτ for τ ∈ ∂D. In the case when D is the unit ball the function U(x, τ) is in

C1,1
loc in the interior of M.

2.2.1. Proof of Theorem 2.1. In the course of the proof of the theorem we will
identify an π∗ω-psh function U on M with a positively curved metric Φ on the
line bundle π∗L → M. The case when D is a point is the content of Theorem 1.1
in [3] and as will be next explained the general case can be proved in completely
analogous manner. First recall that the argument in [3] is modelled on Bedford–
Taylor’s proof of the case when X is a point and D is the unit-ball [2] (see also
Demailly’s simplifications [13]). The latter proof uses that B is a homogeneous
domain. In order to explain the idea of the proof of Theorem 2.1 first consider the
case when (X,L) is homogeneous, i.e., the group Aut (X,L) of all biholomorphic
automorphisms of X lifting to L acts transitively on X. In particular, there exists
a family Fλ in Aut (X,L) parametrized by λ ∈ Cn such that, for any fixed point
x ∈ X, the map λ �→ Fλ(x) is a biholomorphism (onto its image) from a sufficiently
small ball centered at the origin in Cn. Given a metric φ on L we set φλ := F ∗

λφ.
Similarly, given a metric Φ(= Φ(x, τ)) on π∗L we set

Φλ := (Fλ × I)∗Φ.

Since Fλ is holomorphic the metric Φλ has positive curvature iff Φ has positive
curvature. Now to first prove a Lipschitz bound on PΦf , where Φf is the metric
on L → ∂M corresponding to the given boundary data f, we take any candidate
Ψ for the sup defining PΦf and note that, on ∂M, i.e., for τ ∈ ∂D :

Ψλ ≤ Φλ
f ≤ Φf + C1|λ|, (2.2)

where C1 only depends on the Lipschitz bounds in the “X-direction” of the given
function f on X × ∂D. But this means that Ψλ −C1|λ| is also a candidate for sup
defining PΦf and hence Ψλ − C1|λ| ≤ PΦf on all of X ×D. Finally, taking the
sup over all candidates Ψ gives, on X ×D, that

(PΦf )
λ ≤ (PΦf ) + C1|λ|.

Since this holds for any λ and in particular for −λ this concludes the proof of
the desired Lipschitz bound on PΦf . Next, to prove the bound on the real Hessian
one first replaces Ψλ in the previous argument with 1

2 (Ψ
λ + Ψ−λ) and deduces,

precisely as before, that

1

2

(
(PΦf )

λ + (PΦf )
−λ

)
≤ (PΦf ) + C2|λ|2,

where now C2 depends on the upper bound in the “X-direction” of the real Hessian
of the function f onX×∂D. The previous inequality implies an upper bound on the
real Hessians of the local regularizations Ψε of PΦf defined by local convolutions.
Moreover, since ddcΨε ≥ 0 it follows from basic linear algebra that a lower bound



On the Optimal Regularity of Weak Geodesics 117

on the real Hessians also holds. Hence, letting ε → 0 shows that PΦf is in C1,1
loc

in the “X-direction” with a uniform upper bound on the real Hessians (compare
[2, 13]).

Of course, a general polarized manifold (X,L) may not admit even a single
(non-trivial) holomorphic vector field. But as shown in [3] this problem can be
circumvented by passing to the total space Y of the dual line bundle L∗ → X,
which does admit an abundance of holomorphic vector fields. The starting point
is the standard correspondence between positively curved metrics φ on L and psh
“log-homogeneous” functions χ on Y induced by the following formula:

χ(z, w) = φ(z) + log |w|2,
where z denotes a vector of local coordinates on X and (z, w) denote the corre-
sponding local coordinates on Y induced by a local trivialization of L. Accordingly,
the envelope PΦf onX corresponds to an envelope construction on Y, defined w.r.t
the class of psh log-homogenous functions on Y. Fixing a metric φ0 on L we de-
note by K the compact set in Y defined by the corresponding unit circle bundle.
By homogeneity any function χ as above is uniquely determined by its restriction
to K. Now, for any fixed point y0 in K there exists an (n + 1)-tuple of global
holomorphic vector fields Vi on Y defining a frame in a neighborhood of y0:

Lemma 2.2. Given any point y0 in the space Y ∗ defined as the complement of the
zero-section in the total space of L∗ there exist holomorphic vector fields V1, . . . ,
Vn+1 on Y ∗ which are linearly independent close to y0.

Proof. This follows from Lemma 3.7 in [3]. For completeness and since we do not
need the explicit estimates furnished by Lemma 3.7 in [3] we give a short direct
proof here. Set Z := P(L∗ ⊕C), viewed as the fiber-wise P1-compactification of Y.
Denote by π the natural projection from Z to X and by O(1) the relative (fiber-
wise) hyper plane line bundle on Z. As is well known, for any sufficiently positive
integer the line bundle Lm := (π∗L)⊗O(1)⊗m on Z is ample and holomorphically
trivial on Y ∗. As a consequence, the rank n+ 1-vector bundle E := TZ ⊗ L⊗k

m is
globally generated for k sufficiently large, i.e., any point z0 in Z there exists global
holomorphic sections S1, . . . , Sn+1 spanning E|z0 . Since, Lm is holomorphically
trivial on Y ∗ ⊂ Z this concludes the proof. �

Now, integrating the (short-time) flow of the holomorphic vector field V (λ) :=∑
λiVi gives a family of holomorphic maps Fλ(y) defined for y ∈ K and λ in a

sufficiently small ball B centered at the origin in Cn+1 such that λ �→ Fλ(y0)
is a biholomorphism. However, the problem is that the corresponding function
χλ := F ∗

λχ is only defined in a neighborhood ofK in Y (and not log-homogeneous).
But this issue can be bypassed by replacing χλ with a new function that we will
denote by T (χλ), where T (f), for f a function on K, is obtained by first taking
the sup of f over the orbits of the standard S1-action on Y to get an S1-invariant

function g := f̂ and then replacing g with its log-homogeneous extension g̃, i.e.,

T (f) :=
(̃
χ̂λ

)
.



118 R. J. Berman

The following lemma follows from basic properties of plurisubharmonic functions
(see [3] for a proof):

Lemma 2.3. If f is the restriction to the unit circle bundle K ⊂ Y of a psh function,
then T (f) is a psh log-homogeneous function on Y

Now performing the previous constructions for any fixed τ ∈ D and identi-
fying a candidate Ψ with a function χ on Y ×D, as above, gives

χλ(y0) ≤ χ̂λ(y0) =
(̃
χ̂λ

)
(y0) := T (χλ)(y0). (2.3)

But, by construction, for τ ∈ ∂D we have T (χλ) ≤ T (χλ
Φf

) and since fτ is assumed

Lipschitz for τ ∈ ∂D we also have that

T (χλ
Φf

) ≤ T (χΦf
) + C1|λ| = χΦf

+ C1|λ|.

But this means that T (χλ)−C1|λ| is a candidate for the sup in question and hence
bounded from above by χPΦf

, which combined with the inequality 2.3 gives

χλ(y0)− C1|λ| ≤ χΦf
(y0).

Taking the sup over all candidates χ and replacing λ with −λ hence gives the
desired Lipschitz bound on PΦf at the given point y0 and hence, by compactness,
for any point in K. The estimate on the Hessian then proceeds precisely as above.

Finally, in the case when B is the unit ball one can exploit that B is homo-
geneous (under the action of the Möbius group), replacing the holomorphic maps
(x, τ) �→ (Fλ(x), τ) used above with (x, τ) �→ (Fλ(x), Ga(τ)), where Ga is a suit-
able family of Möbius transformations (the case when X is point is precisely the
original situation in [2]). Then the proof proceeds precisely as before.

2.3. Further remarks

• The proof of the previous theorem also applies in the more general situation
where f may be written as f = infα∈A fα for a given family of functions fα,
as long as the Hessians of fα(τ, ·) are uniformly bounded on X (by a constant
C independent of τ and α)) and similarly for the Lipschitz bound. Indeed,
then equation 2.2 holds with f replaced by fα for any α ∈ A with the same
constant C. For D equal to a point this result has been obtained in [12] using
a different proof.

• As shown in [4] (using a different pluripotential method), in the case of a
general, possibly non-integral, Kähler class [ω] a bounded Laplacian in the
X-directions of the boundary data f results in a bounded Laplacian of the
corresponding envelope. In the case of geodesics this result has also recently
been obtained in [19] by refining Chen’s proof.

• By the proof of the previous theorem, the Lipschitz norm ‖ut‖C0,1(X) of a

weak geodesic ut only depends on an upper bound on the Lipschitz norms
of u0 and u1. Since the Lipschitz norm in the t-variable is controlled by the
C0-norm of u0−u1 [6] it follows that the Lipschitz norm ‖U‖C0,1(X×A) of the
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corresponding solution U on X × A is controlled by the Lipschitz norms of
u0 and u1 and the C0-norm of u0 − u1. For a general Kähler class this result
also follows from Blocki’s gradient estimate [7, 8].
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