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Abstract. We discuss the possibility of representing elements in polynomial
ideals in CN with optimal degree bounds. Classical theorems due to Macaulay
and Max Noether say that such a representation is possible under certain
conditions on the variety of the associated homogeneous ideal. We present
some variants of these results, as well as generalizations to subvarieties of CN .

1. Introduction

Let V be an algebraic subvariety of CN of pure dimension n and let F1, . . . , Fm

be polynomials in CN . We are interested in finding solutions to the polynomial
division problem

F1Q1 + · · ·+ FmQm = Φ (1.1)

on V with degree estimates, provided Φ is in the ideal (Fj) on V . By a result of
Hermann, [18], if degFj ≤ d, there are polynomials Qj such that deg(FjQj) ≤
deg Φ + C(d,N), where C(d,N) is like 2(2d)2

N−1 for large d and thus doubly
exponential. It is shown in [24] (see also [10, Example 3.9]) that in general this
estimate cannot be substantially improved.

If one imposes conditions on V and Fj one can, however, obtain much sharper
estimates. The following two results in Cn are classical.

If F1, . . . , Fm are polynomials in Cn of degrees d1 ≥ · · · ≥ dm with no common
zeros even at infinity and Φ is any polynomial, then one can solve (1.1) with
deg(FjQj) ≤ max(deg Φ, d1 + · · ·+ dn+1 − n).

If F1, . . . , Fn are polynomials in Cn such that their common zero set is discrete
and does not intersect the hyperplane at infinity, and Φ belongs to the ideal (Fj),
then one can find polynomials Qj such that (1.1) holds and deg(FjQj) ≤ deg Φ.
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The first theorem is due to Macaulay, [23], and the second one is Max Noether’s
AF+BG theorem, [25], originally stated for n = 2. Noether’s result is clearly op-
timal.

In this paper we present extensions of these results to the case of more general
varieties V ⊂ CN , and also generalizations in which we relax the condition on (the
zero set of) the Fj . It grew out of our paper [9], in which we extended to the
singular setting a framework for solving polynomial ideal membership problems
with residue techniques introduced in [3] and further developed in [5, 30, 31], see
below. The proofs in this paper follow the same setup. However, at least some of
the results also admit algebraic proofs, see Remark 6.2.

Throughout we will let X denote the closure of V in PN , and regX the
regularity of X , see Section 4 for the definition. For each Fj we let fj denote the
induced section of O(degFj)|X .

We begin with an extension of Macaulay’s theorem to singular varieties; this
can easily be proved by standard arguments, cf. Remark 6.2.

Theorem 1.1. Let V be an algebraic subvariety of CN , with closure X in PN , and
let F1, . . . , Fm be polynomials in CN of degrees d1 ≥ · · · ≥ dm. Assume that fj have
no common zeros on X. Then for each polynomial Φ in CN there are polynomials
Qj such that (1.1) holds and

deg(FjQj) ≤ max(deg Φ, d1 + · · ·+ dn+1 − (n+ 1) + regX).

If X is smooth, then regX ≤ (n+1)(degX−1)+1; this is Mumford’s bound,
see, e.g., [22, Example 1.8.48]. If X is Cohen–Macaulay in PN (and N is minimal)
then regX ≤ degX − (N − n), see, [17, Corollary 4.15]. In particular, if V = Cn

so that X = Pn, then regX = 1; thus we get back Macaulay’s theorem. For a
discussion of bounds on regX for a general X , see, e.g., [10, Section 3].

Let Zf denote the common zero set of f1, . . . , fm in X . Moreover, let X∞ :=
X \ V . For smooth varieties we have the following version of Max Noether’s
theorem.

Theorem 1.2. Let V be an algebraic subvariety of CN of dimension n such that its
closure X in PN is smooth, and let F1, . . . , Fm be polynomials in CN of degrees
d1 ≥ · · · ≥ dm. Assume that m ≤ n, that

codim (Zf ∩ V ) ≥ m, (1.2)

and that Zf has no irreducible component contained in X∞. If Φ is a polynomial
that belongs to the ideal (Fj) on V , then there is a representation (1.1) with

deg(FjQj) ≤ max(deg Φ, d1 + · · ·+ dm −m+ regX). (1.3)

If in addition X is Cohen–Macaulay in PN one can choose Qj so that

deg(FjQj) ≤ deg Φ. (1.4)

Remark 1.3. If X is Cohen–Macaulay it suffices that V is smooth to obtain (1.4).
�
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For V = Cn Theorem 1.2 appeared in [3, Theorem 1.2].

For a general X , in order to have a Max Noether theorem, we need the
common zero set of the fj not to intersect the singular locus of X too badly. To
make this statement more precise we need to introduce what we call the intrinsic
BEF-varieties

Xn−1 ⊂ · · · ⊂ X1

of X ⊂ PN . These are the sets where the mappings in a locally free resolution of

OP
N

/JX do not have optimal rank. They are intrinsically defined subvarieties of
X that are contained in X0 := Xsing. The codimension of X� is at least �+1, and
if X is locally Cohen–Macaulay X� is empty for � ≥ 1, see Sections 2.3 and 2.5.

Theorem 1.4. Let V be an algebraic subvariety of CN of dimension n, with closure
X in PN , and let Fj be as in Theorem 1.2. Assume that Zf satisfies (1.2), that
Zf has no irreducible component contained in X∞, and moreover that

codim (Zf ∩X�) ≥ m+ �+ 1, � ≥ 0. (1.5)

If Φ is a polynomial that belongs to the ideal (Fj) on V , then there is a representa-
tion (1.1) such that (1.3) holds. If in addition X is Cohen–Macaulay in PN , and
m ≤ n, we can choose Qj such that (1.4) holds.

Notice that (1.5) forces that either Zf ∩Xsing = ∅ or m < n. If X is smooth,
then (1.5) is vacuous, and thus Theorem 1.2 follows immediately from Theorem 1.4.
If only V is smooth but X is Cohen–Macaulay, then by the assumption on Zf

codim (Zf ∩X∞) ≥ m+ 1 and since X0 ⊂ X∞, (1.5) is satisfied. This proves the
claim in Remark 1.3.

Next we will present some generalizations of Theorem 1.4 where we relax the
hypotheses on the common zero set Zf of the fj . First, we drop the size hypothesis
(1.2) on Zf∩V . We then still get an estimate of the form (1.3) but the second entry
on the right-hand side is now replaced by a constant that depends on Fj in a more
involved manner. The condition that Zf has no irreducible component at infinity
should now be understood as that the ideal sheaf Jf over X generated by the sec-
tions f1, . . . , fm has no associated variety, in the sense of [28], contained in X∞, see
Section 3. This means that at each x ∈ X∞, (Jf )x has no (varieties of) associated
prime ideals contained in X∞. Let Jf be the homogeneous ideal in C[z0, . . . , zN ]
associated with Jf , and let reg Jf be the regularity of Jf , cf. Section 4.

Theorem 1.5. Let V be an algebraic subvariety of CN , with closure X in PN , and
let F1, . . . , Fm be polynomials in CN . Assume that Jf has no associated variety
contained in X∞. Then there is a constant β = β(X,F1, . . . , Fm) such that if
Φ ∈ (Fj), then there is a representation (1.1) on V with

deg(FjQj) ≤ max(deg Φ, β). (1.6)

If V = CN , one can take β = reg Jf .
Conversely, if there is an associated prime of Jf contained in X∞, then there

is no β such that one can solve (1.1) with (1.6) for all Φ in (Fj).
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In [27] Shiffman computed the regularity of a zero-dimensional homogeneous
polynomial ideal Jf to be ≤ d1 + · · · + dn+1 − n. Using this he obtained (the
first part of) Theorem 1.5 for V = CN and dimZf = 0 with β = reg Jf =
d1 + · · · + dn+1 − n, i.e., the same bound as in Macaulay’s theorem, see [27,
Theorem 2(iv)]. Theorem 1.5 can thus be seen as a generalization of Shiffman’s
result.

The estimate (1.6) is clearly sharp if deg Φ ≥ β. If the ideal sheaf Jf is locally
Cohen–Macaulay, for instance locally a complete intersection, then there are no
embedded primes of Jf , and so the hypothesis that Jf has no associated variety
at infinity just means that no irreducible component of Zf is contained in X∞.
Thus we get back the hypothesis in Theorems 1.2 and 1.4.

Next, let us instead relax the condition that Zf has no irreducible compo-
nents at infinity. If the degrees of Fj are ≤ d, we let f̃j denote the section of

O(d)|X corresponding to Fj . We let Z f̃ be the common zero set of f̃1, . . . , f̃m and

Jf̃ the coherent analytic sheaf over X generated by the f̃j . Moreover, we let c∞
be the maximal codimension of the so-called (Fulton–MacPherson) distinguished
varieties of Jf̃ that are contained in X∞, see Section 5.1. If there are no distin-
guished varieties contained in X∞, then we interpret c∞ as −∞. Note that it is not

sufficient that Z f̃ ∩ V = Z f̃ , since there may be embedded distinguished varieties
contained in X∞. It is well known that the codimension of a distinguished variety
cannot exceed the number m, see, e.g., Proposition 2.6 in [15], and thus c∞ ≤ μ,
where

μ := min(m,n).

Theorem 1.6. Let V be an algebraic subvariety of CN , with closure X in PN , and

let F1, . . . , Fm be polynomials in CN of degree ≤ d. Assume that Z f̃ satisfies

codim (Z f̃ ∩X) ≥ m (1.7)

and

codim (Z f̃ ∩X�) ≥ m+ �+ 1, � ≥ 0. (1.8)

If Φ is a polynomial that belongs to (Fj) on V , then there is a representation (1.1)
on V with

deg(FjQj) ≤ max(deg Φ + μdc∞ degX, (d− 1)min(m,n+ 1) + regX). (1.9)

If in addition X is locally Cohen–Macaulay in PN and m ≤ n, then we can
choose Qj such that

deg(FjQj) ≤ deg Φ +mdc∞ degX.

Note that for most choices of Fj and Φ the first entry in (1.9) is much larger
than the second entry. For instance this is true for all Φ if c∞ ≥ 2 and d is large
enough. In particular, if X = Pn, so that regX = 1, and c∞ ≥ 2, the first entry is
the largest for all d.
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For X = Pn Theorem 1.6 is due to the first author and Götmark, [5, Theo-

rem 1.3]. In the case when degFj = d, so that f̃j = fj, Theorem 1.6 generalizes
Theorems 1.1–1.4, see Remark 6.3.

Example 1.7. If the Fj have no common zeros on V , then Theorem 1.6 gives a
solution to

F1Q1 + · · ·+ FmQm = 1

with deg(FjQj) ≤ μdμ degX if d is large enough. Except for the annoying factor
μ we then get back is Jelonek’s optimal effective Nullstellensatz, [20]. �

Note that the estimates of deg(FjQj) in the theorems above hold for rep-
resentations of all Φ in (Fj). If one, instead of adding conditions on V and Fj ,
imposes further conditions on Φ, then Hermann’s degree estimate for solutions to
(1.1) can also be essentially improved. Theorem 1.1 in our recent paper [9] asserts
that for any V ⊂ CN there is a number μ0 such that if F1, . . . , Fm are polynomials
in CN of degree ≤ d and Φ is a polynomial such that |Φ| ≤ C|F |μ+μ0 locally on
V , where |F |2 = |F1|2 + · · ·+ |Fm|2, then one can solve (1.1) with

deg(FjQj) ≤ max
(
deg Φ + (μ+ μ0)d

c∞ degX, (d− 1)min(m,n+ 1) + regX
)
.

(1.10)
The statement that |Φ| ≤ C|F |μ+μ0 implies that there is a representation (1.1) is
a direct consequence of Huneke’s uniform Briançon–Skoda theorem, [12, 19], and
thus the degree estimate (1.10) can be seen as a global effective Briançon–Skoda–
Huneke theorem.

2. Residue currents

We will briefly recall some residue theory. For more details we refer to [9] and the
references therein.

2.1. Currents on a singular variety

If nothing else is mentionedX will be a reduced subvariety of PN of pure dimension
n. The sheaf C�,k of currents of bidegree (�, k) on X is by definition the dual of the
sheaf En−�,n−k of smooth (n− �, n−k)-forms on X . If i : X → PN is an embedding

of X , then En−�,n−k can be identified with the quotient sheaf EP
N

n−�,n−k/Ker i∗,
where Ker i∗ is the sheaf of forms ξ on PN such that i∗ξ vanish on Xreg. It follows
that the currents τ in C�,k can be identified with currents τ ′ = i∗τ on PN of
bidegree (N − n+ �,N − n+ k) that vanish on Ker i∗.

Given a holomorphic function f on X , we write 1/f for the principal value
distribution, defined for instance as limε→0 χ(|f |2/ε)(1/f),where χ(t) is the charac-
teristic function of the interval [1,∞) or a smooth approximand of it, or as the ana-
lytic continuation of λ → |f |2λ(1/f) to λ = 0. It is readily checked that f(1/f) = 1
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as distributions and that the residue current ∂̄(1/f) satisfies f ∂̄(1/f) = 0. We will
need the fact that

vλ|f |2λ 1

f

∣∣∣∣
λ=0

=
1

f
(2.1)

if v is a strictly positive smooth function; cf. [1, Lemma 2.1].

2.2. Pseudomeromorphic currents

The notion of pseudomeromorphic currents on manifolds was introduced in [8]. A
slightly extended version appeared in [6]: A current on X is pseudomeromorphic
if it is (the sum of terms that are) the pushforward under (a composition of)
modifications, projections, and open inclusions of currents of the form

ξ

sα1
1 · · · sαn−1

n−1

∧ ∂̄
1

sαn
n

,

where s is a local coordinate system and ξ is a smooth form with compact support,
see, e.g., [6] for details.

Pseudomeromorphic currents in many respects behave like positive closed
currents. For example they satisfy the dimension principle: If τ is a pseudomero-
morphic current on X of bidegree (∗, p) that has support on a variety of codimen-
sion > p, then τ = 0.

Also, pseudomeromorphic currents allow for multiplication with character-
istic functions of constructible sets so that ordinary computational rules hold.
If τ is a pseudomeromorphic current on X and V is a subvariety of X , then
the natural restriction of τ to the open set X \ V has a canonical extension
1X\V τ := |h|2λτ |λ=0, where h is any holomorphic tuple such that {h = 0} = V .
It follows that 1V τ := τ − 1X\V τ is a pseudomeromorphic current with support
on V . Note that if α is a smooth form, then 1V α ∧ τ = α ∧ 1V τ and if W are W ′

are constructible sets, then

1W1W ′τ = 1W∩W ′τ. (2.2)

Moreover, if π : X̃ → X is a modification, τ̃ is a pseudomeromorphic current on

X̃, and τ = π∗τ̃ , then

1V τ = π∗
(
1π−1V τ̃

)
(2.3)

for any subvariety V ⊂ X . IfW is a subvariety ofX and 1V τ = 0 for all subvarieties
V ⊂ W of positive codimension we say that τ has the the standard extension
property, SEP with respect to W , see [11].

Recall that a current is semi-meromorphic if it is the quotient of a smooth
form and a holomorphic function. Following [6] we say that a current τ is al-

most semi-meromorphic in X if there is a modification π : X̃ → X and a semi-
meromorphic current τ̃ such that τ = π∗τ̃ .
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2.3. Residue currents associated with Hermitian complexes

Consider a complex of Hermitian holomorphic vector bundles over a complex man-
ifold Y of dimension n,

0 → EM
fM

−→ · · · f3

−→ E2
f2

−→ E1
f1

−→ E0 → 0, (2.4)

that is pointwise exact outside an analytic variety Z ⊂ Y of positive codimension p.
Suppose that the rank ofE0 is 1. In [2, 7] was associated to (2.4) a

⊕
Hom(E0, Ek)-

valued pseudomeromorphic current R = Rf ; it has support on Z and in a certain
sense it measures the lack of exactness of the associated sheaf complex of holo-
morphic sections

0 → O(EM )
fM

−→ · · · f3

−→ O(E2)
f2

−→ O(E1)
f1

−→ O(E0). (2.5)

Proposition 2.1. If φ is a holomorphic section of E0 such that Rφ = 0, then
φ ∈ Im f1. Moreover, if

Hk−1(Y,O(Ek)) = 0, 1 ≤ k ≤ min(M,n+ 1), (2.6)

then there is a global holomorphic section q of E1 such that f1q = φ.

We also have the duality principle: If (2.5) is exact, i.e., if it is a locally free
resolution of the sheaf O(E0)/Im f1, then Rφ = 0 if and only if φ ∈ Im f1.

As in [9] we will refer to a (locally) free resolution (2.5) of O(E0)/J together
with Hermitian metrics on the corresponding vector bundles as a Hermitian (lo-
cally) free resolution.

Let us look at the construction of R in a special case; see, e.g., [9] for more
details and the general case. Let Rk denote the component of R that takes values
in Hom (E0, Ek).

Example 2.2 (The Koszul complex). Given Hermitian line bundles S → Y and
L1, . . . , Lm → Y and a tuple f of holomorphic sections f1, . . . , fm of L1, . . . , Lm,
respectively, let (2.4) be the (twisted) Koszul complex of f : Let Ej be disjoint
trivial line bundles with basis elements ej , let E = L−1

1 ⊗ E1 ⊕ · · · ⊕ L−1
m ⊗ Em,

and identify f with a section f =
∑

fje
∗
j of E∗, where e∗j are the dual basis

elements. Moreover, let

E0 = S, Ek = S ⊗ ΛkE,

and let all fk in (2.4) be interior multiplication δf by the section f .

The current associated with the Koszul complex was introduced in [1]; we
will briefly recall the construction. Let σ be the section of E over Y \ Z with
pointwise minimal norm such that f · σ = δfσ = 1, i.e.,

σ =
∑
j

f∗
j ej

|f |2 ,
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where f∗
j is the section of L−1

j of minimal norm such that fjf
∗
j = |fj|2Lj

, and

|f |2 = |f1|2L1
+ · · ·+ |fm|2Lm

. Then Rk equals the analytic continuation to λ = 0 of

Rλ
k = Rf,λ

k := ∂̄|f |2λ ∧ σ ∧ (∂̄σ)k−1. (2.7)

Here the exterior product is with respect to the exterior algebra over E ⊕ T ∗(Y )
so that dz̄j ∧ e� = −e� ∧ dz̄j etc; in particular, ∂̄σ is a form of even degree.

If m = 1, then σ is just (1/f1)e1 and R = ∂̄(1/f1) ∧ e1. In general, the coef-
ficients of R are the Bochner–Martinelli residue currents introduced by Passare–
Tsikh–Yger [26]. The sheaf complex associated with the Koszul complex is exact
if and only if f is a complete intersection, i.e., codimZf = m. In this case one can
prove that (the coefficient of) R = Rm coincides with the classical Coleff–Herrera
residue current ∂̄(1/f1) ∧ · · · ∧ ∂̄(1/fm). �

Since, in light of the above example,R generalizes the classical Coleff–Herrera
residue current (as well as the Bochner–Martinelli residue currents), we say that
R is the residue current associated with the Hermitian complex (2.4).

The construction of R in general involves the minimal inverse σk of each
fk in (2.4); R is defined as the analytic continuation to λ = 0 of a regular-
ization Rλ which generalizes (2.7). The component Rk is of the form ∂̄|f |2λ ∧
σk∂̄σk−1 · · · ∂̄σ1|λ=0; see, e.g., [7] for a precise interpretation of this. It follows
that outside the set Zk where fk does not have optimal rank,

Rk = αkRk−1, (2.8)

where αk is a smooth Hom (Ek−1, Ek)-valued (0, 1)-form. If (2.5) is exact, these
sets are independent of the resolution; we call them BEF varieties (which is
an acronym for Buchsbaum–Eisenbud–Fitting, cf. [9]) and denote them Zbef

k =
Zbef
k (Jf ). The Buchsbaum–Eisenbud theorem asserts that codimZbef

k ≥ k; more
precisely it says that the complex (2.5) is exact if and only if the codimension of the
set where fk does not have optimal rank is ≥ k, see, e.g., [17, Theorem 3.3]. If Jf

has pure codimension p, then codimZbef
k ≥ k+1 for k > p, see [16, Corollary 20.14].

Also, note that if in addition X is locally Cohen–Macaulay, then Zk = ∅ for k > p.
The current Rk has bidegree (0, k), and thus, by the dimension principle, Rk = 0
for k < p, and for degree reasons, Rk = 0 for k > n.

If the complex (2.4) is twisted by a Hermitian line bundle, the residue current
R is not affected. This follows since the σk are not affected by the twisting.

2.4. BEF-varieties on singular varieties

Let i : X → Y be a (local) embedding of X of dimension n into a smooth manifold
Y of dimension N . Note that if Jf is a coherent ideal sheaf on X , then Jf +JX is

a well-defined sheaf on Y . Indeed, locally Jf is the pullback i∗J̃f of an ideal sheaf

on Y and the sheaf J̃f+JX is independent of the choice of J̃f . We define kth BEF-
variety Zbef

k (Jf ) of Jf as Zbef
k+N−n(Jf + JX), which clearly is a subvariety of X .

This definition is independent of the embedding i. To see this recall that

(locally) i can be factorized as X
ι→ Ω → Ω × Cr = Y , where ι is a minimal
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embedding. From a locally free resolution of OΩ/J , where J is a coherent ideal
sheaf over Ω, it is not hard to construct a locally free resolution of OY /(J+JΩ). By
relating the sets where the mappings in these resolutions do not have optimal rank
one can show that the BEF-varieties of J are independent of i, cf. [4, Remark 4.6]
and [9, Section 3].

2.5. The structure form ω on a singular variety

Now assume that X is as in Section 2.1, and let R be the residue current associated
with a Hermitian free resolution O(E•), g• of the sheaf JX of X , and let Ω be
a global nonvanishing (dimPN , 0)-form with values in O(N + 1). It was shown
in [6, Proposition 3.3] that there is a (unique) almost semi-meromorphic current
ω = ω0 + · · ·+ ωn−1 on X , that is smooth on Xreg and such that

i∗ω = R ∧Ω.

We say that ω is a structure form on X . Let E� denote the restriction of EN−n+�

to X . Then the component ω� is an (n, �)-form taking values in Hom (E0, E�).
Moreover, let X0 = Xsing and X� = XN−n+�, where Xj are the BEF-varieties of
JX . In the language of the previous section X� is the �th BEF-variety of the zero
sheaf. It follows from that section that the X� are independent of the embedding
i : X → Y of X into a smooth manifold Y ; we therefore call them the intrinsic
BEF-varieties of X . In light of (2.8) there are almost semi-meromorphic forms α�,
smooth outside X�, such that

ω� = α�ω�−1. (2.9)

on X .

3. Gap sheaves and primary decomposition of sheaves

Recall that any ideal a in a Noetherian ring A admits a primary decomposition
(or Noether–Lasker decomposition), i.e., it can be written as a =

⋂
ak, where ak

is pk-primary (ab ∈ ak implies a ∈ ak or bs ∈ ak for some s and
√
ak = pk) for

some prime ideal pk. The primes in a minimal such decomposition are called the
associated primes of a and the set Ass(a) of associated primes is independent of
the primary decomposition.

Given a coherent subsheaf J of OX , Siu [28] gave a way of defining a
“global” primary decomposition. Let us briefly recall his construction. First, for
p = 0, 1, . . . , dimX , let J[p] ⊃ J be the pth gap sheaf (Lückergarbe), introduced
by Thimm [29]: A germ s ∈ Ox is in (J[p])x if and only if there is a neighborhood
U of x and a section t ∈ J (U) such that sx = tx and ty ∈ Jy for all y ∈ U outside
an analytic set of dimension at most p. It is not hard to see that J[p] is a coher-
ent sheaf, see [29], and that the set Y p where (J[p])x �= Jx is an analytic variety
of dimension at most p, see [28, Theorem 3]. The irreducible components of Y p,
p = 0, 1, . . . , dimX , are called the associated (sub)varieties of J . A coherent sheaf
J is said to be primary if it has only one associated variety Y ; we then say that
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J is Y -primary. Theorem 6 in [28] asserts that each coherent J ⊂ OX admits a
decomposition

J =
⋂

Ji, (3.1)

where there is one Yi-primary intersectand Ji for each associated variety Yi of J .
For a radical sheaf JX , the decomposition (3.1) corresponds to decomposing X
into irreducible components.

By Theorem 4 in [28] if Y is an associated prime variety of J , then at x ∈ X
the irreducible components Ass(JYx) of Yx are germs of varieties of associated
primes of Jx. Furthermore, if Yx is (the variety of) an associated prime of Jx,
then Yx is contained in Y p

x for p ≥ dimYx. For fixed x we get that⋃
Y ∈Ass(J ),Y �x

Ass(JYx)

is a disjoint union of Ass(Jx). Thus we have

Lemma 3.1. The germ at x of J[p] is precisely the intersection of the primary
components of Jx that are of dimension > p.

Given a subvariety Z of X , the gap sheaf J [Z] ⊃ J is defined as follows:
A germ s ∈ Ox is in J [Z]x if and only if it extends to a section of J (U) for
some neighborhood U of x, where sy ∈ Jy for all y ∈ U \ Z. Note that J [Z]x
is the intersection of all components in a primary decomposition of Jx for which
the associated varieties are not contained in Z. It is not hard to see that J [Z] is
coherent, see [29]. Observe that J[p] = J [Y p].

Remark 3.2. We claim that in fact

J[p] = J [Zbef
n−p]. (3.2)

To see this assume first that X is smooth. Then the (germs of) varieties of asso-
ciated prime ideals of J of dimension ≤ p are precisely the (germs of) varieties of
associated prime ideals that are contained in Zbef

n−p, see, e.g., [16, Corollary 20.14].
Now (3.2) follows from Lemma 3.1.

For a general X , let i : X → Y be a local embedding of X into a manifold Y

of dimension N and let J̃ = J +JX , cf. Section 2.4. It is not hard to verify that if a
is an ideal in OX

x and ã := a+(JX)x is the corresponding ideal in OY
x then a = ∩ak

is a primary decomposition of a if and only if ã = ∩ãk is a primary decomposition

of ã. Hence, in light of Lemma 3.1, i∗J̃ [V ] = J [V ∩X ] and i∗J̃[p] = J[p]. By the

definition of BEF-varieties in Section 2.4, thus i∗J̃ [Zbef
N−p(J̃ )] = J [Zbef

N−p(J̃ )] =

J [Zbef
n−p(J )], which proves (3.2) since J̃[p] = J̃ [Zbef

N−p(J̃ )]. �

Given a residue currentR constructed from a Hermitian locally free resolution
of OX/J on a smooth X as in Section 2.3, in [8] we showed that the germ Rx of
the current R at x ∈ X can be written as Rx =

∑
Rp, where the sum is over the

associated primes of Jx, and Rp has support on the variety V (p) of p and has the
SEP with respect to V (p).
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4. Resolutions of homogeneous ideals

Let J be a coherent ideal sheaf on PN . Then there is a locally free resolution

O(Ef
• ), f•, where Ek is a direct sum of line bundles Ek =

⊕
iO(−dik) and fk =

(fk
ij) are matrices of homogeneous forms with deg fk

ij = djk − dik−1, see, e.g., [22,

Ch.1, Example 1.2.21]. Let J denote the homogeneous ideal in the graded ring
S = C[z0, . . . , zN ] associated with J , and let S(�) denote the module S where all

degrees are shifted by �. Then O(Ef
• ), f• corresponds to a free resolution

· · · → ⊕iS(−dik) → · · · → ⊕iS(−di2) → ⊕iS(−di1) → S (4.1)

of the module S/J . Conversely, any such free resolution corresponds to a locally
free resolution O(E•), f•.

Recall that the regularity of a homogeneous module with a minimal graded
free resolution (4.1) is defined as maxk,i(d

i
k−k), see, e.g., [17, Ch. 4]. The regularity

reg J of the ideal J equals reg (S/J) + 1, cf. [17, Exercise 4.3].
If X is a subvariety of PN , then the regularity of X , regX , is defined as the

regularity of JX . Notice that if X has pure dimension, then the ideal JX has pure
dimension in S; in particular the ideal associated to the origin is not an associated
prime ideal. Theorem 20.14 in [16] thus implies that Zbef

0 is empty. Therefore the
depth of S/JX is at least 1, and hence a minimal free resolution of S/JX has
length ≤ N . For such a resolution we thus get

regX = max
k≤min(M,N)

(dik − k) + 1. (4.2)

A global section of O(s)|X → X extends to a global section of O(s) → PN as soon
as s ≥ regX − 1, see, e.g., [17, Chapter 4].

5. Division problems on singular varieties

Let Eg
• , g• be a complex that corresponds to a Hermitian free resolution ofOP

N

/JX

as above, and let Ef
• , f• be an arbitrary Hermitian pointwise generically surjective

complex over PN . Then the product current

Rf ∧Rg := Rf,λ ∧Rg|λ=0

is well-defined on Pn,

Rf ∧ ω := Ri∗f,λ ∧ ω|λ=0

is a well-defined current on X , and i∗(Rf ∧ ω) = Rf ∧ Rg, see [9, Section 2]. In
particular, Rf ∧ Rg and Rf ∧ ω only depend on the restriction of f to X , and
thus these currents are well-defined even if f is only defined over X . Moreover
Rf ∧ Rgφ = 0 if and only if Rf ∧ ωi∗φ = 0. On Xreg, R

f ∧ ω is just the product
of the current Rf and the smooth form ω.

The current Rf ∧Rg is related to the tensor product complex Eh
• , h

•, where

Eh
k =

⊕
i+j=k

Ef
i ⊗ Eg

j ,
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and h = f + g, cf. [9, Section 2.5], in a similar way as is the current Rh associated

with this complex, see [4]. In particular, if φ is a section of Eh
0 = Ef

0 ⊗Eg
0 such that

Rf ∧Rgφ = 0, one can locally solve f1q+g1q′ = φ. Moreover if (2.6) is satisfied for

the product complex there is a global such section (q, q′) of Eh
1 = Ef

1⊗Eg
0⊕Ef

0⊗Eg
1 .

In general, however, Rf ∧Rg does not coincide with Rh.

In fact, the definition of Rf in Section 2.3 works also when Y is singular.
However, Proposition 2.1 and the duality principle do not hold in general, see,
e.g., [21], and therefore Rf itself is not so well suited for division problems.

Example 5.1. Assume that Ef
• , f• is the Koszul complex generated by sections fj

of Lj = O(dj)|X , where X ⊂ PN , twisted by S = O(ρ), as in Example 2.2, and
that Eg

• , g• is a complex associated with a minimal Hermitian free resolution of
S/JX as in Section 4. Note that then Eh

� is a direct sum of line bundles

O(ρ− (di1 + · · ·+ di�)− dik−�).

Recall that

Hk(PN ,O(�)) = 0 if � ≥ −N or k < N, (5.1)

see, e.g., [13]. Thus (2.6) is satisfied if ρ ≥ di1 + · · · + di� + diN+1−� − N for
� = 1, 2, . . . ,min(m,n+ 1) and all choices of i and ij . Notice that, cf. (4.2),

diN+1−� −N =
(
diN+1−� − (N + 1− �)

)
+ 1− � ≤ regX − �.

Hence (2.6) is satisfied if

ρ ≥ d1 + · · ·+ dmin(m,n+1) −min(m,n+ 1) + regX. (5.2)

Summing up we have:

If ρ satisfies (5.2) and φ is a section of O(ρ) on PN such that Rf ∧ Rgφ = 0 (or
equivalently Rf ∧ Rgi∗φ = 0) then there are global sections qj of O(ρ − dj) such
that f1q1 + · · ·+ fmqm = φ on X.

IfX is Cohen–Macaulay we may assume that Eg
• , g• ends at levelN−n. If moreover

m ≤ n, then Eh
• , h

• ends at level ≤ N and thus (2.6) is satisfied for any ρ. �

Example 5.2. Let Fj be polynomials in CN , let f̂j be the sections of O(degFj) →
PN corresponding to Fj , and let Jf̂ be the ideal sheaf on PN generated by the

f̂j . Moreover, let Ef
• , f• and Eg

• , g• be complexes associated with minimal free
resolutions of Jf̂ and JX as in Section 4, where X is a subvariety of PN ; say

Ef
k =

⊕
O(δik) and Eg

k =
⊕

O(dik). Then Eh
k is a direct sum of line bundles

O(−δi� − djk−�), and thus (2.6) is satisfied if ρ ≥ δi� + djN+1−� −N for all i, j, �, cf.
Example 5.1. Notice that, in light of Section 4,

δi� + djN+1−� −N = (δi� − �) + (djN+1−� − (N + 1− �)) + 1 ≤ regJf̂ + regX − 1,

where Jf̂ is the homogeneous ideal associated with Jf̂ . Thus (2.6) is satisfied if
ρ ≥ reg Jf̂ + regX − 1.
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Let Z f̂
k and Zg

� be the BEF-varieties of Jf̂ and JX , respectively. Theorem 4.2

in [4] asserts that if

codim (Z f̂
k ∩ Zg

� ) ≥ k + �, (5.3)

then Rf ∧Rgφ = 0 if and only if φ ∈ Jf̂ + JX = Jf + JX , where Jf is the sheaf

on X generated by the restrictions fj of f̂j , cf. Section 2.4. If moreover Jf̂ and

JX are both Cohen–Macaulay and the resolutions O(Ef
• ), f• and O(Eg

• ), g• have
minimal length, then Rf ∧Rg = Rh, see [4, Theorem 4.2]. �

5.1. Distinguished varieties

Let X be a subvariety of PN and let f̃j be sections of L = O(d)|X . Moreover, let
ν : X+ → X be the normalization of the blow-up of X along Jf̃ , and let W =∑

rjWj be the exceptional divisor; here Wj are irreducible Cartier divisors. The
images Zj := ν(Wj) are called the (Fulton–MacPherson) distinguished varieties

associated with Jf̃ , see, e.g., [22]. If we consider f̃ = (f̃1, . . . , f̃m) as a section

of E∗ := ⊕m
1 O(−d), then ν∗f̃ = f̃0f̃ ′, where f̃0 is a section of the line bundle

O(−W ) and f̃ ′ = (f̃ ′
1, . . . , f̃

′
m) is a nonvanishing section of ν∗E∗ ⊗ O(W ), where

O(W ) = O(−W )−1. Furthermore, ωf̃ := ddc log |f̃ ′|2 is a smooth first Chern form

for ν∗L⊗O(W ). We will use the geometric estimate∑
rj degL Zj ≤ degLX (5.4)

from [15, Proposition 3.1], see also [22, (5.20)].

Let Rf̃ be the residue current associated with the Koszul complex of the f̃j

as in Example 2.2 and consider the regularization (2.7) of Rf̃ . Using the notation

in Example 2.2, ν∗σ = (1/f̃0)σ′, where 1/f̃0 is a meromorphic section of O(W )
and σ′ is a smooth section of ν∗E ⊗O(−W ). It follows that

ν∗(σ ∧ (∂̄σ)k−1) =
1

(f̃0)k
σ′ ∧ (∂̄σ′)k−1,

and hence

ν∗Rλ
k = ∂̄|f̃0f̃ ′|2λ ∧ 1

(f̃0)k
σ′ ∧ (∂̄σ′)k−1 for Reλ >> 0,

when k ≥ 1. Since f̃ ′ is nonvanishing, by (2.1) the value at λ = 0 is precisely

R+
k := ∂̄

1

(f̃0)k
∧ σ′ ∧ (∂̄σ′)k−1. (5.5)

Thus

ν∗R+
k = Rf̃

k .
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6. Proofs

Proof of Theorem 1.5. For j = 1, . . . ,m, let f̂j be the degFj-homogenization of
the polynomial Fj , considered as a section of O(degFj) → PN . Moreover let
g1, . . . , gr be global generators of the ideal sheaf JX ; assume they are sections of
O(d1), . . . ,O(dr), respectively. Let J = Jf̂ + JX = Jf + JX . Then there is a

locally free resolution O(Eh• ), h• of O/J , where each Eh
k is a direct sum of line

bundles Ek =
⊕

i O(−dik) and in particular E1 =
⊕m

1 O(− degFj)⊕r
1

⊕
O(−dk)

and h1 = (f1, . . . , fm, g1, . . . , gr) =: f +g, cf. Section 4. Let R = Rh be the residue
current associated with Eh

• , h
•.

Recall from Section 3 that for fixed x ∈ X , Rx =
∑

Rp, where the sum
is over Ass(Jx) and where Rp has the SEP with respect to V (p); in particular,
1H∞Rp = Rp if V (p) ⊂ H∞ and 1H∞Rp = 0 otherwise. Thus

1H∞Rx =
∑

p∈Ass(Jx),V (p)⊂H∞

Rp. (6.1)

In Remark 3.2 we saw that a = ∩ak is a primary decomposition of the ideal a in
OX

x if and only if ã = ∩ãk is a primary decomposition of the ideal ã = a+ (JX)x
in OY

x . Thus, that Jf has no associated varieties contained in X∞ implies that,
for a fixed x ∈ X , Jx has no (varieties of) associated primes contained in the
hyperplane H∞ at infinity in PN . We conclude, in light of (6.1), that 1H∞R = 0.
If φ is any homogenization of Φ then 1CNRφ = 0 because of the duality principle
and hence Rφ = 1H∞Rφ+ 1CNRφ = 0.

Assume that the complex Eh
• , h

• ends at levelM (by Hilbert’s syzygy theorem
we may assume that M ≤ N + 1) and let

β := max
i

diN+1 −N if M = N + 1 and β := 0 otherwise. (6.2)

If ρ ≥ β then (2.6) is satisfied for Eh
• , h

• twisted by O(ρ) in light of (5.1) and
thus by Proposition 2.1 there are global holomorphic sections q = (qj) of

⊕
O(ρ−

degFj) and q′ = (q′k) of
⊕

O(ρ − dk) over PN such that f̂ q + gq′ = φ. Indeed,
recall from the end of Section 2.3 that R is also the residue current associated
with the twisted complex. Dehomogenizing gives polynomials Qj , Q

′
j , and Gj in

CN such that ∑
FjQj +

∑
GjQ

′
j = Φ

and where deg(FjQj) ≤ ρ. Since the Gj vanish on V we get the desired solution
to (1.1) on V , and thus the first part of Theorem 1.5 follows with β as in (6.2).

If V = CN , OX should be interpreted as the zero sheaf. Then Eh
• , h

• is a
locally free resolution of O/Jf and β ≤ reg Jf , cf. Section 4.

For the second part of Theorem 1.5, assume that Jf has an associated variety
contained in X∞. We are to prove that for arbitrarily large � there is a polyno-
mial Φ = Φ� of degree ≥ � in (Fj) on V for which one cannot solve (1.1) with
deg(FjQj) ≤ degΦ�.
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Let L = O(1)|X . The hypothesis on Jf then means that Jf [X∞] is strictly
larger than Jf . Therefore, since L is ample, for some large enough s0 there is a
global section ψ0 of L⊗s0 → X such that ψ0 is in Jf [X∞] but not in Jf . Moreover
we can find a global section ψ of L⊗s for some s ≥ 1 such that ψ does not vanish
identically on any of the associated varieties of Jf that are contained in X∞. We
may assume that s0, s ≥ regX − 1, so that ψ0 and ψ extend to global sections

ψ̂0 and ψ̂ of O(s0) and O(s), respectively. Let Ψ0 and Ψ be the corresponding
dehomogenized polynomials in CN . For � ≥ 0, let φ� = ψ0ψ

� and Φ� = Ψ0Ψ
�.

Since Jf [X∞]x = (Jf )x for all x ∈ V , Φ� is in the ideal (Fj) on V , and thus we
can solve (1.1) for Φ = Φ� on V . Assume that there is a solution to (1.1) with
deg(FjQj) ≤ ρ�. Then there are sections qj of Lρ�−degFj such that∑

fjqj = z
ρ�−(s0+s�)
0 φ�

on X . Since φ� is not in Jf it follows that ρ� − (s0 + s�) ≥ 1 and thus ρ� ≥
1 + (s0 + s�) ≥ 1 + degΦ�. Since ψ̂ does not vanish identically at X∞, degΨ ≥ 1
and hence degΦ� ≥ �. Hence we have found Φ� with the desired properties and
the second part of Theorem 1.5 follows. �

Remark 6.1. If Jf̂ and JX are Cohen–Macaulay and the BEF-varieties of Jf̂ and

JX satisfy (5.3), then we can choose the complex Eh• , h• in the above proof to be

the tensor product of the complexes Ef
• , f• and Eg

• , g• corresponding to minimal
resolutions of Jf̂ and JX , see Example 5.2. In this case, by Example 5.2, we get

Theorem 1.5 for β = reg Jf̂ + regX − 1. �

The residue current technique in the preceding proof is convenient and makes
it possible to carry out the proof within our general framework, but it is not crucial.

Remark 6.2 (The algebraic approach). Let us first sketch an algebraic proof of
the first part of Theorem 1.5. We use the notation from the proof above. To begin
with we have to prove that φ is in J , which of course precisely corresponds to
proving that Rφ = 0. Since (the restriction to V of) φ is in Jf on V it follows that

φx′ is in J outside H∞. Since moreover J = OP
N

outside X , we have to prove
that φx ∈ Jx for each x ∈ X∞. At such a point x we have a minimal primary
decomposition Jx = ∩�J �

x . Since J is coherent, J ⊂ J � in a neighborhood U of
x, where J � is the coherent sheaf defined by J �

x . Let Z� be the zero-set of J �.
Since φx′ is in Jx′ for x′ outside H∞ it follows that φx′ is in J �

x′ for x′ ∈ Z� \H∞.
Hence F := (J � + (φ))/J � is a coherent sheaf in U with support on Z� ∩ H∞.
Since by assumption Jf has no associated varieties contained in X∞ it follows
that Z� ∩H∞ has positive codimension in Z�, cf. the proof of Theorem 1.5 above.
Therefore, by the Nullstellensatz there is a holomorphic function h, not vanishing
identically on Z� such that hF = 0. In particular, hxφx ∈ J �

x . Since hx is not in
the radical of J �

x and J �
x is primary it follows that φx ∈ J �

x . We conclude that
φx ∈ Jx. Notice that the last arguments above can be thought of as an algebraic
version of the SEP-argument in the proof of Theorem 1.5 above.
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Next we would like to use that φ ∈ J to conclude that there is a global
holomorphic solution to hq = φ. By a partition of unity, using that Eh

• , h
• is exact,

one can glue local such solutions together to obtain a global smooth solution to
(h− ∂̄)ψ = φ, cf. [9, Section 4]. By solving a certain sequence of ∂̄-equations in PN

we can modify ψ to a global holomorphic solution q to hq = φ. These ∂̄-equations
are solvable if ρ ≥ β defined by (6.2). Alternatively, one can directly refer to the
well-known result that there is a solution to hq = φ if ρ ≥ reg J , where J is the
homogeneous ideal corresponding to J , see, e.g., [17, Proposition 4.16].

In the same way Theorem 1.1 and 1.2 follow without any reference to residues.
Probably one can also find give an algebraic proof of Theorem 1.4. �

In the next proof the residue technique plays a more decisive role.

Proof of Theorem 1.6. Let

ρ = max(deg Φ + μdc∞ degX, (d− 1)min(m,n+ 1) + regX),

or if X is Cohen–Macaulay and m ≤ n let ρ = degΦ + mdc∞ degX , and let φ
be the ρ-homogenization of Φ considered as a section of O(ρ)|X . Note that then

φ = zρ−degΦ
0 φ̃, where φ̃ is the deg Φ-homogenization of Φ. Moreover, let Rf̃ ∧ ω

be the residue current associated with the (twisted) Koszul complex Ef̃
• , f̃• of the

sections f̃j of O(d)|X associated with Fj , and a complex Eg
• , g• associated with a

minimal resolution of O/JX as in Example 5.1 (with dj = d for all j).

Claim: Rf̃ ∧ ω0φ has support on Z f̃ ∩X0.

To prove the claim, since ω is smooth on Xreg, it is enough to show that

Rf̃φ = 0 on Xreg. First, since codimZ f̃ ∩ V ≥ m, the duality principle for a

complete intersection, cf. Example 2.2, implies that Rf̃φ = 0 on Vre.

Next, to prove that 1X∞\X0Rf̃φ = 0 we consider the normalization of the

blow-up ν : X+ → X , and let R+ :=
∑

R+
k be as in Section 5.1. Let W ′ be the

union of the irreducible components of W = ν−1Z f̃ that are contained in ν−1X∞.
We claim that

1X∞Rf̃ = ν∗
(
1W ′R+

)
. (6.3)

In fact, by (2.3),

1X∞Rf̃ = ν∗
(
1ν−1X∞R+

)
= ν∗(1ν−1X∞(1W ′ + 1W\W ′)R+

)
. (6.4)

By, (2.2), 1ν−1X∞1W ′R+ = 1W ′R+. Moreover,

1ν−1X∞1W\W ′ ∂̄
1

(f̃0)k
= 1ν−1X∞∩(W\W ′)∂̄

1

(f̃0)k
= 0

by (2.2) and the dimension principle, since ν−1X∞∩ (W \W ′) has codimension at
least 2 in X+. In view of (5.5) we conclude that 1ν−1X∞1W\W ′R+ = 0, and thus
(6.3) follows from (6.4).

It follows from (6.3) that 1X∞\X0Rf̃φ = 0 if 1W ′R+ν∗φ = 0. To show that

1W ′R+ν∗φ vanishes first note that it is sufficient to show that it vanishes in a
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neighborhood of each point x on W ′ where W is smooth. Indeed, since Wsing has

codimension at least 2 in W , 1Wsing ∂̄(1/(f̃
0)k) = 0 by the dimension principle.

Hence, using (5.5) and (2.2) we get that

1W ′R+ = 1W ′(1Wreg + 1Wsing)R
+ = 1W ′∩WregR

+.

Consider now x ∈ 1W ′∩Wreg ; say x is contained in the irreducible component Wj of

W ′. In a neighborhood of x we have that f̃0 = srjv, where s is a local coordinate

function and v is nonvanishing and rj is as in Section 5.1. Since φ = zρ−degΦ
0 φ̃, by

the choice of ρ, ν∗φ vanishes to order (at least) μdc∞ degX on W ′.
If Ω is a first Chern form for O(1)|X , e.g., Ω = ddc log |z|2, then dΩ is a first

Chern form for L = O(d)|X on X (notice that d denotes the degree and not the
differential). By (5.4) we therefore have that

rj

∫
Zj

(dΩ)dimZj ≤
∫
X

(dΩ)n,

which implies that

rj ≤ dcodimZj degX.

It follows that ν∗φ vanishes (at least) to order μrj on Wj and hence it has a factor
sμrj . In a neighborhood of x,

∂̄
1

(f̃0)k
= ∂̄

1

skrj
∧ smooth

and thus, in light of (5.5), R+
k ν

∗φ = 0 for k ≤ μ there. Hence 1W ′∩WregR
+
k ν

∗φ = 0

for k ≤ μ and 1X∞\X0Rf̃φ = 0. We conclude that 1X\X0Rf̃φ = 1Vreg Rf̃φ +

1X∞\X0Rf̃φ = 0, which proves the claim that Rf̃ ∧ ω0φ has support on Z f̃ ∩X0.

By (1.8) and the dimension principle we conclude that Rf̃ ∧ ω0φ vanishes

identically, since the bidegree of Rf̃ is at most (0,m) and ω0 has bidegree (n, 0).

Thus Rf̃ ∧ ω1φ = Rf̃ ∧ α1ω0φ, see (2.9), vanishes outside X1. By (1.8) and the

dimension principle, it vanishes identically since the bidegree of Rf̃ ∧ω1 is at most

(n,m+1). By induction, it follows that Rf̃ ∧ω�φ = 0 for each �. We conclude that

Rf̃ ∧ ωφ = 0.

Since ρ satisfies (5.2) (with dj = d) and Rf̃ ∧ωφ = 0, by Example 5.1 there is
a global section q = (qj) of

∑m
1 O(ρ− d) such that fq = φ on X . Dehomogenizing

gives polynomials Qj such that (1.1) holds on V and deg(FjQj) ≤ ρ. �

Proof of Theorems 1.1 and 1.4. Let

ρ = max(deg Φ, d1 + · · ·+ dmin(m,n+1) −min(m,n+ 1) + regX),

or if X is Cohen–Macaulay and m ≤ n let ρ = degΦ. Moreover let φ be the
ρ-homogenization of Φ and let Rf ∧ ω be the residue current associated with

the twisted Koszul complex Ef
• , f• of the degFj-homogenizations fj of Fj and a

minimal resolution of O/JX as in Example 5.1.



108 M. Andersson and E. Wulcan

We claim that under the hypotheses of both theorems Rf ∧ ω0φ has support
on Zf ∩X0. Since ω is smooth outside X0 it is enough to show that Rfφ = 0 there.
First in the case of Theorem 1.1, Rf vanishes for trivial reasons, since Zf is empty.
In the case of Theorem 1.4, first Rfφ vanishes on Vreg by the duality principle.
Next, since by assumption (1.2) holds and Zf has no irreducible components in
X∞, it holds that codim (X∞∩Zf ) > m. Since the components ofRf have bidegree
at most (0,m), we conclude that 1X∞\X0

Rf = 0 by the dimension principle. This

proves that Rf ∧ ωφ has support on Zf ∩X0.
Now arguing as in the end of the proof of Theorem 1.6, we get that Rf ∧ωφ =

0, and the results follow from Example 5.1. �
Remark 6.3. If degFj = d, then Theorems 1.1 and 1.4 follow directly from The-
orem 1.6. First, notice that Theorem 1.1 follows if we apply Theorem 1.6 to Fj

with no common zeros on X . Indeed, since Zf is empty, codim (Zf ∩X) = ∞ and
thus (1.7) and (1.8) are satisfied, and moreover c∞ = −∞.

Next, assume that Fj satisfy the hypothesis of Theorem 1.4. Since the codi-
mension of a distinguished variety is at most m the condition that Zf satisfies
(1.2) and has no irreducible component contained in X∞ means that (1.7) is sat-
isfied and no distinguished varieties can be contained in X∞. Thus c∞ = −∞ and
dc∞ = 0 and Theorem 1.4 follows from Theorem 1.6. �
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