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To the memory of Mikael Passare, remarkable
mathematician and beautiful personality

Abstract. We establish the enumerativity of (original and modified) Welsch-
inger invariants for every real divisor on any real algebraic del Pezzo surface
and give an algebro-geometric proof of the invariance of that count both up
to variation of the point constraints on a given surface and variation of the
complex structure of the surface itself.

- My govorim s toboĭ na raznyh �zykah,
kak vsegda, - otozvals� Voland,

- no vewi, o kotoryh my govorim,
ot �togo ne men��ts�.

M. Bulgakov. Master i Margarita.∗

Introduction

The discovery of Welschinger invariants [27, 28] has revolutionized real enumer-
ative geometry. Since then much effort was devoted to the numerical study of
Welschinger invariants, especially in the case of real del Pezzo surfaces, which al-
lowed one to prove long time stated conjectures on existence of real solutions in
corresponding enumerative problems and to observe a new, unexpected phenom-
ena of abundance (see [2, 12, 14, 16, 17, 21]); it also led to introducing certain
modified Welschinger invariants (see [16]). This development raised several natu-
ral questions: first, for which real del Pezzo surfaces the Welschinger invariants are
strongly enumerative (i.e., provided by a count, with weights ± 1, of real ratio-
nal curves in a given divisor class, passing through a suitable number of real and
complex conjugated points) and, second, to what extent such a count is invariant
under deformations of the surface. The enumerative nature of the invariants in the

∗ “We speak different languages, as usual,” responded Woland, “but this does not change the
things we speak about.”- M. Bulgakov. The Master and Margarita.
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symplectic setting is the key point of [28], but it does not imply their enumerative
nature in the algebro-geometric setting because of stronger genericity assumptions.
The deformation invariance in the symplectic setting implies the deformation in-
variance in the algebro-geometric setting, but in [28] the symplectic deformation
invariance is declared without proof. Therefore, our principal motivation has been
to answer the question on algebro-geometric enumerativity of Welschinger invari-
ants on real del Pezzo surfaces, and to prove the deformation invariance in the
algebro-geometric setting. Our second motivation is an expectation that a good
understanding of enumeration of real rational curves on real del Pezzo surfaces
can help to extend the results to other types of surfaces and to curves of higher
genus (such an expectation is confirmed now by [18, 24]). The algebro-geometric
framework can be also helpful in the study of algorithmic and complexity aspects.

In most of the papers on the subject, the algebro-geometric enumerativity
of Welschinger invariants on del Pezzo surfaces is considered as known. Indeed, it
follows from enumerativity of Gromov–Witten invariants for such surfaces, and in
the literature on Gromov–Witten invariants the latter enumerativity is considered
as known. However, a careful analysis, see Lemma 9, has shown that there is one,
and luckily only one, exception (apparently not mentioned in the literature): that
is the case of del Pezzo surfaces of canonical degree 1 and D = −KΣ; for any other
pair of a real del Pezzo surface and a real divisor on it, the Welschinger invariants,
original and modified, are strongly enumerative (in the above exceptional case, the
number of solutions is still finite, but certain solutions may acquire some nontrivial
multiplicity).

To prove the deformation invariance, we split the task into two parts. First, we
fix the complex structure and vary the position of the points. Here, our strategy
is close to that of the original proof of Welschinger in [28], but uses algebro-
geometric tools instead of symplectic ones. In fact, already some time ago in [15]
we have undertaken an attempt to give a purely algebro-geometric proof of such an
invariance. However, that proof appears to be incomplete, since one type of local
bifurcations in the set of counted curves was missing; it shows up for del Pezzo
surfaces of canonical degree 1 and D = −2KΣ (see Lemma 11 (i) below, which
states, in particular, that the closure of the one-dimensional family of rational
curves in |−2KΣ| contains non-reduced curves). To the best of our knowledge, up to
now this bifurcation has not been addressed in the literature, but it is unavoidable
even in the symplectic setting (contrary to [28, Remark 2.12]). This step is summed
up in Proposition 4, which states the invariance of the Welschinger count under
the variation of points for any real divisor on each real del Pezzo surface.

The crucial point of the next step is the invariance under crossing the walls
that correspond to, so-called, uninodal del Pezzo surfaces. Here, our proof is based
on a real version of the Abramovich–Bertran–Vakil formula (note that adapting
the formula to the symplectic setting one can prove the symplectic deformation
invariance following the same lines). In addition, as in the study of the enumera-
tivity, there appears a case not to miss and to investigate separately, here this is
the case of del Pezzo surfaces of canonical degree 1 and D = −KΣ.
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The paper is organized as follows. In Section 1 we recall a few basic facts con-
cerning del Pezzo surfaces and their deformations, introduce Welschinger invariants
in their modified version and formulate the main results. Section 2 develops tech-
nical tools needed for the proof of the main results. There, we study moduli spaces
of stable maps of pointed genus zero curves to del Pezzo surfaces and uninodal
del Pezzo surfaces, describe generic elements of these moduli spaces and generic
elements of the codimension one strata. We show also that Welschinger numbers
extend by continuity from the case of immersions to the case of birational stable
maps with arbitrary singularities. Section 3 is devoted to the proof of the main
results.

1. Definitions and main statements

1.1. Surfaces under consideration

Over C, a del Pezzo surface is either (P1)2 or P2 blown up at 0 ≤ k ≤ 8 points.
Conversely, blowing up 0 ≤ k ≤ 8 points of P2 yields a del Pezzo surface if and
only if no 3 points lie on a straight line, no 6 lie on a conic, and no 8 points lie on
a rational cubic having a singularity at one of these 8 points.

Del Pezzo surfaces of degree d = K2 = 9− k ≥ 5 have no moduli. If d = 9 or
7 ≥ d ≥ 5, then there is only one, up to isomorphism, del Pezzo surface of degree d
and it can be seen as a blown up P2. If d = 8, then there are 2 isomorphism classes:
(P1)2 and P2 blown up at a point. The latter two surfaces are not deformation
equivalent. For 4 ≥ d ≥ 1 the moduli space of del Pezzo surfaces of degree d = 9−k
is an irreducible (2k − 8)-dimensional variety.

All del Pezzo surfaces of given degree d �= 8 are deformation equivalent to
each other, and, for our purpose, it will be more convenient to use, instead of the
moduli spaces, the deformation spaces, that is, to fix in each deformation class one
of the del Pezzo surfaces (say, a blow up of P2 at a certain generic collection of
points) and consider the Kodaira–Spencer–Kuranishi space, i.e., the space of all
complex structures on the underlying smooth 4-manifold factorized by the action
of diffeomorphisms isotopic to identity. Naturally, we awake this space only when
d ≤ 4. We denote it by Dd. Del Pezzo surfaces of degree d form in Dd an open
dense subset, which we denote by DDP

d .

The problem of deformations of complex structures on rational surfaces is
not obstructed, since H2(X, TX) = 0 for any smooth rational surface X (here and
further on, we denote by TX the tangent sheaf). In addition, for degree d ≤ 4 del
Pezzo surfaces as well as for any generic smooth rational surface X with K2

X ≤ 4,
we have H0(X, TX) = 0, so that at such points the Kodaira–Spencer–Kuranishi
space is smooth (but not necessarily Hausdorff).

In fact, the only properties of this space which we use further on are the
following. We call a surface Σ ∈ Dd uninodal del Pezzo if it contains a smooth
rational (−2)-curve EΣ, and −KΣC > 0 for each irreducible curve C �= EΣ (in
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particular, C2 ≥ −1). For d ≤ 4, denote by Dd(A1) ⊂ Dd the subspace formed by
uninodal del Pezzo surfaces.

Proposition 1. All but finite number of surfaces in a generic one-parameter Ko-
daira–Spencer family of rational surfaces with 1 ≤ K2

Σ ≤ 4 are unnodal (i.e., del
Pezzo), while the exceptional members of the family are uninodal del Pezzo.

Proof. Let us denote by TX‖D the subsheaf of the sheaf TX generated by vectors
fields tangent to D, and by N ′

D/X their quotient, so that we obtain the following

short exact sequence of sheafs:

0 → TX‖D → TX → N ′
D/X → 0.

According to the well-known theory of deformations of pairs (see [22, Section
3.4.4]), and due to the long exact cohomology sequence associated to the above
short sequence, it is sufficient to show that h1(N ′

D/X) ≥ 2 if D is either a rational

irreducible curve withD2 ≤ −3 orD = D1∪D2 whereD
2
i ≤ −2. In the first case, it

follows from Serre–Riemann–Roch duality. In the second case, from the exactness
of the fragment H0(ND2/X) → H1(ND1/X) → H1(N ′

D/X) → H1(ND2/X) of the

long cohomology sequence associated with the exact sequence of sheaves 0 →
ND1/X → N ′

D/X → ND2/X → 0.† �

By a real algebraic surface we understand a pair (Y, c), where Y is a complex
algebraic surface and c : Y → Y is an antiholomorphic involution. The classi-
fication of minimal real rational surfaces and the classification of real del Pezzo
surfaces are well known: they are summarized in the two propositions below, re-
spectively (see, e.g., [7, Theorems 6.11.11 and 17.3]).

Proposition 2. Each minimal real rational surface Y is one of the following:

(1) P2 with its standard real structure (d = 9), the real part RY of Y is homeo-
morphic to RP2.

(2) P1×P1 with one of its four nonequivalent real structures (d = 8): RY = (S1)2,
RY = S2, and two structures with RY = ∅;

(3) rational geometrically ruled surfaces Fa, a ≥ 2, with RY = #2RP2 and the
standard real structure, if a is odd, and with RY = (S1)2 or ∅ and one of the
two respective nonequivalent structures, if a is even (d = 8);

(4) real conic bundles over P1 with 2m ≥ 4 reducible fibers, which are all real
and consist of pairs of complex conjugate exceptional curves (d = 8 − 2m),
RY = mS2;

(5) del Pezzo surfaces of degree d = 1 or 2: RY = RP2 , 4S2, if d = 1, and
RY = 3S2 or 4S2, if d = 2.

†In both cases, we use the equality H2(TX‖D) = 0, which can be deduced, for example,

from Serre duality, H2(TX‖D) = (H0(Ω1
X(logD) ⊗ K))∗, and Bogomolov–Sommese vanishing

H0(Ω1
X(logD)⊗K) = 0; the latter holds in our case since X is a rational surface with K2 ≥ 1,

and thus its anticanonical Iitaka–Kodaira dimension is equal to 2.
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Proposition 3. With one exception, a real del Pezzo surface (Y, c) of degree d ≥ 1
is determined up to deformation by the topology of RY . In the exceptional case
d = 8 and RY = ∅, there are two deformation classes, distinguished by whether
Y/c is Spin or not.

The topological types of RY are the following extremal types and their deriva-
tives, which are obtained from the extremal ones by sequences of topological Morse
simplifications of RY :

d = 9 RY = RP2;

d = 8 RY = #2RP2 or (S1)2;

d = 7 RY = #3RP2;

d = 6 RY = #4RP2 or (S1)2;

d = 5 RY = #5RP2;

d = 4 RY = #6RP2, (S1)2, or 2S2;

d = 3 RY = #7RP2 or RP2 , S2;

d = 2 RY = #8RP2, 2RP2, #2RP2 , S2, (S1)2, or 4S2;

d = 1 RY = #9RP2, #2RP2 , RP2, #3RP2 , S2, or RP2 , 4S2.

1.2. Main results

Let us consider a real del Pezzo surface (Σ, c), and assume that its real point
set RΣ = Fix(c) is nonempty. Pick a real divisor class D ∈ Pic(Σ), satisfying
−DKΣ > 0 and D2 ≥ −1, and put r = −DKΣ−1. Fix an integer m such that 0 ≤
2m ≤ r and introduce a real structure cr,m on Σr that maps (w1, . . . , wr) ∈ Σr to
(w′

1, . . . , w
′
r) ∈ Σr with w′

i = c(wi) if i > 2m, and (w′
2j−1, w

′
2j) = (c(w2j), c(w2j−1))

if j ≤ m. With respect to this real structure a point w = (w1, . . . , wr) is real, i.e.,
cr,m-invariant, if and only if wi belongs to the real part RΣ of Σ for i > 2m and
w2j−1, w2j are conjugate to each other for j ≤ m. In what follows we work with an
open dense subset Pr,m(Σ) of RΣr = Fix cr,m consisting of cr,m-invariant r-tuples
w = (w1, . . . , wr) with pairwise distinct wi ∈ Σ.

Observe that, if a real irreducible rational curve C ∈ |D| can be traced
through all the points wi of w and 2m < r = −CKΣ − 1, the real points of w
must lie on the unique one-dimensional connected component of the real part of C,
hence must belong to the same connected component of RΣ. In the case 2m = r,
each real rational curve C ∈ |D| passing through a collection of m pairs of complex
conjugate points of Σ has an odd intersection with the real divisor KΣ, hence C
has a homologically non-trivial real part in RΣ.

Thus, we fix a connected component F of RΣ and put

Pr,m(Σ, F ) = {w = (w1, . . . , wr) ∈ Pr,m(Σ) : wi ∈ F for i > 2m } .

Denote by M0,r(Σ, D) the set of isomorphism classes of pairs (ν : P1 → Σ,p),
where ν : P1 → Σ is a holomorphic map such that ν∗(P1) ∈ |D|, and p is a
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sequence of r pairwise distinct points in P1. Put

R(Σ, D, F,w) = {[ν : P1 → Σ,p] ∈ M0,r(Σ, D) :

ν ◦ Conj = c ◦ ν, ν(RP1) ⊂ F, ν(p) = w} ,
where Conj : P1 → P1 is the complex conjugation. If either the degree of Σ is
greater than 1, or D �= −KΣ, then for any generic r-tuple w ∈ Pr,m(Σ, F ), the
set R(Σ, D, F,w) is finite and presented by immersions (see Lemma 9). In such a
case, pick a conjugation-invariant class ϕ ∈ H2(Σ \ F ;Z/2) and put

Wm(Σ, D, F, ϕ,w) =
∑

[ν,p]∈R(Σ,D,F,w)

(−1)C+◦C−+C+◦ϕ , (1)

where C± = ν(P1±) with P1
+,P

1− being the two connected components of P1 \RP1.
If the degree of Σ is equal to 1 and D = −KΣ, then for any generic r-tuple

w ∈ Pr,m(Σ, F ) and any conjugation-invariant class ϕ ∈ H2(Σ \ F ;Z/2) we define
the number Wm(Σ, D, F, ϕ,w) by the formula (1) retaining in it only the classes
[ν,p] presented by immersions.

If ϕ = 0, we get the original definition of Welschinger [27, 28].

Proposition 4. The number Wm(Σ, D, F, ϕ,w) does not depend on the choice of a
generic element w ∈ Pr,m(Σ, F ).

Proposition 4 is in fact a special case of more general deformation invari-
ance statements. Consider a smooth real surface X0 with RX0 �= ∅, a real divisor
class D0 ∈ Pic(X0), a connected component F0 of RX0, a conjugation-invariant
class ϕ0 ∈ H2(X0 \ F0;Z/2), and a conjugation invariant collection w0 of points
in X0. By an elementary deformation of the tuple (X0, D0, F0, ϕ0) (respectively,
(X0, D0, F0, ϕ0,w0)) we mean a one-parameter smooth family of smooth surfaces
Xt, t ∈ [−1, 1], extended to a continuous family of tuples (Xt, Dt, Ft, ϕt) (respec-
tively, (Xt, Dt, Ft, ϕt,wt)). Two tuples T = (X,D,F, ϕ) and T ′ = (X ′, D′, F ′, ϕ′)
are called deformation equivalent if they can be connected by a chain T = T (0),
. . . , T (k) = T ′ so that any two neighboring tuples in the chain are isomorphic to
fibers of an elementary deformation.

Proposition 5. Let (Σt, Dt, Ft, ϕt,wt), t ∈ [−1, 1], be an elementary deformation
of tuples such that all surfaces Σt, t �= 0, belong to DDP

d for some 1 ≤ d ≤ 9, and
the collections w±1 belong to Pr,m(Σ±1, F±1) and are generic. Then,

Wm(Σ−1, D−1, F−1, ϕ−1,w−1) = Wm(Σ1, D1, F1, ϕ1,w1) . (2)

We skip w in the notation of the numbers Wm(Σ, D, F, ϕ,w) and call them
Welschinger invariants.

Proposition 5 plays a central role in the proof of the following statement.

Theorem 6. If tuples (Σ, D, F, ϕ) and (Σ′, D′, F ′, ϕ′) are deformation equivalent,
then Wm(Σ, D, F, ϕ) = Wm(Σ′, D′, F ′, ϕ′).

Proofs of Propositions 4 and 5, as well as the proof of Theorem 6, are found
in Section 3.
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2. Families of rational curves on rational surfaces

2.1. General setting

Let Σ be a smooth rational surface, and D ∈ Pic(Σ) a divisor class. Denote by

M0,n(Σ, D) the space of the isomorphism classes of pairs (ν : Ĉ → Σ,p), where

Ĉ is either P1 or a connected reducible nodal curve of arithmetic genus zero,
ν∗Ĉ ∈ |D|, p = (p1, . . . , pn) is a sequence of distinct smooth points of Ĉ, and each

component of Ĉ contracted by ν contains at least three special points. This moduli
space is a projective scheme (see [9]), and there are natural morphisms

ΦΣ,D : M0,n(Σ, D) → |D|, [ν : Ĉ → Σ,p] �→ ν∗Ĉ ,

Ev : M0,n(Σ, D) → Σn, [ν : Ĉ → Σ,p] �→ ν(p) .

For any subscheme V ⊂ M0,n(Σ, D), define the intersection dimension idimV of
V as follows:

idimV = dim(ΦΣ,D × Ev)(V) ,

where the latter value is the maximum over the dimensions of all irreducible com-
ponents.

Put

Mbr
0,n(Σ, D) = {[ν : P1 → Σ,p] ∈ M0,n(Σ, D) : ν is birational onto ν(P1)},

Mim
0,n(Σ, D) = {[ν : P1 → Σ,p] ∈ M0,n(Σ, D) : ν is an immersion} .

Denote by Mbr
0,n(Σ, D) the closure of Mbr

0,n(Σ, D) in M0,n(Σ, D), and introduce
also the space

M′
0,n(Σ, D) = {[ν : Ĉ → Σ,p] ∈ Mbr

0,n(Σ, D) : Ĉ & P1} .

The following statement will be used below.

Lemma 7. For any element

[ν : P1 → Σ,p] ∈ Mbr
0,n(Σ, D) such that ν(p) ∩ Sing (ν(P1)) = ∅,

the map ΦΣ,D × Ev is injective in a neighborhood of that element, and, for the
germ at [ν : P1 → Σ,p] of any irreducible subscheme V ⊂ Mbr

0,n(Σ, D), we have

dimV = idimV .

Proof. The inequality idimV ≤ dimV is immediate from the definition. The oppo-
site inequality and the injecitvity of ΦΣ,D × Ev follow from the observation that,
for an irreducible rational curve C ∈ |D| and a tuple z ⊂ C \Sing (C) of n distinct
points, the normalization map ν : P1 → C and the lift p = ν−1(z) represent the
unique preimage of (C, z) ∈ |D| × Σn in Mbr

0,n(Σ, D). �
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2.2. Curves on del Pezzo and uninodal del Pezzo surfaces

We establish here certain properties of the spaces Mim
0,0(Σ, D), Mbr

0,0(Σ, D), and

Mbr
0,0(Σ, D), notably, compute dimension and describe generic members of these

spaces as well as of some divisors therein. These properties basically follow from
[10, Theorem 4.1 and Lemma 4.10]. However, the cited paper considers the plane
blown up at generic points, whereas we work with arbitrary del Pezzo or uninodal
del Pezzo surfaces. For this reason, we supply all claims with complete proofs.

Through all this section we use the notation

r = −DKΣ − 1.

Lemma 8. If Σ is a smooth rational surface and −DKΣ > 0, then the space
Mim

0,0(Σ, D) is either empty, or a smooth variety of dimension r.

Proof. Let [ν : P1 → Σ] ∈ Mim
0,0(Σ, D). The Zariski tangent space to Mim

0,0(Σ, D)

at [ν : P1 → Σ] can be identified with H0(P1,N ν
P1), where N ν

P1 = ν∗T Σ/T P1 is
the normal bundle. Since

degN ν
P1 = −DKΣ − 2 ≥ −1 > (2g − 2)

∣∣
g=0

= −2 , (3)

we have

h1(P1,N ν
P1) = 0 , (4)

and hence Mim
0,0(Σ, D) is smooth at [ν : P1 → Σ] and is of dimension

h0(P1,N ν
P1) = degN ν

P1 − g + 1 = −DKΣ − 1 = r . (5)

�

Lemma 9.

(1) Let Σ ∈ DDP
d and −DKΣ > 0. Then, the following holds:

(i) The space Mbr
0,0(Σ, D) is either empty or a variety of dimension r, and

idim(M0,0(Σ, D) \Mbr
0,0(Σ, D)) < r.

(ii) If either d > 1 or D �= −KΣ, then Mim
0,0(Σ, D) ⊂ Mbr

0,0(Σ, D) is an
open dense subset.

(iii) There exists an open dense subset U1 ⊂ DDP
1 such that, if Σ ∈ U1, then

M0,0(Σ,−KΣ) consists of 12 elements, each corresponding to a rational
nodal curve.

(2) Let d ≤ 4. There exists an open dense subset Ud(A1) ⊂ Dd(A1) such that if
Σ ∈ Ud(A1) and −DKΣ > 0, then

(i) idimM0,0(Σ, D) ≤ r;

(ii) a generic element [ν : P1 → Σ] of any irreducible component V of
M0,0(Σ, D) such that idimV = r, is an immersion, and the divisor
ν∗(EΣ) consists of DEΣ distinct points.
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Proof. Let Σ ∈ DDP
d ∪ Dd(A1). All the statements in the case of an effective

−KΣ − D immediately follow from elementary properties of plane lines, conics,
and cubics. Thus, we suppose that −KΣ −D is not effective.

Let V1 be an irreducible component of Mbr
0,0(Σ, D) and [ν : P1 → Σ] its

generic element. Then by [19, Theorem II.1.2]

dimHom(P1,Σ)ν ≥ −DKΣ + 2χ(OP1) = −DKΣ + 2 . (6)

Reducing by the automorphisms of P1, we get

dimV1 ≥ −DKΣ + 2− 3 = r . (7)

Hence, in view of Lemma 8, to prove that dimMbr
0,0(Σ, D) = r and Mim

0,0(Σ, D) is

dense in Mbr
0,0(Σ, D), it is enough to show that dim(Mbr

0,0(Σ, D)\Mim
0,0(Σ, D)) < r.

Notice, first, that, in the case r = 0, the curves C ∈ ΦΣ,D(Mbr
0,0(Σ, D)) are

nonsingular due to the bound

−DKΣ ≥ (C · C′)(z) ≥ s , (8)

coming from the intersection of C with a curve C′ ∈ | − KΣ| passing through a
point z ∈ C, where C has multiplicity s. Thus, we suppose that r > 0. Let V2 be
an irreducible component of Mbr

0,0(Σ, D)\Mim
0,0(Σ, D), [ν : P1 → Σ] ∈ V2 a generic

element, and let ν have s ≥ 1 critical points of multiplicities m1 ≥ · · · ≥ ms ≥ 2.
In particular, bound (8) gives

−DKΣ ≥ m1 . (9)

Then (cf. [5, First formula in the proof of Corollary 2.4]),

dimV2 ≤ h0(P1,N ν
P1/Tors(N ν

P1)) ,

where the normal sheafN ν
P1 on P1 is defined as the cokernel of the map dν : T P1 →

ν∗T Σ, and Tors(∗) is the torsion sheaf. It follows from [5, Lemma 2.6] (cf. also the
computation in [5, Page 363]) that degTors(N ν

P1) =
∑

i(mi − 1), and hence

degN ν
P1/Tors(N ν

P1) = −DKΣ − 2−
s∑

i=1

(mi − 1) (10)

which yields

dimV2 ≤ h0(P1,N ν
P1/Tors(N ν

P1))

= max{degN ν
P1/Tors(N ν

P1) + 1, 0}
(9)

≤ r − (m1 − 1) < r,
(11)

Let us show that idimV < r for any irreducible component V of M0,0(Σ, D)\
Mbr

0,0(Σ, D). Indeed, if a generic element [ν : P1 → Σ] ∈ V satisfies ν∗(P1) = sC
for some s ≥ 2, then

idimV ≤ −1

s
DKΣ − 1 < −DKΣ − 1 = r .

To complete the proof of (2ii), let us assume that dimV = r and the di-
visor ν∗(EΣ) contains a multiple point sz, s ≥ 2. In view of DEΣ ≥ s and
(−KΣ − EΣ)D ≥ 0 (remind that D is irreducible and −K − D is not effective),
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we have −DKΣ ≥ s. Furthermore, T[ν]V can be identified with a subspace of

H0(P1,N ν
P1(−(s− 1)z)) (cf. [5, Remark in page 364]). Since

degN ν
P1(−(s− 1)z)) = −DKΣ − 1− s ≥ −1 > −2 ,

we have

H1(P1,N ν
P1(−(s− 1)z)) = 0 ,

and hence

dimV ≤ h0(P1,N ν
P1(−(s− 1)z)) = r − (s− 1) < r

contrary to the assumption dimV = r. �

Lemma 10. There exists an open dense subset U2 ⊂ DDP
1 such that, for each

Σ ∈ U2, the set of effective divisor classes D ∈ Pic(Σ) satisfying −DKΣ = 1 is
finite, the set of rational curves in the corresponding linear systems |D| is finite,
and any two such rational curves C1, C2 either coincide, or are disjoint, or intersect
in C1C2 distinct points.

Proof. For any Σ ∈ DDP
1 , we have dim |−2KΣ| = 3. Hence, the condition −DKΣ =

1 yields that −2KΣ−D is effective, which in turn implies the finiteness of the set
of effective divisors such that −DKΣ = 1. The finiteness of the set of rational
curves in these linear systems |D| follows from Lemma 9(i). At last, for a generic
Σ ∈ DDP

1 , these curves are either singular elements in the elliptic pencil | − KΣ|
or the (−1)-curves, and as it follows easily, for example, from considering Σ as a
projective plane blown up at 8 generic points, any two of these curves intersect
transversally and in distinct smooth points. �

Lemma 11. Let U1, U2 be the subsets of DDP
1 introduced in Lemmas 9 and 10,

respectively. For each Σ ∈ U1∩U2, each D ∈ Pic(Σ) with −DKΣ > 0 and D2 ≥ −1,

and for each irreducible component V of Mbr
0,0(Σ, D) \Mbr

0,0(Σ, D) with idimV =
r − 1, one has:

(i) A generic element [ν : Ĉ → Σ] ∈ V is as follows

• Ĉ = Ĉ1 ∪ Ĉ2 with Ĉi & P1, [ν|Ĉi
: Ĉi → Σ] ∈ Mim

0,0(Σ, Di), where

D1D2 > 0 and −DiKΣ > 0, D2
i ≥ −1 for each i = 1, 2;

• ν(Ĉ1) �= ν(Ĉ2), except for the only case when D1 = D2 = −KΣ and

ν(Ĉ1) = ν(Ĉ2) is one of the 12 uninodal curves in | −KΣ|;
• ν is an immersion (i.e., a local isomorphism onto the image).

Moreover, each element [ν : Ĉ → Σ] ∈ M0,0(Σ, D) as above does belong to

Mbr
0,0(Σ, D).

(ii) The germ of Mbr
0,0(Σ, D) at a generic element of V is smooth.

Proof. Show, first, that idim(M′
0,0(Σ, D) \Mbr

0,0(Σ, D)) ≤ r − 2. Assume on the

contrary that there exists a component V ofM′
0,0(Σ, D)\Mbr

0,0(Σ, D) with idimV =
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r− 1 (idimV cannot be bigger by Lemma 9(i)). Then its generic element [ν : P1 →
Σ] is such that ν∗(P1) = sC with C an irreducible rational curve, s ≥ 2. Thus,

r − 1 = −sCKΣ − 2 ≤ −CKΣ − 1 = dimMbr
0,0(Σ, C) ,

which yields s = 2 and −CKΣ = 1. By adjunction formula, either C2 = −1,
or C2 ≥ 1. The former case is excluded by the assumption D2 ≥ −1. In the case
C2 ≥ 1, sinceK2

Σ = 1 and −CKΣ = 1, the only possibility is C ∈ |−KΣ|. However,
in such a case the map ν cannot be deformed into an element of Mbr

0,0(Σ,−2KΣ),

since C has a node, and hence the deformed map would birationally send P1

onto a curve with δ-invariant ≥ 4, which is bigger than its arithmetic genus,
((−2KΣ)

2 + (−2KΣ)KΣ)/2 + 1 = 2.

Let [ν : Ĉ → Σ] be a generic element of an irreducible component V of

Mbr
0,0(Σ, D) \M′

0,0(Σ, D) with idimV = r− 1. Then Ĉ has at least 2 components.

On the other side, if Ĉ had ≥ 3 components, Lemma 9(1) would yield idimV ≤
−DKΣ − 3 < r − 1. Hence Ĉ = Ĉ1 ∪ Ĉ2, Ĉ1 & Ĉ2 & P1, and, according to
Lemma 8 and Lemma 9(1), for each i = 1, 2 we have: νi = ν

∣∣
Ĉi

is an immersion,

dimM0,0(Σ, Di)[νi] = −DiKΣ − 1, and −DiKΣ > 0, D2
i ≥ −1.

If −DKΣ = 2 and ν(Ĉ1) �= ν(Ĉ2), then the intersection points of these curves
are nodes, which follows from the definition of the set U2 (see Lemma 10), and

hence ν is an immersion at the node ẑ of Ĉ.

If −DKΣ = 2 and ν(Ĉ1) = ν(Ĉ2), then D1 = D2 and D2
1 = D2

2 ≥ 1 in view
of the adjunction formula and the condition D2 ≥ −1. It is easy to see that this
is only possible, when D1 = D2 = −KΣ. In particular, by the definition of the set
U1 (see Lemma 9(iii)), the curve C = ν(Ĉ1) = ν(Ĉ2) ∈ |−KΣ| has one node z. We

then see that, ν takes the germ (Ĉ, ẑ) isomorphically onto the germ (C, z), since,
otherwise we would get a deformed map ν with the image whose δ-invariant ≥ 4,
which is bigger than its arithmetic genus, ((−2KΣ)

2 + (−2KΣ)KΣ)/2 + 1 = 2.

Suppose, now, that −DKΣ > 2, thus, −D1KΣ > 1. Then

dimM0,0(Σ, D1)[ν1] > 0,

and hence C1 �= C2. To prove that ν is an immersion at the node ẑ ∈ Ĉ, we
will show that any two local branches of ν1 and ν2 either are disjoint, or intersect
transversally. Indeed, assume on the contrary that there exist zi ∈ Ĉi, i = 1, 2,
such that ν1(z1) = ν2(z2) = z ∈ Σ, and ν1(Ĉ1, z1) intersects ν2(Ĉ2, z2) at z with
multiplicity ≥ 2. Then

dimM0,0(Σ, D1)[ν1] ≤ h0(Ĉ1,N ν1
Ĉ1

(−z1)) . (12)

Since

degN ν1
Ĉ1

(−z1) = −D1KΣ − 2− 1 = −D1KΣ − 3 > −2 ,
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we get h1(Ĉ1,N ν1
Ĉ1

(−z1)) = 0. Therefore,

degN ν1
Ĉ1

(−z1) ≤ degN ν1
Ĉ1

(−z1) + 1 = −D1KΣ − 2

< −D1KΣ − 1 = dimM0,0(Σ, D1)[ν1] ,

which contradicts (12).

The smoothness of Mbr
0,0(Σ, D) at [ν : Ĉ → Σ], where ν∗Ĉ is a reduced

nodal curve, follows from [25, Lemma 2.9], where the requirements are DiKΣ < 0,
i = 1, 2. We will show that the same requirements suffice under assumption that
ν is an immersion. Let us show that

T[ν]Mbr
0,0(Σ, D) & H0(Ĉ,N ν

Ĉ
) , (13)

where the normal sheaf N ν
Ĉ

comes from the exact sequence

0 → TĈ → ν∗TΣ → N ν
Ĉ
→ 0 , (14)

TΣ being the tangent bundle of Σ, and TĈ being the tangent sheaf of Ĉ viewed as

the push-forward by the normalization π : Ĉ1 , Ĉ2 → Ĉ of the subsheaf T ′
Ĉ1�Ĉ2

⊂
TĈ1�Ĉ2

generated by the sections vanishing at the preimages of the node z ∈ Ĉ.

Indeed, the Zariski tangent space to Hom(Ĉ,Σ) at ν is naturally isomorphic

to H0(Ĉ, ν∗TΣ) (see [19, Theorem 1.7, Section II.1]). Next, we take the quotient

by action of the germ of Aut(Ĉ) at the identity. This germ is smooth and acts

freely on the germ of Hom(Ĉ,Σ) at ν. The tangent space to Aut(Ĉ) at the identity

is isomorphic to H0(Ĉ, TĈ) (cf. [19, 2.16.4, Section I.2]). Since

H1(Ĉ, TĈ) = H1(Ĉ1,Ĉ2, T ′
Ĉ1�Ĉ2

) = H1(Ĉ1,OĈ1
(1))⊕H1(Ĉ2,OĈ2

(1)) = 0 , (15)

the associated to (14) cohomology exact sequence yields

T[ν]Mbr
0,0(Σ, D) & TνHom(Ĉ,Σ)/TIdAut(Ĉ)

& H0(Ĉ, ν∗TΣ)/H0(Ĉ, TĈ) & H0(Ĉ,N ν
Ĉ
) .

We will verify that

h0(Ĉ,N ν
Ĉ
) = r , (16)

which in view of dim[ν] Mbr
0,0(Σ, D) = r (see Lemma 9(i)) will imply the smoothness

of Mbr
0,0(Σ, D) at [ν]. There exists a natural morphism of sheaves on Ĉ:

α : π∗N ν◦π
Ĉ1�Ĉ2

−→N ν
Ĉ

,

where α is an isomorphism outside z and acts at z as follows: since ν embeds the
germ of Ĉ at z into Σ, one can identify the stalk

(
π∗N ν◦π

Ĉ1�Ĉ2

)
z
with C{x}⊕C{y},

the stalk (N ν
Ĉ
)z with C{x, y}/〈xy〉, and write

αz(f(x), g(y)) = xf(x) + yg(y) ∈
(
N ν

Ĉ

)
z
∼= C{x, y}/〈xy〉 .

Hence we obtain an exact sequence of sheaves

0 → π∗N ν◦π
Ĉ1�Ĉ2

α−→ N ν
Ĉ
→ Oz → 0 , (17)
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whose cohomology sequence vanishes at

h1(z,Oz) = 0, h1(Ĉ1 , Ĉ2,N ν◦π
Ĉ1�Ĉ2

) = 0 ,

(the latter one is equivalent to (4)); hence h1(Ĉ,N ν
Ĉ
) = 0 and, furthermore,

h0(Ĉ,N ν
Ĉ
) = h0(Ĉ1 , Ĉ2,N ν◦π

Ĉ1�Ĉ2
)) + h0(z,Oz)

= h0(Ĉ1,N ν1
Ĉ1

) + h0(Ĉ2,N ν2
Ĉ2

) + h0(z,Oz)

cf. (5)
= (−D1KΣ − 1) + (−D2KΣ − 1) + 1 = r

as predicted in (14).

Finally, let us show that any element [ν : Ĉ → Σ] ∈ M0,0(Σ, D), satisfying

conditions of 1(i)–1(iii), belongs to Mbr
0,0(Σ, D), or, equivalently, admits a defor-

mation into a map P1 → Σ birational onto its image. Indeed, it follows from [1,

Theorem 15] under the condition h1(Ĉ, ν∗TΣ) = 0, which one obtains from the
cohomology exact sequence associated with (14) and from vanishing relations (15)
and (16). �

Lemma 12. Consider the subsets U1, U2 of DDP
1 introduced in Lemmas 9 and

10, respectively, a surface Σ ∈ U1 ∩ U2 ⊂ DDP
1 , and an effective divisor class

D ∈ Pic(Σ) such that −DKΣ ≥ 2. Let w = (w1, . . . , wr) be a sequence of r
distinct points in Σ, let σi be smooth curve germs in Σ centered at wi, r

′ < i ≤ r,
for some r′ < r, w′ = (wi)1≤i≤r′ , and let

Mbr
0,r(Σ, D;w′, {σi}r′<i≤r)

= {[ν : Ĉ → Σ,p] ∈ Mbr
0,r(Σ, D) :

ν(pi) = wi for 1 ≤ i ≤ r′, ν(pi) ∈ σi, for r′ < i ≤ r} .

(1) Suppose that [ν : P1 → Σ,p] ∈ Mbr
0,r(Σ, D;w) ∩Mim

0,r(Σ, D). Then Ev sends

the germ of Mbr
0,r(Σ, D;w′, {σi}r′<i≤r) at [ν : P1 → Σ,p] diffeomorphically

onto
∏

r′<i≤r σi.

(2) Suppose that [ν : Ĉ → Σ,p] ∈ Mbr
0,r(Σ, D;w) is such that

• [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) is as in Lemma 11(i),

• r′ ≥ −D1KΣ − 1, #(p ∩ Ĉ1) = −D1KΣ − 1, #(p ∩ Ĉ2) = −D2KΣ, the
point sequences (wi)1≤i<−D1KΣ , (wi)−D1KΣ≤i≤r are generic on C1 =

ν∗Ĉ1, C2 = ν∗Ĉ2, respectively, and the germs σi, r
′ < i ≤ r, cross C2

transversally.

Then Ev sends the germ of Mbr
0,r(Σ, D;w′, {σi}r′<i≤r) at [ν : Ĉ → Σ,p]

diffeomorphically onto
∏

r′<i≤r σi.

Proof. Both statements follow from the fact that Ev diffeomorphically sends the

germ of Mbr
0,r(Σ, D) at [ν : Ĉ → Σ,p] onto the germ of Σr at w = ν(p).
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In view of dimMbr
0,r(Σ, D) = 2r Lemma 9(i)), it is sufficient to show that the

Zariski tangent space to Ev−1(w) is zero-dimensional. In view of relation (13) this
is equivalent to

h0(Ĉ,N ν
Ĉ
(−p)) = 0 . (18)

In the case of [ν : P1 → Σ,p] ∈ Mbr
0,r(Σ, D;w′, {σi}r′<i≤r) ∩Mim

0,r(Σ, D), we
have

degN ν
Ĉ
(−p) = (−DKΣ − 2)− (−DKΣ − 1) = −1 > −2 ,

and hence (18) follows by Riemann–Roch.

In the second case, put p̃ = p \ {pr} and twist the exact sequence (17) to get

0 → π∗N ν◦π
Ĉ1�Ĉ2

(−p̃) → N ν
Ĉ
(−p̃) → Oz → 0.

Since

degN ν1
Ĉi
(−p̃ ∩ Ĉi) = (−DiKΣ − 2)− (−DiKΣ − 1) = −1 > −2, i = 1, 2 ,

we have h1(π∗N ν◦π
Ĉ1�Ĉ2

(−p̃)) = 0, and h0(Ĉ, π∗N ν◦π
Ĉ1�Ĉ2

(−p̃)) = 0, which yields that

H0(Ĉ,N ν
Ĉ
(−p̃)) is isomorphically mapped onto H0(z,Oz) & C. It implies that a

non-zero global section of the sheaf N ν
Ĉ
(−p̃) does not vanish at z, and hence, it

does not vanish at pr chosen on Ĉ2 in a generic way. Thus, (18) follows. �

2.3. Deformation of isolated curve singularities

Let us recall a few facts on deformations of curve singularities (see, for example,
[6]). Let Σ be a smooth algebraic surface, z an isolated singular point of a curve
C ⊂ Σ, and BC,z the base of a semiuniversal deformation of the germ (C, z). This
base can be viewed as a germ (CN , 0) and can be identified with OC,z/JC,z, where
JC,z ⊂ OC,z is the Jacobian ideal.

The equigeneric locus B eg
C,z ⊂ BC,z parametrizes local deformations of (C, z)

with constant δ-invariant equal to δ(C, z). This locus is irreducible and has codi-

mension δ(C, z) in BC,z. The subset B eg,im
C,z ⊂ B eg

C,z that parametrizes the im-

mersed deformations is open and dense in B eg
C,z, and consists only of smooth points

of B eg
C,z. The tangent cone T0B

eg
C,z (defined as the limit of the tangent spaces at

points of B eg,im
C,z ) can be identified with Jcond

C,z /JC,z, where Jcond
C,z ⊂ OC,z is the

conductor ideal. The subset B eg,nod
C,z ⊂ B eg

C,z that parameterizes the nodal defor-

mations is also open and dense. Furthermore, B eg
C,z \B

eg,nod
C,z is the closure of three

codimension-one strata: B eg
C,z(A2) that parameterizes deformations with one cusp

A2 and δ(C, z) − 1 nodes, B eg
C,z(A3) that parameterizes deformations with one

tacnode A3 and δ(C, z)− 2 nodes, and B eg
C,z(D4) that parameterizes deformations

with one ordinary triple point D4 and δ(C, z)− 3 nodes.

If C ⊂ Σ is a curve with isolated singularities, we consider the joint semiuni-
versal deformation for all singular points of C. The base of this deformation, the



Welschinger Invariants Revisited 253

equigeneric locus, and the tangent cone to this locus at the point corresponding
to C are as follows:

BC =
∏

z∈Sing (C)

BC,z, B eg
C =

∏
z∈Sing (C)

B eg
C,z, T0B

eg
C =

∏
z∈Sing (C)

T0B
eg
C,z .

Lemma 13. Let ν : P1 → Σ be birational onto its image C = ν(P1). Assume that
C ∈ |D|, where D is a divisor class such that r = −DKΣ − 1 > 0. Let p be
an r-tuple of distinct points of P1 such that w = ν(p) is an r-tuple of distinct
nonsingular points of C. Let |D|w ⊂ |D| be the linear subsystem of curves passing
through w, and Λ(w) ⊂ BC be the natural image of |D|w.

(1) One has codimBCΛ(w) = dimB eg
C , and Λ(w) intersects T0B

eg
C transversally.

(2) For any r-tuple w̃ ∈ Σr sufficiently close to w and such that Λ(w̃) intersects
B eg

C transversally and only at smooth points, the natural map from the germ
M0,r(Σ, D)[ν,p] of M0,r(Σ, D) at [ν : P1 → Σ,p] to B eg

C gives rise to a

bijection between the set of elements [ν̃ : P1 → Σ, p̃] ∈ M0,r(Σ, D)[ν,p] such
that ν̃(p̃) = w̃ on one side and the set Λ(w̃) ∩B eg

C on the other side.

Proof. (1) The dimension and the transversality statements reduce to the fact that
the pull-back of T0B

eg
C to |D| intersects |D|w transversally and only at one point.

In view of the identification of T0B
eg
C with

∏
z∈Sing (C) J

cond
C,z /JC,z [6, Theorem

4.15], both required claims read as

H0(C,J cond
C (−w)⊗OΣ(D)) = 0 , (19)

where J cond
C = Ann(ν∗OP1/OC) is the conductor ideal sheaf, since J cond

C can
be equivalently regarded as the ideal sheaf of the zero-dimensional subscheme of
C defined at all singular points z ∈ Sing (C) by the conductor ideals Jcond

C,z =

Ann(ν∗
⊕

q∈ν−1(z) OP1,q)/OC,z.

It is known that J cond
C = ν∗OP1(−Δ), where Δ ⊂ P1 is the so-called double-

point divisor, whose degree is degΔ = 2
∑

z∈Sing (C) δ(C, z) (see, for example, [5,

Section 2.4] or [8, Section 4.2.4]). Hence, the relations (19) can be rewritten as

H0(P1,OP1(d −Δ− p)) = 0 , (20)

where deg d = D2. Since

degOP1(d−Δ− p)) = D2 − 2
∑

z∈Sing (C)

δ(C, z)− r

= D2 − 2

(
D2 +DKΣ

2
+ 1

)
− (−DKΣ − 1) = −1 > −2 ,

we obtain H1(P1,OP1(d−Δ− p)) = 0, and hence by Riemann–Roch

dimH0(P1,OP1(d−Δ− p)) = degOP1(d−Δ− p)) + 1 = 0 .

(2) The second statement of Lemma 13 immediately follows from the first
one due to the fact that the tangent spaces to the stratum B eg

C at its smooth
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points close to the origin converge to the same linear space of dimension dimB eg
C

[6, Theorem 4.15]. �

Suppose now that Σ possesses a real structure, C is a real curve, and z is its
real singular point. Let b ∈ B eg,im

C,z be a real point, and let Cb be the corresponding

fiber of the semiuniversal deformation of the germ (C, z). Define the Welschinger

sign Wb as follows. Let π : Ĉb → Cb ↪→ Σ be the normalization of Cb. Here
Ĉb is the union of discs, some of them being real (i.e., invariant with respect
to the complex conjugation), the others forming complex conjugate pairs. Put

Wb = (−1)Cb,+◦Cb,− , where Cb,± = π(Ĉb,±) and Ĉb \ RĈb = Ĉb,+ , Ĉb,− is a
splitting into disjoint complex conjugate halves.

Lemma 14. The Welschinger sign Wb is equal to (−1)s, where s is the number of
solitary nodes in a small real nodal perturbation of Cb.

Proof. Straightforward from the definition. �

Lemma 15. Let Lt, t ∈ (−ε, ε) ⊂ R, be a smooth one-parameter family of conju-
gation-invariant affine subspaces of BC,z of dimension δ(C, z) such that

• L0 passes through the origin and is transversal to T0B
eg
C,z,

• Lt ∩B eg
C,z ⊂ B eg,im

C,z for each t ∈ (−ε, ε) \ {0}.
Then,

(i) the intersection Lt ∩ B eg
C,z is finite for each t ∈ (−ε′, ε′) \ {0}, where ε′ > 0

is sufficiently small.
(ii) the function W (t) =

∑
b∈Lt∩RB eg

C,z
Wb is constant in (−ε′, ε′) \ {0}, where

ε′ > 0 is sufficiently small.

Proof. The finiteness of the intersection follows from the transversality of L0 and
T0B

eg
C,z in BC,z. To prove the second statement, assume, first, that the germ (C, z)

represents an ordinary cusp A2. Then RBC,z = (R2, 0) and RB eg
C,z is a semicubical

parabola with vertex at the origin. For the points b belonging to one of the two
connected components of RB eg

C,z\{0}, the curve Cb has a non-solitary real node; for
the points b from the other component, Cb has a solitary node. Since, in addition,
the line L0 crosses the tangent to the parabola at the origin transversally we have
W (t) = 0 for each t ∈ (−ε′, ε′) \ {0} for sufficiently small ε′ > 0.

In the general case, if ε′ > 0 is sufficiently small, then for any two points
t1 < t2 in (−ε′, ε′) \ {0} we can connect Lt1 with Lt2 by a family of δ(C, z)-
dimensional conjugation-invariant affine subspaces L′

t ⊂ BC,z, t ∈ [t1, t2], such
that

• the subspaces L′
t, t ∈ [t1, t2], are transversal to B eg

C,z,

• the intersection number of L′
t and B eg

C,z is constant in [t1, t2],

• for all but finitely many values of t the intersection L′
t ∩B eg

C,z is contained in

B eg,nod
C,z , and for the remaining values of t, the subspace L′

t intersects RB
eg
C,z

within B eg
C,z(A2) ∪B eg

C,z(A3) ∪B eg
C,z(D4).



Welschinger Invariants Revisited 255

The bifurcations through the immersed singularities A3 and D4 do not affectW (t),
as well as the cuspidal bifurcation, which we have treated above. �
Remark 16. In fact, Lemma 15 allows one to extend the definition of Welschinger
signs and attribute a Welschinger weight to any map ν : P1 → Σ birational onto
its image.

3. Proof of Theorem 6

3.1. Preliminary observations

We start with two remarks.

(1) If Y is an irreducible complex variety, equipped with a real structure, and
RY contains nonsingular points of Y , then RY ∩U �= ∅ for any Zariski open
subset U ⊂ Y . In particular, a generic element of Pr,m(Σ, F ) is generic in Σr.

(2) By blowing up extra real points we can reduce the consideration to the case
of del Pezzo surfaces of degree 1.

The following statement will be used in the sequel.

Lemma 17. Let t ∈ (R, 0) �→ Σt be a germ of an elementary deformation
(Σt, Dt, Ft, ϕt, wt) of a tuple (Σ0, D0, F0, ϕ0,w0), where Σ0 is a del Pezzo surface
of degree 1, D0 ∈ Pic(Σ0) is a real effective divisor such that r = −D0KΣ0 −1 > 0,
and w0 belongs to Pr,m(Σ0, F0) and is generic. Then

Wm(Σt, Dt, Ft, ϕt,wt) = Wm(Σ0, D0, F0, ϕ0,w0) .

Proof. Since D0KΣ0 > 1 and w0 is generic, Lemma 9 implies that all the curves
under count are immersed. Thus, each of these curves contributes 1 to the Gromov–
Witten invariant, and the required equality follows from Lemma 14. �
3.2. Proof of Proposition 4

The only situation to consider is the one where Σ ∈ DDP
1 and r = −DKΣ− 1 > 0.

Due to Lemma 17, we can fix any dense subset in DDP
1 and check the statement

for the surfaces belonging to this subset. Throughout this section, we assume that
Σ ∈ U1 ∩ U2.

We prove the invariance of Welschinger numbers by studying wall-crossing
events when moving either one real point of the given collection, or a pair of
complex conjugate points.

3.2.1. Moving a real point of configuration. Suppose that 2m < r. Let tuples
w′ ∪{w(0)},w′ ∪{w(1)} ∈ Pr,m(Σ, F ), where w′ ∈ Pr−1,m(Σ, F ), be such that the

sets R(Σ, D, F,w′ ∪ {w(0)}) and R(Σ, D, F,w′ ∪ {w(1)}) are finite and presented
by immersions (see Lemma 9). We prove that

Wm(Σ, D, F, ϕ,w′ ∪ {w(0)}) = Wm(Σ, D, F, ϕ,w′ ∪ {w(1)}) . (21)

Due to Lemma 11, by a small deformation of w′ we can reach the following:

whenever an element [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) \Mbr

0,0(Σ, D) is such that ν(Ĉ) ⊃
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w′, the element [ν : Ĉ → Σ] satisfies the conditions of Lemma 11(i), −D1KΣ − 1
points of w′ lie on C1 \ (Sing (C1) ∪C2), and the remaining −D2KΣ − 1 points of
w′ lie on C2 \ (Sing (C2) ∪ C1).

There exists a smooth real-analytic path σ : [0, 1] → F lying in the real part
of some smooth real algebraic curve σ(C) ⊂ Σ, such that σ is disjoint from all the
points of w′, σ(0) = w(0), σ(1) = w(1), and in the family

Mbr
0,r(Σ, D;w′, σ) = {[ν : Ĉ → Σ,p] ∈ Mbr

0,r(Σ, D) : ν(p′) = w′, ν(pr) ∈ σ} ,

where p′ = p \ {pr}, all but finitely many elements belong to Mim
0,r(Σ, D), and the

remaining elements [ν : Ĉ → Σ,p] (corresponding to some values t ∈ I0 ⊂ [0, 1],
|I0| < ∞) are such that:

(D1re) either [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) is as in Lemma 11(i), the point w(t) ∈

σ ∩ C2 belongs to C2 \ (Sing (C2) ∪ C1 ∪ w′), and the germ of σ(C) at
w(t) ∈ C intersects C2 transversally;

(D2re) or [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) \Mim

0,0(Σ, D), the point w(t) ∈ σ ∩ C, where

C = ν(Ĉ), belongs to C \ (Sing (C) ∪ w′), and the germ of σ(C) at w(t)

intersect C transversally.

Denote by M[ν,p] the germ of Mbr
0,r(Σ, D;w′, σ) at an element [ν : Ĉ → Σ,p].

If [ν : Ĉ → Σ] ∈ Mim
0,0(Σ, D), or [ν : Ĉ → Σ] satisfies condition (D1re),

then, by Lemma 12, the germ M[ν,p] is diffeomorphically mapped by Ev onto

the germ (σ,w(t)). Moreover, the Welschinger sign μ(ν, ϕ) does not change along

M[ν,σ]. This is evident for [ν : Ĉ → Σ] ∈ Mim
0,0(Σ, D), and, under condition (D1re),

immediately follows from the fact that ν maps the germ of Ĉ at the node to a
pair of real smooth branches that intersect transversally and undergo a standard
smoothing in the considered bifurcation.

Under the hypotheses of condition (D2re), the required constancy of the
Welschinger numberWm(Σ, D, F, ϕ,w′∪{w(t)}) immediately follows from Lemmas
13, 14 and 15.

3.2.2. Moving a pair of imaginary conjugate points. Assume that m ≥ 1. Let
tuples w′ ∪ {w(0),Conjw(0)},w′ ∪ {w(1),Conjw(1)} ∈ Pr,m(Σ, F ), where w′ ∈
Pr−2,m−1(Σ, F ), be such that the sets

R(Σ, D, F,w′ ∪ {w(0),Conjw(0)}) and R(Σ, D, F,w′ ∪ {w(1),Conjw(1)})
are finite and presented by immersions (see Lemma 9). We prove that

Wm(Σ, D, F, ϕ,w′ ∪ {w(0),Conjw(0)}) = Wm(Σ, D, F, ϕ,w′ ∪ {w(1),Conjw(1)}) .
(22)

Due to Lemma 11, by a small deformation of w′ we can reach the following:
for any point w of a certain Zariski open subset Σw′ ⊂ Σ \w′, whenever for an

element [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) \Mbr

0,0(Σ, D) we have ν(Ĉ) ⊃ w′ ∪ {w}, this
element [ν : Ĉ → Σ] satisfies the conditions of Lemma 11(i), −D1KΣ− 1 points of
w′ lie on C1 \ (Sing (C1) ∪ C2), and the remaining −D2KΣ − 2 points of w′ and
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the point w lie on C2 \ (Sing (C2) ∪ C1). Further on, assuming this property of
w′, we can find a smooth real-analytic path σ : [0, 1] → Sing \ RΣ lying in some
smooth real algebraic curve σ(C) ⊂ Σ \ RΣ, such that σ starts at w(0) and ends
up at w(1), avoids all the points of w′, and satisfies the following condition (cf.
section 3.2.1): for all but finitely many elements of the family

Mbr
0,r(Σ, D;w′, σ,Conj σ) = {[ν : Ĉ → Σ,p] ∈ Mbr

0,r(Σ, D) :

ν(p′) = w′, ν(pr−1) ∈ σ, ν(pr) ∈ Conjσ} ,

where p′ = p\ {pr−1, pr}, we have [ν : Ĉ → Σ] ∈ Mim
0,0(Σ, D), while the remaining

elements (which correspond to some values t ∈ I0 ⊂ [0, 1], |I0| < ∞) are such that:

(D1im) either [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) is as in Lemma 11(i), where νi :

Ĉi → Σ commutes with the real structure, −D1KΣ − 1 points of w′ lie
on C1 \ (Sing (C1) ∪ C2), the remaining −D2KΣ − 2 points of w′ lie in
C2\(Sing (C2)∪C1), the point w

(t) ∈ σ belongs to C2\(Sing (C2)∪C1∪w′),
and the germ of σ(C) at w(t) ∈ C2 intersects C2 transversally;

(D2im) or [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) \Mim

0,0(Σ, D), the point w(t) ∈ σ ∩ C, where

C = ν(Ĉ), belongs to C \ (Sing (C) ∪ w′), and the germ of σ(C) at w(t)

intersects C transversally.

Notice that, in (D1im), the case of C1 = C2 is not relevant due to −DKΣ > 2,
and the case of complex conjugate C1 and C2 does not occur either, since any
real rational curve in |D| must have a non-trivial one-dimensional real branch (see
Section 1.2).

Then the proof of (22) literally follows the argument of the preceding section.

3.3. Proof of Proposition 5 and Theorem 6

In view of Proposition 4 and Lemmas 9(ii) and 17, Theorem 6 follows from Proposi-
tion 5, and, in its turn, to prove Proposition 5 it is sufficient to check the constancy
of the Welschinger number in the following families:

• a germ of elementary deformation {Σt}t∈(R,0), where Σ0 ∈ U1(A1), Σt ∈
U1 ∩ U2 for each t �= 0, and Dt �= −KΣt ;

• a germ of elementary deformation {Σt}t∈(R,0), where Σ0 ∈ DDP
1 \ U1, Σt ∈

U1 ∩ U2 for each t �= 0, and Dt = −KΣt .

Let Σ0 ∈ U1(A1), Σt ∈ U1∩U2 for t �= 0, and Dt �= −KΣt . Extend the family
{Σt}t∈(R,0) to a conjugation invariant family {Σt}(C,0). By Lemma 9(2), there

exists w0 ∈ Pr,m(Σ0, F0) such that, for any k ≥ 0, all elements [ν : P1 → Σ0,p0] ∈
M0,r(Σ0, D − kE,w0) satisfy the properties indicated in Lemma 9(2ii). These
elements appear only for a finite number of values of k and form a finite set. Let us
associate with each of them a comb-like curve [ν : Ĉ → Σ0,p] ∈ M0,r(Σ0, D,w0)
such that:
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• either Ĉ & P1, or Ĉ = Ĉ′ ∪ Ê1 ∪ · · · ∪ Êk for some k > 0, where Ĉ′ &
Ê1 & · · · & Êk & P1, Êi ∩ Êj = ∅ for all i �= j, and #(Ĉ′ ∩ Êi) = 1 for all
i = 1, . . . , k;

• p ⊂ Ĉ′ and [ν : Ĉ′ → Σ0,p] ∈ Mim
0,r(Σ0, D−kE,w0), and each of Ê1, . . . , Êk

is isomorphically mapped onto E.

Then, complement w0 to a conjugation invariant family of r-tuples wt ∈ (Σt)
r,

t ∈ (C, 0), so that wt ∈ Pr,m(Σt, Ft) for each real t. It follows from [26, Theorem

4.2] that each of the introduced elements [ν : Ĉ → Σ0,p] ∈ M0,r(Σ0, D,w0)

extends to a smooth family [νt : Ĉt → Σt,pt] ∈ Mbr
0,r(Σt, D,wt), t ∈ (C, 0), where

Ĉt & P1 and νt is an immersion for all t �= 0, and, furthermore, each element of
M0,r(Σt, D,wt), t ∈ (C, 0)\ {0} is included into some of the above families. Thus,
the Welschinger number W (Σt, D, Ft, ϕt,wt) remains constant in t ∈ (R, 0) \ {0},
since the only change of the topology in the real loci of the curves under the
count consists in smoothing of non-solitary nodes, while the difference between
the homology classes of the halves [C±(t)] in H2(Σt, Ft;Z/2) = H2(Σ0, F0;Z/2)
with t < 0 and those with t > 0 belongs to (1+Conj∗)H2(Σ0, F0;Z/2) and, hence
[C±(t)] ◦ φt does not depend on t.

Assume that Σ0 ∈ DDP
1 \U1 Σt ∈ U1 ∩U2 for t �= 0, and Dt = −KΣt . In this

case we deal with a family of real elliptic pencils | − KΣt |, t ∈ (R, 0), such that
the central one | −KΣ0 | has a real cuspidal curve C0 ∈ | −KΣ0 | and, otherwise,
the family is generic. As it can be seen from the local Weierstrass normal form,
due to the above genericity the image of | −KΣ0 | in the base (C2, 0) of the versal
deformation of the cuspidal point intersects the tangent space to the discriminant
locus, that is the cusp curve 27p2 + 4q3 = 0 in terms of Weierstrass coordinates
p, q, transversally at one point. Therefore, for t ∈ (R, 0) on one side of t = 0 the
singular curves in | − KΣt | close to C0 form a pair of complex conjugate curves,
while for t ∈ (R, 0) on the opposite side of t = 0 they are real, one with a solitary
node, and the other one with a cross point. Thus, the total Welschinger number
is the same on the both sides.
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[10] Göttsche, L., and Pandharipande, R.: The quantum cohomology of blow-ups of P2

and enumerative geometry. J. Differential Geom. 48 (1998), no. 1, 61–90.

[11] Greuel, G.-M., and Karras, U.: Families of varieties with prescribed singularities.
Compositio Math. 69, 83–110 (1989).

[12] Horev, A., and Solomon, J. P.: The open Gromov–Witten–Welschinger theory of
blowups of the projective plane. Preprint at arXiv:1210.4034.

[13] Hartshorne, R.: Algebraic Geometry. Springer, NY, 1977. Lect. Notes Math. 1124
(1985), 98–131.

[14] Itenberg, I., Kharlamov, V., and Shustin, E.: Welschinger invariant and enumeration
of real rational curves. International Math. Research Notices 49 (2003), 2639–2653.

[15] Itenberg, I., Kharlamov, V., and Shustin, E.: Appendix to “Welschinger invariant
and enumeration of real rational curves”. Preprint at arXiv.math/0312142.

[16] Itenberg, I., Kharlamov, V., and Shustin, E.: Welschinger invariants of real del Pezzo
surfaces of degree ≥ 3. Math. Annalen 355 (2013), no. 3, 849–878.

[17] Itenberg, I., Kharlamov, V., and Shustin, E.: Welschinger invariants of real del
Pezzo surfaces of degree ≥ 2. International J. Math. 26 (2015), no. 6. DOI:
10.1142/S0129167X15500603.

[18] Itenberg, I., Kharlamov, V., and Shustin, E.: Relative enumerative invariants of real
nodal del Pezzo surfaces, Preprint at arXiv:1611.02938.

[19] Kollár, J.: Rational curves on algebraic varieties. Springer, Berlin, 1996.

[20] Kontsevich, M., and Manin, Yu.: Gromov–Witten classes, quantum cohomology, and
enumerative geometry. Comm. Math. Phys. 164 (1994), no. 3, 525–562.



260 I. Itenberg, V. Kharlamov and E. Shustin

[21] Mikhalkin, G.: Enumerative tropical algebraic geometry in R2. J. Amer. Math. Soc.
18 (2005), 313–377.

[22] Sernesi, E.: Deformations of Algebraic Schemes. Springer, 2006.

[23] Severi, F.: Vorlesungen über algebraische Geometrie. Teubner, 1921 (reprinted by
Johnson, 1968).

[24] Shustin, E.: On higher genus Welschinger invariants of del Pezzo surfaces. IMRN
2015, 6907–6940. DOI: 10.1093/imrn/rnu148.

[25] Tannenbaum, A.: Families of algebraic curves with nodes. Compositio Math. 41
(1980), 107–126.

[26] Vakil, R.: Counting curves on rational surfaces. Manuscripta Math. 102 (2000), 53–
84.

[27] Welschinger, J.-Y.: Invariants of real rational symplectic 4-manifolds and lower
bounds in real enumerative geometry. C. R. Acad. Sci. Paris, Sér. I, 336 (2003),
341–344.

[28] Welschinger, J.-Y.: Invariants of real symplectic 4-manifolds and lower bounds in
real enumerative geometry. Invent. Math. 162 (2005), no. 1, 195–234.

Ilia Itenberg
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