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Abstract. We give a complete description of amoebas and coamoebas of k-
dimensional very affine linear spaces in (C∗)n. This include an upper bound
of their dimension, and we show that if a k-dimensional very affine linear
space in (C∗)n is generic, then the dimension of its (co)amoeba is equal to
min{2k, n}. Moreover, we prove that the volume of its coamoeba is equal to

π2k. In addition, if the space is generic and real, then the volume of its amoeba
is equal to π2k

/
2k.
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1. Introduction

Amoebas and coamoebas are very fascinating notions in mathematics, the first has
been introduced by I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky in 1994 [3],
and the second by the second author in a talk in 2004. They are natural projections
of complex varieties, and which turn out to have relations to several other fields:
tropical geometry, real algebraic geometry, generalized hypergeometric functions,
mirror symmetry, and others (e.g., [6], [7], [13], [12], [17], [19]). More precisely,
the amoebas (respectively coamoebas) of complex algebraic and generally analytic
varieties in the complex algebraic torus (C∗)n are defined as their image under
the logarithmic mapping Log : (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|) (respectively
the argument mapping Arg : (z1, . . . , zn) �→ ( z1

|z1| , . . . ,
z1
|z1| )). Amoebas (respec-

tively coamoebas) are the link between classical complex algebraic geometry and
tropical (respectively complex tropical) geometry. More precisely, amoebas degen-
erate to piecewise-linear objects called tropical varieties (see [13], and [19]), and
comoebas degenerate to a non-Archimedean coamoebas which are the coamoebas
of some lifting in the complex algebraic torus of tropical varieties. See [18] for
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more details about non-Archimedean coamoebas, and [16] about this degeneration
in case of hypersurfaces. Whereas the theory of (co)amoebas of complex hyper-
surfaces is by now reasonably well understood (see, e.g., [2], [11], [16], and [19]),
much less is known about the structure of (co)amoebas coming from varieties of
higher codimension. A natural first step in this direction is to explore the case of
linear spaces.

Being of a logarithmic nature, it is natural that coamoebas are closely related
to the exponents of the defining functions of V , and to the associated Newton
polytopes. This connection is extensively explored in the thesis of the first author
[3], [15], and [19]. Another important connection is to the currently very active field
of tropical geometry, a piecewise linear incarnation of classical algebraic geometry
where the varieties can be seen as non-Archimedean versions of amoebas (see [7],
[12], [13] and others).
A fundamental theorem was shown by K. Purbhoo [20] for the general study
of amoebas that do not come from hypersurfaces. The theorem states that the
amoeba of an algebraic variety V is equal to the intersection of all hypersurface
amoebas corresponding to functions in the defining ideal I(V ) of the variety V .
We give a simple proof of this theorem with an extension to coamoebas.

Theorem 1.1. Let V ⊂ (C∗)n be an algebraic variety with defining ideal I(V ).
Then the amoeba (respectively coamoeba) of V is given as follows:

A (V ) =
⋂

f∈I(V )

A (Vf ) and coA (V ) =
⋂

f∈I(V )

coA (Vf ).

In [19], Rullg̊ard and the second author showed that the area of complex
plane curve amoebas is finite and the bound is given in terms of the Newton
polygon of the defining polynomial. They, also compute the area of the amoeba of
a plane line. It was shown by Mikhalkin and Rullg̊ard that this bound is always
sharp [14]. In [8], Madani and the first author generalized this result and showed
that the volume of the amoeba of a k-dimensional algebraic variety of (C∗)n with
n ≥ 2k is finite. Moreover, they proved in [9] that the finiteness of the volume of
the amoeba of a generic analytic variety is equivalent to the variety being algebraic.
Theorem 1.1 and Proposition 3.1 was shown separately and in the same time by
Petter Johansson in [4].

Let V be a variety in the projective space CPn. We choose homogeneous
coordinates [Z0 : · · · : Zn] so that V is transverse to coordinate hyperplanes Zj =
0 and all their intersections. The complement of the arrangement of coordinate
hyperplanes in CPn is (C∗)n. Then the variety V = V ∩ (C∗)n is called a very
affine variety, and in the case where P (k) is a k-dimensional linear subspace of
CPn we say that P(k) = P (k) ∩ (C∗)n is a very affine linear space, and by
abuse of language we will call it just affine linear space. Moreover, P(k) can be
presented as a complete intersection of hyperplanes given by first degree equations
f1(z) = · · · = fn−k(z) = 0, where z = (z1, . . . , zn) = (Z1/Z0, . . . , Zn/Z0) stands
for the affine coordinates in (C∗)n.
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Theorem 1.2. Let P(k) be a generic affine linear subspace of (C∗)2k. Then we
have the following:

(i) The volume of the coamoeba coA (P(k)) is equal to π2k;

(ii) Moreover, if P(k) is real, then the volume of its amoeba A (P(k)) is equal

to π2k

2k .

The present paper is organized as follows. We give definitions, background,
and some known results in connection with this paper in Section 2. We prove
Theorem 1.1 in Section 3, and detailed description of amoebas and coamoebas of
lines in n-dimensional complex algebraic torus in Section 4.1 for any n ≥ 2. We
prove Theorem 1.2 in Section 5.

Remark. My first meeting and mathematical discussion with Michael was during
the summer school in Paris in 2006 where he gave a series of lectures on amoebas.
We talked a lot on the geometric and topological properties of these objects in
particular the solidness of some of them. Moreover, at Stockholm University, when
I visited him in the same year, we discussed their similarity to other objects called
coamoebas. At that time we did not know exactly what kind of similarities because
the ambient spaces of these two objects are different: one is compact and the other
is not compact. Amoebas are closed subsets in the Euclidean space but coamoebas
are not closed and not open subsets of the real torus. However, both of them
have a similar (dual in some sense) combinatorial properties, and strongly related
to the combinatorial type of the Newton polytopes of the defining polynomial in
the hypersurface case. At that time we did not know a lot of things in higher
codimension. This work was started on June 2011, but after the tragic death of
Mikael Passare on 15 September 2011, the completion and writing of this paper
was done by the first author.

2. Preliminaries

In this section, we review some known results related to this paper, and give some
notations and definitions. Let V be an algebraic variety in (C∗)n. The amoeba A
of V is by definition the image of V under the logarithmic map defined as follows
(see M. Gelfand, M.M. Kapranov and A.V. Zelevinsky [3]):

Log : (C∗)n −→ Rn

(z1, . . . , zn) �−→ (log |z1|, . . . , log |zn|).

The argument map is the map defined as follows:

Arg : (C∗)n −→ (S1)n

(z1, . . . , zn) �−→ ( z1
|z1| , . . . ,

z1
|z1| ).

The coamoeba of V , denoted by coA , is its image under the argument map (defined
by the second author in 2004).
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Purbhoo shows that the amoeba of an algebraic variety V is equal to the
intersection of all hypersurface amoebas corresponding to functions in the defining
ideal I(V ) of the variety V (see [20], Corollary 5.2). Passare and Rullg̊ard prove
the following (see [19]):

Theorem 2.1 (Passare–Rullg̊ard, (2000)). Let f be a Laurent polynomial in two
variables. Then the area of the amoeba of an algebraic plane curve with defining
polynomial f is not greater than π2 times the area of the Newton polytope of f .

In [14], Mikhalkin and Rullg̊ard showed that up to multiplication by a con-
stant in (C∗)2, the algebraic plane curves with Newton polygon Δ with maximal
amoeba area are defined over R. Furthermore, their real loci are isotopic to the so-
called Harnack curves (possibly singular with ordinary real isolated double points).
Moreover, Rullg̊ard and the second author compute the area of the amoeba of a
line in the plane.

Madani and the first author showed that if the dimension n of the ambient
space is at least the double of the dimension of V (i.e., n ≥ 2 dimC(V ) = 2k),
then the map Log ◦Arg−1 conserves the 2k-volume, i.e., the absolute value of the
determinant of its Jacobian, when it exists, is equal to one (see [9], Proposition
3.1). Moreover, the same proposition shows that the set of critical points of the
logarithmic and the argument maps restricted to V coincide. Hence, if the argu-
ment map restricted to the set of regular points is injective, and the cardinality d
of the inverse image under the logarithmic map of a regular value in the amoeba
is constant, then the volume of the amoeba will be the volume of the coamoeba
divided by d. So, first we show that if V is a generic k-dimensional linear space in
(C∗)2k, then the argument map restricted to the set of regular points is injective,
and we compute the volume of its coamoeba. Moreover, if the linear space is real,
we show that the cardinality of the inverse image under the logarithmic map of a
regular value in the amoeba is constant and equal to 2k. Finally, we compute the
amoeba volume using the conservation of the volume by the map Log ◦Arg−1.

In the following paragraph, we will recall the definition of the logarithmic
Gauss map for hypersurface, and its generalization. We will present some known
relations between this map and (co)amoebas. Let V ⊂ (C∗)n be an algebraic hy-
persurface with defining polynomial f , and denote by Vreg the subset of its smooth
points. The logarithmic Gauss map of the hypersurface V is the holomorphic map
defined by (see Kapranov [5]):

γ : Vreg −→ CPn−1

z �−→ γ(z) = [v(z)],

where [v(z)] = [z1
∂f
∂z1

(z) : · · · : zn ∂f
∂zn

(z)] denotes the class of the vector v(z) in

CPn−1.
Madani and the first author generalize this map to any codimension, and

extract some relations between the set of its critical points and (co)amoebas, and
they generalized an earlier result of Mikhalkin [11] on critical points of the loga-
rithmic map (see [10]). More precisely, let V ⊂ (C∗)n be an algebraic variety of
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dimension k with defining ideal I(V ) generated by {f1, . . . , fl}. A holomorphic
map γG from the set of smooth points of V to the complex Grassmannian Gn−k, n

was defined as follows: If we denote by Vreg the subset of smooth points of V as
before, and M(l × n) denotes the set of l × n matrices. Let gG be the following
map:

gG : Vreg −→ M(l × n)

z = (z1, . . . , zn) �−→

⎛⎜⎝ z1
∂f1
∂z1

(z) . . . zn
∂f1
∂zn

(z)
...

...
...

z1
∂fl
∂z1

(z) . . . zn
∂fl
∂zn

(z)

⎞⎟⎠ .

Since z is a smooth point of V , then the complex vector space Lz generated by the
rows of the matrix gG(z) is of dimension n−k, and orthogonal to the tangent space
to V at z. Indeed, the problem is local and Vreg is locally a complete intersection.
Moreover, the tangent space to V at a regular point is contained in the tangent
space of all the hypersurfaces defined by the polynomials fi, and each row vector
of index i is orthogonal to the hypersurface defined by the polynomial fi which
contains V . This means that the image of Vreg by gG is contained in the subvariety
of M(l × n) consisting of l × n matrices of rank n − k, which we map to the
complex Grassmannian Gn−k, n. Composing this identification with gG we obtain
the desired map:

γG : Vreg → Gn−k, n

called the generalized logarithmic Gauss map.

If V ⊂ (C∗)n is a hypersurface, Mikhalkin showed that the set of critical
points of Log |V coincides with γ−1

G (RPn−1) (see Lemma 3 in [11], and Lemma
4.3 in [12]). This result was generalized by Madani and the first author for higher
codimension in [10].

Throughout all this paper, the genericity of an algebraic variety V ⊂ (C∗)n

is defined as follows:

Definition 2.1. An irreducible algebraic variety V ⊂ (C∗)n of dimension k is generic
if it satisfies the following:

(1) The variety V contains an open dense subset U such that the Jacobian of the
restriction to U of the logarithmic map Jac(Log |U ) has maximal rank, i.e.,
min{2k, n};

(2) The variety V lies in no affine subgroup, otherwise we may replace (C∗)n by
the smallest affine subgroup containing V .

We denote by L og|V the complex logarithmic map, and Re the real part of
a complex vector. In this case, we have Log |V = Re ◦ L og|V . This means that
the amoeba of V is the real part of L og|V (V ) (by taking the imaginary part we
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obtain the same conclusion for the coamoeba),

V ⊂ (C∗)n
L og|V ��

Log |V ����
���

���
���

Cn ⊃ L og(V )

Re�����
���

���
���

A (V ) ⊂ Rn.

We can check that for any r ∈ Rn, the set Tr := Log−1(r) is an n-dimensional
real torus, and r ∈ A (V ) if and only if Tr ∩ V �= ∅.

3. (Co)amoebas of complex algebraic varieties

In this section, we describe the amoeba (respectively coamoeba) of a complex
variety V with defining ideal I(V ) as the intersection of the amoebas (respectively
coamoebas) of the complex hypersurfaces with defining polynomials in I(V ).

The first part of Theorem 1.1 concerning amoebas was shown by Purbhoo in
2008 (see Corollary 5.2 in [20]). We present a very simple proof of this fact, and
extend it to coamoebas.

Our first observation, is the following proposition about the dimension of
(co)amoebas:

Proposition 3.1. Let V ⊂ (C∗)n be an irreducible algebraic variety of dimension
k. Then, the dimension of the (co)amoeba A (V ) of V satisfies the following:

dim((co)A (V )) ≤ min{2k, n}.

In particular, if V is generic, then the dimension of its amoeba is min{2k, n}.

Proof. The rank of the Jacobian of the logarithmic (respectively argument) map
restricted to V at a regular point is equal to min{2k, n}. So, the dimension of the
(co)amoeba cannot exceed min{2k, n}. Moreover, if the dimension of the amoeba
(respectively coamoeba) of a k-dimensional irreducible variety V in (C∗)n is strictly
less than min{2k, n}, then the map Re is not an immersion (respectively submer-
sion) if n ≥ 2k (respectively n < 2k). Hence, the set of critical points of the
logarithmic (respectively argument) map is equal to all the variety (see [10] for
more details about critical values of the logarithmic Gauss map in higher codi-
mension case). �

Let Vf ⊂ (C∗)n be a hypersurface with defining polynomial f . Then, by
definition, the amoeba of Vf is the image by the logarithmic map of the subset Sf

of (R∗
+)

n defined as follows:

Sf := {(x1, . . . , xn) ∈ (R∗
+)

n| ∃ z ∈ (C∗)n such thatxi = |zi|, and f(z) = 0}.
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Since L og : (R∗
+)

n → Rn is a diffeomorphism, we have the following:⋂
f∈I(V )

Log (Sf ) = Log

( ⋂
f∈I(V )

Sf

)
,

where Log (Sf ) is used with abuse of notation.

Lemma 3.1. We have the following equality:⋂
f∈I(V )

Sf = {(x1, . . . , xn) ∈ (R∗
+)

n| xi = |zi|, and (z1, . . . , zn) ∈ V }.

Proof. Let r be in

(R∗
+)

n \ {(x1, . . . , xn) ∈ (R∗
+)

n|xi = |zi| and (z1, . . . , zn) ∈ V },
and Tr be the real torus Log−1(r). So, Tr ∩ V is empty. Let f ∈ I(V ) with
f(z) =

∑
cαz

α and g be the Laurent polynomial defined by g(z) =
∑

cαw
α

with w = (
r21
z1
, . . . ,

r2n
zn
) where the rj ’s are the coordinates of r, and cα denotes

the conjugate of the coefficient cα. The value of the Laurent polynomial h(z) =
f(z)g(z) is equal to the value of |f(z)|2 for every z ∈ Tr. By construction, the
hypersurface Vh with defining polynomial h contains V (because h ∈ I(V )). Let
〈f1, . . . , fs〉 be a set of generators of the ideal I(V ), and for any j let gj be the
Laurent polynomial defined as before. We can check the hypersurface defined by
the polynomial G =

∑
fjgj contains V and does not intersect the torus Tr. This

proves that r ∈ (R∗
+)

n \
⋂

f∈I(V ) Sf . Hence, we have the inclusion:⋂
f∈I(V )

Sf ⊂ {(x1, . . . , xn) ∈ (R∗
+)

n |xi = |zi|, and (z1, . . . , zn) ∈ V }.

Now let (x1, . . . , xn) ∈ (R∗
+)

n such that xi = |zi| and (z1, . . . , zn) ∈ V , then for all
f ∈ I(V ) we have f(z1, . . . , zn) = 0. This means that (x1, . . . , xn) ∈

⋂
f∈I(V ) Sf .

�

Proof of Theorem 1.1. The first equality of Theorem 1.1 is a consequence of Lem-
ma 3.1. In fact, by applying the logarithmic map to both sides of the equality of

Lemma 3.1 we obtain: Log
(⋂

f∈I(V ) Sf

)
= A (V ), and then

A (V ) =
⋂

f∈I(V )

A (Vf ).

Let us prove the second equality of Theorem 1.1. Let w ∈
⋂

f∈I(V ) coA (Vf ),

then there exists a fundamental domain D = ([a; a+2π[)n in the universal covering
of the real torus (S1)n and a unique w̃ ∈ D such that w = exp(iw̃). In this domain,
the exponential map is a diffeomorphism between D and (S1)n \ (S1)n−1 ∧ · · · ∧
(S1)n−1 where (S1)n−1 ∧ · · · ∧ (S1)n−1 denotes the bouquet of n tori of dimension
n− 1. Let us define the subset coSf of D as follow:

coSf := {θ ∈ D | there exists z ∈ Vf and exp(iθ) = Arg (z)}.
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So, we have: ⋂
f∈I(V )

exp (icoSf ) = exp

(
i

⋂
f∈I(V )

coSf

)
because the exponential map is a diffeomorphism from D into its image. Moreover,
w̃ is contained in the intersection

⋂
f∈I(V ) coSf . But the last intersection, using

the same argument as in Lemma 3.1, can be described as follows:⋂
f∈I(V )

coSf =
⋂

f∈I(V )

{θ ∈ D | there exists z ∈ Vf and exp(iθ) = Arg (z)}

= {θ ∈ D | there exists z ∈ V and exp(iθ) = Arg (z)}.

Indeed, to prove the last equality, let eiθ /∈ coA (V ), and for each generator
fj(z) =

∑
cαz

α of I(V ) we define the polynomial gj as follows:

gj(z) =
∑

cα(e
−2iθ)αzα.

If z ∈ Arg−1(eiθ), then we have fjgj(z) = |fj(z)|2. The polynomial G =
∑

j fjgj is

in I(V ), but eiθ /∈ coA (VG) because |fj(z)|2 > 0 and hence G(z) =
∑

j fjgj(z) > 0

for every j and every z ∈ Arg−1(eiθ). Namely, we have the following inclusion:⋂
f∈I(V )

coSf ⊂ {θ ∈ D | there exists z ∈ V and exp(iθ) = Arg (z)}.

In other words,
⋂

f∈I(V ) coAf ⊂ coA (V ). �

4. (Co)Amoebas of linear spaces

Throughout this section, P := P (k) ∩ (C∗)k+m where P (k) is the k-dimensional
affine linear subspace of Ck+m given by the parametrization ρ as follows:

ρ : Ck −→ Ck+m

(t1, . . . , tk) �−→ (t1, . . . , tk, f1(t1, . . . , tk), . . . , fm(t1, . . . , tk)),
(1)

where fj(t1, . . . , tk) = bj +
∑k

i=1 ajiti, and aji, bj are complex numbers for i =
1, . . . , k, and j = 1, . . . ,m. By abuse of language, we call P an affine linear space
instead of very affine linear space. First of all, if P is generic then all the coefficients
bj are different than zero. Otherwise P will be contained in an affine subgroup of
(C∗)k+m. Indeed, if there exits j such that bj = 0, then there is an action of C∗

on P, and then P can be viewed as a product of C∗ with an affine linear space
of dimension k − 1. Namely, P lies in no affine subgroup, i.e., ρ(Ck) meets each
of the n coordinate hyperplanes of Cn in distinct hyperplanes, otherwise we may
replace (C∗)n by the smallest affine subgroup containing P.

Lemma 4.1. If P is generic, then we can assume that f1(t1, . . . , tk) = 1+
∑k

i=1 ti.
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Proof. In fact, if we make a translation by 1
b1

in the algebraic multiplicative torus

(C∗)k+m, we get(
t1
b1
, . . . ,

t1
b1
,
f1(t1, . . . , tk)

b1
, . . . ,

fm(t1, . . . , tk)

b1

)
.

We translate again by a = (a11, a21, . . . , a1k, 1, . . . , 1) to obtain:(
a11t1
b1

, . . .
a1ktk
b1

, 1 +
k∑

i=1

a1iti
b1

,
f2(t1, . . . , tk)

b1
, . . . ,

fm(t1, . . . , tk)

b1

)
.

For any point z in (C∗)k+m, we denote by τz the translation by z in the multi-
plicative group (C∗)k+m, and denote by ρ′ the required parametrization, i.e.,

ρ′(t1, . . . , tk) =
(
t1, . . . , tk, 1 +

k∑
i=1

ti, f2(t1, . . . , tk), . . . , fm(t1, . . . , tk)

)
.

Hence, we obtain τa ◦ τ 1
b1

◦ ρ = ρ′ ◦ τc, where c = (a11

b1
, . . . , a1k

b1
), and then, for any

(t1, . . . , tk) in (C∗)k we have:

Arg

(
ρ(t1, . . . , tk)

)
−Arg (b1) + Arg (a) = Arg

(
ρ′(τc(t1, . . . , tk))

)
.

We obtain the same relation if we replace the argument map by the logarith-
mic map. This means that the amoeba (respectively coamoeba) of a generic com-
plex affine linear space P given by the parametrization (1) is the translation in the
real space Rk+m (respectively the real torus (S1)k+m) by a vector v in Rk+m (re-
spectively a point in the real torus) of an affine linear space given by a parametriza-

tion such that f1(t1, . . . , tk) = 1+
∑k

i=1 ti. Hence, coA (P) = τv◦coA (Pρ′ ) where
Pρ′ is the affine linear space given by the required parametrization, and we have
a similar equality for their amoebas. In the last formula, v is the argument of the
vector b−1

1 a. �

To be more precise, P can be seen as the image by ρ of the complement in
Ck of an arrangement of n hyperplanes H := ∪k

i=1{ti = 0} ∪m
j=1 {fj = 0}.

4.1. (Co)Amoebas of lines in (C∗)1+m

In this subsection we give a complete description of (co)amoebas of generic lines
in (C∗)1+m (we mean a complex subvariety of complex dimension one defined
by an ideal generated by polynomials of degree one). Moreover, we describe the
(co)amoebas of real lines, i.e., lines those are invariant under the involution given
by the conjugation of complex numbers. In other word, lines given by a parametri-
zation with real coefficients. But first, let L be a generic line in (C∗)1+m parame-
trized as follows:

ρ : C∗ −→ (C∗)1+m

t �−→ (t, t+ 1, a2t+ b2, . . . , amt+ bm),
(2)

where aj and bj are non-vanishing complex numbers.
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Lemma 4.2. There are two types of amoebas of lines in (C∗)1+m for m ≥ 3.
There are amoebas with boundary and other without boundary (we mean topological
boundary). The amoebas of generic lines given by the parametrization (2) have
boundary if and only if ai

bi
∈ R∗ for all j = 2, . . . ,m.

Proof. Since the boundary of an amoeba is a subset of the set of critical values of
the logarithmic map, then an amoeba has a boundary means that the set of critical
points of the logarithmic map restricted to the variety is nonempty (see [10], and
[11] for more details about the critical points). The Jacobian of the logarithmic
map restricted to the line L is given by:

Jac(Log |L)(t) =
∂Log

∂(t, t̄)
=

1

2

⎛⎜⎜⎜⎜⎜⎝
1/t 1/t̄

1/(t+ 1) 1/(t̄+ 1)

a2/(a2t+ b2) ā2/(a2t+ b2)
...

...

am/(amt+ bm) ām/(amt+ bm)

⎞⎟⎟⎟⎟⎟⎠ .

Hence, a point ρ(t) is critical for Log |L if and only if all the 2 × 2-minors of the
Jacobian matrix have determinant equal to zero. Let us write down these relations.
The determinant of the 2× 2-minor given by the two first rows:

1

2

(
1/t 1/t̄

1/(t+ 1) 1/(t̄+ 1)

)
is equal to zero, means the following equality holds:

1

t

1

t̄+ 1
=

1

t̄

1

t+ 1
.

This implies that t should be real. For all i = 2, . . . ,m, the 2× 2-minor:

1

2

(
1/t 1/t̄

ai/(ait+ bi) āi/(ait+ bi)

)
gives the following relation:

1

t

āi

(ait+ bi)
=

1

t̄

ai
ait+ bi

.

But t is real, so āi(ait+ bi) = ai(ait+ bi), and hence ai

bi
= (ai

bi
), i.e., ai

bi
∈ R∗

(because L is generic, all the coefficients are different than zero). So, if ai

bi
∈ R∗ for

i = 2, . . . ,m, then the set of critical points of Log |L is the image under ρ of the

real part of C∗, where this image intersects (m+2) quadrants of R1+m because L
is generic. Moreover, this shows that the set of critical values of Log |L is the image
under Log ◦ρ of the real part of C∗, and the number of its connected components is
(m+2). So, a generic complex line given by the parametrization (2) with ai

bi
∈ R∗

for i = 2, . . . ,m is real up to a translation by a complex number, and its amoeba
is a surface with boundary, and the boundary has (m+2) connected components.
Also, we can check in this case that the cardinality of the inverse image of a regular
(respectively critical) value is two (respectively one). �
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This motivates the following definition (see [14] for real plane curves):

Definition 4.1. A generic affine line given by the following parametrization:

ρ : C∗ −→ (C∗)1+m

t �−→ (t, a1t+ b1, a2t+ b2, . . . , amt+ bm),
(3)

where aj and bj are in C∗ is called real up to a translation by a vector in (C∗)1+m

if and only if [a1

b1
: · · · : am

bm
] ∈ RPm−1.

If a line L in (C∗)1+m with m ≥ 2 is not real, then its amoeba is a surface
without boundary homeomorphic to the Riemann sphere without (m + 2) points
(see proof of Lemma 4.2), and the map Log |L is a one-to-one map.

The following lemma gives a description of the coamoeba of a generic line in
(C∗)1+m with m ≥ 1

Lemma 4.3. Let L ⊂ (C∗)1+m be a generic line given by the parametrization
(3). The restriction of the argument map to the set of its regular points in L
is injective, and the inverse image under the argument map of a critical value has
real dimension one.

Proof. To see injectivity, let (eiθ, eiψ1 , . . . , eiψm) be a fixed regular value in coA (L).
In other word, we have t = |t|eiθ, and fj(t) = (ajt + bj) = |ajt + bj |eiψ1 for
j = 1, . . . ,m, and consider ajt, bj , and fj(t) as a vectors in the complex plane.
Hence, for each j = 1, . . . ,m we obtain a parallelogram with vertices the origin,
and the extremities of the three vectors ajt, bj, and fj(t). If one of these vectors is
fixed, and the arguments of the two others are fixed (which is our case, because bj
is given and the arguments of ajt and fj(t) are fixed by assumption), then there
exists at most one parallelogram with those vertices. This implies the injectivity.

The second part of the lemma comes from the fact that the set of critical
points of the logarithmic map and the argument map coincide (see Proposition 3.1
in [9]). Indeed, the set of critical points is equal to (m+2) connected components
of dimension one (each one corresponds to the intersection of the real part of L
with some quadrant of (R∗)m+1). �

The set of critical points of the argument map restricted to L given by
the parametrization (3) is the image by ρ of the real part of C∗ translated by
(1, b1, . . . , bm) in (C∗)1+m as a multiplicative group. So, the set of critical values
consists of the translation by (1, b1

|b1| , . . . ,
bm
|bm| ) of (m + 2) points in the real torus

(S1)1+m from the 2m+1 real points corresponding to the arguments of the 2m+1

quadrants of Re((C∗)1+m) = (R∗)1+m. The closure of the coamoeba of L contains
an arrangement of (m + 1) geodesic circles. Each circle corresponds to an end of
the line (i.e., where L meets a coordinate axis). The union of these circles is the
set of accumulation points of arguments of sequences in L with unbounded loga-
rithm, and is called the phase limit set of L (see [17] for more details). It is the
counterpart of the logarithmic limit set introduced by Bergman in 1971 (see [1]
and [7] for more details), which consists of (m+ 2) points is our case. In Figure 1
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Figure 1. The amoeba and the coamoeba of the real line in (C∗)3

given by the parametrization ρ(z) = (z, z + 1
2 , z − 3

2 ). The amoeba is
topologically the closed disk without four points of its boundary.

Figure 2. The amoeba and the coamoeba of the complex line (i.e., not
real) in (C∗)3 given by the parametrization ρ(z) = (z, z+1, z−2i). The
amoeba is topologically the Riemann sphere without four points.

(respectively Figure 2), we draw the amoeba and the coamoeba of a real (respec-
tively non real) line in (C∗)3. The coamoebas in Figure 1, and Figure 2 are made
with collaboration with F. Sottile.

5. Volume of (co)amoebas of k-dimensional very affine linear
spaces in (C∗)2k

It was shown by Rullg̊ard and the second author in [19] that the area of the amoeba
of a complex algebraic plane curve is always finite, and the bound is given in terms
of the area of the Newton polygon of the defining polynomial. Mikhalkin and
Rullg̊ard proved that this bound is always sharp for (possibly singular) Harnack
curves (see [14]). It was shown by Madani and the first author in [8] that the
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volume of the amoeba of a k-dimensional algebraic variety in (C∗)n with n ≥ 2k
is finite. This generalizes the result of Rullg̊ard and the second author about the
finiteness of the volume of the amoeba of plane curves. In this section, we compute
the volume of the amoeba of a generic real k-dimensional very affine linear space in
(C∗)2k. We will proceed as follows: (i) We show that the argument map restricted
to the subset of regular points in the very affine linear space is injective; (ii)
We compute the volume of the coamoeba of any k-dimensional very affine linear
space in (C∗)2k; (iii) We compute the cardinality of the inverse image under the
logarithmic map of any regular value in the amoeba of a real affine space, and
prove that this cardinality is a constant and equal to 2k; (iv) We use that the
map Log ◦Arg−1 conserves the volume, i.e., the determinant of its Jacobian has
absolute value equal one (see Proposition 3.1 in [9]), and finally we compute the
volume of the amoeba, which is equal to the coamoeba volume divided by 2k

if the plane is real. We will use the following lemma proved in [10], which is a
generalization of Mikhalkin’s Lemma 4.3 in [12] for hypersurface:

Lemma 5.1 (Madani–Nisse). Let V ⊂ (C∗)n be a k-dimensional algebraic variety,
and z be a smooth point of V . Then z is a critical point for the map Log |V if
and only if the image of the tangent space TzV to V at z by the derivative of the
complex logarithm dL og contains at least s purely imaginary linearly independent
vectors with s = max{1, 2k − n+ 1}.

Also, we will use the following proposition proved in [10]:

Proposition 5.1 (Madani–Nisse). Let P ⊂ (C∗)n be a generic k-dimensional very
affine linear space with n ≥ 2k. Suppose that the complex dimension of P ∩P is
equal to l, with 0 ≤ l ≤ k. Then, for any regular value x in the amoeba A (P) of
P, the cardinality of Log−1(x) is at least 2l.

Let P ⊂ (C∗)2k be a generic k-dimensional very affine linear space. Suppose
P is given by the parametrization ρ:

ρ : (C∗)k −→ (C∗)2k

(t1, . . . , tk) �−→ (t1, . . . , tk, f1(t1, . . . , tk), . . . , fk(t1, . . . , tk)),
(4)

with fj(t1, . . . , tk) = bj +
∑k

i=1 ajiti, where aji, and bj are complex numbers for
i = 1, . . . , k and j = 1, . . . , k. Since the space P is generic, then there is no bj = 0.

Definition 5.1. A generic k-dimensional very affine linear space P(k) ⊂ (C∗)2k

given by the parametrization (4) is said to be real up to a translation by a complex
vector in the multiplicative group (C∗)k+m if and only if the (m × k)-matrix
given by ⎛⎜⎝

a11

b1
. . . a1k

b1
...

...
...

ak1

bk
. . . akk

bk

⎞⎟⎠
has rank k and all of its entries are real.
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Let Z2 := {±1} be the real subgroup of the multiplicative group C∗, and Z2k
2

be the finite real subgroup of (C∗)2k. For each s ∈ Z2k
2 , let ρs be the parametriza-

tion given by ρs(t1, . . . , tk) = s.ρ(t1, . . . , tk) where

s.(z1, . . . , z2k) = (s1z1, . . . , s2kz2k)

for any (z1, . . . , z2k) ∈ (C∗)2k, and s = (s1, . . . , s2k) ∈ Z2k
2 . Let Ps be the k-

dimensional very affine linear space in (C∗)2k parametrized by ρs. Let us denote
by Reg(coA (Ps)) the set of regular values of coA (Ps). Remark that if 1 denotes
the identity element of the group Z2k

2 , then P = P1.

Let u ∈ Z2k
2 and denote by Reg(coA (Pu)) the set of regular values of the

coamoeba coA (Pu).

Proposition 5.2. With the above notations, the following statements hold:

(i) For all s, the argument map from the subset of regular points of Ps to the
set of regular values of its coamoeba coA (Ps) is injective;

(ii) Let s and r in Z2k
2 with s �= r, then the set

Reg(coA (Ps)) ∩ Reg(coA (Pr))

is empty;

(iii) The union
⋃

s∈Z2k
2
Reg(coA (Ps)) is an open dense subset of the real torus

(S1)2k.

First of all, we denote by z := (z1, . . . , z2k) the coordinates of C2k. So,
if z is a point in P, then zi = ti and zk+i = fi(z1, . . . , zk) for 1 ≤ i ≤ k.
Let Θ = (eiθ1 , . . . , eiθk , eiψ1 , . . . , eiψk) be a point in the set of regular values of
coA (P). This means that the linear system (E) of 2k equations and 2k variables
(x1, . . . , xk, y1, . . . , yk) in (R∗

+)
2k:{

Re(bj +
∑k

l=1 ajlxle
iθl) = Re (yje

iψj )

Im(bj +
∑k

l=1 ajlxle
iθl) = Im (yje

iψj )
(E)

with j = 1, . . . , k, has a solution in (R∗
+)

2k. Moreover, if Z2k
2 is viewed as a subgroup

of the real torus (S1)2k, then s.Θ ∈
⋃

u∈Z2k
2
Reg(coA (Pu(k))) means that the

system (E) has a solution in (R∗)2k.
Since the matrix A(z) defined by:

A(z) =

⎛⎜⎜⎜⎝
a11z1 a12z2 . . . a1kzk −zk+1 0 0 . . . 0
a21z1 a22z2 . . . a2kzk 0 −zk+2 0 . . . 0
...

...
...

...
...

...
...

...
...

ak1z1 ak2z2 . . . akkzk 0 0 0 . . . −z2k

⎞⎟⎟⎟⎠
is the image under the logarithmic Gauss map of the point z in P, and the matrix
A(z) has rank k when z is a regular point.
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Claim I. If A denotes the matrix conjugate to A, then for any regular point z of

P the matrix Â(z) =

(
A(z)
A(z)

)
is of rank 2k.

Proof. In fact, the rows of the matrix A(z) form a basis of the orthogonal space

to L og(P) at the point L og(z). So, if the rank of Â(z) is less than 2k, then
the orthogonal space to L og(P) at L og(z) contains at least one real vector v
different than zero. This is equivalent to saying that the tangent space to L og(P)
at L og(z) contains at least one purely imaginary vector. Indeed, since v is a
vector different than zero orthogonal to both TL og(z)(L og(P)) and Im(C2k),

then TLog(z)(L og(P)) ∩ Im(C2k) must be of dimension at least one. By Lemma
5.1, this implies that z is a critical point for the logarithmic map, which is in
contradiction with our assumption on z. �

The matrix defining the system (E) is B̃(Θ) =

(
ReB(Θ)
ImB(Θ)

)
where B(Θ) is⎛⎜⎜⎜⎝

a11e
iθ1 a12e

iθ2 . . . a1ke
iθk −eiψ1 0 0 . . . 0

a21e
iθ1 a22e

iθ2 . . . a2ke
iθk 0 −eiψ2 0 . . . 0

...
...

...
...

...
...

...
...

...
ak1e

iθ1 ak2e
iθ2 . . . akke

iθk 0 0 0 . . . −eiψk

⎞⎟⎟⎟⎠ .

We can check that the rank of B̃(Θ) is the same as the rank of the matrix Ã(z) =(
ReA(z)
ImA(z)

)
with z = (x1e

iθ1 , . . . , xke
iθk , y1e

ψ1 , . . . , yke
iψk), because the variables

xi and yj are non zero for all i, j = 1, . . . , k.

Claim II. The rank of the matrix Ã(z) is equal to 2k.

Proof. Suppose we have a non trivial linear combination of the rows of the matrix

Ã(z) that is equal to zero. Hence, there exist a real numbers λl, and μl not all
equal to zero, with l = 1, . . . , k such that:

k∑
l,j=1

λl

2

(
(zjalj + z̄j ālj)− (zk+l+ z̄k+l)

)
+

μl

2i

(
(zjalj − z̄j ālj)− (zk+l− z̄k+l)

)
= 0.

We get:

k∑
l=1

(
λl − iμl

2

)( k∑
j=1

zjalj − zk+l

)
+

k∑
l=1

(
λl + iμl

2

)( k∑
j=1

z̄j ālj − z̄k+l

)
= 0.

Since the matrix Â(z) is of rank 2k by Claim I, this implies that λl − iμl = 0,
and λl + iμl = 0 for all l = 1, . . . , k. This means that all the λl’s and the μl’s
vanish. This contradicts the fact that some of the real numbers λl’s and μl’s are

different than zero by hypothesis. Hence, the real rank of the matrix Ã(z) is equal
to 2k. �



78 M. Nisse and M. Passare

Proof of Proposition 5.2. Since the k-dimensional linear space P is generic, the co-
efficients bj are different than zero, and the system (E) is consistent. Claim II shows
that the system (E) has a unique solution for any Θ in the set of regular values of
coA (P), which proves the first and the second statements of the proposition. The
third statement comes from the fact that the set of Θ = (θ1, . . . , θk, ψ1, . . . , ψk)

for which the determinant of B̃(Θ) vanishes is a hypersurface in the real torus and
then its 2k-volume is zero. In other words, the union

⋃
s∈Z2k

2
Reg(coA (Ps)) is an

open dense subset of the real torus (S1)2k. �
Corollary 5.1. The volume of the coamoeba of any generic k-dimensional linear
space in (C∗)2k is equal to π2k.

Proof. By Proposition 5.2 (iii), the volume of the disjoint union⋃
s∈Z2k

2

Reg(coA (Ps))

is equal to the volume of all the real torus (S1)2k. Moreover, they have the same
volume, because they are obtained from each other by translation (i.e., isometry
of the real torus equipped with the flat metric). So, the volume of one of them
must be equal to (2π)2k/22k = π2k. �
We compute the cardinality of the inverse image under the logarithmic map of
any regular value in the amoeba of a generic k-dimensional real very affine linear
space P(k) ⊂ (C∗)2k.

Proposition 5.3. Let P be a generic real affine k-dimensional linear subspace of
(C∗)2k, and x be a regular value of its amoeba. Then, the cardinality of Log−1(x)
is equal 2k.

Proof. We assume that P is given by a parametrization ρ as in (4), where all the
coefficients are real numbers. The matrix A defined by:

A =

⎛⎜⎝ a11 . . . a1k
...

. . .
...

ak1 . . . akk

⎞⎟⎠
is invertible, otherwise the image of ρ is a linear space of dimension strictly less
than k. The following diagram is commutative:

(C∗)k
ρ ��

A

��

(C∗)2k

A×Id

��
(C∗)k

ρ′
�� (C∗)2k,

where ρ′ is the parametrization given by:

ρ′ : (C∗)k −→ (C∗)2k

(T1, . . . , Tk) �−→ (T1, . . . , Tk, b1 + T1, . . . , bk + Tk).
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Each regular value of the amoeba of the k-dimensional linear space L := ρ′((C∗)k)
is covered 2k times under the logarithmic mapping. Indeed, L is a product of
lines L1, . . . , Lk in C2. The matrix A is real, so the image of the set of critical
points of the logarithmic mapping restricted to P is the set of critical points
of the logarithmic mapping restricted to L . By Lemma 5.1, if z is a critical in
P , then the tangent space to L og(P) at L og(z) contains at least one purely
imaginary vector v. Since A is real, then the image of v in the tangent space
to L og(L ) at L og((A × Id)(z) is also purely imaginary tangent vector, and
then, the point (A × Id)(z) is critical. Let Critp(Log |P) and Critp(Log |L ) be
the set of critical points of the restriction of the logarithmic map to P and L
respectively. Since the volume of their amoebas is finite (see [8]), this means that
the set of critical values in their amoebas contains a subset of dimension 2k−1 (at
least the topological boundary of the amoeba). Hence, the number of connected
components of P \Critp(Log |P) is equal to the number of connected components
of L \ Critp(Log |L ). The fact that the set of critical points of the argument
and the logarithmic maps coincide (see, e.g., [9]), and by Proposition 5.2, the
restriction of the argument map to the set of regular points is injective, then, the
cardinality of Log−1(x) is at most 2k. Since P is real, then by Proposition 5.1,
for any regular value x ∈ A (P(k)), the cardinality of Log−1(x) is at least 2k.
Hence, the cardinality of the inverse image of a regular value is equal to 2k. �

Proof of Theorem 1.2. The first statement of Theorem 1.2 is Corollary 5.1. The
second statement of Theorem 1.2 is because the cardinality of the inverse image of
a regular value in the amoeba is constant and equal to 2k, and the map Log ◦Arg−1

conserve the volume (see [9], Proposition 3,1). Hence, the volume of the amoeba
in this case is equal to the volume of the coamoeba divided by 2k.
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