
Analysis Meets Geometry: A Tribute to Mikael Passare

Trends in Mathematics, 191–212
c© 2017 Springer International Publishing

Coamoebas of Polynomials Supported
on Circuits

Jens Forsg̊ard

Abstract. We study coamoebas of polynomials supported on circuits. Our re-
sults include an explicit description of the space of coamoebas, a relation be-
tween connected components of the coamoeba complement and critical points
of the polynomial, an upper bound on the area of a planar coamoeba, and a
recovered bound on the number of positive solutions of a fewnomial system.

1. Introduction

A possibly degenerate circuit is a point configuration A ⊂ Zn of cardinality n+ 2
which span a sublattice ZA of rank n. That is, such that the Newton polytope
NA = Conv(A) is of full dimension. A polynomial system f(z) = 0 is said to be
supported on a circuit A if each polynomial occurring in f(z) is supported on A.
Polynomial systems supported on circuits have recently been been studied in the
context of, e.g., real algebraic geometry [4, 6], complexity theory [5], and amoeba
theory [18]. The name “circuit” originate from matroid theory; see [17] and [20]
for further background.

The aim of this article is to describe geometrical and topological properties
of coamoebas of polynomials supported on circuits. Such an investigation is moti-
vated not only by the vast number of applications of circuits in different areas of
geometry, but also since circuits provide an ideal testing ground for open problems
in coamoeba theory.

This paper is organized as follows. In Section 2 we will give a brief overview
of coamoeba theory. In Section 3 we will discuss the relation between real polyno-
mials and the coamoeba of the A-discriminant. The main results of this paper are
contained in Sections 4–7, each of which can be read as a standalone text.

In Section 4 we will give a complete description of the space of coamoebas.
That is, we will describe how the topology of the coamoeba Cf depends on the
coefficients of f . Describing the space of amoebas is the topic of the articles [18]
and [19], and to fully appreciate our result one should consider these spaces simul-
taneously, see, e.g., Figure 2. The geometry of the space of coamoebas is closely
related to the A-discriminantal variety, see Theorems 4.1 and 4.2.
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In Section 5 we will prove that the area of a planar circuit coamoeba is
bounded from above by 2π2. That is, a planar circuit coamoeba covers at most
half of the torus T2. Furthermore, we will prove that a circuit admits a coamoeba
of maximal area if and only if it admits an equimodular triangulation. Note that
we calculate area without multiplicities, in contrast to [11]. However, the relation
between (co)amoebas of maximal area and Harnack curves is made visible also in
this setting.

In Section 6 we will prove that, under certain assumptions on A, the critical
points of f(z) are projected by the componentwise argument mapping into distinct
connected component of the complement of the coamoeba Cf . Furthermore, this
projection gives a bijective relation between the set of critical points and the set
of connected components of the complement of the closed coamoeba. This settles
a conjecture used in [10] when computing monodromy in the context of dimer
models and mirror symmetry.

In Section 7 we will consider bivariate systems supported on a circuit. If such
a system is real, then it admits at most three roots in R2

+. The main contribution
of this section is that we offer a new approach to fewnomial theory. Using our
method, we will prove that if NA is a simplex, then, for each θ ∈ T2, a complex
bivariate system supported on A has at most two roots in the sector Arg−1(θ).

2. Coamoebas and lopsidedness

Let A denote a point configuration A = {a0, . . . , aN−1} ⊂ Zn, where N = #A.
By abuse of notation, we identify A with the (1 + n)×N -matrix

A =

(
1 . . . 1
a0 . . . aN−1

)
. (1)

The codimension ofA is the integerm = N−1−n. A circuit is a point configuration
of codimension one. A circuit is said to be nondegenerate if it is not a pyramid
over a circuit of smaller dimension. That is, if all maximal minors of the matrix
A are nonvanishing. We will partition the set of circuits into two classes; simplex
circuits, for which NA is a simplex, and vertex circuits, for which A = Vert(NA).

We associate to A the family CA
∗ consisting of all polynomials

f(z) =

N−1∑
k=0

fk z
ak ,

where f(z) is identified with the point f = (f0, . . . , fN−1) ∈ CA
∗ . By slight abuse

of notation, we will denote by fk(z) the monomial function z �→ fk z
ak . We denote

the algebraic set defined by f by Z(f) ⊂ Cn∗ . The coamoeba Cf is the image of
Z(f) under the componentwise argument mapping Arg : Cn

∗ → Tn defined by

Arg(z) = (arg(z1), . . . , arg(zn)),

where Tn denotes the real n-torus. It is sometimes beneficial to consider the multi-
valued argument mapping, which gives the coamoeba as a multiply periodic subset
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of Rn. Coameobas were introduced by Passare and Tsikh as a dual object, in an
imprecise sense, of the amoeba Af .

We will say that a point z ∈ Cn
∗ is a critical point of f if it solves the system

∂1f(z) = · · · = ∂nf(z) = 0. (2)

If in addition z ∈ Z(f) then z will be called a singular point of f . The A-
discriminant Δ(f) = ΔA(f) is an irreducible polynomial with domain CA

∗ which
vanishes if and only if f has a singular point in Cn

∗ [9].

A Gale dual of A is an integer matrix B whose columns span the right Z-
kernel of A. That is, B is an integer N × m-matrix, of full rank, such that its
maximal minors are relatively prime. A Gale dual is unique up to the action of
SLm(Z). The rows b of B are indexed by the points ak ∈ A. To each Gale dual
we associate a zonotope

ZB =

{
π

2

N−1∑
k=0

λkbk

∣∣∣∣ |λk| ≤ 1

}
⊂ Rm.

We will say that a triangulation T of NA is a triangulation of A if Vert(T ) ⊂
A. Such a triangulation is said to be equimodular if all maximal simplices has equal
volume.

Let h be a height function h : A → R. The function h induces a triangulation
Th of A in the following manner. Let Nh denote the polytope in Rn+1 with vertices
(a, h(a)). The lower facets of Nh are the facets whose outward normal vector
has negative last coordinate. Then, Th is the triangulation of A whose maximal
simplices are the images of the lower facets of Nh under the projection onto the
first n coordinates. A triangulation T of A is said to be coherent if there exists a
height function h such that T = Th.

If A is a circuit then B is a column vector, unique up to sign. Hence, the
zonotope ZB is an interval. Let Ak = A \ {ak}, with associated matrix Ak, and
let Vk = Vol(Ak). If A is a nondegenerate circuit, so that Vk > 0 for all k, then
NA admits exactly two coherent triangulations with vertices in A [9]. Denote these
two triangulations by Tδ for δ ∈ {±1}. Each simplex NAk

occurs in exactly one of
the triangulations Tδ. Hence, there is a well-defined assignment of signs k �→ δk,
where δk ∈ {±1}, such that

Tδ =
{
NAk

}
δk=δ

, δ = ±1.

Here, we have identified a triangulation with its set of maximal simplices. As shown
in [9, Ch. 7 and Ch. 9] and [7, Sec. 5], a Gale dual of A is given by

bk = (−1)k|Ak| = δkVk. (3)

Thus, the zonotope ZB is an interval of length 2πVol(A).

The A-discriminant Δ has n + 1 homogeneities, one for each row of the
matrix A. Each Gale dual correspond to a dehomogenization of Δ. To be specific,
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introducing the variables

ξj =

N−1∏
k=0

f
bkj

k , j = 1, . . . ,m, (4)

there is a Laurent monomial M(c) and a polynomial ΔB(ξ) such that

ΔB(ξ) = M(f)ΔA(f).

We will say that ΔB is the reduced form of Δ. Such a reduction yields a projection
prB : CA∗ → Cm∗ , and we will say that Cm∗ is the reduced family associated to A,
and that prB(f) is the reduced form of f .

Example 2.1. Let A = {0, 1, 2}, so that CA
∗ is the family of quadratic univariate

polynomials

f(z) = f0 + f1z + f2z
2.

Consider the Gale dual B = (1,−2, 1)t, and introduce the variable ξ = f0f
−2
1 f2.

In this case the A-discriminant ΔA is well known, and we find that

f−2
1 ΔA(f) = f−2

1

(
f2
1 − 4f0f2

)
= 1− 4ξ = ΔB(ξ).

The projection prB correspond to performing the change of variables z �→ f0f
−1
1 z,

and multiplying f(z) by f−1
0 , after with we obtain the reduced family consisting

of all polynomials of the form

f(z) = 1 + z + ξz2.

Let S denote a subset of A. The truncated polynomial fS is the image of
f under the projection prS : C

A∗ → CS∗ . Of particular interest is the case when
S = Γ ∩A for some face Γ of the Newton polytope NA (denoted by Γ ≺ NA). We
will write fΓ = fΓ∩A. It was shown in [14] that

Cf =
⋃

Γ≺NA

CfΓ ,

Let E denote the set of edges of NA, then the shell of the coamoeba is defined by

Hf =
⋃
Γ∈E

CfΓ .

As an edge Γ is one-dimensional, the shell Hf is a hyperplane arrangement. Its
importance can be seen in that each full-dimensional cell of Hf contain at most

one connected component of the complement of Cf , see [7].

Example 2.2. The coamoeba of f(z) = 1+z1+z2, as described in [7] and [14], can
be seen in Figure 1, where it is drawn in the fundamental domains [−π, π]2 and
[0, 2π]2. The shellHf consist of the hyperplane arrangement drawn in black. In this
case, it is equal to the boundary of Cf . The Newton polytope NA and its outward
normal vectors are drawn in the rightmost picture. If Hf is given orientations
in accordance with the outward normal vectors of NA, then the interior of the
coamoeba consist of the oriented cells.
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Figure 1. The coamoeba of f(z) = 1 + z1 + z2 in two fundamental
regions, and the Newton polytope NA.

Acting on A by an integer affine transformation is equivalent to performing a
monomial change of variables and multiplying f by a Laurent monomial. Such an
action induces a linear transformation of the coamoeba Cf , when viewed in Rn [7].
We will repeatedly use this fact to impose assumptions on A, e.g., that it contains
the origin.

The polynomial f is said to be colopsided at a point θ ∈ Rn if there exist a
phase ϕ such that

�
(
eiϕfk(e

iθ)
)
≥ 0, k = 0, . . . , N − 1, (5)

with at least one of the inequalities (5) being strict. The motivation for this defi-
nition is as follows. If f is colopsided at θ, then

�
(
eiϕf(reiθ)

)
=

N−1∑
k=0

rak �
(
eiϕfk(e

iθ)
)
> 0, ∀ r ∈ Rn

+,

since at least one term of the sum is strictly positive. Hence, colopsidedness at θ
implies that θ ∈ Tn \ Cf . The colopsided coamoeba, denoted Lf , is defined as the
set of all θ such that (5) does not hold for any phase ϕ [7]. Hence, Cf ⊂ Lf .

Each monomial fk(z) defines an affinity (i.e., a group homomorphism com-
posed with a translation) fk : Cn∗ → C∗ by z �→ fk z

ak . We thus obtain unique

affinities |fk| and f̂k such that the following diagram of short exact sequences
commutes:

0 Rn
+ Cn

∗ (S1)n 0

0 R+ C∗ S1 0.

|fk| fk f̂k

Notice that T & S1 ⊂ C. We denote by f̂(θ) ⊂ (S1)A ⊂ CA∗ the vector with

components f̂k(θ). Assume that f contains the constant monomial 1, and consider
the map ordB(f) : Rn → Rm defined by

ordB(f)(θ) = Argπ
(
f̂(θ)

)
·B, (6)
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where Argπ denotes the componentwise principal argument map. It was shown in
[7] that the map ordB(f) induces a map

ordB(f) : T
n \ Lf → {Argπ(f)B + 2πZm} ∩ intZB. (7)

which in turn induces a bijection between the set of connected components of the
complement of Lf and the finite set in the right-hand side of (7). The map ordB(f)
is known as the order map of the lopsided coamoeba.

Remark 2.3. The requirement that f contains the monomial 1 is related to the
choice of branch cut of the function Arg; in order to obtain a well-defined map,
we need the right-hand side of (6) to be discontinuous only for θ such that two

components of f̂(θ) are antipodal, see [7]. If f does not contain the constant

monomial 1, then one should fix a point ak ∈ A and multiply the vector f̂(θ) by

the scalar f̂k(θ)
−1 before taking principal arguments. It is shown in [7, Thm. 4.3]

that the obtained map is independent of the choice of ak.

If θ ∈ Tn \ Lf , then we can choose ϕ such that

�
(
eiϕfk(e

iθ)
)
> 0, k = 0, . . . , N − 1.

That is, the boundary of Lf is contained in the hyperplane arrangement consisting

of all θ such that two components of f̂(θ) are antipodal.

It has been conjectured that the number of connected components of the
complement of Cf is at most Vol(A).1 A proof in arbitrary dimension has been
proposed by Nisse in [13], and an independent proof in the case n = 2 was given
in [8]. That the number of connected components of the complement of Lf is at
most Vol(A) follows from the theory of Mellin–Barnes integral representations of
A-hypergeometric functions, see [2] and [3].

A finite set I ⊂ Tn which is in a bijective correspondence with the set of
connected components of the complement of Cf by inclusion, will be said to be an
index set of the coamoeba complement. This notation will be slightly abused; a
set I of cardinality Vol(A) will be said to be an index set of the coamoeba if each
connected component of its complement contains exactly one element of I.

The term “lopsided” was first used by Purbhoo in [15], denoting the corre-
sponding condition to (5) for amoebas: the polynomial f is said to be lopsided
at a point x ∈ Rn if there is a ak ∈ A such that the moduli |fk|(x) is greater
than the sum of the remaining modulis. As a comparison, note that the polyno-
mial f is colopsided at θ ∈ T if and only if the greatest intermediate angle of the

components of f̂(θ) is greater than the sum of the remaining intermediate angles.

1This conjecture has commonly been attributed to Mikael Passare, however, it seems to originate
from a talk given by Mounir Nisse at Stockholm University in 2007.
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3. Real points and the coameoba of the A-discriminant

We will say that f is real at θ, if there is a real subvector space � ⊂ C such that

f̂k(θ) ∈ � for all k = 0, . . . , N − 1. If such a θ exist then f is real, that is, after a
change of variables and multiplication with a Laurent monomial f ∈ RA∗ . In this

section, we will study the function f̂ from the viewpoint of real polynomials. Our
main result is the following characterization of the coamoeba of the A-discriminant
of a circuit.

Proposition 3.1. Let A be a nondegenerate circuit, and let δk be as in (3). Then,
Arg(f) ∈ CΔ if and only if after possibly multiplying f with a constant, there is a

θ ∈ Rn such that f̂k(θ) = δk for all k.

If A is a circuit and B is a Gale dual of A then the Horn–Kapranov parame-
trization of the reduced discriminant ΔB can be lifted to a parametrization of the
discriminant surface Δ as

z �→ (b0z
a0, . . . ,bN−1z

aN−1) .

Taking componentwise arguments, we obtain a simple proof Proposition 3.1. In
particular, the proposition can be interpreted as a coamoeba version of the Horn–
Kapranov parametrization valid for circuits. Our proof of Proposition 3.1 will be
more involved, however, for our purposes the lemmas contained in this section are
of equal importance.

Lemma 3.2. Assume that the polynomial f is real at θ0 ∈ Rn. Then, f is real at
θ ∈ Rn if and only if θ ∈ θ0 + πL, where L is the dual lattice of ZA.

Proof. After translating θ and multiplying f with a Laurent monomial, we can
assume that θ0 = 0, that �0 = R, and that f contains the monomial 1. That is, all
coefficients of f are real, in particular proving if -part of the statement. To show

the only if -part, notice first that f̂(θ) ⊂ � implies that � contains both the origin

and 1. That is, � = R. Furthermore, f̂(θ) ⊂ R only if for each a ∈ A there is a
k ∈ Z such that 〈a, θ〉 = πk, which concludes the proof. �

The A-discriminant Δ related to a circuit has been described in [9, Chp. 9,
Pro. 1.8] where the formula

Δ(f) =
∏
δk=1

bbk

k

∏
δk=−1

f−bk

k −
∏

δk=−1

b−bk

k

∏
δk=1

fbk

k (8)

was obtained. In particular, Δ is a binomial. As the zonotope ZB is a symmetric
interval of length 2πVol(A), the image of the map ordB(f) is of cardinality Vol(A)
unless

Argπ(f)B ≡ 2πVol(A) mod 2π. (9)

In particular, the complement of Cf has the maximal number of connected com-
ponents (i.e., Vol(A)-many) unless the equivalence (9) holds.
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Lemma 3.3. For each κ = 0, 1, . . . , n + 1, there are exactly Vol(Aκ)-many points
θ ∈ T such that

f̂k(θ) = δk, ∀ k �= κ. (10)

Proof. By applying an integer affine transformation, the statement follows from
the case when Aκ consist of the vertices of the standard simplex. �

Lemma 3.4. Fix κ ∈ {0, . . . , n+1}. For each θ fulfilling (10), let ϕθ ∈ T be defined
by the condition that if argπ(fκ) = ϕθ then

f̂κ(θ) = δκ. (11)

Assume that ZA = Zn. Then, the numbers ϕθ are distinct.

Proof. We can assume that a0 = 0 and that f0 = 1. Assume that ϕθ1 = ϕθ2 .
Then,

〈a, θ2〉 = 〈a, θ1〉+ 2πr, ∀a ∈ A.

By translating, we can assume that θ1 = 0, and hence, since 1 is a monomial of f ,
that all coefficients are real. Consider the lattice L consisting of all points θ ∈ Rn

such that f is real at θ. Since ZA = Zn, Lemma 3.2 shows that L = πZn. However,
we find that 〈

a,
θ2
2

〉
= πr,

and hence θ2
2 ∈ L. This implies that θ2 ∈ 2πZn, and hence θ2 = 0 in Tn. �

Proof of Proposition 3.1. Assume first that there is a θ as in the statement of the
proposition, where we can assume that θ = 0. Then, arg(fk) = arg(δk). It follows
that the monomials∏

δk=1

bbk

k

∏
δk=−1

f−bk

k and
∏

δk=−1

bbk

k

∏
δk=1

f−bk

k

have equal signs. Therefor, Δ vanishes for fk = δk|bk|, implying that Arg(f) ∈ CΔ.
For the converse, fix κ, and reduce f by requiring that fk = δk|bk| = bk for

k �= κ. Let I denote the set of points θ ∈ Tn such that f̂k(θ) = δk for k �= κ,
which by Lemma 3.3 has cardinality Vκ. By Lemma 3.4, the set I is in a bijective

correspondence with values of arg(fκ) such that f̂κ(θ) = δκ. Therefor, we find that
Δ vanishes at fκ = Vκe

iϕ for each ϕ ∈ I. However, the discriminant Δ specializes,
up to a constant, to the binomial

Δκ(fκ) = f |bκ|
κ − b|bκ|

κ = fVκ
κ − bVκ

κ ,

which has exactly Vκ-many solutions in C∗ of distinct arguments. Hence, since
Δ(f) = 0 by assumption, and comparing the number of solutions, it holds that

f̂κ(θ) = δκ for one of the points θ ∈ I. �
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4. The space of coamoebas

Let Uk ⊂ CA∗ denote the set of all f such that the number of connected components
of the complement of Cf is Vol(A) − k. Describing the sets Uk is known as the
problem of describing the space of coamoebas of CA∗ . In this section, we will give
explicit descriptions of the sets Uk in the case when A is a circuit. As a first
observation we note that the image of the map ordB(f) is at least of cardinality
Vol(A)− 1, implying that

CA
∗ = U0 ∪ U1,

and in particular Uk = ∅ for k ≥ 2. Hence, it suffices for us to give an explicit de-
scription of the set U1. Our main result is the following two theorems, highlighting
also the difference between vertex circuits and simplex circuits. Note that Δ is a
real polynomial [9].

Theorem 4.1. Assume that A is a nondegenerate simplex circuit, with an+1 as
an interior point. Choose B such that δn+1 = −1, and let Δ be as in (8). Then,
f ∈ U1 if and only if Arg(f) ∈ CΔ and

(−1)Vol(A) Δ
(
δ0|f0|, . . . , δn+1|fn+1|

)
≤ 0. (12)

Theorem 4.2. Assume that A is a vertex circuit. Then, f ∈ U1 if and only if
Arg(f) ∈ CΔ.

The article [18] describes the space of amoebas in the case when A is a simplex
circuit in dimension at least two. In this case, the number of connected components
of the amoeba complement is either equal to the number of vertices of NA or one
greater. One implication of [18, thm. 4.4 and thm. 5.4] is that, if the amoeba
complement has the minimal number of connected components, then

(−1)Vol(A) Δ
(
δ0|f0|, . . . , δn+1|fn+1|

)
≥ 0.

Furthermore, this set intersect U1 only in the discriminant locus Δ(f) = 0. The
space of amoebas in the case when A is a simplex circuit in dimension n = 1
has been studied in [19], and is a more delicate problem. On the other hand, if A
is a vertex circuit, then each f ∈ CA∗ is maximally sparse and hence has a solid
amoeba. That is, the components of the complement of the amoeba is in a bijective
correspondance with the vertices of the Newton polytope NA. In particular, the
number of connected components of the amoeba complement does not depend on
f . From Theorems 4.1 and 4.2 we see that a similar discrepancy between simplex
circuits and vertex circuits occurs for coamoebas.

Example 4.3. The reduced family

f(z) = 1 + z31 + z32 + ξ z1z2.

was considered in [16, ex. 6, p. 59], where the study of the space of amoebas was
initiated. We have drawn the space of amoebas and coamoebas jointly in the left
picture in Figure 2. The blue region, whose boundary is a hypocycloid, marks
values of ξ for which the amoeba complement has no bounded component. The
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set U1 is seen in orange. The red dots is the discriminant locus Δ(ξ) = 0, which is
contained in the circle |ξ| = 3 corresponding to an equality in (12).

Example 4.4. The reduced family

f(z) = 1 + z1 + z32 + ξ z31z2

is a vertex circuit. In this case, the topology of the amoeba does not depend on
the coefficient ξ. The space of coamoebas is drawn in the right picture in Figure 2.
The set U1 comprises the three orange lines emerging from the origin. The red dots
is the discriminant locus Δ(ξ) = 0. It might seem like the set U0 is disconnected,
however this a consequence of that we consider f in reduced form. In CA

∗ the set
U0 is connected, though not simply connected.

Figure 2. The amoeba and coamoeba spaces of Examples 4.3 and 4.4.

4.1. Proof of Theorem 4.1

Impose the assumptions of Theorem 4.1. Then,

b0 + · · ·+ bn = −bn+1 = Vol(A),

and in particular Vn+1 = Vol(A). By Lemma 3.3 there is a set I of cardinality

Vol(A) consisting of all points θ such that f̂0(θ) = · · · = f̂n(θ) = δk = 1 In

particular, f is colopsided at θ ∈ I unless f̂n+1(θ) = −1. It was shown in [7, sec.
5] that, if f �∈ CΔ, then I is an index set for the complement of Cf . In fact, I is

an index set of the complement of Cf for arbitrary f .

Proposition 4.5. Let A be a simplex circuit. Assume that Arg(f) ∈ CΔ, i.e., that
there exists a θ ∈ I with f̂n+1(θ) = δn+1. Then, the complement of Cf has Vol(A)-
many connected components if and only if it contains θ.

Proof. We can assume that θ = 0. To prove the if -part, assume that 0 ∈ Θ for
some connected component Θ of the complement of Cf . We wish to show that f

is never colopsided in Θ, for this implies that the complement of Cf has Vol(A)-
many connected components. Assume to the contrary that there exist a point

θ̂ ∈ Θ such that f is colopsided at θ̂. Then, ordB(f)(θ̂) = mπ for some integer m,
with |m| < Vol(A), see (7). Let f ε = (f0, . . . , fn, fn+1e

iε). Then fε is colopsided
at 0 for ε /∈ 2πZ. By continuity of roots, for ε > 0 sufficiently small, the points 0
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and θ̂ are contained in the same connected component of the complement of C(fε).
Hence, by [7, pro. 3.9], they are contained in the same connected component of
the complement of L(fε). However,

ordB(f
ε)(0) = Vol(A)(π − ε) �= m(π − ε) = ordB(f

ε)(θ̂),

contradicting that ordB(f
ε) is constant on connected components of the comple-

ment of L(f ε).
To prove the only if -part, assume that there exists a connected component

Θ of the complement of Cf in which f is never colopsided. We wish to prove that

0 ∈ Θ. As f ε is colopsided at 0 for ε > 0 sufficiently small, we find that 0 ∈ Θ.
Indeed, if this was not the case, then the complement of C(fε) has (Vol(A) + 1)-
many connected components, a contradiction. As 0 �∈ Hf , and by [7, lem. 2.3],
there exists a disc D0 around 0 such that

D0 ∩ (Tn \ Cf ) = D0 ∩Θ.

Furthermore, D0 ∩Θ �= ∅, since 0 ∈ Θ. Let θ ∈ D0 ∩Θ. As f is a real polynomial,
conjugation yields that −θ ∈ D0 ∩Θ. However, Θ ⊂ Rn is convex, implying that
0 ∈ Θ. �

Proof of Theorem 4.1. If Arg(f) �∈ CΔ then the image of ordB(f) is of cardinality
Vol(A), and hence f ∈ U0. Thus, we only need to consider Arg(f) ∈ CΔ, where
we can assume that f̂(0) = δk for all k. In particular, f is a real polynomial. By
Proposition 4.5, it holds that the complement of Cf has Vol(A)-many connected
components if and only if it contains 0. Keeping f0, . . . , fn and arg(fn+1) fixed,
let us consider f as a function of |fn+1|. As f is a real polynomial, it restricts to a
map f : Rn

≥0 → R, whose image depends nontrivially on |fn+1|. Notice that 0 ∈ Cf

if and only if f(Rn
≥0) contains the origin. Since f̂k(0) = δk = 1 for k �= n+ 1, and

since an+1 is an interior point of A, the map f takes the boundary of Rn
≥0 to [1,∞).

In particular, if 0 ∈ f(Rn
≥0), then 0 ∈ f(Rn

+). The boundary of the set of all |fn+1|
for which 0 ∈ f(Rn

≥0) is the set of all values of |fn+1| for which f(Rn
+) = [0,∞).

Furthermore, f(Rn
+) = [0,∞) holds if and only if there exists an r ∈ Rn

+ such that
f(r) = 0, while f(r) ≥ 0 in a neighborhood of r, implying that r is a critical point
of f . That is,

Δ
(
δ1|f1|, . . . , δn+1|fn+1|

)
= 0.

Since Δ is a binomial, there is exactly one such value of |fn+1|. Finally, we note
that 0 ∈ Cf if |fn+1| → ∞, which finishes the proof. �

4.2. Proof of Theorem 4.2

If Arg(f) �∈ CΔ, then the image of ordB(f) is of cardinality Vol(A) and hence

f ∈ U0. Assume that Arg(f) ∈ CΔ, and that f̂k(0) = δk for all k. It holds that
0 ∈ Hf since there exists two adjacent vertices a0 and a1 of A such that δ0 = 1
and δ1 = −1. Let,

H = {θ | 〈a0 − a1, θ〉 = 0}
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be the hyperplane of Hf containing 0. Assume that exists connected component

Θ of the complement of Cf in which f is nowhere colopsided. As in the proof

of Proposition 4.5, we conclude that 0 ∈ Θ, for otherwise we could construct a
coamoeba with (Vol(A) + 1)-many connected components of its complement. As
H ⊂ Cf , we find that Θ is contained in one of the half-spaces

H± = {θ | ± 〈a0 − a1, θ〉 > 0},

say that Θ ⊂ H+. Let fε = (f0e
iε, f1, . . . , fn+1), and let Hε denote the corre-

sponding hyperplane

Hε = {θ | 〈a0 − a1, θ〉 = −ε}.
For |ε| sufficiently small, continuity of roots implies that there is a connected
component Θε ⊂ Hε

+ in which fε is never colopsided. However, by choosing the

sign of ε, we can force 0 ∈ Hε
−. This implies that the coamoeba Cfε has (Vol(A)+1)-

many connected components of its complement, a contradiction.

5. The maximal area of planar circuit coamoebas

In this section, we will prove the following bound.

Theorem 5.1. Let A be a planar circuit, and let f ∈ CA∗ . Then Area(Cf ) ≤ 2π2.

Furthermore, we provide the following classification of for which circuits the
bound of Theorem 5.1 is sharp.

Theorem 5.2. Let A be a planar circuit. Then there exist a polynomial f ∈ CA
∗

such that Area(Cf ) = 2π2 if and only if A admits an equimodular triangulation.

Example 5.3. Let f(z) = 1 + z1 + z2 − rz1z2 for r ∈ R+. Notice that A admits
a unimodular triangulation. The shell Hf consist of the families θ1 = k1π and
θ2 = k2π for k1, k2 ∈ Z. Hence, the shell Hf divides T2 into four regions of equal
area. Exactly two of these regions are contained in the coamoeba, which implies
that Area(Cf ) = 2π2. See the left picture of Figure 3.

Example 5.4. Let f(z) = 1 + zw2 + z2w − rzw for r ∈ R+. Also in this case A
admits a unimodular triangulation. Notice that Arg(f) ∈ CΔ. The coamoeba of the
trinomial g(z) = 1+ zw2+ z2w has three components of its complement, of which
f is colopsided in two. We have that Hf = Hg. Thus, if the complement of Cf has
two connected components, i.e., if r ≥ 3, then one of the three components of the
complement of Cg is contained in Cf , which in turn implies that Area(Cf ) = 2π2.
See the right picture of Figure 3.

Let us compare our results to the corresponding results of planar circuit
amoebas. It was shown in [16, Thm. 12, p. 30] that the sharp upper bound on
the number of connected components of the amoeba complement is #A. In [12], a
bound on the area of the amoeba was given as π2 Vol(A), and it was shown that
maximal area was obtained for Harnack curves. For coamoebas, to roles of the
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Figure 3. The coamoebas of Examples 5.3 and 5.4.

integers Vol(A) and #A are reversed. The upper bound on the number of connected
components of the coamoeba complement is given by Vol(A). While, at least for
codimension m ≤ 1, the maximal area of the coameoba is π2(m+1) = π2(#A−n).
Note also that the coamoebas of Examples 5.3 and 5.4 are both coamoebas of
Harnack curves.

Consider a bivariate trinomial f , with one marked monomial. Let Σ = Σ(f)
denote the quadruple of polynomials obtained by flipping signs of the unmarked
monomials. Furthermore, let

HΣ =
⋃
g∈Σ

Hg,

which is a hyperplane arrangement in R2 (or T2). Let PΣ denote the set of all
intersection points of distinct hyperplanes in HΣ.

Proposition 5.5. Let f(z) be a bivariate trinomial. Then, the union

CΣ =
⋃
g∈Σ

Cg,

covers R2. To be specific, PΣ is covered thrice, HΣ \ PΣ is covered twice, and
R2 \ HΣ is covered once.

Proof. After applying an integer affine transformations, we reduce to the case when
A consist of the vertices of the standard simplex. This case that follows from the
description in [7] and [14], see also Figure 1. �
Corollary 5.6. If f(z) is a bivariate trinomial, then Area(Cf ) = π2.

Proof. The coamoebas appearing in the union CΣ, when considered in R2, are
merely translations of each other. Hence, they have equal area. As they cover the
torus once a.e., and Area(T2) = 4π2, the result follows. �

Notice that a bivariate trinomial is not supported on a circuit, but on the ver-
tex set of a simplex. Let fk̂ denote the image of f under the projection prk : C

A
∗ →

CAk∗ . As shown in [7] the family of trinomials fk̂, k = 1, . . . , 4, contains all necessary
information about the lopsided coamoeba Lf .

Lemma 5.7. Let A be a planar circuit, and let f ∈ CA
∗ . Assume that θ ∈ T is

generic in the sense that no two components of f̂(θ) are antipodal, and assume
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furthermore that f is not colopsided at θ. Then, exactly two of the trinomials
f1̂, . . . , f4̂ are colopsided at θ.

Proof. Fix an arbitrary point a1 ∈ A, and let � ⊂ C denote the real subvector space

containing f̂1(θ). As f is not colopsided at θ, both half-spaces relative � contains

at least one component of f̂(θ). There is no restriction to assume that the upper

half-space contains the two components f̂2(θ) and f̂3(θ), and that the latter is of

greatest angular distance from f̂1(θ). Then, f4̂ is colopsided at θ. Furthermore, we
find that f2̂ is not colopsided at θ, for if it where then so would f . As a1 ∈ A4 and
a1 ∈ A2, there is at least one trinomial obtained from f containing a1 which is
not colopsided at θ, and at least one which is colopsided at θ. As a1 was arbitrary,
it follows that exactly two of the trinomials f1̂, . . . , f4̂ are colopsided at θ, and
exactly two are not. �

Proof of Theorem 5.1. By containment, it holds that Area(Cf ) ≤ Area(Lf ), and
thus it suffices to calculate the area of Lf . By [7, Prop. 3.4], we have that

Lf =

4⋃
k=1

Cfk̂ . (13)

For a generic point θ ∈ Lf , Lemma 5.7 gives that θ (and, in fact, a small neigh-
borhood of θ) is contained in the interior of exactly two out of the four coamoebas
in the right-hand side of (13). Hence,

Area(Lf ) =
1

2

(
Area(Cf1̂) + · · ·+Area(Cf4̂)

)
= 2π2. �

Proof of Theorem 5.2. To prove the if part, we will prove that A admits an equi-
modular triangulation only if, after applying an integer affine transformation, it is
equal to the point configuration of either Example 5.3 or Example 5.4. Assume that
a1, a2, and a3 are vertices of NA. After applying an integer affine transformation,
we can assume that a1 = k1e1, that a2 = k2e2 with k1 ≥ k2, and that a3 = 0.
Notice that such a transformation rescales A, though it does not affect the area of
the coamoeba Cf [7]. Let a4 = m1e1 +m2e2.

If A is a vertex circuit, then each triangulation of A consist of two simplices,
which are of equal area by assumption. Comparing the areas of the subsimplices
of A, we obtain the relations

|k1k2 − k1m2 − k2m1| = k1k2 and k1m2 = k2m1.

In m, this system has (k1, k2) as the only nontrivial solution, and we conclude that
A is the unit square, up to integer affine transformations.

If A is a simplex circuit, then A has one triangulation with three simplices
of equal area. Comparing areas, we obtain the relations

3k1m2 = 3k2m1 = k1k2.

Thus, 3m1 = k1 and 3m2 = k2, and we conclude that A is the simplex from
Example 5.4, up to integer affine transformations.
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To prove the only if -statement, consider f ∈ CA
∗ . Let S = {a1, a2} ⊂ A be

such that the line segment [a1, a2] is interior to NA. Applying an integer affine
transformation, we can assume that [a1, a2] ⊂ Re1, and that a3 and a4 lies in the
upper and lower half-space respectively. Then, the hyperplane arrangement CfS ⊂
T consist of Length[a1, a2]-many lines, each parallel to the θ2-axis. If a3 = m31e1+

m32e2 and a4 = m41e1 +m42e2, then f̂3(θ) and f̂4(θ) takes m32 respectively m42

turns around the origin when θ traverses once a line of CfS . Notice that CfS ⊂ Lf ,

as f̂1(θ) and f̂2(θ) are antipodal for θ ∈ CfS . That is, for such θ, f̂S(θ) is contained
in a real subvector space �θ ⊂ C.

Assume that f is colopsided for some θ ∈ CfS , so that in particular θ �∈ Cf .
If θ ∈ Hf , then at exactly one of the points f̂3(θ) and f̂4(θ) is contained in �θ,
for otherwise f would not be colopsided at θ. By wiggling θ in CfS we can assume

that θ �∈ Hf . Under this assumption, we find that θ /∈ C(f). Thus, there is a

neighborhood Nθ which is separated from Cf . As θ ∈ Lf , the intersection Nθ ∩Lf

has positive area, implying that Area(Cf ) < Area(Lf ).

Thus, if f is such that Area(Cf ) = 2π2, then f can never be colopsided in

CfS . In particular, for θ ∈ CfS such that f̂3(θ) ∈ �, it must hold f̂4(θ) ∈ �, and vice
versa. As there are 2m32 points of the first kind, and 2m42 points of the second
kind, it holds that m32 = m42. Hence, the simplices with vertices {a1, a2, a3} and
{a1, a2, a4} have equal area.

If A is a vertex circuit, this suffices in order to conclude that A admits an
equimodular triangulation. If A is a simplex circuit, then we can assume that a1
is an interior point of NA. Repeating the argument for either S = {a1, a3} or
S = {a1, a4} yields that A has a triangulation with three triangles of equal area.
That is, it admits an equimodular triangulation. �

6. Critical points

Let C(f) denote the critical points of f , that is, the variety defined by (2). Let I =
Arg(C(f)) denote the coamoeba of C(f). We will say that I is the set of critical
arguments of f . In this section we will prove that, under certain assumptions on
A, the set I is an index set of the coamoeba complement. That it is necessary to
impose assumptions onA is related to the fact that an integer affine transformation
acts nontrivially on the set of critical points C(f).

Let A be a circuit, with the elements a ∈ A ordered so that it has a Gale dual
B = (B1, B2)

t such that B1 ∈ Rm1+1
+ and that B2 ∈ Rm2+1

− . That is, B1 has only
positive entries, while B2 has only negative entries. We have that m1 +m2 = n.
Let A = (A1, A2) denote the corresponding decomposition of the matrix A. We
will say that A is in orthogonal form if

A =

⎛⎝ 1 1

Ã1 0

0 Ã2

⎞⎠ , (14)
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where Ã1 is an m1 × (m1 + 1)-matrix and Ã2 is an m2 × (m2 + 1)-matrix. In
particular, the Newton polytopes NA1 and NA2 has 0 as a relatively interior point,
and as their only intersection point.

With A in the form (14), we can act by integer affine transformations affecting

Ã1 and Ã2 separately. Therefor, if A is in orthogonal form, then we can assume
that

Ãk = (−p1e1, . . . ,−pmk
emk

, amk+1), (15)

where p1, . . . , pmk
are positive integers, and hence amk+1 has only positive coor-

dinates. We will say that A is in special orthogonal form if (15) holds. The main
result of this section is the following lemma and theorem.

Lemma 6.1. Each circuit A can be put in (special) orthogonal form by applying an
integer affine transformation.

Theorem 6.2. Let A be a circuit in special orthogonal form. Then, for each f ∈ CA
∗ ,

the set of critical arguments is an index set of the complement of Cf .

The conditions of Theorem 6.2 can be relaxed in small dimensions. When
n = 1, it is enough to require that 0 is an interior point of NA. When n = 2, for
generic f , it is enough to require that each quadrant Q fulfills that Q \ {0} has
nonempty intersection with A.

Proof of Lemma 6.1. Let u1, . . . ,um2 be a basis for the left kernel ker(A1), and let
v1, . . . ,vm1 be a basis for the left kernel ker(A2). Multiplying A from the left by

T =
(
e1,v1, . . . ,vm1 ,u1, . . . ,um2

)t
,

it takes the desired form. We need only to show that det(T ) �= 0.
Notice that ker(A1)∩ker(A2) = 0, since A is assumed to be of full dimension.

Assume that there is a linear combination

λ0e1 +

m1∑
i=1

λivi +

m2∑
j=1

λjuj = 0.

Then, since B is a Gale dual of A,

0 =

⎛⎝m2∑
j=1

λjuj

⎞⎠AB = (0, . . . , 0,−λ0, . . . ,−λ0)B = −λ0

∑
a∈A2

ba = λ0 Vol(A),

and hence λ0 = 0. This implies that
∑m1

i=1 λivi ∈ ker(A2), and hence
∑m1

i=1 λivi =
0. Thus, λi = 0 for all i by linear independence of the vectors v. Then, linear
independence of the vectors uj imply that λj = 0. �

Proof of Theorem 6.2. We find that

zi∂if(z) = −pifiz
ai + 〈amk

, ei〉fm1z
am1 , i = 0, . . . ,m1

zj∂jf(z) = −pjfiz
aj + 〈an+1, ej〉fn+1z

an+1, j = m1 + 1, . . . , n.
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Hence, for each θ ∈ I, it holds that

f̂0(θ) = · · · = f̂m1(θ) and f̂m1+1(θ) = · · · = f̂n+1(θ). (16)

In particular, f is colopsided at θ unless, after a rotation, f̂k(θ) = δk for all k. In
the latter case, we refer to Theorems 4.1 and 4.2.

To see that the points θ ∈ I for which f is colopsided at θ are contained in
distinct connected components of the complement of Lf , consider a line segment
� in Rn with endpoints in I. Then, not all identities of (16) can hold identically
along �. Since the argument of each monomial is linear in θ, this implies that for
a pair such that the identity in (16) does not hold identically along �, there is an
intermediate point θ ∈ � for which the corresponding monomials are antipodal,
and hence θ ∈ Lf . �

7. On systems supported on a circuit

In this section we will consider a system

F1(z) = F2(z) = 0 (17)

of two bivariate polynomials. We will write f(z) = 0 for the system (17). The
system is said to be generic if it has finitely many roots in C2

∗, and it is said to
be supported on a circuit A if the supports of F1 and F2 are contained in, but
not necessarily equal to, A. That is, we allow coefficients in C rather than C∗.
By the Bernstein–Kushnirenko theorem, a generic system f(z) = 0 has at most
Vol(A)-many roots in C2

∗. However, if f is real, then fewnomial theory states that
a generic system f(z) has at most three roots in R2

+ = Arg−1(0). We will solve the
complexified fewnomial problem, i.e., for f(z) with complex coefficients we will
bound the number of roots in each sector Arg−1(θ). Our intention is to offer a new
approach to fewnomial theory. We will restrict to the case of simplex circuits, for
the following two reasons. Firstly, it allows for a simpler exposition. Secondly, for
vertex circuits our method recovers the known (sharp) bound, while for simplex
circuits we obtain a sharpening of the fewnomial bound.

Theorem 7.1. Let f(z) = 0 be a generic system of two bivariate polynomials sup-
ported on a planar simplex circuit A ⊂ Z2. Then, each sector Arg−1(θ) contains
at most two solutions of f(z) = 0.

7.1. Reducing f(z) to a system of trinomials

A generic system f(z) is, by taking appropriate linear combinations, equivalent to
a system of two trinomials whose support intersect in a dupleton. That is, we can
assume that f(z) is in the form{

F1(z) = f1z
a0 + za2 + f2z

a3 = 0
F2(z) = f3z

a1 + za2 + f4z
a3 = 0,

(18)
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with coefficients in C∗. We will use the notation

A =

(
1 1 1 1
a0 a1 a2 a3

)
and Â =

⎛⎝ 1 0
0 1
A1 A2

⎞⎠ ,

where Ak denotes the support of Fk (notice that this differs from the notation
used in previous sections). Notice that we can identify a system f(z) in the form

(18) with its corresponding vector in CÂ
∗ .

When reducing f(z) to the form (18) by taking linear combinations, there is
a choice of which monomials to eliminate in F1 and F2 respectively. In order for
the arguments of the roots of f(z) = 0 to depend continuously on the coefficients,
we need to be careful with which choice to make.

Lemma 7.2. Let � denote the line through a2 and a3, and let γ be a compact path

in CÂ
∗ . If � intersect the interior of NA, then the arguments of the solutions to

f(z) = 0 vary continuously along γ.

Proof. It is enough to show that along a compact path γ, the set⋃
f∈γ

Af =
⋃
f∈γ

Log(Z(f)) (19)

is bounded, for it implies that for f ∈ γ, the roots of f are uniformly separated

from the boundary of CÂ∗ .
We first claim that our assumptions imply that the normal fans of NA1 and

NA2 has no coinciding one-dimensional cones. Indeed, these fans has a coinciding
one-dimensional cone if and only if the Newton polytopes NA1 and NA2 has facets
Γ1 and Γ2 with a common outward normal vector n. As A is a circuit, it holds
that Γ1 = Γ2 = [a2, a3] ⊂ �. Since the normal vector n is common for NA1 and
NA2 , we find that Γ1 (and Γ2) is a facet of NA. But then � contains a facet of NA,
and hence it cannot intersect the interior of NA, a contradiction.

Consider a point f ∈ CA∗ . Since the normal fans NA1 and NA2 has no co-
inciding one-dimensional cones, the intersection of the amoebas AF1 and AF2 is
bounded (this follows, e.g., from the fact the amoeba has finite Hausdorff distance
from the Archimedean tropical variety, see [1]). Thus, the amoeba Af is bounded,
say that Af ⊂ D(Rf ) where D(Rf ) denotes the disk of radii Rf centered around

the origin. By continuity of roots, Af̃ ⊂ D(Rf ) for all f̃ in some neighborhood Nf

of f . The compactness of γ implies our result. �
In order for the assumptions of Lemma 7.2 to be fulfilled, for a simplex circuit

A, we need that a0 and a1 are vertices of N (A), see Figure 4.

Proposition 7.3. If f is nonreal at θ, then there is at most one zero of f(z) = 0
contained in the sector Arg−1(θ).

Proof. If Fk is nonreal, then the fiber in Z(Fk) over a point θ ∈ CFk
is a singleton.

Hence, if the number of roots of f(z) = 0 in Arg−1(θ) is greater than one, then
both F1 and F2 are real at θ. �
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Figure 4. The Newton polytopes NA, NA1 , and NA2 .

The implication of Proposition 7.3 is that the complexified fewnomial problem
reduces to the real fewnomial problem. However, our approach is dependent on
allowing coefficients to be nonreal. In fact, we will consider a partially complexified
problem, allowing f1, f3 ∈ C∗ but requiring f2, f4 ∈ R∗.

7.2. Colopsidedness

We define the colopsided coamoeba of the system f(z) by

Lf = LF1 ∩ LF2 = CF1 ∩ CF2 ,

where the last equality follows from [7, cor. 3.3]. That is, f is said to be colopsided
at θ if either F1 or F2 is colopsided at θ. We will say that f is real at θ if both F1

and F2 are real at θ.

The lopsided coamoeba Lf consist of a number of polygons on T2, possibly
degenerated to singletons. The following two lemmas will allow us to count the
number of such polygons.

Lemma 7.4. Assume that f is nonreal. Let g be a binomial constructed by choosing
two monomials from (18), possibly alternating signs. If f2 and f4 are of opposite
signs, then Cg ⊂ T2 \Lf . If f2 and f4 are of equal signs, then Cg ⊂ T2 \Lf except
for g(z) = ±(f1z

a0 − f3z
a1).

Proof. If, for θ ∈ T2, two components of F̂1(θ) is contained in a real subvector

space � ⊂ C, then either F1 is colopsided at θ or F̂1(θ) ⊂ �. However, the latter

implies that two components of F̂2(θ) are contained in �. Repeating the argument
yields that either f is real, or it is colopsided at θ.

Thus, the only binomials we need to consider is g±(z) = f1z
a0 ± f3z

a1. For

each θ ∈ Cg+ the vectors F̂1(θ) and F̂2(θ) differ in sign in their first component,
and hence at least one is colopsided at θ, unless f is real. For each θ ∈ Cg− , the
vectors F̂1(θ) and F̂2(θ) differ in signs in the the last component only if f2 and f4
differ in signs. If this is the case, then at least one is colopsided at θ unless f is
real. �

Lemma 7.5. Let θ ∈ Cg1∩Cg2 for truncated binomials g1 and g2 of F1 and F2 respec-
tively. If the Newton polytopes (i.e., line segments) of g1 and g2 are nonparallel,
then θ ∈ Lf .
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Proof. If F1 and F2 are both real at θ, then θ ∈ Lf . If F1 is nonreal at θ, then for
a sufficiently small neighborhood Nθ ⊂ R2, it holds that

CF1 ∩Nθ = {ϕ | 〈ϕ,n〉 > 〈θ,n〉} ∩Nθ,

where n is a normal vector of N (g1). Since connected components of the comple-
ment of CF2 are convex, either CF2 intersect CF1 in Nθ, or the boundary of CF2 is
contained in the line � = {ϕ | 〈ϕ,n〉 = 〈θ,n〉}. As the boundary of CF2 contains Cg2 ,
it holds in the latter case that Cg2 ⊂ �, which in turn implies that n is a normal vec-
tor of N (g2), contradicting our assumptions. We conclude that CF2 ∩CF1 ∩Nθ �= ∅.
Since this holds for any sufficiently small neighborhood Nθ, the result follows. �
Example 7.6. Consider the system

f(z) =

{
f1z1z

2
2 + 1 + f2z1z2

f3z
2
1z2 + 1 + f4z1z2.

We have that Vol(A) = 3. Hence H divides T2 into three cells. The lopsided
coamoeba Lf , and the hyperplane arrangement H , can be seen in Figure 5. In the
first two picture, the generic respectively real situation when f2 and f4 differs in
signs. In last two pictures, the generic respectively real situation when f2 and f4
have equal signs. In the generic case, the lopsided coamoeba Lf consist of three
polygons. When deforming from the generic to the real case, we observe the follow-
ing behavior. Some polygons of Lf deform into single points – by necessity points
contained in the lattice P . Some pairs of polytopes of Lf deforms to nonconvex
polygons, typically with a single intersection point. Our proof of Theorem 7.1 is
based on the observation that, when deforming from a generic to a real system, at
most two polytopes of LF deforms a nonconvex polygon intersecting H .

Figure 5. The lopsided coamoebas from Example 7.6.

7.3. Proof of Theorem 7.1

Let us consider the auxiliary binomials

g1(z) = f1z
a0 − za2 , g2(z)= f3z

a1 − za2,

h1(z) = f1z
a0 + za2 , and h2(z)= f3z

a1 + za2.

The vectors a2 − a0 and a2 − a1 span the simplex NA, hence the hyperplane
arrangement H = Cg1 ∪ Cg2 divides T2 into Vol(A)-many parallelograms with the
points P = Ch1 ∩ Ch2 as their centers of mass.

If f is nonreal, then Lemma 7.4 shows that H ⊂ T2 \ Lf , and Lemma 7.5

shows that P ⊂ Lf . By Lemma 7.2 we find that Lf has at most Vol(A)-many
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connected components. Hence, Lf has at exactly one connected component in
each of the cells of H , and the number of roots of f(z) = 0 projected by the
argument map into each such component is exactly one.

Consider now the real case when f2 and f4 differs in signs. Then, at least one
of F1 and F2 are colopsided at the intersection points Cg1 ∩Cg2 . Thus, if Arg−1(θ)
contains a root of f(z) = 0, then a sufficiently small neighborhood Nθ intersect at
most two of the cells of the hyperplane arrangement H . Hence, using Lemma 7.2
and wiggling the arguments of coefficients of f by ε, Nθ intersect at most two of
the polygons of Lfε . Hence, there can be at most two roots contained in Arg−1(θ).

Consider now the case when f real with f2 and f4 of equal signs. In this
case, a point θ ∈ Cg1 ∩Cg2 can be contained in Lf . See the left picture of Figure 6,
where the hyperplane arrangement H is given in black, and the shells HF1 and
HF2 are given in red and blue respectively, with indicated orientation. Wiggling
the arguments of coefficient f1 and/or f3 by ε, we claim the we obtain a situation
as in the right picture of Figure 6. That is, at most two polygons of Lfε will
intersect a small neighborhood Nθ of θ. Let us prove this last claim.

Let f be generic, with f2 and f4 real and of equal signs. The hyperplanes Cg1
and Cg2 (locally) divides the plane into four regions. We can assume that a2 = 0.

Then, Cg1 consist of all θ such that f̂1(θ) = 1, and Cg1 consist of all θ such that

f̂3(θ) = 1. Thus, locally, the cells ofH can be indexed by the signs of the imaginary

parts of f̂1(θ) and f̂3(θ). Assume that θ̃ ∈ Lf ∩ Nθ. Then neither F1 nor F2 is

colopsided at θ̃. Observe that f̂2(θ̃) = f̂4(θ̃), since f2 and f4 has equal sign. We
find that

sgn('(f̂1(θ̃))) = − sgn('(f̂2(θ̃))) = − sgn('(f̂4(θ̃))) = sgn('(f̂4(θ̃))),
where the first and the last equality holds since neither F1 nor F2 is colopsided at
θ̃. This implies that polygons of Lf intersecting a small neighbourhood of θ are
necessarily contained in the cells of H which corresponds to that the imaginary

parts of f̂1(θ̃) and f̂4(θ̃) have equal signs. As there are two such cells, we find that
there are at most two polygons of Lf intersecting a small neighbourhood of θ.

Figure 6. To the left: the coamoeba Lf close to a point of Cg1 ∩ Cg2
when f2 and f4 have equal in signs and f1 and f3 are real. To the right:
the same picture after wiggling the argument of f1 or f3.
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1994.

[10] Jung, K. and van Straten, D., Arctic Computation of Monodromy, Report No.
40/2006, Workshop Komplexe Analysis, Oberwolfach (2006).

[11] Mikhalkin, G., Amoebas of half-dimensional varieties, Analysis Meets Geometry:
A Tribute to Mikael Passare, 349–359, Trends Math., Springer Basel, 2017.
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[17] Sturmfels, B., Gröbner bases and convex polytopes, University Lecture Series, 8,

American Mathematical Society, Providence, RI, 1996.
[18] Theobald, T. and de Wolff, T., Amoebas of genus at most one, Adv. Math., 239

(2013), 190–213.
[19] Theobald, T. and de Wolff, T., Norms of Roots of Trinomials, Math. Ann. 366

(2016), no. 1–2, 219–247.
[20] Ziegler, G.M., Lectures on polytopes, Graduate Texts in Mathematics, 152,

Springer-Verlag, New York, 1995.

Jens Forsg̊ard
Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
e-mail: jensf@math.tamu.edu

mailto:jensf@math.tamu.edu

	Coamoebas of Polynomials Supported on Circuits
	1. Introduction
	2. Coamoebas and lopsidedness
	3. Real points and the coameoba of the A-discriminant
	4. The space of coamoebas
	4.1. Proof of Theorem 4.1
	4.2. Proof of Theorem 4.2

	5. The maximal area of planar circuit coamoebas
	6. Critical points
	7. On systems supported on a circuit
	7.1. Reducing f(z) to a system of trinomials
	7.2. Colopsidedness
	7.3. Proof of Theorem 7.1

	References


