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Preface

Dear Reader,

This volume is dedicated to the life and work of Mikael Passare, who un-
expectedly passed away in September 2011 at the age of 52. It will give you a
chance to study several texts that are inspired by his mathematical interests –
either directly so, or in a more indirect way. One chapter is even coauthored by
Mikael.

We are indeed happy that so many outstanding scientists have answered our
call to contribute a chapter to the book.

Before arriving to these mathematical chapters, you can get an idea about
Mikael’s life and his far-reaching research, which spans from analysis in several
complex variables and complex geometry to amoebas and tropical geometry.

We hope that you will enjoy getting acquainted with the ideas of a great
mathematician and a great human being.

Mats Andersson Jan Boman Christer Kiselman

Pavel Kurasov Ragnar Sigurdsson



Mikael Passare 1959–2011



Part I

Memorial Contributions

This part collects several articles describing Mikael Passare, as a mathematician
and as a great personality. It contains also Mikael’s Curriculum Vitae, a list of his
publications and the list of all 152 countries that Mikael managed to visit.
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Mikael Passare

Curriculum Vitae

1959-01-01. Kjell Alrik Mikael Pettersson is born in Väster̊as, Sweden. Mother:
Britt Gunvor Emilia Pettersson, later with the family name Elfström. Father:
Werner Siems. Stepfathers: Kjell Pettersson and Hans Elfström.

1976-09. Mikael starts his studies at Uppsala University.

1978-06-09. Mikael finishes high school, Rudbeckianska skolan in Väster̊as. In ad-
dition to English and French, he has studied Russian during three years in
that school. He receives the highest possible marks in all subjects except
gymnastics.

1979-06 through 1980-08. Military service at the National Defence Radio Estab-
lishment (FRA), where he learns even more Russian.

1979-12-03. Mikael receives a diploma for a Bachelor Degree.

1980-02-14. Mikael is accepted as a graduate student at Uppsala University.

Academic year 1980–81. Mikael studies at Stanford University, Palo Alto.

Academic year 1981–82. Mikael studies at Lomonosov University, Moscow. He is
supported by a scholarship from the Swedish Institute.

1982-04-06. Mikael Pettersson and Galina Lep�xkina (Galina Lepjosjkina)
marry in Moscow.

1984, Fall Term, through 1986, Spring Term. Mikael holds the Lundström–Åman
scholarship for two academic years.

1984-12-15. Mikael Pettersson defends his doctoral thesis at Uppsala University.
Opponent: Nils Øvrelid. The members of the grading committee are Jan-Erik
Björk, Lennart Carleson, and Björn Engquist.

1984-12-18. The family name Passare is approved for Kjell Alrik Mikael Pettersson
and Galina Pettersson, née Lepjosjkina.

1985–1986. Lecturer at Stockholm University.

1985–1986, 1987–1990. Research Assistant at Stockholm University.

1985-12-15. Max Petter Passare, Galina’s and Mikael’s son, is born.



4 Mikael Passare: Curriculum Vitae

Academic year 1986–87. Mikael is at Université Pierre-et-Marie-Curie (Paris VI)
and Université de Paris-Sud (Paris IX), having received a post-doctoral fel-
lowship from the Swedish Natural Science Research Council (NFR).

1988. Mikael receives the title of Docent.

1988. Mikael is awarded the Marcus and Marianne Wallenberg scholarship.

1990–1994. Research Lecturer at the Royal Institute of Technology, Stockholm.

1991. The Royal Society of Sciences, Uppsala, awards the Lilly and Sven Thuréus
Prize to Mikael.

1991-08-19. Märta Sofia Passare, Galina’s and Mikael’s daughter, is born.

Academic year 1992–93. Mikael receives an Alexander von Humboldt fellowship
and spends the year at Humboldt-Universität zu Berlin.

1994-10-01. Mikael starts as Professor at Stockholm University. His chair is the
one that was created for Sonja Kovalevsky and held by his mathematical
grandfather Lars Hörmander.

1997-03. The first Nordan Conference takes place in Trosa at the initiative of
Mikael Passare and Peter Ebenfelt.

2000-01-15. Mikael organizes a symposium at Stockholm University to celebrate
the 150th anniversary of Sonja Kovalevsky.

2001. Mikael receives the Göran Gustafsson Prize.

2011-09-15. Mikael dies in Oman.

2011-10-28. Mikael’s funeral in Norra begravningsplatsen north of Stockholm. Cel-
ebrant: Noomi Arvas Liljefors. He is buried in a grave with the address Block
21A, number 187, not far from Sonja Kovalevsky’s.
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Mikael Passare’s Publications

1984. Pettersson,1 Mikael. Residues, Currents, and Their Relation to Ideals of
Holomorphic Currents. Uppsala: Uppsala University, Department of Mathe-
matics. Report No. 10, November 1984, 94 pp. (PhD Thesis defended on 1984
December 15. Opponent: Nils Øvrelid.)

1985. Passare, Mikael. Produits des courants résiduels et règle de Leibniz. C. R.
Acad. Sci. Paris Sér. I Math. 301, no. 15, 727–730.

1986. Passare, Mikael. Ideals of holomorphic functions defined by residue cur-
rents. Complex analysis and applications ’85 (Varna, 1985), pp. 511–514.
Publ. House Bulgar. Acad. Sci., Sofia.

1987. Passare, Mikael. Courants méromorphes et égalité de la valeur principale et
de la partie finie. Séminaire d’Analyse P. Lelong – P. Dolbeault – H. Skoda,
Années 1985/1986, pp. 157–166. Lecture Notes in Math. 1295. Berlin et al.:
Springer-Verlag. (Reviewed2 by Salomon Ofman.)

1988a. Andersson, Mats; Passare, Mikael. A shortcut to weighted representation
formulas for holomorphic functions. Ark. mat. 26, no. 1, 1–12. (Reviewed by
Bo Berndtsson.)

1988b. Passare, Mikael. Residue solutions to holomorphic Cauchy problems. Semi-
nar in Complex Analysis and Geometry 1987 (Rende, 1987), pp. 99–105, Sem.
Conf., 1. Rende: EditEl. (Reviewed by E. J. Akutowicz.)

1988c. Passare, Mikael. Residues, currents, and their relation to ideals of holomor-
phic functions. Math. Scand. 62, no. 1, 75–152. (Reviewed by Alicia Dicken-
stein.)

1988d. Passare, Mikael. A calculus for meromorphic currents. J. reine angew. Math.
392, 37–56. (Reviewed by Alicia Dickenstein.)

1989. Berndtsson, Bo; Passare, Mikael. Integral formulas and an explicit version
of the fundamental principle. J. Funct. Anal. 84, no. 2, 358–372. (Reviewed
by R. Michael Range.)

1991a. Andersson, Mats; Passare, Mikael. Complex Kergin interpolation. J. Ap-
prox. Theory 64, no. 2, 214–225. (Reviewed by A.G. Law.)

1This was Mikael’s family name from birth and until 1984 December 18, three days after his

thesis defense.
2These remarks refer to MathSciNet.



6 Mikael Passare’s Publications

1991b. Andersson, Mats; Passare, Mikael. Complex Kergin interpolation and the
Fantappiè transform. Math. Z. 208, no. 2, 257–271. (Reviewed by Harold P.
Boas.)

1991c. Passare, Mikael. A new division formula for complete intersections. Proceed-
ings of the Tenth Conference on Analytic Functions (Szczyrk, 1990). Ann.
Polon. Math. 55, 283–286. (Reviewed by Gerd Müller.)

1992, 1993a. Passare, M.; Tsikh, A. On the relations between the local struc-
ture of holomorphic mappings, multidimensional residues and generalized
Mellin transforms (Russian). Dokl. Akad. Nauk 325, no. 4, 664–667; transla-
tion in Russian Acad. Sci. Dokl. Math. 46 (1993), no. 1, 88–91. (Reviewed by
Alexandr M. Kytmanov.)

1993b. Passare, Mikael. On the support of residue currents. Several complex vari-
ables (Stockholm, 1987/1988), pp. 542–549. Math. Notes 38, Princeton Univ.
Press, Princeton, NJ. (Reviewed by Salomon Ofman.)

1993c. Passare, Mikael. Halva sanningen om en viktig produkt. Residyer i flera
variabler. Föredrag vid Kungl. Vetenskaps-Societetens högtidsdag den 8 nov-
ember 1991 [Half of the truth about an important product. Residues in
several variables.] Lecture at the Solemnity of the Royal Society of Sciences,
1991 November 08. In: Kungl. Vetenskaps-Societens i Uppsala årsbok 1992,
pp. 17–20. Uppsala: The Royal Society of Sciences.

1994. Passare, Mikael; Tsikh, August; Zhdanov, Oleg. A multidimensional Jordan
residue lemma with an application to Mellin–Barnes integrals. Contributions
to complex analysis and analytic geometry, pp. 233–241. Aspects Math., E26.
Braunschweig: Vieweg. (Reviewed by Aleksandr G. Aleksandrov.)

1995a. Demailly, Jean-Pierre; Passare, Mikael. Courants résiduels et classe fonda-
mentale. Bull. Sci. Math. 119, no. 1, 85–94. (Reviewed by Mongi Blel.)

1995b. Passare, Mikael; Tsikh, August. Residue integrals and their Mellin trans-
forms. Canad. J. Math. 47, no. 5, 1037–1050. (Reviewed by Mongi Blel.)

1996a. Passare, Mikael; Tsikh, August. Defining the residue of a complete inter-
section. Complex Analysis, Harmonic Analysis and Applications (Bordeaux,
1995), pp. 250–267. Pitman Res. Notes Math. Ser., 347, Harlow: Longman.
(Reviewed by Carlos A. Berenstein.)

1996b, 1997. Passare, M.; Tsikh, A.K.; Cheshel′, A.A. Iterated Mellin–Barnes
integrals as periods on Calabi–Yau manifolds with two modules (Russian).
Teoret. Mat. Fiz. 109 (1996), no. 3, 381–394; translation in Theoret. and Math.
Phys. 109, no. 3, 1544–1555 (1997). (Reviewed by V.V. Chueshev.)

1998. Bykov, Valery; Kytmanov, Alexander; Lazman, Mark. Elimination Methods
in Polynomial Computer Algebra. Translated from the 1991 Russian original
by Kytmanov and revised by the authors. Translation edited and with a
preface by Mikael Passare. Mathematics and its Applications, 448. Dordrecht:
Kluwer Academic Publishers. xii + 237pp. ISBN: 0-7923-5240-8. (Reviewed
by Harold P. Boas.)
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1999. Henkin, Gennadi; Passare, Mikael. Abelian differentials on singular varieties
and variations on a theorem of Lie–Griffiths. Invent. Math. 135, no. 2, 297–
328. (Reviewed by Reinhold Hübl.)

2000a. Forsberg, Mikael; Passare, Mikael; Tsikh, August. Laurent determinants
and arrangements of hyperplane amoebas. Adv. Math. 151, no. 1, 45–70. (Re-
viewed by Guangfeng Jiang.)

2000b. Passare, Mikael; Tsikh, August; Yger, Alain. Residue currents of the
Bandner–Martinelli type. Publ. Mat. 44, no. 1, 85–117. (Reviewed by Harold
P. Boas.)

2000c. Aizenberg, Lev; Passare, Mikael. C-convexity, convexity in complex analy-
sis. In: Encyclopædia of Mathematics, Supplement, vol. II, pp. 102–104. Dord-
recht: Kluwer Academic Publishers.

2001a. Passare, Mikael. Sesam öppna dig [Open Sesame]. Nämnaren 28(4), 37–39.

2001b. Passare, Mikael. Complex geometry. Minicourse, June 30–July 3, 2001.
Lectures at the Première École d’Été Franco-Nordique de Mathématiques,
EEFN, Lake Erken, Sweden, 2001 June 26–July 03. Institut Mittag-Leffler,
Lecture Notes No. 3, 2000/2001, 8 pp.

2002. Passare, Mikael; Rullg̊ard, Hans. Multiple Laurent series and polynomial
amoebas. Actes des Rencontres d’Analyse Complexe (Poitiers-Futuroscope,
1999), pp. 123–129. Poitiers: Atlantique. (Reviewed by Guangfeng Jiang.)

2003a. [Passare, Mikael (Ed.)]. Nordan Ett. [Abstracts from Nordan 1, held in]
Trosa 1997 March 14–16, 15pp. [Stockholm: Stockholm University 2003.]

2003b. [Passare, Mikael (Ed.)]. Nordan Tv̊a. [Abstracts from Nordan 2, held in]
Marstrand 1998 April 24–26, 15 pp. [Stockholm: Stockholm University 2003.]

2004a. Passare, Mikael; Rullg̊ard, Hans. Amoebas, Monge–Ampère measures, and
triangulations of the Newton polytope. Duke Math. J. 121, no. 3, 481–507.
(Reviewed by A.Yu. Rashkovskĭı.)

2004b. Andersson, Mats; Passare, Mikael; Sigurdsson, Ragnar. Complex Convexity
and Analytic Functionals. Progress in Mathematics, 225. Basel: Birkhäuser
Verlag. xii + 160pp. ISBN: 3-7643-2420-1. (Reviewed by Sergey Ivashkovich.)

2004c. Passare, Mikael; Tsikh, August. Algebraic equations and hypergeometric
series. In: The Legacy of Niels Henrik Abel, pp. 653–672. Berlin: Springer.
(Reviewed by Allen R. Miller.)

2004d. Passare, Mikael. Amoebas, convexity and the volume of integer polytopes.
Complex analysis in several variables – Memorial Conference of Kiyoshi
Oka’s Centennial Birthday, pp. 263–268. Adv. Stud. Pure Math., 42. Tokyo:
Math. Soc. Japan. (Reviewed by A.Yu. Rashkovskĭı.)

2004e. [Passare, Mikael (Ed.)]. Nordan Tre. [Abstracts from Nordan 3, held in] Salt-
sjöbaden 1999 April 22–25, 19 pp. [Stockholm: Stockholm University 2004.]

2004f. Passare, Mikael. Amöbor och Laurentserier [Amoebas and Laurent series].
In: 2004e:19. (A report on 2000a.)
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2005a. Passare, Mikael; Sadykov, Timur; Tsikh, August. Singularities of hyper-
geometric functions in several variables. Compos. Math. 141, no. 3, 787–810.
(Reviewed by A.Yu. Rashkovskĭı.)

2005b. Passare, Mikael; Tsikh, August. Amoebas: their spines and their contours.
In: Idempotent Mathematics and Mathematical Physics, pp. 275–288. Con-
temp. Math., 377. Providence, RI: Amer. Math. Soc. (Reviewed by Eugenii
Shustin.)

2005c. Lĕınartas, E.K.; Passare, M.; Tsikh, A. K. Asymptotics of multidimensional
difference equations (Russian). Uspekhi Mat. Nauk 60, no. 5(365), 171–172;
translation in Russian Math. Surveys 60, no. 5, 977–978.

2005d. [Passare, Mikael (Ed.)]. Nordan Fyra. [Abstracts from Nordan 4, held

in] Örnsköldsvik 2000 May 05–07, 18 pp. [Stockholm: Stockholm University
2005.]

2006a. [Passare, Mikael (Ed.)]. Nordan Fem. [Abstracts from Nordan 5, held in]
Voksen̊asen, Oslo, 2001 May 04–06, 17 pp. [Stockholm: Stockholm University
2006.]

2006b. Passare, Mikael. Amöbor, Monge–Ampère-mått och trianguleringar av
Newton-polytopen [Amoebas, Monge–Ampère measures, and triangulations
of the Newton polytope]. In: 2006a:6. (A report on 2004a.)

2007a. [Passare, Mikael (Ed.)]. Nordan Sex. [Abstracts from Nordan 6, held in]
Reykjav́ık 2002 March 08–10, 17 pp. [Stockholm: Stockholm University 2007.]

2007b. [Passare, Mikael (Ed.)]. Nordan Sju. [Abstracts from Nordan 7, held in]
Visby 2003 May 23–25, 17 pp. [Stockholm: Stockholm University 2007.]

2008a. Passare, Mikael. How to compute
∑

1/n2 by solving triangles. Amer. Math.
Monthly 115, no. 8, 745–752.

2008b. Lĕınartas, E.K.; Passare, M.; Tsikh, A.K. Multidimensional versions of
Poincaré’s theorem for difference equations (Russian). Mat. Sb. 199, no. 10,
87–104; translation in Sb. Math. 199, no. 9-10, 1505–1521. (Reviewed by Vic-
tor I. Tkachenko.)

2008c. [Passare, Mikael (Ed.)]. Nordan Åtta. [Abstracts from Nordan 8, held in]
Nösund, Orust 2004 May 14–16, 15 pp. [Stockholm: Stockholm University
2008.]

2008d. [Passare, Mikael (Ed.)]. Nordan Nio. [Abstracts from Nordan 9, held in]
Sigtuna 2005 April 22–24, 17 pp. [Stockholm: Stockholm University 2008.]

2008e. Passare, Mikael. Mormors glasögon och räkning modulo nio [Grandma’s
glasses, and counting modulo nine]. Nämnaren 35(1), 31.

2009a. Passare, Mikael (Ed.). Complex Analysis and Digital Geometry. Proceedings
from the Kiselmanfest, 2006. Acta Universitatis Upsaliensis. Skrifter rörande
Uppsala universitet. C. Organisation och Historia [Publications concerning
Uppsala University. C. Organization and History] 86. Uppsala: Uppsala Uni-
versity. 364 pp. ISBN: 978-91-554-7672-4.
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2009b. Passare, Mikael. Preface. In: Passare (Ed.) 2009a:7–8.

2009c. Passare, Mikael. Christer Kiselman’s mathematics. In: Passare (Ed.)
2009a:9–26. (Reviewed by Norman Levenberg.)

2009d. [Passare, Mikael (Ed.)]. Nordan Tio. [Abstracts from Nordan 10, held in]
Sundsvall 2006 May 19–21, 14pp. [Stockholm: Stockholm University 2009.]

2009e. Passare, Mikael. Hypergeometriska serier och integraler (Hypergeometric
series and integrals). In: 2009d:6.

2010a. Nilsson, Lisa; Passare, Mikael. Discriminant coamoebas in dimension two.
J. Commut. Algebra 2, no. 4, 447–471. (Reviewed by Eugenii Shustin.)

2010b. [Passare, Mikael (Ed.)]. Nordan Elva. [Abstracts from Nordan 11, held
in] Oscarsborg, Drøbak, 2007 May 18–20. [Stockholm: Stockholm University
2010.]

2011a. [Passare, Mikael (Ed.)]. Nordan Tolv. [Abstracts from Nordan 12, held in]
Mariehamn 2008 April 18–20. [Stockholm: Stockholm University 2011.]

2011b. Passare, Mikael; Risler, Jean-Jacques. On the curvature of the real amoeba.
Proceedings of the Gökova Geometry-Topology Conference 2010, pp. 129–134.
Somerville, MA: International Press.

2011c. Passare, Mikael; Rojas, J. Maurice; Shapiro, Boris. New multiplier se-
quences via discriminant amoebae. Mosc. Math. J. 11, no. 3, 547–560, 631.

2011d. Brändén, Petter; Passare, Mikael; Putinar, Mihai (Eds.). Notions of Posi-
tivity and the Geometry of Polynomials. Trends in mathematics. Basel: Birk-
häuser.

2012. Itenberg, Ilia; Jöricke, Burglind; Passare, Mikael (Eds.). Perspectives in anal-
ysis, geometry, and topology. On the occasion of the 60th birthday of Oleg
Viro. Progress in Mathematics, 296. New York: Birkhäuser/Springer. xxxii
+ 464 pp. ISBN: 978-0-8176-8276-7.

2013a. Passare, Mikael; Pochekutov, Dmitry; Tsikh, August. Amoebas of complex
hypersurfaces in statistical thermodynamics. Math. Phys. Anal. Geom. 16,
89–108.

2013b. Passare, Mikael; Sottile, Frank. Discriminant coamoebas through homology.
J. Commut. Algebra 5, no. 3, 413–440.
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List of Visited Countries

1. Albania
2. Algeria
3. Andorra
4. Angola

2011, Dubai, Arab Emirates

5. Arab Emirates
6. Argentina
7. Armenia
8. Australia
9. Austria

10. Azerbaijan
11. Barbados
12. Belarus
13. Belgium
14. Belize
15. Bolivia
16. Bosnia

17. Botswana
18. Brazil
19. Brunei
20. Bulgaria
21. Burkina Faso
22. Burundi
23. Cambodia
24. Cameroon
25. Canada
26. Cape Verde
27. Central African Republic
28. Chad
29. Czech Republic
30. Chile
31. China
32. Colombia
33. Comoros
34. Congo-Brazzaville
35. Congo-Kinshasa
36. Costa Rica
37. Croatia
38. Cuba
39. Cyprus
40. Denmark
41. East Timor

December 30, 1999,
Pyramids, Egypt
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42. Egypt
43. El Salvador
44. Equatorial Guinea
45. Estonia
46. Ethiopia
47. Fiji
48. Finland
49. France
50. Gabon
51. Gambia
52. Georgia
53. Germany
54. Ghana
55. Greece
56. Grenada
57. Guinea
58. Guinea Bissau
59. Honduras
60. Hungary
61. India

1997, Taj Mahal, India

62. Indonesia
63. Ireland
64. Island
65. Israel
66. Italy
67. Japan
68. Jordan
69. Kazakhstan
70. Kenya
71. Kyrgyzstan
72. Kuwait
73. Laos
74. Lebanon
75. Lesotho
76. Latvia
77. Liberia
78. Libya
79. Liechtenstein
80. Lithuania
81. Luxembourg
82. Macedonia
83. Malawi
84. Malaysia
85. Mali
86. Malta
87. Morocco
88. Mauritania
89. Mexico
90. Moldova
91. Monaco
92. Mongolia
93. Montenegro
94. Mozambique
95. Namibia
96. Netherlands
97. Nepal
98. New Zealand
99. Nicaragua
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2006, Niger

100. Niger
101. Nigeria
102. North Korea

2009, Svalbard, Norway

103. Norway
104. Oman

2011, Oman

105. Pakistan
106. Panama
107. Paraguay
108. Peru
109. Philippines
110. Poland

1999, Portugal

111. Portugal
112. Qatar
113. Romania
114. Russia
115. Rwanda
116. Samoa Newline (Western Samoa)
117. Saint Lucia
118. Saint Vincent and the Grenadines
119. San Marino
120. Saudi Arabia
121. Senegal
122. Serbia
123. Sierra Leone
124. Singapore
125. Slovakia
126. Slovenia
127. South Africa
128. South Korea
129. Spain
130. Sri Lanka
131. Sudan
132. Swaziland
133. Sweden
134. Switzerland
135. Syria



14 List of Visited Countries

2003, Warm springs, border
to South African Republic

136. Taiwan
137. Tanzania
138. Thailand
139. Togo
140. Tongo

141. Tunisia
142. Turkey
143. Uganda
144. Ukraine
145. United Kingdom
146. United States of America
147. Uruguay
148. Uzbekistan
149. Vatican City
150. Vietnam
151. Zambia
152. Zimbabwe

2001, Vietnam
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My Life with Mikael

Galina Passare

My husband Mikael Passare passed away in 2011 during a trip to Oman. He was
hiking in the Wadi Shab area and was trying to find a particularly noted cave
when he suddenly suffered a heart attack in the strong heat.

His death was quite abrupt and very dramatic for those of us that he left
behind on Earth. It was completely unexpected, and according to doctors went
so quick that he probably did not feel anything. His death was very beautiful and
somehow fitting for his way of life: he was completely healthy, he was on a journey,
and when he died he was looking for a cave. Moreover, he actually found it: he
was just at the entrance to the cave when he was found.

I must say that it is not at all easy to write about Mikael. He was very
meticulous with details, particularly concerning himself. But when you remember
someone you have your own view, which can sometimes be different from the
person’s experience, so I hope that Mikael would not have been disappointed with
what I am writing about him. Anyhow, this is how I remember him.

At home (2008, Nockeby, Stockholm, Sweden)
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With Galina Passare (2009, Costa Rica)

World

Mikael’s relationship to the world was always extremely optimistic. He did not
see problems, he saw only solutions, and nothing appeared impossible for him. I
was amazed many times when things that I thought belonged to the fantasy world
suddenly became a reality with Mikael. When he one day said “I shall visit every
country in the world”, I thought he was joking. But with 152 countries visited,
there were not so many left before he reached the goal. This seemingly impossible
task had, as many times before with Mikael, become possible and realistic.

Travel was a very special part of Mikael’s life. He always tried to combine
travel with his job and he visited universities and mathematical institutions all
over the world. In that way, he established new contacts and always helped people
with everything imaginable, as in Chad and Niger, where he and his friend Anders
Wändahl installed computer programs to provide access to mathematical libraries
for local mathematicians. He lectured on every continent, and in several languages.

To document his travels Mikael always sent postcards to himself from the
countries he visited. The album with all these postcards from the countries he had
visited was very important to him, and he was always pleased to hold it in his
hands.

When Mikael was asked which trip was the most enjoyable, it was always the
next trip he would make. He could talk forever about future trips – plan, discuss
details, imagine how it would be. He always planned his trips thoroughly, and it
was very seldom that things did not work out. But if he had to pick some favourites
among the trips he had made, then he always mentioned the most arduous and
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With Anders Wändahl (2006, Niger)

August 9, 2010, Colombo, Sri Lanka

difficult journeys, as when he travelled alone through Tajikistan on an overcrowded
bus without a seat, standing squeezed by other travellers trying to hang on a small
handle, almost as if he was hanging in the air. The journey took three days – it
was great fun, he thought.

Or when we were looking at the solar eclipse in Nigeria together with Anders
Wändahl and wanted to continue to Chad. On the map it looked as if there was a
road between Nigeria and Chad, but it turned out that there was not. Of course
we wanted to continue anyway. It took us a day to agree with some locals who
had cars that could cross the desert. When we finally got under way, it turned
out that we had paid 10,000 Swedish kronor to cover just 15 km. It was a very
dangerous journey, driving through the desert. On the border to Chad there was
only one place to stay for the night – a brothel – and it turned out that there was
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Solar eclipse (2006, Niger)

no public communication from there to the capital, so the only option was just sit
and wait for a car to pass by.

I even started to think that perhaps we would have to stay in this small
village in Chad for ages: Mikael would start a mathematical school there, Anders
would fix Internet connection to the world outside and I would be working as
a doctor. But the next day, a car caravan arrived and we ended up in these cars
completely unexpectedly with our bags, but without any water. It was fine, Mikael
said, because the drivers told us it would only take 4 hours to arrive. But it took
24 hours instead. I who whined the whole time and was a woman got at least a
little water, but Mikael and Anders began to urinate blood, so it was very lucky
that we arrived alive and safe to Chad’s capital the following day. Along the way
we had to stay overnight in the desert, along with real scorpions. This was an
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With Timur Sadykov (1996, Krasnoyarsk, Russia)

example of the type of travel that Mikael loved so much: adventure, experience on
the borderline between life and death.

You should not think that Mikael deliberately took great risks or planned
difficulties that would put him on the borderline. He always tried to plan in a
good and safe way, but the places he wanted to visit were sometimes such that
difficulties turned up. And were remembered for the rest of one’s life.



20 G. Passare

Once, Mikael’s Achilles tendon broke while playing tennis, shortly before a
trip half-way around the world – taking the Trans-Siberian railway through Siberia,
Mongolia and China and continuing to North Korea, South Korea, Singapore and
Hong Kong. We all were concerned how the trip would go, but Mikael had surgery,
got a big bandage around the foot and leg, and hopped on crutches in Krasno-
yarsk’s rocky nature reserve and on the Great Wall of China. He talked happily
to people around him about his accident. Mikael saw this not as a limitation but
as a new kind of adventure, a new way to explore the world.

Mikael was phenomenal at orienting himself, even in unfamiliar environments.
Perhaps he learned this during his time as a Scout? He loved to find his way using
the Sun or stars, regardless of whether we were in the woods, on the sea, or even
in a big city. Once we went to Delhi in India, and took a taxi to get to a small
railway station. The taxi driver turned out to be a real rascal, and tried to drive us
to a different station from which other cars of his could drive us on. I would never
have noticed that he was driving in the wrong direction, but Mikael understood
that immediately:

– Where are we going?
– Where you requested, sir, we drive to the train station.
– Oh no, said Mikael, you should turn right here, and then left . . .

It all ended by Mikael taking over and directing the drive, to the great amazement
of everyone involved, including me. Mikael had never been to Delhi before.

Mikael had a hard time with beach holidays. If he happened to be staying
at such a place, he would lie in a dark room and think about math or solving
crossword puzzles. Crosswords, incidentally, were something he particularly loved,
both solving them and constructing his own. I think it was because his brain always
needed to be occupied. Calm holidays were not for his temperament. Once while
we were on a beach holiday in Tunisia, he took the opportunity to fly a one-day
round trip to Rome, to send postcards to himself from the Vatican City.

He never demanded any special amenities around him and sometimes ap-
peared to me excessively spartan. He could stay the night anywhere – we spent
nights outside a residential area in Ireland on the ground (we did not have enough
money to stay in a hotel, this was our first trip outside Sweden), we spent nights
in cars, at weird cheap hotels, in the homes of people we did not know before. So
it was not always easy to be Mikael’s wife. But for me, these difficulties did not
bother me much; indeed, I enjoyed such a life.

Languages

It has been said that the centres for mathematics and language in the brain lie
close together, and this could truly be seen in Mikael. He had high standards for
what it meant to know a language: one should know the whole grammar, speak
and write without problems, and of course be able to read thick novels without a
dictionary. By this criterion he knew Swedish, English, German, French, Russian
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2003, Etosha National Park, Namibia

and Finnish. But he was familiar with many more languages. For example, he
knew Italian, Spanish, and Polish well enough to read newspapers and talk to
people, and he also learned a little Arabic, Chinese, and Japanese. Wherever he
travelled, he would take with him a grammar of the language, and make sure to
learn common words and phrases so that he could at least ask directions and order
in restaurants.

I was often altogether surprised and awestruck by his linguistic talent. For
example, he always denied that he could speak Italian or Spanish, but when we
went to some Spanish-speaking countries, he sat on the plane and read thick books
such as I mentioned earlier. After that he could speak fluently with people on the
streets, and everywhere else. Once we were on a train in France and there were
two couples sitting next to us, one from Spain and one from Italy. The couple from
Spain said that they could speak Italian, and the couple from Italy that they could
speak Spanish, and they really wanted to communicate with each other, but the
communication did not work: they simply could not understand each other. In the
end, Mikael acted as an interpreter, translating from Spanish to Italian and vice
versa. I was completely surprised, and wondered

– But Mikael, you told me you do not know Spanish and Italian?

He looked at me and replied:

– But I was forced to, don’t you see?
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January 2008, Bali

Challenges

Mikael always tried to expand his own world, challenge himself and test his limits,
whether it concerned his physical limits, his knowledge, his strength or conscious-
ness, everything.

For example he liked to swim between the islands near Ekerö outside Stock-
holm. Sometimes I did so with him, but I was afraid of big boats suddenly passing
by, so I did not do it so often. He did it at least once a summer. Once while
swimming from Hässelby to Solviksbadet – a distance of several kilometres – he
was attacked by a large gull (of course he was carrying his clothes on his head as
he swam), and he laughed about this for a long time. It could have been quite
dangerous, because the gull targeted his face.

He had an incredibly competitive spirit, and whenever he played a game he
would always naturally try to win. It was quite annoying for his family, his sister
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2011, Stockholm

and his mother. But that is how he was – if he played he wanted to win. But if he
lost, it was by no means a disaster for him either. What’s the problem? It was just
a game, nothing more. So I never saw him sad, even when he lost.

Mikael was always very hardy, and would go around in only a thin jacket in
autumn and even winter. I think it was a matter of inner conviction – he would
sometimes say it is March now, and go to work without a jacket. And it always
went well; he did not feel any cold. And it was the same with heat. He had great
endurance. It might also have been about pushing one’s boundaries and challenging
oneself?

Even in sports, he continued to challenge the world and himself. Almost
every day he chose what he wanted to achieve. Biking to work, even to the Institut
Mittag-Leffler near Stockholm, swimming 4 km three times a week, playing tennis,
skiing alone for days in the mountains, skating many kilometres, often completely
alone, even swimming around and between islands, challenging and surpassing
himself.

Once we made a skating tour and Mikael ended up in the water. It was
quite an unpleasant experience for me, since it was my duty to rescue Mikael. But
when he came up completely soaked, at −10 ◦C, he did not rush to the car and go
home, but decided nonetheless to continue and reach the goal that he had planned.
Amazingly, he did not feel cold! And he reached the goal, as he always had before.
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Home

It was of course great fun to travel with Mikael to many parts of the world, but
it was almost as much fun to walk near our own house at home, as he always
found new ways to walk and new little things that no-one else had thought of.
Walking around the nearby island Kärsön, sitting at a small completely unknown
restaurant, eating, almost sitting on the street, at a small kiosk with Thai food in
Blackeberg, or going to an unknown exhibition nearby. He always came up with
interesting and wholly unexpected ideas. One’s whole life became an adventure.

With Galina Passare (1986, Stockholm)

When his nephew about ten years old returned home after visiting us in
Stockholm, he was asked what was his most fun and exciting experience in Stock-
holm. He replied that it was riding in the car with Mikael from home to his work at
the university. And I understand exactly what he meant – Mikael’s way of driving,
choosing routes, talking – everything!

Mikael was quite attached to old things. I think his possessions were like his
books – they were alive for him and could tell many stories from the past. It was
impossible for him to get rid of such things. This was probably something that he
had picked up in his childhood: old things should be used as long as possible. He
had his old bike from the 70s, which he always repaired. He was very proud of his
old Volvo, a gift from his grandfather, and drove it happily telling everyone that
it needed no seat belts because it was too old – it was the apple of his eye.

Mikael asked me many times “Don’t you remember this, you’ve read it?” It
could be about botany, zoology, religion – anything. If you have read it, surely
you remember it; this was his attitude. Unfortunately I didn’t. But it seemed he
remembered everything he had read, and there was no subject he could not talk
about.
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2010, Västervik

Mikael was theoretically talented and incredibly intelligent, and eventually
became a professor, but that did not mean he was impractical. He could do ev-
erything he needed. For example, he made the floor in the basement, removed a
large concrete base that had supported a washing machine, and so on. He built
his country house almost single-handedly. He was gifted in doing practical things.
Doing things with his own hands reflected very well his principle of life: if you do
something, you should do it properly or not at all.

Once we had Polish workers with us, rebuilding our garage. They left behind
a huge pile of stones and gravel. They asked us if we wanted them to remove it. It
would take them at least a week, and we would have to pay for it. No, said Mikael.
And the next day the pile was gone – Mikael had removed it himself, working
all day and half the night. Imagine how surprised the workers looked when they
arrived the following morning!

If we were buying furniture, it had to be the best and the most famous
designer. Why? Well, the point was simply that if you do something, then you
should do it properly!

Mikael did not care much about his appearance, but if he did, it had to be
done properly. When he became a professor, it was almost mandatory to get a
good jacket. And what jacket? Obviously a tweed jacket. And where would you
buy it? In England, of course!

Books were very important to him. He used to say that he would like to have
a wife who was so fond of books that she used special gloves for them. He would
be very angry if his books were damaged – his books were almost living things for
him.

He drank pure tea, not tea with milk, because tea with milk looks like dish-
water, and drinking something should be an aesthetic experience.
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August 2011, at home Stockholm, Nockeby
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The children were of course very important to Mikael. He tried very hard
to give them the best of everything – playing the piano, singing, learning to read
music, play tennis, learning languages, mathematics, physics, geography, and much
more.

Traditions like Christmas and Midsummer were always very important for
Mikael. Christmas we always celebrated with his mother.

With Max Passare (December 2010, San Francisco)

Music

The music centre in the brain is said to be located close to the centres for mathe-
matics and languages. Indeed, music was another of Mikael’s talents. He composed
music for a play City blues, that has been shown much at the theatre in Väster̊as.
He loved listening to a radio programme where one had to guess the names of
melodies, and he almost always knew the answer. His knowledge of music was
absolutely amazing. Besides this, he played the clarinet and piano.

He liked to sing, and sang in various choirs (including the choir at Moscow
University), took private singing lessons, and always sang when we traveled any-
where by car. Singing was his way of keeping awake when he drove at night, which
he often did in order to save time when driving long distances.

Projects

Mikael’s life always consisted of a number of projects – small and big tasks that he
wanted to accomplish in his life. They could be very different things, and often they
could barely be described. Swimming around Lindö outside Västervik, visiting all
the countries in the world, learning how to play a particular piece on the clarinet
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With Märta and Galina Passare (December 2010,
Berkeley, California, USA)

or piano, learning Japanese characters, writing diary every day, driving in one day
to Bulgaria, and so on.

A project that was particularly important to him in his last years was learning
Finnish. He started a small group, consisting of three people; besides him, there
were a professor and a graduate student in mathematics. He spoke of the group
as the Finnish club. Once, he learned that his favourite mystery writer Reijo
Mäki’s book Fallen Angel was to become a film. Then he immediately planned
an excursion for the Finnish club – they would go to Pori, where the action takes
place. And they did. They went to Finland, drank the special liqueur with caramel,
just like in the book, visited all the places that the writer described, and finally
saw the movie itself. It was typical of Mikael: organising, and fully carrying out,
something that becomes an experience you will never forget.

One of the dreams that he did not have time to carry out was making an
underground passage. In the beginning I thought that it was just a boyhood dream,
nothing more, but after 152 countries visited, I have suddenly understood that
with his attitude, determination, and working capacity everything in this world is
possible – simply everything. Unfortunately, he could not build his underground
passage.

Personality

I have never heard or seen Mikael being envious of anyone. Never. He did not
understand how one could be. A basic rule for him was always: you should never
pay attention to what you don’t have or what you have lost, but just think of what
you have.

There are many things in the world that are just frustrating – paying bills, for
example, standing in line at a border, or paying a fine. Unpleasant things, as I saw
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With Märta Passare (1996, Monte Carlo)

it, but Mikael liked to take such matters into his own hands and deal with them.
And when you asked him, but why must one come to such awfully tedious things
in the world, he would say, “Galya, that’s how the world works, it’s just a game.
And this is a matter of just accepting such rules. To play the game, you must do
it, stand in the queue, for example, and be happy because it’s just a game.”

2010, Camerun



30 G. Passare

At Nordan meeting in Mariehamn (2008, Mariehamn, Åland)

Mikael often said: if there is something that you do not like but cannot change,
then you should accept it, and instead work on changing your relationship to it.

Mikael always had his own perspective on things. But he was always open
and curious, ready to expand his own boundaries. He was never religious, for
instance, but knew the Bible very well, and questions that could not be decided he
always left open. Even great religious questions. He was really not a conservative
character. He was open to all sorts of questions and discussions.

Mikael was always able to talk with people on their own level. He talked with
alcoholics in Russia, with professors in France and the USA, with cleaning ladies
in Stockholm, with Polish workers, film directors, and representatives of TV and
radio. It was always at the appropriate level, and the other person would never
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September 2011, Oman (the last photo)

feel that he was talking with a professor, although that is what Mikael was. He
could explain complex things in a very simple way, a talent that never ceased to
amaze me. Our daughter Märta, who studied mathematics for a while, always said
that her father was the best teacher.

Mikael wrote a diary, and indeed had done so since high school. Day after
day. It helped him to remember people he met, addresses, events, weather. He
never failed to describe a single day in his life, until the end.

When we celebrated 25 years together, we went to the marvellous Easter
Island. And for another anniversary, we traveled to Bali, walked in the woods
there, and experienced wonderful things. But the most amazing thing was that
the very day we arrived in Bali, there was a celebration called Gala Young, almost
like my name. And again I marvelled at his ability to come up with amazing ideas
at the right moment.

Mikael was an incredible man, but perhaps a little difficult in that it was
not easy to find his weaknesses, where other people could beat him. I think in
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this way he irritated some people with his great intellect, his incredible capacity
for concentration and strength, an inner strength that could also be expressed as
physical strength.

Mikael had a temper and could sometimes react strongly to things he did not
like, but he could not be angry for long, and only after a few minutes he would be
back to normal.

He was a very good listener, but never understood why people would talk
about their problems – if you have a problem, it should be solved, not talked
about! He did not like superficial conversations, where people talk for long periods
about nothing. He proposed that we marry one week after we met. Why should
one talk more if it was not needed?

Galina Passare Lost in the depths of cosmos (2015)

Thanks

Mikael found time to accomplish incredibly many things in his relatively short
life. But one remarkable thing was that he always had time. It seemed like he was
everywhere at once. I think that his students felt they could talk to him at any
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time; his children may even have felt that he interfered too much. He had time to
be with his friends and of course with me. How did he manage all that? I do not
understand at all.

Mikael was the most amazing and incredible and kind-hearted person I have
met in my life. I am deeply thankful to my Destiny for sending him. And I am
very grateful to Mikael for his talent at finding inspired solutions in all possible
situations.

Mikael really took care of me, which I am very grateful for, but also made
sure that I did not always have it too easy. And he forced me to take care of
myself. For instance, he might leave me in the middle of New York alone and say
we would meet at a certain place at a later date, and let me take care of myself.
Or just drop me suddenly at the Metro station in a completely foreign city and
say he was on his way to a meeting and I had to find the way back to the hotel
on my own. It was not particularly dangerous, really, but quite unexpected. He
disappeared so quickly that I was always quite taken aback.

And he did so now, too, left me alone on this earth, suddenly and unexpect-
edly, and I must try to find the way back – to myself. I have to do it. And I will
find the way, Mikael. I promise.

Galina Passare
e-mail: passaregalina@hotmail.com

mailto:passaregalina@hotmail.com
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Mikael Passare (1959–2011)

Christer O. Kiselman

Mikael Passare was a brilliant mathematician who died much too early. In this
chapter we present a sketch of his work and life.

Mikael was born in Väster̊as, Sweden, on 1959 January 01, and pursued a
fast and brilliant career as a mathematician. He started his studies at Uppsala
University in the fall of 1976 while still a high-school student, merely seventeen
and a half. He finished high school in June 1978 at the Rudbeckianska skolan
in Väster̊as, gave his first seminar talk in November 1978 at Uppsala University,
where he got his Bachelor Degree in 1979, and where he also was an assistant.

Mikael Pettersson (age 24), Jean Francois Colombeau,
Leif Abrahamsson, and Urban Cegrell
(November 1983, Uppsala; Sweden)

(photo Christer Kiselman)
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He was accepted as a graduate student at Uppsala University on 1980 Feb-
ruary 14 with me as advisor, and presented his thesis on 1984 December 15. The
opponent was Nils Øvrelid.

The thesis was written by a certain Mikael Pettersson, the family name Pet-
tersson being his from birth. However, on 1984 December 18, three days after the
thesis presentation, the Swedish Patent and Registration Office approved the fam-
ily name Passare1 for Kjell Alrik Mikael Pettersson and Galina Pettersson, née
Lepjosjkina. As a consequnece, the diploma for the Degree of Doctor of Philosophy
was issued on 1984 December 19 to Kjell Alrik Mikael Passare.

Mikael was a research assistant (half-time) and lecturer (half-time) at Stock-
holm University from January through June 1985, research assistant financed by
the Swedish Natural Science Research Council (NFR) July 1985–August 1986 and
later research assistant, July 1987 through 1990.

With Christer Kiselman (November 8, 1991, Uppsala, Sweden)
(photo Galina Passare)

He received the title of Docent (corresponding to the Habilitation in some
countries) on 1988 January 28. He was a senior university lecturer (full time) from
July 1988, from time to time on leave of absence. Later he was a research lecturer at
the Royal Institute of Technology, July 1990–1994. He was appointed full professor
at Stockholm University from 1994 October 01.

In addition to English and French, he studied Russian during three years in
high school (Rudbeckianska skolan 1978), and later did his military service at the
National Defence Radio Establishment (the Swedish national authority for signals

1The Swedish word passare means ‘a pair of compasses’. So the classical task of compass-and-

straightedge construction in Euclidean geometry receives a new meaning in Swedish: ‘construction
using Passare and ruler’.
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intelligence) from June 1979 through August 1980. There he learned even more
Russian.

He spent four academic years in four different countries: during the academic
year 1980-81 he was at Stanford University; during 1981–82 at Lomonosov Uni-
versity in Moscow; during 1986–87 at Université Pierre et Marie Curie (Paris VI)
and Université de Paris-Sud (Paris IX), having received a post-doctoral fellowship
from the Swedish Natural Science Research Council (NFR). During 1992–93 he
was at Humboldt-Universität zu Berlin on an Alexander von Humboldt fellow-
ship. He was a guest professor in France on several occasions: at Toulouse (June
1988), Grenoble (April 1992), Bordeaux (May 1992), Paris VII (March 1993), Lille
(April 1999), and Bordeaux again (June 2000).

Mikael was much appreciated as a researcher and teacher, and was very active
outside the university. He was Head of the Department of Mathematics at Stock-
holm University from January 2005 through August 2010, and then Director of
the newly created Stockholm Mathematics Center, common to Stockholm Univer-
sity and the Royal Institute of Technology. When Burglind Juhl-Jöricke and Oleg
Viro had resigned from Uppsala University on 2007 February 08, he arranged for
a guest professorship for Burglind at Stockholm University, and was one of the or-
ganizers of a big conference in honor of Oleg, Perspectives in Analysis, Geometry,
and Topology, at Stockholm University during seven days, 2008 May 19–25.

As president of the Swedish National Committee for Mathematics, he led the
Swedish delegation to the General Assembly of the International Mathematical
Union in Bangalore, Karnataka, India, in August 2010. In 2011 he invited, as
president of the National Committee, Bernd Sturmfels to lecture in Linköping,
Lund, and Göteborg.

Mikael Passare was Deputy Director for Institut Mittag-Leffler, Djursholm,
Sweden, from 2010. He was very much appreciated for his activity there, which
included organizing the Felix Klein Days for teachers and a research school for
high-school students.

Starting in July 2001, he served during ten years as one of the editors of
the Arkiv för matematik (Ari Laptev, personal communication 2011-10-19). Dur-
ing the period 2004 April 01–2009 June 25 he was one of the Associate Editors
for the Journal of Mathematical Analysis and Applications (Don Prince, personal
communication 2011-10-13).

Mikael was a member of the Swedish Committee for Mathematics Education
(SKM) from January 1997, when SKM started its activity, until December 2004.
Mikael’s efforts in SKM can only be explained by his firm dedication to mathe-
matics education in the schools. He participated actively by organizing meetings,
authoring reports to policy makers, and influencing politicians and officials at the
Ministry of Education and the Swedish National Agency for Education. (Gerd
Brandell, personal communication 2011-10-17.)

The activity of SKM to which he devoted most of his energy was the inter-
national competition International Mathematical Kangaroo, originally Kangourou
sans frontières, in Swedish Kängurun – Matematikens Hopp. He took the initiative
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to start, with SKM as organizer, a Swedish version of this competition in 1999.
He translated the problems, which arrived in English or French, up to 2009. He
checked also that the mathematical content was correct after the necessary adap-
tion to Swedish traditions in problem formulation and other circumstances. He
participated, at least during the first five to six years, in the choice of problems
to the Swedish edition, and he continued his commitment to the competition even
after his time in SKM. The competition is run by SKM in cooperation with the
National Centre for Mathematics Education, NCM. In 2010, more than 80,000
students at all levels participated. (Gerd Brandell, personal communication 2011-
10-17; Karin Wallby, personal communication 2011-10-19.)

Mikael was a member of the Steering Group for the National Graduate School
in Mathematics Education from March 2000, until it ceased in December 2006. The
school, which had about twenty PhD students, was financed by the Bank of Sweden
Tercentenary Foundation (Riksbankens Jubileumsfond, RJ) and the Swedish Re-
search Council (Vetenskapsr̊adet, VR). He actively and constructively contributed
to shaping the education of this Graduate School, both in his role as member of
the Steering Group and by participating in many meetings between PhD students
and advisors. He was project leader for the school’s activity at the Department of
Mathematics at Stockholm University. Of the school’s PhD students, two were at
Stockholm: Kirsti Löfwall Hemmi and Andreas Ryve, who both got their PhDs in
2006. (Gerd Brandell, personal communication 2011-10-17.)

The Sonja Kovalevsky School in Stockholm, a private elementary school,
started its activity in the Fall of 1999. Its profile includes chess, mathematics, and
Russian. The aim was, among other things, to benefit from educational experience
from Russia. Mikael was a member of the school’s Board from the beginning.

At the time of his death, Mikael was President of the Swedish Mathematical
Society and also a member of the Committee for Developing Countries (CDC)
of the European Mathematical Society. His activity for mathematics in Africa is
described in a later section.

Mikael died from a sudden cardiac arrest in Oman in the evening of 2011
September 15.2 His next of kin are his wife Galina Passare, his son Max, and his
daughter Märta.

Mikael’s nine PhD students

Mikael served as advisor of nine PhD students who successfully completed their
degrees. They are registered in the Mathematics Genealogy Project and are:

2The cause of death has been established to be a complete occlusion of the right coronary
artery leading to an acute myocardial infarction and an immediate death; there are no injuries

whatsoever that would indicate a fall into a canyon (The Swedish National Board of Forensic
Medicine (2011)).
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Yang Xing, 1992, Stockholm University: Zeros and Growth of Entire Functions of
Several Variables, the Complex Monge–Ampère Operator and Some Related
Topics. Now Senior Lecturer at Lund University.

Mikael Forsberg, 1998, The Royal Institute of Technology: Amoebas and Laurent
Series. Now Senior Lecturer at Gävle University College.

Lars Filipsson, 1999, The Royal Institute of Technology: On Polynomial Interpo-
lation and Complex Convexity. Now Senior Lecturer at the Royal Institute
of Technology, Stockholm.

Timur Sadykov, 2002, Stockholm University: Hypergeometric Functions in Sev-
eral Complex Variables. Although not mentioned in the Genealogy Project,
August Tsikh served as a coadvisor (Timur Sadykov, personal communica-
tion 2011-11-26; August Tsikh, personal communication 2011-12-06). Now
Timur is Full Professor at the Department of Mathematics at the Russian
Plekhanov University, Moscow.

Hans Rullg̊ard, 2003, Stockholm University: Topics in Geometry, Analysis and
Inverse Problems. Now at Comsol Group, Stockholm, a company providing
software solutions for multiphysics modelling.

Johan Andersson, 2006, Stockholm University: Summation Formulae and Zeta
Functions. Now Senior Lecturer at Mälardalen University, Campus Väster̊as.

Alexey Shchuplev, 2007, Stockholm University: Toric Varieties and Residues.
August Tsikh was second advisor. Now Assistant Professor and Head of Lab-
oratory at the Siberian Federal University in Krasnoyarsk.

David Jacquet, 2008, Stockholm University: On Complex Convexity. Now Special-
ist Consultant in quantitative analysis and CEO of his company Mathsolu-
tions Sweden AB.

Lisa Nilsson, 2009, Stockholm University: Amoebas, Discriminants, and Hyper-
geometric Functions. August Tsikh was second advisor. Now she is employed
at the insurance company If Skadeförsäkring AB in Stockholm as risk analyst
within capital modelling.

Mikael’s mathematics

Residue theory

Mikael soon became known as an eminent researcher in complex analysis in several
variables, where his thesis was an important breakthrough with new results in
residue theory. Its title was Residues, Currents, and Their Relation to Ideals of
Holomorphic Functions [1984], and it was later published in [1988c].3

Residue theory in several variables is a notoriously difficult part of complex
analysis. Mikael’s work was inspired by that of Miguel E.M. Herrera (1938–1984).
Miguel and I were together at the Institute for Advanced Study in Princeton

3Years in brackets refer to the list of Mikael Passare’s publications. Years in parentheses refer to
publications listed at the end of this chapter.
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during the academic year 1965–66, and it was there that I learned about residues
from him.4 His results, which culminated in the paper by Herrera and Lieberman
(1971) and the much quoted book by Coleff and Herrera (1978), were well known
long before these publications. I could somehow serve as mediator to Mikael for
this interest without doing much research on residues myself.

Also Alicia Dickenstein, who was a student of Miguel and got her PhD at
Buenos Aires in 1982, knew this theory very well and soon came into contact with
Mikael. As for integral formulas, Mikael took advice from Bo Berndtsson, already
then a renowned expert in that field.

Another important person for Mikael’s mathematical development was Gen-
nadi Henkin (1942–2016). They met in Moscow during the academic year 1981–82,
afterwards several times in the period 1983–1990, and then in France and Sweden
during the period 1991–2010, for example in Trosa in 1997, Saltsjöbaden in 1999,
and in Uppsala in 2006. During these meetings they discussed, in particular, inte-
gral formulas of Cauchy–Leray type and applications from the papers of Gennadi
and Bo (starting with Henkin (1969)).

While residues in one complex variable have been well understood for a long
time, the situation is quite different in several variables. There were pioneers like
Henri Poincaré (1854–1912) and Jean Leray (1906–1998). Alexandre Grothendieck
(1928–2014) developed a residue theory in higher dimensions, but it was quite
abstract. Through work by Miguel Herrera, François Norguet (1929–2010), and
Pierre Dolbeault (1924–2015), the theory could be linked to distribution theory,
developed by Laurent Schwartz (1915–2002), and that was the road that Mikael
continued to follow. He worked intensively with August Tsikh, on residue theory
as well as on amoebas.

Residues in one complex variable. In one complex variable we can observe that
there is a lot of symmetry:∫

ε<|z|<r

zj z̄kf(|z|)dx ∧ dy = 0, j, k ∈ Z, j �= k.

This means that heavy masses are balanced, and implies that, when calculating
residues, it is enough to work with the principal value, PV (valeur principale,
VP); we need not use the more difficult and unstable construction of the finite
part, FP (partie finie, PF). (In real analysis, the finite part inevitably appears:
the distribution on the real axis given by the function log |x|, x ∈ R, has the
derivative PV(1/x) and the second derivative −FP(1/x2).)

If we write a smooth function ϕ as ϕ(z) = P (z)+R(z), where P is a polyno-
mial in z and z̄ of degree at most m− 1, m ∈ N, m ≥ 1, and R(z)/zm is bounded
near the origin, it follows from the symmetry mentioned above that P does not

4He also introduced me to a great writer: Ursula LeGuin.
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influence the following integral at all.∫
ε<|z|<r

ϕ(z)

zm
dx ∧ dy =

∫
ε<|z|<r

R(z)

zm
dx ∧ dy.

As ε tends to 0, the last integral tends to∫
|z|<r

R(z)

zm
dx ∧ dy.

We define the principal value PV(1/zm) of 1/zm by〈
PV

(
1

zm

)
, ϕ

〉
= PV

∫
C

ϕ(z)

zm
dx ∧ dy = lim

ε→0

∫
ε<|z|

ϕ(z)

zm
dx ∧ dy,

which exists for all test functions ϕ ∈ D(C). If now f/g is meromorphic with a
pole at the origin, we obtain〈

PV

(
f

g

)
, ϕ

〉
= PV

∫
C

f(z)

g(z)
ϕ(z)dx ∧ dy, ϕ ∈ D(C),

and we define the residue res(f/g) of f/g as

res

(
f

g

)
=

∂

∂z̄
PV

(
f

g

)
∈ D ′(C).

Residues in several variables. Let f and g be holomorphic functions of n complex
variables. The principal value PV(f/g) of f/g is a distribution defined by the
formula 〈

PV

(
f

g

)
, ϕ

〉
= lim

ε→0

∫
|g|>ε

fϕ

g
= lim

ε→0

∫
χfϕ

g
, ϕ ∈ D(Cn),

where χ = χ(|g|/ε) and χ is a smooth function on the real axis satisfying 0 ≤ χ ≤ 1
and χ(t) = 0 for t ≤ 1, χ(t) = 1 for t ≥ 2 (in [1985:727] when f = 1; in [1988:39]
in general).

The residue current is ∂̄ PV(f/g). It is natural to ask if there exist interesting
algebras of these currents, for instance whether the products

(PV(f1/g1))(PV(f2/g2)),
(
∂(PV(f1/g1))

)
(PV(f2/g2))

and other similar products can be defined.
Schwartz proved (1954) that it is in general impossible to multiply two dis-

tributions while respecting the associative law. He indicated three distributions
u, v, w ∈ D ′(R) where uv, vw, (uv)w and u(vw) all have a good meaning, but
where (uv)w �= u(vw). He took u = PV(1/x), the principal value of 1/x; v as the
identity, i.e., the smooth function v(x) = x, which can be multiplied to any distri-
bution; and w = δ, the Dirac measure placed at the origin. Then we have uv = 1,
(uv)w = δ, while vw = 0, u(vw) = 0. Hence there is no associative multiplication.
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Mikael’s construction of residue currents goes as follows. Take

f = (f1, . . . , fp+q), g = (g1, . . . , gp+q),

two (p+ q)-tuples of holomorphic functions, and consider the limit

lim
εj→0

f1
g1
· · · fp+q

gp+q
∂̄χ1 ∧ · · · ∧ ∂̄χp · χp+1 · · ·χp+q,

where χj = χ(|gj |/εj), and the εj tend to zero in some way.
Coleff and Herrera (1978:35–36) took q = 0 or 1, and assumed that εj tends

to zero much faster than εj+1, which in this context means that εj/ε
m
j+1 → 0 for

all m ∈ N and j = 1, . . . , p+ q − 1; thus it is almost an iterated limit. This gives
rise to the strange situation that, in general, the limit depends on the order of the
functions (and is not just an alternating product).

Mikael took instead εj = εsj for fixed s1, . . . , sp+q. The limit, which will be
written as RpP q[f/g](s), where we now write [. . . ] for the principal value, does not
exist for arbitrary sj . But he proved [1985:728] that, if we remove finitely many
hyperplanes, then RpP q[f/g](s) is locally constant in a finite subdivision of the
simplex

Σ =
{
s ∈ Rp+q; sj > 0,

∑
sj = 1

}
,

so that the mean value

RpP q

[
f

g

]
=

∫
−
Σ

RpP q

[
f

g

]
(s) = ∂̄

[
f1
g1

]
∧ · · · ∧ ∂̄

[
fp
gp

]
·
[
fp+1

gp+1

]
· · ·

[
fp+q

gp+q

]
exists (Definition A in [1987]). This is the product of p residue currents and q
principal-value distributions.

In the little paper [1993c], based on his talk when accepting the Thuréus
Prize in 1991, he discusses the possibility of defining the product PV(1/x)δ on
the real axis, and finds that it should be − 1

2δ
′, which is the mean value of −δ′

and zero. This is an analogue in real analysis to the mean value over Σ which he
considered in the complex case.

Leibniz’ rule for the derivative of a product and some other rules of calculus
hold; for example we have [1988d:43]:[

1

z1

] [
z1
z2

]
=

[
1

z2

]
,

which yields (
∂

[
1

z1

]){[
1

z1

] [
z1
z2

]}
=

(
∂

[
1

z1

])[
1

z2

]
,

while {(
∂

[
1

z1

])[
1

z1

]}[
z1
z2

]
=

1

2
z1

(
∂

[
1

z21

])[
1

z2

]
=

1

2

(
∂

[
1

z1

])[
1

z2

]
.

Thus the associative law does not hold.



Mikael Passare (1959–2011) 43

We saw in Schwartz’ example that an associative multiplication is impossible
in general; the example shown here makes us wonder whether it is possible to define
an associative multiplication in some algebra of principal-value distributions and
residue currents. We may also ask if there is an interesting non-associative algebra
of principal-value distributions and residue currents.

For complete intersections, i.e., when the set of common zeros of f1, f2, . . . ,
fp has maximal codimension, Mikael established a division formula with remainder
term:

h =

p∑
1

gjfj + h · res,

where res is the residue current, which is a factor in the remainder term h · res
and has the property that fj · res = 0 for all j. This implies that h belongs to
the ideal generated by f1, . . . , fp if and only if h · res vanishes. This is a beautiful
characterization of the ideals of holomorphic functions and explains the choice of
title in the papers [1984, 1986, 1988c]. The characterization of the ideals with the
help of residues was proved independently and at about the same time by Alicia
Dickenstein and Carmen Sessa (1985:424).

This characterization of ideals enabled Mikael and Bo to formulate an elegant
and explicit variant of Leon Ehrenpreis’ Fundamental Principle; it was published
in a joint paper with Bo [1989]. Later, Mats Andersson and Elizabeth Wulcan
(2007) could define a residue without the assumption of a complete intersection.
In their work, an important role was played by a paper by Mikael, August, and
Alain Yger, viz. [2000b].

For complete intersections we have, according to [1988d:42, Theorem 4 iii)],

gjR
pP 1[1/g] = 0, g = (g1, . . . , gp+1), j = 1, . . . , p,

where RpP 1[1/g] is the mean value over the simplex Σ defined above. However,
Mikael showed in [1988d:43, Example 3] that this is not true when we do not have
complete intersections: with n = 2, p = 2, q = 0, f1 = f2 = 1, g1(z) = z1z2,
g2(z) = z2 we get

R2[1/g] = ∂

[
1

z1z2

]
∧ ∂

[
1

z2

]
=

1

2
∂

[
1

z1

]
∧ ∂

[
1

z22

]
;

when we multiply this current by g2, we get

g2R
2[1/g] =

1

2
z2∂

[
1

z1

]
∧ ∂

[
1

z22

]
=

1

2
∂

[
1

z1

]
∧ ∂

[
1

z2

]
�= 0.

Other examples in this calculus are [1988d:43]:[
1

z 1

]
∂̄

[
1

z22

]
= 2

[
1

z1z2

]
∂̄

[
1

z2

]
and ∂̄

[
1

z1

]
∧ ∂̄

[
1

z22

]
= 2∂̄

[
1

z1z2

]
∧ ∂̄

[
1

z2

]
.



44 C.O. Kiselman

The original definition and the definition which uses meromorphic extension
agree [1987:159]:

RpP q

[
1

g

]
= lim

ε→0

∂̄|g1|ε
g1

∧ · · · ∧ ∂̄|gp|ε
gp

· |gp+1|ε
gp+1

· · · |gp+q|ε
gp+q

.

Here the left-hand side is defined according to Definition A already mentioned,
while the right-hand side, called Definition B, is the one which comes from mero-
morphic extension. In fact, when �ε is sufficiently large, the expression following
the lim operator defines a current. It has a meromorphic extension which is holo-
morphic near ε = 0, and the right-hand side is its value at ε = 0.

In a CV which Mikael wrote in 2000 he mentions a book project with August
Tsikh as coauthor and which had the title Multidimensional Residues and Toric
Varieties. He gives a detailed table of contents of the five chapters in the book.
Later they abandoned this project, since amoebas and tropical geometry became
more interesting for them, and they aimed at writing a book on amoebas (August
Tsikh, personal communication 2011-10-06).

Lineal convexity

André Martineau (1930–1972) gave a couple of seminars on lineal convexity (con-
vexité linéelle) in Nice during the academic year October 1967 through September
1968, when I was there. This is a kind of complex convexity which is stronger than
pseudoconvexity and weaker than convexity. Since I was of the opinion that the
results for this convexity property were too scattered in the literature and did not
always have optimal proofs, I suggested that Mikael write a survey article on the
topic.

On the one hand, this piece of advice was certainly very good, for he found a
lot of results in cooperation with his friends Mats Andersson and Ragnar Sigurðs-
son (Mikael’s mathematical uncle). On the other hand, it was perhaps not such
a good suggestion, for the survey just kept growing, and two preprints were cir-
culating starting in 19915 – and by then they had been busy writing for a long
time already. The article became a book, and it did not appear until 2004 [2004b].
Anyway, it is thanks to André Martineau that lineal convexity came to be studied
in the Nordic countries – and the book has become a standard reference.

In this book, the authors study in detail a property which Martineau called
strong lineal convexity (convexité linéelle forte), and which he did not characterize
geometrically. This notion, in the book called C-convexity, is not linked to any
cleistomorphism (closure operator), since the intersection of two strongly lineally
convex sets need not have the property. Therefore it has a different character than

5I no longer possess any documentation about preprints from 1991, but in the CV that Mikael
wrote in 2000, two are mentioned: Andersson, Mats; Passare, Mikael; Sigurdsson, Ragnar (1995),
Complex convexity and analytic functionals I, Reykjav́ık, 71 pp.; and (2000), Complex convexity

and analytic functionals II, Reykjav́ık and Sundsvall, 103 pp. The book [2004b] came to comprise
xii + 160 pages.
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lineal convexity and usual convexity, which, as is well known, are the fixed points
of cleistomorphisms.

An important characterization of strong lineal convexity has been obtained
recently by Gennadi Henkin and Peter Polyakov: a lineally convex compact set is
strongly lineally convex if and only if it can be approximated in the Hausdorff met-
ric by lineally convex compact sets with smooth boundaries (Henkin & Polyakov
(2012: Proposition 2.4)). For related question see also Kiselman (2016) and the
references mentioned there.

Amoebas and tropical geometry

Mikael’s later work is concerned with amoebas and coamoebas – the first pub-
lications in this field were Mikael Forsberg’s thesis (1998) and their joint paper
[2000a]. The spine of an amoeba – in mathematical zoology, amoebas are verte-
brates – is a tropical hypersurface. Tropical mathematics is a rather new branch
of mathematics, where addition and multiplication is replaced by the maximum
operation and addition, somewhat similar to taking the logarithm of a sum and
a product.6 Mikael’s interest in tropical mathematics was a break with his earlier
work on complex analysis, which he once compared with my switching to digital
geometry.

At Institut Mittag-Leffler (2008, Djursholm, Sweden)
(photo Ragnar Sigurdsson)

An amoeba is a set in Rn defined as follows. We define a mapping

Log: (C� {0})n → Rn by Log(z) = (log |z1|, log |z2|, . . . , log |zn|).
6It seems that the first use of the adjective tropical in this sense in the title of a publication was
in Simon (1988).
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If f is a function defined in (C � {0})n, then its amoeba is the image under Log
of its set of zeros. The term was introduced by Gelfand et al. (1994). For more
recent developments see, e.g., Viro (2011).

One can of course study the image in Rn of any set, but zero sets of certain
functions have interesting properties. An amoeba is typically a closed semianalytic
subset of Rn with tentacles which go out to infinity and separate the components
of the complement of the amoeba. The number of such components is at most equal
to the number of integer points in the Newton polytope for f if f is a Laurent
polynomial; in certain cases equal to the latter number [2000a].

An easy example, which Mikael himself used in his lectures, is the zero set
of the polynomial P (z, w) = 1 + z + w of degree one. A zero (z, w) ∈ C2 must
satisfy 1 ≤ |z| + |w|; |z| ≤ |w| + 1; and |w| ≤ 1 + |z|. It is easy to see that any
point (p, q) ∈ R2 which satisfies the three inequalities 1 ≤ p + q; p ≤ q + 1; and
q ≤ 1+ p is equal to (|z|, |w|) for some zero (z, w) of P . (A useful observation here
is the fact that the corresponding strict inequalities are the exact conditions under
which there exists a triangle with side lengths 1, p and q.) The amoeba of P is
then given by the three inequalities 1 ≤ ex + ey; ex ≤ ey + 1; and ey ≤ 1 + ex.

Of course one can study the zero set directly without taking the logarithm.
That it nevertheless has interesting consequences to take the logarithm was shown
by Mikael in [2008a]: it is about area preserving.

A coamoeba is defined analogously but with the mapping Log replaced by the
mapping Arg(z) = (arg z1, arg z2, . . . , arg zn). Mikael wanted to establish formally
the duality between amoebas and coamoebas, and he started to write a paper with
Mounir Nisse, which Mounir has now finished (this volume, pp. 63–80). For other
relevant papers, see Nisse (2009) and Nisse & Sottile (2013a; 2013b).

Jens Forsg̊ard and Petter Johansson have continued the work on coamoebas
and published two papers (2014; 2015) on the subject.

A straight line in the plane can be described by an equation

ax+ by + c = 0,

and hence as the fold line of the convex function

f(x, y) = (ax + by + c) ∨ 0, (x, y) ∈ R2,

where the maximum operation is denoted by ∨: s∨t = max(s, t), s, t ∈ R. To trop-
icalize means to replace addition by the maximum operation and multiplication
by addition. By this procedure we obtain

g(x, y) = (a+ x) ∨ (b+ y) ∨ c, (x, y) ∈ R2.

A tropical straight line can therefore be defined as the union of the fold lines
for the function g, which consists of three rays. They emanate from the point
(c− a, c− b) in the directions (1, 1), (−1, 0) and (0,−1). For example, the amoeba
of the polynomial P (z, w) = 1+ z+w mentioned earlier contains the tropical line
emanating from (0, 0), which is its spine.
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If p = (p1, p2) and q = (q1, q2) are two points in the plane with

q1 �= p1, q2 �= p2 and q2 − q1 �= p2 − p1,

then it is easy to see that there is one and only one tropical straight line through p
and q. If one of the conditions is not satisfied, there exist infinitely many tropical
straight lines through p and q, but Mikael explained that one should accept only
those lines that are stable under small perturbations; then you get a single line. In
the same way, two distinct tropical straight lines meet in a single point if we only
accept intersections that are stable under small perturbations.

Just like in spherical geometry there do not exist any distinct parallel lines.
We can go on and ask about all the axioms of Euclidean geometry.

The similarity between the procedure of tropicalization and taking the loga-
rithm is based on the formulas

log(x× y) = log x+ log y, x, y > 0, and

log x ∨ log y ≤ log(x+ y) ≤ log 2 + (log x ∨ log y), x, y > 0,

where the error, no larger than log 2, is relatively small if x or y is large.
In the little paper [2008a], which is indeed a gem, Mikael shows how the con-

cept of an amoeba can be used to show the well-known formula ζ(2) =
∑∞

1 1/n2 =
π2/6 ≈ 1.644934 (the so-called Basel problem).

The Pluricomplex Seminar

I started a seminar series in Uppsala in the 1970s. In the beginning it was more like
a study group, and had no name, since I thought that a name could be hampering.
But later I discovered that almost everything was about several complex variables,
and during a visit to Strasbourg I saw that Jean-Pierre Ramis had used the name
Séminaire pluricomplexe. That sounded mysterious enough, and I borrowed it to
Uppsala. During the Fall Semester of 1980 the title was Pluricomplex Analysis and
Geometry; in the Spring Semester of 1981 it was Pluricomplex Analysis, and from
the Spring Semester of 1982 on, the name was The Pluricomplex Seminar.

Mikael’s gave his first lecture in the seminar during the Fall Semester of
1978. He reported on chosen sections of the little book by Lev Isaakovič Ronkin
(1931–1998) entitled The Elements of the Theory of Analytic Functions of Several
Variables (1977), which had been published in Russian in 2,700 copies in Kiev the
year before and cost 93 kopecks. The task was a part of the examination for the
course Mathematics D.

Lectures held by Mikael Passare. Except in four cases, the lectures listed here
were given by Mikael at the Pluricomplex Seminar.

1978-11-13. Analytisk fortsättning [Analytic continuation]. (Report on a special
project for the advanced course Mathematics D.)

1982-11-01.Henkin–Ramirez formulas for weight factors (according to Bo Berndts-
son and Mats Andersson).
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1983-01-24. Godtyckliga omr̊aden som projektioner av pseudokonvexa omr̊aden
[Arbitrary domains as projections of pseudoconvex domains ].

1983-04-18. Integraloperatorer för att lösa Cauchy–Riemanns ekvationer (efter R.
Michael Range) [Integral operators for solving the Cauchy–Riemann equations
(after R. Michael Range)].

1983-06-15. Samband mellan mängder av Newtonkapacitet noll och pluripolära
mängder (efter Azim Sadullev) [Links between sets of Newton capacity zero
and pluripolar sets (after Azim Sadullaev)].

1984-05-14. Ideal i ringen av holomorfa funktioner definierade medelst strömmar, I
[Ideals in the ring of holomorphic functions defined by means of currents, I ].

1984-05-21. Ideal i ringen av holomorfa funktioner definierade medelst strömmar,
II [Ideals in the ring of holomorphic functions defined by means of cur-
rents, II ].

1984-12-10. Residuer, strömmar och deras relation till ideal av holomorfa funk-
tioner [Residues, currents, and their relation to ideals of holomorphic func-
tions ] (cf. [1984], the thesis which was to be defended five days later).

1985-03-20.Produkter av residuströmmar [Products of residue currents ] (cf. [1985]).

1986-01-17. A new proof for integral representation formulas without boundary
term.

1986-04-14. Principal values of meromorphic functions.

1986-09-18. 1. Shortcut to weighted representation formulas for holomorphic func-
tions (cf. [1988a]). 2. Impressions from the IntFernational Congress of Math-
ematicians, Berkeley.

1988-11-07. Kergin interpolation of entire functions (cf. [1991a; 1991b]).

1989-02-22. Continuity of residue integrals in codimension two.

1989-05-24. Integralformler och residuer p̊a komplexa m̊angfalder [Integral formu-
las and residues on complex manifolds ].

1989-10-04. Kergin interpolation on C-convex sets.

1991-02-18. Mathematical impressions from Krasnoyarsk: 1. Holomorphic exten-
sion from a part of the boundary. 2. Toric varieties.

1993-05-05. Projektiv konvexitet [Projective convexity].

1993-09-24. A lecture at a meeting of the Swedish Math. Society at the Royal
Institute of Technology.

1994-05-19. Holomorphic differential forms on analytic sets.

1998-09-07. Amoebas and Laurent determinants (cf. [2000a; 2004a]).

2000-03-14. Constant terms in powers of a Laurent polynomial.

2001-05-04. Amoebas, Monge–Ampère measures, and triangulations of the Newton
polytope. Lecture at the Nordan Meeting in Oslo.

2001-10-16. Complex convexity – recent results of Kiselman and Hörmander.

2002-05-07. Discriminant amoebas.
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2002-11-19. Algebraic equations and hypergeometric functions.

2003-03-04. The Lee–Yang circle theorem and geometry of amoebas.

2003-10-21.Amöbor, polytoper och tropisk geometri [Amoebas, polytopes, and trop-
ical geometry].

2004-01-10.Koamöbor och Mellin-transformer av rationella funktioner [Coamoebas
and Mellin transforms of rational functions ].

2006-05-19. A lecture at the Nordan Meeting in Sundsvall.

2006-07. A minicourse on amoebas given at Institut de Mathématiques de Jussieu,
Paris.

2010-03-09. (Co)amoebas of linear spaces.

2010-10-19. Mellin transforms and hypergeometric functions.

Originally, the seminars took place at Uppsala with a lecture in general every week.
From the Spring Semester of 1999 on, when Mikael had become well established
as a professor at Stockholm, they became a joint activity for Uppsala University,
Stockholm University, and the Royal Institute of Technology (KTH), with an al-
ternating venue. To minimize travel we had two lectures every second week. From
2007, when I had switched to digital geometry, mathematical morphology, and
discrete optimization, and Burglind Juhl-Jöricke had left Uppsala University, it
became an activity exclusively in Stockholm.

Together with Mats Andersson and Peter Ebenfelt, Mikael Passare initiated a
series of encounters on complex analysis in the five Nordic countries. Mikael and
Peter organized the first conference, which took place in Trosa, Sweden, March 14–
16, 1997; Mats the second, in Marstrand, Sweden, April 24–26, 1998. Following a
voting procedure at the end of the first meeting, these yearly meetings were named
Nordan7 – a clear reference to Les Journées complexes du Sud, which during a long
time have taken place in the south of France.

Mikael edited abstracts in Swedish of the lectures – which had all been given
in English. These brochures were published with a delay of a few years. Twelve
of them have come out; he was preparing the thirteenth, which was to report
on Nordan 13 held in Borgarfjordur in 2009, and asked Ragnar Sigurðsson on
2011 September 10, to write a preface in Icelandic (Ragnar Sigurðsson, personal
communication 2011-10-04).

Lars Filipsson emphasizes (personal communication 2011-10-06) that Mikael
wrote these brochures in Swedish to develop Swedish terms in higher mathematics,
especially in complex analysis – otherwise the Swedish mathematical terms reach
up to the first, possibly the second, university year only.

7This is the name in Swedish of a chilly wind from the north, but also reminds us of the original
purpose: to promote Nordic Analysis.

TheNordan Meetings
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Nordic meetings like these were something that Mikael and Mats had dis-
cussed and planned during many years; both of them wanted to create a forum
with a more relaxed atmosphere, where Nordic complex analysts, in particular the
young ones, could feel more at home than at big international conferences, and
which would give those that worked in the Nordic countries occasion to get to
know each other better.

And the initiative turned out to be a long-lasting success: the fifteenth en-
counter took place in Röst̊anga in southern Sweden, 2011 May 06–08; the sixteenth
in Kiruna in northern Sweden, 2012 May 11–13; the seventeenth in Svolvær, Nor-
way, 2013 May 24–26; the eighteenth at CIRM, Luminy, France, 2014 March 24–29,
as a joint session of Nordan and the Komplex Analysis Winter school And work-
shop (KAWA); and the nineteenth in Reykjav́ık, Iceland, 2015 April 25–26. The
twentieth Nordan took place in Stockholm, 2016 March 16–20 as a session of the
27th Nordic Congress of Mathematicians.

Africa

Mikael Passare was a Member of the Board of the International Science Pro-
gramme (ISP), Uppsala, and a Member of the Board of the Pan-African Centre
for Mathematics (PACM) in Dar es-Salaam, Tanzania. He was a driving force in
the creation of this Pan-African Centre, which is a collaborative project between
Stockholm University and the University of Dar es-Salaam.

Mohamed E. A. El Tom, Chairman of the Board of PACM and a member of
the Reference Group for Mathematics of ISP, says that he is confident that had
it not been for Mikael, PACM would have remained a mere idea in the head of
its initiator, i.e., in Mohamed’s head; see El Tom (2011). Mikael started working
with great conviction and enthusiasm on the idea when Mohamed first suggested
it to him while they were walking on a Meroetic archeological site near Khartoum
in April 2004. (Mohamed El Tom, personal communication 2011-10-17.)

Mikael took an early, informal contact with the Vice-Chancellor (Rektor) of
Stockholm University, who expressed his approval in principle (Mohamed El Tom,
personal communication 2011-10-20).

In October 2008, Mikael and Mohamed discussed the idea with Anders Karl-
hede, Dean of the Division, and asked whether Stockholm University could be a
partner in the project. Anders immediately took the question to Stefan Nordlund,
Dean of the Faculty. The latter proved to be very positive, which was decisive for
the coming commitment of Stockholm University to PACM. (Anders Karlhede,
personal communication 2011-10-19.)

Mikael then presented the idea to the Department of Mathematics at Stock-
holm University. While the department did not object to the idea, it was only
natural that some members raised many significant issues that required clarifica-
tion. Mikael maintained correspondence with Mohamed about these and related
isues for more than two years, at the end of which he managed to secure the
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approval of the department to collaborate in establishing the Centre at some suit-
able university in Africa. Later he was an influential member of the committee
that short-listed African universities for hosting PACM. Subsequently, he was a
member of a delegation led by Stefan Nordlund which visited some of the short-
listed universities and made appropriate recommendations to the Vice-Chancellor
of Stockholm University.

Mikael never ceased devoting of his precious time to the Centre. His last
assignment was to chair and constitute a search committee for the Director of the
Centre, a process he initiated before he was asked by the Board of the Centre to
undertake it. Such was Mikael, ahead of others in thinking, and working to realize
important objectives without being asked to do so. When Mohamed conveyed to
him the Board’s decision regarding the search committee, he responded promptly,
accepting the charge, and promised to respond with detailed ideas upon his return
from the trip to Dubai, Oman and Iran that he was planning to undertake.

Mikael’s commitment and enthusiasm for the Centre was unsurpassed. He
was confident that the grand objective of establishing a world-class Centre of
Mathematics in Africa is attainable. (Mohamed El Tom, personal communication
2011-10-17; this note applies to the last three paragraphs.)

Sonja Kovalevsky

The chair which Mikael Passare held was the one which was created for Sonja
Kovalevsky (1850 January 03/15–1891 February 10). An earlier incumbent during
seven years, 1957–1964, was Lars Hörmander (1931–2012), Mikael’s mathematical
grandfather. Mikael was proud of having been appointed to Sonja’s chair. He is
buried not far from her grave.

Exactly 150 years after Sonja’s birth, on 2000 January 15, Mikael organized a
symposium to her memory. It was held in the Aula Magna of Stockholm University.
Among the invited speakers were Agneta Pleijel, Roger Cooke and Ragni Piene.

Languages

In the section on the Nordan meetings, I have already mentioned that Mikael was
interested in developing Swedish mathematical terms. He knew many languages.
His Russian was “really perfect!” according to Timur Sadykov (personal commu-
nication 2011-10-13); “he spoke Russian perfectly, so it was totally impossible to
recognize his Swedish origin” (Andrei Khrennikov, personal communication 2011-
11-26). He took a course in French corresponding to 30 ECTS credit points at
Stockholm University before going to Paris in 1986-87 (diploma dated 1985-09-
03). He learned some Fijian when he visited the Republic of Fiji (Timur Sadykov,
personal communication 2011-10-16).
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His knowledge of German was very good although he had not studied that
language in high school. He studied also Finnish and spoke the language so well
that he was interviewed in the Finnish-language Sisuradio in Sweden.

Spanish and Italian he knew enough to get along. He was in Italy and Spain
with Anders Wändahl, and never talked English when visiting a restaurant or
when asking for directions in the street. He could also speak some Polish and
Bulgarian.

Finally, he studied Arabic and could at least read that language. Maybe Ara-
bic would have been his next project. (Anders Wändahl, personal communication
2011-10-19; this remark applies to this paragraph and the preceding one.)

An extraordinary curiosity

Andrei Khrennikov writes:

I would like to mention Mikael’s extraordinary curiosity, which was ex-
tended to a large variety of fields. In particular, he discussed with excite-
ment the possibility of mathematical modeling of cognition, human psy-
chological behavior, and consciousness. I met Mikael and Galina the last
time in July 2010, in Stockholm, and during one evening we discussed
a large variety of topics: complex and p-adic analysis, mathematical
foundations of quantum physics, quantum nonlocality, Bell’s inequality
and experiments [. . . ] (Andrei Khrennikov, personal communication
2011-11-26)

Music

Mikael loved classical music; in his teens he sold his bicycle in order to buy a piano.
He played clarinet and flute. He composed a piece for clarinet, which was played
in a theater in Stockholm. His last love was an instrument called theremin.8 He
dreamed about being able to play it.9

He also loved to sing and was a member in a choir and learned to sing solo
both in Stanford and in Moscow. (Galina Passare, personal communication 2011-
10-17; this applies to all of this section.)

A “Swedish Classic”

Mikael swam several times a week, at least 2 km. He loved the mountains and skied
long distances (sometimes 90–130km) spending the night in cottages. He swam
between islands in Lake Mälaren close to Stockholm. (Galina Passare, personal
communication 2011-10-17.)

8Termenvoks, which was invented by Lev Sergeeviq Termen, Léon Theremin (1896–1993).
9At his funeral on 2011 October 28, Dance in the Moon was played on CD; the performer was
Lydia Kavina, a leading thereminist.
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He ran the Stockholm Marathon. To Yûsaku Hamada’s guest lectures in Upp-
sala on 2002 September 10, he went by bike from Stockholm (Yûsaku Hamada,
personal communication 2011-09-19). Another time he skated on Lake Mälaren to
the seminar in Uppsala. (After the seminar, however, he went back to Stockholm
by train.)

The Viking Run (in Swedish: Vikingarännet) is the world’s biggest regular
skating event on natural ice, and is arranged yearly since 1999. It usually starts at
Skarholmen in Uppsala and finishes at some place in or near Stockholm (depending
on ice conditions; sometimes the ice is so bad that the competition has to be
canceled). Mikael participated in the Viking Run several times.

Mikael also performed what is known as a “Swedish Classic” in 1989. It
consists of four parts, which have to be done within a twelve-month period: (1) A
ski run, either the Engelbrekt Run, 60 km, or the Vasa Run / Open Track, 90 km;
(2) Going around Lake Vättern on bicycle, 300km; (3) The Vansbro Swim, 3 km;
and (4) The Lidingö Run, 30 km. Mats Andersson (personal communication 2011-
10-12) remembers that he claimed the cycling to be the most painful of the four,
noting the chafing after so many hours on the saddle.

He loved bandy (a sport similar to ice hockey but played with a ball and on an
ice field the size of a soccer field) and missed only one single Swedish Championship
Final since 1980, viz. the one in 1983 (Anders Wändahl, personal communication
2011-10-12). He was considerate also of other bandy fans. When Magnus Carlehed,
his mathematical nephew, was traveling in 1990 around the globe in areas where
ice rinks are not so common, he sent to Magnus a big envelope to the address Poste
restante, Denpasar (Bali), Indonesia. It contained a video recording showing the
Swedish Bandy Championship Final. (Magnus Carlehed, personal communication
2011-12-09.) He went to Arkhangelsk to see the Bandy World Championship there
(probably in 1999, when Russia won over Sweden in the final). He also traveled
to Oulu with Björn Ivarsson, his mathematical younger brother, to see the Cham-
pionship in 2001 (when Russia won over Sweden again in the final; Björn Ivarsson,
personal communication 2011-12-14).

A passionate traveler

Mikael saw at least three total solar eclipses: the one which took place on 1999
August 11 he saw in Turkey (although it would perhaps have been easier to see it
in Bulgaria); the eclipse of 2002 December 04 he saw in Mozambique; and on 2006
March 29 he was in Niger with Anders Wändahl (although the southern coast of
Turkey would have been easier to reach from Sweden and had a greater chance of
a clear sky without sand storms). After that they continued to Chad.

Mikael was a passionate traveler. He visited 152 countries. When he and I, to-
gether with several other Swedish mathematicians, were invited in September 2006
to celebrate the twentieth anniversary of the Groupe Inter-Africain de Recherche
en Analyse, Géométrie et Applications (GIRAGA) and after that to participate
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2010, India (photo Galina Passare)

in the First African-Swedish Conference on Mathematics, both in Yaoundé,
Cameroon, he first visited the Central African Republic and continued afterwards
to Equatorial Guinea and Gabon (Anders Wändahl, personal communication 2011-
11-14); thus he got four new countries on his list – assuming that he had not been
in any of these before – while I got only one.

The United Arab Emirates and Oman turned out to be the last ones. Land
number 153 should have been Iran: he planned to arrive at Tehran Imam Khomeini
International Airport on September 17 at 21:25 (Mikael Passare, electronic letter
2011-09-15 to mathematicians in Tehran). Siamak Yassemi, Head of the School of
Mathematics, University of Tehran, was ready to meet him there.

Finally

Mikael’s significance goes much beyond his own research. Many persons have testi-
fied to his positive view of life, his humor, and to his genuine interest in people he
met. He was an unusually stimulating partner in discussions; listening, inspiring,
and supportive, in professional situations as well as private ones.

For Mikael’s friends and colleagues around the world his unexpected depar-
ture is a severe loss.

For me personally, Mikael’s disappearance seems unreal. He was always there
for me. I shall remember him with joy and gratitude as long as I live.

Two proposals

At a meeting at Stockholm University to Mikael’s memory on 2011 September 28,
arranged by Tom Britton, I ended my speech by presenting two proposals.
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The first proposal was that Stockholm University organize a conference to
his memory, where his many mathematical achievements could be presented and
discussed. It has now been realized (at least in part) as a yearly event, Mikael
Passare’s Day, organized at Stockholm University in September or October each
of the six years 2011 through 2016.

Since, as far as I know, Mikael has not published all his ideas on tropi-
cal geometry, I proposed, secondly, that his former students write a survey ar-
ticle about these ideas (and of course other mathematical ideas). Alicia Dicken-
stein (2011-09-24), August Tsikh (2011-10-03), Alexey Shchuplev (2011-10-06),
and Hans Rullg̊ard (2011-10-11) have all spontaneously approved of this and want
to contribute to this project.

The second proposal can of course be realized as a part of the first, viz. if the
survey article is published in the conference proceedings.

See also my paper “Questions inspired by Mikael Passare’s mathematics”
(2012, 2014).
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Sources

Many persons have contributed important information on Mikael’s life. I would like
to thank especially Galina Passare, Mats Andersson, Jan Boman, Gerd Brandell,
Mohamed El Tom, Lars Filipsson, Gennadi Henkin, Anders Karlhede, Mounir
Nisse, Karin Wallby, and Anders Wändahl.
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The sources are in certain cases messages that I have received during the
writing process, and, if so, reported as a personal communication at the end of a
sentence or a paragraph. Otherwise I have relied on documents that I have saved,
notes that I have made – and my memory.
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e-mail: kiselman@it.uu.se, christer@kiselman.eu
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Mikael Passare

Magnus Carlehed

I got to know Mikael in the eighties, when I was a PhD student at Stockholm Uni-
versity. I had completed a number of graduate courses and became interested in
complex analysis. Mikael was a young lecturer in Stockholm, and our overlapping
interest in that subject brought us into each other’s orbits. As far as I know, I was
his very first student. During the academic year 1987–88, Several Complex Vari-
ables (SCV) was the theme of the Mittag-Leffler Institute, and once a week I took
the commuter train to Djursholm for the seminars. Many prominent researchers in
SCV visited the institute, and it struck me how Mikael seemed to have a personal
relationship with all of them. He was a highly social person and introduced me to
all of his maths friends. At the time, integral formulas and residues were among
the hot trends in SCV. Mikael had done some important research in this field,
and he explained to me how the previous algebraic approach to the subject was
making place for a more analytical and computational one.

For personal reasons I quit my PhD studies in 1989, and took them up again
only years later at another university. Hence, from 1989 onwards, my relation with
Mikael became a purely private one. He was a good friend, who always had time
for a chat, and although our contact became sparser in the later years, we kept
in touch until his untimely death in 2011. Mikael valued the simple life; he had
no admiration for the consumption society. For many years he made a point of
using an extremely old Volvo as the family car. But he compensated for this with
a great interest in travelling; at the time of his death, he had succeeded to visit 152
countries. To Mikael, mathematics was always an activity in a social context, and
he attended as many conferences as he could. Nationalism and borders were alien
concepts to Mikael, who treated all people equally and was a true cosmopolite. He
worked internationally with mathematics in Africa, amongst other places.

Mikael had many interests besides mathematics: such as politics, music, and
sport. We shared an interest in bandy, a team winter sport that is played outdoors
(mainly in Nordic countries and Russia) by skaters on a field as large as a soccer
field. Bandy is particularly popular in certain areas of Sweden, and we both grew
up in those parts of the country. When it came to bandy, Mikael left behind his
normally balanced manners, and he could almost be described as fanatical. To
him bandy was more than a sport, it was history, it was culture. During the 1980s
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the dominating team in Sweden was Boltic; a team that Mikael didn’t recognize as
authentic, as it lacked tradition and many of its players were transferred from other
teams. With something between joviality and seriousness, he expressed contempt
for that team more than he supported his own. We used to go to games together
and it created a special feeling of brotherhood to stand in the freezing cold for
90 minutes, cheering and shouting. When I made a world trip as a backpacker
in 1990, he sent me a large envelope to a Poste Restante address in Bali. Upon
opening it, I found a VHS cassette with the full game of the Swedish championship
final. Mikael also went to almost all the World Cup finals, whether they were in
Sweden or in Siberia.

Mikael’s contribution to Swedish mathematics community is immense; first
and foremost because of his research, but also because of his deep engagement and
enthusiasm for everything he did. He had many successful students over the years.
He truly believed in the value of mathematics for society, and it was very natural
that he chaired the Swedish Mathematical Society and the National Committee
for Mathematics for some time. In the latter role, he called me in 2011 to ask me
if I was interested to become a member of the committee. It turned out to become
our last contact. A very fine personality has left us.

Magnus Carlehed
e-mail: carlehed@outlook.com

mailto:carlehed@outlook.com


Part II

Research Articles

This part contains original research articles written by Mikael’s mathematical
friends and/or inspired by Mikael’s contribution to mathematics.
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Amoebas and Coamoebas of Linear Spaces

Mounir Nisse and Mikael Passare

Abstract. We give a complete description of amoebas and coamoebas of k-
dimensional very affine linear spaces in (C∗)n. This include an upper bound
of their dimension, and we show that if a k-dimensional very affine linear
space in (C∗)n is generic, then the dimension of its (co)amoeba is equal to
min{2k, n}. Moreover, we prove that the volume of its coamoeba is equal to

π2k. In addition, if the space is generic and real, then the volume of its amoeba
is equal to π2k

/
2k.
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1. Introduction

Amoebas and coamoebas are very fascinating notions in mathematics, the first has
been introduced by I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky in 1994 [3],
and the second by the second author in a talk in 2004. They are natural projections
of complex varieties, and which turn out to have relations to several other fields:
tropical geometry, real algebraic geometry, generalized hypergeometric functions,
mirror symmetry, and others (e.g., [6], [7], [13], [12], [17], [19]). More precisely,
the amoebas (respectively coamoebas) of complex algebraic and generally analytic
varieties in the complex algebraic torus (C∗)n are defined as their image under
the logarithmic mapping Log : (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|) (respectively
the argument mapping Arg : (z1, . . . , zn) �→ ( z1

|z1| , . . . ,
z1
|z1| )). Amoebas (respec-

tively coamoebas) are the link between classical complex algebraic geometry and
tropical (respectively complex tropical) geometry. More precisely, amoebas degen-
erate to piecewise-linear objects called tropical varieties (see [13], and [19]), and
comoebas degenerate to a non-Archimedean coamoebas which are the coamoebas
of some lifting in the complex algebraic torus of tropical varieties. See [18] for
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more details about non-Archimedean coamoebas, and [16] about this degeneration
in case of hypersurfaces. Whereas the theory of (co)amoebas of complex hyper-
surfaces is by now reasonably well understood (see, e.g., [2], [11], [16], and [19]),
much less is known about the structure of (co)amoebas coming from varieties of
higher codimension. A natural first step in this direction is to explore the case of
linear spaces.

Being of a logarithmic nature, it is natural that coamoebas are closely related
to the exponents of the defining functions of V , and to the associated Newton
polytopes. This connection is extensively explored in the thesis of the first author
[3], [15], and [19]. Another important connection is to the currently very active field
of tropical geometry, a piecewise linear incarnation of classical algebraic geometry
where the varieties can be seen as non-Archimedean versions of amoebas (see [7],
[12], [13] and others).
A fundamental theorem was shown by K. Purbhoo [20] for the general study
of amoebas that do not come from hypersurfaces. The theorem states that the
amoeba of an algebraic variety V is equal to the intersection of all hypersurface
amoebas corresponding to functions in the defining ideal I(V ) of the variety V .
We give a simple proof of this theorem with an extension to coamoebas.

Theorem 1.1. Let V ⊂ (C∗)n be an algebraic variety with defining ideal I(V ).
Then the amoeba (respectively coamoeba) of V is given as follows:

A (V ) =
⋂

f∈I(V )

A (Vf ) and coA (V ) =
⋂

f∈I(V )

coA (Vf ).

In [19], Rullg̊ard and the second author showed that the area of complex
plane curve amoebas is finite and the bound is given in terms of the Newton
polygon of the defining polynomial. They, also compute the area of the amoeba of
a plane line. It was shown by Mikhalkin and Rullg̊ard that this bound is always
sharp [14]. In [8], Madani and the first author generalized this result and showed
that the volume of the amoeba of a k-dimensional algebraic variety of (C∗)n with
n ≥ 2k is finite. Moreover, they proved in [9] that the finiteness of the volume of
the amoeba of a generic analytic variety is equivalent to the variety being algebraic.
Theorem 1.1 and Proposition 3.1 was shown separately and in the same time by
Petter Johansson in [4].

Let V be a variety in the projective space CPn. We choose homogeneous
coordinates [Z0 : · · · : Zn] so that V is transverse to coordinate hyperplanes Zj =
0 and all their intersections. The complement of the arrangement of coordinate
hyperplanes in CPn is (C∗)n. Then the variety V = V ∩ (C∗)n is called a very
affine variety, and in the case where P (k) is a k-dimensional linear subspace of
CPn we say that P(k) = P (k) ∩ (C∗)n is a very affine linear space, and by
abuse of language we will call it just affine linear space. Moreover, P(k) can be
presented as a complete intersection of hyperplanes given by first degree equations
f1(z) = · · · = fn−k(z) = 0, where z = (z1, . . . , zn) = (Z1/Z0, . . . , Zn/Z0) stands
for the affine coordinates in (C∗)n.
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Theorem 1.2. Let P(k) be a generic affine linear subspace of (C∗)2k. Then we
have the following:

(i) The volume of the coamoeba coA (P(k)) is equal to π2k;

(ii) Moreover, if P(k) is real, then the volume of its amoeba A (P(k)) is equal

to π2k

2k .

The present paper is organized as follows. We give definitions, background,
and some known results in connection with this paper in Section 2. We prove
Theorem 1.1 in Section 3, and detailed description of amoebas and coamoebas of
lines in n-dimensional complex algebraic torus in Section 4.1 for any n ≥ 2. We
prove Theorem 1.2 in Section 5.

Remark. My first meeting and mathematical discussion with Michael was during
the summer school in Paris in 2006 where he gave a series of lectures on amoebas.
We talked a lot on the geometric and topological properties of these objects in
particular the solidness of some of them. Moreover, at Stockholm University, when
I visited him in the same year, we discussed their similarity to other objects called
coamoebas. At that time we did not know exactly what kind of similarities because
the ambient spaces of these two objects are different: one is compact and the other
is not compact. Amoebas are closed subsets in the Euclidean space but coamoebas
are not closed and not open subsets of the real torus. However, both of them
have a similar (dual in some sense) combinatorial properties, and strongly related
to the combinatorial type of the Newton polytopes of the defining polynomial in
the hypersurface case. At that time we did not know a lot of things in higher
codimension. This work was started on June 2011, but after the tragic death of
Mikael Passare on 15 September 2011, the completion and writing of this paper
was done by the first author.

2. Preliminaries

In this section, we review some known results related to this paper, and give some
notations and definitions. Let V be an algebraic variety in (C∗)n. The amoeba A
of V is by definition the image of V under the logarithmic map defined as follows
(see M. Gelfand, M.M. Kapranov and A.V. Zelevinsky [3]):

Log : (C∗)n −→ Rn

(z1, . . . , zn) �−→ (log |z1|, . . . , log |zn|).

The argument map is the map defined as follows:

Arg : (C∗)n −→ (S1)n

(z1, . . . , zn) �−→ ( z1
|z1| , . . . ,

z1
|z1| ).

The coamoeba of V , denoted by coA , is its image under the argument map (defined
by the second author in 2004).
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Purbhoo shows that the amoeba of an algebraic variety V is equal to the
intersection of all hypersurface amoebas corresponding to functions in the defining
ideal I(V ) of the variety V (see [20], Corollary 5.2). Passare and Rullg̊ard prove
the following (see [19]):

Theorem 2.1 (Passare–Rullg̊ard, (2000)). Let f be a Laurent polynomial in two
variables. Then the area of the amoeba of an algebraic plane curve with defining
polynomial f is not greater than π2 times the area of the Newton polytope of f .

In [14], Mikhalkin and Rullg̊ard showed that up to multiplication by a con-
stant in (C∗)2, the algebraic plane curves with Newton polygon Δ with maximal
amoeba area are defined over R. Furthermore, their real loci are isotopic to the so-
called Harnack curves (possibly singular with ordinary real isolated double points).
Moreover, Rullg̊ard and the second author compute the area of the amoeba of a
line in the plane.

Madani and the first author showed that if the dimension n of the ambient
space is at least the double of the dimension of V (i.e., n ≥ 2 dimC(V ) = 2k),
then the map Log ◦Arg−1 conserves the 2k-volume, i.e., the absolute value of the
determinant of its Jacobian, when it exists, is equal to one (see [9], Proposition
3.1). Moreover, the same proposition shows that the set of critical points of the
logarithmic and the argument maps restricted to V coincide. Hence, if the argu-
ment map restricted to the set of regular points is injective, and the cardinality d
of the inverse image under the logarithmic map of a regular value in the amoeba
is constant, then the volume of the amoeba will be the volume of the coamoeba
divided by d. So, first we show that if V is a generic k-dimensional linear space in
(C∗)2k, then the argument map restricted to the set of regular points is injective,
and we compute the volume of its coamoeba. Moreover, if the linear space is real,
we show that the cardinality of the inverse image under the logarithmic map of a
regular value in the amoeba is constant and equal to 2k. Finally, we compute the
amoeba volume using the conservation of the volume by the map Log ◦Arg−1.

In the following paragraph, we will recall the definition of the logarithmic
Gauss map for hypersurface, and its generalization. We will present some known
relations between this map and (co)amoebas. Let V ⊂ (C∗)n be an algebraic hy-
persurface with defining polynomial f , and denote by Vreg the subset of its smooth
points. The logarithmic Gauss map of the hypersurface V is the holomorphic map
defined by (see Kapranov [5]):

γ : Vreg −→ CPn−1

z �−→ γ(z) = [v(z)],

where [v(z)] = [z1
∂f
∂z1

(z) : · · · : zn ∂f
∂zn

(z)] denotes the class of the vector v(z) in

CPn−1.
Madani and the first author generalize this map to any codimension, and

extract some relations between the set of its critical points and (co)amoebas, and
they generalized an earlier result of Mikhalkin [11] on critical points of the loga-
rithmic map (see [10]). More precisely, let V ⊂ (C∗)n be an algebraic variety of
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dimension k with defining ideal I(V ) generated by {f1, . . . , fl}. A holomorphic
map γG from the set of smooth points of V to the complex Grassmannian Gn−k, n

was defined as follows: If we denote by Vreg the subset of smooth points of V as
before, and M(l × n) denotes the set of l × n matrices. Let gG be the following
map:

gG : Vreg −→ M(l × n)

z = (z1, . . . , zn) �−→

⎛⎜⎝ z1
∂f1
∂z1

(z) . . . zn
∂f1
∂zn

(z)
...

...
...

z1
∂fl
∂z1

(z) . . . zn
∂fl
∂zn

(z)

⎞⎟⎠ .

Since z is a smooth point of V , then the complex vector space Lz generated by the
rows of the matrix gG(z) is of dimension n−k, and orthogonal to the tangent space
to V at z. Indeed, the problem is local and Vreg is locally a complete intersection.
Moreover, the tangent space to V at a regular point is contained in the tangent
space of all the hypersurfaces defined by the polynomials fi, and each row vector
of index i is orthogonal to the hypersurface defined by the polynomial fi which
contains V . This means that the image of Vreg by gG is contained in the subvariety
of M(l × n) consisting of l × n matrices of rank n − k, which we map to the
complex Grassmannian Gn−k, n. Composing this identification with gG we obtain
the desired map:

γG : Vreg → Gn−k, n

called the generalized logarithmic Gauss map.

If V ⊂ (C∗)n is a hypersurface, Mikhalkin showed that the set of critical
points of Log |V coincides with γ−1

G (RPn−1) (see Lemma 3 in [11], and Lemma
4.3 in [12]). This result was generalized by Madani and the first author for higher
codimension in [10].

Throughout all this paper, the genericity of an algebraic variety V ⊂ (C∗)n

is defined as follows:

Definition 2.1. An irreducible algebraic variety V ⊂ (C∗)n of dimension k is generic
if it satisfies the following:

(1) The variety V contains an open dense subset U such that the Jacobian of the
restriction to U of the logarithmic map Jac(Log |U ) has maximal rank, i.e.,
min{2k, n};

(2) The variety V lies in no affine subgroup, otherwise we may replace (C∗)n by
the smallest affine subgroup containing V .

We denote by L og|V the complex logarithmic map, and Re the real part of
a complex vector. In this case, we have Log |V = Re ◦ L og|V . This means that
the amoeba of V is the real part of L og|V (V ) (by taking the imaginary part we
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obtain the same conclusion for the coamoeba),

V ⊂ (C∗)n
L og|V ��

Log |V ����
���

���
���

Cn ⊃ L og(V )

Re�����
���

���
���

A (V ) ⊂ Rn.

We can check that for any r ∈ Rn, the set Tr := Log−1(r) is an n-dimensional
real torus, and r ∈ A (V ) if and only if Tr ∩ V �= ∅.

3. (Co)amoebas of complex algebraic varieties

In this section, we describe the amoeba (respectively coamoeba) of a complex
variety V with defining ideal I(V ) as the intersection of the amoebas (respectively
coamoebas) of the complex hypersurfaces with defining polynomials in I(V ).

The first part of Theorem 1.1 concerning amoebas was shown by Purbhoo in
2008 (see Corollary 5.2 in [20]). We present a very simple proof of this fact, and
extend it to coamoebas.

Our first observation, is the following proposition about the dimension of
(co)amoebas:

Proposition 3.1. Let V ⊂ (C∗)n be an irreducible algebraic variety of dimension
k. Then, the dimension of the (co)amoeba A (V ) of V satisfies the following:

dim((co)A (V )) ≤ min{2k, n}.

In particular, if V is generic, then the dimension of its amoeba is min{2k, n}.

Proof. The rank of the Jacobian of the logarithmic (respectively argument) map
restricted to V at a regular point is equal to min{2k, n}. So, the dimension of the
(co)amoeba cannot exceed min{2k, n}. Moreover, if the dimension of the amoeba
(respectively coamoeba) of a k-dimensional irreducible variety V in (C∗)n is strictly
less than min{2k, n}, then the map Re is not an immersion (respectively submer-
sion) if n ≥ 2k (respectively n < 2k). Hence, the set of critical points of the
logarithmic (respectively argument) map is equal to all the variety (see [10] for
more details about critical values of the logarithmic Gauss map in higher codi-
mension case). �

Let Vf ⊂ (C∗)n be a hypersurface with defining polynomial f . Then, by
definition, the amoeba of Vf is the image by the logarithmic map of the subset Sf

of (R∗
+)

n defined as follows:

Sf := {(x1, . . . , xn) ∈ (R∗
+)

n| ∃ z ∈ (C∗)n such thatxi = |zi|, and f(z) = 0}.
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Since L og : (R∗
+)

n → Rn is a diffeomorphism, we have the following:⋂
f∈I(V )

Log (Sf ) = Log

( ⋂
f∈I(V )

Sf

)
,

where Log (Sf ) is used with abuse of notation.

Lemma 3.1. We have the following equality:⋂
f∈I(V )

Sf = {(x1, . . . , xn) ∈ (R∗
+)

n| xi = |zi|, and (z1, . . . , zn) ∈ V }.

Proof. Let r be in

(R∗
+)

n \ {(x1, . . . , xn) ∈ (R∗
+)

n|xi = |zi| and (z1, . . . , zn) ∈ V },
and Tr be the real torus Log−1(r). So, Tr ∩ V is empty. Let f ∈ I(V ) with
f(z) =

∑
cαz

α and g be the Laurent polynomial defined by g(z) =
∑

cαw
α

with w = (
r21
z1
, . . . ,

r2n
zn
) where the rj ’s are the coordinates of r, and cα denotes

the conjugate of the coefficient cα. The value of the Laurent polynomial h(z) =
f(z)g(z) is equal to the value of |f(z)|2 for every z ∈ Tr. By construction, the
hypersurface Vh with defining polynomial h contains V (because h ∈ I(V )). Let
〈f1, . . . , fs〉 be a set of generators of the ideal I(V ), and for any j let gj be the
Laurent polynomial defined as before. We can check the hypersurface defined by
the polynomial G =

∑
fjgj contains V and does not intersect the torus Tr. This

proves that r ∈ (R∗
+)

n \
⋂

f∈I(V ) Sf . Hence, we have the inclusion:⋂
f∈I(V )

Sf ⊂ {(x1, . . . , xn) ∈ (R∗
+)

n |xi = |zi|, and (z1, . . . , zn) ∈ V }.

Now let (x1, . . . , xn) ∈ (R∗
+)

n such that xi = |zi| and (z1, . . . , zn) ∈ V , then for all
f ∈ I(V ) we have f(z1, . . . , zn) = 0. This means that (x1, . . . , xn) ∈

⋂
f∈I(V ) Sf .

�

Proof of Theorem 1.1. The first equality of Theorem 1.1 is a consequence of Lem-
ma 3.1. In fact, by applying the logarithmic map to both sides of the equality of

Lemma 3.1 we obtain: Log
(⋂

f∈I(V ) Sf

)
= A (V ), and then

A (V ) =
⋂

f∈I(V )

A (Vf ).

Let us prove the second equality of Theorem 1.1. Let w ∈
⋂

f∈I(V ) coA (Vf ),

then there exists a fundamental domain D = ([a; a+2π[)n in the universal covering
of the real torus (S1)n and a unique w̃ ∈ D such that w = exp(iw̃). In this domain,
the exponential map is a diffeomorphism between D and (S1)n \ (S1)n−1 ∧ · · · ∧
(S1)n−1 where (S1)n−1 ∧ · · · ∧ (S1)n−1 denotes the bouquet of n tori of dimension
n− 1. Let us define the subset coSf of D as follow:

coSf := {θ ∈ D | there exists z ∈ Vf and exp(iθ) = Arg (z)}.
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So, we have: ⋂
f∈I(V )

exp (icoSf ) = exp

(
i

⋂
f∈I(V )

coSf

)
because the exponential map is a diffeomorphism from D into its image. Moreover,
w̃ is contained in the intersection

⋂
f∈I(V ) coSf . But the last intersection, using

the same argument as in Lemma 3.1, can be described as follows:⋂
f∈I(V )

coSf =
⋂

f∈I(V )

{θ ∈ D | there exists z ∈ Vf and exp(iθ) = Arg (z)}

= {θ ∈ D | there exists z ∈ V and exp(iθ) = Arg (z)}.

Indeed, to prove the last equality, let eiθ /∈ coA (V ), and for each generator
fj(z) =

∑
cαz

α of I(V ) we define the polynomial gj as follows:

gj(z) =
∑

cα(e
−2iθ)αzα.

If z ∈ Arg−1(eiθ), then we have fjgj(z) = |fj(z)|2. The polynomial G =
∑

j fjgj is

in I(V ), but eiθ /∈ coA (VG) because |fj(z)|2 > 0 and hence G(z) =
∑

j fjgj(z) > 0

for every j and every z ∈ Arg−1(eiθ). Namely, we have the following inclusion:⋂
f∈I(V )

coSf ⊂ {θ ∈ D | there exists z ∈ V and exp(iθ) = Arg (z)}.

In other words,
⋂

f∈I(V ) coAf ⊂ coA (V ). �

4. (Co)Amoebas of linear spaces

Throughout this section, P := P (k) ∩ (C∗)k+m where P (k) is the k-dimensional
affine linear subspace of Ck+m given by the parametrization ρ as follows:

ρ : Ck −→ Ck+m

(t1, . . . , tk) �−→ (t1, . . . , tk, f1(t1, . . . , tk), . . . , fm(t1, . . . , tk)),
(1)

where fj(t1, . . . , tk) = bj +
∑k

i=1 ajiti, and aji, bj are complex numbers for i =
1, . . . , k, and j = 1, . . . ,m. By abuse of language, we call P an affine linear space
instead of very affine linear space. First of all, if P is generic then all the coefficients
bj are different than zero. Otherwise P will be contained in an affine subgroup of
(C∗)k+m. Indeed, if there exits j such that bj = 0, then there is an action of C∗

on P, and then P can be viewed as a product of C∗ with an affine linear space
of dimension k − 1. Namely, P lies in no affine subgroup, i.e., ρ(Ck) meets each
of the n coordinate hyperplanes of Cn in distinct hyperplanes, otherwise we may
replace (C∗)n by the smallest affine subgroup containing P.

Lemma 4.1. If P is generic, then we can assume that f1(t1, . . . , tk) = 1+
∑k

i=1 ti.
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Proof. In fact, if we make a translation by 1
b1

in the algebraic multiplicative torus

(C∗)k+m, we get(
t1
b1
, . . . ,

t1
b1
,
f1(t1, . . . , tk)

b1
, . . . ,

fm(t1, . . . , tk)

b1

)
.

We translate again by a = (a11, a21, . . . , a1k, 1, . . . , 1) to obtain:(
a11t1
b1

, . . .
a1ktk
b1

, 1 +
k∑

i=1

a1iti
b1

,
f2(t1, . . . , tk)

b1
, . . . ,

fm(t1, . . . , tk)

b1

)
.

For any point z in (C∗)k+m, we denote by τz the translation by z in the multi-
plicative group (C∗)k+m, and denote by ρ′ the required parametrization, i.e.,

ρ′(t1, . . . , tk) =
(
t1, . . . , tk, 1 +

k∑
i=1

ti, f2(t1, . . . , tk), . . . , fm(t1, . . . , tk)

)
.

Hence, we obtain τa ◦ τ 1
b1
◦ ρ = ρ′ ◦ τc, where c = (a11

b1
, . . . , a1k

b1
), and then, for any

(t1, . . . , tk) in (C∗)k we have:

Arg

(
ρ(t1, . . . , tk)

)
−Arg (b1) + Arg (a) = Arg

(
ρ′(τc(t1, . . . , tk))

)
.

We obtain the same relation if we replace the argument map by the logarith-
mic map. This means that the amoeba (respectively coamoeba) of a generic com-
plex affine linear space P given by the parametrization (1) is the translation in the
real space Rk+m (respectively the real torus (S1)k+m) by a vector v in Rk+m (re-
spectively a point in the real torus) of an affine linear space given by a parametriza-

tion such that f1(t1, . . . , tk) = 1+
∑k

i=1 ti. Hence, coA (P) = τv◦coA (Pρ′ ) where
Pρ′ is the affine linear space given by the required parametrization, and we have
a similar equality for their amoebas. In the last formula, v is the argument of the
vector b−1

1 a. �

To be more precise, P can be seen as the image by ρ of the complement in
Ck of an arrangement of n hyperplanes H := ∪k

i=1{ti = 0} ∪m
j=1 {fj = 0}.

4.1. (Co)Amoebas of lines in (C∗)1+m

In this subsection we give a complete description of (co)amoebas of generic lines
in (C∗)1+m (we mean a complex subvariety of complex dimension one defined
by an ideal generated by polynomials of degree one). Moreover, we describe the
(co)amoebas of real lines, i.e., lines those are invariant under the involution given
by the conjugation of complex numbers. In other word, lines given by a parametri-
zation with real coefficients. But first, let L be a generic line in (C∗)1+m parame-
trized as follows:

ρ : C∗ −→ (C∗)1+m

t �−→ (t, t+ 1, a2t+ b2, . . . , amt+ bm),
(2)

where aj and bj are non-vanishing complex numbers.
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Lemma 4.2. There are two types of amoebas of lines in (C∗)1+m for m ≥ 3.
There are amoebas with boundary and other without boundary (we mean topological
boundary). The amoebas of generic lines given by the parametrization (2) have
boundary if and only if ai

bi
∈ R∗ for all j = 2, . . . ,m.

Proof. Since the boundary of an amoeba is a subset of the set of critical values of
the logarithmic map, then an amoeba has a boundary means that the set of critical
points of the logarithmic map restricted to the variety is nonempty (see [10], and
[11] for more details about the critical points). The Jacobian of the logarithmic
map restricted to the line L is given by:

Jac(Log |L)(t) =
∂Log

∂(t, t̄)
=

1

2

⎛⎜⎜⎜⎜⎜⎝
1/t 1/t̄

1/(t+ 1) 1/(t̄+ 1)

a2/(a2t+ b2) ā2/(a2t+ b2)
...

...

am/(amt+ bm) ām/(amt+ bm)

⎞⎟⎟⎟⎟⎟⎠ .

Hence, a point ρ(t) is critical for Log |L if and only if all the 2 × 2-minors of the
Jacobian matrix have determinant equal to zero. Let us write down these relations.
The determinant of the 2× 2-minor given by the two first rows:

1

2

(
1/t 1/t̄

1/(t+ 1) 1/(t̄+ 1)

)
is equal to zero, means the following equality holds:

1

t

1

t̄+ 1
=

1

t̄

1

t+ 1
.

This implies that t should be real. For all i = 2, . . . ,m, the 2× 2-minor:

1

2

(
1/t 1/t̄

ai/(ait+ bi) āi/(ait+ bi)

)
gives the following relation:

1

t

āi

(ait+ bi)
=

1

t̄

ai
ait+ bi

.

But t is real, so āi(ait+ bi) = ai(ait+ bi), and hence ai

bi
= (ai

bi
), i.e., ai

bi
∈ R∗

(because L is generic, all the coefficients are different than zero). So, if ai

bi
∈ R∗ for

i = 2, . . . ,m, then the set of critical points of Log |L is the image under ρ of the

real part of C∗, where this image intersects (m+2) quadrants of R1+m because L
is generic. Moreover, this shows that the set of critical values of Log |L is the image
under Log ◦ρ of the real part of C∗, and the number of its connected components is
(m+2). So, a generic complex line given by the parametrization (2) with ai

bi
∈ R∗

for i = 2, . . . ,m is real up to a translation by a complex number, and its amoeba
is a surface with boundary, and the boundary has (m+2) connected components.
Also, we can check in this case that the cardinality of the inverse image of a regular
(respectively critical) value is two (respectively one). �
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This motivates the following definition (see [14] for real plane curves):

Definition 4.1. A generic affine line given by the following parametrization:

ρ : C∗ −→ (C∗)1+m

t �−→ (t, a1t+ b1, a2t+ b2, . . . , amt+ bm),
(3)

where aj and bj are in C∗ is called real up to a translation by a vector in (C∗)1+m

if and only if [a1

b1
: · · · : am

bm
] ∈ RPm−1.

If a line L in (C∗)1+m with m ≥ 2 is not real, then its amoeba is a surface
without boundary homeomorphic to the Riemann sphere without (m + 2) points
(see proof of Lemma 4.2), and the map Log |L is a one-to-one map.

The following lemma gives a description of the coamoeba of a generic line in
(C∗)1+m with m ≥ 1

Lemma 4.3. Let L ⊂ (C∗)1+m be a generic line given by the parametrization
(3). The restriction of the argument map to the set of its regular points in L
is injective, and the inverse image under the argument map of a critical value has
real dimension one.

Proof. To see injectivity, let (eiθ, eiψ1 , . . . , eiψm) be a fixed regular value in coA (L).
In other word, we have t = |t|eiθ, and fj(t) = (ajt + bj) = |ajt + bj |eiψ1 for
j = 1, . . . ,m, and consider ajt, bj , and fj(t) as a vectors in the complex plane.
Hence, for each j = 1, . . . ,m we obtain a parallelogram with vertices the origin,
and the extremities of the three vectors ajt, bj, and fj(t). If one of these vectors is
fixed, and the arguments of the two others are fixed (which is our case, because bj
is given and the arguments of ajt and fj(t) are fixed by assumption), then there
exists at most one parallelogram with those vertices. This implies the injectivity.

The second part of the lemma comes from the fact that the set of critical
points of the logarithmic map and the argument map coincide (see Proposition 3.1
in [9]). Indeed, the set of critical points is equal to (m+2) connected components
of dimension one (each one corresponds to the intersection of the real part of L
with some quadrant of (R∗)m+1). �

The set of critical points of the argument map restricted to L given by
the parametrization (3) is the image by ρ of the real part of C∗ translated by
(1, b1, . . . , bm) in (C∗)1+m as a multiplicative group. So, the set of critical values
consists of the translation by (1, b1

|b1| , . . . ,
bm
|bm| ) of (m + 2) points in the real torus

(S1)1+m from the 2m+1 real points corresponding to the arguments of the 2m+1

quadrants of Re((C∗)1+m) = (R∗)1+m. The closure of the coamoeba of L contains
an arrangement of (m + 1) geodesic circles. Each circle corresponds to an end of
the line (i.e., where L meets a coordinate axis). The union of these circles is the
set of accumulation points of arguments of sequences in L with unbounded loga-
rithm, and is called the phase limit set of L (see [17] for more details). It is the
counterpart of the logarithmic limit set introduced by Bergman in 1971 (see [1]
and [7] for more details), which consists of (m+ 2) points is our case. In Figure 1
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Figure 1. The amoeba and the coamoeba of the real line in (C∗)3

given by the parametrization ρ(z) = (z, z + 1
2 , z −

3
2 ). The amoeba is

topologically the closed disk without four points of its boundary.

Figure 2. The amoeba and the coamoeba of the complex line (i.e., not
real) in (C∗)3 given by the parametrization ρ(z) = (z, z+1, z−2i). The
amoeba is topologically the Riemann sphere without four points.

(respectively Figure 2), we draw the amoeba and the coamoeba of a real (respec-
tively non real) line in (C∗)3. The coamoebas in Figure 1, and Figure 2 are made
with collaboration with F. Sottile.

5. Volume of (co)amoebas of k-dimensional very affine linear
spaces in (C∗)2k

It was shown by Rullg̊ard and the second author in [19] that the area of the amoeba
of a complex algebraic plane curve is always finite, and the bound is given in terms
of the area of the Newton polygon of the defining polynomial. Mikhalkin and
Rullg̊ard proved that this bound is always sharp for (possibly singular) Harnack
curves (see [14]). It was shown by Madani and the first author in [8] that the
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volume of the amoeba of a k-dimensional algebraic variety in (C∗)n with n ≥ 2k
is finite. This generalizes the result of Rullg̊ard and the second author about the
finiteness of the volume of the amoeba of plane curves. In this section, we compute
the volume of the amoeba of a generic real k-dimensional very affine linear space in
(C∗)2k. We will proceed as follows: (i) We show that the argument map restricted
to the subset of regular points in the very affine linear space is injective; (ii)
We compute the volume of the coamoeba of any k-dimensional very affine linear
space in (C∗)2k; (iii) We compute the cardinality of the inverse image under the
logarithmic map of any regular value in the amoeba of a real affine space, and
prove that this cardinality is a constant and equal to 2k; (iv) We use that the
map Log ◦Arg−1 conserves the volume, i.e., the determinant of its Jacobian has
absolute value equal one (see Proposition 3.1 in [9]), and finally we compute the
volume of the amoeba, which is equal to the coamoeba volume divided by 2k

if the plane is real. We will use the following lemma proved in [10], which is a
generalization of Mikhalkin’s Lemma 4.3 in [12] for hypersurface:

Lemma 5.1 (Madani–Nisse). Let V ⊂ (C∗)n be a k-dimensional algebraic variety,
and z be a smooth point of V . Then z is a critical point for the map Log |V if
and only if the image of the tangent space TzV to V at z by the derivative of the
complex logarithm dL og contains at least s purely imaginary linearly independent
vectors with s = max{1, 2k − n+ 1}.

Also, we will use the following proposition proved in [10]:

Proposition 5.1 (Madani–Nisse). Let P ⊂ (C∗)n be a generic k-dimensional very
affine linear space with n ≥ 2k. Suppose that the complex dimension of P ∩P is
equal to l, with 0 ≤ l ≤ k. Then, for any regular value x in the amoeba A (P) of
P, the cardinality of Log−1(x) is at least 2l.

Let P ⊂ (C∗)2k be a generic k-dimensional very affine linear space. Suppose
P is given by the parametrization ρ:

ρ : (C∗)k −→ (C∗)2k

(t1, . . . , tk) �−→ (t1, . . . , tk, f1(t1, . . . , tk), . . . , fk(t1, . . . , tk)),
(4)

with fj(t1, . . . , tk) = bj +
∑k

i=1 ajiti, where aji, and bj are complex numbers for
i = 1, . . . , k and j = 1, . . . , k. Since the space P is generic, then there is no bj = 0.

Definition 5.1. A generic k-dimensional very affine linear space P(k) ⊂ (C∗)2k

given by the parametrization (4) is said to be real up to a translation by a complex
vector in the multiplicative group (C∗)k+m if and only if the (m × k)-matrix
given by ⎛⎜⎝

a11

b1
. . . a1k

b1
...

...
...

ak1

bk
. . . akk

bk

⎞⎟⎠
has rank k and all of its entries are real.
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Let Z2 := {±1} be the real subgroup of the multiplicative group C∗, and Z2k
2

be the finite real subgroup of (C∗)2k. For each s ∈ Z2k
2 , let ρs be the parametriza-

tion given by ρs(t1, . . . , tk) = s.ρ(t1, . . . , tk) where

s.(z1, . . . , z2k) = (s1z1, . . . , s2kz2k)

for any (z1, . . . , z2k) ∈ (C∗)2k, and s = (s1, . . . , s2k) ∈ Z2k
2 . Let Ps be the k-

dimensional very affine linear space in (C∗)2k parametrized by ρs. Let us denote
by Reg(coA (Ps)) the set of regular values of coA (Ps). Remark that if 1 denotes
the identity element of the group Z2k

2 , then P = P1.

Let u ∈ Z2k
2 and denote by Reg(coA (Pu)) the set of regular values of the

coamoeba coA (Pu).

Proposition 5.2. With the above notations, the following statements hold:

(i) For all s, the argument map from the subset of regular points of Ps to the
set of regular values of its coamoeba coA (Ps) is injective;

(ii) Let s and r in Z2k
2 with s �= r, then the set

Reg(coA (Ps)) ∩ Reg(coA (Pr))

is empty;

(iii) The union
⋃

s∈Z2k
2
Reg(coA (Ps)) is an open dense subset of the real torus

(S1)2k.

First of all, we denote by z := (z1, . . . , z2k) the coordinates of C2k. So,
if z is a point in P, then zi = ti and zk+i = fi(z1, . . . , zk) for 1 ≤ i ≤ k.
Let Θ = (eiθ1 , . . . , eiθk , eiψ1 , . . . , eiψk) be a point in the set of regular values of
coA (P). This means that the linear system (E) of 2k equations and 2k variables
(x1, . . . , xk, y1, . . . , yk) in (R∗

+)
2k:{

Re(bj +
∑k

l=1 ajlxle
iθl) = Re (yje

iψj )

Im(bj +
∑k

l=1 ajlxle
iθl) = Im (yje

iψj )
(E)

with j = 1, . . . , k, has a solution in (R∗
+)

2k. Moreover, if Z2k
2 is viewed as a subgroup

of the real torus (S1)2k, then s.Θ ∈
⋃

u∈Z2k
2
Reg(coA (Pu(k))) means that the

system (E) has a solution in (R∗)2k.
Since the matrix A(z) defined by:

A(z) =

⎛⎜⎜⎜⎝
a11z1 a12z2 . . . a1kzk −zk+1 0 0 . . . 0
a21z1 a22z2 . . . a2kzk 0 −zk+2 0 . . . 0
...

...
...

...
...

...
...

...
...

ak1z1 ak2z2 . . . akkzk 0 0 0 . . . −z2k

⎞⎟⎟⎟⎠
is the image under the logarithmic Gauss map of the point z in P, and the matrix
A(z) has rank k when z is a regular point.
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Claim I. If A denotes the matrix conjugate to A, then for any regular point z of

P the matrix Â(z) =

(
A(z)
A(z)

)
is of rank 2k.

Proof. In fact, the rows of the matrix A(z) form a basis of the orthogonal space

to L og(P) at the point L og(z). So, if the rank of Â(z) is less than 2k, then
the orthogonal space to L og(P) at L og(z) contains at least one real vector v
different than zero. This is equivalent to saying that the tangent space to L og(P)
at L og(z) contains at least one purely imaginary vector. Indeed, since v is a
vector different than zero orthogonal to both TL og(z)(L og(P)) and Im(C2k),

then TLog(z)(L og(P)) ∩ Im(C2k) must be of dimension at least one. By Lemma
5.1, this implies that z is a critical point for the logarithmic map, which is in
contradiction with our assumption on z. �

The matrix defining the system (E) is B̃(Θ) =

(
ReB(Θ)
ImB(Θ)

)
where B(Θ) is⎛⎜⎜⎜⎝

a11e
iθ1 a12e

iθ2 . . . a1ke
iθk −eiψ1 0 0 . . . 0

a21e
iθ1 a22e

iθ2 . . . a2ke
iθk 0 −eiψ2 0 . . . 0

...
...

...
...

...
...

...
...

...
ak1e

iθ1 ak2e
iθ2 . . . akke

iθk 0 0 0 . . . −eiψk

⎞⎟⎟⎟⎠ .

We can check that the rank of B̃(Θ) is the same as the rank of the matrix Ã(z) =(
ReA(z)
ImA(z)

)
with z = (x1e

iθ1 , . . . , xke
iθk , y1e

ψ1 , . . . , yke
iψk), because the variables

xi and yj are non zero for all i, j = 1, . . . , k.

Claim II. The rank of the matrix Ã(z) is equal to 2k.

Proof. Suppose we have a non trivial linear combination of the rows of the matrix

Ã(z) that is equal to zero. Hence, there exist a real numbers λl, and μl not all
equal to zero, with l = 1, . . . , k such that:

k∑
l,j=1

λl

2

(
(zjalj + z̄j ālj)− (zk+l+ z̄k+l)

)
+

μl

2i

(
(zjalj − z̄j ālj)− (zk+l− z̄k+l)

)
= 0.

We get:

k∑
l=1

(
λl − iμl

2

)( k∑
j=1

zjalj − zk+l

)
+

k∑
l=1

(
λl + iμl

2

)( k∑
j=1

z̄j ālj − z̄k+l

)
= 0.

Since the matrix Â(z) is of rank 2k by Claim I, this implies that λl − iμl = 0,
and λl + iμl = 0 for all l = 1, . . . , k. This means that all the λl’s and the μl’s
vanish. This contradicts the fact that some of the real numbers λl’s and μl’s are

different than zero by hypothesis. Hence, the real rank of the matrix Ã(z) is equal
to 2k. �
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Proof of Proposition 5.2. Since the k-dimensional linear space P is generic, the co-
efficients bj are different than zero, and the system (E) is consistent. Claim II shows
that the system (E) has a unique solution for any Θ in the set of regular values of
coA (P), which proves the first and the second statements of the proposition. The
third statement comes from the fact that the set of Θ = (θ1, . . . , θk, ψ1, . . . , ψk)

for which the determinant of B̃(Θ) vanishes is a hypersurface in the real torus and
then its 2k-volume is zero. In other words, the union

⋃
s∈Z2k

2
Reg(coA (Ps)) is an

open dense subset of the real torus (S1)2k. �
Corollary 5.1. The volume of the coamoeba of any generic k-dimensional linear
space in (C∗)2k is equal to π2k.

Proof. By Proposition 5.2 (iii), the volume of the disjoint union⋃
s∈Z2k

2

Reg(coA (Ps))

is equal to the volume of all the real torus (S1)2k. Moreover, they have the same
volume, because they are obtained from each other by translation (i.e., isometry
of the real torus equipped with the flat metric). So, the volume of one of them
must be equal to (2π)2k/22k = π2k. �
We compute the cardinality of the inverse image under the logarithmic map of
any regular value in the amoeba of a generic k-dimensional real very affine linear
space P(k) ⊂ (C∗)2k.

Proposition 5.3. Let P be a generic real affine k-dimensional linear subspace of
(C∗)2k, and x be a regular value of its amoeba. Then, the cardinality of Log−1(x)
is equal 2k.

Proof. We assume that P is given by a parametrization ρ as in (4), where all the
coefficients are real numbers. The matrix A defined by:

A =

⎛⎜⎝ a11 . . . a1k
...

. . .
...

ak1 . . . akk

⎞⎟⎠
is invertible, otherwise the image of ρ is a linear space of dimension strictly less
than k. The following diagram is commutative:

(C∗)k
ρ ��

A

��

(C∗)2k

A×Id

��
(C∗)k

ρ′
�� (C∗)2k,

where ρ′ is the parametrization given by:

ρ′ : (C∗)k −→ (C∗)2k

(T1, . . . , Tk) �−→ (T1, . . . , Tk, b1 + T1, . . . , bk + Tk).
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Each regular value of the amoeba of the k-dimensional linear space L := ρ′((C∗)k)
is covered 2k times under the logarithmic mapping. Indeed, L is a product of
lines L1, . . . , Lk in C2. The matrix A is real, so the image of the set of critical
points of the logarithmic mapping restricted to P is the set of critical points
of the logarithmic mapping restricted to L . By Lemma 5.1, if z is a critical in
P , then the tangent space to L og(P) at L og(z) contains at least one purely
imaginary vector v. Since A is real, then the image of v in the tangent space
to L og(L ) at L og((A × Id)(z) is also purely imaginary tangent vector, and
then, the point (A × Id)(z) is critical. Let Critp(Log |P) and Critp(Log |L ) be
the set of critical points of the restriction of the logarithmic map to P and L
respectively. Since the volume of their amoebas is finite (see [8]), this means that
the set of critical values in their amoebas contains a subset of dimension 2k−1 (at
least the topological boundary of the amoeba). Hence, the number of connected
components of P \Critp(Log |P) is equal to the number of connected components
of L \ Critp(Log |L ). The fact that the set of critical points of the argument
and the logarithmic maps coincide (see, e.g., [9]), and by Proposition 5.2, the
restriction of the argument map to the set of regular points is injective, then, the
cardinality of Log−1(x) is at most 2k. Since P is real, then by Proposition 5.1,
for any regular value x ∈ A (P(k)), the cardinality of Log−1(x) is at least 2k.
Hence, the cardinality of the inverse image of a regular value is equal to 2k. �

Proof of Theorem 1.2. The first statement of Theorem 1.2 is Corollary 5.1. The
second statement of Theorem 1.2 is because the cardinality of the inverse image of
a regular value in the amoeba is constant and equal to 2k, and the map Log ◦Arg−1

conserve the volume (see [9], Proposition 3,1). Hence, the volume of the amoeba
in this case is equal to the volume of the coamoeba divided by 2k.
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[15] M. Nisse, Sur la Géométrie et la Topologie des Amibes et Coamibes des Variétés
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1. Introduction

Let f be a holomorphic function defined on a domain in Cn. It is proved in [15]
using Hironaka’s desingularization theorem that if ϕ is a test form then

lim
ε→0+

∫
|f |2>ε

ϕ/f

exists and defines the action of a current, denoted 1/f . The ∂̄-image, ∂̄(1/f), is
the residue current of f and it has the useful property that it is annihilated by a
holomorphic function g if and only if g is in the ideal generated by f . If f1, . . . , fq
are holomorphic functions then the Coleff–Herrera product of the currents ∂̄(1/fj)
is defined as follows. For a test form ϕ of bidegree (n, n− q) consider the residue
integral

Iϕf (ε) =

∫
T (ε)

ϕ

f1 · · · fq
,

where T (ε) = ∩q
1{|fj |2 = εj}. It is proved in [12] that the limit of ε �→ Iϕf (ε) exists

if ε = (ε1, . . . , εq)→ 0 along a path in Rq
+ such that εj/ε

k
j+1 → 0 for all k ∈ N and

First three authors partly supported by the Swedish Research Council.
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j = 1, . . . , q − 1; such a path is said to be admissible. Moreover, the limit defines
the action of a current, the Coleff–Herrera product

∂̄
1

fq
∧ · · · ∧ ∂̄

1

f1
. ϕ := “ lim

ε→0
”Iϕf (ε), (1.1)

where “ lim” means the limit along an admissible path as above. Following Passare
[19], let χ be a smooth approximation of the characteristic function 1[1,∞) and
consider the smooth form

∂̄χ(|fq|2/εq)
fq

∧ · · · ∧ ∂̄χ(|f1|2/ε1)
f1

. (1.2)

It follows from [16, Theorem 2] or the proof of [19, Proposition 2] that the limit in
the sense of currents of (1.2) as ε→ 0 along an admissible path equals the Coleff–
Herrera product, and moreover, that one gets the same result if one first lets ε1 → 0,
then lets ε2 → 0 and so on. The Coleff–Herrera product is thus indeed the result
of an iterative procedure. In general there are no obvious commutation properties,
e.g., ∂̄(1/zw) ∧ ∂̄(1/z) = 0 whereas ∂̄(1/z) ∧ ∂̄(1/zw) = ∂̄(1/z2) ∧ ∂̄(1/w), where
the last product is simply a tensor product. However, if f = (f1, . . . , fq) defines
a complete intersection, i.e., codim {f = 0} = q, then the Coleff–Herrera product
depends in an anticommutative way of the ordering of the tuple f ; in fact by
[11] the smooth form (1.2) then converges unconditionally. Moreover, also in the
complete intersection case, a holomorphic function annihilates the Coleff–Herrera
product if and only if it is in the ideal 〈f1, . . . , fq〉; this last property is called the
duality property and it was proved independently by Dickenstein–Sessa, [13], and
Passare, [18].

In this paper we consider another approach to Coleff–Herrera type products;
it is based on analytic continuation and has been studied in, e.g., [6, 7, 10, 20, 27].
For λj ∈ C with Reλj � 0, let

Γϕ
f (λ1, . . . , λq) =

∫
∂̄|fq|2λq ∧ · · · ∧ ∂̄|f1|2λ1

f1 · · · fq
∧ ϕ,

where ϕ is a test form. It is standard to see that λ1 �→ Γϕ
f (λ1, . . . , λq) has an

analytic continuation to a neighborhood of 0 and that Γϕ
f (0, λ2, . . . , λq) equals

∂̄|fq|2λq

fq
∧ · · · ∧ ∂̄|f2|2λ2

f2
∧ ∂̄

1

f1
. ϕ.

From [5, Proposition 2.1] it follows that λ2 �→ Γϕ
f (0, λ2, . . . , λq) is analytic at 0,

that λ3 �→ Γϕ
f (0, 0, λ3, . . . , λq) is too, and so on. Once one knows that the Coleff–

Herrera product is obtained by letting εj → 0 successively in (1.2) it is not that
hard to see that

∂̄
1

fq
∧ · · · ∧ ∂̄

1

f1
. ϕ = Γϕ

f (λ1, . . . , λq)|λ1=0 · · · |λq=0,

where the expression on the right-hand side means that we first let λ1 → 0, then
let λ2 → 0 etc; see, e.g., [16, Theorem 2]. However, from an algebraic point of view,
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cf. [8, Theorem 3.2], it is often desirable to have a current given as the value at
0 of a single one-variable analytic function; this is the motivation for this paper.
From Theorem 1.2 below it follows that if μ1 > · · · > μq > 0 are integers, then
λ �→ Γϕ

f (λ
μ1 , . . . , λμq ), a priori defined for Reλ� 0, has an analytic continuation

to a neighborhood of [0,∞) ⊂ C and that the value at λ = 0 equals the Coleff–
Herrera product (1.1). Notice that this way of letting (λ1, . . . , λq)→ 0 is analogous
to limits along admissible paths in the sense that λj goes to zero much faster than
λj+1, j = 1, . . . , q − 1.

We remark that if f defines a complete intersection then it is showed in [23]
that Γϕ

f (λ) is analytic in a neighborhood of the half-space {Reλj ≥ 0, j = 1, . . . , q}.
Let us now consider a more general setting. Let f be a section of a Hermitian

vector bundle E of rank m over a reduced complex space X of pure dimension n.
In [22] and [1] were introduced currents U and R, generalizing the currents 1/f
and ∂̄(1/f), respectively. These currents are based on Bochner–Martinelli type
expressions. To be precise, let f = f1e1 + · · · + fmem, where {ek}k is a local
holomorphic frame for E with dual frame {e∗k}k, and let s = s1e

∗
1 + · · · + sme∗m

be the section of the dual bundle E∗ with pointwise minimal norm such that
f · s = |f |2E . For λ ∈ C, Reλ� 0, we let

Uλ :=

m∑
k=1

|f |2λE
s ∧ (∂̄s)k−1

|f |2kE
, (1.3)

where (0, 1)-forms anticommute with the e∗k. It turns out, [1], [22], that λ �→ Uλ,
considered as a current-valued map, has an analytic continuation to a neighbor-
hood of 0. The value at λ = 0 is a current U on X that takes values in ΛE∗; U is
the standard extension of

∑
k s ∧ (∂̄s)k−1/|f |2kE across {f = 0}. If E has rank 1,

then U = (1/f)e∗ for any choice of metric. Let

Rλ := 1− |f |2λE +

m∑
k=1

∂̄|f |2λE ∧ s ∧ (∂̄s)k−1

|f |2kE
. (1.4)

Letting ∇f := δf − ∂̄, where δf denotes interior multiplication with f , one can
check that Rλ = 1 − ∇fU

λ, see [1] for details. It follows that λ �→ Rλ has an
analytic continuation to a neighborhood of 0 and the value at λ = 0 is the current
R; it is straightforward to check that R has support on {f = 0}. If E has rank 1
then R = ∂̄(1/f)∧ e∗ and more generally, if f defines a complete intersection then
R = ∂̄(1/fm)∧· · ·∧ ∂̄(1/f1)∧e∗1∧· · ·∧e∗m for any choice of metric, see [1] and [22].

The value at λ = 0 of the term 1 − |f |2λE of Rλ is the restriction 1{f=0}
to the zero set of f , see [5]. In itself it is zero unless f vanishes identically on
some components of X in which case it simply is 1 there. However, when forming
products of R’s the role of 1{f=0} is much more significant, cf. [3] and Example 1.4.

Remark 1.1. For future reference we notice that if π : X ′ → X is a modification
such that the pullback of the ideal sheaf defined by f is principal, then one can
write π∗f = f0f ′, where f0 is a section of the line bundle L→ X ′ corresponding to
the exceptional divisor and f ′ is a non-vanishing section of L−1⊗ π∗E. Equipping
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L with some Hermitian metric, for instance by setting |f0|L := |π∗f |π∗E , we can
thus write π∗|f |E = |f0|L|f ′|L−1⊗π∗E . Locally on X ′ we can identify f0 and f ′ by
a holomorphic function and a non-vanishing holomorphic tuple, respectively, still
denoted f0 and f ′. Hence, locally on X ′ we have π∗|f |E = |f0|u for some smooth
positive function u.

Let fj be a section of a Hermitian vector bundle Ej of rank mj , let U
j and

Rj be the associated currents, and let U j,λ and Rj,λ be the corresponding λ-
regularizations. Following, e.g., [3] and [16] we define products of the currents Rj

recursively as follows. Having defined Rk−1 ∧ · · · ∧R1, consider the current-valued
function

λ �→ Rk,λ ∧Rk−1 ∧ · · · ∧R1,

a priori defined for Reλ � 0. It turns out, see, e.g., [5] or [16], that it can be
analytically continued to a neighborhood of 0, and we define Rk ∧ · · · ∧ R1 to be
the value at λ = 0.

Theorem 1.2. Let μ1 > · · · > μq be positive integers. Then the current-valued
function

λ �→ Rq,λμq ∧ · · · ∧R1,λμ1
,

a priori defined for Reλ � 0, has an analytic continuation to a neighborhood of
the half-axis [0,∞) ⊂ C and the value at λ = 0 is Rq ∧ · · · ∧R1.

To connect with Coleff–Herrera type products, let χ be the characteristic
function 1[1,∞) or a smooth regularization thereof and let

Rj,εj := 1− χ(|fj|2Ej
/εj) +

mj∑
k=1

∂̄χ(|fj |2Ej
/εj) ∧

sj ∧ (∂̄sj)
k−1

|fj |2kEj

.

If ϕ is a test form on X , then the limit of∫
X

Rq,εq ∧ · · · ∧R1,ε1 ∧ ϕ (1.5)

as ε→ 0 along an admissible path exists and equals the action of Rq ∧ · · · ∧R1 on
ϕ, see [16].

Let us mention a version of Theorem 1.2 with connection to intersection
theory. Let f be a section of E and let

Mλ := 1− |f |2λE +
∑
k≥1

∂̄|f |2λE ∧ ∂ log |f |2E
2πi

∧ (ddc log |f |2E)k−1,

where ddc = ∂̄∂/2πi. It is shown in [3] that λ �→Mλ has an analytic continuation
to a neighborhood of 0 and that the value at λ = 0 is a positive closed current,
which we denote by M . One can give a meaning to the product (ddc log |f |2E)k for
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arbitrary k that extends the classical one for k ≤ codim {f = 0}, and from [3] it
follows that

M = 1Z +
∑
k≥1

1Z(dd
c log |f |2E)k,

where 1Z is the restriction to the zero set Z of f . The current M is closely con-
nected to R. For instance, if X is smooth and D is the Chern connection on E
then it follows from [2] that

Mk = Rk · (Df/2πi)k/k!,

where the subscript k means the component of bidegree (∗, k).
Let f1, . . . , fq be sections of Hermitian vector bundles Ej and let M1, . . . ,M q

be the associated currents. One can define products of the M j recursively as for
the Rj and we have the following analogue of Theorem 1.2.

Theorem 1.3. Let μ1 > · · · > μq be positive integers. Then the current-valued
function

λ �→M q,λμq ∧ · · · ∧M1,λμ1
,

a priori defined for Reλ � 0, has an analytic continuation to a neighborhood of
the half-axis [0,∞) ⊂ C and the value at λ = 0 is M q ∧ · · · ∧M1.

Example 1.4 (Corollary 5.6 in [3]). Let Jx ⊂ OX,x be an ideal and let h1, . . . , hn ∈
Jx be a generic Vogel sequence of Jx; see, e.g., [3] for the definition. By the
Stückrad–Vogel procedure, [24], adapted to the local situation, [17], [25], one gets
an associated Vogel cycle V h; the multiplicities of the components of various di-
mensions of V h are the Segre numbers, [14], used in excess intersection theory. By
Theorem 1.3 we have that

λ �→
n∧

k=1

(
1− |hk|2λ

μk
+ ∂̄|hk|2λ

μk ∧ ∂ log |hk|2/2πi
)

is analytic at 0 and by [3] the value there is the Lelong current associated with
V h; see [3] for more details.

Remark 1.5. Assume that codim ∩j {fj = 0} = m1 + · · · + mq. Then M j =
(ddc log |fj |2Ej

)mj = [fj = 0], where [fj = 0] is the Lelong current of the funda-

mental cycle of fj, and more generally,

M q ∧ · · · ∧M1 = [fq = 0] ∧ · · · ∧ [f1 = 0],

i.e., the current representing the proper intersection of the cycles [fj = 0].
In this case the current-valued function

(λ1, . . . , λq) �→ Rq,λq ∧ · · · ∧R1,λ1

has an analytic continuation to a neighborhood of the origin in Cq, [16], and the
value at λ = 0 is the R-current associated to ⊕jfj , [26]. Moreover, by [16], (1.5)
depends Hölder continuously on ε ∈ [0,∞)q if χ is smooth. The smoothness of χ
is necessary in view of the example in [21, Section 1].
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2. Proof of Theorems 1.2 and 1.3

We will actually prove a slightly more general result than Theorem 1.2; we will
allow mixed products of U j and Rk. Let P j denote either U j or Rj and let P j,λj

be the corresponding λ-regularization, (1.3) or (1.4). One defines products of the
P j recursively as above.

Theorem 1.2′. Let μ1 > · · · > μq be positive integers. Then the current-valued
function

λ �→ P q,λμq ∧ · · · ∧ P 1,λμ1
,

a priori defined for Reλ � 0, has an analytic continuation to a neighborhood of
the half-axis [0,∞) ⊂ C and the value at 0 is P q ∧ · · · ∧ P 1.

Let π : X ′ → X be a smooth modification of X such that {π∗fj = 0}, j =
1, . . . , q, and ∪j{π∗fj = 0} are normal crossings divisors. Then locally in X ′ we
can write π∗fj = f0

j f
′
j , where f0

j is a monomial in local coordinates and f ′
j is a

non-vanishing holomorphic tuple. It follows that sj = f̄0
j s

′
j , where s′j is a smooth

section. A straightforward computation shows that

π∗Rj,λj = 1− |f0
j |2λju

2λj

j +

mj∑
k=1

∂̄(|f0
j |2λju

2λj

j )

(f0
j )

k
∧ ϑjk,

π∗U j,λj =

mj∑
k=1

|f0
j |2λju

2λj

j

(f0
j )

k
∧ ϑjk,

where uj is a smooth non-vanishing function and ϑjk = s′j ∧ (∂̄s′j)
k−1/u2k

j is a
smooth form, cf. Remark1.1. In the same way,

π∗Mfj ,λj = 1− |f0
j |2λju

2λj

j +
∑
k≥1

∂̄
(
|f0

j |2λju
2λj

j

)
∧ ∂ log(|f0

j |2u2
j) ∧ ωjk,

where ωjk is smooth, cf. [3, Section 4]. Taking the identity ∂ log(|f0
j |2u2

j) = df0
j /f

0
j +

2∂uj/uj into account, Theorems 1.2′ and 1.3 are consequences of the following
quite technical lemma.

Lemma 2.1. Let u1, . . . , ur be smooth non-vanishing functions defined in some
neighborhood of the origin in Cn, with coordinates x1, . . . , xn.

For λ = (λ1, . . . , λr) ∈ Cr, Reλj � 0, α1, . . . , αr ∈ Nn, and k1, . . . , kr ∈ N,
let

Γ(λ) :=
|urx

αr |2λr · · · |up+1x
αp+1 |2λp+1 ∂̄|upx

αp |2λp ∧ · · · ∧ ∂̄|u1x
α1 |2λ1

xkrαr · · ·xk1α1
;

here xk�α� = x
k�α�,1

1 · · ·xk�α�,n
n if α� = (α�,1, . . . , α�,n). If σ is a permutation of

{1, . . . , r}, write Γσ(λ1, . . . , λr) := Γ(λσ(1), . . . , λσ(r)) .
Let μ1, . . . , μr be positive integers. Then Γσ(κμ1 , . . . , κμr ) has an analytic

continuation to a connected neighborhood of the half-axis [0,∞) in C, and if μ1 >
· · · > μr, then

Γσ(κμ1 , . . . , κμr ) |κ=0= Γσ(λ1, . . . , λr) |λ1=0 · · · |λr=0 . (2.1)
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The reason for the permutation σ is that we have mixed products of U ’s and
R’s in Theorem 1.2′.

Proof. To begin with let us assume that all uj = 1. A straightforward computation
shows that

Γ(λ) = λ1 · · ·λp

∏r
j=1 |xαj |2λj

x
∑

r
j=1 kjαj

′∑
I

AI

dx̄i1 ∧ · · · ∧ dx̄ip

x̄i1 · · · x̄ip

=: λ1 · · ·λp

′∑
I

ΓI ,

where the sum is over all increasing multi-indices I = {i1, . . . , ip} ⊂ {1, . . . , n} and
AI is the determinant of the matrix (α�,ij )1≤�≤p,1≤j≤p.

Pick a non-vanishing summand ΓI ; without loss of generality, assume that
I = {1, . . . , p} and AI = 1. With the notation bk(λ) :=

∑r
�=1 λ�α�,k for 1 ≤ k ≤ n,

ΓI =

∏n
k=1 |xk|2bk(λ)

x
∑

r
j=1 kjαj

dx̄1 ∧ · · · ∧ dx̄p

x̄1 · · · x̄p

=
1

b1(λ) · · · bp(λ)

∧p
k=1 ∂̄|xk|2bk(λ)

∏n
k=p+1 |xk|2bk(λ)

x
∑

r
j=1 kjαj

.

Now the current-valued function

Γ̃I : (λ1, . . . , λr) �→
∧p

j=1 ∂̄|xj |2bj(λ)
∏n

j=p+1 |xj |2bj(λ)

x
∑

kjαj

has an analytic continuation to a neighborhood of the origin in Cr; in fact, it is

a tensor product of one-variable currents. In particular, Γ̃I(κ
μ1 , . . . , κμr ) |κ=0=

Γ̃I(λ) |λ1=0 · · · |λr=0. Let

γ(λ) =
λ1 · · ·λp

b1(λ) · · · bp(λ)
and γσ = γ(λσ(1), . . . , λσ(r)). We claim that if μ1 > · · · > μr, then

γσ(λ) |λ1=0 · · · |λr=0= γσ(κμ1 , . . . , κμr )|κ=0,

where it is a part of the claim that both sides make sense.
Let us prove the claim. Since AI = 1, reordering the factors b1, . . . , bp and

multiplying γ(λ) by a non-zero constant, we may assume that αkk = 1, k =
1, . . . , p, so that

γ(λ) =
λ1

λ1 + α21λ2 + · · ·+ αr1λr
· · · λp

αp1λ1 + · · ·+ λp + · · ·+ αrpλr
.

For j < r set τj := λj/λj+1 and γ̃σ(τ1, . . . , τr−1) := γσ(λ); notice that γσ is 0-
homogeneous, so that γ̃σ is well defined. Then λj = τj · · · τr−1λr , and therefore γ̃σ

consists of p factors of the form
τk · · · τr−1

αk1τ1 · · · τr−1 + · · ·+ τk · · · τr−1 + · · ·+ αk,r−1τr−1 + αkr
. (2.2)

Observe that (2.2) is holomorphic in τ in some neighborhood of the origin. In-
deed, if αkr �= 0, then (2.2) is clearly holomorphic, whereas if αkr = 0 we can
factor out τr−1 from the denominator and numerator. In the latter case (2.2)
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is clearly holomorphic if αk,r−1 �= 0 etc; since αkk = 1 this procedure eventu-
ally stops. Hence, γ̃σ(τ) is holomorphic in a neighborhood of 0. It follows that
γσ(κμ1 , . . . , κμr ) = γ̃σ(κμ1−μ2 , . . . , κμr−1−μr ) is holomorphic in a neighborhood of
0 and since the denominator of γσ(κμ1 , . . . , κμr ) is a polynomial in κ with non-
negative coefficients it is in fact holomorphic in a neighborhood of [0,∞). Moreover,
γσ(λ1, . . . , λr) is holomorphic in Δ = {|λ1/λ2| < ε, . . . , |λr−1/λr| < ε}. Let us now
fix λ2 �= 0, . . . , λr �= 0 in Δ. Then γσ(λ) is holomorphic in λ1 in a neighborhood
of the origin. Next, for λ3 �= 0, . . . , λr �= 0 fixed in Δ, γσ(λ)|λ1=0 is holomorphic
in λ2 in a neighborhood of the origin, etc. It follows that

γσ(λ)|λ1 · · · |λr=0 = γ̃σ(τ)|τ=0 = γσ(κμ1 , . . . , κμr )|κ=0,

which proves the claim. Thus (2.1) follows in the case uj = 1, j = 1, . . . , r.

Now, consider the general case. Replace each |uj |2λj in Γ(λ) by |uj|2ωj , where
ωj ∈ C. Then Γ is a sum of terms of the following representative form:

r∏
j=p+1

|uj|2ωj

p′∏
j=1

|uj |2ωj

p∧
p′+1

∂̄|uj|2ωj ∧
∏r

j=p′+1 |xαj |2λj
∧p′

j=1 ∂̄|xαj |2λj

xkrαr · · ·xk1α1
(2.3)

Fixing all λj and ωj except for λσ(1) and ωσ(1), (2.3) becomes an analytic (current-

valued) function g(λσ(1), ωσ(1)) in a neighborhood of 0 ∈ C2. Thus, the value at 0
of g(λσ(1), λσ(1)) is the same as first letting ωσ(1) = 0 (which corresponds to setting
uσ(1) = 1) and then letting λσ(1) = 0 in g(λσ(1), ωσ(1)). Continuing analogously for
(λσ(2), ωσ(2)) and so on, it follows that the right-hand side of (2.1) is independent
of the uj .

To see that the left-hand side of (2.1) is independent of uj, replace each λj

in (2.3) by κμσ(j) and denote the resulting expression by g̃(κ, ω1, . . . , ωr). Then g̃
is clearly analytic in the ωj and by the first part of the proof it is also analytic in a
neighborhood of [0,∞) ⊂ Cκ. Hence, g̃ is analytic in a neighborhood of 0 ∈ Cr+1.
The left-hand side of (2.1) is obtained by evaluating κ �→ g̃(κ, κμσ(1) , . . . , κμσ(r))
at κ = 0; this is thus the same as evaluating g̃(κ, 0) (which corresponds to setting
all uj = 1) at κ = 0. Hence also the left-hand side of (2.1) is independent of the
uj and the lemma follows. �
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SE-412 96 Göteborg, Sweden

e-mail: matsa@chalmers.se
hasam@chalmers.se

wulcan@chalmers.se

Alain Yger
Institut de Mathématiques
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On the Effective Membership Problem
for Polynomial Ideals

Mats Andersson and Elizabeth Wulcan

Dedicated to the memory of Mikael Passare

Abstract. We discuss the possibility of representing elements in polynomial
ideals in CN with optimal degree bounds. Classical theorems due to Macaulay
and Max Noether say that such a representation is possible under certain
conditions on the variety of the associated homogeneous ideal. We present
some variants of these results, as well as generalizations to subvarieties of CN .

1. Introduction

Let V be an algebraic subvariety of CN of pure dimension n and let F1, . . . , Fm

be polynomials in CN . We are interested in finding solutions to the polynomial
division problem

F1Q1 + · · ·+ FmQm = Φ (1.1)

on V with degree estimates, provided Φ is in the ideal (Fj) on V . By a result of
Hermann, [18], if degFj ≤ d, there are polynomials Qj such that deg(FjQj) ≤
deg Φ + C(d,N), where C(d,N) is like 2(2d)2

N−1 for large d and thus doubly
exponential. It is shown in [24] (see also [10, Example 3.9]) that in general this
estimate cannot be substantially improved.

If one imposes conditions on V and Fj one can, however, obtain much sharper
estimates. The following two results in Cn are classical.

If F1, . . . , Fm are polynomials in Cn of degrees d1 ≥ · · · ≥ dm with no common
zeros even at infinity and Φ is any polynomial, then one can solve (1.1) with
deg(FjQj) ≤ max(deg Φ, d1 + · · ·+ dn+1 − n).

If F1, . . . , Fn are polynomials in Cn such that their common zero set is discrete
and does not intersect the hyperplane at infinity, and Φ belongs to the ideal (Fj),
then one can find polynomials Qj such that (1.1) holds and deg(FjQj) ≤ deg Φ.

The first author was partially supported by the Swedish Research Council. The second author
was partially supported by the Swedish Research Council and by the NSF.
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The first theorem is due to Macaulay, [23], and the second one is Max Noether’s
AF+BG theorem, [25], originally stated for n = 2. Noether’s result is clearly op-
timal.

In this paper we present extensions of these results to the case of more general
varieties V ⊂ CN , and also generalizations in which we relax the condition on (the
zero set of) the Fj . It grew out of our paper [9], in which we extended to the
singular setting a framework for solving polynomial ideal membership problems
with residue techniques introduced in [3] and further developed in [5, 30, 31], see
below. The proofs in this paper follow the same setup. However, at least some of
the results also admit algebraic proofs, see Remark 6.2.

Throughout we will let X denote the closure of V in PN , and regX the
regularity of X , see Section 4 for the definition. For each Fj we let fj denote the
induced section of O(degFj)|X .

We begin with an extension of Macaulay’s theorem to singular varieties; this
can easily be proved by standard arguments, cf. Remark 6.2.

Theorem 1.1. Let V be an algebraic subvariety of CN , with closure X in PN , and
let F1, . . . , Fm be polynomials in CN of degrees d1 ≥ · · · ≥ dm. Assume that fj have
no common zeros on X. Then for each polynomial Φ in CN there are polynomials
Qj such that (1.1) holds and

deg(FjQj) ≤ max(deg Φ, d1 + · · ·+ dn+1 − (n+ 1) + regX).

If X is smooth, then regX ≤ (n+1)(degX−1)+1; this is Mumford’s bound,
see, e.g., [22, Example 1.8.48]. If X is Cohen–Macaulay in PN (and N is minimal)
then regX ≤ degX − (N − n), see, [17, Corollary 4.15]. In particular, if V = Cn

so that X = Pn, then regX = 1; thus we get back Macaulay’s theorem. For a
discussion of bounds on regX for a general X , see, e.g., [10, Section 3].

Let Zf denote the common zero set of f1, . . . , fm in X . Moreover, let X∞ :=
X \ V . For smooth varieties we have the following version of Max Noether’s
theorem.

Theorem 1.2. Let V be an algebraic subvariety of CN of dimension n such that its
closure X in PN is smooth, and let F1, . . . , Fm be polynomials in CN of degrees
d1 ≥ · · · ≥ dm. Assume that m ≤ n, that

codim (Zf ∩ V ) ≥ m, (1.2)

and that Zf has no irreducible component contained in X∞. If Φ is a polynomial
that belongs to the ideal (Fj) on V , then there is a representation (1.1) with

deg(FjQj) ≤ max(deg Φ, d1 + · · ·+ dm −m+ regX). (1.3)

If in addition X is Cohen–Macaulay in PN one can choose Qj so that

deg(FjQj) ≤ deg Φ. (1.4)

Remark 1.3. If X is Cohen–Macaulay it suffices that V is smooth to obtain (1.4).
�
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For V = Cn Theorem 1.2 appeared in [3, Theorem 1.2].

For a general X , in order to have a Max Noether theorem, we need the
common zero set of the fj not to intersect the singular locus of X too badly. To
make this statement more precise we need to introduce what we call the intrinsic
BEF-varieties

Xn−1 ⊂ · · · ⊂ X1

of X ⊂ PN . These are the sets where the mappings in a locally free resolution of

OP
N

/JX do not have optimal rank. They are intrinsically defined subvarieties of
X that are contained in X0 := Xsing. The codimension of X� is at least �+1, and
if X is locally Cohen–Macaulay X� is empty for � ≥ 1, see Sections 2.3 and 2.5.

Theorem 1.4. Let V be an algebraic subvariety of CN of dimension n, with closure
X in PN , and let Fj be as in Theorem 1.2. Assume that Zf satisfies (1.2), that
Zf has no irreducible component contained in X∞, and moreover that

codim (Zf ∩X�) ≥ m+ �+ 1, � ≥ 0. (1.5)

If Φ is a polynomial that belongs to the ideal (Fj) on V , then there is a representa-
tion (1.1) such that (1.3) holds. If in addition X is Cohen–Macaulay in PN , and
m ≤ n, we can choose Qj such that (1.4) holds.

Notice that (1.5) forces that either Zf ∩Xsing = ∅ or m < n. If X is smooth,
then (1.5) is vacuous, and thus Theorem 1.2 follows immediately from Theorem 1.4.
If only V is smooth but X is Cohen–Macaulay, then by the assumption on Zf

codim (Zf ∩X∞) ≥ m+ 1 and since X0 ⊂ X∞, (1.5) is satisfied. This proves the
claim in Remark 1.3.

Next we will present some generalizations of Theorem 1.4 where we relax the
hypotheses on the common zero set Zf of the fj . First, we drop the size hypothesis
(1.2) on Zf∩V . We then still get an estimate of the form (1.3) but the second entry
on the right-hand side is now replaced by a constant that depends on Fj in a more
involved manner. The condition that Zf has no irreducible component at infinity
should now be understood as that the ideal sheaf Jf over X generated by the sec-
tions f1, . . . , fm has no associated variety, in the sense of [28], contained in X∞, see
Section 3. This means that at each x ∈ X∞, (Jf )x has no (varieties of) associated
prime ideals contained in X∞. Let Jf be the homogeneous ideal in C[z0, . . . , zN ]
associated with Jf , and let reg Jf be the regularity of Jf , cf. Section 4.

Theorem 1.5. Let V be an algebraic subvariety of CN , with closure X in PN , and
let F1, . . . , Fm be polynomials in CN . Assume that Jf has no associated variety
contained in X∞. Then there is a constant β = β(X,F1, . . . , Fm) such that if
Φ ∈ (Fj), then there is a representation (1.1) on V with

deg(FjQj) ≤ max(deg Φ, β). (1.6)

If V = CN , one can take β = reg Jf .
Conversely, if there is an associated prime of Jf contained in X∞, then there

is no β such that one can solve (1.1) with (1.6) for all Φ in (Fj).
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In [27] Shiffman computed the regularity of a zero-dimensional homogeneous
polynomial ideal Jf to be ≤ d1 + · · · + dn+1 − n. Using this he obtained (the
first part of) Theorem 1.5 for V = CN and dimZf = 0 with β = reg Jf =
d1 + · · · + dn+1 − n, i.e., the same bound as in Macaulay’s theorem, see [27,
Theorem 2(iv)]. Theorem 1.5 can thus be seen as a generalization of Shiffman’s
result.

The estimate (1.6) is clearly sharp if deg Φ ≥ β. If the ideal sheaf Jf is locally
Cohen–Macaulay, for instance locally a complete intersection, then there are no
embedded primes of Jf , and so the hypothesis that Jf has no associated variety
at infinity just means that no irreducible component of Zf is contained in X∞.
Thus we get back the hypothesis in Theorems 1.2 and 1.4.

Next, let us instead relax the condition that Zf has no irreducible compo-
nents at infinity. If the degrees of Fj are ≤ d, we let f̃j denote the section of

O(d)|X corresponding to Fj . We let Z f̃ be the common zero set of f̃1, . . . , f̃m and

Jf̃ the coherent analytic sheaf over X generated by the f̃j . Moreover, we let c∞
be the maximal codimension of the so-called (Fulton–MacPherson) distinguished
varieties of Jf̃ that are contained in X∞, see Section 5.1. If there are no distin-
guished varieties contained in X∞, then we interpret c∞ as −∞. Note that it is not

sufficient that Z f̃ ∩ V = Z f̃ , since there may be embedded distinguished varieties
contained in X∞. It is well known that the codimension of a distinguished variety
cannot exceed the number m, see, e.g., Proposition 2.6 in [15], and thus c∞ ≤ μ,
where

μ := min(m,n).

Theorem 1.6. Let V be an algebraic subvariety of CN , with closure X in PN , and

let F1, . . . , Fm be polynomials in CN of degree ≤ d. Assume that Z f̃ satisfies

codim (Z f̃ ∩X) ≥ m (1.7)

and

codim (Z f̃ ∩X�) ≥ m+ �+ 1, � ≥ 0. (1.8)

If Φ is a polynomial that belongs to (Fj) on V , then there is a representation (1.1)
on V with

deg(FjQj) ≤ max(deg Φ + μdc∞ degX, (d− 1)min(m,n+ 1) + regX). (1.9)

If in addition X is locally Cohen–Macaulay in PN and m ≤ n, then we can
choose Qj such that

deg(FjQj) ≤ deg Φ +mdc∞ degX.

Note that for most choices of Fj and Φ the first entry in (1.9) is much larger
than the second entry. For instance this is true for all Φ if c∞ ≥ 2 and d is large
enough. In particular, if X = Pn, so that regX = 1, and c∞ ≥ 2, the first entry is
the largest for all d.
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For X = Pn Theorem 1.6 is due to the first author and Götmark, [5, Theo-

rem 1.3]. In the case when degFj = d, so that f̃j = fj, Theorem 1.6 generalizes
Theorems 1.1–1.4, see Remark 6.3.

Example 1.7. If the Fj have no common zeros on V , then Theorem 1.6 gives a
solution to

F1Q1 + · · ·+ FmQm = 1

with deg(FjQj) ≤ μdμ degX if d is large enough. Except for the annoying factor
μ we then get back is Jelonek’s optimal effective Nullstellensatz, [20]. �

Note that the estimates of deg(FjQj) in the theorems above hold for rep-
resentations of all Φ in (Fj). If one, instead of adding conditions on V and Fj ,
imposes further conditions on Φ, then Hermann’s degree estimate for solutions to
(1.1) can also be essentially improved. Theorem 1.1 in our recent paper [9] asserts
that for any V ⊂ CN there is a number μ0 such that if F1, . . . , Fm are polynomials
in CN of degree ≤ d and Φ is a polynomial such that |Φ| ≤ C|F |μ+μ0 locally on
V , where |F |2 = |F1|2 + · · ·+ |Fm|2, then one can solve (1.1) with

deg(FjQj) ≤ max
(
deg Φ + (μ+ μ0)d

c∞ degX, (d− 1)min(m,n+ 1) + regX
)
.

(1.10)
The statement that |Φ| ≤ C|F |μ+μ0 implies that there is a representation (1.1) is
a direct consequence of Huneke’s uniform Briançon–Skoda theorem, [12, 19], and
thus the degree estimate (1.10) can be seen as a global effective Briançon–Skoda–
Huneke theorem.

2. Residue currents

We will briefly recall some residue theory. For more details we refer to [9] and the
references therein.

2.1. Currents on a singular variety

If nothing else is mentionedX will be a reduced subvariety of PN of pure dimension
n. The sheaf C�,k of currents of bidegree (�, k) on X is by definition the dual of the
sheaf En−�,n−k of smooth (n− �, n−k)-forms on X . If i : X → PN is an embedding

of X , then En−�,n−k can be identified with the quotient sheaf EPN

n−�,n−k/Ker i∗,
where Ker i∗ is the sheaf of forms ξ on PN such that i∗ξ vanish on Xreg. It follows
that the currents τ in C�,k can be identified with currents τ ′ = i∗τ on PN of
bidegree (N − n+ �,N − n+ k) that vanish on Ker i∗.

Given a holomorphic function f on X , we write 1/f for the principal value
distribution, defined for instance as limε→0 χ(|f |2/ε)(1/f),where χ(t) is the charac-
teristic function of the interval [1,∞) or a smooth approximand of it, or as the ana-
lytic continuation of λ→ |f |2λ(1/f) to λ = 0. It is readily checked that f(1/f) = 1
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as distributions and that the residue current ∂̄(1/f) satisfies f ∂̄(1/f) = 0. We will
need the fact that

vλ|f |2λ 1

f

∣∣∣∣
λ=0

=
1

f
(2.1)

if v is a strictly positive smooth function; cf. [1, Lemma 2.1].

2.2. Pseudomeromorphic currents

The notion of pseudomeromorphic currents on manifolds was introduced in [8]. A
slightly extended version appeared in [6]: A current on X is pseudomeromorphic
if it is (the sum of terms that are) the pushforward under (a composition of)
modifications, projections, and open inclusions of currents of the form

ξ

sα1
1 · · · sαn−1

n−1

∧ ∂̄
1

sαn
n

,

where s is a local coordinate system and ξ is a smooth form with compact support,
see, e.g., [6] for details.

Pseudomeromorphic currents in many respects behave like positive closed
currents. For example they satisfy the dimension principle: If τ is a pseudomero-
morphic current on X of bidegree (∗, p) that has support on a variety of codimen-
sion > p, then τ = 0.

Also, pseudomeromorphic currents allow for multiplication with character-
istic functions of constructible sets so that ordinary computational rules hold.
If τ is a pseudomeromorphic current on X and V is a subvariety of X , then
the natural restriction of τ to the open set X \ V has a canonical extension
1X\V τ := |h|2λτ |λ=0, where h is any holomorphic tuple such that {h = 0} = V .
It follows that 1V τ := τ − 1X\V τ is a pseudomeromorphic current with support
on V . Note that if α is a smooth form, then 1V α ∧ τ = α ∧ 1V τ and if W are W ′

are constructible sets, then

1W1W ′τ = 1W∩W ′τ. (2.2)

Moreover, if π : X̃ → X is a modification, τ̃ is a pseudomeromorphic current on

X̃, and τ = π∗τ̃ , then

1V τ = π∗
(
1π−1V τ̃

)
(2.3)

for any subvariety V ⊂ X . IfW is a subvariety ofX and 1V τ = 0 for all subvarieties
V ⊂ W of positive codimension we say that τ has the the standard extension
property, SEP with respect to W , see [11].

Recall that a current is semi-meromorphic if it is the quotient of a smooth
form and a holomorphic function. Following [6] we say that a current τ is al-

most semi-meromorphic in X if there is a modification π : X̃ → X and a semi-
meromorphic current τ̃ such that τ = π∗τ̃ .
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2.3. Residue currents associated with Hermitian complexes

Consider a complex of Hermitian holomorphic vector bundles over a complex man-
ifold Y of dimension n,

0→ EM
fM

−→ · · · f3

−→ E2
f2

−→ E1
f1

−→ E0 → 0, (2.4)

that is pointwise exact outside an analytic variety Z ⊂ Y of positive codimension p.
Suppose that the rank ofE0 is 1. In [2, 7] was associated to (2.4) a

⊕
Hom(E0, Ek)-

valued pseudomeromorphic current R = Rf ; it has support on Z and in a certain
sense it measures the lack of exactness of the associated sheaf complex of holo-
morphic sections

0→ O(EM )
fM

−→ · · · f3

−→ O(E2)
f2

−→ O(E1)
f1

−→ O(E0). (2.5)

Proposition 2.1. If φ is a holomorphic section of E0 such that Rφ = 0, then
φ ∈ Im f1. Moreover, if

Hk−1(Y,O(Ek)) = 0, 1 ≤ k ≤ min(M,n+ 1), (2.6)

then there is a global holomorphic section q of E1 such that f1q = φ.

We also have the duality principle: If (2.5) is exact, i.e., if it is a locally free
resolution of the sheaf O(E0)/Im f1, then Rφ = 0 if and only if φ ∈ Im f1.

As in [9] we will refer to a (locally) free resolution (2.5) of O(E0)/J together
with Hermitian metrics on the corresponding vector bundles as a Hermitian (lo-
cally) free resolution.

Let us look at the construction of R in a special case; see, e.g., [9] for more
details and the general case. Let Rk denote the component of R that takes values
in Hom (E0, Ek).

Example 2.2 (The Koszul complex). Given Hermitian line bundles S → Y and
L1, . . . , Lm → Y and a tuple f of holomorphic sections f1, . . . , fm of L1, . . . , Lm,
respectively, let (2.4) be the (twisted) Koszul complex of f : Let Ej be disjoint
trivial line bundles with basis elements ej , let E = L−1

1 ⊗ E1 ⊕ · · · ⊕ L−1
m ⊗ Em,

and identify f with a section f =
∑

fje
∗
j of E∗, where e∗j are the dual basis

elements. Moreover, let

E0 = S, Ek = S ⊗ ΛkE,

and let all fk in (2.4) be interior multiplication δf by the section f .

The current associated with the Koszul complex was introduced in [1]; we
will briefly recall the construction. Let σ be the section of E over Y \ Z with
pointwise minimal norm such that f · σ = δfσ = 1, i.e.,

σ =
∑
j

f∗
j ej

|f |2 ,
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where f∗
j is the section of L−1

j of minimal norm such that fjf
∗
j = |fj|2Lj

, and

|f |2 = |f1|2L1
+ · · ·+ |fm|2Lm

. Then Rk equals the analytic continuation to λ = 0 of

Rλ
k = Rf,λ

k := ∂̄|f |2λ ∧ σ ∧ (∂̄σ)k−1. (2.7)

Here the exterior product is with respect to the exterior algebra over E ⊕ T ∗(Y )
so that dz̄j ∧ e� = −e� ∧ dz̄j etc; in particular, ∂̄σ is a form of even degree.

If m = 1, then σ is just (1/f1)e1 and R = ∂̄(1/f1) ∧ e1. In general, the coef-
ficients of R are the Bochner–Martinelli residue currents introduced by Passare–
Tsikh–Yger [26]. The sheaf complex associated with the Koszul complex is exact
if and only if f is a complete intersection, i.e., codimZf = m. In this case one can
prove that (the coefficient of) R = Rm coincides with the classical Coleff–Herrera
residue current ∂̄(1/f1) ∧ · · · ∧ ∂̄(1/fm). �

Since, in light of the above example,R generalizes the classical Coleff–Herrera
residue current (as well as the Bochner–Martinelli residue currents), we say that
R is the residue current associated with the Hermitian complex (2.4).

The construction of R in general involves the minimal inverse σk of each
fk in (2.4); R is defined as the analytic continuation to λ = 0 of a regular-
ization Rλ which generalizes (2.7). The component Rk is of the form ∂̄|f |2λ ∧
σk∂̄σk−1 · · · ∂̄σ1|λ=0; see, e.g., [7] for a precise interpretation of this. It follows
that outside the set Zk where fk does not have optimal rank,

Rk = αkRk−1, (2.8)

where αk is a smooth Hom (Ek−1, Ek)-valued (0, 1)-form. If (2.5) is exact, these
sets are independent of the resolution; we call them BEF varieties (which is
an acronym for Buchsbaum–Eisenbud–Fitting, cf. [9]) and denote them Zbef

k =
Zbef
k (Jf ). The Buchsbaum–Eisenbud theorem asserts that codimZbef

k ≥ k; more
precisely it says that the complex (2.5) is exact if and only if the codimension of the
set where fk does not have optimal rank is ≥ k, see, e.g., [17, Theorem 3.3]. If Jf

has pure codimension p, then codimZbef
k ≥ k+1 for k > p, see [16, Corollary 20.14].

Also, note that if in addition X is locally Cohen–Macaulay, then Zk = ∅ for k > p.
The current Rk has bidegree (0, k), and thus, by the dimension principle, Rk = 0
for k < p, and for degree reasons, Rk = 0 for k > n.

If the complex (2.4) is twisted by a Hermitian line bundle, the residue current
R is not affected. This follows since the σk are not affected by the twisting.

2.4. BEF-varieties on singular varieties

Let i : X → Y be a (local) embedding of X of dimension n into a smooth manifold
Y of dimension N . Note that if Jf is a coherent ideal sheaf on X , then Jf +JX is

a well-defined sheaf on Y . Indeed, locally Jf is the pullback i∗J̃f of an ideal sheaf

on Y and the sheaf J̃f+JX is independent of the choice of J̃f . We define kth BEF-
variety Zbef

k (Jf ) of Jf as Zbef
k+N−n(Jf + JX), which clearly is a subvariety of X .

This definition is independent of the embedding i. To see this recall that

(locally) i can be factorized as X
ι→ Ω → Ω × Cr = Y , where ι is a minimal
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embedding. From a locally free resolution of OΩ/J , where J is a coherent ideal
sheaf over Ω, it is not hard to construct a locally free resolution of OY /(J+JΩ). By
relating the sets where the mappings in these resolutions do not have optimal rank
one can show that the BEF-varieties of J are independent of i, cf. [4, Remark 4.6]
and [9, Section 3].

2.5. The structure form ω on a singular variety

Now assume that X is as in Section 2.1, and let R be the residue current associated
with a Hermitian free resolution O(E•), g• of the sheaf JX of X , and let Ω be
a global nonvanishing (dimPN , 0)-form with values in O(N + 1). It was shown
in [6, Proposition 3.3] that there is a (unique) almost semi-meromorphic current
ω = ω0 + · · ·+ ωn−1 on X , that is smooth on Xreg and such that

i∗ω = R ∧Ω.

We say that ω is a structure form on X . Let E� denote the restriction of EN−n+�

to X . Then the component ω� is an (n, �)-form taking values in Hom (E0, E�).
Moreover, let X0 = Xsing and X� = XN−n+�, where Xj are the BEF-varieties of
JX . In the language of the previous section X� is the �th BEF-variety of the zero
sheaf. It follows from that section that the X� are independent of the embedding
i : X → Y of X into a smooth manifold Y ; we therefore call them the intrinsic
BEF-varieties of X . In light of (2.8) there are almost semi-meromorphic forms α�,
smooth outside X�, such that

ω� = α�ω�−1. (2.9)

on X .

3. Gap sheaves and primary decomposition of sheaves

Recall that any ideal a in a Noetherian ring A admits a primary decomposition
(or Noether–Lasker decomposition), i.e., it can be written as a =

⋂
ak, where ak

is pk-primary (ab ∈ ak implies a ∈ ak or bs ∈ ak for some s and
√
ak = pk) for

some prime ideal pk. The primes in a minimal such decomposition are called the
associated primes of a and the set Ass(a) of associated primes is independent of
the primary decomposition.

Given a coherent subsheaf J of OX , Siu [28] gave a way of defining a
“global” primary decomposition. Let us briefly recall his construction. First, for
p = 0, 1, . . . , dimX , let J[p] ⊃ J be the pth gap sheaf (Lückergarbe), introduced
by Thimm [29]: A germ s ∈ Ox is in (J[p])x if and only if there is a neighborhood
U of x and a section t ∈ J (U) such that sx = tx and ty ∈ Jy for all y ∈ U outside
an analytic set of dimension at most p. It is not hard to see that J[p] is a coher-
ent sheaf, see [29], and that the set Y p where (J[p])x �= Jx is an analytic variety
of dimension at most p, see [28, Theorem 3]. The irreducible components of Y p,
p = 0, 1, . . . , dimX , are called the associated (sub)varieties of J . A coherent sheaf
J is said to be primary if it has only one associated variety Y ; we then say that
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J is Y -primary. Theorem 6 in [28] asserts that each coherent J ⊂ OX admits a
decomposition

J =
⋂
Ji, (3.1)

where there is one Yi-primary intersectand Ji for each associated variety Yi of J .
For a radical sheaf JX , the decomposition (3.1) corresponds to decomposing X
into irreducible components.

By Theorem 4 in [28] if Y is an associated prime variety of J , then at x ∈ X
the irreducible components Ass(JYx) of Yx are germs of varieties of associated
primes of Jx. Furthermore, if Yx is (the variety of) an associated prime of Jx,
then Yx is contained in Y p

x for p ≥ dimYx. For fixed x we get that⋃
Y ∈Ass(J ),Y �x

Ass(JYx)

is a disjoint union of Ass(Jx). Thus we have

Lemma 3.1. The germ at x of J[p] is precisely the intersection of the primary
components of Jx that are of dimension > p.

Given a subvariety Z of X , the gap sheaf J [Z] ⊃ J is defined as follows:
A germ s ∈ Ox is in J [Z]x if and only if it extends to a section of J (U) for
some neighborhood U of x, where sy ∈ Jy for all y ∈ U \ Z. Note that J [Z]x
is the intersection of all components in a primary decomposition of Jx for which
the associated varieties are not contained in Z. It is not hard to see that J [Z] is
coherent, see [29]. Observe that J[p] = J [Y p].

Remark 3.2. We claim that in fact

J[p] = J [Zbef
n−p]. (3.2)

To see this assume first that X is smooth. Then the (germs of) varieties of asso-
ciated prime ideals of J of dimension ≤ p are precisely the (germs of) varieties of
associated prime ideals that are contained in Zbef

n−p, see, e.g., [16, Corollary 20.14].
Now (3.2) follows from Lemma 3.1.

For a general X , let i : X → Y be a local embedding of X into a manifold Y

of dimension N and let J̃ = J +JX , cf. Section 2.4. It is not hard to verify that if a
is an ideal in OX

x and ã := a+(JX)x is the corresponding ideal in OY
x then a = ∩ak

is a primary decomposition of a if and only if ã = ∩ãk is a primary decomposition

of ã. Hence, in light of Lemma 3.1, i∗J̃ [V ] = J [V ∩X ] and i∗J̃[p] = J[p]. By the

definition of BEF-varieties in Section 2.4, thus i∗J̃ [Zbef
N−p(J̃ )] = J [Zbef

N−p(J̃ )] =

J [Zbef
n−p(J )], which proves (3.2) since J̃[p] = J̃ [Zbef

N−p(J̃ )]. �

Given a residue currentR constructed from a Hermitian locally free resolution
of OX/J on a smooth X as in Section 2.3, in [8] we showed that the germ Rx of
the current R at x ∈ X can be written as Rx =

∑
Rp, where the sum is over the

associated primes of Jx, and Rp has support on the variety V (p) of p and has the
SEP with respect to V (p).
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4. Resolutions of homogeneous ideals

Let J be a coherent ideal sheaf on PN . Then there is a locally free resolution

O(Ef
• ), f•, where Ek is a direct sum of line bundles Ek =

⊕
iO(−dik) and fk =

(fk
ij) are matrices of homogeneous forms with deg fk

ij = djk − dik−1, see, e.g., [22,

Ch.1, Example 1.2.21]. Let J denote the homogeneous ideal in the graded ring
S = C[z0, . . . , zN ] associated with J , and let S(�) denote the module S where all

degrees are shifted by �. Then O(Ef
• ), f• corresponds to a free resolution

· · · → ⊕iS(−dik)→ · · · → ⊕iS(−di2)→ ⊕iS(−di1)→ S (4.1)

of the module S/J . Conversely, any such free resolution corresponds to a locally
free resolution O(E•), f•.

Recall that the regularity of a homogeneous module with a minimal graded
free resolution (4.1) is defined as maxk,i(d

i
k−k), see, e.g., [17, Ch. 4]. The regularity

reg J of the ideal J equals reg (S/J) + 1, cf. [17, Exercise 4.3].
If X is a subvariety of PN , then the regularity of X , regX , is defined as the

regularity of JX . Notice that if X has pure dimension, then the ideal JX has pure
dimension in S; in particular the ideal associated to the origin is not an associated
prime ideal. Theorem 20.14 in [16] thus implies that Zbef

0 is empty. Therefore the
depth of S/JX is at least 1, and hence a minimal free resolution of S/JX has
length ≤ N . For such a resolution we thus get

regX = max
k≤min(M,N)

(dik − k) + 1. (4.2)

A global section of O(s)|X → X extends to a global section of O(s)→ PN as soon
as s ≥ regX − 1, see, e.g., [17, Chapter 4].

5. Division problems on singular varieties

Let Eg
• , g• be a complex that corresponds to a Hermitian free resolution ofOP

N

/JX

as above, and let Ef
• , f• be an arbitrary Hermitian pointwise generically surjective

complex over PN . Then the product current

Rf ∧Rg := Rf,λ ∧Rg|λ=0

is well-defined on Pn,

Rf ∧ ω := Ri∗f,λ ∧ ω|λ=0

is a well-defined current on X , and i∗(Rf ∧ ω) = Rf ∧ Rg, see [9, Section 2]. In
particular, Rf ∧ Rg and Rf ∧ ω only depend on the restriction of f to X , and
thus these currents are well-defined even if f is only defined over X . Moreover
Rf ∧ Rgφ = 0 if and only if Rf ∧ ωi∗φ = 0. On Xreg, R

f ∧ ω is just the product
of the current Rf and the smooth form ω.

The current Rf ∧Rg is related to the tensor product complex Eh
• , h

•, where

Eh
k =

⊕
i+j=k

Ef
i ⊗ Eg

j ,
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and h = f + g, cf. [9, Section 2.5], in a similar way as is the current Rh associated

with this complex, see [4]. In particular, if φ is a section of Eh
0 = Ef

0 ⊗Eg
0 such that

Rf ∧Rgφ = 0, one can locally solve f1q+g1q′ = φ. Moreover if (2.6) is satisfied for

the product complex there is a global such section (q, q′) of Eh
1 = Ef

1⊗E
g
0⊕E

f
0⊗E

g
1 .

In general, however, Rf ∧Rg does not coincide with Rh.

In fact, the definition of Rf in Section 2.3 works also when Y is singular.
However, Proposition 2.1 and the duality principle do not hold in general, see,
e.g., [21], and therefore Rf itself is not so well suited for division problems.

Example 5.1. Assume that Ef
• , f• is the Koszul complex generated by sections fj

of Lj = O(dj)|X , where X ⊂ PN , twisted by S = O(ρ), as in Example 2.2, and
that Eg

• , g• is a complex associated with a minimal Hermitian free resolution of
S/JX as in Section 4. Note that then Eh

� is a direct sum of line bundles

O(ρ− (di1 + · · ·+ di�)− dik−�).

Recall that

Hk(PN ,O(�)) = 0 if � ≥ −N or k < N, (5.1)

see, e.g., [13]. Thus (2.6) is satisfied if ρ ≥ di1 + · · · + di� + diN+1−� − N for
� = 1, 2, . . . ,min(m,n+ 1) and all choices of i and ij . Notice that, cf. (4.2),

diN+1−� −N =
(
diN+1−� − (N + 1− �)

)
+ 1− � ≤ regX − �.

Hence (2.6) is satisfied if

ρ ≥ d1 + · · ·+ dmin(m,n+1) −min(m,n+ 1) + regX. (5.2)

Summing up we have:

If ρ satisfies (5.2) and φ is a section of O(ρ) on PN such that Rf ∧ Rgφ = 0 (or
equivalently Rf ∧ Rgi∗φ = 0) then there are global sections qj of O(ρ − dj) such
that f1q1 + · · ·+ fmqm = φ on X.

IfX is Cohen–Macaulay we may assume that Eg
• , g• ends at levelN−n. If moreover

m ≤ n, then Eh
• , h

• ends at level ≤ N and thus (2.6) is satisfied for any ρ. �

Example 5.2. Let Fj be polynomials in CN , let f̂j be the sections of O(degFj)→
PN corresponding to Fj , and let Jf̂ be the ideal sheaf on PN generated by the

f̂j . Moreover, let Ef
• , f• and Eg

• , g• be complexes associated with minimal free
resolutions of Jf̂ and JX as in Section 4, where X is a subvariety of PN ; say

Ef
k =

⊕
O(δik) and Eg

k =
⊕
O(dik). Then Eh

k is a direct sum of line bundles

O(−δi� − djk−�), and thus (2.6) is satisfied if ρ ≥ δi� + djN+1−� −N for all i, j, �, cf.
Example 5.1. Notice that, in light of Section 4,

δi� + djN+1−� −N = (δi� − �) + (djN+1−� − (N + 1− �)) + 1 ≤ regJf̂ + regX − 1,

where Jf̂ is the homogeneous ideal associated with Jf̂ . Thus (2.6) is satisfied if
ρ ≥ reg Jf̂ + regX − 1.
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Let Z f̂
k and Zg

� be the BEF-varieties of Jf̂ and JX , respectively. Theorem 4.2

in [4] asserts that if

codim (Z f̂
k ∩ Zg

� ) ≥ k + �, (5.3)

then Rf ∧Rgφ = 0 if and only if φ ∈ Jf̂ + JX = Jf + JX , where Jf is the sheaf

on X generated by the restrictions fj of f̂j , cf. Section 2.4. If moreover Jf̂ and

JX are both Cohen–Macaulay and the resolutions O(Ef
• ), f• and O(Eg

• ), g• have
minimal length, then Rf ∧Rg = Rh, see [4, Theorem 4.2]. �

5.1. Distinguished varieties

Let X be a subvariety of PN and let f̃j be sections of L = O(d)|X . Moreover, let
ν : X+ → X be the normalization of the blow-up of X along Jf̃ , and let W =∑

rjWj be the exceptional divisor; here Wj are irreducible Cartier divisors. The
images Zj := ν(Wj) are called the (Fulton–MacPherson) distinguished varieties

associated with Jf̃ , see, e.g., [22]. If we consider f̃ = (f̃1, . . . , f̃m) as a section

of E∗ := ⊕m
1 O(−d), then ν∗f̃ = f̃0f̃ ′, where f̃0 is a section of the line bundle

O(−W ) and f̃ ′ = (f̃ ′
1, . . . , f̃

′
m) is a nonvanishing section of ν∗E∗ ⊗ O(W ), where

O(W ) = O(−W )−1. Furthermore, ωf̃ := ddc log |f̃ ′|2 is a smooth first Chern form

for ν∗L⊗O(W ). We will use the geometric estimate∑
rj degL Zj ≤ degLX (5.4)

from [15, Proposition 3.1], see also [22, (5.20)].

Let Rf̃ be the residue current associated with the Koszul complex of the f̃j

as in Example 2.2 and consider the regularization (2.7) of Rf̃ . Using the notation

in Example 2.2, ν∗σ = (1/f̃0)σ′, where 1/f̃0 is a meromorphic section of O(W )
and σ′ is a smooth section of ν∗E ⊗O(−W ). It follows that

ν∗(σ ∧ (∂̄σ)k−1) =
1

(f̃0)k
σ′ ∧ (∂̄σ′)k−1,

and hence

ν∗Rλ
k = ∂̄|f̃0f̃ ′|2λ ∧ 1

(f̃0)k
σ′ ∧ (∂̄σ′)k−1 for Reλ >> 0,

when k ≥ 1. Since f̃ ′ is nonvanishing, by (2.1) the value at λ = 0 is precisely

R+
k := ∂̄

1

(f̃0)k
∧ σ′ ∧ (∂̄σ′)k−1. (5.5)

Thus

ν∗R+
k = Rf̃

k .
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6. Proofs

Proof of Theorem 1.5. For j = 1, . . . ,m, let f̂j be the degFj-homogenization of
the polynomial Fj , considered as a section of O(degFj) → PN . Moreover let
g1, . . . , gr be global generators of the ideal sheaf JX ; assume they are sections of
O(d1), . . . ,O(dr), respectively. Let J = Jf̂ + JX = Jf + JX . Then there is a

locally free resolution O(Eh• ), h• of O/J , where each Eh
k is a direct sum of line

bundles Ek =
⊕

iO(−dik) and in particular E1 =
⊕m

1 O(− degFj)⊕r
1

⊕
O(−dk)

and h1 = (f1, . . . , fm, g1, . . . , gr) =: f +g, cf. Section 4. Let R = Rh be the residue
current associated with Eh

• , h
•.

Recall from Section 3 that for fixed x ∈ X , Rx =
∑

Rp, where the sum
is over Ass(Jx) and where Rp has the SEP with respect to V (p); in particular,
1H∞Rp = Rp if V (p) ⊂ H∞ and 1H∞Rp = 0 otherwise. Thus

1H∞Rx =
∑

p∈Ass(Jx),V (p)⊂H∞

Rp. (6.1)

In Remark 3.2 we saw that a = ∩ak is a primary decomposition of the ideal a in
OX

x if and only if ã = ∩ãk is a primary decomposition of the ideal ã = a+ (JX)x
in OY

x . Thus, that Jf has no associated varieties contained in X∞ implies that,
for a fixed x ∈ X , Jx has no (varieties of) associated primes contained in the
hyperplane H∞ at infinity in PN . We conclude, in light of (6.1), that 1H∞R = 0.
If φ is any homogenization of Φ then 1CNRφ = 0 because of the duality principle
and hence Rφ = 1H∞Rφ+ 1CNRφ = 0.

Assume that the complex Eh
• , h

• ends at levelM (by Hilbert’s syzygy theorem
we may assume that M ≤ N + 1) and let

β := max
i

diN+1 −N if M = N + 1 and β := 0 otherwise. (6.2)

If ρ ≥ β then (2.6) is satisfied for Eh
• , h

• twisted by O(ρ) in light of (5.1) and
thus by Proposition 2.1 there are global holomorphic sections q = (qj) of

⊕
O(ρ−

degFj) and q′ = (q′k) of
⊕
O(ρ − dk) over PN such that f̂ q + gq′ = φ. Indeed,

recall from the end of Section 2.3 that R is also the residue current associated
with the twisted complex. Dehomogenizing gives polynomials Qj , Q

′
j , and Gj in

CN such that ∑
FjQj +

∑
GjQ

′
j = Φ

and where deg(FjQj) ≤ ρ. Since the Gj vanish on V we get the desired solution
to (1.1) on V , and thus the first part of Theorem 1.5 follows with β as in (6.2).

If V = CN , OX should be interpreted as the zero sheaf. Then Eh
• , h

• is a
locally free resolution of O/Jf and β ≤ reg Jf , cf. Section 4.

For the second part of Theorem 1.5, assume that Jf has an associated variety
contained in X∞. We are to prove that for arbitrarily large � there is a polyno-
mial Φ = Φ� of degree ≥ � in (Fj) on V for which one cannot solve (1.1) with
deg(FjQj) ≤ degΦ�.
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Let L = O(1)|X . The hypothesis on Jf then means that Jf [X∞] is strictly
larger than Jf . Therefore, since L is ample, for some large enough s0 there is a
global section ψ0 of L⊗s0 → X such that ψ0 is in Jf [X∞] but not in Jf . Moreover
we can find a global section ψ of L⊗s for some s ≥ 1 such that ψ does not vanish
identically on any of the associated varieties of Jf that are contained in X∞. We
may assume that s0, s ≥ regX − 1, so that ψ0 and ψ extend to global sections

ψ̂0 and ψ̂ of O(s0) and O(s), respectively. Let Ψ0 and Ψ be the corresponding
dehomogenized polynomials in CN . For � ≥ 0, let φ� = ψ0ψ

� and Φ� = Ψ0Ψ
�.

Since Jf [X∞]x = (Jf )x for all x ∈ V , Φ� is in the ideal (Fj) on V , and thus we
can solve (1.1) for Φ = Φ� on V . Assume that there is a solution to (1.1) with
deg(FjQj) ≤ ρ�. Then there are sections qj of Lρ�−degFj such that∑

fjqj = z
ρ�−(s0+s�)
0 φ�

on X . Since φ� is not in Jf it follows that ρ� − (s0 + s�) ≥ 1 and thus ρ� ≥
1 + (s0 + s�) ≥ 1 + degΦ�. Since ψ̂ does not vanish identically at X∞, degΨ ≥ 1
and hence degΦ� ≥ �. Hence we have found Φ� with the desired properties and
the second part of Theorem 1.5 follows. �

Remark 6.1. If Jf̂ and JX are Cohen–Macaulay and the BEF-varieties of Jf̂ and

JX satisfy (5.3), then we can choose the complex Eh• , h• in the above proof to be

the tensor product of the complexes Ef
• , f• and Eg

• , g• corresponding to minimal
resolutions of Jf̂ and JX , see Example 5.2. In this case, by Example 5.2, we get

Theorem 1.5 for β = reg Jf̂ + regX − 1. �

The residue current technique in the preceding proof is convenient and makes
it possible to carry out the proof within our general framework, but it is not crucial.

Remark 6.2 (The algebraic approach). Let us first sketch an algebraic proof of
the first part of Theorem 1.5. We use the notation from the proof above. To begin
with we have to prove that φ is in J , which of course precisely corresponds to
proving that Rφ = 0. Since (the restriction to V of) φ is in Jf on V it follows that

φx′ is in J outside H∞. Since moreover J = OP
N

outside X , we have to prove
that φx ∈ Jx for each x ∈ X∞. At such a point x we have a minimal primary
decomposition Jx = ∩�J �

x . Since J is coherent, J ⊂ J � in a neighborhood U of
x, where J � is the coherent sheaf defined by J �

x . Let Z� be the zero-set of J �.
Since φx′ is in Jx′ for x′ outside H∞ it follows that φx′ is in J �

x′ for x′ ∈ Z� \H∞.
Hence F := (J � + (φ))/J � is a coherent sheaf in U with support on Z� ∩ H∞.
Since by assumption Jf has no associated varieties contained in X∞ it follows
that Z� ∩H∞ has positive codimension in Z�, cf. the proof of Theorem 1.5 above.
Therefore, by the Nullstellensatz there is a holomorphic function h, not vanishing
identically on Z� such that hF = 0. In particular, hxφx ∈ J �

x . Since hx is not in
the radical of J �

x and J �
x is primary it follows that φx ∈ J �

x . We conclude that
φx ∈ Jx. Notice that the last arguments above can be thought of as an algebraic
version of the SEP-argument in the proof of Theorem 1.5 above.
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Next we would like to use that φ ∈ J to conclude that there is a global
holomorphic solution to hq = φ. By a partition of unity, using that Eh

• , h
• is exact,

one can glue local such solutions together to obtain a global smooth solution to
(h− ∂̄)ψ = φ, cf. [9, Section 4]. By solving a certain sequence of ∂̄-equations in PN

we can modify ψ to a global holomorphic solution q to hq = φ. These ∂̄-equations
are solvable if ρ ≥ β defined by (6.2). Alternatively, one can directly refer to the
well-known result that there is a solution to hq = φ if ρ ≥ reg J , where J is the
homogeneous ideal corresponding to J , see, e.g., [17, Proposition 4.16].

In the same way Theorem 1.1 and 1.2 follow without any reference to residues.
Probably one can also find give an algebraic proof of Theorem 1.4. �

In the next proof the residue technique plays a more decisive role.

Proof of Theorem 1.6. Let

ρ = max(deg Φ + μdc∞ degX, (d− 1)min(m,n+ 1) + regX),

or if X is Cohen–Macaulay and m ≤ n let ρ = degΦ + mdc∞ degX , and let φ
be the ρ-homogenization of Φ considered as a section of O(ρ)|X . Note that then

φ = zρ−degΦ
0 φ̃, where φ̃ is the deg Φ-homogenization of Φ. Moreover, let Rf̃ ∧ ω

be the residue current associated with the (twisted) Koszul complex Ef̃
• , f̃• of the

sections f̃j of O(d)|X associated with Fj , and a complex Eg
• , g• associated with a

minimal resolution of O/JX as in Example 5.1 (with dj = d for all j).

Claim: Rf̃ ∧ ω0φ has support on Z f̃ ∩X0.

To prove the claim, since ω is smooth on Xreg, it is enough to show that

Rf̃φ = 0 on Xreg. First, since codimZ f̃ ∩ V ≥ m, the duality principle for a

complete intersection, cf. Example 2.2, implies that Rf̃φ = 0 on Vre.

Next, to prove that 1X∞\X0Rf̃φ = 0 we consider the normalization of the

blow-up ν : X+ → X , and let R+ :=
∑

R+
k be as in Section 5.1. Let W ′ be the

union of the irreducible components of W = ν−1Z f̃ that are contained in ν−1X∞.
We claim that

1X∞Rf̃ = ν∗
(
1W ′R+

)
. (6.3)

In fact, by (2.3),

1X∞Rf̃ = ν∗
(
1ν−1X∞R+

)
= ν∗(1ν−1X∞(1W ′ + 1W\W ′)R+

)
. (6.4)

By, (2.2), 1ν−1X∞1W ′R+ = 1W ′R+. Moreover,

1ν−1X∞1W\W ′ ∂̄
1

(f̃0)k
= 1ν−1X∞∩(W\W ′)∂̄

1

(f̃0)k
= 0

by (2.2) and the dimension principle, since ν−1X∞∩ (W \W ′) has codimension at
least 2 in X+. In view of (5.5) we conclude that 1ν−1X∞1W\W ′R+ = 0, and thus
(6.3) follows from (6.4).

It follows from (6.3) that 1X∞\X0Rf̃φ = 0 if 1W ′R+ν∗φ = 0. To show that

1W ′R+ν∗φ vanishes first note that it is sufficient to show that it vanishes in a
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neighborhood of each point x on W ′ where W is smooth. Indeed, since Wsing has

codimension at least 2 in W , 1Wsing ∂̄(1/(f̃
0)k) = 0 by the dimension principle.

Hence, using (5.5) and (2.2) we get that

1W ′R+ = 1W ′(1Wreg + 1Wsing)R
+ = 1W ′∩WregR

+.

Consider now x ∈ 1W ′∩Wreg ; say x is contained in the irreducible component Wj of

W ′. In a neighborhood of x we have that f̃0 = srjv, where s is a local coordinate

function and v is nonvanishing and rj is as in Section 5.1. Since φ = zρ−degΦ
0 φ̃, by

the choice of ρ, ν∗φ vanishes to order (at least) μdc∞ degX on W ′.
If Ω is a first Chern form for O(1)|X , e.g., Ω = ddc log |z|2, then dΩ is a first

Chern form for L = O(d)|X on X (notice that d denotes the degree and not the
differential). By (5.4) we therefore have that

rj

∫
Zj

(dΩ)dimZj ≤
∫
X

(dΩ)n,

which implies that

rj ≤ dcodimZj degX.

It follows that ν∗φ vanishes (at least) to order μrj on Wj and hence it has a factor
sμrj . In a neighborhood of x,

∂̄
1

(f̃0)k
= ∂̄

1

skrj
∧ smooth

and thus, in light of (5.5), R+
k ν

∗φ = 0 for k ≤ μ there. Hence 1W ′∩WregR
+
k ν

∗φ = 0

for k ≤ μ and 1X∞\X0Rf̃φ = 0. We conclude that 1X\X0Rf̃φ = 1Vreg Rf̃φ +

1X∞\X0Rf̃φ = 0, which proves the claim that Rf̃ ∧ ω0φ has support on Z f̃ ∩X0.

By (1.8) and the dimension principle we conclude that Rf̃ ∧ ω0φ vanishes

identically, since the bidegree of Rf̃ is at most (0,m) and ω0 has bidegree (n, 0).

Thus Rf̃ ∧ ω1φ = Rf̃ ∧ α1ω0φ, see (2.9), vanishes outside X1. By (1.8) and the

dimension principle, it vanishes identically since the bidegree of Rf̃ ∧ω1 is at most

(n,m+1). By induction, it follows that Rf̃ ∧ω�φ = 0 for each �. We conclude that

Rf̃ ∧ ωφ = 0.

Since ρ satisfies (5.2) (with dj = d) and Rf̃ ∧ωφ = 0, by Example 5.1 there is
a global section q = (qj) of

∑m
1 O(ρ− d) such that fq = φ on X . Dehomogenizing

gives polynomials Qj such that (1.1) holds on V and deg(FjQj) ≤ ρ. �

Proof of Theorems 1.1 and 1.4. Let

ρ = max(deg Φ, d1 + · · ·+ dmin(m,n+1) −min(m,n+ 1) + regX),

or if X is Cohen–Macaulay and m ≤ n let ρ = degΦ. Moreover let φ be the
ρ-homogenization of Φ and let Rf ∧ ω be the residue current associated with

the twisted Koszul complex Ef
• , f• of the degFj-homogenizations fj of Fj and a

minimal resolution of O/JX as in Example 5.1.
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We claim that under the hypotheses of both theorems Rf ∧ ω0φ has support
on Zf ∩X0. Since ω is smooth outside X0 it is enough to show that Rfφ = 0 there.
First in the case of Theorem 1.1, Rf vanishes for trivial reasons, since Zf is empty.
In the case of Theorem 1.4, first Rfφ vanishes on Vreg by the duality principle.
Next, since by assumption (1.2) holds and Zf has no irreducible components in
X∞, it holds that codim (X∞∩Zf ) > m. Since the components ofRf have bidegree
at most (0,m), we conclude that 1X∞\X0

Rf = 0 by the dimension principle. This

proves that Rf ∧ ωφ has support on Zf ∩X0.
Now arguing as in the end of the proof of Theorem 1.6, we get that Rf ∧ωφ =

0, and the results follow from Example 5.1. �
Remark 6.3. If degFj = d, then Theorems 1.1 and 1.4 follow directly from The-
orem 1.6. First, notice that Theorem 1.1 follows if we apply Theorem 1.6 to Fj

with no common zeros on X . Indeed, since Zf is empty, codim (Zf ∩X) =∞ and
thus (1.7) and (1.8) are satisfied, and moreover c∞ = −∞.

Next, assume that Fj satisfy the hypothesis of Theorem 1.4. Since the codi-
mension of a distinguished variety is at most m the condition that Zf satisfies
(1.2) and has no irreducible component contained in X∞ means that (1.7) is sat-
isfied and no distinguished varieties can be contained in X∞. Thus c∞ = −∞ and
dc∞ = 0 and Theorem 1.4 follows from Theorem 1.6. �
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[25] M. Nöther: Über einen Satz aus der Theorie der algebraischen Functionen, Math.
Ann. (1873), 351–359.

[26] M. Passare & A. Tsikh & A. Yger: Residue currents of the Bochner–Martinelli
type, Publicacions Mat. 44 (2000), 85–117.

[27] B. Shiffman: Degree bounds for the division problem in polynomial ideals, Michigan
Math. J. 36 (1989), no. 2, 163–171.

[28] Y.-T. Siu: Noether–Lasker decomposition of coherent analytic subsheaves, Trans.
Amer. Math. Soc. 135 1969 375–385.
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On the Optimal Regularity of Weak Geodesics
in the Space of Metrics on a Polarized Manifold

Robert J. Berman

To the memory of Mikael Passare

Abstract. Let (X,L) be a polarized compact manifold, i.e., L is an ample line
bundle over X and denote by H the infinite-dimensional space of all positively
curved Hermitian metrics on L equipped with the Mabuchi metric. In this
short note we show, using Bedford–Taylor type envelope techniques developed
in the authors previous work [3], that Chen’s weak geodesic connecting any
two elements in H are C1,1-smooth, i.e., the real Hessian is bounded, for any
fixed time t, thus improving the original bound on the Laplacians due to Chen.
This also gives a partial generalization of Blocki’s refinement of Chen’s regu-
larity result. More generally, a regularity result for complex Monge–Ampère
equations over X ×D, for D a pseudoconvex domain in Cn is given.

1. Introduction

Let X be an n-dimensional compact complex manifold equipped with a Kähler
form ω and denote by [ω] the corresponding cohomology class in H2(X,R). The
space of all Kähler metrics in [ω] may be identified with the space H(X,ω) of all
Kähler potentials, modulo constants, i.e., the space of all functions u on X such
that

ωu := ω + ddcu,

(
ddc :=

i

2π
∂∂̄

)
is positive, i.e., defines a Kähler form on X. Mabuchi introduced a natural Rie-
mannian metric on H(X,ω) [21], where the squared norm of a tangent vector
v ∈ C∞(X) at u is defined by

g|u(v, v) :=
ˆ
X

v2ωn
u (1.1)

The main case of geometric interest is when the cohomology class [ω] is in-
tegral, which equivalently means that it can be realized as the first Chern class
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c1(L) of an ample line bundle L over the projective algebraic manifold X. Then
the space H(X,ω) may be identified with the space H(L) of all positively curved
metrics φ on the line bundle L and as pointed by Donaldson [15] the space H(L)
may then be interpreted as the symmetric space dual of the group Ham(X,ω) of
Hamiltonian diffeomorphisms of (X,ω). Under this (formal) correspondence the
geodesics in H(X,ω) correspond to one-parameter subgroups in the (formal) com-
plexification of Ham(X,ω) and this motivated Donaldson’s conjecture concerning
the existence of geodesics in H(X,ω), connecting any two given elements.

However, Donaldson’s existence problem has turned out to be quite subtle.
In fact, according to the recent counter-examples in [20, 11] the existence of bona
fide geodesic segments fails in general. On the other hand, there always exists a
(unique) weak geodesic ut connecting given points u0 and u1 in H(X,ω) defined
as follows. First recall that, by an important observation of Semmes [23] and
Donaldson [15], after a complexification of the variable t, the geodesic equation for
ut on X× [0, 1] may be written as the following complex Monge–Ampère equation
on a domain M := X ×D in X × C for the function U(x, t) := ut(x) :

(π∗ω + ddcU)n+1 = 0. (1.2)

As shown by Chen [9], with complements by Blocki [8], for any smoothly
bounded domain D in C the corresponding boundary value problem on M admits
a unique solution U such that π∗ω + ddcU is a positive current with coefficients
in L∞, satisfying the equation 1.2 almost everywhere. In particular, when D is an
annulus in C this construction gives rise to the notion of a weak geodesic curve ut

in the space of all functions u such that ωu is a positive current with coefficients
in L∞ (the latter regularity equivalently means that the Laplacian of u is in L∞).
In particular, by standard linear elliptic estimates, U is “almost C1,1” in the sense
that U is in the Hölder class C1,α for any α < 1. As shown by Blocki [8], in the
case when X admits a Kähler metric with non-negative holomorphic bisectional
curvature Chen’s regularity result can be improved to give that U is C1,1-smooth.
However, the assumption on X appearing in Blocki’s result is very strong and
essentially implies that X is a homogeneous manifold. In this short note we point
out that, in the case when the given Kähler class [ω] is an integral the function ut

on X is in general, for any fixed t, in C1,1(X), i.e., its first derivatives are Lipschitz
continuous. More precisely, the real Hessian of ut has bounded coefficients with a
bound which is independent of t :

Theorem 1.1. For any integral Kähler class [ω] the weak geodesic ut connecting
any two points u0 and u1 in the space H(X,ω) of ω-Kähler potentials has the
property that, for any fixed t, the function ut is in C1,1(X). More precisely, the
upper bound on the sup norm on X of the real Hessian of ut only depending on
an upper bound of sup norms of the real Hessians of u0 and u1.

This regularity result should be compared with recent results of Darvas–
Lempert [11] showing that the solution U(x, t) := ut(x) is not, in general, C2-
smooth up to the boundary of M in (more precisely ddcU is not represented by
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a continuous form). However, the argument in [11], which is inspired by a similar
argument in the case of M = D for a pseudoconvex domain D in C2 due to
Bedford–Fornaess [1], does not seem to exclude the possibility that U be C2-
smooth in the interior of M. Anyway, the latter scenario appears to be highly
unlikely in view of the explicit counter-example of Gamelin–Sibony [17] to interior
C2-regularity for the case when D is the unit-ball in C2. Note also that, since
the bounds on the real Hessian of ut are controlled by the Hessians of u0 and u1

the previous theorem shows that PSH(X,ω) ∩ C1,1(X) is closed with respect to
weak geodesics. By the very recent work of Darvas [10] and Guedj [18] this the
latter property equivalently means that PSH(X,ω) ∩ C1,1(X) defines a geodesic
subspace of the metric completion of the space H equipped with the Mabuchi
metric.

The starting point of the proof of Theorem 1.1 is the well-known Perron type
envelope representation of the solution to the Dirichlet problem for the complex
Monge–Ampère operator. The proof, which is inspired by Bedford–Taylor’s ap-
proach in their seminal paper [2], proceeds by a straightforward generalization of
the technique used in [3] to establish the corresponding regularity result for cer-
tain envelopes of positively curved metrics in a line bundle L → X (which can
be viewed as solutions to a free boundary value problem for the complex Monge–
Ampère equation on X). In fact, the situation here is considerably simpler than
the one in [3] which covers the case when the line bundle L is merely big (the C1,1-
regularity then holds on the ample locus of L in X) and one of the motivations for
the present note is to highlight the simplicity of the approach in [3] in the present
situation (see also [22] for other generalizations of [3]). But it should be stressed
that, just as in [3], the results can be generalized to more general line bundles. For
example, by passing to a smooth resolution, Theorem 1.1 be generalized to show
that the weak geodesic connecting any two smooth metrics with non-negative cur-
vature current on an ample line bundle L over a singular compact normal complex
variety X is C1,1-smooth on the regular locus of X (for a fixed “time”).

As it turns out one can formulate a general result (Theorem 2.1 below) which
contains both Theorem 1.1 and the corresponding regularity result in [3]. In par-
ticular, the latter result covers the case when the domain D is the unit disc (or
more generally, the unit ball in Cn, where the following more precise regularity
result holds:

Theorem 1.2. For any integral Kähler class [ω] on a compact complex manifold X
the solution U to the Dirichlet problem for the complex Monge–Ampère equation
1.2 with C2-boundary data, ω-psh along the slices {t} ×X, is C1,1-smooth in the
interior of X ×D, if D is the unit disc in C.

As pointed out by Donaldson [15] the boundary value problem appearing in
the previous theorem can be viewed as an infinite-dimensional analog of a standard
boundary value problem for holomorphic discs in the complexification of a compact
Lie group G or more precisely the classical factorization theorem for loops in G
(recall that the role of G in the present infinite-dimensional setting is played by
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the group Ham(X,ω) of Hamiltonian diffeomorphisms). As shown by Donaldson
[16] the solution U is in general not smooth and Donaldson raised the problem of
studying the singularities of Chen’s weak solution; the paper can thus be seen as
one step in this direction.

One potentially useful consequence of the regularity results in Theorems 1.1,
1.2 is that, for a fixed “time” t the differential of ut (which geometrically repre-
sents the connection one form of the corresponding metric on the line bundle L) is
Lipschitz continuous and in particular differentiable on X − E, where the excep-
tional set E is a null set for the Lebesgue measure. For example, it then follows
from the results in [3] that the corresponding scaled Bergman kernel Bk(x, x)/k

n,
attached to high tensor powers L⊗k, converges when k →∞ point-wise on X −E
to the density of ωn

ut
. By a circle of ideas going back to Yau such Bergman ker-

nels can be used to approximate differential geometric objects in Kähler geome-
try. Accordingly, the precise C1,1-regularity established in the present paper will
hopefully find applications in Kähler geometry in the future. In fact, one of the
initial motivations for writing the present note came from a very recent joint work
with Bo Berndtsson [5] where Bergman kernel asymptotics are used to establish
the convexity of Mabuchi’s K-energy along weak geodesics and where the precise
C1,1-regularity was needed at an early stage of the work. Eventually it turned that
Chen’s regularity, or more precisely the fact that ut has a bounded Laplacian, is
sufficient to get the point-wise convergence of Bk/k

n for some subsequence away
from some (non-explicit) null set E (see Theorem 2.1 in [5]) which is enough to
run the approximation argument. But with a bit of imagination one could envisage
future situations where the more precise C1,1-regularity would be needed.

Let us finally point out that in a very recent article Darvas and Rubinstein
[12] consider psh-envelopes of functions of the form f = min{f1, f2, . . . , fm}. Such
envelopes appear in the Legendre transform type formula for weak geodesics in-
troduced in [12] which has remarkable applications to the study of the completion
of the Mabuchi metric space [10]. The same technique from [3] we describe here
implies C1,1-regularity of such envelopes in the case the Kähler class is integral
(see the first point in Section 2.3). In [12] the authors give a different proof of this
result (still using [3]) and also prove a Laplacian bound in the case of a general
Kähler class.

2. C1,1-regularity of solutions to complex Monge–Ampère
equations over products

2.1. Notation: quasi-psh functions vs metrics on line bundles

Here we will briefly recall the notion for (quasi-) psh functions and metrics on line
bundles that we will use. Let (X,ω0) be a compact complex manifold of dimension
n equipped with a fixed Kähler form ω0, i.e., a smooth real positive closed (1, 1)-
form on X. Denote by PSH(X,ω0) be the space of all ω0-psh functions u on X,
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i.e., u ∈ L1(X) and u is (strongly) upper-semicontinuous (usc) and

ωu := ω0 +
i

2π
∂∂̄u := ω0 + ddcu ≥ 0,

holds in the sense of currents.

We will writeH(X,ω0) for the interior of PSH(X,ω0)∩C∞(X), i.e., the space
of all Kähler potentials (w.r.t ω0). In the integral case, i.e., when [ω] = c1(L) for
a holomorphic line bundle L→ X, the space PSH(X,ω0) may be identified with
the space HL of (singular) Hermitian metrics on L with positive curvature current.
We will use additive notion for metrics on L, i.e., we identify a Hermitian metric
‖·‖ on L with its “weight” φ. Given a covering (Ui, si) of X with local trivializing
sections si of L|Ui

the object φ is defined by the collection of open functions φ|Ui

defined by

‖si‖2 = e−φ|Ui .

The (normalized) curvature ω of the metric ‖·‖ is the globally well-defined (1, 1)-
current defined by the following local expression:

ω = ddcφ|Ui
.

The identification between HL and PSH(X,ω0) referred to above is obtained by
fixing φ0 and identifying φ with the function u := φ− φ0, so that ddcφ = ωu.

2.2. The C1,1-regularity of weak geodesics

Let (X,ω) be a compact Kähler manifold and D a domain in Cn. Set M := X×D
and denote by π the natural projection from M to X. Given a continuous function
f on ∂M(= X×∂D) we define the following point-wise Perron type upper envelope
on the interior of M :

U := P (f) := sup{V : V ∈ F}, (2.1)

where F denotes the set of all V ∈ PSH(M,π∗ω) such that V|∂M ≤ f on the
boundary ∂M (in a point-wise limiting sense). In the case when D is a smoothly
bounded pseudoconvex domain and f is ω-psh in the “X-directions”, i.e., f(·, t) ∈
PSH(X,ω) it was shown in [4] that P (f) is continuous up to the boundary of
M and U then coincides with the unique solution of the Dirichlet problem for
the corresponding complex Monge–Ampère operator with boundary data f, in
the weak sense of pluripotential theory [2]. Here we will establish the following
higher-order regularity result for the envelope P (f) :

Theorem 2.1. Let (X,ω0) be an n-dimensional integral compact Kähler manifold
manifold and D a bounded domain in Cm and set M := X × D. Then, given f
a function on ∂M such that f(·, τ) is in C1,1(X), with a uniform bound on the
corresponding real Hessians, the function uτ := P (f)|X×{τ} is in C1,1(X) and
satisfies

sup
X
|∇2uτ |ω0 ≤ C,
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where |∇2uτ |ω0 denotes the point-wise norm of the real Hessian matrix of the
function uτ on X defined with respect to the Kähler metric ω0. Moreover, the
constant C only depends on an upper bound on the sup norm of the real Hessians
of fτ for τ ∈ ∂D. In the case when D is the unit ball the function U(x, τ) is in

C1,1
loc in the interior of M.

2.2.1. Proof of Theorem 2.1. In the course of the proof of the theorem we will
identify an π∗ω-psh function U on M with a positively curved metric Φ on the
line bundle π∗L→M. The case when D is a point is the content of Theorem 1.1
in [3] and as will be next explained the general case can be proved in completely
analogous manner. First recall that the argument in [3] is modelled on Bedford–
Taylor’s proof of the case when X is a point and D is the unit-ball [2] (see also
Demailly’s simplifications [13]). The latter proof uses that B is a homogeneous
domain. In order to explain the idea of the proof of Theorem 2.1 first consider the
case when (X,L) is homogeneous, i.e., the group Aut (X,L) of all biholomorphic
automorphisms of X lifting to L acts transitively on X. In particular, there exists
a family Fλ in Aut (X,L) parametrized by λ ∈ Cn such that, for any fixed point
x ∈ X, the map λ �→ Fλ(x) is a biholomorphism (onto its image) from a sufficiently
small ball centered at the origin in Cn. Given a metric φ on L we set φλ := F ∗

λφ.
Similarly, given a metric Φ(= Φ(x, τ)) on π∗L we set

Φλ := (Fλ × I)∗Φ.

Since Fλ is holomorphic the metric Φλ has positive curvature iff Φ has positive
curvature. Now to first prove a Lipschitz bound on PΦf , where Φf is the metric
on L → ∂M corresponding to the given boundary data f, we take any candidate
Ψ for the sup defining PΦf and note that, on ∂M, i.e., for τ ∈ ∂D :

Ψλ ≤ Φλ
f ≤ Φf + C1|λ|, (2.2)

where C1 only depends on the Lipschitz bounds in the “X-direction” of the given
function f on X × ∂D. But this means that Ψλ−C1|λ| is also a candidate for sup
defining PΦf and hence Ψλ − C1|λ| ≤ PΦf on all of X ×D. Finally, taking the
sup over all candidates Ψ gives, on X ×D, that

(PΦf )
λ ≤ (PΦf ) + C1|λ|.

Since this holds for any λ and in particular for −λ this concludes the proof of
the desired Lipschitz bound on PΦf . Next, to prove the bound on the real Hessian
one first replaces Ψλ in the previous argument with 1

2 (Ψ
λ + Ψ−λ) and deduces,

precisely as before, that

1

2

(
(PΦf )

λ + (PΦf )
−λ

)
≤ (PΦf ) + C2|λ|2,

where now C2 depends on the upper bound in the “X-direction” of the real Hessian
of the function f onX×∂D. The previous inequality implies an upper bound on the
real Hessians of the local regularizations Ψε of PΦf defined by local convolutions.
Moreover, since ddcΨε ≥ 0 it follows from basic linear algebra that a lower bound
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on the real Hessians also holds. Hence, letting ε → 0 shows that PΦf is in C1,1
loc

in the “X-direction” with a uniform upper bound on the real Hessians (compare
[2, 13]).

Of course, a general polarized manifold (X,L) may not admit even a single
(non-trivial) holomorphic vector field. But as shown in [3] this problem can be
circumvented by passing to the total space Y of the dual line bundle L∗ → X,
which does admit an abundance of holomorphic vector fields. The starting point
is the standard correspondence between positively curved metrics φ on L and psh
“log-homogeneous” functions χ on Y induced by the following formula:

χ(z, w) = φ(z) + log |w|2,
where z denotes a vector of local coordinates on X and (z, w) denote the corre-
sponding local coordinates on Y induced by a local trivialization of L. Accordingly,
the envelope PΦf onX corresponds to an envelope construction on Y, defined w.r.t
the class of psh log-homogenous functions on Y. Fixing a metric φ0 on L we de-
note by K the compact set in Y defined by the corresponding unit circle bundle.
By homogeneity any function χ as above is uniquely determined by its restriction
to K. Now, for any fixed point y0 in K there exists an (n + 1)-tuple of global
holomorphic vector fields Vi on Y defining a frame in a neighborhood of y0:

Lemma 2.2. Given any point y0 in the space Y ∗ defined as the complement of the
zero-section in the total space of L∗ there exist holomorphic vector fields V1, . . . ,
Vn+1 on Y ∗ which are linearly independent close to y0.

Proof. This follows from Lemma 3.7 in [3]. For completeness and since we do not
need the explicit estimates furnished by Lemma 3.7 in [3] we give a short direct
proof here. Set Z := P(L∗⊕C), viewed as the fiber-wise P1-compactification of Y.
Denote by π the natural projection from Z to X and by O(1) the relative (fiber-
wise) hyper plane line bundle on Z. As is well known, for any sufficiently positive
integer the line bundle Lm := (π∗L)⊗O(1)⊗m on Z is ample and holomorphically
trivial on Y ∗. As a consequence, the rank n+ 1-vector bundle E := TZ ⊗ L⊗k

m is
globally generated for k sufficiently large, i.e., any point z0 in Z there exists global
holomorphic sections S1, . . . , Sn+1 spanning E|z0 . Since, Lm is holomorphically
trivial on Y ∗ ⊂ Z this concludes the proof. �

Now, integrating the (short-time) flow of the holomorphic vector field V (λ) :=∑
λiVi gives a family of holomorphic maps Fλ(y) defined for y ∈ K and λ in a

sufficiently small ball B centered at the origin in Cn+1 such that λ �→ Fλ(y0)
is a biholomorphism. However, the problem is that the corresponding function
χλ := F ∗

λχ is only defined in a neighborhood ofK in Y (and not log-homogeneous).
But this issue can be bypassed by replacing χλ with a new function that we will
denote by T (χλ), where T (f), for f a function on K, is obtained by first taking
the sup of f over the orbits of the standard S1-action on Y to get an S1-invariant

function g := f̂ and then replacing g with its log-homogeneous extension g̃, i.e.,

T (f) :=
(̃
χ̂λ

)
.
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The following lemma follows from basic properties of plurisubharmonic functions
(see [3] for a proof):

Lemma 2.3. If f is the restriction to the unit circle bundle K ⊂ Y of a psh function,
then T (f) is a psh log-homogeneous function on Y

Now performing the previous constructions for any fixed τ ∈ D and identi-
fying a candidate Ψ with a function χ on Y ×D, as above, gives

χλ(y0) ≤ χ̂λ(y0) =
(̃
χ̂λ

)
(y0) := T (χλ)(y0). (2.3)

But, by construction, for τ ∈ ∂D we have T (χλ) ≤ T (χλ
Φf

) and since fτ is assumed

Lipschitz for τ ∈ ∂D we also have that

T (χλ
Φf

) ≤ T (χΦf
) + C1|λ| = χΦf

+ C1|λ|.

But this means that T (χλ)−C1|λ| is a candidate for the sup in question and hence
bounded from above by χPΦf

, which combined with the inequality 2.3 gives

χλ(y0)− C1|λ| ≤ χΦf
(y0).

Taking the sup over all candidates χ and replacing λ with −λ hence gives the
desired Lipschitz bound on PΦf at the given point y0 and hence, by compactness,
for any point in K. The estimate on the Hessian then proceeds precisely as above.

Finally, in the case when B is the unit ball one can exploit that B is homo-
geneous (under the action of the Möbius group), replacing the holomorphic maps
(x, τ) �→ (Fλ(x), τ) used above with (x, τ) �→ (Fλ(x), Ga(τ)), where Ga is a suit-
able family of Möbius transformations (the case when X is point is precisely the
original situation in [2]). Then the proof proceeds precisely as before.

2.3. Further remarks

• The proof of the previous theorem also applies in the more general situation
where f may be written as f = infα∈A fα for a given family of functions fα,
as long as the Hessians of fα(τ, ·) are uniformly bounded on X (by a constant
C independent of τ and α)) and similarly for the Lipschitz bound. Indeed,
then equation 2.2 holds with f replaced by fα for any α ∈ A with the same
constant C. For D equal to a point this result has been obtained in [12] using
a different proof.

• As shown in [4] (using a different pluripotential method), in the case of a
general, possibly non-integral, Kähler class [ω] a bounded Laplacian in the
X-directions of the boundary data f results in a bounded Laplacian of the
corresponding envelope. In the case of geodesics this result has also recently
been obtained in [19] by refining Chen’s proof.

• By the proof of the previous theorem, the Lipschitz norm ‖ut‖C0,1(X) of a

weak geodesic ut only depends on an upper bound on the Lipschitz norms
of u0 and u1. Since the Lipschitz norm in the t-variable is controlled by the
C0-norm of u0−u1 [6] it follows that the Lipschitz norm ‖U‖C0,1(X×A) of the
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corresponding solution U on X × A is controlled by the Lipschitz norms of
u0 and u1 and the C0-norm of u0− u1. For a general Kähler class this result
also follows from Blocki’s gradient estimate [7, 8].
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A Comparison Principle for Bergman Kernels

Bo Berndtsson

Dedicated to the memory of Mikael Passare

Abstract. We give a version of the comparison principle from pluripotential
theory where the Monge–Ampère measure is replaced by the Bergman kernel
and use it to derive a maximum principle.

1. Introduction

Let φ and ψ be two plurisubharmonic functions in a complex manifold X , and
let Ω be a relatively compact subdomain in X . Assume that on the boundary of
Ω, φ ≤ ψ, and that inside the domain the Monge–Ampère measures of φ and ψ
satisfy

(ddcφ)n ≥ (ddcψ)n.

Then the maximum principle for the Monge–Ampère equation asserts that the
inequality φ ≤ ψ holds inside the domain Ω too. (Here of course both the inequality
between φ and ψ on the boundary and the Monge–Ampère equation have to be
given a precise meaning.) The maximum principle is easy to prove if the functions
are sufficiently smooth, e.g., of class C2. For non-regular functions the maximum
principle can be derived from the so-called comparison principle (see [2]) of Bedford
and Taylor, which also serves as a substitute for the maximum principle in some
cases. The comparison principle states (again omitting precise assumptions) that∫

{ψ<φ}
(ddcφ)n ≤

∫
{ψ<φ}

(ddcψ)n.

On the other hand it is well known that Monge–Ampère measures often can
be approximated by measures defined by Bergman functions. Suppose that we
have given on our manifold X a positive measure, μ, and consider the L2-space of
holomorphic functions

A2 = A2(X,μ, φ) =

{
h ∈ H(X);

∫
|h|2e−φdμ <∞

}
,

or its closure in L2(X,μ, φ).
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We denote by Kφ(z, ζ) the Bergman kernel for A2 and let

Bφ(z) = Kφ(z, z)e
−φ

be the Bergman function, also known as the density of states function. It is a
consequence of the asymptotic expansion formula of Tian–Catlin–Zelditch (see
[3]) that we have

lim
k→∞

k−nBkφdμ = cn(dd
cφ)n

if φ is plurisubharmonic and φ and μ are sufficiently regular.We can therefore think
of Bφdμ as an approximation, or perhaps quantization, of the Monge–Ampère
measure of φ.

The main observation in this note is that a version of the comparison principle
holds if we replace the Monge–Ampère operator by the density of states function,
so that ∫

ψ<φ

Bφdμ ≤
∫
ψ<φ

Bψdμ.

As it turns out, this is an almost completely formal phenomenon, and it holds under
very (but not completely) general circumstances. In particular, the plurisubhar-
monicity of φ and ψ plays no role at all, and even the holomorphicity of functions
in A2 enters only in a very weak form, so similar results also hold in many other
situations when we have a well-behaved Bergman kernel, and also if we consider
sections of line bundles instead of scalar-valued functions. However, the setting
of plurisubharmonic weights and holomorphic functions allows a slightly stronger
statement with strict inequality, and in that context our main theorem is as follows.

Theorem 1.1. Let L be a holomorphic line bundle over a complex manifold X, and
let φ and ψ be two, possibly singular, metrics on L. Suppose that ddcφ ≥ −ω and
ddcψ ≥ −ω for some smooth Hermitian (1, 1)-form ω. Assume also that for some
constant C, φ ≤ ψ+C and that μ is given by a strictly positive continuous volume
form. Then ∫

ψ<φ

Bφdμ ≤
∫
ψ<φ

Bψdμ. (1.1)

Moreover, if ∅ �= {ψ < φ} �= X and if Bψ is not identically equal to 0, then strict
inequality holds if the left integral is finite.

A few remarks are in order. The strict inequality is of less importance when
we deal with Monge–Ampère measures, since one can often arrange that by an ad
hoc small perturbation. For Bergman kernels this is less clear and that is the reason
why we mention the (very weak) conditions for strict inequality. The condition that
φ ≤ ψ+C is sometimes phrased as ‘ψ is less singular than φ’, and some condition
like that is necessary. Indeed, if ψ < φ everywhere and we assume X compact, the
two integrals equal the dimensions of the space of sections of L that are square
integrable with respect to the respective metrics. If ψ is more singular than φ it
may well happen that the space of sections that have finite norm measured by ψ
is smaller than the space of sections that have finite norm measured by φ, so the
inequality cannot hold.
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2. The abstract setting

We will first deal with the abstract setting of general L2-spaces with a Bergman
kernel. Let (X,μ) be a measure space, let e−φ be a measurable weight function
on X , and let Hφ be a Hilbert subspace of L2(e−φdμ). We assume that for any
z ∈ X , point evaluation at z is a bounded linear functional on Hφ. Then Hφ has
a Bergman kernel, Kφ(z, ζ) and we denote Bφ(z) = Kφ(z, z)e

−φ.

Theorem 2.1 (Comparison principle for Bergman spaces). Let φ and ψ be two
weight functions on X such that for some constant C, φ ≤ ψ + C. Then∫

ψ<φ

Bφdμ ≤
∫
ψ<φ

Bψdμ. (2.1)

To prove the comparison principle we need a, basically standard, lemma on
derivatives of Bergman kernels.

Proposition 2.2. Let φt be a differentiable family of weight functions with uniformly
bounded derivative with respect to t. Put Kt = Kφt . Then Kt is differentiable with

respect to t. Let K̇t and φ̇t be the derivatives of Kt and φt with respect to t. Then
for z and ζ fixed

K̇t(z, ζ) =

∫
X

φ̇tKt(z, w)Kt(w, ζ)e
−φt(w)dμ(w). (2.2)

Moreover, for the difference quotients we have, if |τ | ≤ 1,

|(Kt+τ (z, z)−Kt(z, z))/τ | ≤ AKt(z, z) (2.3)

for some constant A depending on the sup-norm of φ̇.

Proof. Note first that since φ̇ is bounded, φt − φt+τ is bounded for |τ | ≤ 1. Let
Δ(t, τ) = e−φt − e−φt+τ . Since

Δ(t, τ) =

∫ τ

0

φ̇se
−φt+sds,

|Δ(t, τ)| ≤ A|τ |e−φt if |τ | ≤ 1. Next note that by the reproducing property of
Bergman kernels

(Kt+τ −Kt)(z, ζ) =

∫
X

Kt(z, w)Kt+τ (w, ζ)(e
−φt − e−φt+τ )dμ(w). (2.4)

Hence for |τ | ≤ 1

|(Kt+τ (z, z)−Kt(z, z))/τ | ≤ A

∫
X

|Kt(z, w)Kt+τ (w, z)|e−φtdμ(w).

Since φt − φt+τ is bounded this is less than

A

(∫
X

|Kt(z, w)|2e−φtdμ(w) +

∫
X

|Kt+τ (z, w)|2e−φt+τdμ(w)

)
≤ A′Kt(z, z),

so we have proved (2.3). To prove (2.2) is very easy formally, just differentiating
under the integral sign, but to prove that this is legitimate we have to work a
bit more. We first multiply (2.4) by its conjugate and integrate with respect to ζ.
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Letting f(z, ζ) := (Kt+τ −Kt)(z, ζ) we get∫
|f(z, ζ|2e−φt+τdμ(ζ) =

∫
Kt(z, w)Kt(w

′, z)Δ(t, τ)(w)Δ(t, τ)(w′)

×
∫

Kt+τ (ζ, w
′)Kt+τ (w, ζ)e

−φt+τ (ζ)dμ(ζ)dμ(w)dμ(w′).

Using the reproducing property of Bergman kernels in the inner integral this is∫
Kt(z, w)Kt(w

′, z)Kt+τ (w,w
′)Δ(t, τ)(w)Δ(t, τ)(w′)dμ(w)dμ(w′).

Next we apply (2.4) to the integral with respect to w′ and get∫
f(w, z)Kt(z, w)Δ(t, τ)(w)dμ(w).

Then use that |Δ(t, τ)| ≤ |τ |e−φt and apply Cauchy’s inequality to get∫
|f(z, ζ)|2e−φtdμ(ζ) ≤ A|τ |Kt(z, z). (2.5)

We are now finally ready to prove (2.2). By (2.4)

(Kt+τ −Kt)(z, ζ)/τ =

∫
X

Kt(z, w)Kt+τ (w, ζ)(e
−φt − e−φt+τ )/τdμ(w).

By (2.5) we may replace Kt+τ by Kt in the integral. After that we let τ tend to
zero and get (2.2) by dominated convergence. �

We now turn to the proof of the comparison principle Theorem 2.1. We first
claim that we may assume that φ−ψ is bounded. To see this, let u := ψ−φ so that
u ≥ −C. Put u0 := min(u, 0), ψ0 = φ+ u0. Then ψ0 ≤ ψ and ψ0 − φ is bounded.
By the extremal characterization of Bergman kernels Kψ0(z, z) ≤ Kψ(z, z). On
the other hand, where ψ < φ, u < 0 so u0 = u. Hence ψ0 = ψ and Bψ0 ≤ Bψ.
Moreover ψ < φ if and only if u < 0 which is equivalent to u0 < 0, so ψ < φ if and
only if ψ0 < φ. Hence it suffices to prove the theorem for ψ0 since then∫

ψ<φ

Bφdμ ≤
∫
ψ0<φ

Bψ0dμ ≤
∫
ψ<φ

Bψdμ.

From now on we assume that φ − ψ is bounded and let ρ be a measurable
function on X such that ∫

X

ρ(z)Kφ(z, z)e
−φdμ(z) <∞.

The same integral with φ replaced by ψ is then also bounded. Let φt = φ+ tu, so
that φ0 = φ and φ1 = ψ. Then we claim that by Proposition 2.2, if

G(t) :=

∫
X

ρ(z)Bφtdμ
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then

G′(t) =
∫
X

−ρ(z)φ̇t(z)Kt(z, z)e
−φtdμ

+

∫
X

∫
X

ρ(z)φ̇t(w)Kt(z, w)Kt(w, z)e
−φt(z)−φt(w)dμ(z)dμ(w).

(2.6)

Again, this follows formally by the proposition and to justify the limit process we
write

(G(t + τ)−G(t)) =

∫
X

ρKt(e
−φt+τ − e−φt)dμ+

∫
X

ρ(Kt+τ −Kt)e
−φt+τdμ.

When we divide by τ and let τ → 0 we see that the first term converges to the
first term of (2.6) by dominated convergence. For the second term we use (2.3) to
conclude that we have dominated convergence in that integral as well.

In the first integral on the right-hand side we insert the reproducing formula
for the Bergman kernel

Kt(z, z) =

∫
X

Kt(z, w)Kt(w, z)e
−φt(w)dμ(w)

which changes the right-hand side to∫
X

∫
X

ρ(z)(φ̇t(w) − φ̇t(z))Kt(z, w)Kt(w, z)e
−φt(z)−φt(w)dμ(z)dμ(w).

We can write this more symmetrically as

(1/2)

∫
X

∫
X

(ρ(z)− ρ(w))(φ̇t(w) − φ̇t(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w).

(2.7)

Now recall that φt = φ+ tu so φ̇t = u. Let ρ be the characteristic function of the
set where ψ − φ = u < 0. Then (2.7) becomes

(1/2)

∫ ∫
{u(z)<0<u(w)}

(u(w) − u(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w)

−(1/2)
∫ ∫

{u(w)<0<u(z)}
(u(w) − u(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w).

Again using symmetry we get

d

dt

∫
u<0

Bφtdμ (2.8)

=

∫ ∫
{u(z)<0<u(w)}

(u(w)− u(z))|Kt(z, w)|2e−φt(z)−φt(w)dμ(z)dμ(w).

Clearly this expression is non-negative, so we have proved Theorem 2.1.

Remark. Since the Bergman function Bφ(z) = Kφ(z, z)e
−φ does not change if

we add a constant to φ, we also have that
∫
ψ<φ+c

Bφdμ ≤
∫
ψ<φ+c

Bψdμ for any

constant c, as soon as the sets {ψ < φ+ c} and {ψ > φ+ c} are both nonempty.
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3. The proof of Theorem 1.1

It is now an easy matter to deduce Theorem 1.1 from Theorem 2.1. First we note
that the setting of line bundles instead of scalar-valued functions causes no extra
difficulties. Indeed the proof goes through in the same way with only nominal
changes. Alternatively, we could use that any line bundle has a discontinuous
trivializing section and since continuity played no role in the proof, the line bundle
case follows. It remains to prove that we have strict inequality if Bψ is non trivial
and ∅ �= {ψ < φ} �= X . For this it suffices to show that the right-hand side of (2.8)
is strictly positive. But

V := {(z, w);u(w) < 0 < u(z)}
is by assumption nonempty. Moreover, this set is open for the plurifine topology
and therefore has positive Lebesgue measure, [1]. Hence it has positive μ-measure
if μ is given by a strictly positive continuous density. From this it follows that
Kt(z, w) is different from zero almost everywhere on V , since it is holomorphic
with respect to z and w (this is the only place we use holomorphicity), so it
follows that the derivative of G is strictly positive.

Finally we give a ‘maximum principle’ for Bergman kernels which follows
from Theorem 1.1 in the same way that the Monge–Ampère maximum principle
follows from the classical comparison principle.

Theorem 3.1. Under the same assumptions as in Theorem 1.1, let Ω �= X be a
subset of X such that Bφ ≥ Bψ on Ω. Assume that φ ≤ ψ on X \ Ω. Then φ ≤ ψ
everywhere.

Proof. Assume the set U where ψ < φ is nonempty. Then U is a subset of Ω, and
Ω is not equal to X . This contradicts Theorem 1.1. �
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Suita Conjecture from the
One-dimensional Viewpoint

Zbigniew B�locki

Dedicated to the memory of Mikael Passare

Abstract. The Suita conjecture predicted the optimal lower bound for the
Bergman kernel of a domain on the plane in terms of logarithmic capacity. It
was recently proved as a special case of the optimal version of the Ohsawa–
Takegoshi extension theorem. We present here a purely one-dimensional ap-
proach that should be suited to readers not interested in several complex
variables.

Introduction

For a domain Ω in C by A2(Ω) we denote the space of holomorphic square in-
tegrable functions in Ω. The Bergman kernel KΩ is defined by the reproducing
property

f(w) =

∫
Ω

fKΩ(·, w)dλ, f ∈ A2(Ω), w ∈ Ω.

On the diagonal we have

KΩ(w,w) = ||KΩ(·, w)||2 = sup{|f(w)|2 : f ∈ A2(Ω), ||f || ≤ 1}
where || · || denotes the L2-norm. Suita [17] conjectured that

cΩ(w)
2 ≤ πKΩ(w,w) (1)

where
cΩ(w) = exp lim

z→w
(GΩ(z, w)− log |z − w|)

is the logarithmic capacity of the complement of Ω with respect to w. Here GΩ is
the Green function, it is the maximal negative function such that GΩ(·, w)− log | ·
−w| is harmonic in Ω (or ≡ −∞).

Partially supported by the Ideas Plus grant 0001/ID3/2014/63 of the Polish Ministry of Science
and Higher Education.
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Ohsawa [15] was the first to notice that the right approach is to treat it an
L2-extension problem: one has to construct holomorphic f in Ω such that f(w) = 1
and ||f ||2 ≤ π/cΩ(w)

2. Using the methods of the original proof of the Ohsawa–
Takegoshi extension theorem [16] he managed to show the estimate

cΩ(w)
2 ≤ CπKΩ(w,w)

with C = 750. This was improved to C = 2 in [3] and to C = 1.95388 . . . by
Guan–Zhou–Zhu [11] who proved the extension theorem with this constant using
an ODE with one unknown (see also [4]).

The estimate with C = 1 was established in [5] where also the optimal version
of the Ohsawa–Takegoshi theorem was obtained. The main tool was the Hörmander
L2-estimate [12] for the ∂̄-equation as well as some ideas of Chen [8] who was the
first to show that the extension theorem (without an optimal constant) can be
deduced directly from this estimate. One of the key steps was a solution of an
ODE with two unknowns. Guan–Zhou [9, 10] later proved some generalizations of
the extension theorem with optimal constant but similarly as in [5] the key was
essentially the same ODE with two unknowns.

Two other proofs of the Suita conjecture were found afterwards. Both of them
gave the estimate

KΩ(w,w) ≥
1

e−2tλ({GΩ(·, w) < t}) , (2)

where t ≤ 0, from which (1) easily follows when t → −∞. The first from [6] used
the tensor-power trick and thus effectively needed an arbitrarily high dimension
in order to obtain this one-dimensional result. The second was due to Lempert
[13] who noticed that (2) can be deduced from subharmonicity property of the
Bergman kernel for sections of a pseudoconvex domain in C2, see [14] and [2]. This
way one had to use two dimensions to get the Suita conjecture. One can add that
it was shown in [7] using the isoperimetric inequality that the right-hand side of
(2) is monotone in t.

Using some ideas of Berndtsson [1] and essentially following the approach of
Guan–Zhou [9] we will give a self-contained one-dimensional proof of the Suita
conjecture (1). We will obtain the same ODE as in [5]. It would be interesting to
find such a one-dimensional proof of (2). As a by-product in Section 2 we present
a new formula for the Bergman kernel on the diagonal as an extremal for a family
of test functions.

The author is grateful to Bo Berndtsson for finding an error in the first version
of the paper.

1. Proof of the Suita conjecture

It is well known that the Bergman kernel, Green function and logarithmic capacity
converge locally uniformly as Ωj is an increasing sequence of domains whose union
is Ω. Without loss of generality we may therefore assume that Ω is bounded and
has smooth boundary.
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We will use the notation

∂ =
∂

∂z
, ∂̄ =

∂

∂z̄
.

The following description of the Bergman kernel as a solution of the Dirichlet
problem is well known, we present the proof for the sake of completeness:

Proposition 1. For w ∈ Ω where Ω is a bounded domain in C with C1 boundary,
let v be the complex-valued harmonic function in Ω such that v(z) = 1/(π(z − w))
for z ∈ ∂Ω. Then KΩ(·, w) = ∂v.

Proof. It is clear that ∂v is holomorphic and we have to show that the reproducing
formula is satisfied. Take f ∈ A2(Ω), by the approximating property we may
assume that f is defined in a neighbourhood of Ω̄. By the Cauchy–Green formula

f(w) =
1

2πi

∫
∂Ω

f(z)

z − w
dz = − i

2

∫
∂Ω

f v̄dz =

∫
Ω

f∂vdλ

and the result follows. �

For a real-valued ϕ ∈ C1(Ω) we consider the weighted scalar product

〈α, β〉ϕ =

∫
Ω

αβ̄e−ϕdλ

and the adjoint operator

∂̄∗
ϕα = −eϕ∂(αe−ϕ) = −∂α+ α∂ϕ,

so that

〈∂̄∗
ϕα, β〉ϕ = 〈α, ∂̄β〉ϕ,

provided that ϕ, α, β ∈ C1(Ω̄) are such that on ∂Ω either α = 0 or β = 0. We have

∂̄∂̄∗
ϕα = ∂̄∗

ϕ∂̄α+ α∂∂̄ϕ. (3)

To prove (1) assume for simplicity that w = 0 and set

α := eϕ(1− πz̄v), (4)

where v is as in Proposition 1 and ϕ will be determined later. We have α = 0 on
∂Ω, α(0) = eϕ(0) and

∂̄∗
ϕα = πz̄KΩ(·, 0)eϕ.

Then

KΩ(0, 0) =
1

π2

∫
Ω

|∂̄∗
ϕα|2

e−2ϕ

|z|2 dλ. (5)

We will need the following:

Proposition 2. Assume that μ, ϕ ∈ C2(Ω̄) are real-valued and α ∈ C1(Ω̄) is such
that α = 0 on ∂Ω. Then∫

Ω

μ|∂̄∗
ϕα|2e−ϕdλ =

∫
Ω

[
μ|∂̄α|2 + |α|2

(
μ∂∂̄ϕ− ∂∂̄μ

)
+ 2�

(
ᾱ∂̄μ ∂̄∗

ϕα
)]

e−ϕdλ.
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Proof. We have

〈μ∂̄∗
ϕα, ∂̄

∗
ϕα〉ϕ = 〈∂̄μ ∂̄∗

ϕα, α〉ϕ + 〈μ∂̄∂̄∗
ϕα, α〉ϕ

and by (3)

〈μ∂̄∂̄∗
ϕα, α〉ϕ = 〈∂̄∗

ϕ∂̄α, μα〉ϕ + 〈α∂∂̄ϕ, μα〉ϕ.
Further,

〈∂̄∗
ϕ∂̄α, μα〉ϕ = 〈∂̄α, μ∂̄α〉ϕ + 〈∂̄α, α∂̄μ〉ϕ

and

〈∂̄α, α∂̄μ〉ϕ = 〈α, ∂̄μ∂̄∗
ϕα〉ϕ − 〈α, α∂∂̄μ〉ϕ. �

We obtain the following version of the Nakano inequality:

Corollary 3. Let α and ϕ be as in Proposition 2. Assume that both μ1 ∈ C2(Ω̄)
and integrable μ2 are positive. Then∫

Ω

(μ1 + μ2)|∂̄∗
ϕα|2e−ϕdλ ≥

∫
Ω

|α|2
(
μ1∂∂̄ϕ− ∂∂̄μ1 −

|∂μ1|2
μ2

)
e−ϕdλ.

Proof. By Proposition 2 and the Cauchy–Schwarz inequality∫
Ω

μ1|∂̄∗
ϕα|2e−ϕdλ ≥

∫
Ω

[
|α|2

(
μ1∂∂̄ϕ− ∂∂̄μ1

)
− |α∂̄μ1|2

μ2
− μ2|∂̄∗

ϕα|2
]
e−ϕdλ. �

By (5) we see that we should use Corollary 3 with μ1 + μ2 = e−ϕ/|z|2.
Denote G = GΩ(·, 0) and set ψ := 2G − log |z|2, so that ψ is harmonic in Ω and
cΩ(0)

2 = eψ(0). We will look for

ϕ = ψ + χ(−2G), μ1 = e−γ(−2G),

where χ(t) and γ(t) defined for t = −2G ≥ 0 will be determined later. Note that

μ2 =
e−ϕ

|z|2 − μ1 = et−χ − e−γ .

Using the fact that

∂∂̄G =
π

2
δ0

we will obtain

μ1∂∂̄ϕ− ∂∂̄μ1 −
|∂μ1|2
μ2

= −π(χ′ + γ′)e−γδ0 + 4

(
χ′′ + γ′′ − (γ′)2

1− eχ−γ−t

)
e−γ |∂G|2

= −πη′e−γδ0 + 4

(
η′′ − (γ′)2

1− eη−2γ−t

)
e−γ |∂G|2,

where η = χ+ γ. It is convenient to choose γ and η satisfying −η′e−γ = 1 and

η′′ − (γ′)2

1− eη−2γ−t
= 0
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which is the same equation as in [5]. We can take the solutions obtained there:

η = − log(t+ e−t − 1)

γ = − log(t+ e−t − 1) + log(1− e−t),

so that

χ = − log(1 − e−t)

and

ϕ = ψ − log(1 − e2G) = ψ − log(1− |z|2eψ).

By Corollary 3, since α(0) = eϕ(0) = cΩ(0)
2,∫

Ω

|∂̄∗
ϕα|2

e−2ϕ

|z|2 dλ ≥ πcΩ(0)
2

and it is enough to use (5) to obtain (1). (Although we have used Corollary 3 for
μ1 which is not C2 at the origin – in fact it is of the form μ1 = −2G+ ρ where ρ
is smooth – by approximation it is clear that it holds also for such a function.)

2. A Formula for the Bergman kernel

Using similar methods as before we will prove the following result:

Theorem 4. For a domain Ω in C and w ∈ Ω one has

KΩ(w,w) =
1

π2
inf

{∫
Ω

|∂α(z)|2
|z − w|2 dλ(z) : α ∈ C∞

0 (Ω), α(w) = 1

}
. (6)

Proof. We may assume that w = 0. Take α ∈ C∞
0 (Ω) and f ∈ A2(Ω) with α(0) =

f(0) = 1. Then u := f/(πz) solves ∂̄u = δ0 and

1 = |α(0)|2 =

∣∣∣∣∫
Ω

ᾱ ∂̄u

∣∣∣∣2 =

∣∣∣∣− ∫
Ω

u ∂αdλ

∣∣∣∣2 ≤ 1

π2
||f ||2

∫
Ω

|∂α|2
|z|2 dλ.

This gives ≤ in (6). To prove ≥ we first assume that Ω is bounded and has
smooth boundary. Let v be harmonic in Ω and such that v = 1/(πz̄) on ∂Ω.
Then α := 1 − πz̄v is smooth up to the boundary, vanishes there and α(0) = 1.
By Proposition 1 we have ∂α = −πz̄KΩ(·, 0) and it is enough to show that α can
be well approximated by test forms. Let ρ be a defining function for Ω, so that
Ω = {ρ > 0}, and let χ ∈ C∞(R) be such that χ(t) = 0 for t ≤ 1 and χ(t) = 1 for
t ≥ 2. One can easily show that for the test forms αj := χ(jρ)α one has∫

Ω

|∂αj |2
|z|2 dλ −→

∫
Ω

|∂α|2
|z|2 dλ

as j →∞. If Ω is arbitrary and KΩ(0, 0) < a then we can find Ω′ � Ω with smooth
boundary such that KΩ′(0, 0) < a. By the previous part there exists α ∈ C∞

0 (Ω′)
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such that α(0) = 1 and
1

π2

∫
Ω′

|∂α|2
|z|2 dλ < a.

This finishes the proof. �

Similarly, for any ϕ ∈ C1(Ω) one can show

KΩ(0, 0) =
1

π2
inf

{∫
Ω

|∂̄∗
ϕα|2

e−2ϕ

|z|2 dλ : α ∈ C∞
0 (Ω), α(0) = eϕ(0)

}
.

If Ω is bounded with smooth boundary and ϕ ∈ C1(Ω̄) then instead of test forms
we can take α ∈ C1(Ω̄) with α = 0 on ∂Ω and α given by (4) realizes the infimum.
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Siciak’s Theorem on Separate Analyticity

Jan Boman

Dedicated to the memory of Mikael Passare

Abstract. We give a simple proof of an important special case of the famous
theorem of Jósef Siciak on separate analyticity.

1. Introduction

The well-known theorem of Hartogs states that a function u(z1, z2) of two complex
variables which is separately analytic must be analytic. By separately analytic
we mean here that z1 �→ u(z1, z2) is analytic for each fixed z2 and vice versa.
Similar statements are also true if the “fixed” variables are restricted to sets of
real dimension 1, or even to arbitrary sets of positive capacity. An important
theorem of that kind was proved by Siciak in 1969, [11]. In the same paper Siciak
gave a precise description of the maximal domain in C2 to which the function can
be analytically continued. Many sharpenings and extensions of Siciak’s theorem
have been given later, for instance in [15], [13], [14], and [8], and a couple of years
ago Jarnicki and Pflug wrote a whole book on the subject, [4]. Surveys of results
related to separate analyticity can be found in [10] and [5]. The purpose of this
note is to give a short proof of the most important special case of Siciak’s theorem
(Theorem 1′ in Section 3) using only very well-known tools. More exactly, we shall
treat the special case when the “fixed” variables range over bounded intervals on
the real line. We will treat only the case of functions of two variables; the extension
to functions on Cn ×Cm is straightforward.

The well-known example x1x2/(x
2
1+x2

2) shows that a separately real analytic
function need not be real analytic. Let us say that a function u(x1, x2) is uniformly
separately real analytic in the domain D ∈ R2, if the functions x1 �→ u(x1, x

0
2) and

x2 �→ u(x0
1, x2) are analytically continuable to complex disks with radius r(x0

1, x
0
2)

around x0
1 and x0

2, respectively, where r is some positive continuous function on
D. It is a corollary of Siciak’s theorem that a uniformly separately real analytic
function is real analytic. If the additional assumption is made that the continued
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function u is locally bounded, then this statement is easy to prove and very well
known, but in its general form we think the theorem is not as well known as it
deserves to be. Here we give a proof of that theorem (Proposition 1′) using an
important lemma of Lelong (Lemma 2), which is a sharpening of the well-known
Hartogs lemma.

The notation and terminology used here follows that of Siciak’s papers. Let E
be an open bounded interval on the real axis R and let G be a simply connected
bounded domain in C which contains E, the closure of E. If G is regular with
respect to the Dirichlet problem we define the function hG,E(z) onG as the solution

to the Dirichlet problem in G \E with boundary values 0 on E and 1 on ∂G, the
boundary of G. Note that the domain G \E is also regular, since E is an interval.
We remark that a bounded domain inCmust be regular if it has finite connectivity
and ∂G contains no isolated point.

A first version of this paper was written in 1994 while my student Ozan Öktem
was writing the paper [9] and we both were struggling to understand Siciak’s proof
from his original paper [11]. Having learnt from Christer Kiselman about Lelong’s
lemma (Lemma 2) and its relevance in this context I wrote a new version containing
Theorem 1′ in 2004. In submitting the paper I made a new revision and added
references to the book [4] and a couple of articles that have appeared after 2004.

I am indebted to two referees for a number of very valuable comments leading
to a considerably improved article.

2. Separate analyticity with boundedness assumption

We shall begin by making the simplifying assumption that the original function
is locally bounded. In Section 3 we shall discuss the case when no boundedness
assumptions are made.

Theorem 1. Let E1 and E2 be open bounded intervals on R, and let G1 and G2 be
simply connected bounded regular domains in C such that Gj ⊃ Ej for j = 1, 2.
Let u be defined in the set

X = (E1 ×G2) ∪ (G1 × E2) ⊂ C2,

and assume that u is separately analytic in X; by definition this means that for
every x2 ∈ E2 the function z1 �→ u(z1, x2) is analytic in G1, and for every x1 ∈ E1

the function z2 �→ u(x1, z2) is analytic in G2. Assume furthermore that u is locally
bounded on X. Then u can be continued analytically to the set

X̃ = {z ∈ G1 ×G2; hG1,E1(z1) + hG2,E2(z2) < 1}. (1)

Our proof consists of three steps. The first step is to use the above-mentioned
fact that a uniformly separately real analytic function is real analytic, in the easy
special case when the function is assumed bounded (Proposition 1). It follows
that u must be real analytic on E1 × E2, which means by definition that u can
be continued to an analytic function on some neighborhood of E1 × E2 in C2.
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In the second step (Proposition 2) we construct an analytic extension of u to an
open neighborhood Σ in C2 of the set X . The third step is to prove that any

function which is analytic in Σ can be extended to an analytic function on X̃
(Proposition 3).

Proposition 1. Let E1 and E2 be open bounded intervals on R with open complex
neighborhoods V1 and V2, respectively, and assume that z1 �→ u(z1, x2) is analytic
on V1 for each x2 ∈ E2 and that z2 �→ u(x1, z2) is analytic on V2 for each x1 ∈ E1.
Assume furthermore that u is bounded on (E1×V2)∪ (V1 ×E2). Then there exists
an analytic function ũ on some complex neighborhood of E1×E2 in C2 that agrees
with u on E1 × E2.

This theorem is well known; for the proof we refer for instance to [6].

Using the notion of analytic wave front set one can give a short proof of
Proposition 1 as follows.1 Let u be a compactly supported integrable function
or distribution in Rn. It is known that (x0, ξ0) ∈ T ∗(Rn), ξ0 �= 0, belongs to the
complement of the analytic wave front set of u, WFA(u), if and only if the so-called
FBI transform of u,

Fu(x, ξ) =

∫
Rn

u(y)e−|ξ||y−x|2e−iy·ξdy,

decays exponentially as |ξ| tends to infinity for ξ in a conic neighborhood of ξ0

uniformly for x in some neighborhood of x0. It follows immediately from the def-
inition that the analytic wave front set is conic in the second variable, i.e., that
(x0, ξ0) ∈ WFA(u) if and only if (x0, λξ0) ∈ WFA(u) and λ > 0. It is a basic
fact that a function (distribution) is real analytic in some neighborhood of x0 if
and only if (x0, ξ0) /∈ WFA(u) for every ξ0 �= 0. Assume now that u ∈ L1(R2) is
uniformly separately real analytic in some neighborhood of x0. Write Fu(x, ξ) as
a repeated integral with inner integral∫

R

u(y1, y2)e
−|ξ|(y1−x1)

2

e−iy1ξ1dy1. (2)

By the assumption of real analyticity with respect to x1 we can use Cauchy’s
theorem to deform the path of integration a little bit into the complex near y1 = x0

1

and thereby prove that the integral (2) tends to zero exponentially as |ξ1| tends
to infinity for x1 close to x0

1, and hence the same is true of Fu(x, ξ). Similarly, real
analyticity with respect to x2 implies that Fu(x, ξ) is exponentially decreasing as

1The analytic wave front set for distributions was introduced by Hörmander 1970 in connection
with a new proof of Holmgren’s uniqueness theorem for partial differential equations with real
analytic coefficients. A parallel theory was developed independently by M. Sato. There the so-
called singular support of a hyperfunction was defined in terms of the possibility to represent
the (hyper-)function as a sum of boundary values of analytic functions in regions {x + iy; x ∈
U ⊂ Rn, y ∈ Γk, |y| < ε}, where U is open and Γk are certain cones in Rn; see [1], ch. 9. The

fact that the concepts were equivalent for distributions was proved a few years later. The third
equivalent definition used here was given by Bros and Iagolnizer in 1975; see [1], Theorem 9.6.3.
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|ξ2| → ∞ for x2 close to x0
2. Hence (x

0, ξ0) /∈WFA(u) for every ξ0 �= 0, so u is real
analytic in a neighborhood of x0.

The second step consists in using the assumption of separate analyticity to
extend the region of joint analyticity in one direction at the time.

Proposition 2. Let G be a simply connected bounded domain in C, U an open
disk with U ⊂ G, and F a compact interval in R ⊂ C. Let u be an analytic
function in a complex neighborhood of U ×F . Assume that the function U � z1 �→
u(z1, x2) can be extended to an analytic function in G for every x2 ∈ F and that
the extended function u(z1, x2) is locally bounded in G × F . Then there exists an
analytic function ũ on some complex neighborhood of G×F that agrees with u on
U × F .

As a preparation for the proof of Proposition 2 we shall first consider the
case when G is the open disk UR = {ζ ∈ C; |ζ| < R} and U is a smaller disk
containing the origin. This lemma is part of the standard proof of Hartogs’ theorem
on separate analyticity (see, e.g., [2], Lemma 2.2.11), but we include it here for
the sake of completeness and in order to facilitate the discussion in Section 3.

Lemma 1. Let Uε = {ζ ∈ C; |ζ| < ε} and let F be a compact interval in R ⊂ C.
Let u be analytic in some complex neighborhood of Uε × F and assume that Uε �
z1 �→ u(z1, x2) can be extended to an analytic function in UR for every x2 ∈ F .
Assume moreover that the function u(z1, x2) is bounded for (z1, x2) ∈ UR × F .
Then there exists an analytic function ũ on some complex neighborhood of UR×F
that agrees with u on Uε × F .

Proof. By the first assumption u can be expanded in a Taylor series with respect
to z1

u(z1, z2) =
∞∑
k=0

ak(z2)z
k
1 , (3)

where ak(z2) are analytic in some neighborhood of F . Denoting by Vδ(F ) the
complex δ-neighborhood of F ⊂ C we choose δ > 0 and ε > 0 so that u is analytic
and bounded in Uε × Vδ(F ). By Cauchy’s inequality we then obtain

|ak(z2)| ≤ C1ε
−k, z2 ∈ Vδ(F ), k = 0, 1, . . . . (4)

By the second assumption we also have the estimates

|ak(x2)| ≤ C0R
−k, x2 ∈ F, k = 0, 1, . . . . (5)

Let g(w) be the solution to the Dirichlet problem in Vδ(F )\F with boundary values
0 on F and 1 on the boundary of Vδ(F ). The function log |ak(w)| is subharmonic
in Vδ(F ) and ≤ A0 in F and ≤ A1 in Vδ(F ), where A0 = log(C0R

−k) and A1 =
log(C1ε

−k). Hence log |ak(w)| ≤ A0 + (A1 −A0)g(w) in Vδ(F ), or

|ak(w)| ≤ CR0(w)
−k,

where R0(w) = R1−g(w)εg(w) and C = max(C0, C1). But R0(w) is continuous and
R0(w) = R for w ∈ F , hence for any given r < R there exists a neighborhood Wr
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of F such that R0(w) > r for w ∈ Wr. This proves that the series (3) converges in
Ur ×Wr for every r < R, which completes the proof of the lemma. �

Proof of Proposition 2. Since G is simply connected it is easy to see that one can
construct a locally finite covering G = ∪∞

k=0Gk of G by open disks Gk ⊂ G with

Gk ⊂ G such that G0 = U and for every k the union ∪k
j=0Gj is simply connected

and contains the center of Gk+1. Set Hk = ∪k
j=0Gj for all k. We claim that

for every k there exists a complex neighborhood Vk of F and
an analytic function ũk in Hk × Vk that agrees with u on U × F .

(Pk)

To prove this we use induction over k. For k = 0 there is nothing to prove. Assume
that the statement (Pk) is true. Let ζ0 be the center of Gk+1. Since ζ0 ∈ Gk we can
choose ε > 0 so that Uε(ζ0) = {ζ ∈ C; |ζ − ζ0| < ε} is contained in Gk ∩Gk+1. By
the induction assumption ũk is then analytic in Uε(ζ0) × Vk. Applying Lemma 1
with UR = UR(ζ0) and Uε = Uε(ζ0) and R chosen so that Gk+1 ⊂ UR(ζ0) ⊂ G we
can find a complex neighborhood Vk+1 of F and a function ũk+1 that is analytic
in Gk+1 × Vk+1 and agrees with ũk on Uε(ζ0) × F . Shrinking Vk+1, if necessary,
we may assume that Vk+1 ⊂ Vk. Extending ũk+1 suitably we therefore get an
analytic function on Hk+1 × Vk+1, that we also denote by ũk+1. Since Hk+1 is
simply connected, analytic continuation from G0 to Gk+1 along a different chain
of disks would give the same values in Gk+1×Vk+1. This proves (Pk+1) and hence
shows that the statement (Pk) is true for all k.

To finish the proof of the proposition we observe that the union W of all
Hk × Vk is a complex neighborhood of G × F and that all the ũk agree on their
common domains, which shows that they define an analytic function on W . This
completes the proof. �
Proposition 3. Let G1 and G2 be simply connected bounded regular domains in C
and let E1 and E2 be open bounded intervals on the real axis such that Ej ⊂ Gj

for j = 1, 2. Let X and X̃ be defined as in Theorem 1, and let u be analytic in

some open neighborhood Σ of X. Then there exists an analytic function ũ on X̃
that agrees with u on X.

Proof. Set h(z) = hG1,E1(z1) + hG2,E2(z2), and for ε > 0 and 0 < t < 1 define the

region X̃ε(t) by

X̃ε(t) = {z ∈ G1 ×G2; h(z) < min(1− ε, t+ ε|z|2}.
Choose M > 1 so that |z|2 ≤ M in G1 × G2. We shall prove that, for every
sufficiently small ε > 0, there exists an analytic function ũε on

X̃ε(1− 2εM) (6)

that agrees with u on X . Since the union of all the regions (6) is equal to X̃ and
all the functions ũε agree on their common domains of definition, this proves the
assertion of the proposition. We first claim that

X̃ε(t) ⊂ Σ
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if ε and t are sufficiently small. To prove this we observe that the continuous
function h(z) is positive on the compact set (G1 × G2) \ Σ, hence h(z) ≥ δ on

that set for some δ > 0. It follows that X̃ε(t) ⊂ Σ if ε and t are so small that
t+ εM < δ. Fix an arbitrary ε > 0 with 2εM < δ < 1 and set

t0 = sup{t < 1− 2εM ; there exists a function ũε,t that is analytic in X̃ε(t)

and is equal to u on X}.
Assuming that t0 < 1 − 2εM we shall obtain a contradiction. It is clear that all

the functions ũε,t with t < t0 define a function ũε,t0 that is analytic on X̃ε(t0).

On the other hand, by the definition of t0 there must exist z0 ∈ ∂X̃ε(t0) such that
ũε,t0 cannot be continued to any neighborhood of z0. We claim that

∂X̃ε(t) ⊂ {z ∈ C2; h(z) = t+ ε|z|2}, if t < 1− 2εM. (7)

Indeed, if h(z) < t+ε|z|2 and t < 1−2εM , then h(z) < 1−2εM+εM = 1−εM <

1− ε, so z cannot belong to the boundary of X̃ε(t), which proves (7).
The functions hGj ,Ej are harmonic in Gj \ Ej , hence h(z)− ε|z|2 is strictly

plurisuperharmonic, so (7) implies that the domain X̃ε(t0) is strictly pseudocon-
cave. This implies that u must be continuable to an analytic function in some
neighborhood of z0. This is a contradiction and hence completes the proof of the
proposition. �

Proof of Theorem 1. By Proposition 1 there exists an analytic function ũ0 in some
open neighborhood W0 of E1×E2 that agrees with u on E1×E2. We may assume
that W0 is connected, and then it is clear that ũ0 agrees with the given function
u on X ∩W0. Applying Proposition 2 to G = G1, an arbitrary closed subinterval
F ⊂ E2, and an open disk U ⊂ G1 such that U × F ⊂ W0 we can then find ũ1

that is analytic in some complex neighborhood of G1 × F and agrees with u on
U ×F , hence agrees with u on G1 ×F . Varying F ⊂ E2 we get a function ũ1 that
is analytic in some complex neighborhood W1 of G1 × E2 and agrees with u on
G1 ×E2. Similarly we can find ũ2 that is analytic in some complex neighborhood
W2 of E1 × G2 and agrees with u on E1 × G2. Since ũ1 and ũ2 agree on an
open set, it is clear that they together define an analytic function ũ in a complex
neighborhood Σ of X . An application of Proposition 3 now completes the proof of
the theorem. �

3. The general case

We shall now discuss the situation when no boundedness assumption is made
in Theorem 1. We shall use the convention that a primed theorem, proposition
etc. is the analogue without boundedness assumption of the unprimed theorem
(proposition etc.) with the same number.

Theorem 1′. The statement of Theorem 1 is true without the assumption that u is
locally bounded.
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The proof of this theorem consists of three steps, analogous to those of the
proof of Theorem 1. Only the first two steps need to be modified. The following
lemma of Lelong is essential for both those steps ([7], Théorème 10; see also [11],
Theorem 2.1). It is an important extension of the well-known Hartogs lemma.

Lemma 2. Let F be a compact interval on R and let G ⊂ C be an open set
containing F . Let ϕk(z), k = 1, 2, . . ., be a sequence of subharmonic functions in
G satisfying

ϕk(z) ≤ B, z ∈ G, k = 1, 2, . . . , (8)

and

lim
k→∞

ϕk(x) ≤ A, x ∈ F.

Then for every η > 0 there exists a complex neighborhood U of F and a number
k0 such that

ϕk(z) < A+ η, z ∈ U, k ≥ k0. (9)

The neighborhood U depends only on the numbers η, B, A, and on the sets F and
G (not on the sequence ϕk).

We shall sketch a proof of this lemma using facts from [3]. Let us first make

a couple of remarks. If we knew that the function ϕ(z) = limϕk(z) were subhar-
monic, then ϕ would be majorized in G by the function h(z) = A+ (B −A)hG,F ,
the solution to the Dirichlet problem in G \ F with boundary values A on F and
B on ∂G. Then (9) could be proved just as the classical Hartogs lemma (use the
mean value property of ϕk and Fatou’s lemma to find k0 independent of z such
that ϕk(z) < ϕ(z) + ε for k > k0). But the limes superior of a sequence of sub-
harmonic functions is not always subharmonic. (What is true is that it must be
subharmonic if it is upper semicontinuous; more generally, the upper semicontin-
uous regularization ϕ of limϕk is subharmonic, but we do not know that ϕ ≤ A
on F .) Lelong proves Lemma 2 by establishing the majorization just mentioned
for a class of functions which includes upper limits of sequences of subharmonic
functions.

Sketch of proof of Lemma 2. As was indicated above it is sufficient to prove the
estimate

lim
k→∞

ϕk(z) ≤ h(z) = A+ (B −A)hG,F (10)

for z ∈ G. It is clearly sufficient to prove (10) for z ∈ G \ F . Assume (10) is false
at some point z ∈ G \ F . Then there exists a number c such that

ϕk(z0) > c > h(z0) (11)

for infinitely many k. Since ϕk is bounded from above, we can take a subsequence
ϕ̃ν = ϕkν satisfying (11) and converging in D′(G) to some subharmonic function

ψ (Theorem 3.2.12 in [3]). Then lim ϕ̃ν ≤ ψ (Theorem 3.2.13 in [3]), and according
to Theorem 3.4.14 in [3] the set

M = {z ∈ G; lim ϕ̃ν(z) < ψ(z)}
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is polar (a polar set is by definition any set on which a subharmonic function can

be equal to −∞ without being identically −∞). But lim ϕ̃ν ≤ limϕk ≤ A on F
by assumption, hence ψ must be ≤ A on F \M , and it is clear that ψ ≤ B on all
of G. Since M is polar, and ψ is subharmonic in G this implies in fact that ψ ≤ h
in G (M is so small that the boundary values on M do not influence the solution
to the Dirichlet problem). On the other hand

ψ(z0) ≥ lim ϕ̃ν(z0) ≥ c > h(z0).

Thus we have obtained a contradiction and (10) is proved. �

Using Lemma 2 it is easy to prove the analogues of Lemma 1 and Proposi-
tion 2 without boundedness assumptions:

Lemma 1′. Let Uε = {ζ ∈ C; |ζ| < ε} and let F be a compact interval in R ⊂ C.
Let u be analytic in some complex neighborhood of Uε × F and assume that Uε �
z1 �→ u(z1, x2) can be extended to an analytic function in UR for every x2 ∈ F .
Then there exists an analytic function ũ on some complex neighborhood of UR×F
that agrees with u on Uε × F .

Proof. Let ϕk be the subharmonic function

ϕk(w) =
1

k
log |ak(w)|,

where ak(·) is defined by (3). By the first assumption the sequence ϕk(w) is uni-
formly bounded from above in Vδ(F ) for some δ > 0. By the second assumption

lim
k→∞

ϕk(x2) ≤ log(1/R), for all x2 ∈ F.

According to Lemma 2 there must then exist for any r < R a number k0 such that

ϕk(x2) < log(1/r), if k > k0, x2 ∈ F,

or equivalently

|ak(x2)| ≤ r−k, if k > k0, x2 ∈ F.

Thus we have estimates corresponding to (4) and (5), and the proof can now be
finished exactly in the same way as the proof of Lemma 1. �

We can now prove Proposition 2 without boundedness assumption:

Proposition 2′. Let G be a simply connected bounded domain in C, U an open disk
with U ⊂ G, and F a compact interval in R ⊂ C. Let u be an analytic function
in a complex neighborhood of U ×F . Assume that the function U � z1 �→ u(z1, x2)
can be extended to an analytic function in G for every x2 ∈ F . Then there exists
an analytic function ũ on some complex neighborhood of G×F that agrees with u
on U × F .

Proof. This statement is proved using Lemma 1′ in exactly the same way as Propo-
sition 2 was proved using Lemma 1. �
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We are now ready to prove the theorem on separate real analyticity without
boundedness assumptions.

Proposition 1′. Let E1 and E2 be bounded open intervals on R with complex neigh-
borhoods V1 and V2, respectively, and assume that z1 �→ u(z1, x2) is analytic on V1

for each x2 ∈ E2 and that z2 �→ u(x1, z2) is analytic on V2 for each x1 ∈ E1. Then
there exists an analytic function ũ on some complex neighborhood of E1 × E2 in
C2 that agrees with u on E1 × E2.

Proof. It is enough to prove the assertion for arbitrary closed subintervals F1 ⊂ E1

and F2 ⊂ E2. Shrinking V1 and V2, if necessary, we may also assume that V1 and
V2 are simply connected and that z1 �→ u(z1, x2) is bounded on V1 for each x2 ∈ F2

and that z2 �→ u(x1, z2) is bounded on V2 for each x1 ∈ F1. For any natural number
N define the set

KN = {x1 ∈ F1; |u(x1, z2)| ≤ N for all z2 ∈ V2}.
We claim that KN is closed for each N . In fact, let xν

1 ∈ KN for ν = 1, 2, . . . and
limν→∞ xν

1 = x0
1. We have to prove that x0

1 ∈ KN . Since the family of analytic
functions wν(z2) = u(xν

1 , z2) is uniformly bounded, there exists a subsequence of xν
1

such that wν(z2) converges to an analytic function w(z2) on V2 with |w(z2)| ≤ N .
Since E1 � x1 �→ u(x1, x2) must be continuous for each x2 ∈ E2, we must have
w(x2) = u(x0

1, x2) for each x2 ∈ F2 ⊂ E2. But this implies that w(z2) = u(x0
1, z2)

for all z2 ∈ V2, and hence proves our claim that KN is closed. Since V2 � z2 �→
u(x1, z2) is bounded for each x1 ∈ F1, the union of all KN must be equal to all
of F1. By Baire’s theorem KN must have an interior point for some N , in other
words, we can choose N1, x

0
1 ∈ F1 and δ1 > 0 such that {x1; |x1 − x0

1| < δ1} ⊂ F1

and
|u(x1, z2)| ≤ N1 whenever |x1 − x0

1| < δ1 and z2 ∈ V2. (12)

Set Iδ1 = {x1; |x1 − x0
1| < δ1}. Applying the same argument to the function u

on (Iδ1 × V2) ∪ (V1 × F2) with the variables interchanged we can find a number
N ≥ N1, x

0
2 ∈ F2, and δ2 > 0 such that {x2; |x2−x0

2| < δ2} ⊂ F2 and, in addition
to (12),

|u(z1, x2)| ≤ N whenever |x2 − x0
2| < δ2 and z1 ∈ V1.

Set Jδ2 = {x2; |x2 − x0
2| < δ2}. Now we can apply Proposition 1 to conclude that

u must be real analytic on Iδ1 × Jδ2 . By definition this implies that there exist
complex neighborhoods U1 of Iδ1 and U2 of Jδ2 and an analytic function ũ0 in
U1 × U2 that agrees with u on Iδ1 × Jδ2 . Applying Proposition 2′ (Proposition 2
would actually suffice here) with G = V1, F = F2 equal to a closed subinterval of
Jδ2 , and a disk U ⊂ U1, we can find an analytic function ũ1 in some neighborhood
of V1 × F2 that agrees with ũ0 on U × F2, hence agrees with u on (U ∩ E1)× F2.
Since E1 � x1 �→ u(x1, x2) is real analytic for each x2, ũ1 must agree with u on
E1 × F2. Thus for an arbitrary closed subinterval F1 ⊂ E1 we can now choose
a disk U ⊂ U2 such that ũ1 is analytic in a complex neighborhood of F1 × U .
Then we can apply Proposition 2′ with those choices of F1 and U and G = V2 to
conclude that there exists an analytic function ũ2 that is analytic in a complex
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neighborhood of F1 × V2 that agrees with ũ1 on F1 × U , hence agrees with u on
F1 ×E2. Since F1 was an arbitrary closed subinterval of E1 this gives an analytic
function in a complex neighborhood of E1×E2 that is equal to u on E1×E2. The
proof is complete. �

Proof of Theorem 1′. We argue in the same way as in the proof of Theorem 1. By
Proposition 1′ there exists an analytic function ũ0 in some neighborhood W0 of
E1 × E2 that agrees with u on E1 × E2. Applying Proposition 2′ to G = G1, an
arbitrary closed subinterval F ⊂ E2, and open disks U ⊂ G1 such that U×F ⊂W0

we find ũ1 that is analytic in some complex neighborhood W1 of G1 × E2 and
agrees with u on G1 × E2. Similarly we can find ũ2 that is analytic in a complex
neighborhood W2 of E1 × G2 and agrees with u on E1 × G2. It is clear that ũ1

and ũ2 together define an analytic function ũ in a complex neighborhood Σ of
X . The proof is completed by means of Proposition 3 exactly in the same way as
before. �

In [11] Siciak treats also the case when E1 and E2 are allowed to be general
compact subsets of G1 and G2, respectively, not necessarily subsets of the real
line. It is assumed that the boundaries of E1 and E2 are regular for the Dirichlet
problem, which implies in particular that E1 and E2 are not too small. An anal-
ogous statement in n dimensions where u(x1, . . . , xn) is assumed to be separately
analytic in each variable is also proved in [11]. Extension to the case when G1

and G2 may be higher-dimensional manifolds is given in [15]. In [13] Siciak gave
a new proof of his main result in [11], based on his theory of so-called extremal
plurisubharmonic functions. A theorem analogous to Theorem 1 where u is allowed
to have singularities on an algebraic curve Γ in C2 was given in [14]; this proved a

conjecture by Öktem, who treated the special case when Γ is a complex line, [9].
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The axe bites into the tree,
But the snail
Is calm and serene.

Baishitsu

1. In the late eighties, Mikael Passare was a frequent visitor of the (late) Labora-
toire d’Analyse complexe at the University Paul Sabatier in Toulouse. His exper-
tise in pluri-complex integration was much appreciated by a few colleagues who
worked on the ∂̄-equation, then a most popular topic. He arrived one spring just
after Thomas Bloom returned to Toronto. In these years, Tom was working on a
certain multivariate polynomial interpolation method that had been introduced
a little earlier by his Ph.D. Student Paul Kergin [13] and was already known to
many approximation theorists as Kergin interpolation [9]. He had just given a lec-
ture on the subject and some of his documents were forgotten somewhere in the
department (Tom can be abstracted) and, by chance, say, came into the hands
of Mikael. I was not a direct witness of this encounter since I became a member
of the laboratoire only a few months later. Yet, I was told the story by different
colleagues with reasonable variations and predictable ornaments – should Mikael
have found Tom’s papers in a waste-paper basket? – in a way which ultimately
convinced me of its truth. The way the subject came to Mikael Passare was typical
of his relation to mathematics, as I understood it, and I believe that the story of
his contribution shed a beautiful light on the life of mathematics, perhaps of a
certain old-fashioned form of mathematics.
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2. Back to Hermite

One of the many beginnings of polynomial interpolation is an extraordinary paper
written by Charles Hermite in 1878. Hermite considered the problem of finding a
(univariate) complex polynomial p of degree n − 1 such that p(j)(ai) = f (j)(ai)
where i = 1, . . . , k, j = 0, . . . , αi − 1,

∑
αi = n and f was a certain analytic func-

tion whose regularity was to be made precise. In those days, a mix of statements
and proofs was not uncommon. Although he applied his procedure to derive some
quadrature formulas, Hermite did not offer any motivation apart from that of gen-
eralizing Lagrange interpolation and (subsequently) connecting it to the Taylor
polynomial. As far as I know, he was not supported, either financially or morally,
by a scientific prospective committee or by any other sort of bureaucratic creature.
He was soberly introducing Hermite interpolation, a future fundamental tool of ap-
plied mathematics. The Hermite problem, of course, is readily solved by nowadays
elementary linear algebra. You consider the vector space Pn−1 of polynomials of
degree at most n− 1 and the linear map

Pn−1 � p �→ (p(a1), . . . , p
(α1−1)(a1), . . . , p(ak), . . . , p

(αk−1)(ak)) ∈ Cn, (1)

and you prove the existence and uniqueness of the searched polynomial by merely
checking that the kernel of this map is trivial. In fact, if p is in the kernel, it has a
zero of order at least αi at ai, which gives at least n roots taking multiplicity into
account, and this is too much for a non zero polynomial of degree at most n− 1.
In 1878, the required abstract linear algebra formalism was still to come (Hermite
only observed that the problem was well posed) and, in lack of a plain argument,
he had to produce a subtle one. He observed that if f is analytic in a region S
containing the points ai and bounded by a contour S then the function

x �→
∫
S

f(z)Φ(x)

(z − x)Φ(z)
dz, Φ(z) =

k∏
i=1

(z − ai)
αi , (2)

differs from f by a polynomial of degree at most n− 1 which satisfies the required
properties. As the experienced mathematician easily guesses, it might very well
be that Hermite made the observation first and then understood the potential
interest of such a polynomial. This would not have been a less estimable way of
obtaining his result. The above integral formula is now refereed to as the Hermite
remainder formula. It is the basic tool for the theory of interpolation of univariate
analytic functions whose main results, including its connection to plane potential
theory, were established in the first half of the twentieth century1. Hermite was
pleased to find a way of seeing Lagrange interpolation and Taylor approximation
as opposite sides of a same question (n points, each with a minimal interpolation
condition, for Lagrange and one point with a maximal interpolation condition for
Taylor). Something, however, worried him after he finished the first draft of his
paper in July 1877. Observing that Taylor polynomials and Lagrange polynomials

1The classical treatments are [16, 15].
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are well defined in elementary analysis, he felt that it should be possible to derive
his result without using complex integration. Again, the modern mathematician
will soon recognize that Hermite’s problem is purely algebraic and, if you decide to
match yji ∈ K instead of f (j)(ai), you may even solve it, with the same argument
as above, with a polynomial whose coefficients belongs to any field K you like.

Two months later, Hermite was ready for adding a remarkable post scriptum.
Due to an exceptional computational dexterity, he discovered, admittedly, with
some surprise, that complex integration could be replaced by multivariate real
integration. In fact, removing the non integrated term Φ(x) and setting x = a0,
Π(z) = (z − a0)Φ(z) and u = (a0 − a1)t1 + (a1 − a2)t2 + · · ·+ (an − an−1)tn,, the
integral in formula (2) could be rewritten as∫

S

f(z)

Π(z)
dz =

∫ 1

0

dtn

∫ tn

0

dtn−1

∫ tn−2

0

dtn−2 . . .

∫ t1

0

f (n)(u)dt1. (3)

This formula was valid when all αi equal 1. Hermite then derived a similar formula
in the general case by differentiating both sides with respect to the ai. He did not
mention the case of real (differentiable) functions. Nearly at the same period, the
Italian analyst and number theorist Angelo Genocchi found out a similar formula
in the case of Lagrange interpolation, in a more natural way, by expressing as an
integral the coefficients, which are called divided differences, of the Newton for-
mula for Lagrange interpolation. This would be recalled as the Hermite–Genocchi
formula for divided differences.

3. From Hermite to Kergin

Although Hermite achieved more generality, his formula was not satisfying in the
case where the αi were greater than one. It occulted several fundamental proper-
ties, the most important being a simple dependency as a function of the interpola-
tion points. The last step required a slight formal modification. Instead of choosing
points ai with multiplicity αi, you start from a ‘set’ X = {x1, . . . , xn} in which
a same point may be repeated. There is an immediate one-to-one correspondence
between Hermite data and sets with repetition: just take xi = a1 for i = 1, . . . , α1,
xα1+i = a2 for i = 1, . . . , α2 and so on. In that case, setting x0 = x, the right-
hand side of (3) can be expressed (one needs to use a certain linear change of
variables) as ∫

Δn

f (n)

(
n∑

i=0

tixi

)
dm(t), (4)

where m is the Lebesgue measure on the simplex

Δn =

{
(t0, . . . , tn) ∈ [0, 1]n+1 :

n∑
i=0

ti = 1

}
. (5)

From this, one can show that the Hermite interpolation polynomial H(X, f) of
degree n corresponding to the data X = {x0, . . . , xn} and the function f is given
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by the formula

H(X, f)(x) =

n∑
j=0

(x− x0) · · · (x− xj−1)

∫
Δj

f (j)

(
j∑

i=0

tixi

)
dm(t), (6)

where the empty product (when j = 0) is taken as 1 and the corresponding in-
tegral term reduces to f(x0). The above is certainly not a standard presentation
of Hermite interpolation. In fact, if all mathematicians have heard about Her-
mite interpolation, the knowledge of the Hermite–Genocchi formula is reserved for
specialists in approximation theory. However, once we have it in mind, the defini-
tion of Kergin interpolation becomes obvious: it is the very natural multivariate
counterpart of (6). It suffices to observe that

(x−x0) · · · (x−xj−1)f
(j)

(
j∑

i=0

tixi

)
= Djf

(
j∑

i=0

tixi

)(
x−x0, . . . , x−xj−1

)
. (7)

In fact, the Kergin interpolation polynomial of a multivariate function f at the
(non necessarily distinct) point of X = {x0, . . . , xn} ⊂ RN is given by

K(X, f)(x) =

n∑
j=0

∫
Δj

Djf

(
j∑

i=0

tixi

)(
x− x0, . . . , x− xj−1

)
dm(t), (8)

where Djf denotes the jth total (Fréchet) derivative of f (which is a symmetric
j-linear form). This was observed by Micchelli and Milman [14]; Kergin himself
arrived to its procedure in a different manner. Formula (8) defines an operator
f �→ K(X, f) which possesses remarkable properties to which I will come back
later.

For now, let me concentrate on the definition. I did not specify any assump-
tion on the points or the function f . If, as is natural, we want to compute K(X, f)

for any choice of points X in Ω ⊂ RN then any convex combination
∑j

i=0 tjxj

of points of Ω should be included in Ω which therefore needs to be convex while
f will be required to be, say, n times continuously differentiable on Ω. The same
reasoning works in the complex case.

In the real case, the assumption on Ω cannot be weakened, it definitely has to
be convex, and nothing more general was known in the complex case until Mikael
Passare entered the game. Just like Hermite felt the necessity of eliminating com-
plex integration in formula (2), Mikael felt the necessity of putting back complex
integration in formula (8).

4. Complex Kergin interpolation

Would it be possible to define Kergin interpolation for a holomorphic function
defined on a domain Ω that is not convex? Mikael studied the problem with his
long-time collaborator Mats Andersson. The starting point was clear (in complex
integration a simplex can be deformed) but the actual resolution was to lead them
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to investigate quite a few involved notions of complex convexity – first considered a
few decades before by A. Martineau and further studied by several USSR analysts,
and that they would conclude, jointly with Sigurdsson, with their monograph
Complex convexity and analytic functionals [3].

In [1] Andersson and Passare showed that complex Kergin interpolation nat-
urally lives on C-convex domains. A domain in CN is C-convex when any of its
intersections with a complex line is connected and simply connected (or empty).
The point, of course, is to extend the integral terms in (8), that is the so-called
simplex functional

f �→
∫
Δn

f

(
n∑

i=0

tixi

)
dm(t). (9)

This functional actually plays a fundamental role in several problems on multivari-
ate polynomial approximation. The description of the general extension is rather
technical but it is easy to understand in the case of two points for which we have
to extend the functional∫ 1

0

f
(
x0 + t(x1 − x0)

)
dt where x0, x1 ∈ Ω ⊂ CN , (10)

and this is sufficient for understanding how C-convexity intervenes. Indeed, since
Ω is supposed to be C-convex, the complex line L = x0 + C(x1 − x0) intersects Ω
in a simply connected domain ΩL of L. You consider the affine map Φ from C to
L defined by φ(z) = x0 + z(x1−x0). Then φ−1(ΩL) is a simply connected domain
in the ordinary complex plane (which contains 0 and 1) and∫

γ

(f ◦ φ)(z)dz =

∫
γ

f
(
x0 + z(x1 − x0)

)
dz (11)

does not depend on the regular path γ joining 0 to 1; this provides the correct
extension of (10). Andersson and Passare also showed that the assumption of
C-convexity cannot be relaxed.

The same paper contains a second, essentially independent part, in which the
authors derives a remainder formula for Kergin interpolation based on a Cauchy–
Fantappiè representation formula that enabled them to extend a convergence result
for entire functions due to Bloom [4]. I believe that the consideration of such an
error formula directed them toward a formally simpler presentation of Kergin inter-
polation on C-convex domain. To understand this second approach, it is necessary
to briefly turn back to the main properties of Kergin’s map.

5. Kergin and Fantappiè

The fundamental property of real Kergin interpolation (on convex sets) is that it
provides a lifting of Hermite interpolation in the sense that, if f is a ridge function,
that is, a univariate function h composed with a linear form �, g = h ◦ �, then

K(X, f) = H
(
�(X), h

)
◦ �, (12)
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thus, the Kergin interpolation polynomial of a ridge function is a ridge polyno-
mial obtained as a composition of a Hermite interpolation polynomial. Such an
invariance property implies many other interesting properties, most notably, the
fact that K(X, f) interpolates f at the points of X in the Hermite sense: if a
point w is repeated α times in X then the first α− 1 total derivatives of K(X, f)
at x equal the corresponding total derivatives of f . In particular, of course, if all
points in X coincides then K(X, f) is a multivariate Taylor polynomial. In fact,
Formula (8) clearly presents Kergin interpolation polynomials as de-centred Taylor
polynomials.

The space generated by ridge functions is dense in every space where poly-
nomials are but, in general, there is no simple linear operator realizing such ap-
proximation. Things are fundamentally different in the complex setting, for many
representation formulas can precisely be stated as relations of the following form

f(z) =

∫
f(w) k

(
w , s�w(z)

)
dμ(w), u�(z) := 〈z, u〉 =

n∑
i=1

ziui, (13)

where k(·, ·) is a certain kernel, s : w �→ sw ∈ CN and μ a measure. In such an
expression, the connection to ridge functions becomes obvious. This observation
has deep consequences.

The first one is that if Kergin interpolation is well defined, in a reasonable
sense, then one may permute K and ∫ and, in view of (12) and (13), we will have

K(X, f)(z) =

∫
f(w) H

(
s�w(X) , k (w, ·)

)(
s�w(z)

)
dμ(w). (14)

The trick enables transforming a problem on Kergin interpolation (which is a mul-
tivariate problem) into a (univariate) Hermite interpolation problem for which
the data, the function and the point of evaluation all depend on a parameter
w. One may then expect to use the available one-variable machinery to study
approximation by Kergin interpolation polynomials. All convergence results on
approximation of holomorphic functions by Kergin interpolants are based on this
principle. It also explains why we cannot expect as rich a theory for Kergin in-
terpolation as for (univariate) Hermite interpolation: roughly speaking, we need
a sort of w-uniform dependency of the interpolation points s�w(x), the functions
k(w, ·) and the evaluation points s�w(z). Optimal results can be achieved only in
quite particular cases2.

The second consequence is due to Andersson and Passare: roughly, they
guessed that a necessary and sufficient condition for defining complex Kergin in-
terpolation should be the existence of a relation of the form (13). This is the
content of their second paper on Kergin interpolation [2]. They first observe that
a formally better setting naturally asks for a use of projective spaces on which the
notion of C-convexity easily extends. Given a set Ω in PN , one defines Ω� as the
set of hyperplanes in PN which do not intersect Ω: an element of Ω� is given by

2For convergence results on Kergin interpolants of holomorphic functions, see [5, 6]
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[ξ] where 〈ξ, z〉 �= 0 for every z in Ω. When Ω is open Ω� is compact. When Ω is a
domain in PN , given two elements η� ∈ Ω� and z, η ∈ Ω, the function

Rz : w ∈ Ω� �→ 〈z, η�〉〈η, w〉
〈z, w〉 ∈ H(Ω�), (15)

that is, defines a holomorphic function on Ω�. One may regard Rz as an example of
the projective version of a ridge function. If μ ∈ H′(Ω�), i.e., μ is a continuous linear
form on H(Ω�), we may compute μ on Rz. This gives the Fantappiè transform,

Fμ(z) = μ(Rz), (16)

and, as a function of z, Fμ will be a holomorphic function on Ω. Andersson and
Passare used the remarkable fact that when the domain is C-convex then the
Fantappiè transform F : H′(Ω�) → H(Ω) is a topological isomorphism (for the
usual topologies). Thus every f ∈ H(Ω) can be written as f(z) = μf (Rz) and the
definition of the (projective) Kergin interpolation polynomial now becomes

PK(X, f)(z) = μf

{
H

(
〈X, ·〉

〈X, η�〉〈η, ·〉 ,
1

·

)(
〈z, ·〉

〈z, η�〉〈η, ·〉

)}
, (17)

where the letter P in front of K means that we use a certain projective version of
Kergin polynomials.

This was only the door through which they entered their study of C-convexity
and analytic functionals. Passare and Andersson decided to clarify the notions
and began to write some surveys that would reconstruct the whole edifice of C-
convexity in a way they judged satisfactory. I had these preprints on my work
table for years and, every time I met with Mikael, I did not forget to ask him
about the next chapter. When Ragnar Sigurdsson entered the team, the project
finally ended in the publication of the beautiful monograph [3], a dedicated copy
of which I am proud to have on my bookshelf.

6. Mean value interpolation

I first encountered Mikael at one session of the Journées complexes du sud in the
early nineties. He gave a beautiful talk about Kergin interpolation both on his
results and on those of his student Xing Yang who had just obtained a certain
extension of the famous Müntz theorem on the approximation of continuous func-
tions by the linear span of monomials with real exponents [17] as a by-product of
Kergin interpolation. He accepted to be reviewer for my Ph.D. thesis; I found him
a revue technique for a certain old French car. One evening, when we were waiting
for his train, having a drink at the Matabiau station buffet, we understood that
we stood firmly on the opposite sides of the fundamental dichotomy: one believed
in Chance, the other in Will. This irreconcilable disagreement left us with solely
frivolous topics of conversation such as, for instance, mathematics; and I visited
him a couple of times in Stockholm. There, one afternoon, I mentioned a gener-
alization of (real) Kergin interpolation that had been considered by Micchelli and
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his collaborators and which they called Mean value interpolation [8]. I pointed
out that it should be possible to construct some complex mean value interpolation
following the same lines as in his papers. He immediately showed his interest. I
did not understand. Early, the next day, Mikael, myself and a few other colleagues
met in the morning train to Kiselman’s seminar in Uppsala. During the journey,
he repeated his interest in mean value interpolation and patiently guided me to
understand it as follows. The simplest univariate (real) mean value M(X) operator
is related to Hermite interpolation by the relation

M(X, f) = D
(
H(X , D−1f)

)
; (18)

where f is a continuous function, D indicates derivation and D−1 anti-derivation. It
is readily seen that M(X, f) does not depend on the anti-derivative that we choose
so that M(X, f) is correctly defined. If the definition is formally elegant, the utility
of such an operator in approximation theory is perhaps not evident. Assume, for
simplicity, that all the points in X = {x0, . . . , xn} are pairwise distinct so that
H(X, ·) reduces to a Lagrange interpolation operator. Then,∫ xj

x0

M(X, f)(t)dt =
[
H(X , D−1f)

]xj

x0

=
[
D−1f

]xj

x0

=

∫ xj

x0

f(t)dt. (19)

Thus, in that case,M(X, f) is the unique polynomial P of degree at most n−1 sat-
isfying ∫xj

xi
P (t)dt = ∫xj

xi
f(t)dt and such interpolation conditions naturally occur in

approximation theory. Now, looking at the complex version, either from (18) or by
considering the translation of the interpolation conditions that must be

∫
γ f(z)dz

where γ is a regular path joining xi to xj , it is clear that simple connectedness is
required. In other words, C-convexity appears even in the univariate case unlike
the case of Kergin interpolation, making it a still more natural condition. That
was what Mikael understood the day before. He encouraged me to work jointly
with Yang on this question but both of us were already busy with other problems
and the project failed. The problem was finally, and excellently, handled by Lars
Filipsson, another student of Mikael [12, 10]3. Before Lars began to work, Mikael
asked me whether the problem was free; I were still to receive further evidence of
his uncommon elegance.

7. I still remember the last time we met in a seminar. He had moved to other
mathematical subjects, years before. As usual, he gave an excellent talk in his
peculiar style: he used to come with a few slides, parsimoniously filled with a
few formulas. He spoke and you left the room with something new in you mind.
He was able to arouse the interest of every open-minded mathematician. This
day, someone who was not – and whose tone I remember – asked: “Why, why
should we study such things?” It was a standard Tartuffe tone made of a mix of
contempt, compassion and envy. Mikael answered as we do in similar cases, with

3Lars’ thesis [11] also contains further results on Kergin interpolation, see also [12, 7].



Mikael Passare 155

an imperceptible smile on his face, he pointed out the elegance of the theory and
mentioned applications. I think I know what he could not say: “Sorry, I don’t
choose my mathematics, I am chosen by mathematics.”
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2004.

[4] Bloom, T. Kergin interpolation of entire functions on Cn. Duke Math. J. 48, 1
(1981), 69–83.

[5] Bloom, T., and Calvi, J.-P. Kergin interpolants of holomorphic functions. Constr.
Approx. 13, 4 (1997), 569–583.

[6] Bloom, T., and Calvi, J.-P. The distribution of extremal points for Kergin inter-
polation: real case. Ann. Inst. Fourier (Grenoble) 48, 1 (1998), 205–222.

[7] Calvi, J.-P., and Filipsson, L. The polynomial projectors that preserve homoge-
neous differential relations: a new characterization of Kergin interpolation. East J.
Approx. 10, 4 (2004), 441–454.

[8] Cavaretta, Jr., A. S., Goodman, T.N.T., Micchelli, C.A., and Sharma, A.
Multivariate interpolation and the Radon transform. III. Lagrange representation.
In Second Edmonton conference on approximation theory (Edmonton, Alta., 1982),
vol. 3 of CMS Conf. Proc. Amer. Math. Soc., Providence, RI, 1983, pp. 37–50.

[9] de Boor, C. Polynomial interpolation. In Proceedings of the International Congress
of Mathematicians (Helsinki, 1978) (1980), Acad. Sci. Fennica, Helsinki, pp. 917–922.

[10] Filipsson, L. Complex mean-value interpolation and approximation of holomorphic
functions. J. Approx. Theory 91, 2 (1997), 244–278.

[11] Filipsson, L. On polynomial interpolation and complex convexity. ProQuest LLC,
Ann Arbor, MI, 1999. Thesis (Dr. Techn.) – Kungliga Tekniska Hogskolan (Sweden).

[12] Filipsson, L. Kergin interpolation in Banach spaces. J. Approx. Theory 127, 1
(2004), 108–123.

[13] Kergin, P.G. Interpolation of Ck functions. ProQuest LLC, Ann Arbor, MI, 1978.
Thesis (Ph.D.) – University of Toronto (Canada).

[14] Micchelli, C.A., and Milman, P. A formula for Kergin interpolation in Rk. J.
Approx. Theory 29, 4 (1980), 294–296.

[15] Smirnov, V. I., and Lebedev, N.A. Functions of a complex variable: Constructive
theory. Translated from the Russian by Scripta Technica Ltd. The M.I.T. Press,
Cambridge, Mass., 1968.

[16] Walsh, J. L. Interpolation and approximation by rational functions in the complex
domain. Third edition. American Mathematical Society Colloquium Publications,
Vol. XX. American Mathematical Society, Providence, R.I., 1960.



156 J.-P. Calvi
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Abstract. Let V(f) be the complex hypersurface of a Laurent polynomial f .
The amoeba A(f) is the projection of V(f) under the Log-absolute map.
Amoebas have countless applications and, in particular, they form a key con-
nection between “classical” algebraic geometry and tropical geometry. There
exist multiple different tropical hypersurfaces related to amoebas. In this sur-
vey, we introduce the most important of these tropical hypersurfaces and
compare their relations to amoebas. Moreover, we discuss related open prob-
lems in amoeba theory.

As a new contribution we provide an example of an amoeba in R2

which has a component in the complement with an order not contained in
the support of the defining polynomial. As a consequence, we conclude that
an amoeba and its corresponding complement induced tropical hypersurface
are not homotopy equivalent in general. Similarly, we prove that Archimedean
amoebas and non-Archimedean amoebas are not homotopy equivalent in gen-
eral.
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Keywords. Amoeba, complement induced tropicalization, Maslov dequantiza-
tion, non-Archimedean amoeba, ArchTrop, spine, tropical geometry, tropical-
ization, valuation.

1. Introduction

In 1993/94 Gelfand, Kapranov and Zelevinsky introduced a new mathematical
object in their book “Discriminants, Resultants and Multidimensional Determin-
ants”[14], which they named “amoeba”.

Specifically, let f ∈ C[z±1] := C[z±1
1 , . . . , z±1

n ] be a Laurent polynomial defin-
ing a hypersurface V(f) ⊂ (C∗)n := (C \ {0})n. The amoeba A(f) (also referred
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to as Archimedean amoeba) of f is the image of V(f) under the Log-absolute map
given by

Log | · | : (C∗)n → Rn, (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|) . (1.1)

The Newton polytope New(f) of a Laurent polynomial f is the convex hull of
the exponents of f . Gelfand, Kapranov and Zelevinsky motivated the definition of
the amoeba A(f) by the relations between the hypersurface V(f) and the Newton
polytope New(f) which are displayed by A(f); see [14, Section 6.1.B, Page 194],
see also Section 2.1. Nowadays, we know that amoebas are objects of high interest
themselves. They have amazing structural properties and are related to various
mathematical subjects. These include dynamical systems [9], complex analysis
[11, 33], nonnegativity of real polynomials [16], dimers and crystal shapes [19],
the topology of real algebraic curves [23], statistical thermodynamics [30], the
theory of stability preservers [32], discriminants [34], hyperbolicity and stability of
polynomials [37], and the geometry of polynomials [47].

Most importantly, amoebas form a bridge between classical algebraic geom-
etry and tropical geometry. Tropical geometry is a rising mathematical subject,
which has been intensively discussed during roundabout the last 15 years. It in-
vestigates objects defined over the tropical semiring (R ∪ {−∞},⊕, ). In this
semiring the tropical addition ⊕ represents the usual maximum and the tropical
multiplication  represents the usual addition of two numbers. For a given sup-
port set A ⊂ N one defines a counterpart to “classical” polynomials in tropical
geometry. A tropical polynomial is given by

f(x) :=
⊕
α∈A

bα  xα1
1  · · ·  xαn

n

with variables x1, . . . , xn ∈ R and a coefficients bα ∈ R for all α ∈ A. Note that
for 1 ≤ j ≤ n we have

x
αj

j := xj  · · ·  xj︸ ︷︷ ︸
αj times

= αj · xj .

The tropical hypersurface T (f), the zero set of a tropical polynomial f , is the
piecewise linear subset of Rn where the maximum is attained at least by two
tropical monomials of f . We give a more detailed description of tropical geometry
in Section 2.2. For an overview about tropical geometry see, e.g., [5, 13, 17, 21, 39].

Tropical objects are due to their combinatorial nature much easier to handle
than algebraic ones, but they still contain surprisingly much information of their
algebraic counterparts. This makes them a powerful tool. In the abstract of their
recent book Maclagan and Sturmfels summarize this fact as follows [21]:

“Tropical geometry is a combinatorial shadow of algebraic geometry.”

Amoebas live in between these two worlds. On the one hand, amoebas are projec-
tions of algebraic varieties. On the other hand, certain tropical hypersurfaces are
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deformation retracts of amoebas. In this sense amoebas can be described them-
selves by tropical polynomials and their hypersurfaces. Hence, from the perspective
of amoeba theory, we might vary the previous quote to:

“Amoebas are shadows of algebraic varieties and tropical varieties are
their combinatorial spirit.”

Nevertheless, one important fact is often overseen in this context: There does
not exist a unique tropical polynomial or a unique tropical hypersurface which
can be associated to a given amoeba in a meaningful way. There exist several such
tropical polynomials and tropical hypersurfaces with different properties. In what
follows we refer to these tropical hypersurfaces as tropicalizations of amoebas. For
example, the following two claims are common misconceptions about key objects
in amoeba theory:

Misconception 1. The non-Archimedean amoeba (see Section 3) and the spine
(see Section 6) of an amoeba are identical (or at least homotopy equivalent)
tropical hypersurfaces.

Misconception 2. The spine is both a tropical hypersurface and a deformation
retract of its corresponding amoeba; see for example [33, Theorem 1] and
[35]. Since tropical hypersurfaces are piecewise linear, they can be computed
easily via methods from linear algebra. Thus, the problem about the existence
of components of the complement of amoebas originally stated by Gelfand,
Kapranov and Zelevinsky (see [14, Remark 1.10, Page 198] and also Problem
2.6) can also be solved easily.

Both statements are wrong, as we conclude at the end of this survey in
Corollary 7.1 and Remark 7.2.

Compared to tropical geometry, there exist few books and surveys about
amoeba theory. Particularly, there exist the surveys [24, 35], the article [8] the
mini survey [49], and the recently finished book [51] (in Russian). None of them,
however, focuses on comparing the different relationships of amoebas with their
tropicalizations. This fact combined with the existence of such common misunder-
standings was the first motivation to write this survey.

The second motivation is that many contributions about amoebas and their
tropicalizations were made by Mikael Passare, who tragically passed away in 2011,
and by his students, particularly by Hans Rullg̊ard in his seminal thesis [42].
Examples are [11, 12, 28, 29, 30, 31, 33, 34, 35, 41, 42]. I hope that this survey
helps to popularize their work to a broader audience.

In this survey we focus on four key tropicalizations of amoebas:

1. the non-Archimedean amoeba, see Sections 3 and 4,
2. the Archimedean tropical hypersurface, see Section 5,
3. the complement induced tropical hypersurface, see Section 5, and
4. the spine, see Section 6.



160 T. de Wolff

Roughly speaking, these tropicalizations yield more accurate descriptions of
the original amoeba and have more of its original properties in the order of appear-
ance. In the same order it becomes more complicated to determine their defining
tropical polynomial; see the comparison in Section 7 at the end of the article. In
summary, all of these tropicalizations are useful and it depends on the situation
which one is the best choice.

Some of the tropicalizations (1)–(4) have been discussed in other surveys, too.
The non-Archimedean amoeba can be found in most books and surveys about trop-
ical geometry like [21], mostly from the valuation point of view. It is also covered
in Mikhalkin’s article [25] and his survey about amoebas [24] and Viro’s surveys
like [48] (mostly) about his patchworking technique. The spine was discussed in
the survey [35] by Passare and Tsikh. The tropicalizations (2) and (3) were, to the
best of my knowledge, not part of a survey so far. However, (3) was mentioned
in Rullg̊ard’s thesis, see [42, Remark on Page 33 and proof of Theorem 12], and
was also discussed in my thesis; see [6, Section 4.1.1]. However, there has not been
a detailed comparison of the different relationships of these tropicalizations with
amoebas (a partial, brief one is given in [21, Section 1.4]). The main purpose of
this survey is to introduce these four tropicalizations, explain how they are con-
structed, and to point out their properties and their differences with respect to
amoebas. Moreover, I want to emphasize some open problems in amoeba theory,
which are related to the different tropicalizations.

This survey also contains some new contributions. Using a statement from
Rullg̊ard’s thesis [42, Theorem 11, Part 2, Page 36] we are able to conclude that
the complement induced tropical hypersurface is not a deformation retract of its
corresponding amoeba in general; see Corollary 5.14. We provide an explicit coun-
terexample in Example 5.13. This result and further parts of this survey were also
covered in my thesis; see [6, Example 4.44, Corollary 4.45]. We show furthermore
that amoebas and their corresponding non-Archimedean amoebas are not homo-
topy equivalent in general using a class of polynomials introduced by Passare and
Rullg̊ard; see Theorem 3.3.

2. Preliminaries

In this section we introduce the notation needed for amoebas and tropical ge-
ometry. Moreover, we recall some fundamental statements about amoebas, which
partially also motivate our notation.

2.1. Amoebas

For a broader introduction to amoebas I recommend the reader to also consult
the following sources: The book [14] by Gelfand, Kapranov and Zelevinsky, the
surveys [24] by Mikhalkin and [35] by Passare and Tsikh, and the theses [6] by
myself and [42] by Rullg̊ard.
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The first statements about amoebas were proven by Gelfand, Kapranov and
Zelevinsky together with their initial definition of amoebas. We start with some
topological facts.

Theorem 2.1 (Gelfand, Kapranov, Zelevinsky, [14]). For f ∈ C[z±1] with f(z) �≡ 0
the amoeba A(f) is a closed set (with respect to the standard topology) with non-
empty complement.

Let A(f)c denote the complement of the amoeba A(f). We say E ⊆ A(f)c
with E �= ∅ is a component of the complement of A(f) if E and A(f)c \ E are
not connected. Gelfand, Kapranov and Zelevinsky knew already in 1993/94 that
these components of the complement contain crucial information about the original
Laurent polynomial f and its hypersurface V(f); see [14, Cor. 1.6, Page 195]

Theorem 2.2 (Gelfand, Kapranov, Zelevinsky, [14]). Let f ∈ C[z±1]. Every compo-
nent of the complement of the amoeba A(f) is convex. The set of all components of
the complement of A(f) corresponds bijectively to the set of all Laurent expansions
of 1/f centered at the origin.

We call the set of all exponents of a Laurent polynomial f the support of
f . Recall that the Newton polytope New(f) of a Laurent polynomial f is the
lattice polytope given by the convex hull of the support of f , see, e.g., [14, 53].
The components of the complement of A(f) have an important combinatorial
relation to the Newton polytope New(f) of f . This was partially known by Gelfand,
Kapranov, and Zelevinsky (see the part about normal fans below) and discovered
in depth by Forsberg, Passare, and Tsikh with their introduction of the order map
in [11]. Every component of the complement of a given amoeba A(f) corresponds
to a unique lattice point in the Newton polytope New(f) of f via the order map:

ord : Rn \ A(f) → New(f) ∩ Zn, w �→ (u1, . . . , un) with (2.1)

uj :=
1

(2πi)n

∫
Log |z|=w

zj∂jf(z)

f(z)

dz1 · · · dzn
z1 · · · zn

for all 1 ≤ j ≤ n .

The order map can be understood as a multivariate analogue of the classical
argument principle from complex analysis. It states that for a function f in z,
which is meromorphic in a domain Ω ⊆ C, the following statement holds: Let γ
be a closed path in Ω such that f has no zeros and poles on γ. Then

1

2πi
·
∫
γ

f ′(z)
f(z)

dz = # zeros of f −# poles of f in the region bounded by γ.

Particularly, the image of the order map (2.1) is a set of integer vectors, the
order map is constant on each component of the complement of A(f), and it is
injective on the set of all components; see [11, Prop. 2.5, Theorem 2.8]

Theorem 2.3 (Forsberg, Passare, Tsikh). The image of the order map is contained
in New(f)∩Zn. Let w,w′ ∈ A(f)c. Then w and w′ belong to the same component
of the complement of A(f) if and only if ord(w) = ord(w′).
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We define for each α ∈ New(f) ∩ Zn the set

Eα(f) := {w ∈ Rn \ A(f) : ord(w) = α}. (2.2)

As a consequence of Theorem 2.3 each Eα(f) equals the connected component in
the complement of the amoeba A(f) which has the order α. Hence, we call Eα(f)
the component of order α of the complement of A(f). For a given support set
A ⊂ Zn and f ∈ (C∗)A we define the set:

Comp(f) := {α ∈ conv(A) ∩ Zn : Eα(f) �= ∅}. (2.3)

By the definition of the sets Eα(f) this means Comp(f) contains all lattice points
in conv(A) which are associated to existing components of the complement of A(f)
via the order map.

For a given Newton polytope New(f) we denote its normal fan by NF(f).
A definition of the normal fan can be found in [53, Page 193]. If S is a face of
New(f), then let NFS(f) denote the corresponding dual cone in NF(f). It was
already shown by Gelfand, Kapranov and Zelevinsky [Prop. 1.7., Page 195][14]
that the amoeba A(f) is related to the normal fan NF(f). This relation is an
example for the connection between hypersurfaces and their Newton polytopes,
which is displayed in the amoeba and which was mentioned in the introduction.

Theorem 2.4 (Gelfand, Kapranov, Zelevinsky, [14]). Let f ∈ C[z±1] with support
set A ⊂ Zn. If α ∈ A is a vertex of New(f), then Eα(f) �= ∅. Furthermore, Eα(f)
contains an affine translation of the full-dimensional cone NF{α}(f) in NF(f),
which is dual to the vertex α in New(f).

For a given polytope P ⊂ Rn we denote the set of its vertices by vert(P ). In
summary, we can conclude the following at this point.

Corollary 2.5. Let f ∈ C[z±1]. Then we have

vert(New(f)) ⊆ Comp(f) ⊆ New(f) ∩ Zn.

Thus, the number of vertices of New(f) is a lower bound and the number of lattice
points in New(f) is an upper bound for the number of components of the comple-
ment of an amoeba.

Later, we will see that there is a deeper connection between hypersurfaces,
amoebas, Newton polytopes and their normals fans based on tropical geometry.

We define the parameter space or configuration space of coefficients for a fixed
(finite) support set A ⊂ Zn as

(C∗)A :=

{∑
α∈A

bαz
α ∈ C[z±1] : bα ∈ C∗

}
.

That means, (C∗)A is the set of all Laurent polynomials which have exactly the
set A as support set. The investigation of such spaces (C∗)A for a fixed support
set A was excessively used by Gelfand, Kapranov and Zelevinsky [14] and later by
Rullg̊ard [42] and others and has proven to be very powerful. It is also referred to
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as A-philosophy; see [14, Chapter 5, Section 1, Part A]. In (C∗)A we can identify
every polynomial with its coefficient vector. Thus, we can identify the parameter
space (C∗)A with a (C∗)d space, where d := #A. Note that it is also common to
investigate a space CA instead of (C∗)A where coefficients are allowed to be zero.
Note furthermore that for every f ∈ (C∗)A it holds that New(f) = conv(A). For
the remainder of the article we always assume that conv(A) is a full-dimensional
polytope in Rn and hence d ≥ n+ 1.

One key problem in amoeba theory is to understand the sets

UA
α := {f ∈ (C∗)A : Eα(f) �= ∅},

i.e., the set of all polynomials in (C∗)A, whose amoebas have a component of order
α in the complement.

Problem 2.6. Find an algebraic and/or a topological description of the sets UA
α .

Furthermore, determine for a fixed A ⊂ Zn for which α ∈ conv(A) ∩ Zn it holds
that UA

α = ∅.
The problem to find an algebraic and topological description of the sets UA

α

was already stated (in a simpler way) by Gelfand, Kapranov and Zelevinsky; see
[14, Remark 1.10, Page 198]. The sets UA

α were first studied systematically by
Rullg̊ard. He showed that every UA

α is an open, semi-algebraic set and its com-
plement (UA

α )c is connected. Note that the semi-algebraicity is non-explicit and
follows via a Tarski–Seidenberg argument. Unless α is a vertex of conv(A) the set
UA
α is a strict subset of (C∗)A, which is possibly empty if α /∈ A; see [42, Theorem

10, Corollary 5, Theorem 14], see also [41]. For background information about
semi-algebraic sets see for example [2].

Example 2.7. Let f(z1, z2) := 1 + z31 + z32 + 3z1z
2
2 + 3z1 + 10z1z2. The Newton

polytope New(f) is the simplex given by conv{(0, 3), (3, 0), (0, 0)}. Thus, the com-
plement of the amoeba A(f) has three unbounded components corresponding to
the vertices (0, 3), (3, 0), and (0, 0). Additionally, by Corollary 2.5, the complement
of an amoeba of a polynomial with support set A = {(0, 3), (1, 0), (1, 1), (1, 2),
(3, 0), (0, 0)} can have at most seven non-vertex components. More precisely, it can
have six unbounded non-vertex components and a single bounded one, correspond-
ing to the non-vertex lattice points in New(f). The existence of these components
depends on the choice of the coefficients of f . For the given choice of coefficients,
the bounded and two of the unbounded components exist in addition to the three
mandatory ones; see Figure 1.

For some of the following statements it is necessary to have a brief look at
the fiber of a point w ∈ Rn. We define the fiber Fw of w ∈ Rn with respect to the
Log | · | map as

Fw := Log−1 |w| = {z ∈ (C∗)n : Log |z| = w}.
Recall that a branch of the holomorphic logarithm is defined as

logC : C∗ → C, z �→ log |z|+ i arg(z),
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Figure 1. The left picture contains an approximation of the amoeba
of f(z1, z2) := 1 + z31 + z32 + 3z1z

2
2 + 3z1 + 10z1z2. Its complement has

six components. The three components corresponding to the vertices
of New(f) via the order map contain a blue dot. One can see that
each of them contains an affine translation of a cone of the normal fan
of New(f), which is shown in the right picture. The three remaining
components can vanish for another choice of the coefficients of f . The
middle picture contains the Newton polytope of f .

where arg(z) denotes the argument of the complex number z. This means that
the log absolute map log | · | equals the real part of the complex logarithm. The
multivariate case works componentwise like the univariate case. As a consequence,
the holomorphic logarithm LogC yields a fiber bundle structure (S1)n → (C∗)n →
Rn for the map Log |·| such that the following diagram commutes; see [6, 23, 24, 44]
for further details:

(C∗)n
LogC ��

Log |·| ���
��

��
��

�
Rn × (S1)n.

Re
�����

���
���

�

Rn

Hence, every fiber Fw is homeomorphic to a torus (S1)n. For background
literature about fibrations see for example [15]. In particular, every fiber Fw is
compact and a point w ∈ Rn is contained in the amoeba A(f) if and only if
f(z) = 0 for some z ∈ Fw, see Figure 2.

2.2. The tropical semi-ring

Tropical geometry has been an emerging topic in mathematics within the last
roundabout 15 years. It investigates the geometrical properties of the tropical semi-
ring (R ∪ {−∞},⊕, ). Recall from the introduction that

a⊕ b := max{a, b}, and a b := a+ b.

Thus, the neutral element for the tropical addition is −∞ and the neutral element
for tropical multiplication is 0. It is not a ring since we do not have inverse elements
with respect to addition. Note that some authors prefer the minimum together with
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Fw w ∈ A(f) ⇔ V(f) ∩ Fw �= ∅

Log | · |

Figure 2. An amoeba A(f) with a fiber of a point w ∈ Rn with respect
to the Log | · | map.

+∞ instead of the maximum as tropical addition. For a general introduction to
tropical geometry see [5, 13, 17, 21, 39].

Recall from the introduction that a tropical polynomial with support set
A ⊂ Nn is a finite tropical sum of tropical monomials, i.e., it is a function

Rn → R, (x1, . . . , xn) �→
⊕
α∈A

bα  xα = max
α∈A

{bα + 〈x, α〉}.

with bα ∈ R. Note that a tropical monomial bα xα does not vanish if bα = 0, but
it vanishes if bα = −∞. For formal reasons we have to allow in what follows to add
redundant terms −∞ xα as they can appear as a result of computations in cer-
tain cases. As for classical polynomials we do, however, disregard such redundant
terms regarding the support, the Newton polytope, or the tropical hypersurface
of a tropical polynomial. Thus, the support set A ⊂ Nn is, analog to classical
polynomials, the set of non-vanishing terms of the tropical polynomial.

We see that a tropical monomial in terms of classical operations is the affine
linear form bα + 〈x, α〉, where 〈·, ·〉 denotes the usual scalar product.

For a tropical polynomial h, the tropical hypersurface T (h) is defined as
the set of points in Rn where the maximum is attained at least by two tropical
monomials. In several contexts T (h) is defined over (R ∪ {−∞})n instead, see,
e.g., [21, 27] for further details. In this survey, we restrict ourselves to Rn for
convenience of the reader and to avoid certain technicalities.

A tropical hypersurface T (h) is a polyhedral complex, which is dual to a
subdivision of the Newton polytope New(h) of h, where New(h) is defined as the
convex hull of the set of exponents of h, analogously to usual Newton polytopes.
For background information about polyhedral complexes, (lower) convex hulls, and
related objects see [53].
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The subdivision of the Newton polytope is induced in the following way:
Every lattice point α ∈ A is lifted to (α,−bα) ∈ Rn+1 where we ignore possible
redundant terms with bα = −∞, which can never attain a maximum. We refer
to the convex hull of these lifted points as the lifted Newton polytope. Projecting
the lower convex hull of the lifted Newton polytope down to Rn yields the desired
subdivision of New(h). Such a subdivision is called a regular subdivision [14, 20].
See Figure 3 for some examples of tropical hypersurfaces.

In the dual picture, every tropical monomial represents an affine linear hy-
perplane. Therefore, the set of all monomials in a tropical polynomial corresponds
to a hyperplane arrangement. The intersection of the positive half-spaces of the
hyperplanes in the arrangement defines a polyhedron P . Taking the maximum
of the tropical monomials corresponds geometrically to taking the lower convex
hull of the intersection of the positive half-spaces of the arrangement. That is, it
corresponds to taking the lower convex hull of P ; see [21, 39]. Since a tropical
hypersurface is given by the points where the maximum is attained twice, it corre-
sponds to the projection of the non-smooth points of this lower convex hull to Rn.
This is the projection of the points where at least two facets belonging to the lower
convex hull of P intersect. See Figure 4 for an example of the polyhedron given
by the intersection of positive half-spaces of the hyperplane arrangement and the
corresponding tropical hypersurface. See [21] for further details.
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Figure 3. The tropical hypersurfaces of the tropical polynomials
f1(x1, x2) := 1x1⊕1x2⊕1, f2(x1, x2) := 1x2

1⊕3x1⊕1x2
2⊕3x2⊕3x1x2⊕1

and f3(x1, x2) := 0x3
1x

3
2⊕log |9|x2

1x
3
2⊕0x1x

5
2⊕log |4|x1x

4
2⊕log |4|x1x2⊕0

and their corresponding Newton polytopes. All multiplications of coef-
ficients and variables are meant to be tropical. That is, e.g., 1x2

1 means
1 x1  x1.
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Figure 4. A lower convex hull of an intersection of positive half-spaces
of a hyperplane arrangement and its corresponding tropical hypersur-
face.

3. Valuations and the non-Archimedean amoeba

The probably most common way to tropicalize a hypersurface, i.e., to associate a
tropical hypersurface to an algebraic hypersurface, is to use valuations. The result-
ing tropical hypersurface is commonly called the non-Archimedean amoeba. In this
section we describe valuations, tropicalizations, and we explain the origin of the
term “non-Archimedean amoeba”. Furthermore, we demonstrate why valuation
maps are a proper choice for the connection between the classical and the tropical
world, but also why they are often not sufficient to tackle key questions in amoeba
theory itself.

Note that not only hypersurfaces can be tropicalized, but also general va-
rieties, which are not given by principal ideals. Here, we restrict ourselves to
the hypersurface case since amoebas of ideals are merely understood so far. For
the more general case we refer the reader to the literature mentioned in Section
2.2, particularly [21]. For background on valuations the reader may study liter-
ature about commutative algebra like [3]. For more information about the non-
Archimedean amoeba the reader may consult literature about tropical geometry
like [5, 13, 17, 21, 39].

For a ring (R, +̃, ·̃) and a totally ordered commutative group (G,+) a valua-
tion on R with values in G is a map ν : R→ G∪{∞}, which satisfies the following
axioms, see [3, Page 386]:

ν(x ·̃ y) = ν(x) + ν(y) for every x, y ∈ R,

ν(x +̃ y) ≥ inf{ν(x), ν(y)} for every x, y ∈ R,

ν(1) = 0 and ν(0) = ∞.

If G = R, then we say that R is real valuated. In this case the image of ν forms
an additive subgroup of R, [21]. On real valuated fields F the valuation map
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ν : F → R∪{∞} induces a norm on F ; [3, p. 428 et seq.], see also [21]. This norm
is given by

| · |ν : F → R, z �→ e−ν(z).

The norm | · |ν is non-Archimedean, i.e., it satisfies |x+ y|ν ≤ max{|x|ν , |y|ν}.

The field of Puiseux series K is the set of all formal power sums
∑

q∈Q bqt
q

such that all bq ∈ C, and Q is a well-ordered subset of the rational numbers, such
that all q ∈ Q share a common denominator [8, 21, 39]. On the field of Puiseux
series K there exists a real valuation map val : K→ R ∪ {∞}, which is given by

val

⎛⎝∑
q∈Q

bqt
q

⎞⎠ := min{q : bq �= 0}. (3.1)

Note that the minimum always exists since the support set Q of every element in
K is well ordered. Hence, K is a real valuated field.

Let f ∈ K[z±1] be a Laurent polynomial over the field of Puiseux series.
Kapranov [8, 18], see also [24, 26, 39] defined for a given algebraic variety V(f) ⊂
(K∗)n its non-Archimedean amoeba AK(f) byAK(f) := LogK |V(f)|, where LogK |·|
is given by

LogK | · | : (K∗)n → Rn, (z1, . . . , zn) �→ (log |z1|val, . . . , log |zn|val),

where |·|val denotes the norm on K induced by the valuation val. In other words, we
have log |zj|val = − val(zj) for every 1 ≤ j ≤ n. Note that LogK | · | is well defined
here, since we assumed that V(f) ⊂ (K∗)n. The analogy between the maps Log | · |,
see (1.1), and LogK | · | explains the name non-Archimedean amoeba. In fact, the
non-Archimedean amoeba is a tropical hypersurface as the following statement,
known as Kapranov’s theorem, shows.

Theorem 3.1 (Kapranov [18]; see also [21, 24, 39]). Let A ⊂ Zn finite, f(z) :=∑
α∈A bαz

α ∈ K[z±1] with V(f) ⊂ (K∗)n, and let h(x) :=
⊕

α∈A− val(bα)  xα.
Then the non-Archimedean amoeba AK(f) equals the tropical hypersurface T (h).

The generalization of Kapranov’s theorem for ideals is referred to as Funda-
mental Theorem of Tropical Geometry. It was formulated by Speyer and Sturmfels
in [45]; see [21, Theorem 3.2.5].

Let f ∈ C[z±1] be a Laurent polynomial with a hypersurface V(f) ⊆ (C∗)n.
Since C∗ is isomorphic to a subring of K∗ one can investigate LogK |V(f)|. This is,
however, not helpful, since

LogK |(C∗)n| = 0 and thus LogK |V(f)| = 0.

Since C[z±1] is isomorphic to a subring of K[z±1] we can instead interpret the
Laurent polynomial f as a polynomial fK over field of Puiseux series K[z±1] via
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the following embedding:

Ψ : C[z±1]→ K[z±1],
∑
α∈A

bαz
α �→

∑
α∈A

⎛⎝ ∑
q∈{0}

bα,q · t0
⎞⎠ zα =

∑
α∈A

(
bα · t0

)
zα.

That means, we interpret every complex coefficient bα of f as a Puiseux series
coefficient given by a series with a single term bαt

0. Hence, we also obtain a hyper-
surface VK(fK) ⊆ (K∗)n which contains the hypersurface V(f) ⊆ (C∗)n ⊂ (K∗)n

as a proper subset. Therefore, we also gain a canonical map between Archimedean
amoebas and non-Archimedean amoebas for every f :

ΨA : Rn → Rn, A(f) �→ AK(fK) = AK(Ψ(f))

such that we obtain the following diagram:

f
� � Ψ(f) ��

Log |V(f)|
��

fK

LogK |VK(f)|
��

A(f)
ΨA(A(f)) �� AK(fK)

(3.2)

Example 3.2. Let f(z1, z2) := z1 + z2 − 1 with an amoeba A(f). Over the field of
Puiseux series f is of the form fK(z1, z2) = t0z1 + t0z2 − t0. Thus, by Kapranov’s
theorem, the corresponding non-Archimedean amoeba AK(fK) is the tropical hy-
persurface given by the tropical polynomial h(x1, x2) = val(0) x1⊕ val(0) x1⊕
val(0) = 0 x1 ⊕ 0 x2 ⊕ 0.

We have, however, not developed an explanation in this article so far, how
the amoeba A(f) of a Laurent polynomial f ∈ C[z±1] is related to the non-
Archimedean amoeba AK(fK) geometrically. More precisely, so far, we cannot ap-
ply the map ΨA on its own, since we cannot determine f from A(f). But even
if both f and A(f) are given, then we have to compute AK(fK) via applying the
valuation map. From the algebraic and the computational perspective valuations
are a powerful tool, but from the geometric perspective they are an “algebraic
black box”. A valuation map takes a classical polynomial as input and provides
a tropical polynomial as output without any geometry involved. Later, in Section
4, we solve this issue and also provide the missing geometric relation between the
objects A(f) and AK(fK) by investigating Maslov dequantizations.

Before we get there we make an observation, which gives a first idea why for
some Laurent polynomial f ∈ C[z±1], from the viewpoint of amoeba theory, the
non-Archimedean amoebaAK(fK) is not sufficient to understand the amoebaA(f).

Theorem 3.3. For f ∈ C[z±1] the non-Archimedean amoeba AK(fK) is not homo-
topy equivalent to A(f) in general.

This theorem is a consequence of a crucial class of polynomials given by
Passare and Rullg̊ard. To my awareness, Theorem 3.3 is very well-known in the
amoeba community. However, I am neither aware of a reference nor of a published
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proof. Therefore, we provide a proof for Theorem 3.3 in this section; see also Figure
6. The class of polynomials given by Passare and Rullg̊ard and its key properties
are described in the following theorem; see [33, Proposition 2].

Theorem 3.4 (The Passare–Rullg̊ard Polynomials). Let f(z) := 1 +
∑n

j=1 z
n+1
j +

a · z1 · · · zn with a ∈ C. Then the complement of A(f) has at most one bounded
component and the following statements are equivalent:

1. The complement of A(f) has a bounded component of order (1, . . . , 1).
2. A(f) does not contain the origin.
3. a /∈ {−

∑n
j=0 e

i·2πφj : φ1, . . . , φn ∈ [0, 2π) and
∑n

j=0 φj = 2π}.

This example class is very important since it provides counterexamples for
various properties one might conjecture amoebas to have. Although this class of
polynomials is easy to construct and to understand, it gives a good idea, why many
questions about amoebas are hard. I recommend the reader to keep this class in
mind.

The Passare–Rullg̊ard Polynomials can be generalized strongly. Theobald and
I showed that the equivalence described in Theorem 3.4 holds for a more general
class: polynomials supported on circuits such that the circuits satisfy some ad-
ditional barycentric condition; see [46, Theorem 6.1]. A support set A is called
a circuit if A is an affine dependent set, but all proper subset of A are affinely
independent. For the purpose of this survey, however, it will be sufficient to re-
strict ourselves to the Passare–Rullg̊ard Polynomials. In the generalized version of
Theorem 3.4, the set in (3) is a region in the complex plane containing the origin,
which is bounded by a rotated hypocycloid. A hypocycloid is a particular plane
algebraic curve belonging to the family of roulette curves ; see, e.g., [4]. For further
details see [6, 46]. For the special case of Theorem 3.4 and n = 2 this hypocycloid
coincides with the Steiner Curve (x2

1 + x2
2)

2 − 8x1(3x
2
2 − x2

1) + 18(x2
1 + x2

2) − 27,
see [33, 35] and Figure 5.

We provide a proof for Theorem 3.3.

Proof of Theorem 3.3. Consider the Laurent polynomial f(z1, z2) := 1+ z31 + z32 +
2z1z2. The corresponding amoebaA(f) has a bounded component by Theorem 3.4.
The corresponding non-Archimedean amoeba AK(fK) is the tropical hypersurface
given by the tropical polynomial h(x1, x2) := − val(1 ·t0)⊕− val(1 ·t0)x3

1⊕− val(1 ·
t0)x3

2⊕− val(2·t0)x1x2. Since the valuation of every complex number interpreted as
a Puiseux series equals zero by (3.1) we have h(x1, x2) = 0⊕0 x3

1⊕0 x3
2⊕0 x1x2.

The corresponding tropical hypersurface T (h) = AK(fK) is a genus zero tropical
curve with a single vertex at the origin. Thus, A(f) and AK(fK) are not homotopy
equivalent in general and Theorem 3.3 follows. See also Figure 6. �

We remark that the non-Archimedean amoeba AK(fK) of a Laurent polyno-
mial f ∈ C[z±1] embedded into K[z±1] does not depend on the coefficients of f .
Thus, an alternative proof for Theorem 3.3 is given by the fact that the image
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Figure 5. The region in the complex plane which is bounded by the
Steiner Curve. By Theorem 3.4 the amoeba of f(z) := 1+

∑n
j=1 z

n+1
j +

a · z1 · · · zn has a bounded component whenever the coefficient a ∈ C is
not contained in this region.
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Figure 6. Let f(z1, z2) := 1 + z31 + z32 + 2z1z2. The amoeba A(f) has
a bounded component as stated by Theorem 3.4 (left picture), but the
non-Archimedean amoeba has not (right picture).

of the order map depends non-trivially on the coefficients of f . The latter is well
known; see, e.g., [42].

4. Maslov dequantization

In this section we consider a family of semi-rings together with semi-ring iso-
morphisms and a particular limit process known as Maslov dequantization. This
allows us to provide a geometric explanation how amoebas and non-Archimedean
amoebas are related to each other.

The amount of background literature specifically about Maslov dequanti-
zation is limited. Unfortunately, Maslov dequantization is not explained in full
detail in many surveys about tropical geometry. From the tropical point of view,
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valuations are often a sufficient tool to tackle the particular problems of inter-
est. Hence, one should additionally consult literature about Viro’s patchworking,
which is closely related to Maslov dequantization. I refer the reader particularly
to Mikhalkin’s survey about amoebas [24], his article [25], the survey [5] by Bru-
gallé and Shaw about tropical geometry, Viro’s articles/surveys [48, 50, 52], and
the books [17, 27]. Some details of the terminology differ slightly from source to
source.

Let (R0,⊕0, 0) be a semi-ring. A quantization of (R0,⊕0, 0) is a family of
semi-rings (Rs,⊕s, s), s ≥ 0 such that two rings Rs and Rs′ are isomorphic for
every s, s′ > 0 but no Rs with s > 0 is isomorphic to R0. The operations ⊕s and
 s hereby depend continuously on s. The ring R0 is referred to as the classical
object, while the rings Rs with s > 0 are quantum objects. One calls Rs with
s > 0 a quantized version of R0. Similarly, for a given family Rs, s ≥ 0 of such
semi-rings, the process of starting at a fixed s > 0 and taking a limit lims→0 Rs is
called a dequantization of Rs, [24, 25, 48, 50]. Indeed, these terms are motivated by
quantum mechanics, see [50], particularly the “Litvinov–Maslov Correspondence
Principle”.

The term Maslov dequantization refers to a dequantization in a particular
family of semi-rings. In our modern terminology, Maslov observed [22] that the
standard semi-ring (R>0,+, ·) is a quantized version of the tropical (max,+) semi-
ring in the following way. For all parameters s ≥ 0 let t := e1/s ∈ (1,∞] and let
(Rt)t∈(1,∞] denote a family of semi-rings such that each Rt := (R,⊕t, t) satisfies
for every x, y ∈ R

x⊕t y :=

{
logt(t

x + ty) for 1 < t <∞
max{x, y} for t =∞, and

x t y := logt(t
x+y) = x+ y

Note that for every t ∈ (1,∞) there exists a semi-ring isomorphism Dt from
the semi-ring R+ := (R>0,+, ·) to Rt = (R,⊕t, t) given by Dt : R+ → Rt, x �→
logt |x| satisfying for every x, y ∈ R>0

Dt(x+ y) = Dt(x) ⊕t Dt(y) and Dt(x · y) = Dt(x)  t Dt(y).

Thus, all Rt with t ∈ (1,∞) are isomorphic, but there is exists no isomorphism
between some Rt with t ∈ (1,∞) and R∞. Namely, the maximum is idempotent,
while every ⊕t for t ∈ (1,∞) is not, [25].

Let Logt | · | : (C∗)n → R, z �→ (logt |z1|, . . . , logt |zn|) = (x1, . . . , xn) and let
A ⊂ Zn be a support set. Maslov and Viro [22, 48], see also [25, 24], showed that
for every t ∈ (1,∞) and every polynomial

gt(x) :=
⊕
α∈A

t bα  t 〈α,x〉,

mapping from (Rt)
n to Rt, the function ft = log−1

t ◦gt ◦ Logt | · | is a classical
polynomial with standard operators + and · mapping from (C∗)n to C. Namely,
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we have

log−1
t (gt) = log−1

t

(⊕
α∈A

t bα  t 〈α,x〉
)

= log−1
t

(
logt

(∑
α∈A

tbα+〈α,x〉
))

=
∑
α∈A

tbα+〈α,Logt |z|〉 =
∑
α∈A

tbα · zα =: ft.

Thus, for every t ∈ (1,∞) the polynomial ft has a variety V(ft) ⊂ (C∗)n and a
corresponding amoebaAt(ft) ⊂ Rn given by Logt |V(ft)|. On the one hand, Maslov
dequantization yields a tropical polynomial limt→∞ ft with a tropical hypersurface
as a limit out of a classical polynomial ft with classical hypersurface. Hence, we
might expect that taking the amoeba and deforming it via changing the log-basis
yields a tropical hypersurface in its limit limt→∞A(ft). On the other hand, we
can interpret an entire family ft(z) =

∑
α∈A bαt

cαzα with bα ∈ C, cα ∈ R∪{−∞},
t ∈ (1,∞) of polynomials as a single polynomial with coefficients in the field of
Puiseux series with real exponents KR[z

±1]. This field KR is literally defined as
the usual Puiseux series K except that the exponents in the power series can also
be non-rational real numbers. The maps val and LogKR

| · | work analogously as
over K; see, e.g., [24]. Note that such polynomials ft are referred to as patchwork
polynomials due to their role in Viro’s patchworking; see, e.g., [25, 48, 52] Let
VKR

(ft) denote the corresponding hypersurface in (K∗
R
)n and letAKR

(ft) denote the
non-Archimedean amoeba given by LogKR

|VKR
(ft)|. It turns out that limt→∞A(ft)

coincides with the tropical hypersurfaces LogKR
|VKR

(ft)|.
More precisely, let A,B be closed subsets of Rn and d(·, ·) denote the Eu-

clidean metric on Rn. For x ∈ Rn let d(x, A) := infa∈A d(x, a). The Hausdorff
distance of two closed subsets A,B of Rn is defined as

Hausd(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}.

Note that if one of the sets A,B is unbounded, then the Hausdorff distance is
possibly infinite. Let At(ft) and AKR

(ft) as before. Then the following theorem
holds; see [25, Corollary 6.4], [42, Theorem 9]; see also [24].

Theorem 4.1 (Mikhalkin, Rullg̊ard). Let ft(z) =
∑

α∈A bαt
cαzα with bα ∈ C∗, cα ∈

R, t ∈ (1,∞) be a family of polynomials in C[z±1] and simultaneously a single
polynomial in KR[z

±1]. Then for t→∞ the amoebas At(ft) converge to the non-
Archimedean amoeba AKR

(ft) in Hausdorff distance.

In Section 3 we pointed out that we can interpret every Laurent polynomial
f(z) =

∑
α∈A bαz

α as a patchwork polynomial ft(z) =
∑

α∈A bαt
0zα. Since 0 is

the only exponent of the parameter t, we do not have to distinguish between K and
KR. Since we obtain Ae(fe) = A(f) for t = e, Theorem 4.1 yields the geometric in-
terpretation for the relation between A(f) and AK(fK) = LogK |VK(Ψ(f))| we were
looking for in Section 3. Indeed, we have Vt(ft) = V(f) for all t ∈ (1,∞), but the
corresponding amoebas At(ft) = Logt |V(f)| converge to AKR

(ft) = AK(Ψ(f)) =
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AK(fK). Theorem 4.1 also allows us to modify our diagram (3.2) in the following
way:

f � � Ψ(f) ��

Log |V(f)|
��

fK

Log
K
|VK(f)|

��
A(f) converg. via Log

basis change
�� AK(fK)

(4.1)

Example 4.2. Let f(z1, z2) := z1 + z2 − 1. Its non-Archimedean amoeba AK(fK)
is given by the tropical hypersurface of 0 ⊕ 0  x1 ⊕ 0  x2 due to Kapranov’s
Theorem 3.1; see also Example 3.2. If we (formally) consider the family ft(z1, z2) :=
t0z1+t0z2−1t0, then Theorem 4.1 yields that Logt |V(ft)| = Logt |V(f)| converges
to AKR

(ft) = AK(fK) for t→∞.
It is a well-known result by Forsberg, Passare, and Tsikh [11] that for this

particular f (and similarly for other linear polynomials) the boundary of A(f) is
given by the Log | · | image of the real locus of V(f), i.e., the zeros of the line
l(x1, x2) := x1 + x2 − 1 for x1, x2 ∈ R2. We visualize the convergence of A(f) to
AK(fK) by drawing the Logt | · | image of the real zero set VR(l), see Figure 7.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 7. Maslov dequantization: In red (light) we see the Logt | · |
image of the real zeros of l(x1, x2) := x1 + x2 − 1, x1, x2 ∈ R2 for
t := e, t := 2e and t := 50e. The non-Archimedean amoeba of z1+z2−1
is the black (dark) tropical curve.

5. The Archimedean tropical hypersurface and the complement
induced tropical hypersurface

In the two previous Sections 3 and 4, we have seen that Maslov dequantizations,
valuations, and as a consequence the non-Archimedean amoeba are powerful tools.
For questions regarding amoebas themselves, however, they are often not suitable,
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since we only have convergence in Hausdorff distance, and, in particular, since the
resulting tropical objects are not homotopy equivalent to the original amoeba in
general; see Theorem 3.3, Figure 6. Hence, we would like to find another tropical
hypersurface, which is more sensitive about the amoeba structure. In this section
we discuss two such tropical hypersurfaces: The Archimedean tropical hypersurface
and the complement induced tropical hypersurface.

Let A ⊂ Zn finite and let f(z) :=
∑

α∈A bαz
α with bα ∈ C∗. A canonical guess

for constructing an improved tropicalization of the amoeba A(f) is to consider
log |bα| as coefficients for the tropicalization instead of the all 0’s given by− val(bα).
Following this idea we define the Archimedean tropical polynomial

ArchTrop(f) :=
⊕
α∈A

log |bα| ⊕ xα,

and the corresponding Archimedean tropical hypersurface

AR(f) := T (ArchTrop(f)).
The tropical polynomial ArchTrop(f) was already mentioned by Passare and

Tsikh in their survey [35], where it is just called tropicalization of f , and also
already in Mikhalkin’s early articles about tropical geometry, for example [26]. In
a recent work by Avendaño, Kogan, Nisse, and Rojas [1], the tropical hypersurface
AR(f) was called Archimedean tropical variety. The motivation for the name is
that this tropical hypersurface can be seen as an Archimedean counterpart to
the non-Archimedean amoeba, since the complex absolute value, as a norm, is
Archimedean – in contrast to the non-Archimedean norm | · |ν on the field of
Puiseux series. I keep the name Archimedean tropical polynomial here (note that
in [1] ArchTrop(f) denotes the hypersurface, not the polynomial). In the same
article [1, Theorem 1.11], the authors show the following theorem. In what follows,
we define for every X ⊆ Rn and ε ∈ R>0

Xε := {x ∈ Rn : |x− y| < ε for some y ∈ X}.

Theorem 5.1 (Avendaño, Kogan, Nisse, Rojas, [1]). Let A ⊂ Zn with #A = k ∈
N∗. Let f ∈ (C∗)A ⊂ C[z±

1

]. Then

1. A(f) ⊆ AR(f)log(k−1).

2. AR(f) ⊆ A(f)ε with ε :=
√
n" 14k(k − 1)#(log(9)k − log(812 )) for n ≥ 3

Note that there are better bounds for the ε in Part (2) of the theorem for
the cases n = 1 and n = 2. Moreover, the authors provide generalizations for the
case that the Newton polytope of the defining polynomial is not full-dimensional.
See [1, Theorem 1.11] for further details.

Theorem 5.1 guarantees that AR(f) always yields at least a rough approx-
imation of an amoeba, which is easy to compute. This is useful especially for
practical problems, since it allows for example to certify easily that certain points
are not contained in the amoeba. A weaker version of the bound of Part (1) in
Theorem 5.1 for dimension two was given by Mikhalkin already in 2005 in [26].
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An obvious follow-up question to Theorem 5.1 is whether AR(f) is homotopy
equivalent or even a deformation retract of A(f). Unfortunately, this is not the
case in general. Once again, we can use the Passare–Rullg̊ard Polynomials given
in Theorem 3.4. Note in this context that an amoeba is called solid if it has
the minimal possible number of components of the complement. In other words,
the order of every component of the complement corresponds to a vertex in the
corresponding Newton polytope.

Example 5.2. Let f(z1, z2) := 1+z31+z32−2z1z2. By Theorem 3.4 A(f) is solid, but
AR(f), the tropical hypersurface of ArchTrop(f) = 0⊕ 0 x3

1 ⊕ 0 x3
2 ⊕ log |2|  

x1x2 = max{0, 3 · x1, 3 · x2, log |2|+ x1 + x2}, has a bounded component. This is
easy to see since for example at the origin log |2|  x1x2 is the only dominating
term. See also Figure 8.

2.5 1.5 0.5 0.5 1.5 2.5
2.5

1.5

0.5

0.5

1.5

2.5

-3 -2 -1 0 1 2 3 
-3

-2

-1

0 
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3 

Figure 8. Let f(z1, z2) := 1 + z31 + z32 − 2z1z2. The left figure shows
the amoeba A(f) and the right one the tropical hypersurface AR(f).
Obviously, A(f) and AR(f) are not homotopy equivalent.

Another counterexample can for instance be found in [1, Example 1.6.]. In
general, it is an open problem to give an exact characterization of the cases, when
AR(f) and A(f) are homotopy equivalent.

Problem 5.3. Determine for which support sets A ⊂ Zn it holds for every f ∈
(C∗)A that A(f) is homotopy equivalent to AR(f).

Already more than 10 years ago people were aware that ArchTrop(f) is not
sufficient to describe the topology of amoebas. Hence, Passare and Rullg̊ard tried
an entirely new approach, namely to change the support of the tropical polynomial.
This was a crucial idea, which finally lead to the spine, which we discuss in Section
6. However, it is also a hard way to go. Namely, all tropical representations of
amoebas, which arise along this way, cannot be computed straightforwardly from f
in general, as we see in this and the following section. See also Remark 7.2 at the
end of Section 7.

Recall from (2.3) that Comp(f) contains all lattice points in conv(A) which
are associated to existing components of the complement of A(f) via the order
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map. We define the complement induced tropicalization as

CompTrop(f) :=
⊕

α∈Comp(f)

log |bα| ⊕ xα, (5.1)

and the corresponding complement induced tropical hypersurface as

C(f) := T (CompTrop(f)).

Note that for α ∈ Comp(A) \ A we set bα = 0 and log |0| = −∞, which makes
sense in the tropical world.

To the best of my knowledge these terms were first used by Theobald and
myself in [46]. However, the objects were already investigated earlier, at least by
Rullg̊ard in his thesis [42]. In particular, he proved the following statement, see
[42, Theorem 12, p. 36].

Theorem 5.4 (Rullg̊ard, [42]). Let A ⊂ Zn with #A ≤ 2n such that for all 1 ≤ k ≤
#A it holds: No k+2 elemental subset of A lies in a k-dimensional affine subspace
of Rn. Then for all f ∈ (C∗)A it holds: C(f) is a deformation retract of A(f).

Note that for n ≥ 2 these conditions are particularly satisfied if A is a circuit.
Polynomials supported on circuits and their amoebas have especially nice proper-
ties, see [14, 16, 46, 47]. Another case when the relation between A(f) and C(f)
is particularly easy is the following one. It is a consequence from Corollary 6.4,
which we introduce in Section 6.

Theorem 5.5. Let f ∈ C[z±1] such that A(f) is solid, i.e., Eα(f) �= ∅ if and only
if α is a vertex of New(f). Then C(f) is a deformation retract of A(f). Moreover,
C(f) is a tree.

Motivated by these statements we formulate the following question:

Question 5.6. Is C(f) always a deformation retract of A(f)?

Later, we show that, unfortunately, the answer to this problem is “no”. More
specifically: It is not surprising that the answer is “no” in the univariate case and
it is not very hard to construct counterexamples. However, the answer is also “no”
in the multivariate case; see Corollary 5.14.

Question 5.6 has a partially unclear history. Forsberg mentioned a relation
between amoebas and what is today known to be a tropical hypersurfaces already
in his thesis [10] in 1998. Passare and Rullg̊ard developed the spine of an amoeba,
which is a deformation retract of A(f), already in 2004 in [33]; see also Section 6,
particularly Theorem 6.2. A few years ago it seemed to me that it was folklore that
C(f) is not a deformation retract of A(f), but (seemingly) nobody had a explicit
counterexample (at least for the multivariate case). Although I would expect that
Passare knew a counterexample, he did, to the best of my knowledge, not write
about whether C(f) is a deformation retract of A(f). Similarly, according to the
remark after [42, Theorem 8, Page 33] and [42, Theorem 12, Page 36], I am not
entirely sure whether Rullg̊ard knew the answer to Question 5.6 in 2003/04. If he,
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however, did not, then this would be very surprising to me since he already did
almost the entire work to negate Question 5.6 as we show in the following pages.
Hence, I suggest that he knew the answer already in 2003/04 and hence I believe
that Passare did as well, since he was Rullg̊ard’s advisor. However, to the best
of my knowledge, no explicit counterexample for the multivariate case was given
elsewhere before.

In general, it seems to me that many people did not pay very much attention
to Question 5.6 for a long time. Probably, since it was convenient to refer to
the spine instead. In my opinion, C(f) deserves attention since its construction is
simpler than the spine in the sense that it does not need the Ronkin function, and,
as a consequence, its coefficients are easier to compute; see also Section 6.

Before we answer Question 5.6, we investigate two other questions about
Comp(f), which “are en route”, namely:

Question 5.7. Let A ⊂ Zn be a finite set.

1. Does for every α ∈ A exist some f ∈ (C∗)A with α ∈ Comp(f)? In other
words, is UA

α �= ∅ for every α ∈ A?
2. Is for every f ∈ (C∗)A the set Comp(f) always a subset of A?

This first part of Question 5.7 is well-known to have an affirmative answer.
It is a consequence of the following theorem initially proven by Forsberg, Passare
and Tsikh; see [11, Prop. 2.7]

Theorem 5.8 (Forsberg, Passare, Tsikh). Let A ⊂ Zn and f(z) =
∑

α∈A bαz
α ∈

C[z±1] with bα ∈ C∗ and V(f) ⊂ (C∗)n. Assume that there exists an α′ ∈ A
and a w ∈ A(f)c such that for all z ∈ (C∗)n with Log |z| = w it holds that

|bα′zα
′ | > |

∑
α∈A\{α′} bαz

α|. Then ord(w) = α′, i.e., w ∈ Eα′(f).

The condition of this theorem is in particular always satisfied if for some
z ∈ (C∗)n it holds that

|bα′zα
′ | >

∑
α∈A\{α′}

|bαzα|. (5.2)

This is a consequence of the triangle inequality. Condition (5.2) was excessively
used by Purbhoo in [38] to approximate amoebas. Following Purbhoo we say f is
lopsided at |z| if (5.2) is satisfied. Obviously, (5.2) will always hold for |bα′ | suffi-
ciently large while keeping the other coefficients constant. This shows that UA

α′ �= ∅
for α′ ∈ A and hence provides a positive answer to the first part of Question 5.7.
See [38] for further details. Note that Rullg̊ard proved an even stronger version
of Theorem 5.8, see [41, 42]. Note furthermore that the univariate version of con-
dition (5.2) and the corresponding statement is a classical result by Pellet [36].
Hence, some authors refer to lopsidedness also as generalized Pellet condition.

The second part of Question 5.7 is trickier. The question is: Can there exist
a component in the complement of A(f), which is mapped to a lattice point in
conv(A), which is not in the support A itself? Rullg̊ard showed a very strong
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statement regarding this question in his thesis. Unfortunately, to my believe, the
statement is almost unknown so far, since, to the best of my knowledge, it was not
published elsewhere later. For a finite set A ⊂ Zn we denote the lattice generated
by A by LA, i.e.,

LA :=

{∑
α∈A

λα · α : λα ∈ Z

}
⊆ Zn.

Then the following theorem holds; see see [42, Theorem 11].

Theorem 5.9 (Rullg̊ard, [42]). Let A ⊂ Zn be a support set and l be a line in Rn.

1. If α ∈ Zn and UA
α �= ∅, then α ∈ conv(A) ∩ LA.

2. If α ∈ conv(A ∩ l) ∩ LA∩l, then UA
α �= ∅.

The first part of the theorem shows that the upper bound from Corollary 2.5
for the number of components, which the complement of an amoeba can have, can
be improved. In particular, if the support set A is sparse, then, roughly speaking,
the number of components “remains low” even if the Newton polytope given by
conv(A) is “very large” since the lattice LA will be sparse, too. The statement is a
consequence of amoebas and their complement under lattice transformations, see
[42, Theorem 7, Page 31]. Rullg̊ard speaks of functorial properties of amoebas in
this context.

The second part shows in particular that the answer to Part (2) of Question
5.7 is “no”. In general, there exist components in the complement of the amoeba,
which have an image under the order map outside of the support set A. We write
down this fact as a statement on its own.

Corollary 5.10. Let A ⊂ Zn and f ∈ (C∗)A. Then the image of the order map
Comp(f) of the components of A(f)c is contained in LA∩Zn, but Comp(f) is not
contained in A in general.

In simple words, this observation makes the world of amoebas a lot more
complicated! In particular, we have the following problem remaining open, which
is a part of the general Problem 2.6 mentioned in the introduction.

Problem 5.11. Let A ⊂ Zn finite and f ∈ (C∗)A. Determine Comp(f).

In what follows we construct a class of multivariate Laurent polynomials
which has an amoeba with components of the complement of order α, although α is
not contained in the support set A ⊂ Zn of the corresponding Laurent polynomial.
The construction is adapted from Rullg̊ard’s original proof of Theorem 5.9, see [42,
Theorem 11].

Proposition 5.12. Let l = {(z1, 0, . . . , 0) : z1 ∈ Z} and A ⊂ Zn be a support set
with

A ∩ l = {(0, . . . , 0), (α(1), 0, . . . , 0), (α(1) + α(2), 0, . . . , 0)},
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where α(1), α(2) ∈ N are coprime. Consider the polynomials

f(z) := z
α(1)+α(2)
1 + ei·π·ρ · zα(2)1 + 1

g(z) := f(z) +
∑

α∈A\l
ε zα ∈ (C∗)A

with ε > 0 and ρ ·(α(1)+α(2)) /∈ Z. Then Eα(g) �= ∅ for all α ∈ conv(A∩ l)∩LA∩l

if ε is sufficiently small.

Recall from Section 2.1 that Fw = Log−1 |w| denotes the fiber of a point
w ∈ Rn with respect to the Log | · | map and that Fw is homeomorphic to a torus
(S1)n. Note that the proposition remains true if one multiplies g with an arbitrary
monomial zα with α ∈ Zn.

Proof. Let α = (α1, 0, . . . , 0) ∈ (conv(A) ∩ l) \A. f(z) is a trinomial in z1, which
can be interpreted as a polynomial in z, which does not depend on z2, . . . , zn. It
is a consequence of [47, Theorem 4.4] that Eα(f) �= ∅ for all α ∈ conv(A) ∩ l if
ρ · (α(1) + α(2)) /∈ Z.

Let w ∈ Eα(f). We have to show that Eα(g) �= ∅ to complete the proof.
We define δ := minz∈Fw |f(z)| > 0 as the minimal value attained by f on the
fiber Fw = Log−1 |w| over w. Note that this minimum δ is greater than 0 since
w /∈ A(f) and the minimum exists since the fiber Fw is compact. We define
κ := maxα∈A\(A∩l)maxz∈Fw |zα| as the maximal absolute value that a monomial
with exponent in A but not belonging to f attains at the fiber Fw. Let furthermore
d := #A− 3.

We choose ε := δ/(2dκ). If we evaluate g at an arbitrary point v ∈ Fw, then
we obtain

|g(v)| ≥ |f(v)| −
∣∣∣∣ ∑
α∈A\l

εvα

∣∣∣∣ ≥ |f(v)| − ∑
α∈A\l

ε |vα| ≥ δ − d · δ

2dκ
· κ =

δ

2
> 0.

Thus, w /∈ A(g).
We compute the order of w with respect to g. Let, for each j ∈ {1, . . . , n}, fj

and gj be the univariate polynomials in zj obtained from f and g by setting zi = vi
for all i �= j. Since |f1(z1)| = |f(z1, v2, . . . , vn)| ≥ δ for all z1 with |z1| = |v1| and
|g1(z1)| differs from |f1(z1)| by at most δ/2, we can conclude w1 ∈ Eα1(g1), since
we know w1 ∈ Eα1(f1) and polynomials are continuous in their coefficients.

For every j �= 1 we know that fj(zj) equals the constant given by f1(v1).
Thus, |f(v)| = δ contributes to the coefficient which is the constant term of gj
and

∑
α∈A\l ε|vα| ≤ δ/2 for all vj ∈ Fwj . Thus, gj is lopsided, see (5.2), in vj

with the constant term being the dominating term. Hence, wj ∈ E0(gj) for all
1 < j ≤ n by Theorem 5.8. Therefore, we have ord(w) = α with respect to g and
thus Eα(g) �= ∅. �

We provide an explicit example.
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Example 5.13 (de Wolff, [6]). Let f(z1, z2) := z2 + ei·π/5 · z1z2 + z31z2 + ε · (z1 +
z21 + z1z

2
2 + z21z

2
2) with ε ∈ R>0. If ε is sufficiently small, then E(1,2)(f) �= ∅ by

Proposition 5.12; see Figure 9.

2 1 0 1 2
4

3

2

1

0

1

2

3

4

Figure 9. Left picture: The amoeba of f(z1, z2) := z2 + ei·π/5 · z1z2 +
z31z2 + ε · (z1 + z21 + z1z

2
2 + z21z

2
2) for ε := 1/10; middle picture: The

Newton polytope of f ; right picture: the complement induced tropical
hypersurface C(f).

A consequence of this example or, analogously, of Theorem 5.9 is that the
complement induced tropical hypersurface C(f) of a polynomial f ∈ C[z±1] is not
homotopy equivalent to its amoeba A(f) in general. This answers Question 5.6.
See also Figure 9 and [6, Corollary 4.45].

Corollary 5.14. For general f ∈ C[z±1] A(f) and C(f) are not homotopy equiva-
lent.

Proof. We consider the polynomial in Example 5.13, i.e., f(z1, z2) := z2 + ei·π/5 ·
z1z2+z31z2+ε · (z1+z21+z1z

2
2+z21z

2
2) with a small ε. Since f does not have a term

b(2,1)z
2
1z2, we can formally add such a monomial with coefficient b(2,1) = 0. We

know by Example 5.13 that Comp(f) = conv(A)∩Zn and hence the complement of
A(f) has eight connected components. We investigate the corresponding tropical
polynomial CompTrop(f) in the tropical semi-ring given by

0 x2 ⊕ 0 x1x2 ⊕−∞ x2
1x2 ⊕ 0 x3

1x2 ⊕ log |ε|  (x1 ⊕ x2
1 ⊕ x1x

2
2 ⊕ x2

1x
2
2).

The number of connected components of the complement of tropical hypersurfaces
is limited by the number of terms of their defining polynomial, since every con-
nected component is given by the points in Rn where a single term uniquely attains
the maximum. CompTrop(f) has eight terms. Since log |b(2,1)| = −∞, there ex-

ists no point where −∞ x2
1x2 attains the maximum in CompTrop(f). Thus, the

complement of C(f) = T (CompTrop(f)) has at most seven components. Therefore,
the complement induced tropical hypersurface C(f) is not homotopy equivalent to
A(f). The example can be generalized to arbitrary dimensions in the obvious way
by symmetrically adding additional terms with positive and negative exponents in
new variables which all have ε-coefficients. �
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Finally, let us point out that also Rullg̊ard’s Theorem 5.9 does not completely
characterize which of the sets UA

α are non-empty for a given A ⊂ Zn. Nevertheless,
he gave a conjecture (a “rather wild guess” in his words) in his thesis [42, Problem
1, Page 60], which is still open.

Conjecture 5.15 (Rullg̊ard, [42]). Let A ⊂ Zn finite. Then the sufficient condition
for UA

α �= ∅ given in Theorem 5.9, Part (2), is also necessary.

6. The spine

In this section we solve the issues from Section 5, which culminated in Corollary
5.14. For a given Laurent polynomial f , we introduce a tropical polynomial with a
tropical hypersurface, which is a deformation retract of the corresponding amoeba
A(f). This tropical hypersurface is the spine of an amoeba. It was introduced by
Passare and Rullg̊ard in 2004 in [33] and it was also part of Rullg̊ard’s thesis [42].
Its construction, mainly relying on the Ronkin function [40], is a beautiful piece
of mathematics, as we will see in what follows.

Let f be a Laurent polynomial with support set A ⊂ Zn. The general idea of
how to construct a tropical hypersurface associated to f , which is a deformation
retract of the amoeba A(f), is
1. to consider Comp(f) instead of A as support for the tropical polynomial as

we did for the complement induced tropicalization CompTrop(f), but
2. to replace log |bα| as coefficients by new coefficients given by the Ronkin

function.

First, we define the Ronkin function [40]; see also [33]. Let Ω be a convex
open set in Rn and let f ∈ C[z±1] (we might also generalize f to an arbitrary
holomorphic function which is defined in Log−1 |Ω|). The Ronkin function Nf is
defined by the integral

Nf : Ω→ R, x �→ 1

(2πi)n

∫
Log−1 |x|

log |f(z)|dz1 . . . dzn
z1 . . . zn

.

Let us investigate this function Nf . Here, Log
−1 |x| denotes the fiber with

respect to the Log | · | map over the point x ∈ Rn. In Section 2.1, we have seen that
this fiber is homeomorphic to a torus (S1)n; see particularly Figure 2. This means
we can think about the Ronkin function as a map which sends a point x in the
ambient Rn space of an amoeba A(f) to a mean log | · |-value of f on the fiber over
x; see also [35]. The Ronkin function can alternatively be defined via integrating
log | · | against the Haar measure of the complex torus (C∗)n; see [42, Page 17/18].
Note that Purbhoo’s results [38, Section 4.3] provide a “discrete analogue” of the
Ronkin function. More precisely, his iterated resultants provide a Riemann sum
approximating the Ronkin function. This approach might be more accessible to
readers with a non-analytic background.
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The Ronkin function has a couple of useful properties. In particular, the
following theorem holds; see [33, Theorem in Section 2]:

Theorem 6.1 (Ronkin [40] / Passare, Rullg̊ard, [33]). Let f be a holomorphic
function as above. Then Nf is a convex function. If U ⊂ Ω is a connected,
open set, then the restriction of Nf to U is affine linear if and only if U does
not intersect the amoeba of f . If x is in the complement of the amoeba, then
grad Nf (x) is equal to the order of the component of the complement of the amoeba
A(f) containing x.

The idea for the construction of the spine is to use these properties, par-
ticularly the affine linearity on each component of the complement, to define a
hyperplane arrangement. This hyperplane arrangement yields a tropical hypersur-
face, which is a deformation retract of the amoeba. Passare and Rullg̊ard proceed
in the following way. Let 〈·, ·〉 denote the usual scalar product. For every com-
ponent Eα(f) �= ∅ of the complement of A(f), i.e., α ∈ Comp(f), we define the
Ronkin coefficient

rα := Nf (x)− 〈α,x〉 for every x ∈ Eα(f). (6.1)

Indeed, rα is well defined. By Theorem 6.1 for all x ∈ Eα(f) the Ronkin
function is affine linear, i.e., it is for the form rα + 〈α′,x〉 for some rα ∈ R and
α′ ∈ Zn. Theorem 6.1 also states that the gradient of Nf(x) equals ord(x) if
x ∈ A(f)c. Thus, for x ∈ Eα(f) we have gradNf (x) = ord(x) = α and therefore
α′ = α. This implies that (6.1) is well defined. We define a new tropical polynomial

SpineTrop(f) :=
⊕

α∈Comp(f)

rα  xα, (6.2)

and we define the spine S(f) as

S(f) := T (SpineTrop(f)).

We give a visualization of these objects in Figure 10.

As announced, comparing (5.1) and (6.2) we can see that the only difference
between CompTrop(f) and SpineTrop(f) is the replacement of log |bα| by rα for
every α ∈ Comp(f). This difference, however, is crucial; see [33, Theorem 1].

Theorem 6.2 (Passare, Rullg̊ard, [33]). Let f ∈ C[z±1]. The spine S(f) is a de-
formation retract of A(f).

Proof. (Rough idea) Let α ∈ conv(A) ∩ Zn such that Eα(f) �= ∅ and let Fα(f) :=
{x ∈ Rn : SpineTrop(f)(x) = rα+ 〈α,x〉}, i.e., the subset of Rn where rα xα is
the dominating term. By the convexity of the Ronkin function and the construction
of SpineTrop(f) it follows that Eα(f) ⊆ Fα(f). Since moreover every Eα(f) is
open we have Eα(f) ⊂ Fα(f) and hence S(f) ⊂ A(f). Since every component of
the complement of S(f) corresponds to a different set Fα(f), we can deformation
retract A(f) to S(f). �
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Figure 10. A visualization of the construction of the spine: For a given
polynomial f the Ronkin function is convex and affine linear on the com-
plement of the amoeba A(f) (left picture). One hyperplane is taken for
every component of the complement (middle picture). The resulting hy-
perplane arrangement SpineTrop(f) is kept, while the Ronkin function
itself is not needed anymore (right picture).

Let us assume that we know Comp(f) for some given f ∈ C[z±1]. Since the
Ronkin function is defined by an integral, an immediate question for applied pur-
poses is whether the Ronkin coefficients can be computed or at least approximated
efficiently. The answer is that it depends on the particular Laurent polynomial f .
But there is something that we can do. Namely, rα is given by the real part of
a function Φα, which almost satisfies a Gelfand–Kapranov–Zelevinsky hypergeo-
metric system, see [33, Theorem 3]. For additional background on hypergeometric
systems and related topics see [14, 43]. This fact allows to represent Φα via a power
series representation and therefore to approximate the Ronkin coefficient rα. This
representation has some important consequences.

Theorem 6.3 (Passare, Rullg̊ard, [33]). Let A ⊂ Zn a finite set and f(z) :=∑
α∈A bαz

α be a Laurent polynomial in (C∗)A such that Eα∗(f) �= 0 for some
fixed α∗ ∈ conv(A). Let Γ be a face of the Newton polytope New(f) = conv(A) of
f . If α∗ ∈ Γ, then Φα∗(f) and thus also rα∗ only depends on the terms of f with
exponents in the face Γ. In particular, if α∗ is a vertex of the Newton polytope of
f , then rα∗ = log |bα∗ |.

An immediate consequence is the following corollary, which also implies The-
orem 5.5.

Corollary 6.4. Let f ∈ C[z±1] such that A(f) is a solid amoeba. Then C(f) = S(f).
Even if the power series representation of rα is known, then it is often not

obvious, how much a Ronkin coefficient rα differs from the corresponding term
log |bα|. Using a result by Duistermaat and van der Kallen [7] Passare and Tsikh
proved the following statement, which shows, roughly speaking, that for coefficients
bα with “large” absolute value the coefficients rα and log |bα| “do not differ very
much”.

Theorem 6.5 (Passare, Tsikh, [35]). Let f(z) :=
∑

α∈A bαz
α ∈ C[z±1] be a Laurent

polynomial, let α∗ ∈ conv(A) ∩ Zn be fixed and rα∗ the corresponding Ronkin
coefficient. Then the function C → R, bα∗ �→ rα∗ − log |bα∗ | is harmonic in a
neighborhood of infinity. It has a zero of finite order at bα∗ = ∞ and its power
series expansion at infinity has finite radius of convergence.
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Note that in the previous theorem rα∗ depends on the choice of bα∗ . An
example for the difference between C(f) and S(f) is given in Figure 11; see also
[6, Figure 4.2] and [46, Figure 1].

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Figure 11. Let f(z1, z2) := 1 + z21z2 + z1z
2
2 − 4z1z2. The picture

shows the amoeba A(f) (red) with the spine S(f) (green, light) and
the complement-induced tropical hypersurface C(f) (blue, dark). Note
that here S(f) and C(f) coincide on the outer tentacles of A(f) but not
on the triangles in the middle.

7. Summary and open problems

Finally, let us summarize the content of this survey and particularly compare the
four different tropicalizations of amoebas that we have investigated. Moreover, let
us emphasize on the open problems that we have encountered on the way.

First let us return to the two misconceptions which were stated in the intro-
duction. We can now conclude that they are wrong and why they are wrong. For
the first one we have the following corollary.

Corollary 7.1. Let A ⊂ Zn finite and f ∈ (C∗)A with amoeba A(f). The spine S(f)
and the non-Archimedean amoeba AK(fK) are not homotopy equivalent in general
since the spine is a deformation retract of A(f) and AK(fK) is not in general.

Proof. Follows immediately from Theorem 3.3 and Theorem 6.2. �
For the second misconception we formulate the following remark.

Remark 7.2. For a given f ∈ C[z±1] it is in general not possible to compute the
spine S(f) without knowing which components of the complement of A(f) exist.

The tropical polynomials SpineTrop(f) and also CompTrop(f) require knowl-
edge of Comp(f) in order to be defined, since Comp(f) is their support; see (5.1)
and (6.2). Thus, we cannot use SpineTrop(f) or its tropical hypersurface, the spine
S(f), to determine this set. The approach is circular, since one needs to know the
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desired set in advance. Hence, the question about the existence of particular com-
ponents of the complement of an amoeba is cannot be solved by investigating the
spine. This was the second misconception from the introduction. We provide an
example to show this problem explicitly.

Example 7.3. Let f(z1, z2) := 1 + z21z2 + z1z
2
2 − az1z2 with a ∈ R. According to

the generalization of Theorem 3.4 in [46] A(f) is solid if and only if a ∈ [−3, 1];
see Figure 11 for a = −4. However, one can check, e.g., using Purbhoo’s results
in [38] that the Ronkin coefficient r(1,1) > 1 for a = −3 + ε for ε > 0 sufficiently
small. Thus, for a = −3 + ε the tropical polynomial

0⊕ 0 x2
1x2 ⊕ 0 x1x

2
2 ⊕ r(1,1)  x1x2

has a tropical hypersurface of genus one, similar to the one depicted in Figure 11.
To construct the correct spine S(f) one has to know that A(f) is solid and thus
(1, 1) /∈ Comp(f) and hence the term r(1,1)  x1x2 does belong to SpineTrop(f).
The spine S(f) is indeed the tropical hypersurface of genus zero given by

SpineTrop(f) = 0⊕ 0 x2
1x2 ⊕ 0 x1x

2
2.

Second, we summarize the properties of the different tropicalizations that
we have encountered during this survey. Let f(z) =

∑
α∈A bαz

α ∈ C[z±1] be a
Laurent polynomial with amoeba A(f). Recall that Comp(f) ⊆ conv(A) ∩ Zn is
the image of the order map; see also (2.3).

The non-Archimedean amoeba

• The non-Archimedean amoeba AK(fK) = AK(Ψ(f)) is the tropical hypersur-
face given by the tropical polynomial

⊕
α∈A− val(α) xα =

⊕
α∈A 0 xα; see

Kapranov’s Theorem 3.1. Since the support is given by A and all coefficients
are equal, AK(fK) is particularly very easy to compute.

• The amoeba A(f) can be deformed such that it converges to AK(fK) in
Hausdorff metric. This process is based on a change of the basis of the Log |·|-
map; see Section 4, particularly Theorem 4.1.

• A(f) and A(fK)K are not homotopy equivalent in general; see Theorems 3.3
and 3.4. Also, nothing is known about the Hausdorff distance of the initial
A(f) (that is, before applying any deformation) and AK(fK).

The Archimedean tropical hypersurface

• The Archimedean tropical hypersurface AR(f) is given by the tropical poly-
nomial

⊕
α∈A log |bα| xα. The computation of AR(f) is easy in theory and

can be expected to work well in practice, too.
• The distance between A(f) and AR(f) is bounded; see Theorem 5.1 for
details. Thus, AR(f) provides a rough but quick approximation of A(f). See
also [1] for further details.

• A(f) and AR(f) are not homotopy equivalent in general; see, e.g., Theorem
3.3 and Figure 6.
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The complement induced tropical hypersurface

• The complement induced tropical hypersurface C(f) is given by the tropical
polynomial

⊕
α∈Comp(A) log |bα|  xα. The computation of C(f) is difficult,

since it is non-trivial to compute the set Comp(f) in general, which C(f)
depends on.

• C(f) and A(f) are not homotopy equivalent in general; see Example 5.13 and
Corollary 5.14.

• However, C(f) is a deformation retract of A(f) in certain special cases, e.g.,
if the amoeba is solid or if the support A of f is a circuit with n ≥ 2; see
Theorems 5.4 and 5.5. Also for polynomials supported on circuits bounds are
known for the coefficients which allow to compute Comp(f) immediately; see
[46] for further details.

The spine

• The spine S(f) is the tropical hypersurface given by the tropical polyno-
mial

⊕
α∈Comp(A) rα  xα where rα denotes the Ronkin coefficient of α; see

(6.1). The computation of S(f) is very difficult, since first, as C(f), the spine
depends on the set Comp(f). Moreover, the computation of the Ronkin co-
efficients rα is a priori also non-trivial.

• The spine S(f) is a deformation retract of the amoeba A(f); see Theorem
6.2.

Finally, I would like to emphasize on three general problems, which are related
to the content of this survey, that currently remain open.

1. The most general open problem which was discussed in this survey was stated
in Problem 2.6: Find an algebraic and/or a topological description of the sets
UA
α . Furthermore, determine for a fixed A ⊂ Zn for which α ∈ conv(A) ∩ Zn

it holds that UA
α = ∅. Except of some special cases, e.g., certain polynomials

supported on circuits, this problem is open. It is, however, likely also too gen-
eral to be answered completely. Note that Problem 5.11 asking to determine
Comp(f) for a given support set A (in dependence of the choice of coeffi-
cients) is essentially the same problem in different words. Note furthermore
that if Rullg̊ard’s Conjecture 5.15 is true, then the question when UA

α = ∅
would be solved.

2. We have seen in this survey that AK(fK), AR(f), and C(f) are not homotopy
equivalent to A(f) in general; see Theorem 3.3, Example 5.13, and Corollary
5.14. It would be interesting to determine classes of polynomials for which
AK(fK), AR(f), and C(f) are homotopy equivalent to A(f) or even a defor-
mation retract of A(f).

3. Every one of the tropical hypersurfaces AK(fK), AR(f), and C(f) have a
canonical equivalent to the order map since every connected component of the
complement of a tropical hypersurface corresponds to a unique dominating
term in the defining tropical polynomial. Hence, we can consider the exponent
of this dominating term as the order of the particular component. Thus, it is
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a priori possible that an amoeba A(f) and one of the tropical hypersurfaces
AK(fK), AR(f) are homotopy equivalent, but the images of their order maps
are not identical. It would be interesting whether this can indeed happen
and, if it can happen, for which classes of polynomials and for which tropical
hypersurfaces it can happen.
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Coamoebas of Polynomials Supported
on Circuits

Jens Forsg̊ard

Abstract. We study coamoebas of polynomials supported on circuits. Our re-
sults include an explicit description of the space of coamoebas, a relation be-
tween connected components of the coamoeba complement and critical points
of the polynomial, an upper bound on the area of a planar coamoeba, and a
recovered bound on the number of positive solutions of a fewnomial system.

1. Introduction

A possibly degenerate circuit is a point configuration A ⊂ Zn of cardinality n+ 2
which span a sublattice ZA of rank n. That is, such that the Newton polytope
NA = Conv(A) is of full dimension. A polynomial system f(z) = 0 is said to be
supported on a circuit A if each polynomial occurring in f(z) is supported on A.
Polynomial systems supported on circuits have recently been been studied in the
context of, e.g., real algebraic geometry [4, 6], complexity theory [5], and amoeba
theory [18]. The name “circuit” originate from matroid theory; see [17] and [20]
for further background.

The aim of this article is to describe geometrical and topological properties
of coamoebas of polynomials supported on circuits. Such an investigation is moti-
vated not only by the vast number of applications of circuits in different areas of
geometry, but also since circuits provide an ideal testing ground for open problems
in coamoeba theory.

This paper is organized as follows. In Section 2 we will give a brief overview
of coamoeba theory. In Section 3 we will discuss the relation between real polyno-
mials and the coamoeba of the A-discriminant. The main results of this paper are
contained in Sections 4–7, each of which can be read as a standalone text.

In Section 4 we will give a complete description of the space of coamoebas.
That is, we will describe how the topology of the coamoeba Cf depends on the
coefficients of f . Describing the space of amoebas is the topic of the articles [18]
and [19], and to fully appreciate our result one should consider these spaces simul-
taneously, see, e.g., Figure 2. The geometry of the space of coamoebas is closely
related to the A-discriminantal variety, see Theorems 4.1 and 4.2.
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In Section 5 we will prove that the area of a planar circuit coamoeba is
bounded from above by 2π2. That is, a planar circuit coamoeba covers at most
half of the torus T2. Furthermore, we will prove that a circuit admits a coamoeba
of maximal area if and only if it admits an equimodular triangulation. Note that
we calculate area without multiplicities, in contrast to [11]. However, the relation
between (co)amoebas of maximal area and Harnack curves is made visible also in
this setting.

In Section 6 we will prove that, under certain assumptions on A, the critical
points of f(z) are projected by the componentwise argument mapping into distinct
connected component of the complement of the coamoeba Cf . Furthermore, this
projection gives a bijective relation between the set of critical points and the set
of connected components of the complement of the closed coamoeba. This settles
a conjecture used in [10] when computing monodromy in the context of dimer
models and mirror symmetry.

In Section 7 we will consider bivariate systems supported on a circuit. If such
a system is real, then it admits at most three roots in R2

+. The main contribution
of this section is that we offer a new approach to fewnomial theory. Using our
method, we will prove that if NA is a simplex, then, for each θ ∈ T2, a complex
bivariate system supported on A has at most two roots in the sector Arg−1(θ).

2. Coamoebas and lopsidedness

Let A denote a point configuration A = {a0, . . . , aN−1} ⊂ Zn, where N = #A.
By abuse of notation, we identify A with the (1 + n)×N -matrix

A =

(
1 . . . 1
a0 . . . aN−1

)
. (1)

The codimension ofA is the integerm = N−1−n. A circuit is a point configuration
of codimension one. A circuit is said to be nondegenerate if it is not a pyramid
over a circuit of smaller dimension. That is, if all maximal minors of the matrix
A are nonvanishing. We will partition the set of circuits into two classes; simplex
circuits, for which NA is a simplex, and vertex circuits, for which A = Vert(NA).

We associate to A the family CA
∗ consisting of all polynomials

f(z) =

N−1∑
k=0

fk z
ak ,

where f(z) is identified with the point f = (f0, . . . , fN−1) ∈ CA
∗ . By slight abuse

of notation, we will denote by fk(z) the monomial function z �→ fk z
ak . We denote

the algebraic set defined by f by Z(f) ⊂ Cn∗ . The coamoeba Cf is the image of
Z(f) under the componentwise argument mapping Arg : Cn

∗ → Tn defined by

Arg(z) = (arg(z1), . . . , arg(zn)),

where Tn denotes the real n-torus. It is sometimes beneficial to consider the multi-
valued argument mapping, which gives the coamoeba as a multiply periodic subset
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of Rn. Coameobas were introduced by Passare and Tsikh as a dual object, in an
imprecise sense, of the amoeba Af .

We will say that a point z ∈ Cn
∗ is a critical point of f if it solves the system

∂1f(z) = · · · = ∂nf(z) = 0. (2)

If in addition z ∈ Z(f) then z will be called a singular point of f . The A-
discriminant Δ(f) = ΔA(f) is an irreducible polynomial with domain CA

∗ which
vanishes if and only if f has a singular point in Cn

∗ [9].

A Gale dual of A is an integer matrix B whose columns span the right Z-
kernel of A. That is, B is an integer N × m-matrix, of full rank, such that its
maximal minors are relatively prime. A Gale dual is unique up to the action of
SLm(Z). The rows b of B are indexed by the points ak ∈ A. To each Gale dual
we associate a zonotope

ZB =

{
π

2

N−1∑
k=0

λkbk

∣∣∣∣ |λk| ≤ 1

}
⊂ Rm.

We will say that a triangulation T of NA is a triangulation of A if Vert(T ) ⊂
A. Such a triangulation is said to be equimodular if all maximal simplices has equal
volume.

Let h be a height function h : A→ R. The function h induces a triangulation
Th of A in the following manner. Let Nh denote the polytope in Rn+1 with vertices
(a, h(a)). The lower facets of Nh are the facets whose outward normal vector
has negative last coordinate. Then, Th is the triangulation of A whose maximal
simplices are the images of the lower facets of Nh under the projection onto the
first n coordinates. A triangulation T of A is said to be coherent if there exists a
height function h such that T = Th.

If A is a circuit then B is a column vector, unique up to sign. Hence, the
zonotope ZB is an interval. Let Ak = A \ {ak}, with associated matrix Ak, and
let Vk = Vol(Ak). If A is a nondegenerate circuit, so that Vk > 0 for all k, then
NA admits exactly two coherent triangulations with vertices in A [9]. Denote these
two triangulations by Tδ for δ ∈ {±1}. Each simplex NAk

occurs in exactly one of
the triangulations Tδ. Hence, there is a well-defined assignment of signs k �→ δk,
where δk ∈ {±1}, such that

Tδ =
{
NAk

}
δk=δ

, δ = ±1.

Here, we have identified a triangulation with its set of maximal simplices. As shown
in [9, Ch. 7 and Ch. 9] and [7, Sec. 5], a Gale dual of A is given by

bk = (−1)k|Ak| = δkVk. (3)

Thus, the zonotope ZB is an interval of length 2πVol(A).

The A-discriminant Δ has n + 1 homogeneities, one for each row of the
matrix A. Each Gale dual correspond to a dehomogenization of Δ. To be specific,



194 J. Forsg̊ard

introducing the variables

ξj =

N−1∏
k=0

f
bkj

k , j = 1, . . . ,m, (4)

there is a Laurent monomial M(c) and a polynomial ΔB(ξ) such that

ΔB(ξ) = M(f)ΔA(f).

We will say that ΔB is the reduced form of Δ. Such a reduction yields a projection
prB : CA∗ → Cm∗ , and we will say that Cm∗ is the reduced family associated to A,
and that prB(f) is the reduced form of f .

Example 2.1. Let A = {0, 1, 2}, so that CA
∗ is the family of quadratic univariate

polynomials

f(z) = f0 + f1z + f2z
2.

Consider the Gale dual B = (1,−2, 1)t, and introduce the variable ξ = f0f
−2
1 f2.

In this case the A-discriminant ΔA is well known, and we find that

f−2
1 ΔA(f) = f−2

1

(
f2
1 − 4f0f2

)
= 1− 4ξ = ΔB(ξ).

The projection prB correspond to performing the change of variables z �→ f0f
−1
1 z,

and multiplying f(z) by f−1
0 , after with we obtain the reduced family consisting

of all polynomials of the form

f(z) = 1 + z + ξz2.

Let S denote a subset of A. The truncated polynomial fS is the image of
f under the projection prS : C

A∗ → CS∗ . Of particular interest is the case when
S = Γ ∩A for some face Γ of the Newton polytope NA (denoted by Γ ≺ NA). We
will write fΓ = fΓ∩A. It was shown in [14] that

Cf =
⋃

Γ≺NA

CfΓ ,

Let E denote the set of edges of NA, then the shell of the coamoeba is defined by

Hf =
⋃
Γ∈E

CfΓ .

As an edge Γ is one-dimensional, the shell Hf is a hyperplane arrangement. Its
importance can be seen in that each full-dimensional cell of Hf contain at most

one connected component of the complement of Cf , see [7].

Example 2.2. The coamoeba of f(z) = 1+z1+z2, as described in [7] and [14], can
be seen in Figure 1, where it is drawn in the fundamental domains [−π, π]2 and
[0, 2π]2. The shellHf consist of the hyperplane arrangement drawn in black. In this
case, it is equal to the boundary of Cf . The Newton polytope NA and its outward
normal vectors are drawn in the rightmost picture. If Hf is given orientations
in accordance with the outward normal vectors of NA, then the interior of the
coamoeba consist of the oriented cells.
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Figure 1. The coamoeba of f(z) = 1 + z1 + z2 in two fundamental
regions, and the Newton polytope NA.

Acting on A by an integer affine transformation is equivalent to performing a
monomial change of variables and multiplying f by a Laurent monomial. Such an
action induces a linear transformation of the coamoeba Cf , when viewed in Rn [7].
We will repeatedly use this fact to impose assumptions on A, e.g., that it contains
the origin.

The polynomial f is said to be colopsided at a point θ ∈ Rn if there exist a
phase ϕ such that

�
(
eiϕfk(e

iθ)
)
≥ 0, k = 0, . . . , N − 1, (5)

with at least one of the inequalities (5) being strict. The motivation for this defi-
nition is as follows. If f is colopsided at θ, then

�
(
eiϕf(reiθ)

)
=

N−1∑
k=0

rak �
(
eiϕfk(e

iθ)
)
> 0, ∀ r ∈ Rn

+,

since at least one term of the sum is strictly positive. Hence, colopsidedness at θ
implies that θ ∈ Tn \ Cf . The colopsided coamoeba, denoted Lf , is defined as the
set of all θ such that (5) does not hold for any phase ϕ [7]. Hence, Cf ⊂ Lf .

Each monomial fk(z) defines an affinity (i.e., a group homomorphism com-
posed with a translation) fk : Cn∗ → C∗ by z �→ fk z

ak . We thus obtain unique

affinities |fk| and f̂k such that the following diagram of short exact sequences
commutes:

0 Rn
+ Cn

∗ (S1)n 0

0 R+ C∗ S1 0.

|fk| fk f̂k

Notice that T & S1 ⊂ C. We denote by f̂(θ) ⊂ (S1)A ⊂ CA∗ the vector with

components f̂k(θ). Assume that f contains the constant monomial 1, and consider
the map ordB(f) : Rn → Rm defined by

ordB(f)(θ) = Argπ
(
f̂(θ)

)
·B, (6)
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where Argπ denotes the componentwise principal argument map. It was shown in
[7] that the map ordB(f) induces a map

ordB(f) : T
n \ Lf → {Argπ(f)B + 2πZm} ∩ intZB. (7)

which in turn induces a bijection between the set of connected components of the
complement of Lf and the finite set in the right-hand side of (7). The map ordB(f)
is known as the order map of the lopsided coamoeba.

Remark 2.3. The requirement that f contains the monomial 1 is related to the
choice of branch cut of the function Arg; in order to obtain a well-defined map,
we need the right-hand side of (6) to be discontinuous only for θ such that two

components of f̂(θ) are antipodal, see [7]. If f does not contain the constant

monomial 1, then one should fix a point ak ∈ A and multiply the vector f̂(θ) by

the scalar f̂k(θ)
−1 before taking principal arguments. It is shown in [7, Thm. 4.3]

that the obtained map is independent of the choice of ak.

If θ ∈ Tn \ Lf , then we can choose ϕ such that

�
(
eiϕfk(e

iθ)
)
> 0, k = 0, . . . , N − 1.

That is, the boundary of Lf is contained in the hyperplane arrangement consisting

of all θ such that two components of f̂(θ) are antipodal.

It has been conjectured that the number of connected components of the
complement of Cf is at most Vol(A).1 A proof in arbitrary dimension has been
proposed by Nisse in [13], and an independent proof in the case n = 2 was given
in [8]. That the number of connected components of the complement of Lf is at
most Vol(A) follows from the theory of Mellin–Barnes integral representations of
A-hypergeometric functions, see [2] and [3].

A finite set I ⊂ Tn which is in a bijective correspondence with the set of
connected components of the complement of Cf by inclusion, will be said to be an
index set of the coamoeba complement. This notation will be slightly abused; a
set I of cardinality Vol(A) will be said to be an index set of the coamoeba if each
connected component of its complement contains exactly one element of I.

The term “lopsided” was first used by Purbhoo in [15], denoting the corre-
sponding condition to (5) for amoebas: the polynomial f is said to be lopsided
at a point x ∈ Rn if there is a ak ∈ A such that the moduli |fk|(x) is greater
than the sum of the remaining modulis. As a comparison, note that the polyno-
mial f is colopsided at θ ∈ T if and only if the greatest intermediate angle of the

components of f̂(θ) is greater than the sum of the remaining intermediate angles.

1This conjecture has commonly been attributed to Mikael Passare, however, it seems to originate
from a talk given by Mounir Nisse at Stockholm University in 2007.
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3. Real points and the coameoba of the A-discriminant

We will say that f is real at θ, if there is a real subvector space � ⊂ C such that

f̂k(θ) ∈ � for all k = 0, . . . , N − 1. If such a θ exist then f is real, that is, after a
change of variables and multiplication with a Laurent monomial f ∈ RA∗ . In this

section, we will study the function f̂ from the viewpoint of real polynomials. Our
main result is the following characterization of the coamoeba of the A-discriminant
of a circuit.

Proposition 3.1. Let A be a nondegenerate circuit, and let δk be as in (3). Then,
Arg(f) ∈ CΔ if and only if after possibly multiplying f with a constant, there is a

θ ∈ Rn such that f̂k(θ) = δk for all k.

If A is a circuit and B is a Gale dual of A then the Horn–Kapranov parame-
trization of the reduced discriminant ΔB can be lifted to a parametrization of the
discriminant surface Δ as

z �→ (b0z
a0, . . . ,bN−1z

aN−1) .

Taking componentwise arguments, we obtain a simple proof Proposition 3.1. In
particular, the proposition can be interpreted as a coamoeba version of the Horn–
Kapranov parametrization valid for circuits. Our proof of Proposition 3.1 will be
more involved, however, for our purposes the lemmas contained in this section are
of equal importance.

Lemma 3.2. Assume that the polynomial f is real at θ0 ∈ Rn. Then, f is real at
θ ∈ Rn if and only if θ ∈ θ0 + πL, where L is the dual lattice of ZA.

Proof. After translating θ and multiplying f with a Laurent monomial, we can
assume that θ0 = 0, that �0 = R, and that f contains the monomial 1. That is, all
coefficients of f are real, in particular proving if -part of the statement. To show

the only if -part, notice first that f̂(θ) ⊂ � implies that � contains both the origin

and 1. That is, � = R. Furthermore, f̂(θ) ⊂ R only if for each a ∈ A there is a
k ∈ Z such that 〈a, θ〉 = πk, which concludes the proof. �

The A-discriminant Δ related to a circuit has been described in [9, Chp. 9,
Pro. 1.8] where the formula

Δ(f) =
∏
δk=1

bbk

k

∏
δk=−1

f−bk

k −
∏

δk=−1

b−bk

k

∏
δk=1

fbk

k (8)

was obtained. In particular, Δ is a binomial. As the zonotope ZB is a symmetric
interval of length 2πVol(A), the image of the map ordB(f) is of cardinality Vol(A)
unless

Argπ(f)B ≡ 2πVol(A) mod 2π. (9)

In particular, the complement of Cf has the maximal number of connected com-
ponents (i.e., Vol(A)-many) unless the equivalence (9) holds.
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Lemma 3.3. For each κ = 0, 1, . . . , n + 1, there are exactly Vol(Aκ)-many points
θ ∈ T such that

f̂k(θ) = δk, ∀ k �= κ. (10)

Proof. By applying an integer affine transformation, the statement follows from
the case when Aκ consist of the vertices of the standard simplex. �

Lemma 3.4. Fix κ ∈ {0, . . . , n+1}. For each θ fulfilling (10), let ϕθ ∈ T be defined
by the condition that if argπ(fκ) = ϕθ then

f̂κ(θ) = δκ. (11)

Assume that ZA = Zn. Then, the numbers ϕθ are distinct.

Proof. We can assume that a0 = 0 and that f0 = 1. Assume that ϕθ1 = ϕθ2 .
Then,

〈a, θ2〉 = 〈a, θ1〉+ 2πr, ∀a ∈ A.

By translating, we can assume that θ1 = 0, and hence, since 1 is a monomial of f ,
that all coefficients are real. Consider the lattice L consisting of all points θ ∈ Rn

such that f is real at θ. Since ZA = Zn, Lemma 3.2 shows that L = πZn. However,
we find that 〈

a,
θ2
2

〉
= πr,

and hence θ2
2 ∈ L. This implies that θ2 ∈ 2πZn, and hence θ2 = 0 in Tn. �

Proof of Proposition 3.1. Assume first that there is a θ as in the statement of the
proposition, where we can assume that θ = 0. Then, arg(fk) = arg(δk). It follows
that the monomials∏

δk=1

bbk

k

∏
δk=−1

f−bk

k and
∏

δk=−1

bbk

k

∏
δk=1

f−bk

k

have equal signs. Therefor, Δ vanishes for fk = δk|bk|, implying that Arg(f) ∈ CΔ.
For the converse, fix κ, and reduce f by requiring that fk = δk|bk| = bk for

k �= κ. Let I denote the set of points θ ∈ Tn such that f̂k(θ) = δk for k �= κ,
which by Lemma 3.3 has cardinality Vκ. By Lemma 3.4, the set I is in a bijective

correspondence with values of arg(fκ) such that f̂κ(θ) = δκ. Therefor, we find that
Δ vanishes at fκ = Vκe

iϕ for each ϕ ∈ I. However, the discriminant Δ specializes,
up to a constant, to the binomial

Δκ(fκ) = f |bκ|
κ − b|bκ|

κ = fVκ
κ − bVκ

κ ,

which has exactly Vκ-many solutions in C∗ of distinct arguments. Hence, since
Δ(f) = 0 by assumption, and comparing the number of solutions, it holds that

f̂κ(θ) = δκ for one of the points θ ∈ I. �
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4. The space of coamoebas

Let Uk ⊂ CA∗ denote the set of all f such that the number of connected components
of the complement of Cf is Vol(A) − k. Describing the sets Uk is known as the
problem of describing the space of coamoebas of CA∗ . In this section, we will give
explicit descriptions of the sets Uk in the case when A is a circuit. As a first
observation we note that the image of the map ordB(f) is at least of cardinality
Vol(A)− 1, implying that

CA
∗ = U0 ∪ U1,

and in particular Uk = ∅ for k ≥ 2. Hence, it suffices for us to give an explicit de-
scription of the set U1. Our main result is the following two theorems, highlighting
also the difference between vertex circuits and simplex circuits. Note that Δ is a
real polynomial [9].

Theorem 4.1. Assume that A is a nondegenerate simplex circuit, with an+1 as
an interior point. Choose B such that δn+1 = −1, and let Δ be as in (8). Then,
f ∈ U1 if and only if Arg(f) ∈ CΔ and

(−1)Vol(A) Δ
(
δ0|f0|, . . . , δn+1|fn+1|

)
≤ 0. (12)

Theorem 4.2. Assume that A is a vertex circuit. Then, f ∈ U1 if and only if
Arg(f) ∈ CΔ.

The article [18] describes the space of amoebas in the case when A is a simplex
circuit in dimension at least two. In this case, the number of connected components
of the amoeba complement is either equal to the number of vertices of NA or one
greater. One implication of [18, thm. 4.4 and thm. 5.4] is that, if the amoeba
complement has the minimal number of connected components, then

(−1)Vol(A) Δ
(
δ0|f0|, . . . , δn+1|fn+1|

)
≥ 0.

Furthermore, this set intersect U1 only in the discriminant locus Δ(f) = 0. The
space of amoebas in the case when A is a simplex circuit in dimension n = 1
has been studied in [19], and is a more delicate problem. On the other hand, if A
is a vertex circuit, then each f ∈ CA∗ is maximally sparse and hence has a solid
amoeba. That is, the components of the complement of the amoeba is in a bijective
correspondance with the vertices of the Newton polytope NA. In particular, the
number of connected components of the amoeba complement does not depend on
f . From Theorems 4.1 and 4.2 we see that a similar discrepancy between simplex
circuits and vertex circuits occurs for coamoebas.

Example 4.3. The reduced family

f(z) = 1 + z31 + z32 + ξ z1z2.

was considered in [16, ex. 6, p. 59], where the study of the space of amoebas was
initiated. We have drawn the space of amoebas and coamoebas jointly in the left
picture in Figure 2. The blue region, whose boundary is a hypocycloid, marks
values of ξ for which the amoeba complement has no bounded component. The
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set U1 is seen in orange. The red dots is the discriminant locus Δ(ξ) = 0, which is
contained in the circle |ξ| = 3 corresponding to an equality in (12).

Example 4.4. The reduced family

f(z) = 1 + z1 + z32 + ξ z31z2

is a vertex circuit. In this case, the topology of the amoeba does not depend on
the coefficient ξ. The space of coamoebas is drawn in the right picture in Figure 2.
The set U1 comprises the three orange lines emerging from the origin. The red dots
is the discriminant locus Δ(ξ) = 0. It might seem like the set U0 is disconnected,
however this a consequence of that we consider f in reduced form. In CA

∗ the set
U0 is connected, though not simply connected.

Figure 2. The amoeba and coamoeba spaces of Examples 4.3 and 4.4.

4.1. Proof of Theorem 4.1

Impose the assumptions of Theorem 4.1. Then,

b0 + · · ·+ bn = −bn+1 = Vol(A),

and in particular Vn+1 = Vol(A). By Lemma 3.3 there is a set I of cardinality

Vol(A) consisting of all points θ such that f̂0(θ) = · · · = f̂n(θ) = δk = 1 In

particular, f is colopsided at θ ∈ I unless f̂n+1(θ) = −1. It was shown in [7, sec.
5] that, if f �∈ CΔ, then I is an index set for the complement of Cf . In fact, I is

an index set of the complement of Cf for arbitrary f .

Proposition 4.5. Let A be a simplex circuit. Assume that Arg(f) ∈ CΔ, i.e., that
there exists a θ ∈ I with f̂n+1(θ) = δn+1. Then, the complement of Cf has Vol(A)-
many connected components if and only if it contains θ.

Proof. We can assume that θ = 0. To prove the if -part, assume that 0 ∈ Θ for
some connected component Θ of the complement of Cf . We wish to show that f

is never colopsided in Θ, for this implies that the complement of Cf has Vol(A)-
many connected components. Assume to the contrary that there exist a point

θ̂ ∈ Θ such that f is colopsided at θ̂. Then, ordB(f)(θ̂) = mπ for some integer m,
with |m| < Vol(A), see (7). Let f ε = (f0, . . . , fn, fn+1e

iε). Then fε is colopsided
at 0 for ε /∈ 2πZ. By continuity of roots, for ε > 0 sufficiently small, the points 0
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and θ̂ are contained in the same connected component of the complement of C(fε).
Hence, by [7, pro. 3.9], they are contained in the same connected component of
the complement of L(fε). However,

ordB(f
ε)(0) = Vol(A)(π − ε) �= m(π − ε) = ordB(f

ε)(θ̂),

contradicting that ordB(f
ε) is constant on connected components of the comple-

ment of L(f ε).
To prove the only if -part, assume that there exists a connected component

Θ of the complement of Cf in which f is never colopsided. We wish to prove that

0 ∈ Θ. As f ε is colopsided at 0 for ε > 0 sufficiently small, we find that 0 ∈ Θ.
Indeed, if this was not the case, then the complement of C(fε) has (Vol(A) + 1)-
many connected components, a contradiction. As 0 �∈ Hf , and by [7, lem. 2.3],
there exists a disc D0 around 0 such that

D0 ∩ (Tn \ Cf ) = D0 ∩Θ.

Furthermore, D0 ∩Θ �= ∅, since 0 ∈ Θ. Let θ ∈ D0 ∩Θ. As f is a real polynomial,
conjugation yields that −θ ∈ D0 ∩Θ. However, Θ ⊂ Rn is convex, implying that
0 ∈ Θ. �

Proof of Theorem 4.1. If Arg(f) �∈ CΔ then the image of ordB(f) is of cardinality
Vol(A), and hence f ∈ U0. Thus, we only need to consider Arg(f) ∈ CΔ, where
we can assume that f̂(0) = δk for all k. In particular, f is a real polynomial. By
Proposition 4.5, it holds that the complement of Cf has Vol(A)-many connected
components if and only if it contains 0. Keeping f0, . . . , fn and arg(fn+1) fixed,
let us consider f as a function of |fn+1|. As f is a real polynomial, it restricts to a
map f : Rn

≥0 → R, whose image depends nontrivially on |fn+1|. Notice that 0 ∈ Cf
if and only if f(Rn

≥0) contains the origin. Since f̂k(0) = δk = 1 for k �= n+ 1, and

since an+1 is an interior point of A, the map f takes the boundary of Rn
≥0 to [1,∞).

In particular, if 0 ∈ f(Rn
≥0), then 0 ∈ f(Rn

+). The boundary of the set of all |fn+1|
for which 0 ∈ f(Rn

≥0) is the set of all values of |fn+1| for which f(Rn
+) = [0,∞).

Furthermore, f(Rn
+) = [0,∞) holds if and only if there exists an r ∈ Rn

+ such that
f(r) = 0, while f(r) ≥ 0 in a neighborhood of r, implying that r is a critical point
of f . That is,

Δ
(
δ1|f1|, . . . , δn+1|fn+1|

)
= 0.

Since Δ is a binomial, there is exactly one such value of |fn+1|. Finally, we note
that 0 ∈ Cf if |fn+1| → ∞, which finishes the proof. �

4.2. Proof of Theorem 4.2

If Arg(f) �∈ CΔ, then the image of ordB(f) is of cardinality Vol(A) and hence

f ∈ U0. Assume that Arg(f) ∈ CΔ, and that f̂k(0) = δk for all k. It holds that
0 ∈ Hf since there exists two adjacent vertices a0 and a1 of A such that δ0 = 1
and δ1 = −1. Let,

H = {θ | 〈a0 − a1, θ〉 = 0}
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be the hyperplane of Hf containing 0. Assume that exists connected component

Θ of the complement of Cf in which f is nowhere colopsided. As in the proof

of Proposition 4.5, we conclude that 0 ∈ Θ, for otherwise we could construct a
coamoeba with (Vol(A) + 1)-many connected components of its complement. As
H ⊂ Cf , we find that Θ is contained in one of the half-spaces

H± = {θ | ± 〈a0 − a1, θ〉 > 0},

say that Θ ⊂ H+. Let fε = (f0e
iε, f1, . . . , fn+1), and let Hε denote the corre-

sponding hyperplane

Hε = {θ | 〈a0 − a1, θ〉 = −ε}.
For |ε| sufficiently small, continuity of roots implies that there is a connected
component Θε ⊂ Hε

+ in which fε is never colopsided. However, by choosing the

sign of ε, we can force 0 ∈ Hε
−. This implies that the coamoeba Cfε has (Vol(A)+1)-

many connected components of its complement, a contradiction.

5. The maximal area of planar circuit coamoebas

In this section, we will prove the following bound.

Theorem 5.1. Let A be a planar circuit, and let f ∈ CA∗ . Then Area(Cf ) ≤ 2π2.

Furthermore, we provide the following classification of for which circuits the
bound of Theorem 5.1 is sharp.

Theorem 5.2. Let A be a planar circuit. Then there exist a polynomial f ∈ CA
∗

such that Area(Cf ) = 2π2 if and only if A admits an equimodular triangulation.

Example 5.3. Let f(z) = 1 + z1 + z2 − rz1z2 for r ∈ R+. Notice that A admits
a unimodular triangulation. The shell Hf consist of the families θ1 = k1π and
θ2 = k2π for k1, k2 ∈ Z. Hence, the shell Hf divides T2 into four regions of equal
area. Exactly two of these regions are contained in the coamoeba, which implies
that Area(Cf ) = 2π2. See the left picture of Figure 3.

Example 5.4. Let f(z) = 1 + zw2 + z2w − rzw for r ∈ R+. Also in this case A
admits a unimodular triangulation. Notice that Arg(f) ∈ CΔ. The coamoeba of the
trinomial g(z) = 1+ zw2+ z2w has three components of its complement, of which
f is colopsided in two. We have that Hf = Hg. Thus, if the complement of Cf has
two connected components, i.e., if r ≥ 3, then one of the three components of the
complement of Cg is contained in Cf , which in turn implies that Area(Cf ) = 2π2.
See the right picture of Figure 3.

Let us compare our results to the corresponding results of planar circuit
amoebas. It was shown in [16, Thm. 12, p. 30] that the sharp upper bound on
the number of connected components of the amoeba complement is #A. In [12], a
bound on the area of the amoeba was given as π2 Vol(A), and it was shown that
maximal area was obtained for Harnack curves. For coamoebas, to roles of the
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Figure 3. The coamoebas of Examples 5.3 and 5.4.

integers Vol(A) and #A are reversed. The upper bound on the number of connected
components of the coamoeba complement is given by Vol(A). While, at least for
codimension m ≤ 1, the maximal area of the coameoba is π2(m+1) = π2(#A−n).
Note also that the coamoebas of Examples 5.3 and 5.4 are both coamoebas of
Harnack curves.

Consider a bivariate trinomial f , with one marked monomial. Let Σ = Σ(f)
denote the quadruple of polynomials obtained by flipping signs of the unmarked
monomials. Furthermore, let

HΣ =
⋃
g∈Σ

Hg,

which is a hyperplane arrangement in R2 (or T2). Let PΣ denote the set of all
intersection points of distinct hyperplanes in HΣ.

Proposition 5.5. Let f(z) be a bivariate trinomial. Then, the union

CΣ =
⋃
g∈Σ

Cg,

covers R2. To be specific, PΣ is covered thrice, HΣ \ PΣ is covered twice, and
R2 \ HΣ is covered once.

Proof. After applying an integer affine transformations, we reduce to the case when
A consist of the vertices of the standard simplex. This case that follows from the
description in [7] and [14], see also Figure 1. �
Corollary 5.6. If f(z) is a bivariate trinomial, then Area(Cf ) = π2.

Proof. The coamoebas appearing in the union CΣ, when considered in R2, are
merely translations of each other. Hence, they have equal area. As they cover the
torus once a.e., and Area(T2) = 4π2, the result follows. �

Notice that a bivariate trinomial is not supported on a circuit, but on the ver-
tex set of a simplex. Let fk̂ denote the image of f under the projection prk : C

A
∗ →

CAk∗ . As shown in [7] the family of trinomials fk̂, k = 1, . . . , 4, contains all necessary
information about the lopsided coamoeba Lf .

Lemma 5.7. Let A be a planar circuit, and let f ∈ CA
∗ . Assume that θ ∈ T is

generic in the sense that no two components of f̂(θ) are antipodal, and assume



204 J. Forsg̊ard

furthermore that f is not colopsided at θ. Then, exactly two of the trinomials
f1̂, . . . , f4̂ are colopsided at θ.

Proof. Fix an arbitrary point a1 ∈ A, and let � ⊂ C denote the real subvector space

containing f̂1(θ). As f is not colopsided at θ, both half-spaces relative � contains

at least one component of f̂(θ). There is no restriction to assume that the upper

half-space contains the two components f̂2(θ) and f̂3(θ), and that the latter is of

greatest angular distance from f̂1(θ). Then, f4̂ is colopsided at θ. Furthermore, we
find that f2̂ is not colopsided at θ, for if it where then so would f . As a1 ∈ A4 and
a1 ∈ A2, there is at least one trinomial obtained from f containing a1 which is
not colopsided at θ, and at least one which is colopsided at θ. As a1 was arbitrary,
it follows that exactly two of the trinomials f1̂, . . . , f4̂ are colopsided at θ, and
exactly two are not. �

Proof of Theorem 5.1. By containment, it holds that Area(Cf ) ≤ Area(Lf ), and
thus it suffices to calculate the area of Lf . By [7, Prop. 3.4], we have that

Lf =

4⋃
k=1

Cfk̂ . (13)

For a generic point θ ∈ Lf , Lemma 5.7 gives that θ (and, in fact, a small neigh-
borhood of θ) is contained in the interior of exactly two out of the four coamoebas
in the right-hand side of (13). Hence,

Area(Lf ) =
1

2

(
Area(Cf1̂) + · · ·+Area(Cf4̂)

)
= 2π2. �

Proof of Theorem 5.2. To prove the if part, we will prove that A admits an equi-
modular triangulation only if, after applying an integer affine transformation, it is
equal to the point configuration of either Example 5.3 or Example 5.4. Assume that
a1, a2, and a3 are vertices of NA. After applying an integer affine transformation,
we can assume that a1 = k1e1, that a2 = k2e2 with k1 ≥ k2, and that a3 = 0.
Notice that such a transformation rescales A, though it does not affect the area of
the coamoeba Cf [7]. Let a4 = m1e1 +m2e2.

If A is a vertex circuit, then each triangulation of A consist of two simplices,
which are of equal area by assumption. Comparing the areas of the subsimplices
of A, we obtain the relations

|k1k2 − k1m2 − k2m1| = k1k2 and k1m2 = k2m1.

In m, this system has (k1, k2) as the only nontrivial solution, and we conclude that
A is the unit square, up to integer affine transformations.

If A is a simplex circuit, then A has one triangulation with three simplices
of equal area. Comparing areas, we obtain the relations

3k1m2 = 3k2m1 = k1k2.

Thus, 3m1 = k1 and 3m2 = k2, and we conclude that A is the simplex from
Example 5.4, up to integer affine transformations.
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To prove the only if -statement, consider f ∈ CA
∗ . Let S = {a1, a2} ⊂ A be

such that the line segment [a1, a2] is interior to NA. Applying an integer affine
transformation, we can assume that [a1, a2] ⊂ Re1, and that a3 and a4 lies in the
upper and lower half-space respectively. Then, the hyperplane arrangement CfS ⊂
T consist of Length[a1, a2]-many lines, each parallel to the θ2-axis. If a3 = m31e1+

m32e2 and a4 = m41e1 +m42e2, then f̂3(θ) and f̂4(θ) takes m32 respectively m42

turns around the origin when θ traverses once a line of CfS . Notice that CfS ⊂ Lf ,

as f̂1(θ) and f̂2(θ) are antipodal for θ ∈ CfS . That is, for such θ, f̂S(θ) is contained
in a real subvector space �θ ⊂ C.

Assume that f is colopsided for some θ ∈ CfS , so that in particular θ �∈ Cf .
If θ ∈ Hf , then at exactly one of the points f̂3(θ) and f̂4(θ) is contained in �θ,
for otherwise f would not be colopsided at θ. By wiggling θ in CfS we can assume

that θ �∈ Hf . Under this assumption, we find that θ /∈ C(f). Thus, there is a

neighborhood Nθ which is separated from Cf . As θ ∈ Lf , the intersection Nθ ∩Lf

has positive area, implying that Area(Cf ) < Area(Lf ).

Thus, if f is such that Area(Cf ) = 2π2, then f can never be colopsided in

CfS . In particular, for θ ∈ CfS such that f̂3(θ) ∈ �, it must hold f̂4(θ) ∈ �, and vice
versa. As there are 2m32 points of the first kind, and 2m42 points of the second
kind, it holds that m32 = m42. Hence, the simplices with vertices {a1, a2, a3} and
{a1, a2, a4} have equal area.

If A is a vertex circuit, this suffices in order to conclude that A admits an
equimodular triangulation. If A is a simplex circuit, then we can assume that a1
is an interior point of NA. Repeating the argument for either S = {a1, a3} or
S = {a1, a4} yields that A has a triangulation with three triangles of equal area.
That is, it admits an equimodular triangulation. �

6. Critical points

Let C(f) denote the critical points of f , that is, the variety defined by (2). Let I =
Arg(C(f)) denote the coamoeba of C(f). We will say that I is the set of critical
arguments of f . In this section we will prove that, under certain assumptions on
A, the set I is an index set of the coamoeba complement. That it is necessary to
impose assumptions onA is related to the fact that an integer affine transformation
acts nontrivially on the set of critical points C(f).

Let A be a circuit, with the elements a ∈ A ordered so that it has a Gale dual
B = (B1, B2)

t such that B1 ∈ Rm1+1
+ and that B2 ∈ Rm2+1

− . That is, B1 has only
positive entries, while B2 has only negative entries. We have that m1 +m2 = n.
Let A = (A1, A2) denote the corresponding decomposition of the matrix A. We
will say that A is in orthogonal form if

A =

⎛⎝ 1 1

Ã1 0

0 Ã2

⎞⎠ , (14)
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where Ã1 is an m1 × (m1 + 1)-matrix and Ã2 is an m2 × (m2 + 1)-matrix. In
particular, the Newton polytopes NA1 and NA2 has 0 as a relatively interior point,
and as their only intersection point.

With A in the form (14), we can act by integer affine transformations affecting

Ã1 and Ã2 separately. Therefor, if A is in orthogonal form, then we can assume
that

Ãk = (−p1e1, . . . ,−pmk
emk

, amk+1), (15)

where p1, . . . , pmk
are positive integers, and hence amk+1 has only positive coor-

dinates. We will say that A is in special orthogonal form if (15) holds. The main
result of this section is the following lemma and theorem.

Lemma 6.1. Each circuit A can be put in (special) orthogonal form by applying an
integer affine transformation.

Theorem 6.2. Let A be a circuit in special orthogonal form. Then, for each f ∈ CA
∗ ,

the set of critical arguments is an index set of the complement of Cf .

The conditions of Theorem 6.2 can be relaxed in small dimensions. When
n = 1, it is enough to require that 0 is an interior point of NA. When n = 2, for
generic f , it is enough to require that each quadrant Q fulfills that Q \ {0} has
nonempty intersection with A.

Proof of Lemma 6.1. Let u1, . . . ,um2 be a basis for the left kernel ker(A1), and let
v1, . . . ,vm1 be a basis for the left kernel ker(A2). Multiplying A from the left by

T =
(
e1,v1, . . . ,vm1 ,u1, . . . ,um2

)t
,

it takes the desired form. We need only to show that det(T ) �= 0.
Notice that ker(A1)∩ker(A2) = 0, since A is assumed to be of full dimension.

Assume that there is a linear combination

λ0e1 +

m1∑
i=1

λivi +

m2∑
j=1

λjuj = 0.

Then, since B is a Gale dual of A,

0 =

⎛⎝m2∑
j=1

λjuj

⎞⎠AB = (0, . . . , 0,−λ0, . . . ,−λ0)B = −λ0

∑
a∈A2

ba = λ0 Vol(A),

and hence λ0 = 0. This implies that
∑m1

i=1 λivi ∈ ker(A2), and hence
∑m1

i=1 λivi =
0. Thus, λi = 0 for all i by linear independence of the vectors v. Then, linear
independence of the vectors uj imply that λj = 0. �

Proof of Theorem 6.2. We find that

zi∂if(z) = −pifizai + 〈amk
, ei〉fm1z

am1 , i = 0, . . . ,m1

zj∂jf(z) = −pjfizaj + 〈an+1, ej〉fn+1z
an+1, j = m1 + 1, . . . , n.
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Hence, for each θ ∈ I, it holds that

f̂0(θ) = · · · = f̂m1(θ) and f̂m1+1(θ) = · · · = f̂n+1(θ). (16)

In particular, f is colopsided at θ unless, after a rotation, f̂k(θ) = δk for all k. In
the latter case, we refer to Theorems 4.1 and 4.2.

To see that the points θ ∈ I for which f is colopsided at θ are contained in
distinct connected components of the complement of Lf , consider a line segment
� in Rn with endpoints in I. Then, not all identities of (16) can hold identically
along �. Since the argument of each monomial is linear in θ, this implies that for
a pair such that the identity in (16) does not hold identically along �, there is an
intermediate point θ ∈ � for which the corresponding monomials are antipodal,
and hence θ ∈ Lf . �

7. On systems supported on a circuit

In this section we will consider a system

F1(z) = F2(z) = 0 (17)

of two bivariate polynomials. We will write f(z) = 0 for the system (17). The
system is said to be generic if it has finitely many roots in C2

∗, and it is said to
be supported on a circuit A if the supports of F1 and F2 are contained in, but
not necessarily equal to, A. That is, we allow coefficients in C rather than C∗.
By the Bernstein–Kushnirenko theorem, a generic system f(z) = 0 has at most
Vol(A)-many roots in C2

∗. However, if f is real, then fewnomial theory states that
a generic system f(z) has at most three roots in R2

+ = Arg−1(0). We will solve the
complexified fewnomial problem, i.e., for f(z) with complex coefficients we will
bound the number of roots in each sector Arg−1(θ). Our intention is to offer a new
approach to fewnomial theory. We will restrict to the case of simplex circuits, for
the following two reasons. Firstly, it allows for a simpler exposition. Secondly, for
vertex circuits our method recovers the known (sharp) bound, while for simplex
circuits we obtain a sharpening of the fewnomial bound.

Theorem 7.1. Let f(z) = 0 be a generic system of two bivariate polynomials sup-
ported on a planar simplex circuit A ⊂ Z2. Then, each sector Arg−1(θ) contains
at most two solutions of f(z) = 0.

7.1. Reducing f(z) to a system of trinomials

A generic system f(z) is, by taking appropriate linear combinations, equivalent to
a system of two trinomials whose support intersect in a dupleton. That is, we can
assume that f(z) is in the form{

F1(z) = f1z
a0 + za2 + f2z

a3 = 0
F2(z) = f3z

a1 + za2 + f4z
a3 = 0,

(18)
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with coefficients in C∗. We will use the notation

A =

(
1 1 1 1
a0 a1 a2 a3

)
and Â =

⎛⎝ 1 0
0 1
A1 A2

⎞⎠ ,

where Ak denotes the support of Fk (notice that this differs from the notation
used in previous sections). Notice that we can identify a system f(z) in the form

(18) with its corresponding vector in CÂ
∗ .

When reducing f(z) to the form (18) by taking linear combinations, there is
a choice of which monomials to eliminate in F1 and F2 respectively. In order for
the arguments of the roots of f(z) = 0 to depend continuously on the coefficients,
we need to be careful with which choice to make.

Lemma 7.2. Let � denote the line through a2 and a3, and let γ be a compact path

in CÂ
∗ . If � intersect the interior of NA, then the arguments of the solutions to

f(z) = 0 vary continuously along γ.

Proof. It is enough to show that along a compact path γ, the set⋃
f∈γ

Af =
⋃
f∈γ

Log(Z(f)) (19)

is bounded, for it implies that for f ∈ γ, the roots of f are uniformly separated

from the boundary of CÂ∗ .
We first claim that our assumptions imply that the normal fans of NA1 and

NA2 has no coinciding one-dimensional cones. Indeed, these fans has a coinciding
one-dimensional cone if and only if the Newton polytopes NA1 and NA2 has facets
Γ1 and Γ2 with a common outward normal vector n. As A is a circuit, it holds
that Γ1 = Γ2 = [a2, a3] ⊂ �. Since the normal vector n is common for NA1 and
NA2 , we find that Γ1 (and Γ2) is a facet of NA. But then � contains a facet of NA,
and hence it cannot intersect the interior of NA, a contradiction.

Consider a point f ∈ CA∗ . Since the normal fans NA1 and NA2 has no co-
inciding one-dimensional cones, the intersection of the amoebas AF1 and AF2 is
bounded (this follows, e.g., from the fact the amoeba has finite Hausdorff distance
from the Archimedean tropical variety, see [1]). Thus, the amoeba Af is bounded,
say that Af ⊂ D(Rf ) where D(Rf ) denotes the disk of radii Rf centered around

the origin. By continuity of roots, Af̃ ⊂ D(Rf ) for all f̃ in some neighborhood Nf

of f . The compactness of γ implies our result. �
In order for the assumptions of Lemma 7.2 to be fulfilled, for a simplex circuit

A, we need that a0 and a1 are vertices of N (A), see Figure 4.

Proposition 7.3. If f is nonreal at θ, then there is at most one zero of f(z) = 0
contained in the sector Arg−1(θ).

Proof. If Fk is nonreal, then the fiber in Z(Fk) over a point θ ∈ CFk
is a singleton.

Hence, if the number of roots of f(z) = 0 in Arg−1(θ) is greater than one, then
both F1 and F2 are real at θ. �
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Figure 4. The Newton polytopes NA, NA1 , and NA2 .

The implication of Proposition 7.3 is that the complexified fewnomial problem
reduces to the real fewnomial problem. However, our approach is dependent on
allowing coefficients to be nonreal. In fact, we will consider a partially complexified
problem, allowing f1, f3 ∈ C∗ but requiring f2, f4 ∈ R∗.

7.2. Colopsidedness

We define the colopsided coamoeba of the system f(z) by

Lf = LF1 ∩ LF2 = CF1 ∩ CF2 ,

where the last equality follows from [7, cor. 3.3]. That is, f is said to be colopsided
at θ if either F1 or F2 is colopsided at θ. We will say that f is real at θ if both F1

and F2 are real at θ.

The lopsided coamoeba Lf consist of a number of polygons on T2, possibly
degenerated to singletons. The following two lemmas will allow us to count the
number of such polygons.

Lemma 7.4. Assume that f is nonreal. Let g be a binomial constructed by choosing
two monomials from (18), possibly alternating signs. If f2 and f4 are of opposite
signs, then Cg ⊂ T2 \Lf . If f2 and f4 are of equal signs, then Cg ⊂ T2 \Lf except
for g(z) = ±(f1za0 − f3z

a1).

Proof. If, for θ ∈ T2, two components of F̂1(θ) is contained in a real subvector

space � ⊂ C, then either F1 is colopsided at θ or F̂1(θ) ⊂ �. However, the latter

implies that two components of F̂2(θ) are contained in �. Repeating the argument
yields that either f is real, or it is colopsided at θ.

Thus, the only binomials we need to consider is g±(z) = f1z
a0 ± f3z

a1. For

each θ ∈ Cg+ the vectors F̂1(θ) and F̂2(θ) differ in sign in their first component,
and hence at least one is colopsided at θ, unless f is real. For each θ ∈ Cg− , the
vectors F̂1(θ) and F̂2(θ) differ in signs in the the last component only if f2 and f4
differ in signs. If this is the case, then at least one is colopsided at θ unless f is
real. �

Lemma 7.5. Let θ ∈ Cg1∩Cg2 for truncated binomials g1 and g2 of F1 and F2 respec-
tively. If the Newton polytopes (i.e., line segments) of g1 and g2 are nonparallel,
then θ ∈ Lf .
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Proof. If F1 and F2 are both real at θ, then θ ∈ Lf . If F1 is nonreal at θ, then for
a sufficiently small neighborhood Nθ ⊂ R2, it holds that

CF1 ∩Nθ = {ϕ | 〈ϕ,n〉 > 〈θ,n〉} ∩Nθ,

where n is a normal vector of N (g1). Since connected components of the comple-
ment of CF2 are convex, either CF2 intersect CF1 in Nθ, or the boundary of CF2 is
contained in the line � = {ϕ | 〈ϕ,n〉 = 〈θ,n〉}. As the boundary of CF2 contains Cg2 ,
it holds in the latter case that Cg2 ⊂ �, which in turn implies that n is a normal vec-
tor of N (g2), contradicting our assumptions. We conclude that CF2 ∩CF1 ∩Nθ �= ∅.
Since this holds for any sufficiently small neighborhood Nθ, the result follows. �
Example 7.6. Consider the system

f(z) =

{
f1z1z

2
2 + 1 + f2z1z2

f3z
2
1z2 + 1 + f4z1z2.

We have that Vol(A) = 3. Hence H divides T2 into three cells. The lopsided
coamoeba Lf , and the hyperplane arrangement H , can be seen in Figure 5. In the
first two picture, the generic respectively real situation when f2 and f4 differs in
signs. In last two pictures, the generic respectively real situation when f2 and f4
have equal signs. In the generic case, the lopsided coamoeba Lf consist of three
polygons. When deforming from the generic to the real case, we observe the follow-
ing behavior. Some polygons of Lf deform into single points – by necessity points
contained in the lattice P . Some pairs of polytopes of Lf deforms to nonconvex
polygons, typically with a single intersection point. Our proof of Theorem 7.1 is
based on the observation that, when deforming from a generic to a real system, at
most two polytopes of LF deforms a nonconvex polygon intersecting H .

Figure 5. The lopsided coamoebas from Example 7.6.

7.3. Proof of Theorem 7.1

Let us consider the auxiliary binomials

g1(z) = f1z
a0 − za2 , g2(z)= f3z

a1 − za2,

h1(z) = f1z
a0 + za2 , and h2(z)= f3z

a1 + za2.

The vectors a2 − a0 and a2 − a1 span the simplex NA, hence the hyperplane
arrangement H = Cg1 ∪ Cg2 divides T2 into Vol(A)-many parallelograms with the
points P = Ch1 ∩ Ch2 as their centers of mass.

If f is nonreal, then Lemma 7.4 shows that H ⊂ T2 \ Lf , and Lemma 7.5

shows that P ⊂ Lf . By Lemma 7.2 we find that Lf has at most Vol(A)-many
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connected components. Hence, Lf has at exactly one connected component in
each of the cells of H , and the number of roots of f(z) = 0 projected by the
argument map into each such component is exactly one.

Consider now the real case when f2 and f4 differs in signs. Then, at least one
of F1 and F2 are colopsided at the intersection points Cg1 ∩Cg2 . Thus, if Arg−1(θ)
contains a root of f(z) = 0, then a sufficiently small neighborhood Nθ intersect at
most two of the cells of the hyperplane arrangement H . Hence, using Lemma 7.2
and wiggling the arguments of coefficients of f by ε, Nθ intersect at most two of
the polygons of Lfε . Hence, there can be at most two roots contained in Arg−1(θ).

Consider now the case when f real with f2 and f4 of equal signs. In this
case, a point θ ∈ Cg1 ∩Cg2 can be contained in Lf . See the left picture of Figure 6,
where the hyperplane arrangement H is given in black, and the shells HF1 and
HF2 are given in red and blue respectively, with indicated orientation. Wiggling
the arguments of coefficient f1 and/or f3 by ε, we claim the we obtain a situation
as in the right picture of Figure 6. That is, at most two polygons of Lfε will
intersect a small neighborhood Nθ of θ. Let us prove this last claim.

Let f be generic, with f2 and f4 real and of equal signs. The hyperplanes Cg1
and Cg2 (locally) divides the plane into four regions. We can assume that a2 = 0.

Then, Cg1 consist of all θ such that f̂1(θ) = 1, and Cg1 consist of all θ such that

f̂3(θ) = 1. Thus, locally, the cells ofH can be indexed by the signs of the imaginary

parts of f̂1(θ) and f̂3(θ). Assume that θ̃ ∈ Lf ∩ Nθ. Then neither F1 nor F2 is

colopsided at θ̃. Observe that f̂2(θ̃) = f̂4(θ̃), since f2 and f4 has equal sign. We
find that

sgn('(f̂1(θ̃))) = − sgn('(f̂2(θ̃))) = − sgn('(f̂4(θ̃))) = sgn('(f̂4(θ̃))),
where the first and the last equality holds since neither F1 nor F2 is colopsided at
θ̃. This implies that polygons of Lf intersecting a small neighbourhood of θ are
necessarily contained in the cells of H which corresponds to that the imaginary

parts of f̂1(θ̃) and f̂4(θ̃) have equal signs. As there are two such cells, we find that
there are at most two polygons of Lf intersecting a small neighbourhood of θ.

Figure 6. To the left: the coamoeba Lf close to a point of Cg1 ∩ Cg2
when f2 and f4 have equal in signs and f1 and f3 are real. To the right:
the same picture after wiggling the argument of f1 or f3.
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Limit of Green Functions and Ideals,
the Case of Four Poles

Duong Quang Hai and Pascal J. Thomas

Abstract. We study the limits of pluricomplex Green functions with four poles
tending to the origin in a hyperconvex domain, and the (related) limits of
the ideals of holomorphic functions vanishing on those points. Taking sub-
sequences, we always assume that the directions defined by pairs of points
stabilize as they tend to 0. We prove that in a generic case, the limit of the
Green functions is always the same, while the limits of ideals are distinct (in
contrast to the three point case). We also study some exceptional cases, where
only the limits of ideals are determined. In order to do this, we establish a
useful result linking the length of the upper or lower limits of a family of
ideals, and its convergence.

Mathematics Subject Classification (2010). 32U35, 32A27.

Keywords. Pluricomplex Green function, complex Monge–Ampère equation,
ideals of holomorphic functions.

1. Introduction

The definition of multipole pluricomplex Green functions with logarithmic sin-
gularities [12], in the wake of Lempert’s seminal work [6], was motivated by the
nonlinearity of the complex Monge–Ampère equation, and generalizations of the
Schwarz Lemma, see, e.g., Demailly [1], [12], Lelong [5].

Sometimes it is useful to study the limit case where poles tend to each other
[10], an analogue of multiple zeroes for holomorphic functions, and this leads nat-
urally to the more general notion of the Green function of an ideal of holomorphic
functions:

Definition 1.1 ([8]). Let Ω be a hyperconvex bounded domain in Cn, O(Ω) the
space of holomorphic functions on this domain.

This work, in a different form, is part of the first author’s Ph.D. dissertation [3], defended at the
Université Paul Sabatier, Toulouse, July 8th, 2013.
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Let I be an ideal of O(Ω), and ψj its generators. Then

GΩ
I (z) := sup

{
u(z) : u ∈ PSH−(Ω), u(z) ≤ max

j
log |ψj |+O(1)

}
.

Note that the condition is meaningful only near a ∈ V (I) := {p ∈ Ω :
f(p) = 0, ∀f ∈ I}. Since the domain is pseudoconvex, there are finitely many
global generators ψj ∈ O(Ω) such that for any f ∈ I, there exists hj ∈ O(Ω) such
that f =

∑
j hjψj , see, e.g., [4, Theorem 7.2.9, p. 190].

In the special case when S is a finite set in Ω and I = I(S), the ideal of all
functions vanishing on the set S (which we sometimes call point-based ideal), this
reduces to a pluricomplex Green function with logarithmic singularities; we write
GI(S) = GS .

We want to study the limit of GSε when Sε is a set of points tending to the
origin, and relate this to the limit of the ideals I(Sε). It is a consequence of [9] that
if convergence of those Green functions takes place in the (relatively weak) sense
of L1

loc(Ω), then that convergence is actually uniform on compacta of Ω \ {0}, so
it will be understood that all convergence results are in this sense.

The case of 3 poles in dimension n = 2 was worked out in [7, Theorem 1.12,
(i)]; a remaining subcase of that study was finally settled in [2].

In the present paper, we explore the case of 4 points tending to the origin
in C2. Unlike in the three-point case, where the limit ideal was generically M2

0

and the limits of the Green functions depended on the directions along which
the points tended to 0, here we will see that, generically (in a sense to be made
precise), limGIε = GlimIε , and that this limit is the same, namely, limGIε =
2max(log |z1|, log |z2|) + O(1) (Theorem 2.1), whereas the limit ideals very much
depend on the directions of convergence to 0.

Some singular cases are studied in Theorems 2.2 and 2.3, although here we
mostly compute limits of ideals, the Green functions of which cannot coincide with
the limit of our Green functions because of Theorem 4.2 below. The results of [9]
are used to yield some estimates of the Green functions in those cases, but the
complete answer is not known.

In order to obtain those results, we establish Theorem 2.5, an auxiliary result
about convergence of ideals which shortens the proofs, and should be of indepen-
dent interest.

2. Statement of the results

2.1. Notations

As usual, M0 := I({(0, 0)}) stands for the maximal ideal at (0, 0), and M2
0,M

3
0 . . .

for its successive powers. For an ideal I ⊂ O(Ω), its length (or co-length) is �(I) :=
dimO(Ω)/ dim(I). For instance, �(Mk

0) =
1
2k(k + 1).

We consider Sε := {aεk, 1 ≤ k ≤ 4} ⊂ Ω, for ε ∈ C, Iε := I(Sε).
In general we should consider A ⊂ C such that 0 ∈ Ā\A and study limits

along A; quite often we will use some compactness to ensure convergence and
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pass to a subsequence included in A. For simplicity, we will just write lim
ε→0

or limε

instead of lim
ε→0,ε∈A

.

We will write several sufficient conditions about convergence of ideals and
Green functions in terms of the asymptotic directions defined by pairs of poles:

vεij := [aεj − aεi ] ∈ P1C,

where [·] denotes the class in P1C of an element of C2 \ {(0, 0)}. Since P1C is com-
pact, by restricting to an appropriate subsequence we assume vij = lim

ε→0
vεij ∈ P1C,

for 1 � i < j � 4. When such convergence does not occur as ε → 0 in an unre-
stricted fashion, one may consider the (possible) limits obtained from “convergent”
subsequences, and conclude about global convergence by examining whether the
partial limits coincide or not.

Let

Dε = D(Sε) := {vεij ∈ P1C, 1 � i < j � 4}, D := {vij ∈ P1C, 1 � i < j � 4}.

Given a subset S̃ε ⊂ Sε, we can define D̃ε and D̃ in a similar manner.

2.2. The generic 4-pole case

Theorem 2.1. Let Sε satisfy

∀S̃ε ⊂ Sε with #S̃ε = 3, then #D̃ � 2. (2.1)

and
∀k ∈ {1, 2, 3, 4}, #

{
vkm ∈ P1C : m ∈ {1, 2, 3, 4}\{k}

}
� 2, (2.2)

then there exists limε Iε = I, with M3
0 ⊂ I ⊂ M2

0 and �(I) = 4; and limε Gε =
GJ = 2max(log |z1|, log |z2|) +O(1) depends only on Ω and not on I.
2.3. Some singular cases

We will see how things change when we give up the second condition in Theo-
rem 2.1.

Theorem 2.2. Suppose that Sε verifies condition (2.1), and

∃i ∈ I := {1, 2, 3, 4} s.t. #
{
vij ∈ CP1 : j ∈ I\{i}

}
= 1, (2.3)

then, after a linear change of variables, lim
ε→0

I
(
Sε

)
= I0 :=

〈
z1z2, z

2
2 , z

3
1

〉
, and

lim inf
ε

Gε ≥ GI0(z) = max
{
log |z1z2|, 2 log |z2|, 3 log |z1|

}
+O(1),

but there is no equality.

If the situation becomes even more singular, we can have more diverse limits
for the ideals.

Theorem 2.3. Suppose there exist a 3 point subset S̃ε ⊂ Sε such that #D̃ = 1.
Again, I0 :=

〈
z1z2, z

2
2 , z

3
1

〉
. Then

1. If #D � 3, then lim
ε→0

I
(
Sε

)
= I0, after an appropriate linear change of

variables.
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2. If #D = 2, then, after passing to a subsequence and an appropriate linear
change of variables, lim

ε→0
I
(
Sε

)
= I0 or = J0 :=

〈
z1z2, z

2
1 + kz22 , z

3
1

〉
, for

some k ∈ C \ {0}.

We suspect that the Green functions do admit a limit, but we haven’t been
able to determine it.

2.4. Upper and lower limits of ideals

We now formalize the notion of convergence of ideals using upper and lower limits.

Definition 2.4 ([7]).

(i) lim inf
A�ε→0

Iε is the ideal consisting of all f ∈ O(Ω) such that fε → f locally

uniformly on Ω, as ε→ 0, where fε ∈ Iε.
(ii) lim sup

A�ε→0
Iε is the ideal of O(Ω) generated by all functions f such that fj → f

locally uniformly, as j →∞, for some sequence εj → 0 in A and fj ∈ Iεj .
(iii) If the two limits are equal, we say that the family Iε converges and write

lim
A�ε→0

Iε for the common value of the upper and lower limits.

This last notion of convergence is equivalent to convergence in the topol-
ogy of the Douady space [7, Section 3]. Clearly, lim infε Iε ⊂ lim supε Iε and so
�(lim infε Iε) ≥ �(lim supε Iε). It also follows from [7, Lemmas 2.1 and 2.2] that
�(lim supε Iε) ≤ lim sup �(Iε) and �(lim infε Iε) ≥ lim inf �(Iε).

Theorem 2.5. Let Iε be a family of ideals based on N distinct points, so that
�(Iε) = N , for any ε.

(i) Let I := lim supε Iε. If �(I) ≥ N (or equivalently = N), then limε Iε = I.
(ii) Let I := lim infε Iε. If �(I) ≤ N (or equivalently = N), then limε Iε = I.

3. Proof of Theorem 2.5

We will proceed by reducing everything to upper and lower limits of subspaces of
a single finite-dimensional vector space.

We use multiindex notation, in particular if α, β ∈ Nn, α ≤ β means αj ≤ βj ,
1 ≤ j ≤ n, and α < β means αj < βj , 1 ≤ j ≤ n.

Let πj denote the projection to the jth coordinate axis. Passing to a sub-
sequence if needed, Nj := #πj({aε1, . . . , aεN}) is independent of ε. Let N :=
(N1, . . . , Nn) and

Pε := π1({aε1, . . . , aεN})× · · · × πn({aε1, . . . , aεN}) (Cartesian product)

As in [7, Section 2], we now define a simpler sequence of ideals contained in each
Iε = I({aε1, . . . , aεN}). Let Jε := I(Pε). It is easy to see that d := �(Jε) = #Pε =∏n

j=1 Nj ≤ Nn, and [7, Lemma 2.3] gives

lim
ε→0

Jε = J := 〈zN1
1 , . . . , zNn

n 〉 =
{
f ∈ O(Ω) : ∂

αf

∂zα
: α < N

}
.
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Claim. O/Jε
∼= Cd ∼= O/J .

Indeed, denote by bi,εj the elements of πj({aε1, . . . , aεN}). For α ≤ N , set

Ψα(z) = zα, and for ζ ∈ C, 1 � j � n, 0 � k � Nj − 1,

ϕε
k,j

(
ζ
)
:=

k∏
i=1

(ζ − bi,εj ).

Let

Ψε
α(z) :=

n∏
j=1

ϕε
αj ,j

(
zj
)
.

Since all the bi,εj tend to 0, it is easy to see that for ε small enough (including

ε = 0) the system {Ψε
α, α < N} is linearly independent.

Let [·]ε (resp. [·]) denote the class of a function in O/Jε (resp. O/J ). The
natural projection from Span{Ψε

α, α < N} to O/Jε is injective, thus bijective, and

{[Ψε
α]ε, α < N} is a basis of O/Jε. Then the linear map defined by Φε

([
Ψε

α

]
ε

)
=[

Ψα

]
, for α < N , is the required isomorphism.

Lemma 3.1. Suppose that limε fε = f , uniformly on compacta of Ω. Then, in the
finite-dimensional vector space O/J ,

{
Φε

(
[fε]ε

)}
→ [f ] as ε→ 0.

Proof. There is a unique choice of coefficients cεα(f) such that

fε =
∑
α<N

cεα(fε)Ψ
ε
α + hε,

with hε ∈ Jε. It will be enough to show that cεα(fε)→ cα(f) as ε→ 0, for each α.

By rescaling, we might assume that D
n ⊂ Ω. One can prove by induction on

n (or deduce as an easy special case from the beginning of [11]) that if |ε| is small
enough, then

cεα(fε) =
1

(2iπ)n

∫
(∂D)n

fε(z1, . . . , zn)

Ψε
α(z)

dz1
z1

. . .
dzn
zn

,

and one sees that those integrals converge towards the required limit. �

We define upper and lower limits for families of subspaces in a finite-dimen-
sional vector space Cd by first choosing a norm on it. Since they are equivalent,
we may as well choose a euclidean norm, and we do.

Then let Lε be a family of subspaces of Cd such that dimLε = k, for any ε. Let
Kε := Lε∩B(0; 1). We can define the upper and lower limits of Lε by lim infε Lε :=
Span

(
lim infKε

)
, and analogously lim supε Lε := Span

(
lim supKε

)
.

Here lim infKε and lim supKε are taken in the sense of the Hausdorff distance
between compacta, namely if Kδ

ε stands for the δ-neighborhood of Kε,

lim infKε := ∩δ>0 ∪r>0 ∩|ε|<rK
δ
ε and lim supKε := ∩δ>0 ∩r>0 ∪|ε|<rK

δ
ε .
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Proposition 3.2.

1. lim sup
ε→0

Φε

(
Iε/Jε

)
= (lim sup Iε)/J , 2. lim inf

ε→0
Φε

(
Iε/Jε

)
= (lim inf Iε)/J .

Proof. To prove that lim sup Iε/J ⊂ lim sup (Φε(Iε/Jε)), it is enough to con-
sider elements [f ] where f is in a generating system of lim sup Iε. So there exist
(εj)j∈Z+ , εj → 0 as j → +∞ and fj ∈ Iεj such that fj → f uniformly on compacta

of Ω. Proposition 3.1 implies that Φεj

(
[fj ]Jεj

)
→ [f ].

Conversely, take g ∈ O/J such that there exists (εj)j∈Z+ , εj → 0 as j → +∞
and gj ∈ Iεj such that ‖Φεj

(
[gj ]Jεj

)
− [g]‖ → 0 as j → +∞. We can write

g(z) =
∑
α<N

Cα(g)z
α +

n∑
j=1

z
Nj

j Rj(z) and

[
gj(z)

]
Jεj

=
∑
α<N

Cεj
α (gj)

[
Ψεj

α (z)
]
Jεj

∈ Iεj/Jεj .

The hypothesis says that |Cεj
α (gj)− Cα(g)| → 0 for any α < N . Set

fj(z) :=
∑
α<N

Cεj
α (gj)Ψ

εj
α (z) +

n∑
j=1

Nj∏
i=1

(
zj − b

i,εj
j

)
Rj(z).

Then fj ∈ Iεj and fj → g uniformly on compacta of Ω.
Since the g’s as above form a generating system for lim sup (Φε(Iε/Jε)), we

are done.
The proof for lim inf is analogous and we omit it. �
The proof of our theorem then reduces to an elementary fact about families

of finite-dimensional spaces.

Lemma 3.3. Let (Lε) be a family of vector subspaces of Cd such that dimLε = k ≤
n, for any ε.

1. If dim(lim sup
ε→0

Lε) = k, then lim inf
ε→0

Lε = lim sup
ε→0

Lε.

2. If dim(lim inf
ε→0

Lε) = k, then lim inf
ε→0

Lε = lim sup
ε→0

Lε.

Proof. (1) Let L stand for lim supLε. For any η ∈ (0, 12 ), there exists εη > 0

such that |ε| ≤ εη implies that Lε ∩ B(0; 1) is contained in an η-neighborhood of

L∩B(0; 1). So the orthogonal projection of Lε∩B(0; 1) to L must contain at least
the ball L ∩ B(0; (1 − η2)1/2), and any point of L ∩ B(0; 1) is a distance at most
η + 1− (1− η2)1/2 from Lε ∩B(0; 1), so L ⊂ lim infε Lε.

(2) Let L := lim inf Lε. If we had lim supLε �⊂ L, then lim supLε � L
and we can pick a unit vector v ∈ lim supLε ∩ L⊥. We can find a sequence
εj → 0 and vectors vj → v, vj ∈ Lεj . Lεj must also contain k vectors e

εj
1 , . . . , e

εj
k

close to the vectors in an orthonormal basis e1, . . . , ek of L. For j large enough,
the system e

εj
1 , . . . , e

εj
k , vj will have to be linearly independent, which contradicts

dimLεj = k. �
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4. Proofs of Theorems 2.1, 2.2 and 2.3

4.1. Previous results

Definition 4.1. A (point based) ideal is a complete intersection ideal if and only if
it admits a set of n generators, where n is the dimension of the ambient space.

The main result of [7], Theorem 1.11, states:

Theorem 4.2. Let Iε = I(Sε), where Sε is a set of N points all tending to 0
and assume that limε→0 Iε = I. Then (GIε) converges to GI locally uniformly on
Ω \ {0} if and only if I is a complete intersection ideal.

The following was also defined in [7].

Definition 4.3. The family of ideals (Iε) satisfies the Uniform Complete Intersec-
tion Condition if for any ε, there exists a map Ψ0 and maps Ψε from a neighbor-
hood of Ω to Cn such that Ψ0 is proper from Ω to Ψ0(Ω), and

1. {aεj , 1 ≤ j ≤ N} = Ψ−1
ε {0}, for all ε;

2. For all ε �= 0, 1 ≤ j ≤ N and z in a neighborhood of aεj ,∣∣log ‖Ψε(z)‖ − log ‖z − aεj‖
∣∣ ≤ C(ε) <∞;

3. limε→0 Ψε = Ψ = (Ψ1, . . . ,Ψn), uniformly on Ω.

Notice that the first two conditions imply Iε = 〈Ψ1
ε, . . . ,Ψ

n
ε 〉.

This is [7, Theorem 1.8]:

Theorem 4.4. Let (Iε) be a family of ideals satisfying the uniform complete inter-
section condition, set Sε = V (Iε) and I = 〈Ψ1, . . . ,Ψn〉. Then
1. lim

ε→0
Iε = I,

2. lim
ε→0

Gε = GI , and the convergence is locally uniform on Ω \ {0}.

4.2. Proof of Theorem 2.1

Let lεij , 1 � i < j � 4 be the (normalized) equations of the lines through aεi , a
ε
j and

lij := lim
ε→0

lεij , 1 � i < j � 4. Set

Lε := {f ε
1 := lε12 · lε34; fε

2 := lε13 · lε24; fε
3 := lε14 · lε23} ⊂ I(Sε),

and fj := lim
ε→0

f ε
j , j = 1, 2, 3.

We will prove that under the hypotheses of the theorem, there exists i �= j ∈
{1, 2, 3} such that if Ψ0 :=

(
fi, fj

)
, then Ψ−1

0 (0) = {0}. (One can see that the
hypotheses are necessary for this to happen [3, Remarque 4.1.2, p. 66]). Then we
conclude using Theorem 4.4 with Ψε := f ε

i f
ε
j . Notice that since Ψ0 is homogeneous

of degree 2 and ‖Ψ0‖ is bounded and bounded away from 0 on the unit sphere, then
log ‖Ψ0‖ = log ‖z‖2 + O(1), and the same estimate holds for GI . An application
of the generalized maximum principle of Rashkovskii and Sigurdsson [8, Lemma
4.1] shows that the limit does not depend on the particular value of ‖Ψ0‖: there is
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only one maximal plurisubharmonic function with boundary values 0 on ∂Ω and
a singularity equivalent to log ‖z‖2.

We proceed with the proof that we can find an “independent” pair of fi’s.

Case 1: For any three point subset S̃ε ⊂ Sε, the set of limit directions satisfies
#D̃ = 3. So whenever {i, j} and {i′, j′} have an element in common, lij is inde-
pendent from li′j′ and so for any 1 ≤ k < k′ ≤ 3, fk and fk′ have no common

factor. So Ψ−1
0 (0) = {0}.

Case 2: Suppose that there exists a three point subset S′
ε ⊂ Sε such that the set

D′ of limit directions satisfies #D′=2. Without loss of generality, S′
ε={aε1,aε2,aε3}⊂

Sε.

Write vij for the direction in P1 defined by lij . With our hypothesis, we may
assume v23 = v12 �= v13. It will be convenient to write

A1 := {v13, v24} ∩ {v12, v34},
A2 := {v13, v24} ∩ {v14, v23},
A3 := {v12, v34} ∩ {v14, v23}.

So here A3 �= ∅. We will show that there exists p ∈ {1, 2} such that Ap = ∅ (and
thus the corresponding couple of function fi will be without a common factor, and
the proof concluded).

Suppose A1 �= ∅. Since v23 = v12 �= v13, by (2.2), v12 �= v24. Consequently,
v34 ∈ {v13, v24}.

We study A2. Since v23 = v12 �= v24, v23 /∈ {v13, v24}. So we need to study v14.

Case 2.1: v34 = v13.

Then (2.1) implies that v14 �= v13 = v34. We will see that v14 = v24 is
impossible. For this, we need to take some coordinates.

Using translations, we may assume aε1 = 0 ∈ D2, for any ε. Choose vectors
ṽij ∈ C2 such that ||ṽij || = 1 and [ṽij ] = vij ∈ P1C, 1 � i < j � 4. Since v23 =
v12 �= v13, we can choose an invertible linear map Φ such that [Φ(ṽ12)] = [1 : 0],
[Φ(ṽ13)] = [0 : 1]. So we can study Φ(Sε), where

Φ(aε1) = bε1 = (0, 0),

Φ(aε2) = bε2 = (ρ2(ε), η2(ε)),

Φ(aε3) = bε3 = (η3(ε), ρ3(ε)),

Φ(aε4) = bε4 = (α(ε), β(ε))

in which all coordinates tend to 0 and lim
ε→0

ηj(ε)/ρj(ε) = 0, j = 2, 3. We retain

the notation vij ∈ P1C, 1 � i < j � 4, and vij := limε v
ε
ij where this last is the

direction of the line through bεi and bεj . Let

γ(ε) :=
ρ3(ε)− η2(ε)

η3(ε)− ρ2(ε)
,
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then vε23 = [1 : γ(ε)]. Since v23 = v12 = [1 : 0], lim
ε→0

γ(ε) = 0. Thus

lim
ε→0

ρ3(ε)

ρ2(ε)
= lim

ε→0

γ(ε)− η2(ε)
ρ2(ε)

γ(ε) · η3(ε)
ρ3(ε)

− 1
= 0.

Assume now that v14 = v24. Then [1 : 0] = v12 �= v14 = v24 �= v34 = [0 : 1].
Write v14 = [1 : �], i.e., β/α → � �= 0,∞. Consider ρ2/α. If ‖ρ2/α‖ � C2 < ∞, as
ε→ 0 (or even along a subsequence εk → 0), then

α− η3
β − ρ3

=
1− η3

ρ3
· ρ3

ρ2
· ρ2

α

β
α −

ρ3

ρ2
· ρ2

α

→ �−1 �= 0, as ε→ 0.

This contradicts limε→0[α − η3 : β − ρ3] = v34 = v13 = [0 : 1]. Therefore we have
α/ρ2 → 0, so

β − η2
α− ρ2

=

β
α ·

α
ρ2
− η2

ρ2

α
ρ2
− 1

→ 0, as ε→ 0.

This contradicts limε→0[α − ρ2 : β − η2] = v24 = v14 �= v12 = [1 : 0]. This is the
contradiction we sought.

Case 2.2: v34 = v24.

In an analogous way, we will see that A2 = ∅. We still have v23 /∈ {v13, v24}.
By condition (2.2), we have v14 �= v24 = v34. We still use the coordinates above.

Suppose that v14 = v13 = [0 : 1]. This implies α/β → 0. If 0 < ‖ρ2/β‖ �
C4 <∞ as ε→ 0,

α− η3
β − ρ3

=

α
β −

η3

ρ3
· ρ3

ρ2
· ρ2

β

1− ρ3

ρ2
· ρ2

β

→ 0, as ε→ 0.

This contradicts v34 = v24 �= v23 = [0 : 1]. Thus β/ρ2 → 0, therefore

β − η2
α− ρ2

=

β
ρ2
− η2

ρ2

α
β ·

β
ρ2
− 1

→ 0, as ε→ 0.

This contradicts v24 = v34 �= v23 = [1 : 0]. So v14 �= v13.

In a similar way, we can prove that if A2 �= ∅, then A1 = ∅. �
To finish the proof of Theorem 2.1, we need to prove the statements about

the limit ideal. General properties of convergence show that �(I) = 4 and the form
of the generators show that I ⊂M2

0. It remains to prove that I ⊃M3
0, which is a

consequence of a more general fact.

Proposition 4.5. Suppose that all the directions in D(Sε) admit a limit, and that
#D � 2. Then M3

0 ⊂ lim
ε→0

inf Iε. Furthermore,

lim sup
ε

Iε ⊂M2
0.
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Proof. M3
0 is invariant under invertible linear maps. Since #D � 2, there exists

i ∈ {1, 2, 3, 4} such that vik �= vik′ , with k �= k′ and k, k′ ∈ {1, 2, 3, 4}\{i};
otherwise it is easy to show that all directions are equal, in contradiction with
the hypothesis.

Without loss of generality, assume v12 �= v13 and after a linear transformation,
v12 = [1 : 0], v13 = [0 : 1].

We reduce ourselves by translations to the case aε1 = (0, 0). Let

aε2 = (ρ2(ε), δ2(ε)) and aε3 = (δ3(ε), ρ3(ε)),

where δj(ε) = o(ρj(ε)), j = 2, 3. Let aε4 = (x4(ε), y4(ε)) tending to (0, 0). For any
ε, set

ψε
1 :=

[
z1 −

δ3(ε)

ρ3(ε)
z2
][
z1 − ρ2(ε)

][
z1 − x4(ε)],

ψε
2 :=

[
z1 −

δ3(ε)

ρ3(ε)
z2
][
z1 − ρ2(ε)

][
z2 − y4(ε)

]
,

ψε
3 :=

[
z1 −

δ3(ε)

ρ3(ε)
z2
][
z2 −

δ2(ε)

ρ2(ε)
z1
][
z2 − y4(ε)

]
,

ψε
4 :=

[
z2 −

δ2(ε)

ρ2(ε)
z1
][
z2 − ρ3(ε)

][
z2 − y4(ε)

]
.

Then ψε
j ∈ Iε, 1 � j � 4, and, with uniform convergence on compacta of Ω,

z31 = lim
ε→0

ψε
1 ∈ lim

ε→0
inf Iε,

z21z2 = lim
ε→0

ψε
2 ∈ lim

ε→0
inf Iε,

z1z
2
2 = lim

ε→0
ψε
3 ∈ lim

ε→0
inf Iε,

z32 = lim
ε→0

ψε
4 ∈ lim

ε→0
inf Iε.

Thus M3
0 =

〈
z31 , z

2
1z2, z1z

2
2 , z

3
2

〉
⊂ lim

ε→0
inf Iε.

To get the other inclusion, we make the same normalizations (using the fact

that M2
0 is invariant under invertible linear transformations, too). Write S̃ε =

{aε1, aε2, aε3}. By [7, Theorem 1.12, i], lim
ε→0

I
(
S̃ε

)
= M2

0. Since Iε ⊂ I
(
S̃ε

)
,

lim sup
ε→0

Iε ⊂ lim sup
ε→0

I
(
S̃ε

)
= M2

0. �

4.3. Proof of Theorem 2.2

The fact that the limit inferior of the Green functions is greater than the Green
function of the ideal, but not equal to it, follows from Theorem 4.2 since here I0
has 3 generators.

Remark. It would be desirable to have a better estimate of the limits of Green
functions. Some explicit computations were carried out in [3, Section 4.3], using
the methods from [9]. It concerned the family of poles given by Sε := {(0; 0), (ε; 0),
(0; ε), (γε; 0)}, with γ �= 1. Since the family is homogeneous in ε, in particular is
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given by a hyperplane section of a (singular) holomorphic curve, [9, Example 5.8]
shows that the limit of the Green functions does exist.

The following estimates are obtained:

1. lim
ε→0

GIε(z) � 2 log ‖z‖+O(1), for z2 �= 0;

2. lim
ε→0

GIε(z) � 5
3 log ‖z‖+O(1), for z1z

2
2(z1 + z2)(z1 + γz2) �= 0.

This is far from a complete answer, even in this case, but the computations involved
are getting increasingly tedious.

We now proceed with the proof of convergence of the family of ideals.

As before, we may assume aε1 = 0 ∈ Ω. Since #D̃ � 2, for any three-point set

S̃ε ⊂ Sε, #D � 2. Without loss of generality, assume v12 �= v13. By (2.3), we may
assume that for i = 2, v12 = v23 = v24.

Then we claim that #D � 3. Indeed, if we had #D = 2, then D = {v12, v13}.
Three cases may occur.

• If v14 = v12, then v12 = v14 = v24. This contradicts (2.1).

• If v34 = v12, then v23 = v34 = v24. This contradicts (2.1).

• If v14 = v34 = v13, this contradicts (2.1) again.

This proves the claim.

We can chose an invertible linear map Φ : C2 → C2 such that

[Φ(ṽ12)] = [1 : 0] and [Φ(ṽ13)] = [0 : 1],

where ṽ12, ṽ13 ∈ C2 are chosen so that ‖ṽ12‖ = ‖ṽ13‖ = 1 and [ṽ12] = v12, [ṽ13] =
v13. Then

Φ
(
Sε

)
= S′

ε = {bε1 = (0, 0), bε2, b
ε
3, b

ε
4}.

For this new system v12 = [1 : 0] �= v13 = [0 : 1]. We can choose lεij(z), normalized
equations of the lines through the pairs of points bεi and bεj , 1 � i < j � 4 such

that lim
ε→0

lε12(z) = lim
ε→0

lε23(z) = lim
ε→0

lε24(z) = z2 and lim
ε→0

lε13(z) = z1. This implies

z1z2 = lim
ε→0

lε13(z)l
ε
24(z) ∈ lim inf

ε
Iε,

z31 = lim
ε→0

lε13(z)
[
z1 − z1(b

ε
2)
][
z1 − z1(b

ε
4)
]
∈ lim inf

ε
Iε.

So
〈
z1z2, z

3
1

〉
⊂ lim infε Iε.

Since #D � 3, there exists (i, j) ∈ {(1, 3), (1, 4), (3, 4)} such that vεij → [1 : t],

with t �= 0,∞. So lim
ε→0

lεij(z) = z2 − tz1 ∈ lim infε Iε. This implies

z22 = lim
ε→0

(
lεij(z)l

ε
km(z) + tlε13(z)l

ε
24(z)

)
∈ lim inf

ε
Iε,

since 2 ∈ {k,m} := {1, 2, 3, 4}\ {i, j}. Thus I0 :=
〈
z1z2, z

2
2 , z

3
1

〉
⊂ lim infε Iε, with

�
(
I0
)
= 4. By Theorem 2.5, lim

ε→0
I
(
Sε

)
= I0. �
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4.4. Proof of Theorem 2.3

By the hypothesis #D � 2, we may assume v12 �= v13. Just as in the proof of
Theorem 2.2, we perform a translation to reduce ourselves to aε1 = (0, 0), and we
choose a linear map Φ so that we are reduced to v12 = [1 : 0] �= v13 = [0 : 1]. We
adopt the same notation S′

ε = {bεk, 1 ≤ k ≤ 4}.
Since there is a 3 point subset S̃′

ε ⊂ S′
ε such that #D̃′ = 1, we may assume

that S̃′
ε = {1, 2, 4}, so v12 = v14 = v24 = [1 : 0]. Again we may choose line

equations so that lim
ε→0

lε12(z) = lim
ε→0

lε14(z) = lim
ε→0

lε24(z) = z2 and lim
ε→0

lε13(z) = z1.

The proof in case (1) can then be completed exactly as the proof of Theorem
2.2 above.

Case (2): #D = 2.

Either there exists (i, j) ∈ {(2, 3), (3, 4)} such that vεij → vij = [1 : 0] or

v23 = v34 = [0 : 1].

Case (2.1): there exists (i, j) ∈ {(2, 3), (3, 4)} such that vεij → vij = [1 : 0].

Then lim
ε→0

lεij(z) = z2. Then, again,

z22 = lim
ε→0

lεij(z)l
ε
km(z) ∈ lim inf

ε
Iε,

since 2 ∈ {k,m} = {1, 2, 3, 4} \ {i, j}. Again, as in the proof of Theorem 2.2, we
find that lim

ε→0
I
(
Sε

)
= I0.

Case (2.2): v23 = v34 = [0 : 1].

Thus v13 = v23 = v34 = [0 : 1] and v12 = v14 = v24 = [1 : 0].

As in [2], where systems of three points tending to the origin along a single
direction are considered, we reparametrize {bε1, bε2, bε4} in such a way that |ε| =
‖bε2 − bε1‖ and choose a coordinate system depending on ε such that

bε1 = (0, 0), bε2 = (ε, 0), bε4 =
(
ρ(ε), δ(ε)ρ(ε)

)
where 0 < |ρ(ε)| � 1

2
|ε|, δ(ε)→ 0,

as ε→ 0. Denote bε3 =
(
α(ε), β(ε)

)
. Since vε13 = [α(ε) : β(ε)] → [0 : 1], lim

ε→0

α(ε)
β(ε) =

0. We will write ρ = ρ(ε), δ = δ(ε), α = α(ε), β = β(ε). For δ small enough, set

δ̃ :=
δ

1− α

β
δ
, ρ̃ := ρ

(
1− α

β
δ
)
.

Clearly δ̃, ρ̃→ 0. Furthermore,

δ̃

ρ̃− ε
=

δ/(ρ− ε)(
1− α

β

δρ

ρ− ε

)(
1− α

β
δ
) ,
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so if lim
ε→0

δ
ρ−ε = m, then lim

ε→0

δ̃
ρ̃−ε = m. Consider the following biholomorphism (a

small perturbation of the identity map):

Φ1,ε : C2 −→ C2, z �→ Φ1,ε(z) =

(
z1 −

α

β
z2, z2

)
,

Then Φ1,ε

(
S′
ε

)
= S1,ε =

{
(0, 0), (ε, 0), (ρ̃, δ̃ρ̃), (0, β)

}
. Since v23 = [0 : 1] and

v13 = [0 : 1], |α− ε| ) 1
2 |β| et |α| )

1
2 |β|. So |ε| � |α− ε|+ |α| ) |β|.

The proof is concluded with the following result. Notice that this limit ideal
in case (ii.2) is deduced from I0 by exchanging the coordinates z1 and z2, so is
again equivalent to it by a linear invertible map.

Proposition 4.6. Let Sε = {(0, 0), (ε, 0), (ρ, δρ), (0, β)} tend to (0, 0) as ε→ 0, with
ρ := ρ(ε), δ := δ(ε), β := β(ε) and 0 < |ρ| � 1

2 |ε|, |ε| ) |β|. Then

i) If lim
ε→0

δ

ρ− ε
= m �=∞, lim

ε→0
I
(
Sε

)
= I0 :=

〈
z1z2, z

2
2 , z

3
1

〉
.

ii) If lim
ε→0

δ

ε
=∞, we have two cases:

1) If lim
ε→0

ρ−ε

δβ
=k /∈{0,∞}, then lim

ε→0
I
(
Sε

)
=J0 :=

〈
z1z2,z

2
1+kz22 ,z

3
1

〉
.

2) If lim
ε→0

ρ− ε

δβ
= k ∈ {0,∞}, then limε I

(
Sε

)
= I0, if k = ∞ and

I1 :=
〈
z1z2, z

2
1 , z

3
2

〉
, if k = 0.

Proof. Since |ε| ) |β|,

z1z2 = lim
ε→0

(
z2 − ρz1

)[
z1 +

ε

β
z2 − ε

]
∈ lim inf

ε
Iε, and

z31 = lim
ε→0

z1(z1 − ρ)(z1 − ε) ∈ lim inf
ε

Iε.

Thus
〈
z1z2, z

3
1

〉
⊂ lim infε Iε.

Now we need to look at various cases separately.

i) Since lim
ε→0

δ

ρ− ε
= m �=∞ and the polynomial

Qε(z) :=
δε

ρ− ε
(δρ− β)z1 − βz2 −

δ

ρ− ε
(δρ− β)z21 + z22 ∈ I

(
Sε

)
,

we obtain z22 = lim
ε→0

Qε(z) ∈ lim infε Iε. So I0 :=
〈
z1z2, z

2
2 , z

3
1

〉
⊂ lim infε Iε. Since

�(I0) = 4, applying Theorem 2.5 lim
ε→0

I
(
Sε

)
= I0.

ii) Since 0 < |ρ| � 1
2 |ε|,

|ε|
2 � |ρ − ε| � |ε|, so if lim

ε→0

δ

ε
= ∞, lim

ε→0

ρ− ε

δ
=

lim
ε→0

ρ− ε

ε

ε

δ
= 0.
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We consider two subcases:

ii.1) Suppose lim
ε→0

ρ− ε

δβ
= k /∈ {0,∞}. Consider the polynomial

Pε(z) := −εz1 +
ρ− ε

δβ

β
δρ
β − 1

z2 + z21 −
ρ− ε

δβ

1
δρ
β − 1

z22 . (4.1)

We can check that Pε(z) ∈ I
(
Sε

)
. Since |δρ| ) |ρ| � 1

2 |ε| ) |β|, we deduce
δρ
β → 0. So

z21 + kz22 = lim
ε→0

Pε(z) ∈ lim inf
ε

Iε.

Thus J0 :=
〈
z1z2, z

2
1 + kz22 , z

3
1

〉
⊂ lim infε Iε. But the class [z21 ] = [z21 + kz22 ] −

k[z22 ] = −k[z22 ] ∈ O(Ω)/J0, thus O(Ω)/J0 = Span{[1], [z1], [z2], [z22 ]} and �(J0) =
4. Using Theorem 2.5, we conclude lim

ε→0
I
(
Sε

)
= J0.

ii.2) Suppose lim
ε→0

ρ− ε

δβ
= k ∈ {0,∞}. Analogously to (4.1), consider the

polynomial

Rε(z) :=
δβ

ε

(
δρ

β
− 1

)
ε

ρ− ε
εz1 − βz2 −

δβ

ε

(
δρ

β
− 1

)
ε

ρ− ε
z21 + z22 .

We can check that Rε(z) ∈ I
(
Sε

)
. If k =∞, then |δβ| ) |ρ− ε| ) |δ|, and

lim
ε→0

δβ

ε
= lim

ε→0

δβ

ρ− ε

ρ− ε

ε
= 0.

Thus z22 = lim
ε→0

Pε(z) ∈ lim infε Iε. Then I0 ⊂ lim infε Iε. Since �(I0) = 4, using

Theorem 2.5, we conclude lim
ε→0

I
(
Sε

)
= I0.

Finally, if k = 0, |ρ−ε| ) |δβ| ) |δ|. From (4.1) we deduce z21 = lim
ε→0

Pε(z) ∈
lim infε Iε. In addition, z32 = lim

ε→0
z2(z2 − δρ)(z2 − β) ∈ lim infε Iε.

Therefore I1 :=
〈
z1z2, z

2
1 , z

3
2

〉
⊂ lim infε Iε. We conclude as before. �
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Geodesics on Ellipsoids

Jens Hoppe

Dedicated to Mikael Passare and Joachim Reinhardt

Abstract. Various ways of describing geodesic motion on Ellipsoids are pre-
sented (intrinsic and constrained formulations) including Jacobi’s solution,
Weierstrass’ solution, and level set Liouville integrability.

1. Introduction

175 years ago [1] Jacobi solved the problem of determining shortest paths on
Ellipsoids.

Despite of many further contributions and articles related to the subject (see,
e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) most non-specialists would probably
find it difficult to learn about this fascinating topic. The presentation1 therefore
aims at being rather elementary, and explicit.

Let us start with the trivial problem of determining geodesics in RN , consid-
ering the length L of paths from A to B as a functional of parametrized curves
�x(t) connecting A = �x(α) and B = �x(β):

L =

∫ β

α

√
�̇x 2dt, (1.1)

whose stationary points satisfy

�̈x− �̇x

�̇x 2

(
�̇x · �̈x

)
= �0. (1.2)

Choosing the parameter t to be the arc length, i.e., �̇x 2 = 1, the reparametriza-
tion-invariant equation (1.2) reads

�̈x = 0, (1.3)

1Based on lectures given at Boğaziçi University, ETH, Koç University, KTH, and Sogang
University.
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corresponding to the Lagrangian

L0 :=
1

2
�̇x 2 (1.4)

whose integral, in contrast with (1.1), is not reparametrization-invariant.
Suppose now that the motion takes place on an M -dimensional hypersurface

Σ, i.e., described parametrically by

�x
(
u1(t), . . . , uM (t)

)
. (1.5)

As then �̇x = u̇a∂a�x, hence �̇x
2 = u̇a∂a�x · ∂b�x u̇b =: u̇agabu̇b, the expression for

the length becomes

L =

∫ β

α

√
u̇agabu̇bdt = L [ua, u̇a] , (1.6)

where gab
(
u1, . . . , uM

)
could also be thought as intrinsically given, rather than

being induced from RN as ∂a�x · ∂b�x.
Varying (1.6) gives

üc + γc
abu̇

au̇b = −u̇c
√
u̇agabu̇b∂t

1√
u̇agabu̇b

= −1

2
u̇c∂t ln

(
u̇agabu̇

b
)

(1.7)

with

γc
ab :=

1

2
gcd (∂agdb + ∂bgad − ∂dgab) . (1.8)

Again the (reparametrization-invariant) equations simplify significantly by

choosing �̇x 2 = u̇agabu̇b (cf. (1.6)) to be constant, i.e., the parameter t to be, up to
constant rescaling, the arc length of the curve (making the r.h.s. of (1.7) vanish).

With this understanding, the coupled ODE:s

üc + γc
abu̇

au̇b = 0, a, b, c = 1, . . . ,M, (1.9)

are usually referred to as ‘geodesic equations’ for a Riemannian manifold M
parametrized locally by parameters ua(a = 1, . . . ,M). In case

M = ΣM (ϕ) :=
{
�x ∈ RM+1

∣∣ϕ (�x) = 0
}
, (1.10)

one could alternatively take

L =
1

2
�̇x 2 − λϕ (�x) , (1.11)

with Lagrangian equations of motion

�̈x = −λ�∇ϕ, ϕ (�x(t)) = 0, (1.12)

where λ can be obtained by noting that (differentiating ϕ (�x(t)) = 0 twice w.r.t. t)

�̇x · �∇ϕ (�x(t)) = 0, �̈x · �∇ϕ+ ẋiẋj∂2
ijϕ = 0, (1.13)

the first ensuring �̇x · �̈x = 0, the second implying

λ = − �̈x · �∇ϕ

(∇ϕ)
2 = +

ẋiẋj∂2
ijϕ

(∇ϕ)
2 , (1.14)



Geodesics on Ellipsoids 231

so that

�̈x = −
ẋiẋj∂2

ijϕ

(∇ϕ)
2

�∇ϕ (1.15)

describes free motion on ΣM (note that �∇ϕ is normal to ΣM so that there is no
tangential acceleration, hence no tangential force).

2. Axially symmetric surfaces and Hamiltonian formulation

Before discussing how to solve (1.9), resp. (1.15), for the case of an ellipsoid, let
us (Exercise I) note that for rotationally symmetric two-dimensional surfaces,

�x(u, v) =

⎛⎝f(u) cos v
f(u) sin v

h(u)

⎞⎠ , (2.1)

(1.9) can easily be solved by quadrature, as (1.9)a=2 (calculating gab and γc
ab

from (2.1)),

v̈ + 2
f ′

f
u̇v̇ = 0 (2.2)

integrates to

v̇ =
const.

f2 (u(t))
=:

l

f2
, (2.3)

allowing one to eliminate v from (1.9)a=1, resp. (simpler!)

u̇agabu̇
b =

(
f ′2 + h′2) u̇2 + f2v̇2

!
= const. =: 2E > 0. (2.4)

Inserting (2.3) into (2.4) yields u(t) by quadrature:

±
∫

du

√
f ′2 + h′2

2E − l2

f2

= t− t0. (2.5)

As Exercise II, note that (1.9) can be formulated in Hamiltonian form by
considering

H =
1

2
πag

abπb = H
[
u1, . . . , uM , π1, . . . , πM

]
(2.6)

with canonical Poisson structure, i.e.,

u̇a =
δH

δπa
= gabπb

π̇c = −
δH

δuc
= −1

2
πa∂cg

abπb =
1

2
πag

a′a∂cga′b′g
b′bπb =

1

2
u̇a (∂cgab) u̇

b.

(2.7)
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3. Jacobi’s solution

One way of stating Jacobi’s seminal result is that for an ellipsoid, (2.6) separates in
elliptic coordinates – which Jacobi originally [1838] defined (for M = 2) as angles
ϕ and ψ in

x1 =

√
α1

α3 − α1
sinϕ

√
α2 cos2 ψ + α3 sin

2 ψ − α1

x2 =
√
α2 cosϕ sinψ

x3 =

√
α3

α3 − α1
cosψ

√
α3 − α1 cos2 ϕ− α2 sin

2 ϕ

(3.1)

and then, for general M , as (apart from u0 = 0) the zeros of

f(u) :=

N∑
i=1

x2
i

αi − u
− 1 =: −

∏M
A=0

(
uA − u

)∏M+1
i=1 (αi − u)

; (3.2)

that f fully factorizes into real factors, with

α1 < u1 < α2 < · · · < uM < αM+1=N (3.3)

is easily seen by noting that

f ′(u) = +

N∑
i=1

x2
i

(αi − u)2
> 0. (3.4)

The (elliptic coordinates) ua (a = 1, . . . ,M) coordinatize the M -dimensional
ellipsoid

EM :=

{
�x ∈ RM+1

∣∣∣∣∣
M+1=N∑

i=1

x2
i

αi
= 1

}
. (3.5)

By a simple residue-argument

x2
i =

∏
A

(
αi − uA

)∏
j �=i (αi − αj)

, (3.6)

hence

4d�x 2 =
∑
i

x2
i

(
2dxi

xi

)2

=
∑
i

x2
i

(
−
∑
A

duA

αi − uA

)2

=
∑
i,A,B

duAduB

(αi − uA) (αi − uB)

∏
C (αi − uC)∏
j �=i (αi − αj)

=: 4gABdu
AduB.

(3.7)

Jacobi then used (four times!) that for any distinct numbers z1, . . . , zJ>1

J∑
j=1

zsj∏
k( �=j) zj − zk

=

⎧⎪⎨⎪⎩
0 for s = 0, . . . , J − 2,

1 for s = J − 1,∑
zj for s = J ;

(3.8)
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firstly (easy!) showing that the uA are orthogonal coordinates, i.e., gA �=B = 0
(the factors αi − uA and

(
αi − uB

)
can then be cancelled in (3.7), leaving in the

numerator a polynomial of degree N − 2); secondly (writing, for A = B, each
factor

(
αi − uC �=A

)
as

(
αi − uA

)
+
(
uA − uC

)
and then having to always pick the

second term, in order to avoid getting zero according to (3.8)zi=αi
) to show that

gAA =
1

4

∑
i

∏
C �=A

(
uA − uC

)
(αi − uA)

∏′
j (αi − αj)

; (3.9)

thirdly (with J = N + 1, zi = αi, zN+1 = uA) to conclude that

4gAA = −
∏

C �=A

(
uA − uC

)∏
i (u

A − αi)

(A=a �=0)
= −ua

∏′
c( �=a) (u

a − uc)∏
i (u

a − αi)
. (3.10)

Hence

H = −2
M∑
a=1

πa
q (ua)∏

c �=a (u
a − uc)

πa

with

q(u) :=
N∏
i=1

(u− αi)

u
(3.11)

describes geodesics on EM ; the simplest non-trivial case being N = 3, resp.

H = 2
π2
1q

(
u1
)

u2 − u1
− 2

π2
2q

(
u2
)

u2 − u1
(3.12)

(note that q
(
u1
)
> 0, while q

(
u2
)
< 0).

The celebrated Hamilton–Jacobi method then solves the problem by first re-
placing the πa by

∂S
∂ua (transformingH = E into a PDE) and making the separation

Ansatz S =
∑N−1

a=1 Sa (u
a), which indeed will produce solutions S depending on

N − 1 free constants β1, . . . , βN−3, βN−2 = β, βN−1 = E, provided the Sa satisfy

2S′
a (u

a) q (ua) = E
(
β + β1u

a + · · ·+ βN−3 (u
a)

N−3
+ (−)N (ua)

N−2
)

=: TN−2 (u
a;β1, . . . , βN−3, βN−2 = β, βN−1 = E) ;

(3.13)

resp.

±dSa = dua

√
TN−2 (ua)

2q (ua)

(N=3)
=

√
E

2

√
(β − ua)ua

(ua − α1) (ua − α2) (ua − α3)
dua, (3.14)

hence

S =

√
E

2

N−1∑
a=1

±
∫ ua

√
1
ETN−2(u)

q(u)
du; (3.15)

∂S
∂β = const. (in accordance with action-angle coordinates) and (N = 3)

u1 = α1 cos
2 ϕ+ α2 sin

2 ϕ, u2 = α3 sin
2 ψ + α2 cos

2 ψ (3.16)

give Jacobi’s celebrated solution [1] (note that his β is α2 − β here).
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4. Weierstrass’ solution and conserved quantities

A simple and slightly more direct derivation (including relatively explicit formulae
for the xi as ratios of elliptic θ-functions) was presented by Weierstrass [3] (in-
troducing conserved quantities that were discovered again 100 years later [5]). He
noted that, as a consequence of the equations of motion (cf. (1.15))

ẍi = −

∑
k

ẋ 2
k

αk∑
l

x 2
l

αl

xi

αi
(4.1)

(
1 +

∑
i

x2
i

u− αi

)(∑
k

ẋ 2
k

u− αk

)
−
(∑

l

xlẋl

u− αl

)2

=
∑
i

Hi

u− αi
=

W (u)

Q(u)
(4.2)

will be time-independent, hence defining N − 1 constants of the motion via

W (u) = cu
N−2∏
α=1

(u− δα),

Q(u) =

N∏
i=1

(u − αi).

(4.3)

In accordance with (cf. (3.2))

P (u) :=

(
1 +

∑
i

x2
i

u− αi

)∏
i

(u− αi) =: u

N−1∏
a=1

(u− ua) , (4.4)

Ṗ
∣∣∣
u=ua

= − uau̇a
∏
c

′
(ua − uc) , (4.5)

while (4.2), being of the form

P

Q

∑
k

ẋ2
k

u− αk
− 1

4

Ṗ 2

Q2
=

W

Q
,

implying

Ṗ (ua) = ±2
√
−QW (ua) =: ±2

√
R, (4.6)

one deduces that

∓ uadua

2
√
−QW

=
dt∏′

c (u
a − uc)

, (4.7)

hence (multiplying with (ua)
s−1

, and using (3.8))

N−1∑
a=1

∓
∫ ua(t) us√

R(u)
du =

{
0 for s = 1, 2, . . . , N − 2,

2(t− t0) for s = N − 1,
(4.8)

with R(u) = −cu
∏N

i=1 (u− αi)
∏N−2

α=1 (u − δα) being a time-independent polyno-
mial of degree 2N − 1.
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Note that for N = 3 (c > 0, u1 − δ1 < 0) the integrability also follows from
the (once observed [14] ‘trivial’) time-independence of

I =

N∑
i=1

x2
i

α2
i

N∑
k=1

ẋ2
k

αk
. (4.9)

5. Hamiltonian formulation with constraints

Among Hamiltonian treatments using the constrained embedding coordinates xi(t)
rather than the intrinsic ua(t), let me first mention the one using Dirac’s theory
of constraints: consider

ϕ :=
1

2

(∑
i

x2
i

αi
− 1

)
=: ϕ1, π :=

∑
i

xipi
αi

=: ϕ2,

{ϕ, π} =
∑
i

x2
i

α2
i

=: J,

(5.1)

leading to the Dirac bracket

{f, g}D := {f, g} − {f, ϕa}χab {ϕb, g}

= {f, g}+ {f, ϕ} 1

J
{π, g} − {f, π} 1

J
{ϕ, g} ,

(5.2)

as the inverse of the constraint matrix(
χab := {ϕa, ϕb}

)
=

(
0 J
−J 0

)
is

1

J

(
0 −1
1 0

)
.

Exercise III (cf. [12]):

{xi, xj}D = 0, {xi, pj}D = δij −
1

J

xixj

αiαj
, {pi, pj}D = − Lij

αiαjJ
,

Lij := xipj − xjpi.

(5.3)

Instead of using (5.3) to (tediously) show the Dirac–Poisson commutativity
(i.e., on the constrained phase space) of the

Fi = p2i +
∑
j

′ L2
ij

αi − αj
(5.4)

it is much simpler to first show (Exercise IV)

{Fi, Fj} = 0 (5.5)

and then note that due to {Fi, ϕ} ≈ 0

{Fi, Fj}D = 0 (5.6)

trivially follows.
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6. Level set Liouville integrability

Let me finish this excursion with a Hamiltonian description communicated to me
by Martin Bordemann [15]: Let π be the projection operator onto the normal of
E, resp.

Qij = δij −

xixj

αiαj∑
l

x2
l

α2
l

(6.1)

the projection onto the tangent space of the ellipsoid. To verify that

H =
1

2

〈
�p,Q�p

〉
=

1

2

〈
�p, �p

〉
− 1

2

〈
�p,A�x

〉2〈
�x,A2�x

〉 , Aij := δij
1

αi
, (6.2)

describes geodesic motion on E one can either prove that

�̇x = Q�p, �̇p = −1

2

〈
�p, �∇Q�p

〉
(6.3)

implies Q�̈x = �0 (for this one can prove that for the general case of several con-

straints [15] ϕ1 (�x) = 0, . . . , ϕk (�x) = 0 defining a submanifold, hαβ = �∇ϕα
�∇ϕβ

pos. def.,

πij := hαβ∂iϕα∂jϕβ , (6.4)

that Qmi (∂iQkj)Qjn is symmetric in (m ↔ n)); or (Exercise V) explicitly calcu-

late �̈x from

�̇x = �p−
〈
�p,A�x

〉〈
�x,A2�x

〉A�x = �p− γA�x,

�̇p =

〈
�p,A�x

〉〈
�x,A2�x

〉A�p−
〈
�p,A�x

〉2〈
�x,A2�x

〉2A2�x = γA�p− γ2A2�x.

(6.5)

With many terms canceling, one arrives at

�̈x =

(
−

〈
�p,A�p

〉〈
�x,A2�x

〉 + 2

〈
�p,A�x

〉〈
�x,A2�p

〉〈
�x,A2�x

〉2 −
〈
�p,A�x

〉2〈
�x,A2�x

〉〈�x,A3�x
〉)

A�x = −γ̇A�x. (6.6)

Inserting �̇x = �p− γA�x (cf. (6.5)) into
〈
�̇x, A�̇x

〉
, (4.1) becomes (6.6).

To then show the integrability of (6.2), a canonical transformation

�̃x =
√
A�x, p =

√
A�̃p

is made in [15], with

H(�x, �p) = H̃
(
�̃x, �̃p

)
=

1

2

〈
�̃p, A�̃p

〉〈
�̃x, A�̃x

〉
−
〈
�̃p, A�̃x

〉2〈
�̃x, A�̃x

〉 =
1

2

Ȟ(�̃x, �̃p) − 2E
〈
�̃x, A�̃x

〉〈
�̃x, A�̃x

〉 + E

= Ĥ
(
�̃x, �̃p

)
+ E,

(6.7)
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so that H(�x, �p) = E = H̃(�̃x, �̃p) corresponds to Ĥ = 0, and then noted [15] that
generally

H(�x, �p) =
G(�x, �p)

Q(�x, �p)
on G = 0 = H

for positive Q generates the same dynamics as G.
Finally,

G(�x, �p) =
〈
�p,A�x

〉〈
�x,A�x

〉
−
〈
�p,A�x

〉2 − 2E
〈
�x,A�x

〉
= −

∑
i

Gi

αi
, (6.8)

with Poisson commuting

Gi := 2Ex2
i +

∑
j

′ L2
ij

αi − αj
(6.9)

is Liouville-integrable.
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Welschinger Invariants Revisited

Ilia Itenberg, Viatcheslav Kharlamov and Eugenii Shustin

To the memory of Mikael Passare, remarkable
mathematician and beautiful personality

Abstract. We establish the enumerativity of (original and modified) Welsch-
inger invariants for every real divisor on any real algebraic del Pezzo surface
and give an algebro-geometric proof of the invariance of that count both up
to variation of the point constraints on a given surface and variation of the
complex structure of the surface itself.

- My govorim s toboĭ na raznyh �zykah,
kak vsegda, - otozvals� Voland,

- no vewi, o kotoryh my govorim,
ot �togo ne men��ts�.

M. Bulgakov. Master i Margarita.∗

Introduction

The discovery of Welschinger invariants [27, 28] has revolutionized real enumer-
ative geometry. Since then much effort was devoted to the numerical study of
Welschinger invariants, especially in the case of real del Pezzo surfaces, which al-
lowed one to prove long time stated conjectures on existence of real solutions in
corresponding enumerative problems and to observe a new, unexpected phenom-
ena of abundance (see [2, 12, 14, 16, 17, 21]); it also led to introducing certain
modified Welschinger invariants (see [16]). This development raised several natu-
ral questions: first, for which real del Pezzo surfaces the Welschinger invariants are
strongly enumerative (i.e., provided by a count, with weights ± 1, of real ratio-
nal curves in a given divisor class, passing through a suitable number of real and
complex conjugated points) and, second, to what extent such a count is invariant
under deformations of the surface. The enumerative nature of the invariants in the

∗ “We speak different languages, as usual,” responded Woland, “but this does not change the
things we speak about.”- M. Bulgakov. The Master and Margarita.
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symplectic setting is the key point of [28], but it does not imply their enumerative
nature in the algebro-geometric setting because of stronger genericity assumptions.
The deformation invariance in the symplectic setting implies the deformation in-
variance in the algebro-geometric setting, but in [28] the symplectic deformation
invariance is declared without proof. Therefore, our principal motivation has been
to answer the question on algebro-geometric enumerativity of Welschinger invari-
ants on real del Pezzo surfaces, and to prove the deformation invariance in the
algebro-geometric setting. Our second motivation is an expectation that a good
understanding of enumeration of real rational curves on real del Pezzo surfaces
can help to extend the results to other types of surfaces and to curves of higher
genus (such an expectation is confirmed now by [18, 24]). The algebro-geometric
framework can be also helpful in the study of algorithmic and complexity aspects.

In most of the papers on the subject, the algebro-geometric enumerativity
of Welschinger invariants on del Pezzo surfaces is considered as known. Indeed, it
follows from enumerativity of Gromov–Witten invariants for such surfaces, and in
the literature on Gromov–Witten invariants the latter enumerativity is considered
as known. However, a careful analysis, see Lemma 9, has shown that there is one,
and luckily only one, exception (apparently not mentioned in the literature): that
is the case of del Pezzo surfaces of canonical degree 1 and D = −KΣ; for any other
pair of a real del Pezzo surface and a real divisor on it, the Welschinger invariants,
original and modified, are strongly enumerative (in the above exceptional case, the
number of solutions is still finite, but certain solutions may acquire some nontrivial
multiplicity).

To prove the deformation invariance, we split the task into two parts. First, we
fix the complex structure and vary the position of the points. Here, our strategy
is close to that of the original proof of Welschinger in [28], but uses algebro-
geometric tools instead of symplectic ones. In fact, already some time ago in [15]
we have undertaken an attempt to give a purely algebro-geometric proof of such an
invariance. However, that proof appears to be incomplete, since one type of local
bifurcations in the set of counted curves was missing; it shows up for del Pezzo
surfaces of canonical degree 1 and D = −2KΣ (see Lemma 11 (i) below, which
states, in particular, that the closure of the one-dimensional family of rational
curves in |−2KΣ| contains non-reduced curves). To the best of our knowledge, up to
now this bifurcation has not been addressed in the literature, but it is unavoidable
even in the symplectic setting (contrary to [28, Remark 2.12]). This step is summed
up in Proposition 4, which states the invariance of the Welschinger count under
the variation of points for any real divisor on each real del Pezzo surface.

The crucial point of the next step is the invariance under crossing the walls
that correspond to, so-called, uninodal del Pezzo surfaces. Here, our proof is based
on a real version of the Abramovich–Bertran–Vakil formula (note that adapting
the formula to the symplectic setting one can prove the symplectic deformation
invariance following the same lines). In addition, as in the study of the enumera-
tivity, there appears a case not to miss and to investigate separately, here this is
the case of del Pezzo surfaces of canonical degree 1 and D = −KΣ.
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The paper is organized as follows. In Section 1 we recall a few basic facts con-
cerning del Pezzo surfaces and their deformations, introduce Welschinger invariants
in their modified version and formulate the main results. Section 2 develops tech-
nical tools needed for the proof of the main results. There, we study moduli spaces
of stable maps of pointed genus zero curves to del Pezzo surfaces and uninodal
del Pezzo surfaces, describe generic elements of these moduli spaces and generic
elements of the codimension one strata. We show also that Welschinger numbers
extend by continuity from the case of immersions to the case of birational stable
maps with arbitrary singularities. Section 3 is devoted to the proof of the main
results.

1. Definitions and main statements

1.1. Surfaces under consideration

Over C, a del Pezzo surface is either (P1)2 or P2 blown up at 0 ≤ k ≤ 8 points.
Conversely, blowing up 0 ≤ k ≤ 8 points of P2 yields a del Pezzo surface if and
only if no 3 points lie on a straight line, no 6 lie on a conic, and no 8 points lie on
a rational cubic having a singularity at one of these 8 points.

Del Pezzo surfaces of degree d = K2 = 9− k ≥ 5 have no moduli. If d = 9 or
7 ≥ d ≥ 5, then there is only one, up to isomorphism, del Pezzo surface of degree d
and it can be seen as a blown up P2. If d = 8, then there are 2 isomorphism classes:
(P1)2 and P2 blown up at a point. The latter two surfaces are not deformation
equivalent. For 4 ≥ d ≥ 1 the moduli space of del Pezzo surfaces of degree d = 9−k
is an irreducible (2k − 8)-dimensional variety.

All del Pezzo surfaces of given degree d �= 8 are deformation equivalent to
each other, and, for our purpose, it will be more convenient to use, instead of the
moduli spaces, the deformation spaces, that is, to fix in each deformation class one
of the del Pezzo surfaces (say, a blow up of P2 at a certain generic collection of
points) and consider the Kodaira–Spencer–Kuranishi space, i.e., the space of all
complex structures on the underlying smooth 4-manifold factorized by the action
of diffeomorphisms isotopic to identity. Naturally, we awake this space only when
d ≤ 4. We denote it by Dd. Del Pezzo surfaces of degree d form in Dd an open
dense subset, which we denote by DDP

d .

The problem of deformations of complex structures on rational surfaces is
not obstructed, since H2(X, TX) = 0 for any smooth rational surface X (here and
further on, we denote by TX the tangent sheaf). In addition, for degree d ≤ 4 del
Pezzo surfaces as well as for any generic smooth rational surface X with K2

X ≤ 4,
we have H0(X, TX) = 0, so that at such points the Kodaira–Spencer–Kuranishi
space is smooth (but not necessarily Hausdorff).

In fact, the only properties of this space which we use further on are the
following. We call a surface Σ ∈ Dd uninodal del Pezzo if it contains a smooth
rational (−2)-curve EΣ, and −KΣC > 0 for each irreducible curve C �= EΣ (in
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particular, C2 ≥ −1). For d ≤ 4, denote by Dd(A1) ⊂ Dd the subspace formed by
uninodal del Pezzo surfaces.

Proposition 1. All but finite number of surfaces in a generic one-parameter Ko-
daira–Spencer family of rational surfaces with 1 ≤ K2

Σ ≤ 4 are unnodal (i.e., del
Pezzo), while the exceptional members of the family are uninodal del Pezzo.

Proof. Let us denote by TX‖D the subsheaf of the sheaf TX generated by vectors
fields tangent to D, and by N ′

D/X their quotient, so that we obtain the following

short exact sequence of sheafs:

0→ TX‖D → TX → N ′
D/X → 0.

According to the well-known theory of deformations of pairs (see [22, Section
3.4.4]), and due to the long exact cohomology sequence associated to the above
short sequence, it is sufficient to show that h1(N ′

D/X) ≥ 2 if D is either a rational

irreducible curve withD2 ≤ −3 orD = D1∪D2 whereD
2
i ≤ −2. In the first case, it

follows from Serre–Riemann–Roch duality. In the second case, from the exactness
of the fragment H0(ND2/X) → H1(ND1/X) → H1(N ′

D/X) → H1(ND2/X) of the

long cohomology sequence associated with the exact sequence of sheaves 0 →
ND1/X → N ′

D/X → ND2/X → 0.† �

By a real algebraic surface we understand a pair (Y, c), where Y is a complex
algebraic surface and c : Y → Y is an antiholomorphic involution. The classi-
fication of minimal real rational surfaces and the classification of real del Pezzo
surfaces are well known: they are summarized in the two propositions below, re-
spectively (see, e.g., [7, Theorems 6.11.11 and 17.3]).

Proposition 2. Each minimal real rational surface Y is one of the following:

(1) P2 with its standard real structure (d = 9), the real part RY of Y is homeo-
morphic to RP2.

(2) P1×P1 with one of its four nonequivalent real structures (d = 8): RY = (S1)2,
RY = S2, and two structures with RY = ∅;

(3) rational geometrically ruled surfaces Fa, a ≥ 2, with RY = #2RP2 and the
standard real structure, if a is odd, and with RY = (S1)2 or ∅ and one of the
two respective nonequivalent structures, if a is even (d = 8);

(4) real conic bundles over P1 with 2m ≥ 4 reducible fibers, which are all real
and consist of pairs of complex conjugate exceptional curves (d = 8 − 2m),
RY = mS2;

(5) del Pezzo surfaces of degree d = 1 or 2: RY = RP2 , 4S2, if d = 1, and
RY = 3S2 or 4S2, if d = 2.

†In both cases, we use the equality H2(TX‖D) = 0, which can be deduced, for example,

from Serre duality, H2(TX‖D) = (H0(Ω1
X(logD) ⊗ K))∗, and Bogomolov–Sommese vanishing

H0(Ω1
X(logD)⊗K) = 0; the latter holds in our case since X is a rational surface with K2 ≥ 1,

and thus its anticanonical Iitaka–Kodaira dimension is equal to 2.
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Proposition 3. With one exception, a real del Pezzo surface (Y, c) of degree d ≥ 1
is determined up to deformation by the topology of RY . In the exceptional case
d = 8 and RY = ∅, there are two deformation classes, distinguished by whether
Y/c is Spin or not.

The topological types of RY are the following extremal types and their deriva-
tives, which are obtained from the extremal ones by sequences of topological Morse
simplifications of RY :

d = 9 RY = RP2;

d = 8 RY = #2RP2 or (S1)2;

d = 7 RY = #3RP2;

d = 6 RY = #4RP2 or (S1)2;

d = 5 RY = #5RP2;

d = 4 RY = #6RP2, (S1)2, or 2S2;

d = 3 RY = #7RP2 or RP2 , S2;

d = 2 RY = #8RP2, 2RP2, #2RP2 , S2, (S1)2, or 4S2;

d = 1 RY = #9RP2, #2RP2 , RP2, #3RP2 , S2, or RP2 , 4S2.

1.2. Main results

Let us consider a real del Pezzo surface (Σ, c), and assume that its real point
set RΣ = Fix(c) is nonempty. Pick a real divisor class D ∈ Pic(Σ), satisfying
−DKΣ > 0 and D2 ≥ −1, and put r = −DKΣ−1. Fix an integer m such that 0 ≤
2m ≤ r and introduce a real structure cr,m on Σr that maps (w1, . . . , wr) ∈ Σr to
(w′

1, . . . , w
′
r) ∈ Σr with w′

i = c(wi) if i > 2m, and (w′
2j−1, w

′
2j) = (c(w2j), c(w2j−1))

if j ≤ m. With respect to this real structure a point w = (w1, . . . , wr) is real, i.e.,
cr,m-invariant, if and only if wi belongs to the real part RΣ of Σ for i > 2m and
w2j−1, w2j are conjugate to each other for j ≤ m. In what follows we work with an
open dense subset Pr,m(Σ) of RΣr = Fix cr,m consisting of cr,m-invariant r-tuples
w = (w1, . . . , wr) with pairwise distinct wi ∈ Σ.

Observe that, if a real irreducible rational curve C ∈ |D| can be traced
through all the points wi of w and 2m < r = −CKΣ − 1, the real points of w
must lie on the unique one-dimensional connected component of the real part of C,
hence must belong to the same connected component of RΣ. In the case 2m = r,
each real rational curve C ∈ |D| passing through a collection of m pairs of complex
conjugate points of Σ has an odd intersection with the real divisor KΣ, hence C
has a homologically non-trivial real part in RΣ.

Thus, we fix a connected component F of RΣ and put

Pr,m(Σ, F ) = {w = (w1, . . . , wr) ∈ Pr,m(Σ) : wi ∈ F for i > 2m } .

Denote by M0,r(Σ, D) the set of isomorphism classes of pairs (ν : P1 → Σ,p),
where ν : P1 → Σ is a holomorphic map such that ν∗(P1) ∈ |D|, and p is a
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sequence of r pairwise distinct points in P1. Put

R(Σ, D, F,w) = {[ν : P1 → Σ,p] ∈ M0,r(Σ, D) :

ν ◦ Conj = c ◦ ν, ν(RP1) ⊂ F, ν(p) = w} ,
where Conj : P1 → P1 is the complex conjugation. If either the degree of Σ is
greater than 1, or D �= −KΣ, then for any generic r-tuple w ∈ Pr,m(Σ, F ), the
set R(Σ, D, F,w) is finite and presented by immersions (see Lemma 9). In such a
case, pick a conjugation-invariant class ϕ ∈ H2(Σ \ F ;Z/2) and put

Wm(Σ, D, F, ϕ,w) =
∑

[ν,p]∈R(Σ,D,F,w)

(−1)C+◦C−+C+◦ϕ , (1)

where C± = ν(P1±) with P1
+,P

1− being the two connected components of P1 \RP1.
If the degree of Σ is equal to 1 and D = −KΣ, then for any generic r-tuple

w ∈ Pr,m(Σ, F ) and any conjugation-invariant class ϕ ∈ H2(Σ \ F ;Z/2) we define
the number Wm(Σ, D, F, ϕ,w) by the formula (1) retaining in it only the classes
[ν,p] presented by immersions.

If ϕ = 0, we get the original definition of Welschinger [27, 28].

Proposition 4. The number Wm(Σ, D, F, ϕ,w) does not depend on the choice of a
generic element w ∈ Pr,m(Σ, F ).

Proposition 4 is in fact a special case of more general deformation invari-
ance statements. Consider a smooth real surface X0 with RX0 �= ∅, a real divisor
class D0 ∈ Pic(X0), a connected component F0 of RX0, a conjugation-invariant
class ϕ0 ∈ H2(X0 \ F0;Z/2), and a conjugation invariant collection w0 of points
in X0. By an elementary deformation of the tuple (X0, D0, F0, ϕ0) (respectively,
(X0, D0, F0, ϕ0,w0)) we mean a one-parameter smooth family of smooth surfaces
Xt, t ∈ [−1, 1], extended to a continuous family of tuples (Xt, Dt, Ft, ϕt) (respec-
tively, (Xt, Dt, Ft, ϕt,wt)). Two tuples T = (X,D,F, ϕ) and T ′ = (X ′, D′, F ′, ϕ′)
are called deformation equivalent if they can be connected by a chain T = T (0),
. . . , T (k) = T ′ so that any two neighboring tuples in the chain are isomorphic to
fibers of an elementary deformation.

Proposition 5. Let (Σt, Dt, Ft, ϕt,wt), t ∈ [−1, 1], be an elementary deformation
of tuples such that all surfaces Σt, t �= 0, belong to DDP

d for some 1 ≤ d ≤ 9, and
the collections w±1 belong to Pr,m(Σ±1, F±1) and are generic. Then,

Wm(Σ−1, D−1, F−1, ϕ−1,w−1) = Wm(Σ1, D1, F1, ϕ1,w1) . (2)

We skip w in the notation of the numbers Wm(Σ, D, F, ϕ,w) and call them
Welschinger invariants.

Proposition 5 plays a central role in the proof of the following statement.

Theorem 6. If tuples (Σ, D, F, ϕ) and (Σ′, D′, F ′, ϕ′) are deformation equivalent,
then Wm(Σ, D, F, ϕ) = Wm(Σ′, D′, F ′, ϕ′).

Proofs of Propositions 4 and 5, as well as the proof of Theorem 6, are found
in Section 3.
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2. Families of rational curves on rational surfaces

2.1. General setting

Let Σ be a smooth rational surface, and D ∈ Pic(Σ) a divisor class. Denote by

M0,n(Σ, D) the space of the isomorphism classes of pairs (ν : Ĉ → Σ,p), where

Ĉ is either P1 or a connected reducible nodal curve of arithmetic genus zero,
ν∗Ĉ ∈ |D|, p = (p1, . . . , pn) is a sequence of distinct smooth points of Ĉ, and each

component of Ĉ contracted by ν contains at least three special points. This moduli
space is a projective scheme (see [9]), and there are natural morphisms

ΦΣ,D :M0,n(Σ, D)→ |D|, [ν : Ĉ → Σ,p] �→ ν∗Ĉ ,

Ev :M0,n(Σ, D)→ Σn, [ν : Ĉ → Σ,p] �→ ν(p) .

For any subscheme V ⊂ M0,n(Σ, D), define the intersection dimension idimV of
V as follows:

idimV = dim(ΦΣ,D × Ev)(V) ,

where the latter value is the maximum over the dimensions of all irreducible com-
ponents.

Put

Mbr
0,n(Σ, D) = {[ν : P1 → Σ,p] ∈ M0,n(Σ, D) : ν is birational onto ν(P1)},

Mim
0,n(Σ, D) = {[ν : P1 → Σ,p] ∈ M0,n(Σ, D) : ν is an immersion} .

Denote by Mbr
0,n(Σ, D) the closure of Mbr

0,n(Σ, D) in M0,n(Σ, D), and introduce
also the space

M′
0,n(Σ, D) = {[ν : Ĉ → Σ,p] ∈Mbr

0,n(Σ, D) : Ĉ & P1} .

The following statement will be used below.

Lemma 7. For any element

[ν : P1 → Σ,p] ∈ Mbr
0,n(Σ, D) such that ν(p) ∩ Sing (ν(P1)) = ∅,

the map ΦΣ,D × Ev is injective in a neighborhood of that element, and, for the
germ at [ν : P1 → Σ,p] of any irreducible subscheme V ⊂Mbr

0,n(Σ, D), we have

dimV = idimV .

Proof. The inequality idimV ≤ dimV is immediate from the definition. The oppo-
site inequality and the injecitvity of ΦΣ,D × Ev follow from the observation that,
for an irreducible rational curve C ∈ |D| and a tuple z ⊂ C \Sing (C) of n distinct
points, the normalization map ν : P1 → C and the lift p = ν−1(z) represent the
unique preimage of (C, z) ∈ |D| × Σn in Mbr

0,n(Σ, D). �
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2.2. Curves on del Pezzo and uninodal del Pezzo surfaces

We establish here certain properties of the spaces Mim
0,0(Σ, D), Mbr

0,0(Σ, D), and

Mbr
0,0(Σ, D), notably, compute dimension and describe generic members of these

spaces as well as of some divisors therein. These properties basically follow from
[10, Theorem 4.1 and Lemma 4.10]. However, the cited paper considers the plane
blown up at generic points, whereas we work with arbitrary del Pezzo or uninodal
del Pezzo surfaces. For this reason, we supply all claims with complete proofs.

Through all this section we use the notation

r = −DKΣ − 1.

Lemma 8. If Σ is a smooth rational surface and −DKΣ > 0, then the space
Mim

0,0(Σ, D) is either empty, or a smooth variety of dimension r.

Proof. Let [ν : P1 → Σ] ∈ Mim
0,0(Σ, D). The Zariski tangent space to Mim

0,0(Σ, D)

at [ν : P1 → Σ] can be identified with H0(P1,N ν
P1), where N ν

P1 = ν∗T Σ/T P1 is
the normal bundle. Since

degN ν
P1 = −DKΣ − 2 ≥ −1 > (2g − 2)

∣∣
g=0

= −2 , (3)

we have

h1(P1,N ν
P1) = 0 , (4)

and hence Mim
0,0(Σ, D) is smooth at [ν : P1 → Σ] and is of dimension

h0(P1,N ν
P1) = degN ν

P1 − g + 1 = −DKΣ − 1 = r . (5)

�

Lemma 9.

(1) Let Σ ∈ DDP
d and −DKΣ > 0. Then, the following holds:

(i) The space Mbr
0,0(Σ, D) is either empty or a variety of dimension r, and

idim(M0,0(Σ, D) \Mbr
0,0(Σ, D)) < r.

(ii) If either d > 1 or D �= −KΣ, then Mim
0,0(Σ, D) ⊂ Mbr

0,0(Σ, D) is an
open dense subset.

(iii) There exists an open dense subset U1 ⊂ DDP
1 such that, if Σ ∈ U1, then

M0,0(Σ,−KΣ) consists of 12 elements, each corresponding to a rational
nodal curve.

(2) Let d ≤ 4. There exists an open dense subset Ud(A1) ⊂ Dd(A1) such that if
Σ ∈ Ud(A1) and −DKΣ > 0, then

(i) idimM0,0(Σ, D) ≤ r;

(ii) a generic element [ν : P1 → Σ] of any irreducible component V of
M0,0(Σ, D) such that idimV = r, is an immersion, and the divisor
ν∗(EΣ) consists of DEΣ distinct points.



Welschinger Invariants Revisited 247

Proof. Let Σ ∈ DDP
d ∪ Dd(A1). All the statements in the case of an effective

−KΣ − D immediately follow from elementary properties of plane lines, conics,
and cubics. Thus, we suppose that −KΣ −D is not effective.

Let V1 be an irreducible component of Mbr
0,0(Σ, D) and [ν : P1 → Σ] its

generic element. Then by [19, Theorem II.1.2]

dimHom(P1,Σ)ν ≥ −DKΣ + 2χ(OP1) = −DKΣ + 2 . (6)

Reducing by the automorphisms of P1, we get

dimV1 ≥ −DKΣ + 2− 3 = r . (7)

Hence, in view of Lemma 8, to prove that dimMbr
0,0(Σ, D) = r andMim

0,0(Σ, D) is

dense inMbr
0,0(Σ, D), it is enough to show that dim(Mbr

0,0(Σ, D)\Mim
0,0(Σ, D)) < r.

Notice, first, that, in the case r = 0, the curves C ∈ ΦΣ,D(Mbr
0,0(Σ, D)) are

nonsingular due to the bound

−DKΣ ≥ (C · C′)(z) ≥ s , (8)

coming from the intersection of C with a curve C′ ∈ | − KΣ| passing through a
point z ∈ C, where C has multiplicity s. Thus, we suppose that r > 0. Let V2 be
an irreducible component ofMbr

0,0(Σ, D)\Mim
0,0(Σ, D), [ν : P1 → Σ] ∈ V2 a generic

element, and let ν have s ≥ 1 critical points of multiplicities m1 ≥ · · · ≥ ms ≥ 2.
In particular, bound (8) gives

−DKΣ ≥ m1 . (9)

Then (cf. [5, First formula in the proof of Corollary 2.4]),

dimV2 ≤ h0(P1,N ν
P1/Tors(N ν

P1)) ,

where the normal sheafN ν
P1 on P1 is defined as the cokernel of the map dν : T P1 →

ν∗T Σ, and Tors(∗) is the torsion sheaf. It follows from [5, Lemma 2.6] (cf. also the
computation in [5, Page 363]) that degTors(N ν

P1) =
∑

i(mi − 1), and hence

degN ν
P1/Tors(N ν

P1) = −DKΣ − 2−
s∑

i=1

(mi − 1) (10)

which yields

dimV2 ≤ h0(P1,N ν
P1/Tors(N ν

P1))

= max{degN ν
P1/Tors(N ν

P1) + 1, 0}
(9)

≤ r − (m1 − 1) < r,
(11)

Let us show that idimV < r for any irreducible component V ofM0,0(Σ, D)\
Mbr

0,0(Σ, D). Indeed, if a generic element [ν : P1 → Σ] ∈ V satisfies ν∗(P1) = sC
for some s ≥ 2, then

idimV ≤ −1

s
DKΣ − 1 < −DKΣ − 1 = r .

To complete the proof of (2ii), let us assume that dimV = r and the di-
visor ν∗(EΣ) contains a multiple point sz, s ≥ 2. In view of DEΣ ≥ s and
(−KΣ − EΣ)D ≥ 0 (remind that D is irreducible and −K − D is not effective),
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we have −DKΣ ≥ s. Furthermore, T[ν]V can be identified with a subspace of

H0(P1,N ν
P1(−(s− 1)z)) (cf. [5, Remark in page 364]). Since

degN ν
P1(−(s− 1)z)) = −DKΣ − 1− s ≥ −1 > −2 ,

we have

H1(P1,N ν
P1(−(s− 1)z)) = 0 ,

and hence

dimV ≤ h0(P1,N ν
P1(−(s− 1)z)) = r − (s− 1) < r

contrary to the assumption dimV = r. �

Lemma 10. There exists an open dense subset U2 ⊂ DDP
1 such that, for each

Σ ∈ U2, the set of effective divisor classes D ∈ Pic(Σ) satisfying −DKΣ = 1 is
finite, the set of rational curves in the corresponding linear systems |D| is finite,
and any two such rational curves C1, C2 either coincide, or are disjoint, or intersect
in C1C2 distinct points.

Proof. For any Σ ∈ DDP
1 , we have dim |−2KΣ| = 3. Hence, the condition −DKΣ =

1 yields that −2KΣ−D is effective, which in turn implies the finiteness of the set
of effective divisors such that −DKΣ = 1. The finiteness of the set of rational
curves in these linear systems |D| follows from Lemma 9(i). At last, for a generic
Σ ∈ DDP

1 , these curves are either singular elements in the elliptic pencil | − KΣ|
or the (−1)-curves, and as it follows easily, for example, from considering Σ as a
projective plane blown up at 8 generic points, any two of these curves intersect
transversally and in distinct smooth points. �

Lemma 11. Let U1, U2 be the subsets of DDP
1 introduced in Lemmas 9 and 10,

respectively. For each Σ ∈ U1∩U2, each D ∈ Pic(Σ) with −DKΣ > 0 and D2 ≥ −1,
and for each irreducible component V of Mbr

0,0(Σ, D) \Mbr
0,0(Σ, D) with idimV =

r − 1, one has:

(i) A generic element [ν : Ĉ → Σ] ∈ V is as follows

• Ĉ = Ĉ1 ∪ Ĉ2 with Ĉi & P1, [ν|Ĉi
: Ĉi → Σ] ∈ Mim

0,0(Σ, Di), where

D1D2 > 0 and −DiKΣ > 0, D2
i ≥ −1 for each i = 1, 2;

• ν(Ĉ1) �= ν(Ĉ2), except for the only case when D1 = D2 = −KΣ and

ν(Ĉ1) = ν(Ĉ2) is one of the 12 uninodal curves in | −KΣ|;
• ν is an immersion (i.e., a local isomorphism onto the image).

Moreover, each element [ν : Ĉ → Σ] ∈ M0,0(Σ, D) as above does belong to

Mbr
0,0(Σ, D).

(ii) The germ of Mbr
0,0(Σ, D) at a generic element of V is smooth.

Proof. Show, first, that idim(M′
0,0(Σ, D) \Mbr

0,0(Σ, D)) ≤ r − 2. Assume on the

contrary that there exists a component V ofM′
0,0(Σ, D)\Mbr

0,0(Σ, D) with idimV =
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r− 1 (idimV cannot be bigger by Lemma 9(i)). Then its generic element [ν : P1 →
Σ] is such that ν∗(P1) = sC with C an irreducible rational curve, s ≥ 2. Thus,

r − 1 = −sCKΣ − 2 ≤ −CKΣ − 1 = dimMbr
0,0(Σ, C) ,

which yields s = 2 and −CKΣ = 1. By adjunction formula, either C2 = −1,
or C2 ≥ 1. The former case is excluded by the assumption D2 ≥ −1. In the case
C2 ≥ 1, sinceK2

Σ = 1 and −CKΣ = 1, the only possibility is C ∈ |−KΣ|. However,
in such a case the map ν cannot be deformed into an element ofMbr

0,0(Σ,−2KΣ),

since C has a node, and hence the deformed map would birationally send P1

onto a curve with δ-invariant ≥ 4, which is bigger than its arithmetic genus,
((−2KΣ)

2 + (−2KΣ)KΣ)/2 + 1 = 2.

Let [ν : Ĉ → Σ] be a generic element of an irreducible component V of

Mbr
0,0(Σ, D) \M′

0,0(Σ, D) with idimV = r− 1. Then Ĉ has at least 2 components.

On the other side, if Ĉ had ≥ 3 components, Lemma 9(1) would yield idimV ≤
−DKΣ − 3 < r − 1. Hence Ĉ = Ĉ1 ∪ Ĉ2, Ĉ1 & Ĉ2 & P1, and, according to
Lemma 8 and Lemma 9(1), for each i = 1, 2 we have: νi = ν

∣∣
Ĉi

is an immersion,

dimM0,0(Σ, Di)[νi] = −DiKΣ − 1, and −DiKΣ > 0, D2
i ≥ −1.

If −DKΣ = 2 and ν(Ĉ1) �= ν(Ĉ2), then the intersection points of these curves
are nodes, which follows from the definition of the set U2 (see Lemma 10), and

hence ν is an immersion at the node ẑ of Ĉ.

If −DKΣ = 2 and ν(Ĉ1) = ν(Ĉ2), then D1 = D2 and D2
1 = D2

2 ≥ 1 in view
of the adjunction formula and the condition D2 ≥ −1. It is easy to see that this
is only possible, when D1 = D2 = −KΣ. In particular, by the definition of the set
U1 (see Lemma 9(iii)), the curve C = ν(Ĉ1) = ν(Ĉ2) ∈ |−KΣ| has one node z. We

then see that, ν takes the germ (Ĉ, ẑ) isomorphically onto the germ (C, z), since,
otherwise we would get a deformed map ν with the image whose δ-invariant ≥ 4,
which is bigger than its arithmetic genus, ((−2KΣ)

2 + (−2KΣ)KΣ)/2 + 1 = 2.

Suppose, now, that −DKΣ > 2, thus, −D1KΣ > 1. Then

dimM0,0(Σ, D1)[ν1] > 0,

and hence C1 �= C2. To prove that ν is an immersion at the node ẑ ∈ Ĉ, we
will show that any two local branches of ν1 and ν2 either are disjoint, or intersect
transversally. Indeed, assume on the contrary that there exist zi ∈ Ĉi, i = 1, 2,
such that ν1(z1) = ν2(z2) = z ∈ Σ, and ν1(Ĉ1, z1) intersects ν2(Ĉ2, z2) at z with
multiplicity ≥ 2. Then

dimM0,0(Σ, D1)[ν1] ≤ h0(Ĉ1,N ν1
Ĉ1

(−z1)) . (12)

Since

degN ν1
Ĉ1

(−z1) = −D1KΣ − 2− 1 = −D1KΣ − 3 > −2 ,
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we get h1(Ĉ1,N ν1
Ĉ1

(−z1)) = 0. Therefore,

degN ν1
Ĉ1

(−z1) ≤ degN ν1
Ĉ1

(−z1) + 1 = −D1KΣ − 2

< −D1KΣ − 1 = dimM0,0(Σ, D1)[ν1] ,

which contradicts (12).

The smoothness of Mbr
0,0(Σ, D) at [ν : Ĉ → Σ], where ν∗Ĉ is a reduced

nodal curve, follows from [25, Lemma 2.9], where the requirements are DiKΣ < 0,
i = 1, 2. We will show that the same requirements suffice under assumption that
ν is an immersion. Let us show that

T[ν]Mbr
0,0(Σ, D) & H0(Ĉ,N ν

Ĉ
) , (13)

where the normal sheaf N ν
Ĉ

comes from the exact sequence

0→ TĈ → ν∗TΣ → N ν
Ĉ
→ 0 , (14)

TΣ being the tangent bundle of Σ, and TĈ being the tangent sheaf of Ĉ viewed as

the push-forward by the normalization π : Ĉ1 , Ĉ2 → Ĉ of the subsheaf T ′
Ĉ1�Ĉ2

⊂
TĈ1�Ĉ2

generated by the sections vanishing at the preimages of the node z ∈ Ĉ.

Indeed, the Zariski tangent space to Hom(Ĉ,Σ) at ν is naturally isomorphic

to H0(Ĉ, ν∗TΣ) (see [19, Theorem 1.7, Section II.1]). Next, we take the quotient

by action of the germ of Aut(Ĉ) at the identity. This germ is smooth and acts

freely on the germ of Hom(Ĉ,Σ) at ν. The tangent space to Aut(Ĉ) at the identity

is isomorphic to H0(Ĉ, TĈ) (cf. [19, 2.16.4, Section I.2]). Since

H1(Ĉ, TĈ) = H1(Ĉ1,Ĉ2, T ′
Ĉ1�Ĉ2

) = H1(Ĉ1,OĈ1
(1))⊕H1(Ĉ2,OĈ2

(1)) = 0 , (15)

the associated to (14) cohomology exact sequence yields

T[ν]Mbr
0,0(Σ, D) & TνHom(Ĉ,Σ)/TIdAut(Ĉ)

& H0(Ĉ, ν∗TΣ)/H0(Ĉ, TĈ) & H0(Ĉ,N ν
Ĉ
) .

We will verify that

h0(Ĉ,N ν
Ĉ
) = r , (16)

which in view of dim[ν]Mbr
0,0(Σ, D) = r (see Lemma 9(i)) will imply the smoothness

of Mbr
0,0(Σ, D) at [ν]. There exists a natural morphism of sheaves on Ĉ:

α : π∗N ν◦π
Ĉ1�Ĉ2

−→N ν
Ĉ

,

where α is an isomorphism outside z and acts at z as follows: since ν embeds the
germ of Ĉ at z into Σ, one can identify the stalk

(
π∗N ν◦π

Ĉ1�Ĉ2

)
z
with C{x}⊕C{y},

the stalk (N ν
Ĉ
)z with C{x, y}/〈xy〉, and write

αz(f(x), g(y)) = xf(x) + yg(y) ∈
(
N ν

Ĉ

)
z
∼= C{x, y}/〈xy〉 .

Hence we obtain an exact sequence of sheaves

0→ π∗N ν◦π
Ĉ1�Ĉ2

α−→ N ν
Ĉ
→ Oz → 0 , (17)
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whose cohomology sequence vanishes at

h1(z,Oz) = 0, h1(Ĉ1 , Ĉ2,N ν◦π
Ĉ1�Ĉ2

) = 0 ,

(the latter one is equivalent to (4)); hence h1(Ĉ,N ν
Ĉ
) = 0 and, furthermore,

h0(Ĉ,N ν
Ĉ
) = h0(Ĉ1 , Ĉ2,N ν◦π

Ĉ1�Ĉ2
)) + h0(z,Oz)

= h0(Ĉ1,N ν1
Ĉ1

) + h0(Ĉ2,N ν2
Ĉ2

) + h0(z,Oz)

cf. (5)
= (−D1KΣ − 1) + (−D2KΣ − 1) + 1 = r

as predicted in (14).

Finally, let us show that any element [ν : Ĉ → Σ] ∈ M0,0(Σ, D), satisfying

conditions of 1(i)–1(iii), belongs to Mbr
0,0(Σ, D), or, equivalently, admits a defor-

mation into a map P1 → Σ birational onto its image. Indeed, it follows from [1,

Theorem 15] under the condition h1(Ĉ, ν∗TΣ) = 0, which one obtains from the
cohomology exact sequence associated with (14) and from vanishing relations (15)
and (16). �

Lemma 12. Consider the subsets U1, U2 of DDP
1 introduced in Lemmas 9 and

10, respectively, a surface Σ ∈ U1 ∩ U2 ⊂ DDP
1 , and an effective divisor class

D ∈ Pic(Σ) such that −DKΣ ≥ 2. Let w = (w1, . . . , wr) be a sequence of r
distinct points in Σ, let σi be smooth curve germs in Σ centered at wi, r

′ < i ≤ r,
for some r′ < r, w′ = (wi)1≤i≤r′ , and let

Mbr
0,r(Σ, D;w′, {σi}r′<i≤r)

= {[ν : Ĉ → Σ,p] ∈Mbr
0,r(Σ, D) :

ν(pi) = wi for 1 ≤ i ≤ r′, ν(pi) ∈ σi, for r′ < i ≤ r} .

(1) Suppose that [ν : P1 → Σ,p] ∈ Mbr
0,r(Σ, D;w) ∩Mim

0,r(Σ, D). Then Ev sends

the germ of Mbr
0,r(Σ, D;w′, {σi}r′<i≤r) at [ν : P1 → Σ,p] diffeomorphically

onto
∏

r′<i≤r σi.

(2) Suppose that [ν : Ĉ → Σ,p] ∈Mbr
0,r(Σ, D;w) is such that

• [ν : Ĉ → Σ] ∈Mbr
0,0(Σ, D) is as in Lemma 11(i),

• r′ ≥ −D1KΣ − 1, #(p ∩ Ĉ1) = −D1KΣ − 1, #(p ∩ Ĉ2) = −D2KΣ, the
point sequences (wi)1≤i<−D1KΣ , (wi)−D1KΣ≤i≤r are generic on C1 =

ν∗Ĉ1, C2 = ν∗Ĉ2, respectively, and the germs σi, r
′ < i ≤ r, cross C2

transversally.

Then Ev sends the germ of Mbr
0,r(Σ, D;w′, {σi}r′<i≤r) at [ν : Ĉ → Σ,p]

diffeomorphically onto
∏

r′<i≤r σi.

Proof. Both statements follow from the fact that Ev diffeomorphically sends the

germ of Mbr
0,r(Σ, D) at [ν : Ĉ → Σ,p] onto the germ of Σr at w = ν(p).
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In view of dimMbr
0,r(Σ, D) = 2r Lemma 9(i)), it is sufficient to show that the

Zariski tangent space to Ev−1(w) is zero-dimensional. In view of relation (13) this
is equivalent to

h0(Ĉ,N ν
Ĉ
(−p)) = 0 . (18)

In the case of [ν : P1 → Σ,p] ∈Mbr
0,r(Σ, D;w′, {σi}r′<i≤r) ∩Mim

0,r(Σ, D), we
have

degN ν
Ĉ
(−p) = (−DKΣ − 2)− (−DKΣ − 1) = −1 > −2 ,

and hence (18) follows by Riemann–Roch.

In the second case, put p̃ = p \ {pr} and twist the exact sequence (17) to get

0→ π∗N ν◦π
Ĉ1�Ĉ2

(−p̃)→ N ν
Ĉ
(−p̃)→ Oz → 0.

Since

degN ν1
Ĉi
(−p̃ ∩ Ĉi) = (−DiKΣ − 2)− (−DiKΣ − 1) = −1 > −2, i = 1, 2 ,

we have h1(π∗N ν◦π
Ĉ1�Ĉ2

(−p̃)) = 0, and h0(Ĉ, π∗N ν◦π
Ĉ1�Ĉ2

(−p̃)) = 0, which yields that

H0(Ĉ,N ν
Ĉ
(−p̃)) is isomorphically mapped onto H0(z,Oz) & C. It implies that a

non-zero global section of the sheaf N ν
Ĉ
(−p̃) does not vanish at z, and hence, it

does not vanish at pr chosen on Ĉ2 in a generic way. Thus, (18) follows. �

2.3. Deformation of isolated curve singularities

Let us recall a few facts on deformations of curve singularities (see, for example,
[6]). Let Σ be a smooth algebraic surface, z an isolated singular point of a curve
C ⊂ Σ, and BC,z the base of a semiuniversal deformation of the germ (C, z). This
base can be viewed as a germ (CN , 0) and can be identified with OC,z/JC,z, where
JC,z ⊂ OC,z is the Jacobian ideal.

The equigeneric locus B eg
C,z ⊂ BC,z parametrizes local deformations of (C, z)

with constant δ-invariant equal to δ(C, z). This locus is irreducible and has codi-

mension δ(C, z) in BC,z. The subset B eg,im
C,z ⊂ B eg

C,z that parametrizes the im-

mersed deformations is open and dense in B eg
C,z, and consists only of smooth points

of B eg
C,z. The tangent cone T0B

eg
C,z (defined as the limit of the tangent spaces at

points of B eg,im
C,z ) can be identified with Jcond

C,z /JC,z, where Jcond
C,z ⊂ OC,z is the

conductor ideal. The subset B eg,nod
C,z ⊂ B eg

C,z that parameterizes the nodal defor-

mations is also open and dense. Furthermore, B eg
C,z \B

eg,nod
C,z is the closure of three

codimension-one strata: B eg
C,z(A2) that parameterizes deformations with one cusp

A2 and δ(C, z) − 1 nodes, B eg
C,z(A3) that parameterizes deformations with one

tacnode A3 and δ(C, z)− 2 nodes, and B eg
C,z(D4) that parameterizes deformations

with one ordinary triple point D4 and δ(C, z)− 3 nodes.

If C ⊂ Σ is a curve with isolated singularities, we consider the joint semiuni-
versal deformation for all singular points of C. The base of this deformation, the
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equigeneric locus, and the tangent cone to this locus at the point corresponding
to C are as follows:

BC =
∏

z∈Sing (C)

BC,z, B eg
C =

∏
z∈Sing (C)

B eg
C,z, T0B

eg
C =

∏
z∈Sing (C)

T0B
eg
C,z .

Lemma 13. Let ν : P1 → Σ be birational onto its image C = ν(P1). Assume that
C ∈ |D|, where D is a divisor class such that r = −DKΣ − 1 > 0. Let p be
an r-tuple of distinct points of P1 such that w = ν(p) is an r-tuple of distinct
nonsingular points of C. Let |D|w ⊂ |D| be the linear subsystem of curves passing
through w, and Λ(w) ⊂ BC be the natural image of |D|w.

(1) One has codimBCΛ(w) = dimB eg
C , and Λ(w) intersects T0B

eg
C transversally.

(2) For any r-tuple w̃ ∈ Σr sufficiently close to w and such that Λ(w̃) intersects
B eg

C transversally and only at smooth points, the natural map from the germ
M0,r(Σ, D)[ν,p] of M0,r(Σ, D) at [ν : P1 → Σ,p] to B eg

C gives rise to a

bijection between the set of elements [ν̃ : P1 → Σ, p̃] ∈ M0,r(Σ, D)[ν,p] such
that ν̃(p̃) = w̃ on one side and the set Λ(w̃) ∩B eg

C on the other side.

Proof. (1) The dimension and the transversality statements reduce to the fact that
the pull-back of T0B

eg
C to |D| intersects |D|w transversally and only at one point.

In view of the identification of T0B
eg
C with

∏
z∈Sing (C) J

cond
C,z /JC,z [6, Theorem

4.15], both required claims read as

H0(C,J cond
C (−w)⊗OΣ(D)) = 0 , (19)

where J cond
C = Ann(ν∗OP1/OC) is the conductor ideal sheaf, since J cond

C can
be equivalently regarded as the ideal sheaf of the zero-dimensional subscheme of
C defined at all singular points z ∈ Sing (C) by the conductor ideals Jcond

C,z =

Ann(ν∗
⊕

q∈ν−1(z)OP1,q)/OC,z.

It is known that J cond
C = ν∗OP1(−Δ), where Δ ⊂ P1 is the so-called double-

point divisor, whose degree is degΔ = 2
∑

z∈Sing (C) δ(C, z) (see, for example, [5,

Section 2.4] or [8, Section 4.2.4]). Hence, the relations (19) can be rewritten as

H0(P1,OP1(d −Δ− p)) = 0 , (20)

where deg d = D2. Since

degOP1(d−Δ− p)) = D2 − 2
∑

z∈Sing (C)

δ(C, z)− r

= D2 − 2

(
D2 +DKΣ

2
+ 1

)
− (−DKΣ − 1) = −1 > −2 ,

we obtain H1(P1,OP1(d−Δ− p)) = 0, and hence by Riemann–Roch

dimH0(P1,OP1(d−Δ− p)) = degOP1(d−Δ− p)) + 1 = 0 .

(2) The second statement of Lemma 13 immediately follows from the first
one due to the fact that the tangent spaces to the stratum B eg

C at its smooth
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points close to the origin converge to the same linear space of dimension dimB eg
C

[6, Theorem 4.15]. �

Suppose now that Σ possesses a real structure, C is a real curve, and z is its
real singular point. Let b ∈ B eg,im

C,z be a real point, and let Cb be the corresponding

fiber of the semiuniversal deformation of the germ (C, z). Define the Welschinger

sign Wb as follows. Let π : Ĉb → Cb ↪→ Σ be the normalization of Cb. Here
Ĉb is the union of discs, some of them being real (i.e., invariant with respect
to the complex conjugation), the others forming complex conjugate pairs. Put

Wb = (−1)Cb,+◦Cb,− , where Cb,± = π(Ĉb,±) and Ĉb \ RĈb = Ĉb,+ , Ĉb,− is a
splitting into disjoint complex conjugate halves.

Lemma 14. The Welschinger sign Wb is equal to (−1)s, where s is the number of
solitary nodes in a small real nodal perturbation of Cb.

Proof. Straightforward from the definition. �

Lemma 15. Let Lt, t ∈ (−ε, ε) ⊂ R, be a smooth one-parameter family of conju-
gation-invariant affine subspaces of BC,z of dimension δ(C, z) such that

• L0 passes through the origin and is transversal to T0B
eg
C,z,

• Lt ∩B eg
C,z ⊂ B eg,im

C,z for each t ∈ (−ε, ε) \ {0}.
Then,

(i) the intersection Lt ∩ B eg
C,z is finite for each t ∈ (−ε′, ε′) \ {0}, where ε′ > 0

is sufficiently small.
(ii) the function W (t) =

∑
b∈Lt∩RB eg

C,z
Wb is constant in (−ε′, ε′) \ {0}, where

ε′ > 0 is sufficiently small.

Proof. The finiteness of the intersection follows from the transversality of L0 and
T0B

eg
C,z in BC,z. To prove the second statement, assume, first, that the germ (C, z)

represents an ordinary cusp A2. Then RBC,z = (R2, 0) and RB eg
C,z is a semicubical

parabola with vertex at the origin. For the points b belonging to one of the two
connected components of RB eg

C,z\{0}, the curve Cb has a non-solitary real node; for
the points b from the other component, Cb has a solitary node. Since, in addition,
the line L0 crosses the tangent to the parabola at the origin transversally we have
W (t) = 0 for each t ∈ (−ε′, ε′) \ {0} for sufficiently small ε′ > 0.

In the general case, if ε′ > 0 is sufficiently small, then for any two points
t1 < t2 in (−ε′, ε′) \ {0} we can connect Lt1 with Lt2 by a family of δ(C, z)-
dimensional conjugation-invariant affine subspaces L′

t ⊂ BC,z, t ∈ [t1, t2], such
that

• the subspaces L′
t, t ∈ [t1, t2], are transversal to B eg

C,z,

• the intersection number of L′
t and B eg

C,z is constant in [t1, t2],

• for all but finitely many values of t the intersection L′
t ∩B eg

C,z is contained in

B eg,nod
C,z , and for the remaining values of t, the subspace L′

t intersects RB
eg
C,z

within B eg
C,z(A2) ∪B eg

C,z(A3) ∪B eg
C,z(D4).
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The bifurcations through the immersed singularities A3 and D4 do not affectW (t),
as well as the cuspidal bifurcation, which we have treated above. �
Remark 16. In fact, Lemma 15 allows one to extend the definition of Welschinger
signs and attribute a Welschinger weight to any map ν : P1 → Σ birational onto
its image.

3. Proof of Theorem 6

3.1. Preliminary observations

We start with two remarks.

(1) If Y is an irreducible complex variety, equipped with a real structure, and
RY contains nonsingular points of Y , then RY ∩U �= ∅ for any Zariski open
subset U ⊂ Y . In particular, a generic element of Pr,m(Σ, F ) is generic in Σr.

(2) By blowing up extra real points we can reduce the consideration to the case
of del Pezzo surfaces of degree 1.

The following statement will be used in the sequel.

Lemma 17. Let t ∈ (R, 0) �→ Σt be a germ of an elementary deformation
(Σt, Dt, Ft, ϕt, wt) of a tuple (Σ0, D0, F0, ϕ0,w0), where Σ0 is a del Pezzo surface
of degree 1, D0 ∈ Pic(Σ0) is a real effective divisor such that r = −D0KΣ0−1 > 0,
and w0 belongs to Pr,m(Σ0, F0) and is generic. Then

Wm(Σt, Dt, Ft, ϕt,wt) = Wm(Σ0, D0, F0, ϕ0,w0) .

Proof. Since D0KΣ0 > 1 and w0 is generic, Lemma 9 implies that all the curves
under count are immersed. Thus, each of these curves contributes 1 to the Gromov–
Witten invariant, and the required equality follows from Lemma 14. �
3.2. Proof of Proposition 4

The only situation to consider is the one where Σ ∈ DDP
1 and r = −DKΣ− 1 > 0.

Due to Lemma 17, we can fix any dense subset in DDP
1 and check the statement

for the surfaces belonging to this subset. Throughout this section, we assume that
Σ ∈ U1 ∩ U2.

We prove the invariance of Welschinger numbers by studying wall-crossing
events when moving either one real point of the given collection, or a pair of
complex conjugate points.

3.2.1. Moving a real point of configuration. Suppose that 2m < r. Let tuples
w′ ∪{w(0)},w′ ∪{w(1)} ∈ Pr,m(Σ, F ), where w′ ∈ Pr−1,m(Σ, F ), be such that the

sets R(Σ, D, F,w′ ∪ {w(0)}) and R(Σ, D, F,w′ ∪ {w(1)}) are finite and presented
by immersions (see Lemma 9). We prove that

Wm(Σ, D, F, ϕ,w′ ∪ {w(0)}) = Wm(Σ, D, F, ϕ,w′ ∪ {w(1)}) . (21)

Due to Lemma 11, by a small deformation of w′ we can reach the following:

whenever an element [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) \Mbr

0,0(Σ, D) is such that ν(Ĉ) ⊃
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w′, the element [ν : Ĉ → Σ] satisfies the conditions of Lemma 11(i), −D1KΣ − 1
points of w′ lie on C1 \ (Sing (C1) ∪C2), and the remaining −D2KΣ − 1 points of
w′ lie on C2 \ (Sing (C2) ∪ C1).

There exists a smooth real-analytic path σ : [0, 1]→ F lying in the real part
of some smooth real algebraic curve σ(C) ⊂ Σ, such that σ is disjoint from all the
points of w′, σ(0) = w(0), σ(1) = w(1), and in the family

Mbr
0,r(Σ, D;w′, σ) = {[ν : Ĉ → Σ,p] ∈Mbr

0,r(Σ, D) : ν(p′) = w′, ν(pr) ∈ σ} ,

where p′ = p \ {pr}, all but finitely many elements belong toMim
0,r(Σ, D), and the

remaining elements [ν : Ĉ → Σ,p] (corresponding to some values t ∈ I0 ⊂ [0, 1],
|I0| <∞) are such that:

(D1re) either [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) is as in Lemma 11(i), the point w(t) ∈

σ ∩ C2 belongs to C2 \ (Sing (C2) ∪ C1 ∪ w′), and the germ of σ(C) at
w(t) ∈ C intersects C2 transversally;

(D2re) or [ν : Ĉ → Σ] ∈Mbr
0,0(Σ, D) \Mim

0,0(Σ, D), the point w(t) ∈ σ ∩ C, where

C = ν(Ĉ), belongs to C \ (Sing (C) ∪ w′), and the germ of σ(C) at w(t)

intersect C transversally.

Denote by M[ν,p] the germ ofMbr
0,r(Σ, D;w′, σ) at an element [ν : Ĉ → Σ,p].

If [ν : Ĉ → Σ] ∈ Mim
0,0(Σ, D), or [ν : Ĉ → Σ] satisfies condition (D1re),

then, by Lemma 12, the germ M[ν,p] is diffeomorphically mapped by Ev onto

the germ (σ,w(t)). Moreover, the Welschinger sign μ(ν, ϕ) does not change along

M[ν,σ]. This is evident for [ν : Ĉ → Σ] ∈ Mim
0,0(Σ, D), and, under condition (D1re),

immediately follows from the fact that ν maps the germ of Ĉ at the node to a
pair of real smooth branches that intersect transversally and undergo a standard
smoothing in the considered bifurcation.

Under the hypotheses of condition (D2re), the required constancy of the
Welschinger numberWm(Σ, D, F, ϕ,w′∪{w(t)}) immediately follows from Lemmas
13, 14 and 15.

3.2.2. Moving a pair of imaginary conjugate points. Assume that m ≥ 1. Let
tuples w′ ∪ {w(0),Conjw(0)},w′ ∪ {w(1),Conjw(1)} ∈ Pr,m(Σ, F ), where w′ ∈
Pr−2,m−1(Σ, F ), be such that the sets

R(Σ, D, F,w′ ∪ {w(0),Conjw(0)}) and R(Σ, D, F,w′ ∪ {w(1),Conjw(1)})
are finite and presented by immersions (see Lemma 9). We prove that

Wm(Σ, D, F, ϕ,w′ ∪ {w(0),Conjw(0)}) = Wm(Σ, D, F, ϕ,w′ ∪ {w(1),Conjw(1)}) .
(22)

Due to Lemma 11, by a small deformation of w′ we can reach the following:
for any point w of a certain Zariski open subset Σw′ ⊂ Σ \w′, whenever for an

element [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) \Mbr

0,0(Σ, D) we have ν(Ĉ) ⊃ w′ ∪ {w}, this
element [ν : Ĉ → Σ] satisfies the conditions of Lemma 11(i), −D1KΣ− 1 points of
w′ lie on C1 \ (Sing (C1) ∪ C2), and the remaining −D2KΣ − 2 points of w′ and
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the point w lie on C2 \ (Sing (C2) ∪ C1). Further on, assuming this property of
w′, we can find a smooth real-analytic path σ : [0, 1] → Sing \ RΣ lying in some
smooth real algebraic curve σ(C) ⊂ Σ \ RΣ, such that σ starts at w(0) and ends
up at w(1), avoids all the points of w′, and satisfies the following condition (cf.
section 3.2.1): for all but finitely many elements of the family

Mbr
0,r(Σ, D;w′, σ,Conj σ) = {[ν : Ĉ → Σ,p] ∈Mbr

0,r(Σ, D) :

ν(p′) = w′, ν(pr−1) ∈ σ, ν(pr) ∈ Conjσ} ,

where p′ = p\ {pr−1, pr}, we have [ν : Ĉ → Σ] ∈ Mim
0,0(Σ, D), while the remaining

elements (which correspond to some values t ∈ I0 ⊂ [0, 1], |I0| <∞) are such that:

(D1im) either [ν : Ĉ → Σ] ∈ Mbr
0,0(Σ, D) is as in Lemma 11(i), where νi :

Ĉi → Σ commutes with the real structure, −D1KΣ − 1 points of w′ lie
on C1 \ (Sing (C1) ∪ C2), the remaining −D2KΣ − 2 points of w′ lie in
C2\(Sing (C2)∪C1), the point w

(t) ∈ σ belongs to C2\(Sing (C2)∪C1∪w′),
and the germ of σ(C) at w(t) ∈ C2 intersects C2 transversally;

(D2im) or [ν : Ĉ → Σ] ∈Mbr
0,0(Σ, D) \Mim

0,0(Σ, D), the point w(t) ∈ σ ∩ C, where

C = ν(Ĉ), belongs to C \ (Sing (C) ∪ w′), and the germ of σ(C) at w(t)

intersects C transversally.

Notice that, in (D1im), the case of C1 = C2 is not relevant due to −DKΣ > 2,
and the case of complex conjugate C1 and C2 does not occur either, since any
real rational curve in |D| must have a non-trivial one-dimensional real branch (see
Section 1.2).

Then the proof of (22) literally follows the argument of the preceding section.

3.3. Proof of Proposition 5 and Theorem 6

In view of Proposition 4 and Lemmas 9(ii) and 17, Theorem 6 follows from Proposi-
tion 5, and, in its turn, to prove Proposition 5 it is sufficient to check the constancy
of the Welschinger number in the following families:

• a germ of elementary deformation {Σt}t∈(R,0), where Σ0 ∈ U1(A1), Σt ∈
U1 ∩ U2 for each t �= 0, and Dt �= −KΣt ;

• a germ of elementary deformation {Σt}t∈(R,0), where Σ0 ∈ DDP
1 \ U1, Σt ∈

U1 ∩ U2 for each t �= 0, and Dt = −KΣt .

Let Σ0 ∈ U1(A1), Σt ∈ U1∩U2 for t �= 0, and Dt �= −KΣt . Extend the family
{Σt}t∈(R,0) to a conjugation invariant family {Σt}(C,0). By Lemma 9(2), there

exists w0 ∈ Pr,m(Σ0, F0) such that, for any k ≥ 0, all elements [ν : P1 → Σ0,p0] ∈
M0,r(Σ0, D − kE,w0) satisfy the properties indicated in Lemma 9(2ii). These
elements appear only for a finite number of values of k and form a finite set. Let us
associate with each of them a comb-like curve [ν : Ĉ → Σ0,p] ∈ M0,r(Σ0, D,w0)
such that:
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• either Ĉ & P1, or Ĉ = Ĉ′ ∪ Ê1 ∪ · · · ∪ Êk for some k > 0, where Ĉ′ &
Ê1 & · · · & Êk & P1, Êi ∩ Êj = ∅ for all i �= j, and #(Ĉ′ ∩ Êi) = 1 for all
i = 1, . . . , k;

• p ⊂ Ĉ′ and [ν : Ĉ′ → Σ0,p] ∈ Mim
0,r(Σ0, D−kE,w0), and each of Ê1, . . . , Êk

is isomorphically mapped onto E.

Then, complement w0 to a conjugation invariant family of r-tuples wt ∈ (Σt)
r,

t ∈ (C, 0), so that wt ∈ Pr,m(Σt, Ft) for each real t. It follows from [26, Theorem

4.2] that each of the introduced elements [ν : Ĉ → Σ0,p] ∈ M0,r(Σ0, D,w0)

extends to a smooth family [νt : Ĉt → Σt,pt] ∈Mbr
0,r(Σt, D,wt), t ∈ (C, 0), where

Ĉt & P1 and νt is an immersion for all t �= 0, and, furthermore, each element of
M0,r(Σt, D,wt), t ∈ (C, 0)\ {0} is included into some of the above families. Thus,
the Welschinger number W (Σt, D, Ft, ϕt,wt) remains constant in t ∈ (R, 0) \ {0},
since the only change of the topology in the real loci of the curves under the
count consists in smoothing of non-solitary nodes, while the difference between
the homology classes of the halves [C±(t)] in H2(Σt, Ft;Z/2) = H2(Σ0, F0;Z/2)
with t < 0 and those with t > 0 belongs to (1+Conj∗)H2(Σ0, F0;Z/2) and, hence
[C±(t)] ◦ φt does not depend on t.

Assume that Σ0 ∈ DDP
1 \U1 Σt ∈ U1 ∩U2 for t �= 0, and Dt = −KΣt . In this

case we deal with a family of real elliptic pencils | − KΣt |, t ∈ (R, 0), such that
the central one | −KΣ0 | has a real cuspidal curve C0 ∈ | −KΣ0 | and, otherwise,
the family is generic. As it can be seen from the local Weierstrass normal form,
due to the above genericity the image of | −KΣ0 | in the base (C2, 0) of the versal
deformation of the cuspidal point intersects the tangent space to the discriminant
locus, that is the cusp curve 27p2 + 4q3 = 0 in terms of Weierstrass coordinates
p, q, transversally at one point. Therefore, for t ∈ (R, 0) on one side of t = 0 the
singular curves in | − KΣt | close to C0 form a pair of complex conjugate curves,
while for t ∈ (R, 0) on the opposite side of t = 0 they are real, one with a solitary
node, and the other one with a cross point. Thus, the total Welschinger number
is the same on the both sides.
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Some Results on Amoebas and
Coamoebas of Affine Spaces

Petter Johansson

Abstract. We give some topological characteristics of the coamoeba of a gener-
ic k-dimensional affine space and two stronger versions, specific for the affine
case, of a result by Nisse, Sottile and the author. We also give topological and
partly algebraical characterizations of the amoeba and coamoeba in some
special cases: k = n− 1, k = 1 and, when n is even, k = n/2, in the last case
with a certain emphasis on the example n = 4.

1. Introduction

The complex n-torus (C∗)n is split into Rn and Tn := (R/2πZ)n under the map-
pings Log z = (log |z1|, . . . , log |zn|) and Arg z = (arg z1, . . . , arg zn). Given an
algebraic variety V in (C∗)n, its amoeba AV is the image of V under Log, while
its coamoeba A′

V is the image of V under Arg. The amoeba was introduced by
Gelfand, Kapranov and Zelevinsky in 1994, see [3].

Mikael Passare was one of the first mathematicians to study the amoeba. As
a co-author of, e.g., [2] and [11], he played a key role in awakening the interest
for this concept. Furthermore he coined the term coamoeba on which he held a
seminar in early 2004, see [5].

During his last couple of years, Mikael Passare initiated a project to under-
stand the amoebas and coamoebas of affine spaces in (C∗)n, that is, algebraic
varieties that can be defined by linear equations. The plan was a common paper
on the subject by Mounir Nisse, Passare and me. After Passare’s premature death,
Nisse and I chose to write two separate papers instead, since we approached the
subject from two different angles. Thus, the papers remain complementary, al-
though they both include ideas by Passare. For Nisse’s paper, see [9].

As an introduction to the subject of this work, we will describe the amoebas
and coamoebas of hyperplanes in (C∗)n, see Section 3. Hyperplanes are not only
affine spaces but also hypersurfaces, for which the amoeba and coamoeba has been
studied to a relatively large extent. Thus, the description of the amoeba we give in



262 P. Johansson

Figure 1. We sketch the coamoeba A′
f defined by the zero set of the poly-

nomial f = 1+ i−z−w+zw. The dotted line segments mark the parts of the
boundary that are not contained in the coamoeba and the solid curves and
points mark the parts of the boundary that are contained in the coamoeba
and thus are part of the contour, see Section 2. The dotted line segments are
contained in four lines on T2. These lines amount to the four proper initial
coamoebas of A′

f , cf. Theorem 1.2. The concave region in the figure corre-
sponds to the interior of A′

f .

this case is just a recollection of an already published result. A description of the
closure of the coamoeba of a hyperplane first appeared in [1]. Our version is more
or less the same, although we also specify which points on the boundary that are
contained in the coamoeba.

The second simplest case is that of lines in (C∗)n, which we consider in
Section 4. Passare suggested a statement about the appearance of the amoeba and
coamoeba of a line, on which I have based Theorem 4.4. It should be mentioned
that also Kuzvesov has results in this direction, see [6].

A third case of special interest, presented in Section 5, is when n is even
and the codimension of the affine space is n/2. As we will see in Theorem 5.1,
the volume of the coamoeba is then either πn or zero. Furthermore, there is a
local diffeomorphism that maps the interior of the coamoeba onto the interior of
the amoeba. In a 4-dimensional case, Passare discovered how a certain inflated
tetrahedron could be used to find the multiplicity of this diffeomorphism, and
thus the volume of the amoeba. Also Nisse has studied the n/2-dimensional case,
see [9].

In the previous examples, there are several recurrent properties of the co-
amoeba A′

L that do not hold for general varieties. On a topological level, the most
striking property is perhaps the following, which we will prove in the final section,
cf. Theorem 6.13.

Theorem 1.1. Let L be a non-degenerate affine space of any codimension. Then

there is no open set U intersecting ∂A′
L for which U ∩ A′

L = U ∩A′
L.
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Figure 2. We sketch the coamoeba of the line in (C∗)2 defined by the
polynomial f = 1 + z1 + z2 to exemplify Theorem 1.1 and 1.3. The marked
points in the figure are actually only three, each point appearing two times
on opposite sides of the square representing T2. The dashed lines marks the
boundary of A′

f , that coincide with the proper initial coamoebas that are
defined by the polynomials 1+z1, 1+z2 and z1+z2 respectively. The contour,
see Section 2, consists of the three intersection points of the proper initial

coamoebas.

Note that for coamoebas of non-affine algebraic varieties, there typically are
open sets U as in Theorem 1.1, see, e.g., Figure 1. The notion of degeneracy is
explained in Section 5. Note also that our definition of ∂A′

L is not standard for
the case of high codimension, see Section 2.

To give a context to Theorem 1.1, let us introduce the concept of initial
coamoebas. Let f be a Laurent polynomial on (C∗)n and ω ∈ Rn. Then the initial
form fω is the sum of terms aαz

α of f such that α · ω = α1ω1 + · · · + αnωn is
maximal. More generally, if I is an ideal of Laurent polynomials over (C∗)n then
the initial ideal Iω of I at ω is the ideal Iω := 〈fω; f ∈ I〉. The coamoeba of
the variety defined by the ideal Iω is called the initial coamoeba of I at ω and
denoted by A′

ω whenever it is clear which ideal we are considering. How the initial
coamoebas affects the appearance of a coamoeba, is indicated by the next theorem.

Theorem 1.2 (Johansson, Nisse, Sottile). The closure of the coamoeba of an ideal
I equals the union of all initial coamoebas of I.

Notice here that the initial coamoeba at the origin is the coamoeba itself
and all other initial coamoebas will be called proper initial coamoebas. It is also
noteworthy that it suffices to take the union in the theorem over a finite set, see,
e.g., [12]. Theorem 1.2 was proved by Sottile and Nisse in [10] and independently
for complete intersections by the author in [4].

We will prove two stronger versions of Theorem 1.2 specific for affine spaces:
one for high codimensions and one for low codimensions.

Theorem 1.3. The boundary of the coamoeba of a non-degenerate affine space of
codimension at least n/2, equals the union of its proper initial coamoebas.
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For the precise meaning of boundary here, see Section 2. The assertion of
Theorem 1.3 is very strong: for, e.g., hypersurfaces in dimension n = 2, there is
only one known non-affine case satisfying the equality, see [4]. If we take away
one inclusion in Theorem 1.3 and just demand the boundary of the coamoeba
to be contained in the union of its proper initial coamoebas, then we get some
additional examples of non-affine varieties fulfilling the assertion, e.g., when the
variety is determined by certain discriminants, see [8]. Note that the bent segments
of the boundary of the coamoeba in Figure 1, are not contained in the union of
proper initial coamoebas.

Here comes the second stronger version of Theorem 1.2, specifically for generic
affine spaces of low codimension.

Theorem 1.4. The closure of the coamoeba of a non-degenerate affine space of
codimension strictly less than n/2, equals the union of its proper initial coamoebas.

Theorems 1.1, 1.3 and 1.4 has to my knowledge not been conjectured by
anyone before, but they resonate well with the results presented in Sections 3–5.

As a step toward the proof of Theorem 1.1 and 1.3, we show in 6.3 some
results on the contour of the amoeba and coamoeba, see Section 2, that might be
of some interest in itself. On the final pages we also discuss an alternative algebraic
criterion for degeneracy.

2. Preliminaries

If z is a regular point of V and the Jacobian of Log (or Arg) has full rank at z
for some choice of local coordinates on V , then z is a non-critical point of Log
(Arg) on V . Otherwise, z is a critical point of Log (Arg) on V . The contour CV
of the amoeba AV is the set of critical values of Log, and the contour C′V of the
coamoeba A′

V is the set of critical values of Arg. Unless the (co)amoeba equals
its contour, it is thus given by C′ ∪ U , where U is a union of real submanifolds of
dimension min(2 dimV, n).

Let m denote the codimension of V . When m > n/2, the boundary ∂AV of
the amoeba is defined as the set AV \U and the boundary ∂A′

V of the coamoeba

is defined as A′
V \U . When m ≤ n/2, the amoeba and coamoeba are in general

full-dimensional and ∂AV and ∂A′
V refers to the topological boundaries of the

amoeba and coamoeba respectively. In Figure 1, the contour of a typical non-affine
coamoeba is illustrated.

In several of the main results in this work, we need the distinction between
real and non-real varieties. That V is real means that, possibly after some linear
change of coordinates, it can be cut out by polynomials with real coefficients. In
particular, a hyperplane is always real. Note that a linear change of coordinates
corresponds to a translation of the amoeba and the coamoeba. One can also check
that θ ∈ A′

V if and only if −θ ∈ A′
V , whenever V is real. The notion of real

varieties was used in [7] for the study of the amoeba.
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If θ ∈ A′
V , then we refer to the set

G(θ) := Log
(
V ∩ Arg−1(θ)

)
as the fiber in AV over θ, and similarly we will consider the fiber G−1(x) in the
coamoeba over a point x in the amoeba. The relation between points and subsets
of the amoeba and coamoeba established by G, is not a primary object of study
in this work. However, it is necessary to develop some theory around fibers to
obtain the main results. A general fact is that G(C′V ) = CV . This follows from the
next proposition. Even though it was known to Passare, it has not been published
before and therefore comes with a proof.

Proposition 2.1. The critical points of Log and Arg on V coincide.

Proof. Fix a regular point z ∈ V . Choose a local branch of the holomorphic func-
tion log = Log+iArg in a neighborhood U of z and setW = log(U∩V ), w = log z.
It follows by linearity that

TLog z(LogV ) = ReTw(W ), TArg z(ArgV ) = ImTw(W )

where Tq(X) denotes the tangent space of X at q. Furthermore, the dimension of
the real and imaginary parts of Tw(W ) are equal since u + iv ∈ Tw(W ) implies
that i(u+ iv) = −v + iu ∈ Tw(W ). The proposition follows. �

Finally some notation: ej is the jth standard basis vector for Rn for 1 ≤ j ≤ n
and

e0 = −
n∑

j=1

ej .

We will sometimes consider the lifting of the amoeba of an affine space L to (R+)n:

ExpA = {(ex1, . . . , exn); (x1, . . . , xn) ∈ A}
= {(|z1|, . . . , |zn|); (z1, . . . , zn) ∈ L}.

The real projective line is denoted by RP, and (x : y) ∈ RP is sometimes repre-
sented by y/x ∈]−∞,∞]. On Tn, we use the metric inherited from Rn. A line in Tn

is a geodesic, i.e., the natural projection on Tn of a line with rational slope in Rn.

3. Hyperplanes

The simplest examples of amoebas and coamoebas are those of hyperplanes. For
such an amoeba Af := Af−1(0), where f is a polynomial of degree 1, Forsberg,
Passare and Tsikh showed in [2] the following result.
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Theorem 3.1 (Forsberg, Passare, Tsikh). Let f = a0+
∑n

j=1 ajzj. Then ExpAf is

the polyhedron in (R+)n defined by the following generalized triangle inequalities:

|a0| ≤
n∑

j=1

|aj |rj ,

|ak|rk ≤ |a0|+
∑
j �=k

|aj |rj ∀k = 1, 2, . . . , n.

There is an analogous result for coamoebas. Instead of considering the co-
amoeba on Tn, we will here consider the coamoeba on a fundamental domain in
Rn of the natural projection from Rn to Tn = (R/2πZ)n.

Theorem 3.2. Consider the hyperplane defined by f =
∑n

j=0 ajzj for aj �= 0.

On the domain
⋂n

j=1{θ ∈ Rn;−π − arg aj < θj ≤ π − arg aj}, we have that θ is

contained in the complement of the closure of the coamoeba A′ := A′
f if and only if

−π − arg aj + arg ak < θj − θk < π − arg aj + arg ak, ∀j, k. (3.1)

Furthermore, the contour of A′ is given by the 2n − 1 points (p1 − arg a1 +
arg a0, . . . , pn − arg an + arg a0) for which pj ∈ {0, π} and not all pj are zero.

Figure 3. The coamoeba of a complex plane in (C∗)3. Its complement can
be described as the convex hull of two cubes in opposite corners of the big
cube representing T3.

As the contour is specified in Theorem 3.2, we actually get a description of
the coamoeba itself and not only its closure.

For a shorter proof, we introduce the fixed number z0 = 1. First we show the
following lemma.

Lemma 3.3. If A′ is as in Theorem 3.2, then

A′ =
⋃

0≤j<k<l≤n

A′
ej+ek+el .
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Proof. The ⊇-inclusion follows from Theorem 1.2. For the other inclusion, assume
that θ ∈ A′. Then the convex hull in C of the points a0, a1e

iθ1 ,. . . ,ane
iθn must

contain the origin. But then there are j, k, l such that the convex hull of aje
iθj ,

ake
iθk , ale

iθl contains the origin. By an arbitrarily small perturbation of either θj ,
θk or θl, the origin will be contained in the interior of the convex hull of aje

iθj ,
ake

iθk , ale
iθl , and thus

0 = aje
xj+iθj + ake

xk+iθk + ale
xl+iθl

for some xj , xk, xl ∈ R. But this means exactly that θ ∈ A′
ej+ek+el . �

Lemma 3.3 is a more specific version of Theorem 1.4 for the hyperplane case.
There are similar specific versions of Theorem 1.4 for any specific low codimension,
cf. Theorem 6.4 below.

The rest of the proof of Theorem 3.2 is mostly about cosmetic reformulations.

Proof of Theorem 3.2. We note that on the domain {−π < θ1, θ2 ≤ π}, the com-
plement of A′

a+bz1+cz2 in R2 is given by the inequalities

−π < θ1 − θ2 < π, (3.2)

whenever a, b and c are strictly positive numbers, cf. Figure 2. The hyperplane in
(C∗)n given by ajzj + akzk + alzl is also given by aj + akzk/zj + alzl/zj. Hence
on the domain

{−π < θk − θj , θl − θj ≤ π},
the complement of the coamoeba of ajzj + akzk + alzl in Rn is given by the
inequalities

−π < θk − θl < π,

when aj , ak, al > 0. Since ajzj + akzk + alzl = fej+ek+el , Lemma 3.3 implies that

the complement of A′
f on the domain {−π < θ1, . . . , θn ≤ π} is given by the

inequalities

−π < θj − θk < π, ∀j, k. (3.3)

Furthermore it is easy to check the definition to see that the critical points are
exactly the real points contained in f−1(0). Thus C′ ∩ {−π < θ1, . . . , θn ≤ π} is
given by the points (p1, . . . , pn) where pj ∈ {0, π} and not all pj are zero. For
the general case, just note that f(z1e

−i arg a1 , . . . , zne
−i arg an) = 0 if and only if∑n

j=0 |aj|zj = 0. �

4. Lines

The second case where the amoeba and coamoeba can be thoroughly described,
is when L is a complex line. Throughout this section, we let L be given by the
parametrization

z(t) = (t, a2 + b2t, . . . , an + bnt), t = x+ iy,
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where aj , bj ∈ C and x, y ∈ RP are chosen so that

t /∈ {0,∞,−a2/b2, . . . ,−an/bn}.

Furthermore, we assume that bj �= 0 for every j ≥ 2. This is not really a restriction,
since a line excluded in this way is the Cartesian product of a point in (C∗)k and
a line in (C∗)n−k with b2, b3, . . . , bn−k �= 0, for some k < n.

Notice that L is real if and only if(
a2
b2

:
a3
b3

: · · · : an
bn

)
∈ RPn−2.

If ak �= 0, this inclusion is equivalent to the assertion that (ajbk)/(akbj) ∈ R for
every j, k. Hence L is real if and only if

0 = Im (akbj āj b̄k) = Re (bj āj)Im (ak b̄k) + Re (ak b̄k)Im (bj āj)

= Re (aj b̄j)Im (ak b̄k)− Re (ak b̄k)Im (aj b̄j)
(4.1)

for every j, k.

Let Tan : Tn → (RP)n be the local diffeomorphism given by tan in each
coordinate.

Proposition 4.1. If L is not real, then C′ = ∅. If L is real, then TanC′ consists of
the single point whose jth coordinate equals Im aj/Reaj if aj �= 0 and

Im (bjakb̄k)/Re (bjak b̄k)

if aj = 0, where k can be any number for which ak �= 0.

Thus, C′ is either empty or consists of a finite number of points.

Proof of Proposition 4.1. To decide whether z ∈ L is a critical point of Arg or not,
it suffices to show that the rank of the n× 2-matrix A = Jac(Tan ◦Arg)L equals
1 at z. Let

τj = tan arg zj = Im zj/Re zj .

By our parametrization, the first row of A is(
∂τ1
∂x

,
∂τ1
∂y

)
=

(
− y

x2
,
1

x

)
while the jth row, 2 ≤ j ≤ n, equals(

∂τj
∂x

,
∂τj
∂y

)
=

(
Im (ājbj)− y|bj |2

(Re aj + xRe bj − yIm bj)2
,

Re (ājbj) + x|bj |2
(Re aj + xRe bj − yIm bj)2

)
.

The two columns of A are linearly dependent exactly when every minor of A
vanishes, that is yRe (ājbj)− xIm (ājbj) = 0 for every j. This means that

τ1 = y/x = − Im (ākbk)

Re (ākbk)
=

Im (ak b̄k)

Re (ak b̄k)
(4.2)
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for every k for which ak �= 0, and by (4.1), this equality for every such k says
exactly that L is real. From this we compute τj for j such that aj �= 0 by repeated
use of (4.1):

τj =
Im aj + yRe bj + xIm bj
Re aj + xRe bj − yIm bj

=
Im ajRe (ak b̄k) + xRe bjIm (ak b̄k) + xIm bjRe (ak b̄k)

Re ajRe (ak b̄k) + xRe bjRe (ak b̄k)− xIm bjIm (ak b̄k)

=
Im ajRe (ak b̄k) + xIm (bjakb̄k)

Re ajRe (ak b̄k) + xRe (bjakb̄k)
· Re ajRe (ak b̄k)− xRe (bjak b̄k)

Re ajRe (ak b̄k)− xRe (bjak b̄k)

=
Im ajRe ajRe

2(ak b̄k)− x2Re (bjak b̄k)Im (bjak b̄k)

Re 2ajRe
2(ak b̄k)− x2Re 2(bjak b̄k)

· Reaj
Reaj

=
Im ajRe ajRe

2(ak b̄k)Re aj − x2Re 2(bjakb̄k)Im aj

(Re 2ajRe
2(ak b̄k)− x2Re 2(bjakb̄k))Re aj

=
Im aj
Re aj

.

(4.3)

For j such that aj = 0, the result follows easily by use of (4.2). �
Proposition 4.1 implies that the topology of the amoeba and coamoeba differs

between the real and non-real case. We will give a precise characterization of both
cases, but first we need the following lemma.

Lemma 4.2. For a line L, the fiber in A′ over x ∈ A consists of two points if L is
real and x /∈ C and one point if L is not real or x ∈ C.
Proof. Assume that s, t ∈ C, s �= t, are such that Log z(s) = Log z(t). Then in
particular |s| = |t|. Furthermore we have for general complex numbers a �= b with
|a| = |b|, that |aj + a| = |aj + b| if and only if b is the reflection of a in the line
through aj and the origin, that is arg aj − arg b = −(arg aj − arg a), so the only
possibility for Log(z(s)) to equal Log(z(t)) is if

arg(aj)− arg(bjs) = ±(arg(aj)− arg(bjt))

for every j. When the sign on the right-hand side is positive for some j, this implies
that s = t. If it is negative for every coordinate j instead, then

2 arg(aj/bj) ≡ arg s+ arg t mod 2π (4.4)

for every j, and thus L is real. Finally we check that (4.4) implies that z(s) =
z(t), that is s = t, if and only if arg t = arg(aj/bj) mod π for every j. But by
Proposition 4.1 this is exactly when Arg z(t) ∈ C′, and hence by Proposition 2.1,
Log z(t) ∈ C. �

Corollary 4.3. If L is a real line, then ∂A = C.
Proof. It follows by Lemma 4.2, that no non-critical points in L of Log can be
mapped on the contour C. Hence by definition, θ ∈ ∂A. �
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Figure 4. The amoeba (left) and coamoeba (right) of a real (up) and non-
real (down) complex line in (C∗)3. The amoeba of a real line has boundary
while the amoeba of a non-real line is a topological sphere minus generically
four points. The boundary of a coamoeba of a line L, consists of four lines on
T3. These lines intersect pairwise if and only if L is real. We will discuss this
further in Example 6.9.

We are now ready to give a topological description of the amoeba and co-
amoeba of a line.

Theorem 4.4. The amoeba and coamoeba of a non-real line L are diffeomorphic to
the Riemann sphere minus k points where 4 ≤ k ≤ n+ 1. If L is real, we have

AL = Af ∩ {x; Expx ∈ Z}, (4.5)

A′
L = A′

f ∩ {θ; Tan θ ∈ Z ′}, (4.6)

where Z is a homogeneously quadratic surface in Rn, Z ′ a cubic surface in (RP)n

and f is any affine trinomial that vanishes on L.

Notice that an affine trinomial in (C∗)n is independent of n − 2 of n + 1
projective coordinates when considering (C∗)n as a torus in Pn with the zeroth
coordinate chosen to be fixed. Hence the second part of Theorem 4.4 implies that
the projection of the (co)amoeba of L on a subspace of Rn obtained by fixing some
good choice of n− 2 coordinates, is the (co)amoeba of a line in (C∗)2.

The number k in Theorem 4.4 is generically n + 1, and otherwise, L is de-
generate, see Section 5.
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Proof of Theorem 4.4. Setting rj = |zj | we have for 1 ≤ j ≤ n that

r2j = (Re aj + xRe bj − yIm bj)
2 + (Im aj + xIm bj + yRe bj)

2

= |aj |2 + 2Re (aj b̄j)x+ 2Im (aj b̄j)y + |bj |2r21 .

If L is real we have by (4.1) that Re (aj b̄j)/Re (ak b̄k) = Im (aj b̄j)/Im (ak b̄k) for
every j, k = 1, 2, . . . , n such that ak �= 0. Hence there are for every j, k constants
λjk ∈ R such that

r2j + λjkr
2
k − |aj |2 − λjk |ak|2 − (|bj |2 + λjk|bk|2)r21 = 0.

Of these equations we choose n− 2 that are algebraically independent and we see
that ExpA must lie on a quadratic surface Z of real dimension 2.

Let f be an affine trinomial that vanishes on L. By Theorem 3.1, ExpAf

is a convex set. To show that ExpAL = Z ∩ ExpAf , it hence suffices to show
that ∂AL ⊂ ∂Af , recalling that Exp is a diffeomorphism. However, f−1(0) is
the Cartesian product of a line in (C∗)2 and the subtorus of (C∗)n obtained by
excluding the coordinates occurring in f . Hence by Corollary 4.3, ∂Af = Cf . Since
furthermore ∂AL = CL by the same corollary, it suffices to show that CL ⊂ Cf .

By Proposition 4.1, θ ∈ C′L implies that

θj ≡
{
arg aj mod π if aj �= 0

arg(bjak/ek) mod π for any k such that ak �= 0 otherwise.
(4.7)

Let f(z) = azj + bzk + czl, where 0 ≤ j < k < l ≤ n and z0 := 1. We have that if
f vanishes on L, then for every t ∈ C,

0 =a(aj + bjt) + b(ak + bkt) + c(al + blt)

=aaj + bak + cal + (abj + bbk + cbl)t.

We get a real system of two linear equations in a, b, c. By solving this, we see that
f(z) is a constant times

(blak − bkal)zj + (bjal − blaj)zk + (bjak − bkaj)zl. (4.8)

Since L is real, the arguments of the two terms in the factor of one of the coordi-
nates of z, are congruent modulo π, whenever both are non-zero. Hence, if (4.7)
holds, then rankCθ

f−1(0) = 1, that is θ ∈ C′f . By Proposition 2.1, we have showed

(4.5).
Next we look at the coamoeba of L in the real case. If we set τj := tan θj ,

then we have τ1 = y/x and so, for j ≥ 2,

τj =
Im (aj + bjt)

Re (aj + bjt)
=

Im aj + τ1xRe bj + xIm bj
Re aj + xRe bj − τ1xIm bj

, ∀j. (4.9)

If aj = 0, then clearly (4.9) is a quadratic equation in τj and τ1. If there is a k
such that ak �= 0, then (4.9) implies that

x =
Im (ak)− τkRe ak

τ1τkIm bk + τkRe bk − τ1Re bk + Im bk
. (4.10)
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By exchanging x in (4.9) with the expression given in (4.10) whenever aj �= 0, we
get n − 2 algebraically independent equations in τ1, . . . , τn of degree at most 3,
cutting out a surface Z ′ ⊂ (RP)n, quite analogous to the case of the amoeba.

The points on P which we exclude when we parametrize L are −ak/bk for
0 ≤ k ≤ n. If j �= k and ak �= 0, then we have from (4.1) that

τj =
Im (aj + bj(−ak/bk))
Re (aj + bj(−ak/bk))

=

{
Im aj/Reaj aj �= 0

Im (bjak b̄k)/Re (bjakb̄k) aj = 0.
(4.11)

The complement of TanA′
L in Z ′ must hence be contained in the union of lines

l0, l1, . . . , ln where, if j > 0, all coordinates except the j:th in lj are fixed as in
Proposition 4.1 and the remaining coordinate can be any number, and where

l0 =

{
(λ,

Im b2 + λRe b2
Re b2 − λIm b2

, . . . ,
Im bn + λRe bn
Re bn − λIm bn

);λ ∈ RP
}
.

Furthermore, dim C′ = 0 by Proposition 4.1. Hence the boundary of A′
L is con-

tained in Tan−1⋃n
j=1 lj .

Now let f be a trinomial as in (4.8). The boundary of A′
f consists of the

three hyperplanes given by the coamoebas of the sums of pairs of monomials of
f , cf. Figure 2. Hence we are done if we show that each line li is contained in
one of these hyperplanes. To this end, first assume that i > 0 and consider a
binomial g obtained from the monomials as in (4.8) of f that do not depend
on zi. Then we verify that li ⊂ A′

g. Next we verify that l0 ⊆ TanA′
h, where

h(z) = (bjal − blaj)zk + (bjak − bkaj)zl (note that 1 ≤ k, l).

If L is not real, then by Proposition 4.1, Log and Arg are local diffeomor-
phisms. But one can also check that Arg is an injection (this follows, e.g., from
a combination of Proposition 6.5 and 6.2 below), and hence a global diffeomor-
phism. The same is true for Log by Lemma 4.2. If there is a c ∈ C such that
−aj/bj either equals c or 0 for every j, then L is real. Since L is parametrized by
P\{0,−a2/b2, . . . ,−an/bn,∞}, the theorem hence follows. �

5. Affine spaces of codimension n/2

An affine space L ⊂ (C∗)n of codimension m is the restriction to (C∗)n of an affine
subspace PL of Pn whenever such a restriction is non-empty. This means that PL

is defined by a system

Czt := C(z0 : z1 : · · · : zn)t = 0 (5.1)

of linearly independent equations, where C = CL is a complex m× (n+1)-matrix
for which every column is contained in the linear span of the other columns.

Let us rewrite (5.1) as a real system. Denote by Cj the j:th column of C, 0 ≤
j ≤ n. For θ ∈ Tn, the projection of eiθjCj on R2m sending the real and imaginary
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part of the kth coordinate to the 2k− 1th and 2kth coordinate respectively, gives
a vector Cθ

j . Letting the subscript j denote the column, these vectors together

with C0 define a real 2m× (n+1)-matrix Cθ. The system (5.1) is equivalent with
Cθr = 0, if we set zj = rje

iθ for r ∈ RPn (we can assume that θ0 = 0).

The case m = n/2 is special in the sense that the system Cθr = 0 then is
neither under- nor over-determined, unless the rows of Cθ are linearly dependent.
Notice also that Cθ(1, r) = 0 for r ∈ (R∗)n if and only if reiθ ∈ L. If r is unknown,
there are 2n possible values of Arg reiθ of which exactly one is contained in A′.
Furthermore, the volume of Tn is (2π)n. Hence the following result is plausible.

Theorem 5.1. If L is an affine space of codimension n/2 for which A′ �= C′, then
VolA′ = πn.

The proof for this will be given at the very end of Section 6. We remark that
if A′ = C′, then VolA′ = 0. To see this, first notice that the real dimension of L
is n and that there is an additional real algebraic condition for θ to fulfil to be
contained in C′, see, e.g., Proposition 2.2 in [4].

The volume of the amoeba of a space as in Theorem 5.1, is not known in
general. However, Nisse announces in [9] a proof for that the volume of the amoeba
of a generic real affine space in (C∗)n is πn/n. In the case n = 4, we give an
alternative proof for this. First we need the following definition: an affine space L
is degenerate if any of the maximal minors of C vanishes. As we will see in the
final section, L is degenerate if the condition in Theorem 5.1 is fulfilled, while the
converse implication does not hold.

Theorem 5.2. The volume of the amoeba of a non-degenerate, real plane in (C∗)4,
equals π4/4.

Our proof leans on two lemmas. For the first one, notice that if θ ∈ A′ and
the system Cθr = 0 does not have a unique solution, then there is a positively di-
mensional subspace of solutions and hence θ ∈ C′. This means that G, as defined in
Section 2, can be considered as a mapping fromA′\C′ to A, assigning to θ the value
of (log r1, . . . , log rn), where (r1, . . . , rn) is the solution to Cθ(1, r1, . . . , rn) = 0.

Lemma 5.3. The Jacobian of G equals 1.

Proof. Denote the Jacobian matrix of Log, Arg and Arg−1 by J , J ′ and J ′−1

respectively. The Jacobian matrix of G then equals JJ ′−1. The complex logarithm
log = Log+iArg is a holomorphic function, meaning that the Cauchy–Riemann
equations

∂ Log zk
∂xj

=
∂ Arg zk

∂yj
,
∂ Log zk
∂yj

= −∂Arg zk
∂xj

,

are satisfied. Thus J is obtained from J ′ by interchanging pairs of rows and chang-
ing sign on one row in every pair and then JJ ′−1 is obtained from the unit matrix
E = J ′J ′−1 in the same way. By elementary linear algebra it follows that

|JJ ′−1| = |E| = 1. �
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We now give the second lemma.

Lemma 5.4. Let L be a non-degenerate real plane in (C∗)4. Then the number of
points in G−1(x) is 4 for every x ∈ intA and 2 for every x ∈ ∂A.

Proof. To minimize the number of necessary unknown constants, we can as well
consider a plane L for which CL is given by

CL =

(
1 1 0 1 1
1 0 1 a b

)
, a, b ∈ R. (5.2)

Assume that z ∈ L. Setting zj = rje
θji we have that

r21 = Re 2(1 + z3 + z4) + Im 2(1 + z3 + z4), (5.3)

r22 = Re 2(1 + az3 + bz4) + Im 2(1 + az3 + bz4), (5.4)

which for fixed r1, . . . , r4 gives us the system

r21 = 1 + r23 + r24 + 2r3 cos θ3 + 2r4 cos θ4 + 2r3r4 cos(θ3 − θ4),

r22 = 1 + a2r23 + b2r24 + 2ar3 cos θ3 + 2br4 cos θ4 + 2abr3r4 cos(θ3 − θ4),
(5.5)

in θ1, . . . , θ4. To solve it, set

ξ1 = cos θ3, ξ2 = cos θ4, ξ3 = cos(θ3 − θ4).

Then (5.5) determines a line Lr in {(ξ1, ξ2, ξ3)} = R3. Furthermore, ξ1, ξ2, ξ3 must
satisfy

ξ21 + ξ22 + ξ23 = 1 + 2ξ1ξ2ξ3, |ξ1|, |ξ2|, |ξ3| ≤ 1. (5.6)

This describes the boundary of a convex region D – an inflated tetrahedron, see
Figure 5. The intersection of ∂D and Lr determines the points θ ∈ A′ for which
G(θ) = Log r.

Figure 5. The inflated tetrahedron D.
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The set of lines in R3 is a real 4-dimensional manifold L. Since L is non-
degenerate, a, b and 1 must be three distinct numbers. In view of this, it is straight-
forward to check that the mapping r �→ Lr is a local diffeomorphism from (R+)4

to L. This means that x ∈ ∂A if and only if Lex tangents D. Furthermore, the set
of lines L that intersects the interior of D can be parametrized by the two unique
points contained in L ∩ ∂D. Hence we have a mapping ϕ : (R+)4 → ∂D with two
locally diffeomorphic branches such that G−1(x) is given by the image of x ∈ intA
in following scheme:

intA ExpA (R+)2 × ∂D (R+)2 × T2 A′.
Exp (π,ϕ) (i,ψ) p

(5.7)

Here π is given by (r1, r2, r3, r4) �→ (r3, r4), i is the identity and ψ is the mapping
that takes ζ ∈ ∂D to its corresponding points in T2. Also ψ has two branches,
since

(cos θ3, cos θ4, cos(θ3 − θ4)) = (cos(−θ3), cos(−θ4), cos(−θ3 + θ4)).

The mapping p is given by

(r3, r4, θ3, θ4) �→ (π + arg f(r3e
iθ3 , r4e

iθ4), π + arg g(r3e
iθ3 , r4e

iθ4), θ3, θ4),

where f(z) = 1 + z1 + z2 and g(z) = 1 + az1 + bz2. It follows that |G−1(x)| = 4
for every x ∈ intA.

When x ∈ ∂A, Lex intersects ∂D at a unique point ζ. Except for this, G−1(x)
is obtained just as in (5.7) and consequently, |G−1(x)| = 2. �

Proof of Theorem 5.4. The volume of the contour of the amoeba or coamoeba of
a plane in (C∗)4 is always 0, see the discussion above. By Proposition 5.1, the
volume of A′\C′ hence equals π4. Since the Jacobian of G outside of C′ equals 1,
see Lemma 5.3, the result hence follows from Lemma 5.4. �

6. A general approach for the study of the affine coamoeba

In this section we will introduce a framework in which Theorem 1.1, 1.3 and 1.4
are better understood, and then we will prove them. Throughout the section, we
consider an affine space L of codimension m defined by an m×(n+1)-dimensional
matrix C as in the previous section, with amoeba and coamoeba A and A′, with
contours C and C′ respectively.

6.1. An indexation of the initial coamoebas

We start by looking at two different ways to construct complex spaces associated
with L whose coamoebas are of interest for the understanding of A′. Firstly, recall
that we have the initial spaces Lω of L, defined by the initial ideals Iω as in the
case of general algebraic varieties, see Section 2. It is well known that every Iω is
generated by polynomials of degree one, see, e.g., Proposition 1.6 in [12]. Thus it
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is straightforward to check that for any real n-vector ω, Lω equals LωN for some
N ⊆ {0, 1, . . . , n}, where

ωN =
∑
j /∈N

ej.

Secondly, for N ⊆ {0, 1, . . . , n} we may define an affine subspace LN of (C∗)n by
the equation

CN (1, z)t = 0,

where CN is the matrix obtained from C by setting all entries in the columns with
indices in N to zero.

Lemma 6.1. For any N ⊆ {0, 1, . . . , n}, LωN ⊆ LN . If L is not degenerate equality
holds.

Proof. Whenever the kth row of CN (1, z)t is nonzero, it is given by

CkN (1, zt) :=
∑
j /∈N

ckjzj =

( n∑
j=0

ckjzj

)
ωN

,

where z0 := 1. Hence I(LωN ) ⊇ 〈C1N (1, zt), . . . , CmN (1, zt)〉, or equivalently
LωN ⊆ LN . When L is non-degenerate, CkN (1, zt) = 0 implies that |N | > m,
which in turn implies that LN , and hence also LωN , is the empty set. �

Notice that for L degenerate, the inclusion in Lemma 6.1 may be strict, since
CkN (1, z)t = 0 means that( n∑

j=0

ckjzj

)
ωN

=
∑
j∈N

ckjzj.

Thus the kth row of C corresponds to a non-zero polynomial in I(LωN ), even if it
does not correspond to a non-zero polynomial in I(LN ).

By the discussion above, we have an indexation {A′
N} of the initial coamoebas

of A′ with A′
N := A′

LN
= A′

ωN
, whenever L is non-degenerate, and we will use this

indexation throughout this section. However, A′
LN

has meaning even when L is
degenerate, and hence some of the results below hold also in the degenerate case,
although with a different meaning.

6.2. The compactified amoeba and the proof of Theorem 1.4

Given a polyhedron K, let intK denote its relative interior. Consider the nth unit
simplex

Δn =

{
s ∈ [0, 1]n+1;

∑
sj = 1

}
and set

Lθ = {s ∈ Δn;C
θs = 0}.

Then Lθ is the fiber over θ in the compactified amoeba of L, see [3]. Indeed, consider
the diffeomorphism ψ : intΔn → Rn given by

ψ(s) = (log(s1/s0), . . . , log(sn/s0)).
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It is easy to verify that for every θ ∈ Tn, the fiber in A over θ is given by ψ(intLθ),
cf. the discussion preceding Theorem 5.1. Since furthermore Δn ∩K is a polygon
of dimension dimK − 1 whenever K is a subspace of Rn+1 that intersects the
interior of Δn, we have the following result.

Proposition 6.2. The fiber in A over θ ∈ A′ is diffeomorphic to the interior of a
polygon of dimension n − rankCθ. In particular, the fiber is a single point if and
only if rankCθ = n.

The faces of Δn can be indexed by the proper subsets of {0, 1, . . . , n} by
setting ΓN = {s ∈ Δn; sj = 0, j ∈ N}.

Lemma 6.3. For N ⊆ {0, 1, . . . , n}, θ ∈ A′
N if and only if Lθ intersects int ΓN .

Proof. The assertion says exactly that there is an s ∈ intΔn with Cθ
Ns = 0 if and

only if there is an s′ ∈ int ΓN with Cθ
Ns′ = Cθs′ = 0. If the former equation holds,

then an s′ ∈ int ΓN satisfying the latter equation is obtained by setting every
coordinate with index in N to zero and normalizing. If the latter equation holds,
then an s ∈ intΔn satisfying the former equation is obtained by the normalisation
of s′ + wN . �

�1,0,0,0�

�0,1,0,0� �0,0,1,0�

�0,0,0,1�

Figure 6. The unit simplex Δ3 and Lθ with its four vertices marked with dots.

We will now state the result that lies behind Theorem 1.4.

Theorem 6.4. If L is an affine space of codimension m, 0 < 2m < n, then θ ∈ A′

if and only if θ ∈
⋂k

j=1A′
Nj

for some index sets N1, . . . , Nk with
⋂k

j=1 Nj = ∅ and
|Nj | ≥ n− 2m.

Proof. By Lemma 6.3 it suffices to show for every θ ∈ Tn that Lθ intersects intΔn

if and only if Lθ intersects int ΓNj for N1, . . . , Nk as in the formulation of the

theorem. If the latter holds, with sj ∈ int ΓNj ∩Lθ, then clearly the normalisation

of
∑k

j=1 sj is contained in intΔn ∩ Lθ.
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Now assume instead that there is an s ∈ intΔn∩Lθ. Since the maximal rank
of Cθ is 2m < n, Lθ must be a polytope of dimension at least n − 2m > 0. Its
vertices are clearly contained in the interiors of faces ΓNj of Δn for N1, . . . , Nk as
in the assertion, cf. Figure 6. �

Remark 1. By studying the relation between the faces of Lθ and the faces of Δn,
it is possible to choose much more specific classes N1, . . . , Nk in Theorem 6.4 and
still obtain the whole coamoeba. �

Proof of Theorem 1.4. By Theorem 6.4 and Lemma 6.1,

A′
0 = A′ ⊆

⋃
{0,1,...,n}⊇N �=∅

A′
N =

⋃
Rn�ω �=0

A′
ω.

Hence the result follows from Theorem 1.2. �

6.3. The contour of the coamoeba and partial proof of Theorem 1.3

In the affine case, the contour of the coamoeba basically contains one type of
points, as indicated by the following result.

Proposition 6.5. Let θ ∈ A′. When 2m ≥ n, θ belongs to the contour C′ if and
only if Cθ has rank strictly less than n. When 2m ≤ n, θ ∈ C′ if and only if the
rank of Cθ is not maximal.

Proof. First look at the case 2m ≥ n. If rankCθ < n for θ ∈ A′, then it follows
from Proposition 6.2 that θ ∈ C′. If rankCθ > n, then again by Proposition 6.2,
θ /∈ A′. Finally, assume that rankCθ = n. Then there is an open neighborhood
U in Tn of θ so that the column vectors Cϕ

1 , . . . , C
ϕ
n are linearly independent

whenever ϕ ∈ U . The set Ω = Arg−1(U) ∩L is non-empty since θ ∈ A′, and thus,
since L lacks critical points, a differentiable manifold of real dimension 2(n−m).
Furthermore, Arg maps Ω injectively on A′ by Proposition 6.2. Hence θ is not
contained in C′.

Now assume that 2m ≤ n. If the rank of Cθ is not maximal, then it follows
from Proposition 6.2 that θ ∈ C′. If it is maximal, then there is an open neighbor-
hood U of θ such that, without loss of generality, Cϕ

1 , . . . , C
ϕ
2m is a basis for R2m

for every ϕ ∈ U . Let

Aϕ = {(log r1, . . . , log rn);Cϕ(1, r)t = 0)}.
Since Cϕ depends continuously on ϕ, so does Aϕ, and hence defines a vector
bundle over U , that is a 2(n − m)-dimensional open real manifold. Clearly L is
parametrized locally at Arg−1(θ) ∩ L by (ϕ, x) �→ ex+iϕ for x ∈ Aϕ, ϕ ∈ U . The
proposition follows. �

Remark 2. The second statement of Proposition 6.5 is a special case of Proposition
2.2 in [4]. �

The following corollary points out an aspect of real affine spaces that we
glimpsed in Theorem 4.4.
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Corollary 6.6. The amoeba and coamoeba of a real affine space, have contours.

Proof. Denote the affine space in the lemma by L. We may assume that CL has real
coefficients. Thus there is an r ∈ (R∗)n such that CL(1, r)

t = 0. Letting θj equal
0 if rj > 0 and π if r < 0, it follows that θ ∈ A′

L and rankCθ = m < min{n, 2m},
that is, by Proposition 6.5, θ ∈ C′L. It follows from Proposition 2.1 that also CL is
non-empty. �

Just as we used the fact that dimLθ > 0 for every θ ∈ A′ when 2m < n to
get the formula of Theorem 6.4, we can by Proposition 6.5 get a similar formula
for C′, regardless of the codimension of L. However, for the proof of the remaining
results, the following assertion suffices.

Lemma 6.7. The contour of A′ is contained in the union of sets A′
M ∩ A′

N for
which M\N and N\M are non-empty and |N |, |M | ≥ max{1, n − 2m + 1}. If
2m ≥ n, we have furthermore that C′ = A′ ∩

⋃
N �=∅A′

N .

Proof. By Proposition 6.5, θ ∈ C′ implies that rankCθ < min{2m,n}, that is

dimLθ ≥ n+ 1−min{2m,n} ≥ max{1, n+ 1− 2m}.
Hence Lθ intersects ΓM and ΓN for M,N as in the formulation of the lemma. The
first part of the lemma now follows from Lemma 6.3.

For the second part, assume that 2m ≥ n and let N �= ∅. If θ ∈ A′ ∩ A′
N ,

then by Lemma 6.3, Lθ intersects both intΔn and int ΓN . Hence dimLθ > 0 and
it follows that θ ∈ C′. �

Example 6.8. When 2m ≥ n, one can check that

C′ =
⋃

M,N �=∅
M∩N=∅

A′
L ∩ A′

L. (6.1)

Example 6.9. When L is a non-degenerate line, the proper initial coamoebas are
the real lines A{j} for 0 ≤ j ≤ n. These intersect pairwise if and only if L is real
and C′ is the set of isolated points given by these intersections, see Figure 4.

Example 6.10. Consider Figure 7. In (a) and (b), Lθ corresponds to an affine space
L in complex dimension 2 that is cut out by some polynomials a+bz1+cz2. In (a),
θ ∈ A′

L{0} ∩ A
′
L{2} , that is a typical situation when θ is contained in the contour

of a line. In (b), θ ∈ A′
L{01} ∩ A

′
L{2} . But θ ∈ A

′
L{01} means that c = 0, and hence

A′
L{01} = T2. In particular we have that A′

L = C′L.

Example 6.11. Let us go back to the situation in Section 5 and consider a non-
degenerate plane in (C∗)4. The contour C′ of its coamoeba can by Example 6.8 be
considered as more or less the union of the ten sets

C′lm := A′
L{l} ∩A

′
L{m} .
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�a�

�1,0,0� �0,1,0�

�0,0,1�

LΘ

�b�

�1,0,0� �0,1,0�

�0,0,1�

LΘ

Figure 7. The characteristic positions possible for Lθ when θ ∈ C′
L for a

line L in (C∗)2.

Indeed, if the plane is non-real, then C′ is precisely the union of these sets, which
in this case are non-empty, connected and with disjoint closures. Most of this is
rather straightforward to show. For the connectedness, let g, f be polynomials of
degree one such that L is defined by the equations

f(z3, z4)− z1 = 0, g(z3, z4)− z2 = 0.

The coamoebas A′
f and A′

g are different translates of the set described in Figure 2.

One can show that θ ∈ C′12 implies that (θ3, θ4) is contained in the open, connected
set A′

f ∩A′
g and that C′12 more or less is given by a parametrization over A′

f ∩A′
g.

In particular, C′12 is connected.
If the plane is real and f , g are as above, then A′

f ∩A′
g may be disconnected,

in which case it consists of two points. These points correspond to certain points in
C′ that are contained in several connected components C′lm, and one of the points
is in fact contained in all such components. As a consequence, C′ is connected.
One can use the mapping G, see Section 5, to show that also the contour of the
amoeba of a real plane in (C∗)4 is connected.

By using the results in this section, we can prove one direction of Theorem 1.3.

Lemma 6.12. If L is a non-degenerate affine space of codimension at least n/2,
then

∂A′ ⊆
⋃
ω �=0

A′
ω\A′. (6.2)

Proof. By Theorem 1.2,

∂A′\A′ =
⋃
ω �=0

A′
ω\A′. (6.3)

Furthermore,

∂A′ ∩ A′ ⊆ C′ =
⋃
N �=∅

A′
N ∩ A′ =

⋃
ω �=0

A′
ω ∩ A′, (6.4)

where the second equality follows from Lemma 6.7 and the third from Lemma 6.1.
Together, (6.3) and (6.4) imply the desired result. �
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6.4. Proof of Theorem 1.1 and the remaining proof of Theorem 1.3

We are now ready to finish the proving of the theorems from the introduction.

Theorem 6.13. For a non-degenerate affine space L, the following assertions are
true.

1. The interior intA′ of the coamoeba is a real, differentiable manifold of di-
mension min{2n− 2m,n}, and intA′ = A′.

2. If U ⊂ Tn is open and U ∩ ∂A′ �= ∅, then U ∩ (∂A′\A′) �= ∅.
3. When the codimension of L is at least n/2, the following formula holds:

∂A′
L =

⋃
N �=∅

A′
LN

.

4. When the codimension of L is at least n/2, then for every k ∈ {0, 1, . . . , n}
there is a θ ∈ A′

such that ek /∈ Tθ(A
′
L).

The second point is exactly Theorem 1.1. By Lemma 6.1, the third point
implies Theorem 1.3, but in view of Lemma 6.7, it also implies that C′ ⊆ ∂A′

whenever 2m ≥ n. The first point implies that the coamoeba does not equal its
contour and hence tells us that our notion of degeneracy is not too strong. The
last point is mostly included for technical reasons. Here θ does not have to be a

smooth point, as Tθ(A
′
L) refers to the space of tangent vectors at θ of any smooth

curve γ ⊆ A′ passing through θ.
For clarity, we will from now on specify the affine space whose coamoeba we

consider and, e.g., write A′
LN

instead of A′
N . Let KN be the affine subspace of

(C∗)n−|N | given by the quotient of LN by the space generated by the vectors ej ,
j ∈ N . Then A′

KN
is obtained from A′

LN
by taking the corresponding quotient in

Tn. Let πN : Tn → Tn−|N | be the natural projection that takes A′
LN

to A′
KN

.

Lemma 6.14. For any M , N with |M |, |N | ≥ max{1, n − 2m + 1} and any open
set U ⊆ Tn, the assertion

U ∩ π−1
M

(
A′

KM
\C′KM

)
= U ∩ π−1

N

(
A′

KN
\C′KN

)
�= ∅ (6.5)

implies that A′
LM

= A′
LN

.

Proof. Assume that there is an open set U for which (6.5) holds. Then we find,
perhaps by cutting down U , open submanifolds V and W of KM and KN respec-
tively such that U ∩ π−1

M (Arg V ) = U ∩ π−1
N (ArgW ). Let V ′ be a large enough

open submanifold of LN that projects to V under the quotient of the vectors ej
for j ∈ N . Notice that z ∈ Arg−1(U) ∩ V ′ implies that

TArg z

(
π−1
M (Arg V )

)
= TArg z

(
π−1
N (ArgW )

)
. (6.6)

This amounts to a system of polynomial equations in the parameters of L that only
depends on CL. If the system is equivalent to 0 = 0, it follows that A′

LM
= A′

LN
.

Otherwise there is a point z ∈ Arg−1(U) ∩ V ′ such that (6.6) does not hold and
we have a contradiction. The lemma follows. �
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Proof of Theorem 6.13. We start by replacing (2) with a stronger assertion:

2′. If U ⊂ Tn is open and U ∩ A′
LN

�= ∅, then U ∩ A′
LM

�= U ∩ A′
LN

for every
M � N with |M | ≥ max{1, n− 2m+ 1}.

By Lemma 6.7 and the fact that ∂A′
L ∩A′

L ⊆ C′L, (2′) implies (2).

We show the theorem by using induction over the dimension of L. If dimL =
0, then the result is immediate. Assume that the theorem is true for every non-
degenerate affine space of dimension strictly less than n−m, and let dimL = n−m.
Then KN is non-degenerate with dimKN = n − |N | −m ≤ n −m − 1 for every
N with |N | ≥ max{1, n− 2m+1} and hence one can deduce, using the induction
hypothesis and (1), that intA′

LN
is a real, differentiable manifold with

dim(intA′
LN

) = dim(intA′
KN

) + |N |
= 2(n− |N | −m) + |N |
≤ min{2n− 2m− 1, n− 1}.

(6.7)

To show (2′), we can apply Lemma 6.7 and Theorem 1.2 to see that it suffices
to show that

U ∩ π−1
M

(
A′

KM
\C′KM

)
�= U ∩ π−1

N

(
A′

KN
\C′KN

)
,

for any U as in the assertion. By Lemma 6.14 this is true unless A′
LM

= A′
LN

.
But letting k ∈M\N we then have that (4) does not hold for A′

KN
, which by the

induction hypothesis and the fact that codimKN = m > n− |N | −m = dimKN ,
means that KN is degenerate, that is rankCM ′ < m for some M ′ ⊆ M with
|M ′| = m. But then also L is degenerate and we have a contradiction. We conclude
that (2′) holds.

It follows from (2′) and Lemma 6.7 that C′L ⊆ ∂A′
L\C′L, and thus also that

C′L ⊆ A′
L\C′L, and so (1) follows.

To show (3), let m ≥ n/2 and assume for a contradiction that θ ∈ intA′
L ∩

A′
LN

for someN �= ∅. By Theorem 1.2 and the fact thatA′
LN

is an initial coamoeba
of ALM whenever M ⊆ N , we can as well assume that |N | = 1. Let U be an
open neighborhood of θ such that U ⊆ A′. By the second part of Lemma 6.7,
U ∩A′

LN
⊆ C′. On the other hand we have by (2′) combined with the first part of

Lemma 6.7, that U∩A′
LN

� C′. We conclude that A′
LN
⊆ ∂A′. The other direction

in (3) is Lemma 6.12.

Given k ∈ {0, 1, . . . , n}, choose N with |N | = min{1, 2n − 2m + 1}, such
that k /∈ N . Since L is non-degenerate, so is KN . Hence, by (4) and the induction
hypothesis we can choose an open set U such that ek /∈ Tθ(A′

LN
) whenever θ ∈ U .

By (2′) and (3) we can furthermore assume that

U ∩ A′
LN

= U ∩ ∂A′
L\C′ �= ∅.

This means that Tθ(A
′
L) = Tθ(A′

LN
) for θ ∈ U ∩ A′

LN
and hence ek is not con-

tained in Tθ(A′
L). Since k was arbitrary, this implies (4). The theorem follows by

induction. �
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6.5. An alternative notion of degeneracy

Recall from Section 2 that the coamoeba of a variety of codimension m minus its
contour, is either empty or equals a real manifold of dimension min{n, 2(n−m)}.
As we saw in Theorem 6.13,A′ �= C′ whenever L is a non-degenerate affine space (in
fact the theorem implies that C′ scarcely affects the appearance of the coamoeba).
But could A′ �= C′ even if L is degenerate?

The answer to the question is yes. Consider, e.g., the line L in (C∗)3 defined
by the equations 2 + z1 + z2 = 0 and 1 + z3 = 0. We have that L is degenerate
since det(C1, C2) vanishes. On the other hand, as

(
√
2ei3π/4,

√
2e−i3π/4,−1) ∈ L,

Proposition 6.5 implies that (3π/4,−3π/4, π) ∈ A′\C′.
We say that L is strongly degenerate if there is an N �= ∅ such that

rankCN ≤ min{m,n/2} − |N |/2.
It follows that L is degenerate if it is strongly degenerate. The motivation for the
latter definition is partly the next result.

Proposition 6.15. If L is a strongly degenerate affine space, then its amoeba and
coamoeba equal their contours.

Proof. Choose N so that |N | + 2 rankCN is minimal and fix θ ∈ A′. Since L
is strongly degenerate, rankCθ

N ≤ 2 rankCN ≤ n − |N |. Thus the number of
columns of Cθ

N is strictly larger than the rank of Cθ
N . Hence, for some M ⊇ N ,

every column of Cθ
M is contained in the linear span of the other columns, and

rankCθ
M = rankCθ

N − (|M | − |N |). Hence G(θ) has dimension at least

n+ 1− |M | − rankCθ
M = n+ 1− |N | − rankCθ

N

≥ n+ 1− |N | − 2 rankCN .

Since L is strongly degenerate, this means that dimG(θ) > max{n − 2m, 0} and
it follows that θ ∈ C′. �

When m = n/2, the notion of strong degeneracy is particularly essential.

Proposition 6.16. If the codimension of L is n/2, then A′ = C′ if and only if L is
strongly degenerate.

Proof of Theorem 5.1 and Proposition 6.16. We want to show that the three as-
sertions A′ = C′, L is strongly degenerate and VolA′ �= πn are all equivalent. If L
is strongly degenerate, then the two other assertions follows by Proposition 6.15.
Now assume that L is not strongly degenerate. It suffices to show that the two
other assertions do not hold either.

For a fixed θ ∈ Tn, consider the system Cθr = 0 for r ∈ RPn. If Cθ has
full rank, then there is a unique solution r to this system. Hence among all 2n

translations of θ by π in any set of coordinates, there is a unique translation θ̃
such that the solution r of Cθ̃r = 0 has the same sign in each coordinate, or
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equivalently, θ̃ ∈ A′
LN

for some N ⊂ {0, 1, . . . , n}. If on the other hand Cθ does

not have full rank, then there is at least one translation θ̃ as above, that is θ̃ ∈ C′LN
.

Letting S be the subset of points θ ∈ Tn for which rankCθ = n, we conclude that

Vol

(
S ∩

⋃
N

A′
LN

)
= Vol(S)/2n, (6.8)

Vol

(
Sc ∩

⋃
N

C′LN

)
≥ Vol(Sc)/2n. (6.9)

Hence we are done if we show that dimA′
LN

< n for every N �= ∅. Note that by

Corollary 6.7, this also means that dim C′ < n which by (6.9) means that Cθ has
full rank for almost every θ ∈ Tn, so that S in (6.8) can be exchanged with the
whole torus and the right-hand side of (6.8) equals (2π)n/2n = πn.

Recalling the space KN from 6.4, we have for any set of indices N that

dimA′
LN

= dimA′
KN

+ |N |
= min{n− |N |, 2(n− |N | − rankCN )}+ |N |
≤ 2n− |N | − 2 rankCN ,

that is, rankCN ≤ (2n−|N |−dimA′
LN

)/2. But since L is not strongly degenerate
and N �= {0, 1, . . . , n}, we also have by definition that rankCN ≥ (n+1− |N |)/2.
Hence dimA′

LN
≤ n− 1 as desired. �

In general, strong degeneracy is not necessary for the coamoeba to equal its
contour. For example, the coamoeba of the not strongly degenerate line L with

CL =

(
1 −1 0 0
0 0 1 −1

)
is the line {(0, t, t); t ∈ R} and the amoeba {(0, x, x);x ∈ R} equals the fiber at
any point of the coamoeba.
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[12] Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture
Series. American Mathematical Society, Providence, RI, 1996.

Petter Johansson
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Abstract. We define, using difference operators, classes of functions defined
on the set of points with integer coordinates which are preserved under the
formation of marginal functions. The duality between classes of functions with
certain convexity properties and families of second-order difference operators
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Prologue

This paper is dedicated to the memory of Mikael Passare: student, mentor, and
friend; a great mathematician and a great human being.

After his brilliant achievements in the theory of several complex variables, in
particular residue theory, Mikael turned his energy to amoebas and their spines,
which are tropical hyperplanes. Tropical geometry was at the time a rather new
research area, and he considered his change of focus as an important one, both
mentally and scientifically. As far as we know, he did not work on digital ge-
ometry or discrete optimization, but he showed great respect for the problems
encountered there, which was evident for instance during the preparation of his
manuscript later published as Passare (2009). There are in fact strong analogies
between tropicalization and discretization. The operation of taking the marginal
function is a special case of infimal convolution, which in turn is a tropicalization
of ordinary convolution – we have a link to Mikael’s interest in tropical geome-
try. Euclidean geometry, digital geometry, and tropical geometry are three kinds of
geometry with contrasting properties. They can support and enrich each other. To-
gether with mathematical morphology and discrete optimization, they constitute
research areas with many applications in technology and the sciences.
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1. Introduction

1.1. The marginal function of a function of real variables

A simple everyday observation is that the shadow of a convex body is convex.
Mathematically this means that the image under an affine mapping of a convex
subset of a vector space is convex. It is convenient to express this in terms of
marginal functions:

Definition 1.1. If F is a function defined on Rn ×Rm and with values in the set
of extended real numbers, which we denote by

R! = [−∞,+∞] = R ∪ {−∞,+∞},

then its marginal function H : Rn → R! is defined by

H(x) = inf
y∈Rm

F (x, y), x ∈ Rn. �

For completeness we also give the definition of a convex function:

Definition 1.2. A function F : Rn → R! is said to be convex if it satisfies Jensen’s
inequality ⎧⎪⎨⎪⎩

For all real numbers t with 0 < t < 1 and all x, y ∈ Rn

such that F (x), F (y) < +∞ we have

F ((1− t)x+ ty) � (1− t)F (x) + tF (y).

(1.1)

We shall denote the set of all convex functions by CVX(Rn,R!) and the subset of
functions with finite values by CVX(Rn,R). �

If F is convex, then so is its marginal function H . The proof of this result is
completely elementary – and therefore usually mentioned only in passing in the
textbooks. The result has nevertheless manifold uses in the applications of the
theory for convex functions of real variables.

1.2. The marginal function of a function of integer variables

It would be of interest to establish a similar result for functions f : Zn×Zm → R!,
i.e., functions defined at the points in Rn ×Rm with integer coordinates. This is
what we shall do here.

Definition 1.3. If f : Zn × Zm → R!, we define its marginal function h by

h(x) = inf
y∈Zm

f(x, y), x ∈ Zn. �

The question now arises which kind of convexity we shall use. A first, seem-
ingly most natural, definition is the following.
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Definition 1.4. A function f : Zn → R! is said to be convex extensible1 if it is
the restriction to Zn of a convex function defined in Rn. The set of all convex-
extensible functions will be denoted by CVX(Rn,R!)|Zn ; the subset of functions
which have a real-valued convex extension by CVX(Rn,R)|Zn . �

It should be noted that CVX(Rn,R)|Zn is equal to the set of real-valued functions
in CVX(Rn,R!)|Zn .

For n = 1, the convex-extensible functions are precisely those which satisfy
the special case of Jensen’s inequality (1.1) with x ∈ Z, y = x + 2, t = 1

2 . While
there are many different notions of discrete convexity in Zn, n � 2, there is only
one reasonable notion of discrete convexity for n = 1: The one just described.

Let us now formulate the problem explicitly.

Problem 1.5. Define, for n = 1, 2, . . . , classes Mn of functions defined in Zn

such that M1 = CVX(R,R)|Z and such that the successive marginal functions
hn−1, hn−2, . . . , h1 of any function f ∈ Mn defined by hn = f ,

hk(x) = inf
t∈Z

hk+1(x, t), x = (x1, . . . , xk) ∈ Zk, k = n− 1, . . . , 1,

belong to Mk whenever they do not take the value −∞. �

We should also require that the classes are large enough so as to avoid trivial
results, e.g., by taking Mn as the set of all functions f : Zn → R such that
f(x1, . . . , xn) = g(x1) for some g ∈ CVX(R,R)|Z.

We shall define in this paper classes of functions defined on the integer points
which solve the problem completely; see Theorem 11.1. Since this theorem is very
general, we have formulated a corollary (Corollary 11.3), which is perhaps easier to
apply. The functions of interest are called A-laterally convex, where A is a subset
of Zn × Zn (see Definition 6.2). This subset A determines a family of second-
order difference operators; there is a duality between such families and classes of
functions with certain convexity properties, which we explain in Section 7 using
basic notions of mathematical morphology.

Moreover, we shall prove that the classes obtained are optimal in a natural
sense (see Examples 9.2 and 9.3, and Section 12).

The most obvious attempt at defining a convex function of integer variables,
i.e., taking Mn = CVX(Rn,R)|Zn , fails in a very conspicuous way, even in low
dimensions, as we shall see now.

Example 1.6. Define f : Z× Z→ Z by

f(x, y) = |x− 2my|, (x, y) ∈ Z× Z,

where m is a positive integer. Then its marginal function

h(x) = inf
y∈Z

f(x, y), x ∈ Z,

1This term has been used in a different, narrower sense by Murota (2003:93); for an example
showing this, see Kiselman (2011: Example 3.5).
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is a periodic function of period 2m which is equal to |x| for −m � x � m. This
means that it is a saw-tooth function with teeth as large as we like. We remark also
that if we define f in R × Z by the same expression, then the same phenomenon
appears. �

The function f in Example 1.6 is actually convex extensible; indeed, an extension
is given by the same expression, while h is not convex extensible (or convex in any
reasonable sense). Our conclusion is that the property of being convex extensible
is too weak to be of use in this context. In view of this observation, one of us has
studied a class of functions defined on Z × Z which is suitable for this and other
important properties in convexity theory; see Kiselman (2008; 2010a).

The purpose of the present paper is to extend this study to higher dimensions,
i.e., to functions on Zn × Zm.

A kind of convexity called integral convexity was introduced by Favati and
Tardella (1990) using locally convex functions. A function f : Zn → R is called
integrally convex if its convex extension over unit cubes is convex in all of Rn.
Integrally convex functions are all convex extensible, and their local minima are
global. The class has the property of being invariant under simple coordinate
transformations: If we put g(x, y) = f(x,−y), (x, y) ∈ Z2, then f and g are
integrally convex at the same time, and f and g have the same marginal function:

inf
y∈Z

f(x, y) = inf
y∈Z

g(x, y), x ∈ Z.

Several of the other classes mentioned in Section 2 do not have this property, which
implies that they are not suited for the study of marginal functions – and indeed
provide poor analogues of convex functions of real variables, which are invariant
under such simple coordinate transformations.

In the case of two integer variables, there are several equivalent ways to
define integral convexity. In Kiselman (2008) integral convexity was introduced
using difference operators. From this characterization it is obvious that the class
is closed under addition.

The present paper is an elaborated version of our paper (2010), which was
part of the second author’s PhD thesis.

1.3. Relations between Minkowski addition, infimal convolution,
and the operation of taking the marginal function

The Minkowski sum of two sets A and B is defined as

A+B = {a+ b; a ∈ A, b ∈ B}, A,B ⊂ Rn.

This very fundamental operation gives rise to infimal convolution, which is defined
as the operation (f, g) �→ f . g, where

(f . g)(x) = inf
y∈Zn

(
f(x− y)+

·
g(y)

)
, x ∈ Rn, f, g : Rn → R!.

Here x+
·
y, x, y ∈ R!, is the upper sum of x and y, which extends the sum of real

numbers and takes the value +∞ if one of x and y equals +∞. As explained in,
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e.g., Kiselman (2015: §6), this is a tropicalization of the usual bilinear convolution
product defined in (5.1) below.

If we choose g(x) to be zero when x1 = x2 = · · · = xm = 0 and +∞ elsewhere,
then f . g is the marginal function h of f defined as

h(x1, . . . , xm) = inf
xm+1,...,xn

f(x), (x1, . . . , xm) ∈ Rm.

Thus marginal functions are a special case of infimal convolution.

In the other direction every infimal convolution is a marginal function, viz. the

marginal function of the special function of 2n variables (x, y) �→ f(x− y)+
·
g(y)

when y varies.

So the two operations are actually equivalent, however at the expense of going
up in dimension when viewing infimal convolution as a marginal function.

Infimal convolution in turn is a case of Minkowski addition. Indeed,

epiFs (f . g) = epiFs (f) + epiFs (g),

where epiFs (f) is the strict finite epigraph of f , defined as

epiFs (f) = {(x, t) ∈ Rn ×R; t > f(x)}, f : Rn → R!.

2. Other notions of discrete convexity

Several kinds of discrete convexity have been studied. Miller (1971:168), introduced
discretely convex functions for which local minima are global. These functions are
not convex extensible – nor is the class closed under addition; see Murota & Shioura
(2001:156, 161).

Two other concepts of convexity were introduced by Murota (1996; 1998).
They are called M-convexity and L-convexity, respectively. For functions with ei-
ther of these two properties, local minima are global. Two other classes of functions
are obtained by a special restriction of M- and L-convex functions to a space of one
dimension less. These functions are called M�-convex and L�-convex.2 They were
introduced by Murota & Shioura (1999:96) and Fujishige & Murota (2000:135),
respectively. The class of M�-convex (L�-convex) functions properly contains the
class of M-convex (L-convex) functions. These classes of functions have been stud-
ied with respect to some operations such as infimal convolution, addition, and ad-
dition by an affine function; see Murota & Shioura (2001). However, these classes
are quite small (see Example 9.5).

2These expressions should be read, respectively, as “M-natural-convex” (Murota 2003:27, foot-

note 23), and “L-natural-convex” (Murota 2003:23, footnote 18). Here M stands for matroid and
L for lattice (Murota 2003:xxi).
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3. The convex hull and the convex envelope

Definition 3.1. The convex hull of a subset A of Rn is the smallest convex set
containing A. It will be denoted by cvxh(A). �
Definition 3.2. The convex envelope of a function f : A → R!, where A is any
subset of Rn, is the largest convex function G : Rn → R! such that G|A � f . We
shall denote it by cvxe(f). �
The convex envelope is well defined because the supremum of all functions H
which are convex and satisfy H |A � f has the same properties.

A function f is convex extensible if and only if cvxe(f) is an extension of f .
Indeed, if f admits a convex extension, then also cvxe(f) is a convex extension.
Equivalently, cvxe(f)|A � f .

4. The integer neighborhood and the canonical extension

Definition 4.1. We define the integer neighborhood of a real number a, denoted by
N(a), as the set {/a0 , "a#} ⊂ Z. We define the integer neighborhood of a point
a = (a1, . . . , an) ∈ Rn as the set

N(a) = N(a1)× · · · ×N(an) ⊂ Zn. �
The integer neighborhood has 2k elements, where k is the number of indices j such
that aj ∈ R� Z. Equivalently,

N(a) =
(
a+B∞

< (0, 1)
)
∩ Zn, a ∈ Rn,

where B∞
< (c, r) denotes the strict ball for the l∞ norm with center at c and of

radius r. The mapping

Rn ⊃ A �→ ν(A) =
⋃
a∈A

N(a) ⊂ Zn

is one of many digitizations of Rn and commutes with the formation of arbitrary
unions, i.e.,

ν
(⋃

j∈J Aj

)
=

⋃
j∈J

ν(Aj), Aj ⊂ Rn.

In mathematical morphology this is an important concept: a mapping with this
property is said to be a dilation.

Definition 4.2. The canonical extension of a function f : Zn → R! is defined, for
every a ∈ Rn, as the value at a of the convex envelope of f |N(a), the restriction of
f to the integer neighborhood of a. We shall denote it by can(f) : Rn → R!. �
The canonical extension is actually an extension, since N(a) = {a} for every
a ∈ Zn.

Proposition 4.3. For any function f : Zn → R!, any point a ∈ Rn, and any p ∈ Zn

such that the cube p+ [0, 1]n contains a, the value of the canonical extension at a
is equal to the value at a of the convex envelope of f |p+{0,1}n .
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Proof. For brevity, let us denote by C(p) the cube p+ [0, 1]n and by V (p) its set
of vertices, p+ {0, 1}n, for any point p with integer coordinates.

If a point a belongs to only one cube C(p), then N(a) = V (p) and there is
nothing to prove.

However, a point a may belong to two different cubes C(p) and C(q), p, q ∈
Zn, p �= q. Then N(a) is a subset of V (p)∩ V (q). Since N(a) is a subset of V (p) if
a ∈ V (p), we have cvxe(f |N(a)) � cvxe(f |V (p)). To prove the converse inequality,
we define, given a ∈ Rn and p ∈ Zn such that a ∈ C(p), two sets of indices

Jk = {j ∈ [1, n]Z; aj = pj + k}, k = 0, 1,

and an affine function

G(x) =
∑
j∈J0

(xj − pj) +
∑
j∈J1

(pj + 1− xj), x ∈ Rn.

If both J0 and J1 are empty, then G is identically zero and C(p) is the only cube to
which a belongs. We now assume that this is not the case. Then the zero set of G
is a hyperplane Y (a, p) in Rn. Obviously G is nonnegative in the cube C(p), and
Y (a, p) is a supporting hyperplane of this cube. In general a supporting hyperplane
intersects V (p) in a set which contains other vertices than those in N(a), but in
view of our construction, the hyperplane has the important property that

Y (a, p) ∩ V (p) = N(a).

This implies that any convex combination of points in V (p) yielding a point in
Y (a, p) is already a convex combination of points in N(a). This proves that the
convex envelope of f |V (p) and the convex envelope of f |N(a) have the same value
at a. We are done. �
Definition 4.4. We shall say with Favati and Tardella (1990:9), that a function
f : Zn → R! is integrally convex if can(f) : Rn → R! is convex. �
We always have cvxe(f) � can(f) with equality if and only if f is integrally
convex. Every integrally convex function is convex extensible, since for such a
function, can(f) is a convex extension.

5. Convolution and convex extensibility

The convolution product f ∗ g of two functions f, g : Zn → R is defined by

(f ∗ g)(x) =
∑
y∈Zn

f(x− y)g(y), x ∈ Zn, (5.1)

assuming some kind of convergence.
We define for p = (p(1), . . . , p(k)) ∈ (Rn)k and λ = (λ1, . . . , λk) ∈ Rk satisfy-

ing λj � 0,
∑k

j=1 λj = 1, and
∑k

j=1 λjp
(j) = 0,

μp,λ =

k∑
j=1

λjδp(j) .
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Here δa denotes the Kronecker delta placed at a, defined by δa(a) = 1 and δa(x) = 0
when x �= a. In particular, δ0 is a neutral element: f ∗ δ0 = f for all functions f .

The convex envelope of a function defined on a subset A of Rn is given by

cvxe(f)(x) = inf
p,λ

(μp,λ ∗ f)(x) = inf
p,λ

∑
y∈A

μp,λ(x− y)f(y), x ∈ Rn.

(In view of Carathéodory’s theorem it suffices to take k = n+ 1.)
This implies that convex extensibility of a function f defined on a subset A

of Rn can be characterized by means of an infinite family of convolution opera-
tors, viz.

((μp,λ − δ0) ∗ f)(x) =
∑
y∈A

μp,λ(x− y)f(y)− f(x) � 0, x ∈ A,

for all p and λ of the kind mentioned.
When n = 1, the convex-extensible functions are those which satisfy the

inequality (μp,λ − δ0) ∗ f � 0 for p = (−1, 1) and λ = (12 ,
1
2 ), thus defining the

class using a single convolution operator.

6. Lateral convexity: Definition

The following definition extends that for two variables in Kiselman (2008:Defini-
tion 2.1); cf. Theorem 2.4 there. See also Kiselman (2011).

Definition 6.1. Given a ∈ Rn, we define a difference operator Da : R
Rn → RRn

by

(DaF )(x) = F (x+ a)− F (x), x ∈ Rn, F ∈ RRn

. (6.1)

�

If a ∈ Zn, Da operates from RZn

to RZn

and from ZZn

to ZZn

. In particular,
De(j) , where e(j) is the vector (0, 0, . . . , 1, . . . , 0) with 1 at the jth place, is the
difference operator in the jth coordinate.

The operator f �→ Daf is a convolution operator: Daf = μa ∗ f with μa =
δ−a − δ0. The composition of Da and Db is the convolution operator given by
DbDaf = (μb ∗ μa) ∗ f with μb ∗ μa = δ−a−b − δ−a − δ−b + δ0.

The following definition generalizes several definitions used to define discrete
convexity. As will be shown, it is highly relevant for problems concerning marginal
functions.

Definition 6.2. Given a set A ⊂ Zn ×Zn, we shall say that a function f : Zn → R
is A-laterally convex if

(DbDaf)(x) � 0, x ∈ Zn, (a, b) ∈ A. (6.2)

We define Φ(A) as the set of all A-laterally convex functions.

In the other direction, given any subset F of RZn

, we define Ψ(F ) as the set
of all pairs (a, b) ∈ Zn × Zn such that DbDaf � 0 for all f ∈ F . �
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7. Lateral convexity: Morphological aspects

The notions of mathematical morphology are very helpful when it comes to un-
derstanding lateral convexity.

The mappings Φ and Ψ are decreasing and Ψ ◦ Φ and Φ ◦ Ψ are larger than
the respective identity mappings. One expresses this fact by saying that the pair of
mappings (Φ,Ψ) forms a Galois connection. This fact can also be expressed using
the concept of the lower inverse of a mapping between ordered sets; see Kiselman
(2010b: Subsection 4.1).

We define Ã = Ψ(Φ(A)) for any subset of Zn×Zn. It is well known from Galois

theory and easy to see that the operation A �→ Ã is increasing and idempotent,
thus an ethmomorphism (a morphological filter). It is also larger than the identity,
and so it is a cleistomorphism (a closure operator).

If a function is A-laterally convex, it is automatically Ã-laterally convex; any

set B satisfying A ⊂ B ⊂ Ã defines the same class of functions.

From the definition it is obvious that the class of A-laterally convex functions
is closed under addition and multiplication by a nonnegative scalar. From the
formulas

(D−af)(x) = −(Daf)(x− a), (D−bD−af)(x) = (DbDaf)(x − a− b)

it follows that

−A = {(−a,−b); (a, b) ∈ A}

is contained in Ã. The same is true of

A˘= {(b, a); (a, b) ∈ A}.

We define

Asym = A ∪ (−A) ∪ A˘∪ (−A) ,̆

which may have up to four times as many elements as A but still defines the same
class, i.e., Φ(Asym) = Φ(A).

The formula

DbD−af(x) = −DbDaf(x− a)

shows that f is {(−a, b)}-laterally convex if and only if −f is {(a, b)}-laterally
convex. So the concepts introduced will enable us to study also A-laterally concave
functions and A-laterally affine functions.

The formula

(Dbf)(x) + (Dcf)(x+ b) = (Db+cf)(x)
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applied to Daf yields

(DbDaf)(x) + (DcDaf)(x+ b) = (Db+cDaf)(x), (7.1)

which implies that if DbDaf � 0 and DcDaf � 0, then we also haveDb+cDaf � 0.
This means that the set of pairs {(a, b) ∈ Zn×Zn} such that the inequality holds
is closed under partial addition:

(a, b) +2 (a, c) = (a, b + c), (7.2)

i.e., if the first elements agree, we may add the second elements. For sets we define

B +2 C = {(a, b+ c); (a, b) ∈ B, (a, c) ∈ C}.
Similarly we can define of course

(a, b) +1 (c, b) = (a+ c, b) (7.3)

and
B +1 C = {(a+ c, b); (a, b) ∈ B, (c, b) ∈ C}

when the two second elements are the same.
By repeated use of these formulas we see that Ã contains the sets

Asym +1 A
sym, Asym +2 (A

sym +1 A
sym)

and so on. We sum up the discussion on Ã in the following lemma.

Lemma 7.1. Let A be any subset of Zn × Zn and define Ã = Ψ(Φ(A)).

1. For any a ∈ Zn, (a,0) and (0, a) belong to Ã.

2. If (a, b) ∈ Ã, then (b, a), (−a,−b), (−b,−a) all belong to Ã.

3. If (a, b), (c, b) ∈ Ã, then (a, b) +1 (c, b) = (a+ c, b) belongs to Ã.

4. If (a, b), (a, c) ∈ Ã, then (a, b) +2 (a, c) = (a, b + c) belongs to Ã.
5. For any given set F of functions Zn → R, if Ψ(F ) contains a set A, it also

contains Ã. �
When n = 1 and A = {(1, 1)}, f is A-laterally convex if and only if it is convex
extensible. As already mentioned, this is the only reasonable definition of convexity
in one integer variable. We note that it is equivalent to B-lateral convexity for any
B such that

(1, 1) ∈ B ⊂ Ã or (−1,−1) ∈ B ⊂ Ã.

In this case, Ã is easy to determine: It is equal to

{(s, t) ∈ Z× Z; st � 0}.
More generally, for any n and any j ∈ [1, n]Z, if A = {(e(j), e(j))}, then a

function is A-laterally convex if and only if it is convex extensible in the variable
xj when the others are kept fixed. Since this is a convenient property, we shall
normally require that

(e(j), e(j)) ∈ A, j = 1, . . . , n. (7.4)

If this is so, all A-laterally convex functions are {(1, 1)}-laterally convex in each
variable when the others are kept fixed.
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8. Lateral convexity: Examples

Example 8.1. If f is the restriction to Zn of a polynomial of degree at most two,

f(x) = α+
n∑

j=1

βjxj +
n∑

j=1

n∑
k=1

γjkxjxk, x ∈ Zn,

with γjk = γkj , we see that

(DbDaf)(x) = 2
n∑

j=1

n∑
k=1

γjkajbk,

so that f is A-laterally convex if and only if the last expression is nonnegative for
all (a, b) ∈ A.

In particular, the restriction to Zn of an arbitrary affine function is A-laterally
convex.

We also see that the special polynomial f(x) = x2
j is A-laterally convex if

and only if ajbj � 0 for all (a, b) ∈ A. Conversely, if ajbj � 0 and g is any convex-
extensible function of one variable, then the function x �→ g(xj) is {(a, b)}-laterally
convex. �

In view of this example we shall normally require that

(a, b) ∈ A implies ajbj � 0, j = 1, . . . , n. (8.1)

Example 8.2. A special kind of laterally convex functions are the L�-convex func-
tions, which are defined by Murota in (2003: 1.33) by the property

f(
⌊
1
2x+ 1

2y
⌋
) + f(

⌈
1
2x+ 1

2y
⌉
) � f(x) + f(y), x, y ∈ Zn. (8.2)

A function f : Zn → R is L�-convex if and only if it is Λ-laterally convex with

Λ = {(a, b) ∈ Zn × Zn; b− a ∈ {0, 1}n ∪ {−1, 0}n}.

So, in all dimensions, L�-convexity is a special case of lateral convexity.

We shall prove first that Λ-lateral convexity implies L�-convexity. Let x and
y be given and define

a =
⌊
1
2x+ 1

2y
⌋
− x and b =

⌈
1
2x+ 1

2y
⌉
− x.

Note that b−a ∈ {0, 1}n ⊂ Λ. Then x+a+b = y, so that, if f is Λ-laterally convex,
we obtain f(

⌊
1
2x+ 1

2y
⌋
)+f(

⌈
1
2x+ 1

2y
⌉
) = f(x+a)+f(x+b) � f(x)+f(x+a+b) =

f(x) + f(y), proving (8.2).

Next we shall see that L� convexity implies Λ-lateral convexity. If x, a and b
are given with b−a ∈ {0, 1}n ⊂ Λ, we define y = x+a+b. Then

⌊
1
2x+ 1

2y
⌋
= x+a

and
⌈
1
2x+ 1

2y
⌉
= x + b so that, if f is L�-convex, we get f(x + a) + f(x + b) =

f(
⌊
1
2x+ 1

2y
⌋
) + f(

⌈
1
2x+ 1

2y
⌉
) � f(x) + f(y) = f(x) + f(x + a + b). If instead

b− a ∈ {−1, 0}n, we interchange a and b. This shows the implication. �
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9. Two variables: rhomboidal convexity

Let us see what Definition 6.2 means for functions of two variables.

Definition 9.1. We shall say that a function f : Z2 → R is rhomboidally convex if
it is P -laterally convex, where we define P ⊂ Z2 × Z2 as

P = {((1, 0), (1, t)); t ∈ [−1, 1]Z} ∪ {((0, 1), (s, 1)); s ∈ [−1, 1]Z}. � (9.1)

Given a function f , we consider the set Ψ({f}) of all pairs (a, b) ∈ Z2 × Z2 such
that DbDaf � 0. Then we have to take into account several conditions, e.g., the
two one-variable conditions

(e(1), e(1)), (e(2), e(2)) ∈ Ψ({f}) (9.2)

(which we usually require in order to avoid uninteresting cases – see (7.4)); the
two diagonal conditions

((−1, 1), (−1, 1)), ((1, 1), (1, 1)) ∈ Ψ({f}); (9.3)

the left and right horizontal lozenge conditions3

((−1, 0), (−1, 1)), ((1, 0), (1, 1)) ∈ Ψ({f}); (9.4)

and finally the left and right vertical lozenge conditions,

((0, 1), (−1, 1)), ((0, 1), (1, 1)) ∈ Ψ({f}). (9.5)

We note that, by partial addition, ((1, 0), (1, 1)) +1 ((0, 1), (1, 1)) = ((1, 1), (1, 1)),
which implies that the right horizontal lozenge condition and the right vertical
lozenge condition yield the diagonal condition for ((1, 1), (1, 1)). Thus we often do
not need to consider the diagonal conditions.

To see which conditions are necessary for the marginal function to be convex
extensible, it is instructive to look at the following examples.

Example 9.2. Let f be the function in Example 1.6 with m = 1. It does not satisfy
D(1,1)D(1,0)f(0, 0) � 0, which explains that 1

2h(0) +
1
2h(2) = 0 does not majorize

h(1) = 1. It does satisfy all other conditions (9.2)–(9.5), i.e., it satisfies seven of the
eight conditions, the only exception being the right horizontal lozenge condition
D(1,1)D(1,0)f � 0. �
Example 9.3. Let now f be the function defined as

f(x, y) = |3x− 2y|, (x, y) ∈ Z2.

It does not satisfy D(1,1)D(0,1)f(0, 0) � 0, the right vertical lozenge condition. It
does satisfy all other conditions (9.2)–(9.5), i.e., it satisfies seven of the eight condi-
tions, the only exception being the right vertical lozenge condition D(1,1)D(0,1)f �
0. Its marginal function takes the value 0 at even integers and 1 at odd integers,
and is thus not convex extensible. �
3We are aware that lozenge and rhombus are considered to be synonyms, but we are brave enough
to call a set like cvxh{(0, 0), (1, 0), (1, 1), (2, 1)} a lozenge, although its sides have Euclidean

lengths 1 and
√
2. However, their l∞ lengths are all equal, so it is actually a rhombus as well as

a lozenge for the l∞ metric.
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By forming similar examples we can conclude that for the marginal function to be
convex extensible, each of the four lozenge conditions (9.4) and (9.5) is necessary,
even in the presence of the other three lozenge conditions, the two one-variable
conditions, and the two diagonal conditions. So we conclude that all four lozenge
conditions are needed, but that we can then omit the two diagonal conditions: We
need six conditions for the marginal function to be convex extensible.

Example 9.4. When n = 2 and A = {(e(1), e(2))}, a function is A-laterally convex
if and only if it is submodular. Note that (7.4) is not satisfied in this case. (Cf.
Murota (2003:26, 206–207).) �

Example 9.5. Since, for n = 2, Λ ⊃ P (see Example 8.2), we have Φ(Λ) ⊂ Φ(P ),
i.e., every L�-convex function is rhomboidally convex. In fact, the L�-convex func-
tions form a tiny fraction of the rhomboidally convex functions. To illustrate this
fact, let us mention that a function f(x1, x2) = g(x1 + x2), (x1, x2) ∈ Z2, is L�-
convex if and only if g : Z→ R is the restriction to Z of an affine function defined
on R, while it is rhomboidally convex if and only if g is convex extensible. (If
f(x1, x2) = h(x1 − x2), the situation is quite different.) �

Proposition 9.6. Consider the following conditions on a function f : Z2 → R.

(A) f is rhomboidally convex;
(B) f is integrally convex;
(C) f is convex extensible;
(D) The restriction of f to any digital line {c + ta; t ∈ Z}, c, a ∈ Z2, is convex

extensible.

Then (A)⇔ (B)⇒ (C)⇒ (D), and, in general, (B) �⇐ (C) �⇐ (D).

Proof. (A) ⇔ (B). See Kiselman (2008:Theorem 2.4).
(B) ⇒ (C). See the comment after Definition 4.4.

(C) ⇒ (D). If F is a convex extension of f , then DaDaF � 0 for all a ∈ R2.
In particular DaDaf � 0 for all a ∈ Z2.

(B) �⇐ (C). Example 1.6 with m = 1 shows this. Here can(f)(x, 1
2 ) takes the

values 1, 1
2 , 1,

1
2 , 1 for x = 0, 1

2 , 1,
3
2 , 2, respectively, so can(f) is not convex.

(C) �⇐ (D). Define

G(x, y) = (2y − x− 1)+ ∨ (2x− y − 1)+ ∨ (−x− y − 1)+, (x, y) ∈ R2.

Here s∨t = max(s, t) denotes the maximum of two numbers s and t, and t+ = t∨0.
The function G is certainly convex, so its restriction g = G|Z2 is convex

extensible. Now define f(x, y) = g(x, y) for (x, y) �= (0, 0) and f(0, 0) = g(0, 0) +
1
2 = 1

2 . For f to satisfy DaDaf � 0 it is enough to consider DaDaf on a digital
line

L = {ta; t ∈ Z} = {t(p, q); t ∈ Z}
which passes through the origin, since we have changed the value of g only at the
origin. It is sufficient to prove that 1

2f(p, q) +
1
2f(−p,−q) � f(0, 0) = 1

2 for two
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relatively prime integers p, q, since the points (p, q) and (−p,−q) are the integer
points closest to the origin on L. We see that

f(p, q) ∨ f(−p,−q) � f(p, q) + f(−p,−q) < 1

only if

|2p− q| < 2, |2q − p| < 2, |p+ q| < 2.

This happens only if (p, q) = (0, 0). So the restriction of f to L is convex extensible,
but f is not convex extensible. Indeed, the origin is the barycenter of the three
points (1, 1), (−1, 0), (0,−1):

(0, 0) = 1
3 (1, 1) +

1
3 (−1, 0) +

1
3 (0,−1),

but

f(0, 0) = 1
2 > 1

3f(1, 1) +
1
3f(−1, 0) +

1
3f(0,−1) = 0,

so Jensen’s inequality is not satisfied. �

10. The set where the infimum is attained

We shall first study the relation between A-lateral convexity and the interval (pos-
sibly empty) where the infimum defining the marginal function is attained.

Theorem 10.1. Let us define, for any function f : Zn → R,

Mf(x1, . . . , xn−1) = Mf (x
′)

=
{
b ∈ Z; f(x1, . . . , xn−1, b) = inf

t∈Z
f(x1, . . . , xn−1, t)

}
,

where x′ = (x1, . . . , xn−1) ∈ Zn−1. We also define

fβ(x) = f(x)− βxn, x = (x1, . . . , xn) ∈ Zn, β ∈ R.

Now fix an element a = (a′, an) of Zn, where a′ = (a1, . . . , an−1) and an � 0, and
define

A = {(e(n), e(n)), ((a′, an), e(n)), ((−a′, an), e(n))},
a subset of (Rn)2 with three elements. Then f is A-laterally convex if and only
if t �→ f(x′, t) is convex extensible for every x′ and a certain Lipschitz property
holds:

Mfβ (x
′ + a′) ⊂Mfβ (x

′) + [−an, an]Z, x′ ∈ Zn−1, β ∈ R. (10.1)

Proof. Assume first that f is A-laterally convex. Since A contains (e(n), e(n)),
Z � t �→ f(x′, t) is convex extensible for every x′.

We note that for a function which is convex extensible in the last variable,

b ∈Mf(x
′) if and only if De(n)f(x′, b− 1) � 0 � De(n)f(x′, b). (10.2)

Moreover

b, b+ 1 ∈Mf (x
′) if and only if De(n)f(x′, b) = 0. (10.3)
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Let now f satisfy DaDe(n)f � 0 and consider two points x′ and x′ + a′ in
Zn−1. Then for any b ∈Mf (x

′) we have, since also

((−a′, an), e(n)) is in A,

De(n)f(x′ + a′, b− an − 1) � De(n)f(x′, b− 1) � 0

� De(n)f(x′, b) � De(n)f(x′ + a′, b+ an),
(10.4)

which implies that there is a point c ∈ [b − an, b+ an]Z with

De(n)f(x′ + a′, c− 1) � 0 � De(n)f(x′ + a′, c).

In view of (10.2), this means that c ∈ Mf (x
′ + a′). We have proved that b ∈

c+ [−an, an]Z ⊂ Mf (x
′ + a′) + [−an, an]Z, and, since b was any point in Mf(x

′),
that Mf (x

′) ⊂ Mf (x
′ + a′) + [−an, an]Z. We are done, since the whole argument

holds also for fβ.
Conversely, suppose that the function f satisfiesDe(n)De(n)f � 0 but is not A-

laterally convex. Then it does not satisfy one of the two inequalities DaDe(n)f � 0
and D(−a′,an)De(n)f � 0. It suffices to consider one of these cases. We thus assume

that there exist (x′, b) ∈ Zn−1×Z such that De(n)f(x′+a′, b+an) < De(n)f(x′, b).
We shall reach a contradiction to the Lipschitz property (10.1).

We take a real number β such that

De(n)f(x′ + a′, b+ an) < β < De(n)f(x′, b).

If we rewrite this for the function fβ , for which De(n)fβ = De(n)f − β, we obtain

De(n)fβ(x
′ + a′, b+ an) < 0 < De(n)fβ(x

′, b), (10.5)

which implies that

Mfβ (x
′ + a′) ⊂ [b+ an + 1,+∞[Z and that Mfβ (x

′) ⊂ ]−∞, b]Z .

Hence

Mfβ (x
′ + a′) + [−an, an]Z ⊂ [b+ 1,+∞[Z

and

Mfβ (x
′) + [−an, an]Z ⊂ ]−∞, b+ an]Z .

Thus Mfβ (x
′+a′) is not contained in Mfβ (x

′)+ [−an, an]Z unless it is empty, and
Mfβ (x

′) is not contained in Mfβ (x
′+a′)+[−an, an]Z unless it is empty. As soon as

one of them is nonempty, we get a contradiction to the Lipschitz property (10.1).
So the case when both sets are empty remains to be considered – so far,

there is no contradiction in this case. Since Mfβ (x
′ + a′) is now empty by hy-

pothesis, the function t �→ De(n)fβ(x
′ + a′, t) can never change sign, and since

De(n)fβ(x
′ + a′, b + an) is negative, we must have De(n)fβ(x

′ + a′, t) < 0 for all
t ∈ Z. Now define γ = De(n)f(x′, b) > β. Then, by (10.3), Mfγ (x

′) is certainly
nonempty; it contains b and b+ 1. And since γ > β we have

De(n)fγ(x
′ + a′, t) = De(n)fβ(x

′ + a′, t) + β − γ < De(n)fβ(x
′ + a′, t) < 0

for all t ∈ Z, so that (10.2) shows that Mfγ (x
′ + a′) is empty. This contradicts the

inclusion Mfγ (x
′) ⊂Mfγ (x

′ + a′) + [−an, an]Z. We are done. �
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By permuting the variables we easily obtain the following corollary.

Corollary 10.2. Given a function f : Zn → R, we define, for 1 � j � n and
x′ = (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Zn−1,

Mj,f(x1, . . . , xj−1, xj+1, . . . , xn−1) = Mj,f (x
′)

=
{
b ∈ Z; f(x1, . . . , xj−1, b, xj+1, . . . , xn−1, xn) = inf

xj∈Z
f(x)

}
.

We also define

fj,β(x) = f(x)− βxj , x = (x1, . . . , xn) ∈ Zn, j = 1, . . . , n, β ∈ R.

Fix a set A which contains (a, e(j)) and (ā, e(j)), where

ā = 2aje
(j) − a = (−a1, . . . , aj , . . . ,−an),

and satisfies (7.4) and (8.1). If f is A-laterally convex, then f is convex extensible
in each variable separately and we have

Mj,fj,β (x
′ + a′) ⊂Mj,fj,β (x

′) + [−aj , aj ]Z, x′ ∈ Zn−1,

where now a′ = (a1, . . . , aj−1, aj+1, . . . , an) and similarly for x′. �

11. Lateral convexity of marginal functions

11.1. Arbitrary dimensions

In Kiselman (2008:Theorem 3.1), it was shown that for integrally convex functions
of two integer variables, the marginal function is convex extensible. We shall now
study the marginal function of A-laterally convex functions in arbitrary dimension
and for more general choices of A.

Theorem 11.1. Let A ⊂ Zn−1×Zn−1 and B ⊂ Zn×Zn be given. We assume that
(7.4) and (8.1) hold for both A and B. Assume also that

If (a, b) ∈ A and s ∈ [−1, 1]Z, then ((a, s), (b, 0)) belongs to B̃; (11.1)

that

If there exists c ∈ Zn−1 such that (a, c) ∈ A, then ((a, 1), e(n)) ∈ B̃; (11.2)

and finally that

If ((a, 1), e(n)) ∈ B, then ((−a, 1), e(n)) ∈ B̃. (11.3)

If f : Zn → R is B-laterally convex, then its marginal function

h(x) = inf
t∈Z

f(x, t), x ∈ Zn−1,

is A-laterally convex, provided that it does not take the value −∞.
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Lemma 11.2. Let A and B satisfy the hypotheses in Theorem 11.1. Then

If (a, b) ∈ A, then ((a,−1), (b,−1)), ((a, 1), (b, 1)) ∈ B̃. (11.4)

Proof. From the conditions (11.1) and (11.2) we know that

both ((a, 1), (b, 0)) and ((a, 1), e(n)) belong to B̃.

By partial addition +2 we conclude that so does ((a, 1), (b, 1)).

From the condition (11.2) we know that ((a, 1), e(n)) and, consequently,

in view of (11.3), also ((−a, 1), e(n)) belongs to B̃. So does the opposite pair
−((−a, 1), e(n)) = ((a,−1),−e(n)).

By condition (11.1) we find that ((a,−1), (b, 0)) is in B̃, and we now only
have to form the partial sum

((a,−1),−e(n)) +2 ((a,−1), (b, 0)) = ((a,−1), (b,−1))
to conclude. �

By this lemma and (11.1) we know that if A and B satisfy the hypotheses of the

theorem and if (a, b) ∈ A, then there are pairs of the form ((a, s), (b, t)) in B̃ with
−1 � s, t � 1 and the sum s+ t taking any of the five values −2,−1, 0, 1, 2.

Proof of Theorem 11.1. It is enough to prove the theorem for functions such that
the infimum defining h is attained at a unique point. Indeed, if t �→ f(x, t) is
convex extensible, then for any positive ε > 0, the infimum defining the marginal
function hε of fε(x, t) = f(x, t)+εt2 is attained at a unique integer t = ϕε(x), and
hε tends to h as ε→ 0, preserving the A-lateral convexity of hε. We observe that
fε is B-laterally convex with f provided that (e(n), e(n)) ∈ B, which we assume.
We may therefore suppose that h(x) = f(x, ϕ(x)) for some function ϕ : Zn−1 → Z.
Moreover, we know that ϕ is Lipschitz in the sense that

|ϕ(x+ a)− ϕ(x)| � 1, x ∈ Zn−1, (11.5)

for certain values of a ∈ Zn−1, viz. when ((a, 1), e(n)) and ((−a, 1), e(n)) both

belong to B̃. For this to happen, it is enough that there exists a c such that
(a, c) ∈ A.

Similarly, we know that

|ϕ(x + b)− ϕ(x)| � 1 x ∈ Zn−1, (11.6)

for certain values of b ∈ Zn−1, viz. when ((b, 1), e(n)) and ((−b, 1), e(n)) both belong

to B̃. For this it is enough that there exists a d such that (b, d) ∈ A.
In particular, if (a, b) is in A, we can take c = b and d = a above to conclude

that the two Lipschitz conditions (11.5) and (11.6) hold.
We have

DbDah(x) = f(x+ a+ b, ϕ(x+ a+ b))

− f(x+ a, ϕ(x+ a))− f(x+ b, ϕ(x+ b)) + f(x, ϕ(x)).
(11.7)
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The formula holds of course for all x, a, b ∈ Zn−1, but we shall need it only when
(a, b) ∈ A. We shall compare (11.7) with

D(b,t)D(a,s)f(x, ϕ(x)) = f(x+ a+ b, ϕ(x) + s+ t)

− f(x+ a, ϕ(x) + s)− f(x+ b, ϕ(x) + t) + f(x, ϕ(x))
(11.8)

for suitable s and t. This expression is nonnegative if ((a, s), (b, t)) ∈ B̃.

By the definition of ϕ we have

−f(x+ a, ϕ(x + a)) � −f(x+ a, s) and − f(x+ b, ϕ(x+ b)) � −f(x+ b, t)

for any s and t, so we get DbDah(x) � D(b,t)D(a,s)f(x, ϕ(x)) as soon as s + t =
ϕ(x+ a+ b)− ϕ(x).

In view of (11.5) and (11.6), which, as we have remarked, are applicable,

|ϕ(x + a+ b)− ϕ(x)| � |ϕ(x+ a+ b)− ϕ(x + a)|+ |ϕ(x + a)− ϕ(x)| � 2,

and we know from Lemma 11.2 that there are numbers s, t such that

s+ t = ϕ(x+ a+ b)− ϕ(x) and ((a, s), (b, t)) ∈ B̃.

We are done. �

By iteration we easily obtain the following result.

Corollary 11.3. Let us define B(0) = {(0, 0)}, B(1) = {(1, 1)}, and generally B(n) ⊂
Zn×Zn such that B(n−1) and B(n) satisfy the conditions for A and B in Theorem
11.1 for n � 2. If f : Zn → R is a given B(n)-laterally convex function, then the
successive marginal functions hn = f ,

hk(x) = inf
t∈Z

hk+1(x, t), x = (x1, . . . , xk) ∈ Zk, k = n− 1, . . . , 1,

are B(k)-laterally convex, provided that h1 > −∞. In particular, the marginal func-
tion h1 of one variable is {(1, 1)}-laterally convex, equivalently convex extensible.

�

In condition (11.1) it is often preferable to replace the pair

((a,−1), (b, 0)) by its opposite ((−a, 1), (−b, 0)),

which determines the same condition. This is to be able to continue as in Corollary
11.3, where the last component should be nonnegative – this is needed in Theorem
10.1. We denote the set B so constructed by Θn(A). We can now define B(n) =
Θn(B(n−1)) and get Corollary 11.3 to work.

Thus taking Mn as the set of all B(n)-laterally convex functions such that
the marginal functions h1 do not take the value −∞ gives a satisfactory solution
to Problem 1.5.



Convexity of Marginal Functions in the Discrete Case 305

11.2. The case of two variables

Let us look in more detail at the construction of Θ2(A). Then the corollary is about
three functions: h2 = f defined on Z2, h1(x) = infy∈Z f(x, y) defined on Z1, and
the constant h0 = inf(x,y)∈Z2 f(x, y) defined as a function on Z0 = {0}. But here
we do not say anything about the marginal function k1(y) = infx∈Z f(x, y). To do
so, we should permute the variables. However, it turns out, perhaps surprisingly,
that this is not necessary, for the conditions are symmetric in the two variables.

If we start with A = {(1, 1)} ⊂ Z1 × Z1 in one variable, the construction in
Theorem 11.1 yields, in order,

(e(1), e(1)), (e(2), e(2)), applying (7.4);

((1,−1), (1, 0)), ((1, 1), (1, 0)), applying (11.1);

((1, 1), e(2)), applying (11.2); and

((−1, 1), e(2)), applying (11.3).

However, as already remarked, we should replace

((1,−1), (1, 0)) by ((−1, 1), (−1, 0)).

We thus obtain

B = {(e(1), e(1)), (e(2), e(2)), ((−1, 1), (−1, 0)),
((1, 1), (1, 0)), ((−1, 1), (0, 1)), ((1, 1), (0, 1))},

This means that the two one-dimensional conditions and the four lozenge condi-
tions are all satisfied, while the two diagonal conditions need not be listed since
they follow from the others. We see now that if we permute the variables, the
conditions remain the same.

We see that the setB = Θ2(A) ⊂ Z2×Z2, which defines rhomboidal convexity
and corresponds to the six conditions (9.2), (9.4) and (9.5), consists of 6 pairs, and
that Θ3(B) consists of 62 = 36 pairs.

11.3. Symmetric and asymmetric conditions

The condition on a function to have a convex-extensible marginal function is
asymmetric. Indeed, the function f(x, y) = (2x − y)2, (x, y) ∈ Z2, has a convex-
extensible marginal function, whereas the marginal function of its reflection
g(x, y) = (2y − x)2 does not. Therefore a symmetric condition can never be nec-
essary and sufficient.

For functions f such that D(0,1)D(0,1)f � 0, a necessary and sufficient con-
dition for all functions fβ(x, y) = f(x, y)−βy, β ∈ R, to have a convex-extensible
marginal function is that all conditions

D(1,p)D(1,p)f � 0, D(1,p)D(1,p+1)f � 0, p ∈ Z,

shall be satisfied. These are infinitely many conditions as opposed to the six con-
ditions obtained in our construction: Θ2(A) has six elements.
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We conclude that there is a choice between a sufficient condition which is
finite and symmetric but not necessary, and a sufficient and necessary condition
which is infinite – and by necessity asymmetric.

12. Necessity of lateral convexity

As can be guessed from Examples 9.2 and 9.3, the convexity property we have
defined is essentially best possible. Before showing this, two remarks are in order.

Let ϕ : Z2 → Z be any function such that Z � y �→ ϕ(x, y) ∈ Z is a surjection
for every x ∈ Z. Then the function g(x, y) = f(x, ϕ(x, y)), (x, y) ∈ Z2, has the same
marginal function as f . In particular, the values on a vertical line can be arbitrarily
scrambled. It follows that no reasonable conclusion concerning regularity of f can
be drawn from knowledge of its marginal function. But if we consider the marginal
functions hβ of the tilted functions fβ(x, y) = f(x, y) − βy, β ∈ R, things are
different.

For simplicity we now restrict attention to functions of two variables (x, y) ∈
Z2. We define the partial Fenchel transform of a function f : Z× Z→ R! by

f∗(x, η) = sup
y∈Z

(ηy − f(x, y)), (x, η) ∈ Z×R,

to be compared with the complete Fenchel transform,

f̃(ξ, η) = sup
(x,y)∈Z2

(ξx+ ηy − f(x, y)), (ξ, η) ∈ R×R.

Thus the marginal function of f is h(x) = −f∗(x, 0). Since the third trans-
form f∗∗∗ is equal to the first, the second transform f∗∗ has the same marginal
function as f . Therefore, again, it is not reasonable to expect that, from knowl-
edge of a marginal function, one can conclude anything about f , only about its
minorant f∗∗.

Proposition 12.1. Let f : Z × Z → R be such that the marginal function hβ of
fβ(x, y) = f(x, y) − βy is convex extensible for all real numbers β. Then f∗∗

satisfies the one-variable conditions (9.2), the diagonal conditions (9.3), and the
horizontal lozenge conditions (9.4).

Proof. For brevity, let us write g instead of f∗∗.
By replacing g(x, y) by g(x, y)+εy2, ε > 0, we may assume that the infimum

of y �→ gβ(x, y) = g(x, y)− βy is always attained at some point. Afterwards we let
ε tend to zero; the properties are stable under this operation.

The vertical condition g(x, y − 1) + g(x, y + 1) � 2g(x, y) is always satisfied
by assumption.

Consider next the horizontal condition g(x − 1, y) + g(x + 1, y) � 2g(x, y)
for fixed x and y and define β = g(x, y + 1) − g(x, y). Then hβ(x) = gβ(x, y) =
gβ(x, y + 1), and if hβ is convex extensible, we get

gβ(x− 1, y) + gβ(x + 1, z) � hβ(x− 1) + hβ(x+ 1)

� 2hβ(x) = 2gβ(x, y) = 2gβ(x, y + 1).
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Taking z = y we see that the horizontal one-variable condition is satisfied; taking
z = y + 1 we see that the right horizontal lozenge condition is satisfied; and
taking z = y + 2 we see that one of the diagonal conditions is satisfied. For the
left horizontal lozenge condition and the other diagonal condition we can argue
similarly. �
Theorem 12.2. Let f : Z×Z→ R satisfy the one-variable conditions (9.2). Define
two marginal functions by

hβ(x) = inf
y∈Z

(f(x, y)− βy), x ∈ Z, β ∈ R,

and

kα(y) = inf
x∈Z

(f(x, y)− αx), y ∈ Z, α ∈ R.

Assume that hβ and kα are convex extensible for all real numbers α and β. Then
f is rhomboidally convex.

Proof. We apply Proposition 12.1 to f and to (x, y) �→ f(y, x). �

13. Conclusion

We have studied a kind of convexity called lateral convexity, which is defined using
second-order difference operators (a special kind of convolution operators). We
have proved that this notion of convexity is perfectly adapted for proving that
the marginal function of a real-valued function defined on the set of points with
integer coordinates remains in the same class.

Notions of mathematical morphology proved to be helpful. We believe that
the duality between classes of functions with a convexity property and classes of
convolution operators studied here will have several applications in the future.

14. Hints for future work

14.1. Discrete convexity of infimal convolutions

Since, as remarked in Subsection 1.3, the operation of taking the marginal function
is a special case of infimal convolution, it may be of interest to extend this study
of discrete convexity to more general infimal convolutions.

14.2. Discrete convexity of p-marginal functions

Given a positive number p, we may define the p-marginal function hp of a function
f : Zn × Zm → R by

e−php(x) =
∑

y∈Zm

e−pf(x,y), x ∈ Zn.

As p tends to +∞ we get the usual marginal function. The question of finding
suitable classes that are preserved under passage to the p-marginal function is not
resolved. For such a class we would have a discrete analogue of Prékopa’s theorem.
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For more details on Prékopa’s theorem for real variables and the problem for
discrete variables, see Kiselman (2012, 2014).

14.3. Functions with integer values

It may be of interest also to consider functions f : Zn → Z with integer values
and their marginal functions. Then convex extensibility of the marginal function
is too strong a condition. Instead it is relevant to require that the functions are
(Zn×Z)-convex, meaning that there exists a convex subset C of Rn×R such that

C ∩ (Zn × Z) = epiF(f) = {(x, t) ∈ Zn × Z; t � f(x)}.

14.4. Duality defined by convolution inequalities

The duality studied in Sections 6 and 7 should be extended to a duality between
sets M of functions μ and classes Φ(M) of functions f satisfying convolution
inequalities μ ∗ f � 0 for all μ ∈ M . Adama Koné has pursued this idea in his
doctoral thesis (2016: Chapter 4).
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Abstract. This paper was inspired by Guan and Zhou’s recent proof of the so-
called strong openness conjecture for plurisubharmonic functions. We give a
proof shorter than theirs and extend the result to possibly singular Hermitian
metrics on vector bundles.
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1. Introduction

This paper was written in March 2014, and submitted in October that year. What
we referred to as “recent” in our introduction is not so recent anymore, but we
have decided to keep the text as it was back then, and restricted ourselves to
updating the bibliographical references when arxiv postings have appeared in the
meantime.

Consider an open set U ⊂ Cm and a point x ∈ U . Given a holomorphic
function f on some neighborhood V of x, we will denote by fx its germ at x. A
measurable function u : U → [−∞,∞] determines an ideal I(u) = I(u, x) in the
ring Ox = O(Cm,x) of holomorphic germs at x,

I(u) = {fx : f ∈ O(V ),

∫
V

|f |2e−u <∞, V ⊂ U open, x ∈ V }.

The integral is with respect to Lebesgue measure in Cm. Clearly, if v ≤ u +O(1)
at x, then I(u) ⊃ I(v). A conjecture, going back to Demailly and Kollár [DK,D2]
had that if u is plurisubharmonic, then I(u) = I(ηu) with some η ∈ (1,∞). After
partial results by Favre–Jonsson and Berndtsson, Guan and Zhou recently posted
a proof of the conjecture, see [B3,FJ,GZ2-4]. A related posting is [Hi].

Our main purpose with this paper is to produce a proof, as we hope more
transparent than Guan–Zhou’s, by modifying their approach some, while keeping

Research partially supported by NSF grant DMS-1162070.
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all their essential ideas. We will also discuss generalizations. The most immediate
generalization replaces multiples of u by a sequence of plurisubharmonic functions:

Theorem 1.1. If u1 ≤ u2 ≤ · · · are plurisubharmonic functions on U and u =
limj uj is locally bounded above on U , then I(u) = I(uj) for some j.

Since in the original conjecture one can always assume that u is bounded
above, and then in fact that u ≤ 0, the conjecture indeed follows from Theorem
1.1 if one puts uj = (1+1/j)u. – That the ideas of Guan and Zhou also give a proof
of Theorem 1.1 occurred to me while reading [GZ2] when it was first posted on
arxiv in November 2013. Apparently at one point Guan and Zhou also noticed this,
because after I communicated to them the generalization, Zhou sent me a preprint
containing essentially the same result, dated earlier than my email to them, in fact
even earlier than the submission date of [GZ2]. Subsequently this generalization
was also mentioned in [GZ3]. A variant, in dimension 2, occurs already in [FJ,
Proposition 2.6].

A further generalization involves, instead of ideals, modules of square in-
tegrable vector-valued holomorphic germs. The natural setting here is germs of
holomorphic sections of a holomorphic Hilbert bundle E → U , and the role of the
weight e−u is played by a possibly singular Hermitian metric h on E. The precise
meaning of this and related notions will be explained in Section 4. For the time
being, let h : E → [0,∞] be any Borel measurable function on E. Indicating the
space of holomorphic sections of a vector bundle by Γ, we are led to consider the
sets

E(h, x) = {fx : f ∈ Γ(V,E),

∫
V

h(f) <∞, V ⊂ U open, x ∈ V }, (1.1)

where fx again stands for germ at x. This E(h, x) is an Ox–module for example if√
h is subadditive on the fibers of E and homogeneous in the sense that

√
h(λe) =

|λ|
√

h(e) for λ ∈ C and e ∈ E. Assuming h has this property, as we let x vary, the
modules E(h, x) form the stalks of a sheaf of modules denoted E(h), a subsheaf of
the sheaf of holomorphic sections of E.

Theorem 1.2. Suppose E → U is a holomorphic Hilbert bundle and h1 ≥ h2 ≥ · · ·
are Hermitian metrics on E whose Nakano curvatures dominate 0. Suppose that
h = limj hj is bounded below by a continuous Hermitian metric. If rk E < ∞, or
at least

⋃
j E(hj) is locally finitely generated, then

⋃
j E(hj) = E(h).

In Section 7 we will see that such a result fails if we simply drop the as-
sumption of finite generation. Yet it seems to be an interesting problem to find
weaker conditions on hj to guarantee the conclusion of the theorem. Certain direct
images of positively curved line bundles provide examples of Hilbert bundles and
Hermitian metrics as in Theorem 1.2, see [B2], and while in these direct images
E(hj) and

⋃
j E(hj) are locally infinitely generated, the strong openness theorem

of Guan–Zhou, or more generally Theorem 1.1 above, does provide a connection
between

⋃
j E(hj) and E(h).
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When E is of finite rank, E(h) is automatically locally finitely generated (=
coherent, in this case), although we will not write out a proof. So the conclusion
of Theorem 1.2 can be stated as E(h, x) = E(hj , x) for some j, in parallel with
Theorem 1.1. Thus Theorem 1.1 is a special case of Theorem 1.2, and it would
suffice to prove the latter. However, we will start by writing out the proof of the
special case. The proof of Theorem 1.2 will follow the same line, but it will be
burdened by auxiliary material that is not as readily available for vector bundles
as for line bundles and that we will have to develop.

I am grateful to Bo Berndtsson for helpful discussions concerning [GZ2] and
[C], and to Henri Skoda and Bernard Teissier for bibliographical information.

2. The proof of Theorem 1.1

In the setting of Theorem 1.1 we put J =
⋃

j I(uj). Suppose P ⊂ Cm is a complex

(affine) hyperplane and W ⊂ P is relatively open. For a measurable g : W → C
define ||g|| ∈ [0,∞] by

‖g‖2 = inf
j

∫
W

|g|2e−uj ,

the integral with respect to 2m− 2-dimensional Lebesgue measure. By the domi-
nated convergence theorem

‖g‖2 =
{
∞ or

limj

∫
W
|g|2e−uj =

∫
W
|g|2e−u.

(2.1)

We denote by dist(x, P ) the Euclidean distance between x and P , and write P‖P0

to indicate that hyperplanes P, P0 are parallel. The crux of the matter is the
following characterization of J when m ≥ 1:

Lemma 2.1. Let f ∈ O(U). Its germ fx is in J if and only if for any sufficiently
small neighborhood V ⊂ U of x and any hyperplane P0 ⊂ Cm

lim inf dist(x, P )‖f |V ∩ P‖ = 0, as P‖P0 and dist(x, P )→ 0. (2.2)

The lemma is of interest even when each uj = u (in fact, once Theorem 1.1 is
proved, this is the only interesting case). Indeed, assume V is a polydisc centered
at x = 0 and P0 = {z1 = 0}. One direction of the lemma then says that, modulo
shrinking,

∫
V
|f |2e−u <∞ provided

lim inf
s→0

|s|−2

∫
V ∩{z1=s}

|f |2e−u = 0.

Since ∫
V

|f |2e−u =

∫
C

(∫
V ∩{z1=s}

|f |2e−u

)
dλ2(s),

for certain type of functions ϕ(s) the lemma provides the convergence of the inte-
gral

∫
{|s|<r} ϕ(s)dλ2(s) once lim infs→0 ϕ(s)/|s|2 = 0 is known, a rather perplexing

connection.
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For the proof we need the following simple result, a variant of [GZ2, Lemma
2.3]. Let Δ ⊂ C denote the unit disc.

Proposition 2.2. Let k ∈ N and let F be a holomorphic function in a neighborhood
of Δ, which does not vanish on Δ\{0}. Suppose G ∈ O(Δ), G = o(F ) at 0, and
with some t ∈ Δ\{0}

F (ωt) = G(ωt) for all kth roots of unity ω.

Then
sup
Δ
|G| ≥ C1|t|−k, C1 = min

|s|=1
|F (s)| > 0. (2.3)

Proof. As in [GZ2] we start by writing F (s) = spF1(s), where p ∈ N∪ {0} and F1

does not vanish on Δ. Upon dividing F and G by F1 we reduce the proof to the
case when F (s) = sp. Consider the function

G1(s) =
1

k

∑
ω

ω−pG(ωs),

the sum over kth roots of unity. Our G1 has all the properties listed above for G,
and in addition, its Taylor series contains only monomials sq for which q − p > 0
is divisible by k. In particular, q ≥ p+ k, and so G1(s)/s

p+k is holomorphic on Δ.
Hence

sup
s∈Δ

|G1(s)| = sup
s∈Δ

|G1(s)/s
p+k| ≥ |G1(t)/t

p+k| = |t|−k,

and (2.3) follows. �
Proof of Lemma 2.1. We will assume x = 0. Suppose first that f0 ∈ J , and choose j
and a neighborhood V of 0 so that

∫
V
|f |2e−uj <∞. Given P0, change coordinates

to arrange that P0 is parallel to the hyperplane {z ∈ Cm : z1 = 0}. By Fubini’s
theorem

∞ >

∫
V

|f |2e−uj =

∫
C

( ∫
V ∩{z1=σ}

|f |2e−uj

)
dλ2(σ). (2.4)

Since
∫
|σ|−2dλ2(σ) is a divergent integral over any neighborhood of 0 ∈ C, (2.4)

implies

lim inf
σ→0

|σ|2
∫
V ∩{z1=σ}

|f |2e−uj = 0,

and (2.2) follows.
Conversely, we will show that if f0 �∈ J then, given any neighborhood V of 0,

with some hyperplane P0

lim inf dist(x, P )‖f |V ∩ P‖ > 0, as P‖P0 and dist(x, P )→ 0. (2.5)

Fix such V , that we can assume to be pseudoconvex and relatively compact
in U . If α : Δ→ U is holomorphic, α(0) = 0, we write J ◦ α for the pull back

{g ◦ α : g ∈ J} ⊂ O(C,0).

Now f0 �∈ J implies there is a nonzero α such that f0 ◦ α �∈ O(C,0)J ◦ α, see [LT,
Théorème 2.1], by Lejeune–Jalabert and Teissier, or [GZ2, Remark 2.12]. (What
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matters here is that J is integrally closed, i.e., if g1, . . . , gp, ψ are holomorphic
functions in a neighborhood of 0 ∈ U , the germs gi

0 are in J , and ψ = O(|g1| +
· · ·+ |gp|) at 0, then ψ0 ∈ J . Teissier tells me that he and Lejeune–Jalabert most
probably learned the result from Hironaka.) We choose a hyperplane P0 through
0 ∈ Cm that does not contain α(Δ). Upon adjusting the coordinates in C and
in Cm we can assume that P0 = {z ∈ Cm : z1 = 0}, that α = (α1, . . . , αm) is
holomorphic in a neighborhood of Δ, that F = f ◦ α �= 0 on Δ\{0},

α1(s) = sk, s ∈ Δ, (2.6)

and finally α(Δ) ⊂ V . This latter implies that there are constants C2, C
′
2 such

that for g ∈ O(V )

max
α(Δ)

|g|2 ≤ C′
2

∫
V

|g|2 ≤ C2
2

∫
V

|g|2e−u ≤ C2
2

∫
V

|g|2e−uj (2.7)

for any j. Write Pσ for the hyperplane {z ∈ Cm : z1 = σ}. We need to estimate
‖f |V ∩ Pσ‖ from below. Take an arbitrary σ ∈ Δ\{0}. Assume first that ‖f |V ∩
Pσ‖ < ∞. By the Ohsawa–Takegoshi theorem there is a g ∈ O(V ) that agrees
with f on V ∩ Pσ and with some j∫

V

|g|2e−uj ≤ C2
3‖f |V ∩ Pσ‖2, (2.8)

where C3 is independent of j and σ. Indeed, with some j∫
V ∩Pσ

|f |2e−uj ≤ 2‖f |V ∩ Pσ‖2,

cf. (2.1), and the Ohsawa–Takegoshi theorem, applied with this uj , produces such
a g. Set G = g ◦ α, whose germ at 0 ∈ C is in J ◦ α. As F0 = f0 �∈ O(C,0)J ◦ α,
it must be that G = o(F ) at 0 ∈ C. Further, by (2.6) F ( k

√
σ) = G( k

√
σ) for any

choice of kth root k
√
σ. Hence Proposition 2.2 gives

max
α(Δ)

|g| = max
Δ
|G| ≥ C1/|σ|. (2.9)

Putting together (2.8), (2.7), and (2.9)

‖f |V ∩ Pσ‖ ≥
C1

C2C3|σ|
, σ ∈ Δ\{0}. (2.10)

This we derived under the assumption that the left-hand side is finite, but of course
(2.10) also holds when the left-hand side is infinite. (2.10) now implies (2.5), and
the proof is complete. �

Proof of Theorem 1.1. Since I(u) ⊃ J and I(u) is finitely generated, all we need
to prove is that fx ∈ I(u) implies fx ∈ J . This we prove by induction on m, as
in [GZ2]. The result is obvious when m = 0; suppose it holds for m − 1. Upon
shrinking U we can assume fx is the germ of some f ∈ O(U). First we apply the
“only if” direction of Lemma 2.1, but with each uj replaced by u. This provides
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a neighborhood V0 ⊂ U of x and for any hyperplane P0 ⊂ Cm a sequence of
hyperplanes Pν‖P0 such that dist(x, Pν )→ 0 and

lim
ν→∞ dist(x, Pν)

2

∫
V0∩Pν

|f |2e−u = 0. (2.11)

Let now V be an arbitrary neighborhood of x, relatively compact in V0. Since∫
V0∩Pν

|f |2e−u <∞ for ν > ν0, for these ν the induction hypothesis gives a j = jν
such that ∫

V ∩Pν

|f |2e−uj <∞.

Hence ‖f |V ∩ Pν‖2 =
∫
V ∩Pν

|f |2e−u, cf. (2.1). Therefore (2.11) implies

lim
ν

dist(x, Pν )‖f |V0 ∩ Pν‖ = 0,

and another application of Lemma 2.1, this time the “if” direction, proves fx ∈ J .
�

3. Smooth Hermitian metrics and their curvature

In this section we review the basics of Hermitian metrics on holomorphic Hilbert
bundles. Recall that a holomorphic Hilbert bundle is given by a holomorphic map
π : E → X of complex manifolds modelled on complex Hilbert spaces, with each
fiber Ex = π−1x endowed with the structure of a complex vector space (x ∈ X).
It is required that for each x ∈ X there be a neighborhood U ⊂ X , a Hilbert
space H , and a biholomorphism (local trivialization) E|U → U ×H that maps the
fibers Ey, y ∈ U , linearly on {y}×H . While in what follows we will allow E to be
infinite-dimensional, the base X will be kept finite-dimensional.

For the time being we restrict ourselves to trivial bundles E = U ×H → U ,
with U ⊂ Cm open and (H, 〈, 〉) a complex Hilbert space. We write End H for
the space of bounded linear operators on H , endowed with the operator norm. If
k = 0, 1, . . . ,∞, a Hermitian metric on E of class Ck is a function h : E ⊕ E → C
that can be represented as

h ((z, ξ), (z, η)) = 〈P (z)ξ, η〉, z ∈ U, ξ, η ∈ H, (3.1)

with P : U → End H a Ck map taking values in invertible, positive self adjoint
operators. If e ∈ E, we write h(e) for h(e, e). Thus

√
h(e) defines a norm on the

fibers Ez of E. As usual, for two metrics h ≤ k means h(e) ≤ k(e) for all e ∈ E.
Just like in bundles of finite rank, a C2 Hermitian metric h on E has a

curvature R, a (1, 1)-form valued in End E =
∐

z∈U End Ez, see, e.g., [B2 or L3].
It is given by

R = ∂(P−1∂P ) = P−1∂∂P − P−1∂PP−1 ∧ ∂P, (3.2)

where P is from (3.1) and we identifiedH = Ez. Curvature determines a Hermitian
form N on each space T 1,0

z U ⊗Ez = T 1,0
z U ⊗H (tensor product over C), given by

N(t⊗ ξ, u⊗ η) = h (R(t, u)ξ, η) , t, u ∈ T 1,0
z U, ξ, η ∈ Ez. (3.3)
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Thus N is a Hermitian form on T 1,0U ⊗ E, that we call the Nakano curvature of
h. Instead of the usual terminology that h has Nakano semipositive curvature we
can then say that the Nakano curvature of h is semipositive. – If τ ∈ T 1,0U ⊗ E
again we write N(τ) for N(τ, τ).

In general, given Hermitian forms M,M ′ on T 1,0U ⊗ E we write M ≥M ′ if
M −M ′ is positive semidefinite. Such forms can be written

M(
∑
ν

∂

∂zν
⊗ ξν) =

∑
μ,ν

〈Mμνξμ, ξν〉

with Mμν : U → End H (or Mμν sections of End E). For example, if M = N is
the Nakano curvature of the metric h in (3.1), and R =

∑
Rμνdzμ ∧ dzν , then

Mμν = PRμν . Thus N ≥ 0, or N is semipositive if∑
μ,ν

〈PRμνξμ, ξν〉 ≥ 0 for arbitrary ξ1, . . . , ξm ∈ H.

4. Possibly singular Hermitian metrics

In this section we will introduce general Hermitian metrics on not necessarily
trivial Hilbert bundles, but first we discuss degenerations of norms on an arbitrary
complex Banach space B. Let ‖ ‖1, ‖ ‖2, . . . be a sequence of norms on B, each
generating the topology of B. For x ∈ B set

‖x‖ = sup
j
‖x‖j ≤ ∞, and A = {x ∈ X : ‖x‖ <∞}.

Proposition 4.1. A ⊂ B is a linear subspace and (A, ‖ ‖) is a Banach space.

Proof. That A is a subspace follows from the triangle inequality, and ‖ ‖ is clearly
a norm on A. To check completeness, consider a Cauchy sequence xν in (A, ‖ ‖).
Then xν is Cauchy in (B, ‖ ‖1) as well, hence x = lim xν exists in the topology of
B. For any j

‖x− xν‖j = lim
μ→∞ ‖xμ − xν‖j ≤ lim sup

μ→∞
‖xμ − xν‖, whence

‖x− xν‖ ≤ lim sup
μ→∞

‖xμ − xν‖ → 0, as ν →∞.

Thus x ∈ A and xν → x in ‖ ‖. �

We will apply this construction to the fibers of a holomorphic Hilbert bundle
E → X over a finite-dimensional complex manifold. Recall that a Ck Hermitian
metric onE is a function h : E⊕E → C that in any local trivializationE|U & U×H
is a Ck Hermitian metric in the sense discussed in Section 3, cf. also [L3]. If k ≥ 2,
the Nakano curvature of h is a Hermitian form N on T 1,0X ⊗ E that can be
computed in local trivializations by (3.2), (3.3). Given a continuous Hermitian
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metric h on E and a continuous real (1, 1) form ia represented in local coordinates
as i

∑
aμνdzμ ∧ dzν , we define a Hermitian form a⊗ h on T 1,0X ⊗ E by

(a⊗ h)

(∑ ∂

∂zν
⊗ ξν

)
=
∑

aμνh(ξμ, ξν).

Definition 4.2. For the purposes of this paper a function h : E → [0,∞] is called a
Hermitian metric if there is a sequence h1 ≤ h2 ≤ · · · of Hermitian metrics of class
C2 on E such that h(e) = limj hj(e) for all e ∈ E. Given a continuous real (1, 1)
form ia on X, we say that the Nakano curvature of h dominates a if the hj can be
chosen to have Nakano curvature Nj ≥ a⊗ hj, i.e., for

∑
ν tν ⊗ ξν ∈ T 1,0X ⊗ E

Nj

(∑
ν

tν ⊗ ξν

)
≥
∑
μ,ν

a(tμ, tν)hj(ξμ, ξν).

The definition raises the obvious question whether for the Nakano curvature
of a C2 Hermitian metric semipositivity (as in Section 3) is the same as dominating
0. This boils down to asking whether among C2 Hermitian metrics semipoisitive
Nakano curvature is inherited under increasing limits. I do not know if the answer
is yes or no, but either outcome would have interesting consequences. For example,
a “no” answer would probably allow us to extend analytical results known when
the Nakano curvature is semipositive (or bounded below in a certain way) to a
class of smooth, and then also singular, metrics subject to a weaker curvature
condition.

The notion of a possibly singular Hermitian metric on a vector bundle of
finite rank has already been proposed by de Cataldo, Berndtsson–Paǔn, and Raufi
[BP, dC, R]. Those notions are more general than ours. At the same time, of these
authors only de Cataldo defines what Nakano positivity should mean for such a
metric h or what it should mean that the Nakano curvature dominates a form a,
and in this he is more restrictive than Definition 4.2. In his definition, like in ours,
h should be the increasing limit of C2 Hermitian metrics hj , with lower estimates
on their Nakano curvature, but he requires additionally that on an open subset of
X of full measure the hj should converge in the C2 topology. (In other respects his
definition is less restrictive than ours, namely in what sort of lower estimates are
required on the Nakano curvature of hj . We chose the condition in our definition
because it is easy to formulate.)

By Proposition 4.1, a Hermitian metric h defines in each fiber Ex a Hilbert
space Fx = {e ∈ Ex : h(e) <∞}, endowed with the norm

√
h(e). The Fx together

form a field of Hilbert spaces F =
∐

x∈X Fx → X , see [G], a notion more general
than a Hilbert bundle.

Let dV be a positive, continuous volume form on X and h, hj as in Definition
4.2. For any measurable section f of E∫

X

h(f)dV = lim
j→∞

∫
hj(f)dV = sup

j

∫
hj(f)dV,



Modules of Square Integrable Holomorphic Germs 319

and we denote by ‖f‖ = ‖f‖h ≤ ∞ the square root of this quantity. We define
L2(X,h) = L2(X,h, dV ) as the space of f for which ‖f‖ < ∞. The norm ‖ ‖
on L2(X,h) is a Hilbertian norm, and (L2(X,h), ‖ ‖) is complete, as Proposition
4.1 shows. Since ‖f‖2 ≥

∫
X
h1(f)dV , for holomorphic sections convergence in

L2(X,h) implies locally uniform convergence. Hence holomorphic sections form a
closed subspace of L2(X,h).

Fix now a continuous Hermitian metric on X (i.e., on T 1,0X) with volume
form dV . If ϕ is an E-valued (p, q) form, we define its norm |ϕ| = |ϕ|h : X → [0,∞]
in the following way. Suppose x ∈ X , z1, . . . , zm are local coordinates at x, and
ϕ =

∑
ϕIJdz

I ∧ dzJ . Then

|ϕ|2(x) = |ϕ|2h(x) =
∑
I,J

h(ϕIJ(x)) ≤ ∞, (4.1)

provided ∂/∂zν form an orthonormal basis of T 1,0
x X . If ϕ is measurable, we put

‖ϕ‖ = ‖ϕ‖h =

(∫
X

|ϕ|2dV
)1/2

≤ ∞. (4.2)

Clearly

‖ϕ‖h = lim
j→∞

‖ϕ‖hj = sup
j
‖ϕ‖hj . (4.3)

We define L2
pq(X,h) as the space of ϕ such that ‖ϕ‖h < ∞; thus L2

00(X,h) =

L2(X,h). Again L2
pq(X,h) with the norm ‖ ‖h is a Hilbert space.

Consider a Hilbert space (H, 〈, 〉) and functions f, fj : X → H . We say that
fj → f uniformly weakly if 〈fj , v〉 → 〈f, v〉 uniformly for every v ∈ H . For a
trivialized Hilbert bundle E = X ×H → X we define uniform weak convergence
of sections accordingly. Finally, sections fj of a general Hilbert bundle E → X
converge locally uniformly weakly to a section f if in some neighborhood of each
x ∈ X the bundle has a trivialization in which fj → f uniformly weakly. In
general, uniform weak convergence in one trivialization over some U ⊂ X does not
imply uniform weak convergence in some other trivialization, even over relatively
compact V ⊂ U , but if the limit section is locally bounded, it does.

Lemma 4.3. Let E → X be a holomorphic Hilbert bundle, h1 ≤ h2 ≤ · · · → h
Hermitian metrics on it, and suppose ϕj ∈ L2(X,hj). If supj ‖ϕj‖hj < ∞, and
ϕj − ϕ1 is holomorphic for each j, then a subsequence of ϕj will converge locally
uniformly weakly to a section ϕ such that ‖ϕ‖h ≤ supj ‖ϕj‖hj and ϕ − ϕ1 is
holomorphic.

Proof. We can assume E = X × H is trivialized. Thus (holomorphic) sections
of E are in one-to-one correspondence with (holomorphic) functions X → H ,
and one can talk about uniform boundedness and equicontinuity of a family of
sections. For example, if we choose a C2 Hermitian metric k ≤ h1 on E, since
supj ‖ϕj‖k <∞, the holomorphic sections ϕj − ϕ1 are locally uniformly bounded
and by Cauchy’s formula, locally uniformly equicontinuous. Now closed balls in
H are (even sequentially) compact in the weak topology. Hence for each x ∈
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X the sequence ϕj(x) − ϕ1(x) contains a weakly convergent subsequence. The
Arzelà–Ascoli theorem therefore provides a locally uniformly weakly convergent
subsequence ϕji → ϕ. For any v ∈ H the function 〈ϕ − ϕ1, v〉 = lim〈ϕji − ϕ1, v〉
is holomorphic, whence ϕ − ϕ1 is holomorphic (see, e.g., [M, Exercise 8E], whose
solution rests on Cauchy’s formula and the principle of uniform boundedness).

To estimate ‖ϕ‖, let s = supj ‖ϕj‖hj . Fix j and choose a sequence k1 ≤ k2 ≤
· · · of C2 Hermitian metrics that converge to hj . For any x ∈ X and p = 1, 2, . . .,
in the Hilbert space ({x} ×H, kp) the sequence ϕji(x) weakly converges to ϕ(x).
Hence

kp(ϕ(x)) ≤ lim inf
i→∞

kp(ϕji (x)) and

‖ϕ‖kp ≤ lim inf
i→∞

‖ϕji‖kp ≤ s

by Fatou’s lemma. Therefore ‖ϕ‖hj ≤ s and ‖ϕ‖ ≤ s by (4.3), and the proof is
complete. �

5. The ∂-equation and Hörmander–Skoda type estimates

Consider a holomorphic Hilbert bundle E over anm-dimensional complex manifold
X . We denote by Dpq(X,E) the space of compactly supported smooth E-valued
(p, q) forms. The Cauchy–Riemann operator ∂E : Dpq(X,E) → Dp,q+1(X,E) can
be defined as in bundles of finite rank, for instance using local trivializations, see,
e.g., [M or L1]. It can be extended to an operator defined on a larger subspace
of L1

pq,loc(X,E). By the latter space we mean the following. Take a continuous
Hermitian metric h0 on E and a smooth volume form dV onX . Then a measurable
E-valued (p, q) form ϕ is in L1

pq,loc(X,E) if∫
C

|ϕ|h0dV <∞ for any compact C ⊂ X,

|ϕ|h0 defined in (4.1). Clearly L1
pq,loc(X,E) is independent of the choice of h0

and dV .
Let ( , ) denote the fiberwise pairing between E and its dual E∗. If

∑
ϕIJdz

I∧
dzJ and

∑
σKLdz

K ∧dzL are local expressions of E, respectively E∗-valued forms
ϕ, σ, put

(ϕ, σ) =
∑

I,J,K,L

(ϕIJ , σKL)dz
I ∧ dzJ ∧ dzK ∧ dzL.

Given ϕ ∈ L1
pq,loc(X,E) and ψ ∈ L1

p,q+1,loc(X,E), we write ∂ϕ = ψ if for any

σ ∈ Dm−p,m−q−1(X,E∗) ∫
X

(ϕ, ∂E∗σ) = −
∫
X

(ψ, σ).

If such a ψ exists, it is uniquely determined a.e. by ϕ. Further, if ϕ ∈ Dpq(X,E)

then ∂ϕ and ∂Eϕ agree.
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In this section we will reproduce the by now standard L2 estimate, essen-
tially due to Hörmander and Skoda, and streamlined and generalized by Demailly
[D1,H,S], for solving ∂ in the setting of Hilbert bundles. Our setting is slightly
more general than the one in [D1, VIII. Theorem 6.1] because we allow bundles
E → X of infinite rank and possibly singular metrics.

Fix a smooth Hermitian metric on X and a Hermitian metric on E. In addi-
tion to the Hilbert spaces L2

pq(X,h) and norms ‖ϕ‖h introduced in Section 4, see
(4.2), we will need one more piece of notation. Consider a continuous (1, 1) form
a on X , ia ≥ 0. If ϕ is an E-valued (p, 1) form, 0 ≤ p ≤ m, its weighted norm
|ϕ|h,a : X → [0,∞] is defined as follows. Given x ∈ X , choose local coordinates
z1, . . . , zm at x in which a diagonalizes: a =

∑
aννdzν ∧ dzν at x. Then

|ϕ|2h,a(x) =
∑
ν

a−1
νν |i∂/∂zν

ϕ|2h(x) ∈ [0,∞], (5.1)

where i∂/∂zν
stands for contraction.

Recall that a complex manifold X is weakly pseudoconvex if it admits a
smooth plurisubharmonic exhaustion function X → [0,∞).

Theorem 5.1. Let (X,ω) be an m-dimensional weakly pseudoconvex Kähler mani-
fold, ia ≥ 0 a continuous (1, 1) form on X, E → X a holomorphic Hilbert bundle,
and h a Hermitian metric on E. Suppose that the Nakano curvature of h dominates
a, cf. Definition 4.2. Given ψ ∈ L1

m1,loc(X,h),

∂ψ = 0 and

∫
X

|ψ|2h,aωm <∞,

there exists a ϕ ∈ L2
m0(X,h) such that

∂ϕ = ψ and

∫
X

|ϕ|2hωm ≤
∫
X

|ψ|2h,aωm. (5.2)

Proof. First we assume that h is of class C2 and its Nakano curvature satisfies for∑
tν ⊗ ξν ∈ T 1,0X ⊗ E

N

(∑
ν

tν ⊗ ξν

)
=
∑

h
(
R(tμ, tν)ξμ, ξν

)
≥
∑
μ,ν

a(tμ, tν)h(ξμ, ξν). (5.3)

It is straightforward if perhaps tedious to check that the theory expounded in
Demailly’s book [D1], Chapters VII and VIII, is valid in Hilbert bundles of infinite
rank. In particular, Theorem 6.1 in Chapter VIII holds for such bundles. The
hypotheses of that theorem are obviously satisfied now, except possibly the one
which involves an operator A on

∧•,•
T ∗X ⊗ E, which we will have to check.

Only the action of A on
∧m,1 T ∗X ⊗ E matters here. This was computed in [D1,

VII.(7.1)], and in our notation it can be given as follows. Let z1, . . . , zm be local
coordinates at x ∈ X such that ∂/∂zν form a basis in T 1,0

x X , orthonormal for the
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inner product induced by ω. If the curvature of h is R =
∑

Rμνdzμ ∧ dzν , then

h(Aψ,ψ) =
∑
μ,ν

h(Rμνψμ, ψν), ψ =
∑

ψνdz ∧ dzν ∈
m,1∧

T ∗
xX ⊗ Ex,

where dz stands for dz1 ∧ · · · ∧ dzm. If additionally we choose the coordinates so
that a =

∑
aννdzν ∧ dzν at x, then by (5.3)

h(Aψ,ψ) ≥
∑
ν

aννh(ψν) =
∑

aνν |i∂/∂zνψ|2h.

Hence if now ψ is an E-valued (m, 1) form, at x

h(A−1ψ, ψ) ≤
∑
ν

a−1
νν |i∂/∂zν

ψ|h(x) = |ψ|2h,a(x)

by (5.1).
The estimates in [D1, VIII. Theorems 6.1 and 4.5] are formulated in terms of

h(A−1ψ, ψ), but clearly any greater function will also do. Replacing 〈A−1ψ, ψ〉 =
h(A−1ψ, ψ) in Demailly’s formulae by |ψ|2h,a we obtain Theorem 5.1 when h is of

class C2.
A general h is the increasing limit of C2 Hermitian metrics hj with Nakano

curvature Nj ≥ a⊗hj. By what we have just seen, there are ϕj ∈ L2
m0(X,hj) such

that

∂ϕj = ψ and ‖ϕj‖hj ≤
∫
X

|ψ|2hj ,aω
m ≤

∫
X

|ψ|2h,aωm.

Denoting the canonical bundle of X by K, we can view ϕj as sections of
K ⊗E and apply Lemma 4.3 with E replaced by K ⊗E. Any subsequential weak
limit ϕ will then satisfy (5.2). �

6. An extension theorem of Ohsawa–Takegoshi type

The original publication [OT] of the Ohsawa–Takegoshi extension theorem sparked
a lot of interest, various generalizations and alternative approaches have been
proposed. Here we prove an extension for Hilbert bundles following an idea of
Bo-Yong Chen [C], see also [Bl]. Guan and Zhou in [GZ1] already proved an
extension theorem for finite rank vector bundles. Undoubtedly their proof could be
generalized to Hilbert bundles as well, but Chen’s approach is the simplest of all.

At the heart of all extension proofs are estimates for the solution of an equa-
tion

∂ϕ = ψ. (6.1)

In his estimations Chen is inspired by an idea of Berndtsson that first appeared in
[B1] and then in [BC]. Berndtsson’s idea, in a context different from extensions, was
as follows. Given (in [B1, BC] a scalar-valued) form ψ, suppose we find a solution
ϕ whose L2 norm with respect to a certain weight is minimal. This means that ϕ
is orthogonal to Ker ∂ in some weighted L2 space. If u is a bounded function, then
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euϕ will still be orthogonal to Ker ∂, albeit with respect to a modified weight. So
it will be the minimal solution of the “twisted” equation

∂(euϕ) = eu(∂u ∧ ϕ+ uψ). (6.2)

If the weights involved are plurisubharmonic, then one can therefore use Hörman-
der’s estimate (really, [D1, VIII. Theorem 6.1]) to bound the solution euϕ of (6.2)
in terms of the right-hand side. True, this bound will involve ϕ itself, but if ∂u
is sufficiently small, then the bound can be turned into one that involves ψ only,
and provides much stronger estimates on ϕ then what follows directly from (6.1).
To carry out this plan, Berndtsson assumed sup |∂u|∂∂u < 1. What Chen noticed

was that useful estimates may follow even if sup |∂u|∂∂u = 1, and he produced a

u that will do the trick for the ∂ equation that arises in the extension problem.

Before introducing our version of the extension theorem we have to develop
some notation. Suppose X is a smooth manifold, Y ⊂ X a smooth submanifold,
and r : X → [0,∞) is a C3 function, Y = r−1(0). Suppose further that, denoting
by dist the distance induced by some Riemannian metric on X

r(x) ≥ c0 dist2(x, Y ), (6.3)

c0 a positive constant. Given such an r, any continuous volume form dμ on X
induces a volume form dμr on Y as follows. Suppose θ ∈ C(Y ) is compactly

supported. Extend it to a compactly supported θ̃ ∈ C(X). Then dμr will satisfy∫
Y

θdμr = lim
ε→0

ε−codimRY

∫
{x∈X : r(x)<ε2}

θ̃dμ. (6.4)

Locally dμr can be computed if we introduce local coordinates x1, . . . , xl on X so

that r =
∑k

1 x
2
i . If dμ = αdx1 . . . dxl and ck is the volume of the unit ball in Rk,

then dμr = ckαdxk+1 . . . dxl.

In the theorem below we will deal with a Hermitian holomorphic Hilbert
bundle (E, h) over a Kähler manifold (X,ω). We write K for the canonical bundle
of X and hK for the metric on K⊗E induced by h and ω. That is, if z1, . . . , zm are
local coordinates at x ∈ X such that ∂/∂zν form an orthonormal basis in T 1,0

x X ,
then

hK(dz1 ∧ · · · ∧ dzm ⊗ ξ) = h(ξ), ξ ∈ Ex.

In other words, if we view a section g of K ⊗ E as an E-valued (m, 0) form (and
we will), then with notation (4.1)

hK(g) = |g|2h. (6.5)

Theorem 6.1. Let (X,ω) be a weakly pseudoconvex m-dimensional Kähler mani-
fold, Y ⊂ X a complex submanifold of dimension m− c, r : X → [0, 1/(2e2)] a C3

function that vanishes on Y and satisfies (6.3). Define a volume form dμr on Y
by (6.4) using the volume form ωm on X. Suppose that log r is plurisubharmonic.
Let furthermore E → X be a holomorphic Hilbert bundle with a Hermitian metric
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h whose Nakano curvature dominates 0. If f is a holomorphic section of K ⊗ E
over some neighborhood U ⊂ X of Y and∫

Y

hK(f)dμr <∞,

then there is a holomorphic section g of K ⊗ E such that f = g on Y and∫
X

hK(g)

rc log2 r
ωm ≤ 44+c

∫
Y

hK(f)dμr. (6.6)

Proof. We start by considering a holomorphic Hilbert bundle F → X with a Her-
mitian metric k, an upper semicontinuous u : X → [−∞,∞), and the Hermitian
metric k′ = e−uk. When k, u are (finite and) of class C2, one can compute that
the curvatures R,R′ of k and k′ are related by

R′ = R+ I∂∂u,

I denoting the identity endomorphism of F . Hence the Nakano curvatures N,N ′

satisfy

N ′
(∑

ν

tν ⊗ ξν

)
=
∑
μ,ν

k′
(
R′(tμ, tν)ξμ, ξν

)
= e−uN

(∑
ν

tν ⊗ ξν

)
+
∑
μ,ν

∂∂u(tμ, tν)k
′(ξμ, ξν).

(6.7)

It follows that if the Nakano curvature of k is semipositive and u is plurisubhar-
monic, then the Nakano curvature of k′ is also semipositive. By approximation,
this will also hold for possibly singular metrics k and plurisubharmonic functions
u that are decreasing limits of C2 plurisubharmonic functions. (6.7) also shows
that if the Nakano curvature of a Hermitian metric k dominates 0 and u ∈ C2(X),
then the Nakano curvature of k′ will dominate ∂∂u.

Now let us put ourselves in the setting of Theorem 6.1. All integrals of func-
tions on X and on open subsets of X will be with respect to the volume form
ωm; for brevity, from now on we will omit the volume form from the integrals.
Since h can be approximated from below by C2 Hermitian metrics, we can assume
h is already such. We will also assume that X is a smoothly bounded, relatively
compact open subset of a complex manifold X0, that ω extends to a smooth
Kähler form ω0 on X0, that Y = Y0 ∩ X , where Y0 ⊂ X0 is a complex subman-
ifold intersecting ∂X transversely; that a C3 extension of r to X0 still satisfies
r(x) ≥ c0 dist

2 (x, Y0); that (E, h) extends to a holomorphic Hermitian Hilbert
bundle (also denoted (E, h)) over X0, and that f extends to a holomorphic section
of E⊗KX0 over a neighborhood U0 ⊂ X0 of Y0. Once this special case is handled,
the general case will follow. We would take a smooth plurisubharmonic exhaustion
function ρ : X → [0,∞), solve the extension problem on generic sublevel sets of ρ
and apply Lemma 4.3 combined with a diagonal selection procedure.
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With all the extra assumptions above, we fix a smooth function χ : [0,∞)→
[0, 1],

χ(t) =

{
1, if t < 1/4

0, if t > 1
, |χ′(t)| ≤ 2 for all t.

Set, for ε > 0,
Ωε = {x ∈ X : r(x) < ε2}.

When ε is sufficiently small, Ωε ⊂ U0, so that

f ′ = f ′
ε =

{
χ(r/ε2)f on Ωε

0 on X \ Ωε

is a smooth section of K ⊗ E. Let ψ = ∂f ′, a smooth closed K ⊗ E-valued (0, 1)
form. Presently we will check that the equation ∂ϕ = ψ has a solution ϕ = ϕε ∈
L2(X,hK/rc). Accepting this for the moment, g = f ′ − ϕ ∈ Γ(X,K ⊗ E). Hence
ϕ is smooth and

ϕ|Y = 0, (6.8)

because 1/rc is nowhere integrable at Y . Thus g agrees with f on Y , and what we
need to do is estimate it. This amounts to estimating ϕ. Since we can freely add to
ϕ any holomorphic section in L2(X,hK/rc), we can arrange that ϕ is orthogonal
to the closed subspace of holomorphic sections in L2(X,hK/rc). It follows that
with any u ∈ C2(X) the section θ = euϕ is orthogonal to holomorphic sections in
L2(X, e−uhK/rc). – This latter space is the same as L2(X,hK/rc) but their inner
products are different. – Therefore θ is the solution of

∂θ = ∂(euϕ) = eu(ϕ∂u+ ψ) (6.9)

that has minimal norm in L2(X, e−uhK/rc).
Let us abbreviate e−uh/rc = k. As we observed above, the Nakano curvature

of h/rc = e−c log rh dominates 0 (note that log(r+1/j)↘ log r), and so the Nakano
curvature of k dominates ∂∂u. We will choose a plurisubharmonic u so that∫

X

|ϕ∂u|2
kK ,∂∂u

,

∫
X

|ψ|2
kK ,∂∂u

<∞. (6.10)

Viewing ϕ∂u and ψ as E-valued (m, 1) forms, the integrands above are the same

as |ϕ∂u|2
k,∂∂u

and |ψ|2
k,∂∂u

, hence by Theorem 5.1 and (6.9) we would conclude∫
X

kK(θ) ≤
∫
X

|eu(ϕ∂u+ ψ)|2
kK ,∂∂u

,

or∫
X

eu

rc
hK(ϕ) ≤

∫
X\Ωε

eu

rc
|ϕ∂u|2

hK ,∂∂u
+ 2

∫
Ωε

eu

rc
|ϕ∂u|2

hK,∂∂u
+ 2

∫
Ωε

eu

rc
|ψ|2

hK ,∂∂u
.

Since |ϕ∂u|2
hK ,∂∂u

= hK(ϕ)|∂u|2
∂∂u

, putting

λ(x) =

{
1− |∂u|2

∂∂u
(x), if x ∈ X\Ωε

1− 2|∂u|2
∂∂u

(x), if x ∈ Ωε

, (6.11)
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we obtain ∫
X

λ
eu

rc
hK(ϕ) ≤ 2

∫
X

eu

rc
|ψ|2

hK ,∂∂u
. (6.12)

Remains to prove that ∂ϕ = ψ indeed has a solution in L2(X,hK/rc) and to
choose u so that (6.10) holds and (6.12) implies the estimate (6.6) for g = f ′ − ϕ.

Following Chen’s idea in a similar setting, we make sure that ε < 1/(2e) and
let

ρ = − log(r + ε2), η = ρ+ log ρ, and u = − log η.

Thus −ρ,−η, and u are plurisubharmonic and C3,

2 < ρ < η < 2ρ and u < 0.

We need to estimate |∂u|∂∂u. This will take a little bit of computation:

∂ρ = − ∂r

r + ε2
, ∂∂ρ =

∂r ∧ ∂r

(r + ε2)2
− ∂∂r

r + ε2
, (6.13)

η∂u = −∂η = −
(
1 +

1

ρ

)
∂ρ =

(
1 +

1

ρ

)
∂r

r + ε2
, (6.14)

iη2∂∂u = i

((
1 +

1

ρ

)2

+
η

ρ2

)
∂ρ ∧ ∂ρ− iη

(
1 +

1

ρ

)
∂∂ρ (6.15)

≥ i

((
1 +

1

ρ

)2

+
1

ρ

)
∂ρ ∧ ∂ρ.

From (6.13), (6.15), on X

i∂r ∧ ∂r ≤ iη2(r + ε2)2

(1 + 1/ρ)2 + 1/ρ
∂∂u, |∂r|2

∂∂u
≤ η2(r + ε2)2

(1 + 1/ρ)2 + 1/ρ
. (6.16)

However, on Ωε the estimate can be improved. Indeed, (6.13) gives, when r < ε2

(r + ε2)2(−i∂∂ρ− i∂ρ ∧ ∂ρ) = i(r + ε2)∂∂r − 2i∂r ∧ ∂r

≥ 2i(r∂∂r − ∂r ∧ ∂r) ≥ 0,

the latter simply expressing that i∂∂ log r ≥ 0. Hence by (6.13), (6.15)

i∂r ∧ ∂r = i(r + ε2)2∂ρ ∧ ∂ρ ≤ −4iε4∂∂ρ ≤ 4iε4η∂∂u,

so that |∂r|2
∂∂u

≤ 4ε4η. Therefore in view of (6.14), (6.16)

|∂u|2
∂∂u

=
(1 + 1/ρ)2

η2(r + ε2)2
|∂r|2

∂∂u
≤

⎧⎪⎨⎪⎩
16

η
on Ωε

(ρ+ 1)2

ρ+ 1)2 + ρ
≤ 1− 1

4ρ
on X,

(6.17)

as ρ > 2. On supp ψ ⊂ Ωε\Ωε/2 we can estimate

|ψ|2
hK ,∂∂u

= |fχ′(r/ε2)∂r/ε2|2
hK ,∂∂u

≤ 4hK(f)|∂r|2
∂∂u

/ε4 ≤ 16ηhK(f),
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and so ∫
X

eu

rc
|ψ|2

hK ,∂∂u
≤ 42+c

ε2c

∫
Ωε\Ωε/2

hK(f) <∞. (6.18)

We apply Theorem 5.1 with the Hermitian metric e−uh/rc to obtain a solution
ϕ ∈ L2(X, e−uhK/rc) = L2(X,hK/rc) of the equation ∂ϕ = ψ, which we choose
to have the minimal norm in L2(X,hK/rc).

Now (6.18) and∫
X

r−c|ϕ∂u|hK,∂∂u =

∫
X

r−chK(ϕ)|∂u|∂∂u ≤
∫
X

r−c hK(ϕ) <∞

prove (6.10), and it follows that ϕ satisfies (6.12). Looking up the definition of λ,
(6.11), and comparing it with (6.17), we obtain

λ ≥
{
1/2 on Ωε

1/4ρ on X\Ωε

≥ 1

4ρ
≥ 1

4| log r|

when ε > 0 is sufficiently small. We also note that eu = 1/η ≥ 1/(2 log r). Putting
all this in (6.12) and taking (6.18) into account estimates ϕ = ϕε:∫

X

hK(ϕε)

rc log2 r
≤ 44+c

ε2c

∫
Ωε

hK(f). (6.19)

We let ε → 0. To estimate the limit on the right, set Ω0
ε = {x ∈ X0 : r(x) <

ε2} and choose a compactly supported continuous function σ : X0 → [0, 1] such
that σ|X ≡ 1. Then

lim sup
ε→0

ε−2c

∫
Ωε

hK(f) ≤ lim sup
ε→0

ε−2c

∫
Ω0

ε

σhK(f) =

∫
Y0

σhK(f)dμr.

Approximating the characteristic function of X by such σ, this last integral gets
as close to

∫
Y hK(f)dμr as we please, whence by (6.19)

lim sup
ε→0

∫
X

hK(ϕε)

rc log2 r
≤ 44+c

∫
Y

hK(f)dμr.

At the same time, since 1/(rc log2 r) is integrable on X ,

lim
ε→0

∫
X

hK(f ′
ε)

rc log2 r
= lim

ε→0

∫
Ωε

hK
(
χ(r/ε2)f

)
rc log2 r

= 0.

Therefore gε = f ′
ε − ϕε is holomorphic, gε|Y = f |Y , and

lim sup
ε→0

∫
hK(gε)

rc log2 r
≤ 44+c

∫
Y

hK(f)dμr.

By Lemma 4.3 a subsequential weak limit g of gε will then satisfy the requirements.
�
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7. The proof of Theorem 1.2

Let U ⊂ Cm be open and E → U a holomorphic Hilbert bundle as in Theorem
1.2. Let furthermore h1 ≥ h2 ≥ · · · be Hermitian metrics with Nakano curvatures
dominating 0, and assume that h = limj hj is bounded below by a continuous
Hermitian metric. Much like in Section 2, if P ⊂ Cm is a complex affine hyperplane,
W ⊂ P ∩ U is relatively open, and g is a measurable section of E|W , we define
‖g‖ ∈ [0,∞] by

‖g‖2 = inf
j

∫
W

hj(g), so that

‖g‖2 =
{
∞ or

limj

∫
W

hj(g) =
∫
W

h(g).
(7.1)

Let x ∈ U . First we prove the following characterization ofM = Mx =
⋃

j E(hj , x).

Lemma 7.1. Suppose M is finitely generated as an Ox-module. The germ fx of
an f ∈ Γ(E) belongs to M if and only if for any sufficiently small neighborhood
V ⊂ U of x and any hyperplane P0 ⊂ Cm

lim inf dist(x, P )‖f |V ∩ P‖ = 0, as P‖P0 and dist(x, P )→ 0. (7.2)

We need the following simple

Proposition 7.2. Let W be a complex vector space, (B, ‖ ‖) a normed space,
L : W → B and l : W → C linear. If |l(w)| ≤ C‖L(w)‖ for every w ∈ W with
some constant C, then there is a linear map a : B → C of norm ≤ C such that
l = aL.

Proof. First we define a on L(W ) ⊂ B. If u = L(w) ∈ L(W ), set a(u) = l(w).
This is independent of the choice of w, since Ker L ⊂ Ker l. Further,

|a(u)| = |l(w)| ≤ C‖L(w)‖ = C‖u‖.
By the Banach–Hahn theorem we extend a to a linear form on B satisfying the
same estimate; this extension will clearly do. �

Proof of Lemma 7.1. We will assume x = 0. The “only if” direction follows from
Fubini’s theorem as in the proof of Lemma 2.1. Conversely, we will show that if
f0 �∈M then for any neighborhood V ⊂ U of 0 and for some hyperplane P0

lim inf dist(x, P )‖f |V ∩ P‖ > 0, as P‖P0 and dist(x, P )→ 0. (7.3)

Fix V . We can assume it is pseudoconvex, relatively compact in U , and
there are g1, . . . , gp ∈ Γ(V,E) whose germs generate M . We can also assume∫
V
hj0(g

i) <∞ with some j0 and i = 1, . . . , p.
Write π : E → U for the bundle projection. If Δ ⊂ C is the unit disc and

α : Δ → E∗|V is holomorphic, mapping 0 ∈ Δ to the zero vector in E∗
0 , we can
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associate with sections g ∈ Γ(V,E) functions α�g ∈ O(Δ) by evaluating α(s) on
g(πα(s)):

(α�g)(s) = α(s)g(πα(s)).

Likewise we can pull back germs g0 of sections of E to germs α�g0 ∈ O(C,0). Set
α�M = {α�g0 : g0 ∈M}. We claim that there is an α such that

α�f0 �∈ O(C,0)α
�M. (7.4)

Indeed, [L2, Lemma 5.1] implies that over some neighborhood of 0 ∈ U , our
f, g1, . . . , gp are in fact sections of a finite rank holomorphic subbundle of E. We
will construct α as the pull back of a map into the dual of this subbundle, and so
we can assume at this juncture that the rank of E itself is finite. Of course, we
can also assume E is trivial, E = U × Cn → U . With any g ∈ Γ(V,E) given by
g(z) = (z, g1(z), . . . , gn(z)) we associate a function ĝ ∈ O(V × Cn),

ĝ(z, w) =
∑
ν

gν(z)wν .

We do likewise with germs of sections of E at 0 ∈ U . Consider the integral closure
M̂ ⊂ O(Cm+n,0) of the ideal generated by ĝ1

0, . . . , ĝ
p
0 . Thus, again by [LT, Théorème

2.1], M̂ consists of germs ϕ0 ∈ O(Cm+n,0) of functions ϕ that satisfy

|ϕ|2 ≤ C2
(
|ĝ1|2 + . . .+ |ĝp|2

)
(7.5)

on some neighborhood of 0 ∈ Cm+n, with some constant C. Suppose ϕ = ĝ satisfies
(7.5) on some neighborhood; the neighborhood can be taken of form π−1(V0),
with V0 ⊂ V a neighborhood of 0 ∈ Cm. Let z ∈ V0. We apply Proposition 7.2
with W = Cn, B the Euclidean space Cp, the components of L : Cn → Cp the
functions ĝi(z, ·), i = 1, . . . , p, and l = ĝ(z, ·). This produces ai ∈ C such that
g(z) =

∑
aig

i(z) and
∑
|ai|2 ≤ C2. By Schwarz’ inequality

hj0(g(z)) ≤
∑
i

|ai|2
∑
i

hj0(g
i(z)) ≤ C2

∑
i

hj0(g
i(z)).

We see that for a ϕ of form ĝ (7.5) implies g0 ∈ M . Since our f0 �∈ M , it follows

that ϕ = f̂ does not satisfy (7.5) on any neighborhood of 0, i.e., f̂0 �∈ M̂ . As in
the proof of Lemma 2.1, according to [LT] this implies that there is a holomorphic

α : Δ → V × Cn, α(0) = 0, such that f̂0 ◦ α �∈ O(C,0)M̂ ◦ α. Then α, viewed as a
map Δ→ E∗|V = V × Cn, satisfies (7.4).

There is quite some flexibility in the choice of α. To wit, f̂0 ◦α �∈ O(C,0)M̂ ◦α
means that at 0 ∈ Δ the order of each ĝi ◦ α is greater than the order of f̂ ◦ α.
This will clearly persist if we perturb α by adding terms whose order is greater

than the order of f̂ ◦ α. We use this flexibility to arrange that π ◦ α �= 0.
Next choose a hyperplane P0 through 0 ∈ Cm that does not contain πα(Δ).

Again we can adjust coordinates in C and in Cn so that P0 = {z ∈ Cm : z1 = 0},
that α is holomorphic in a neighborhood of Δ, that F = α�f �= 0 on Δ\{0}, that
the first component of πα satisfies with some k ∈ N

π1α(s) = sk, s ∈ Δ,
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and α(Δ) ⊂ V × Cn. This latter implies for any g ∈ Γ(V,E)

max
Δ
|α�g|2 ≤ C2

2

∫
V

h(g) ≤ C2
2

∫
V

hj(g), j = 1, 2 . . . , (7.6)

with some C2 independent of g.
Let σ ∈ Δ\{0} and let Pσ = {z ∈ Cm : z1 = σ}. Assume first ‖f |V ∩ Pσ‖ <

∞. We apply Theorem 6.1 with (X,ω) = (V,
∑

dzν ∧ dzν), Y = V ∩ Pσ and
r(z) = c|z1−σ|2. If the constant c > 0 is sufficiently small, then r ≤ 1/(2e2) on V .
The volume form dμr on V ∩ Pσ is a constant multiple of the Euclidean volume.
Choose j such that ∫

V ∩Pσ

hj(f) ≤ 2‖f |V ∩ Pσ‖2.

Since the bundles (K ⊗E, hK
j ) and (E, hj) are isometrically isomorphic, Theorem

6.1 produces a g ∈ Γ(V,E) with

f = g on V ∩ Pσ and

∫
V

hj(g) ≤ C2
3‖f |V ∩ Pσ‖2, (7.7)

where C3 is independent of σ. Thus g0 ∈M and the germ of G = α�g is in α�M .
As the germ of F = α�g is not in O(C,0)α

�M , it follows that G = o(F ) at 0 ∈ Δ.

Further, by (7.7) F ( k
√
σ) = G( k

√
σ) for any choice of k’th root k

√
σ. Hence by

Proposition 2.2
max
Δ
|α�g| = max

Δ
|G| ≥ C1/|σ|. (7.8)

(7.6), (7.7), and (7.8) together yield

‖f |V ∩ Pσ‖ ≥
C1

C2C3|σ|
, σ ∈ Δ\{0}.

As this also holds when ‖f |V ∩ Pσ‖ = ∞, (7.3) has been proved and, with it,
Lemma 7.1. �

Proof of Theorem 1.2. We prove by induction on m. Again, the case m = 0 is
obvious. Assume the statement form−1, and consider them-dimensional theorem.
To apply the induction hypothesis we have to understand whether the restrictions
E|P to hyperplanes P ⊂ Cm satisfy the hypothesis of the theorem. On the one
hand, if rk E < ∞ then of course rk E|P < ∞. On the other hand, if

⋃
j E(hj)

is locally finitely generated, then the question becomes whether the sheaf F → P
whose stalk at x ∈ P is{

ϕx : ϕ ∈ Γ(V ∩ P,E),

∫
V ∩P

hj(ϕ) <∞ for some j and open V ⊂ U, x ∈ V

}
(7.9)

is also locally finitely generated. This will be true for almost all P . For, at the
price of shrinking U , we can assume there are g1, . . . , gp ∈ Γ(E) that generate
each stalk of

⋃
j E(hj). We claim that whenever P is such that for some j∫

U∩P

hj(g
i) <∞, i = 1, . . . , p,
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the sheaf F is generated by gi|P . Indeed, let ϕx ∈ Fx be the germ of a ϕ ∈
Γ(V ∩ P,E) as in (7.9). Assuming, as we may, that V is pseudoconvex, Theorem
6.1 can be applied as in the proof of Lemma 7.1 to extend ϕ to a g ∈ Γ(V,E) such
that

∫
V
hj(g) <∞. Hence gx ∈

⋃
j E(hj , x) = Mx. But since the latter module is

generated by the gi, it follows that ϕx = gx|P is in the module generated by gi
x|P .

We need to show Mx = E(h, x) for arbitrary x, which we will take to be 0. As
above, we assume that g1, . . . , gp ∈ Γ(E) generate each stalk of E . Fix a relatively
compact neighborhood V0 ⊂ U of 0 and an f ∈ Γ(V0, E) such that

∫
V0

h(f) <∞.

We will show that f0 ∈ M0 using the characterization in Lemma 7.1. Take a
neighborhood V of 0, relatively compact in V0, and a hyperplane P0. Again we
assume P0 = {t ∈ Cm : z1 = 0} and for s ∈ C write Ps = {z ∈ Cm : z1 = s}.
Fubini’s theorem guarantees that there are a j0 and a set S ⊂ C of full measure
such that∫

V0∩Ps

h(f) <∞ and

∫
V0∩Ps

hj0(g
i) <∞ for s ∈ S, i = 1, . . . , p,

and

lim inf
S�s→0

|s|2
∫
V0∩Ps

h(f) = 0. (7.10)

The induction hypothesis implies that for each s ∈ S there is a j such that∫
V ∩Ps

hj(f) <∞, whence

‖f |V ∩ Ps‖2 =

∫
V ∩Ps

h(f), cf. (7.1).

Hence (7.10) implies (7.2) (with x = 0), and so by Lemma 7.1, f0 ∈M0 indeed. �

Here is an example that shows that in Theorem 1.2 the condition of finite
generation cannot be simply dropped. Let U ⊂ C be the unit disc and E the trivial
bundle U × l2 → U . We endow E with metrics that are determined by a sequence
σ = (σ1, σ2, . . .) of nonnegative numbers,

h(z, w) = hσ(z, w) =
∑
ν

|wν |2/|z|2σν , z ∈ U, w = (wν) ∈ l2.

We only consider σν such that supν σν < 2. Let V ⊂ U be a neighborhood of 0.
If f ∈ Γ(V,E) given by f(z) = (z, f1(z), f2(z), . . .) is in L2

loc(V, h), then fν(0) = 0
whenever σν ≥ 1. Assuming V is the disc {z ∈ C : |z| < ρ}, with ρ ∈ (0, 1], the
L2(V, h) norm of such f is given in terms of the Taylor coefficients of fν(z) =∑

k aνkz
k: ∫

V

|f |2h = π
∑
ν,k

|aνk|2
ρ2(k−σν+1)

k − σν + 1
.
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Let σν = 1 − 1/ν. Then fν(z) ≡ 1/ν2 defines a section f of E whose germ
f0 ∈ E(hσ). However, for no j ∈ N is this germ in E(h(1+1/j)σ), and so

∞⋃
j=1

(E(h(1+1/j)σ , 0) � E(hσ, 0).

At the same time, any holomorphic section in L2(V, hσ) can be approximated
by holomorphic sections in

⋃
j L

2(V, h(1+1/j)σ). To end this paper, we propose the

following float. (According to the late Lee Rubel, a float, much like a conjecture,
is a mathematical statement one would like to see proved; but while to make a
conjecture the conjecturer should have substantial evidence in its favor, a float is
allowed once it occurs to the floater that the statement might be true.)

Consider a holomorphic Hilbert bundle E → U over a pseudoconvex open
U ⊂ Cm and let h1 ≥ h2 ≥ · · · be Hermitian metrics on E. Assume that the
Nakano curvature of each hj dominates 0 and that h = limhj dominates a con-
tinuous Hermitian metric. Let f ∈ Γ(E) ∩ L2(U, h) and V ⊂ U be a sublevel set
of a plurisubharmonic exhaustion function. Then in the Hilbert space L2(V, h)
the section f |V can be approximated by holomorphic sections of E|V that are in⋃

j L
2(V, hj).
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Abstract. We prove a global uniform Artin–Rees lemma type theorem for
sections of ample line bundles over smooth projective varieties. This result
is used to prove an Artin–Rees lemma for the polynomial ring with uniform
degree bounds. The proof is based on multidimensional residue calculus.
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1. Introduction

Assume that (X, x) is a germ of a reduced analytic variety. Let M be a finitely
generated module over the local ring, OX,x, of germs of holomorphic functions at
x. In [Szn12] it was proved by residue calculus that if N is a submodule of M ,
then there exists a constant μ such that the inclusion

Iμ+rM ∩N ⊂ IrN (1)

holds for all ideals I of OX,x and all non-negative integers r. This is the well-known
uniform Artin–Rees lemma that was proved by Huneke in [Hun92] for much more
general rings.

The uniform Artin–Rees lemma is related to the theorem of Briançon–Skoda,
[BS74]. Since there are global versions of the latter, see [EL99] and [Hic01] for
smooth X and [AW15] for singular X , it is reasonable to believe that there is a
global version of the inclusion (1). In this paper we prove such a result when X is
smooth.

Theorem 1.1. Assume that X is a smooth projective variety of dimension n and
that L is an ample line bundle over X. Assume moreover that f1, . . . , fm are global
holomorphic sections of L. Then there exist constants μ and s0 such that for every
set of global holomorphic sections g1, . . . , g� of any ample line bundle M over X
the following is true: If φ is a global section of

M⊗s ⊗KX ⊗ L⊗s0 , s ≥ n+ r, r ≥ 1,
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such that φ ∈ J (f) and |φ| ≤ C|g|μ+r−1 for some C > 0, then

φ =
∑

j=1,...,m
I1+···+I�=r

αI,j(g
1)I1 . . . (g�)I�f j ,

where αI,j are global sections of M⊗(s−r) ⊗KX ⊗ L⊗(s0−1).

Here and throughout this paper |g| is short for |g1|+ · · ·+ |g�|.
Remark 1.2. The constants μ and s0 both depend on X and L. However, the point
is that these constants are uniform in M and r. In general μ depends on Hironakas
desingularization theorem but it can be related to exponents from Bernstein–Sato
type formulas, cf. Remark 3.3.

Remark 1.3. We may replace the canonical bundle KX in Theorem 1.1 by any
bundle T such that T ⊗K−1

X is non-negative. This follows from the proof in Sec-
tion 3.

By the theorem of Briançon–Skoda,

|φ| ≤ C|g|μ+r+n−2

implies that φ ∈ J (g)μ+r−1, and this certainly implies that |φ| ≤ C′|g|μ+r−1.
Since μ is not specified in general we might as well use such an estimate instead
of the membership condition. We choose to use the inequality in this paper for
purely technical reasons. Also, we actually get a special case of the theorem of
Briançon–Skoda from Theorem 1.1 with this setting.

If we assume that M = L and r = 1 we get the following result.

Corollary 1.4. Assume that f1, . . . , fm and L are as in Theorem 1.1. Then there
exist constants μ and s0 such that for every set of global holomorphic sections
g1, . . . , g� of L the following holds: If φ is a global section of KX ⊗ L⊗s0 , that
satisfies φ ∈ J (f) and |φ| ≤ C|g|μ, then

φ =
∑
ij

αijg
if j , (2)

where αij are global sections of KX ⊗ L⊗(s0−2).

Remark 1.5. If J (f) = J (1), then it follows from the proof in Section 3 that we
may take μ in Corollary 1.4 as min(n, �) and we get back a theorem of Briançon–
Skoda type, cf. part (ii) of Corollary 2.2 in [EL99] and Theorem 7.1, and its proof,
in [AW15]. That is, assume that X and L are as in Theorem 1.1 and g1, . . . , g� are
global holomorphic sections of L. Then if φ is a global section of

KX ⊗ L⊗s, s ≥ n+ 1,

such that |φ| ≤ C|g|min(n,�), we may write

φ =
∑
j

αjg
j ,

where αj are global sections of KX ⊗ L⊗(s−1).
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Based on Theorem 1.1 and a geometric inequality in [EL99] we prove a theo-
rem about polynomials, which can be regarded as an effective uniform Artin–Rees
lemma for the polynomial ring.

Theorem 1.6. Let V ⊂ CN be an algebraic variety of dimension n and assume
that X, the closure of V in PN , is smooth. Given polynomials F1, . . . , Fm on V
there exists a constant μ such that the following holds: Assume that G1, . . . , G� are
polynomials on V of degree at most d, r is a positive integer, and Φ is a polynomial
such that

|Φ| ≤ C|G|μ+r−1 (3)

and

Φ ∈ J(F1, . . . , Fm).

Then there exist polynomials PI,j such that

Φ =
∑

j=1,...,m
I1+···+I�=r

PI,jG
I1
1 . . .GI�

� Fj ,

and

deg(PI,jG
I1
1 . . . GI�

� Fj)

≤ max
(
(μ+ r − 1)dc

G
∞ degX + degΦ, (n+ r)d+ κ1, degΦ + κ2

)
,

(4)

where the constants κ1 and κ2 only depend on J(F ) and V .

Here J(F ) is the polynomial ideal generated by F1, . . . , Fm. The constant cG∞
is defined in Section 4; it is less than or equal to n. From this result we also derive
a similar but weaker result in the case when X is singular, see Section 5.

If X = Pn, � = 1, and G1 = 1, then (4) becomes deg Φ + κ for some κ. It
is well known that in general κ is double exponential in the degree of the Fj :s,
[May82], and it was proved already in [Her26] that one can choose κ as something

like 2(2d′)2
N−1, where d′ ≥ degFj . This shows that the third entry in (4) is

not only there for technical reasons. The same is true for the other entries as well.
Assume for example that r = 1 and that the zero set of J(G) does not intersect the
hyperplane at infinity. In this case cG∞ = −∞. However, if we let d tend to infinity it
must be the case that the degree of Pi,jGiFj tends to infinity linearly, so the second
entry is necessary. Now, consider the case when r = 1, J(F ) = J(1), and assume
that the zero set of J(G) is empty. Then it was proved by Kollár, [Kol88], Sombra,
[Som99], and Jelonek, [Jel05], that in general the degree of Pi,jGiFj cannot be

chosen less than dmin(�,n), so we need something like the first entry.

In special cases one can explicitly calculate the degree estimates and get back
classical theorems of Macaulay and Max Noether. This is discussed in the end of
Section 4.
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2. Andersson–Wulcan currents and the diamond product

In this section we describe a residue current, introduced in [AW07], associated to
a generically exact Hermitian complex of vector bundles and also an operation on
such complexes introduced in [Szn12].

Assume that Ej are Hermitian vector bundles over an n-dimensional smooth
variety X in PN and that the complex

· · · f2−→ E2
f2−→ E1

f1−→ E0 (5)

is generically exact, i.e., pointwise exact outside some proper analytic subvariety,
Z, of X . Let E =

⊕
Ek. Then there is a natural superstructure, i.e., a Z2-grading,

on E, see [AW07]. From now on and throughout this paper we assume that E
is equipped with that superstructure. Consider the sheaves, Ep,q(E), of smooth
(p, q)-forms on X with values in E and the space, D′(E), of currents with values
in E. The operator

∇E =
∑

fj − ∂̄

acts on Ep,q(E) and is naturally extended to D′(E) and the superstructure on E
makes sure that ∇2

E = 0, see [AW07].
If σk is the minimal inverse to fk on X \ Z, i.e.,

σkξ =

{
η, where fkη = ξ and η has minimal norm, if ξ ∈ Im fk,

0, if ξ ∈ (Im fk)
⊥,

then the Hom(E0, E)-valued form

u := σ1 + σ2∂̄σ1 + σ3∂̄σ2∂̄σ1 + · · ·
satisfies

∇Eu = 1E0 ,

see [AW07]. Note that the component

uk := σk ∂̄σk−1 · · · ∂̄σ1

of u that takes values in Hom(E0, Ek) has bidegree (0, k − 1). The form u can be
extended across Z to a current U by letting

U := lim
ε→0

χ(|h|2/ε2)u, (6)

where h1, . . . , hM are functions with Z as their common zero set. Here χ(t) is a
smooth function on the reals that is 0 for t < 1 and 1 for t > 2. The existence of
the limit (6) is nontrivial and requires the desingularization theorem of Hironaka.

We now define the residue current

R := 1E0 −∇EU. (7)

It obviously has support on Z. The current R is also a so-called pseudomeromor-
phic current as defined in [AW10]. We may restrict such currents to subvarieties in
the following way. If T is a pseudomeromorphic current on X and V is a subvariety
of X then the restriction of T to the complement of V has a natural extension to
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X , denoted 1V cT . The difference between the current T and that extension is a
current with support on V denoted 1V T . That is,

T = 1V T + 1V cT. (8)

For details, see [AW10].

Remark 2.1. In this paper we have chosen to use the regularization χ(|h|2/ε2)u
when defining the current U . One might as well, which indeed often is done in
the literature, use the analytic continuation of |h|2λu to λ = 0 and get the same
current, see, e.g., [BS10]. The reason that we use the cut-off function approach in
this paper is simply because it is suitable in the proof of Theorem 1.1.

Remark 2.2. In the case when (5) is the Kozul complex the coefficients in the
resulting current R in (7) is exactly the ones first introduced by Passare, Tsikh,
and Yger generalizing the Coleff–Herrera current, see Theorem 1.1 in [PTY00].

The sheaf complex

· · · f2−→ O(E2)
f2−→ O(E1)

f1−→ O(E0), (9)

associated to the complex (5), plays a key role in the following basic result, [AW07].

Theorem 2.3. Assume that X is smooth and that E0 in the complex (5) has rank
one. Let J be the ideal sheaf Im(f1) of the associated sheaf complex. If φ is a
holomorphic section of E0, then φ ∈ J if Rφ = 0, and the converse is true if the
associated sheaf complex is exact.

Notice that even if the complex (5) is infinite the residue only takes values
in Hom(E0, E0 ⊕ · · · ⊕ Edim(X)+1). This follows from the construction of u since
the component uk has bidegree (0, k − 1).

We would like to use Theorem 2.3 to draw the conclusion that a given section
belongs to a certain product ideal. In order to do so we need an appropriate
complex like (5) such that Im(f1) lies in the product ideal in question. We use a
construction due to [Szn12] and we give here the definition and basic properties.

Definition 2.4. Given r Hermitian complexes E1
• , . . . , E

r
• , with morphisms fk

j :

Ek
j → Ek

j−1, the diamond product, denoted E1•♦ · · ·♦Er• , is the complex H•, where

H0 = E1
0 ⊗ · · · ⊗ Er

0 , Hk =
⊕

α1+···+αr
=k−1

E1
1+α1

⊗ · · · ⊗ Er
1+αr

,

and where the maps hj : Hj → Hj−1 are defined as

h1 = f r
1 f

r−1
1 . . . f1

1 , hk =
∑

1≤s≤r,j≥2

f s
j

∣∣
Hk

.

Note that it follows directly from the definition that

E1
•♦E2

•♦E3
• = (E1

•♦E2
•)♦E3

• = E1
•♦(E2

•♦E3
•). (10)
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If r is odd, then H• inherits its superstructure from the superstructures of the
individual factors. However, if r is even, then one needs to do a trick by multiplying
with the trivial complex

0→ E → E → 0,

for any bundle E. For details, see [Szn12].
Let uk be the Hom(Ek

0 , E
k)-valued form associated to the complex Ek

• . It
was shown in [Szn12] that the form

uH := u1 ⊗ · · · ⊗ ur (11)

satisfies the equality
∇Hu = 1H0 .

From uH we define the currents UH and RH as in (6) and (7). One can describe the
residue current RH in terms of the individual building block complexes. Assume
that H• is the diamond complex of M• and L• and assume that UL, RL, UM and
RM are the currents associated to L• and M•. Assume also that L• is exact outside
an analytic set defined by a tuple, h1, of analytic functions and let h2 be a tuple
that defines the corresponding set for M•. Then

RH = RM ∧ UL − UM ∧RL, (12)

where

RM ∧ UL = lim
ε→0

∂̄χ(|h2|2/ε2) ∧ uM ∧ UL

= lim
ε→0

lim
δ→0

∂̄χ(|h2|2/ε2) ∧ uM ∧ χ(|h1|2/δ2)uL,

and

UM ∧RL = lim
ε→0

χ(|h2|2/ε2)uM ∧RL (13)

= lim
ε→0

lim
δ→0

χ(|h2|2/ε2)uM ∧ ∂̄χ(|h1|2/δ2) ∧ uL,

see Proposition 3.4 in [Szn12].
Products of more than two factors are defined in the same way. Once again,

the existence of the limits is non-trivial. The order of the limits is important as
we see in the one-variable principal value example

U =
1

z
, R = ∂̄

1

z
.

In this case we get

U ∧R = 0, R ∧ U = ∂̄
1

z2
.

Remark 2.5. There is a product of Koszul complexes in [And06] which is used to
solve division problems for product ideals. That product is derived from so-called
Eagon–Northcott complexes which is related to determinant ideals. However, prod-
ucts of Kuszul complexes can quite easily be computed directly. The diamond
complex is a generalization of this product for general complexes of locally free
sheaves. For products of Koszul complexes, see Section 3 in [And06].
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3. The proof of Theorem 1.1

Our proof of Theorem 1.1 is based on the fact that φ annihilates a residue current
RH associated to the diamond product of appropriate choices of complexes.

Let X,L,M, f j and gj be as in Theorem 1.1. Since L is ample there exists
an exact sequence like (9), with a direct sum of negative powers of L as Ek, such
that Im f1 = J (f), see for example [Laz04]. Indeed, consider the sequence

⊕O(L−1)
f−→ OX −→ OX/J (f) −→ 0,

where f is the mapping (f1, . . . , fm). Let F be the kernel of the surjection f .
Then F ⊗ O(L⊗d2) is generated by its global sections if d2 is big enough by the
Cartan–Serre–Grothendieck theorem. Fixing generating sections we get a surjec-
tive map OX → F ⊗O(L⊗d2) and hence we have a surjection O(L−⊗d2) → F . If
we repeat this argument for the kernel of that map and so on we get a, possibly
non-terminating, exact complex

· · · f3−→ ⊕O(L−⊗d2)
f2−→ ⊕O(L−1)

f1=f−→ OX −→ OX/J(f) −→ 0,

where d2, d3, . . . are positive integers. For a Hermitian vector bundle S0 we get a
Hermitian complex

· · · f3−→ S0 ⊗ (⊕L−⊗d2)
f2−→ S0 ⊗ (⊕L−1)

f−→ S0, (14)

that is pointwise exact outside the zero set of J (f).
For J (g) we choose the Koszul complex, i.e., we let Ej be trivial line bundles

over X with global frames ej and set

E = M−1 ⊗ E1 ⊕ · · · ⊕M−1 ⊗ El.

Then the Koszul complex is the Hermitian complex

0 −→ En
δn−→ · · · δ2−→ E1

δ1−→ E0, (15)

where
Ek = ΛkE = M−k ⊗ Λk(E1 ⊕ · · · ⊕ E�).

The maps δk : Ek → Ek−1 are interior multiplication with the section g of E∗,
where g =

∑
gje∗j and e∗j is the dual frame. For details, see, e.g., Example 2.1 in

[AW15].
Denote the complex (14) by L• and by M• the Koszul complex associated to

J (g). For a Hermitian line bundle S let RH be the residue current from Section 2
associated to the complex

H• := (S ⊗M•♦M•♦ · · ·♦M•︸ ︷︷ ︸
r times

)♦L•. (16)

Then, according to (12) and (10), we can write

RH = RM ∧ UL − UM ∧RL,

where RL, UL, RM and RM are the currents associated to the complexes L• and
S ⊗M•♦ · · ·♦M•.
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The following proposition from [AW15] can be seen as a global version of the
first part of Theorem 2.3.

Proposition 3.1. Assume that (5) is a generically exact Hermitian complex over a
smooth variety X and that φ is a holomorphic section of the bundle E0. If R is
the associated residue current, Rφ = 0, and

Hk−1(X,O(Ek)) = 0, 1 ≤ k ≤ n+ 1,

then there is a global holomorphic section ψ of E1 such that f1ψ = φ.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Assume that φ ∈ J (f). Let H• be the complex (16) and
choose S0 as KX ⊗ L⊗s0 and S as M⊗s in (14) and (16), respectively. If we can
prove that RHφ = 0, then φ would be on the form (2) by Proposition 3.1 if all the
relevant cohomology groups vanish.

We are interested in the cohomology groups of the bundles Hk in H• for
1 ≤ k ≤ n + 1. Remember that Hk consists of a sum of tensor products of one
bundle from the complex (14) and r bundles from (15) tensored by S. The possible
bundles from (14) are

S0 ⊗ L−dj , 1 ≤ j ≤ k,

and the possible bundles from (15) are

M−j ⊗ Λj(E1 ⊕ · · · ⊕ E�), 1 ≤ j ≤ k.

Note that the exponent of M in H1 is s − r and that the exponent decreases by
at most 1 at every level in H•. In particular, since a tensor product of ample
bundles is ample we can use Kodaira’s vanishing theorem to see that the relevant
cohomology groups vanish if

s0 ≥ max
1≤j≤n+1

dj + 1 = dn+1 + 1

and

s ≥ n+ r.

Fix s0 and s so that all the cohomology groups vanish. It then remains to
show that there exists a constant μ such that φ annihilates the residue RH , given
that |φ| ≤ C|g|μ+r−1. Remember that RH splits into the sum

RM ∧ UL − UM ∧RL. (17)

Since φ is assumed to belong to J (f) we get that RLφ = 0 by the second part of
Theorem 2.3, and in view of (13) UM ∧RLφ = 0.

To see that the first term in (17) is annihilated we use that there exists a

modification X̃
π−→ X so that the pull back of UL locally can be expressed as a

finite sum of forms

π∗

(
smooth

h
π∗φ

)
,
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where h is a section to a line bundle L̃ over X̃ such that it locally is a monomial
in some local coordinates, see [AW07]. In light of (11) we hence get that locally
RM ∧ ULφ is the limit of the pushforward of a finite sum of terms on the form

π∗(∂̄χ(|g|2/ε2) ∧ (u1 ⊗ · · · ⊗ ur)) ∧ smooth

h
π∗φ, (18)

where every uj is associated to M•. Since X is compact the divisor of h is a finite
sum

∑
τjDj for positive integers τj and if τ =

∑
τj we get that h locally is a

monomial of degree less than or equal to τ at every point in X . The arguments
after expression (4.10) in the proof of Theorem 1.2 in [Szn12], which in turn is a
variant of the proof of the main theorem in [ASS10], now show that RM∧ULφ = 0,
locally at a point x, if μ ≥ min(�, n) + τ +1. Since n and τ do not depend on g or
x the conclusion of the theorem follows if

|φ| ≤ C|g|μ+r−1,

where μ ≥ min(�, n) + τ + 1. �

Remark 3.2. Note that if the fj :s do not have any common zeros, i.e., J (f) = J (1),
then τ = 0 and we may choose μ as min(�, n) + 1. If one carefully reads the proof
of Theorem 1.2 in [Szn12] one sees that μ = min(�, n) does the trick in this case.
We then get the result in Remark 1.5.

Remark 3.3. One can avoid the log resolution π in the proof above and follow
the lines in [VY16] where the authors instead use normalized blow-ups and global
Bernstein–Sato type formulas. In this way one can control the constant μ by the
order of the differential operator in the Bernstein–Sato formulas, see Theorem 4.1
and its proof in [VY16] for details.

4. The proof of Theorem 1.6

Let X be a smooth projective variety of dimension n, L a nef line bundle over X
and J ∈ OX an ideal sheaf. If Zj are the distinguished subvarieties in the sense
of Fulton–MacPherson of J , see [EL99], and rj are the coefficients associated to
the Zj :s, then ∑

rj degL Zj ≤ degL X, (19)

where

degZj =

∫
Zj

c1(L)
dimZj

is the L-degree of Zj . The geometric inequality (19) above is proved in [EL99,
Proposition 3.1]. Note that if L = O(d), then

degLX = dn degX, (20)

where degX denotes degO(1)X .

If gj is the d-homogenization of Gj , then for the ideal sheaf J (g) we asso-
ciate a number cG∞ defined to be the maximal codimension of the distinguished
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subvarieties Zj contained in the hyperplane at infinity. If there is no distinguished
subvariety at infinity we assign to cG∞ the value −∞. Using (20) and (19) we get
that if L = O(d), then

rj ≤ dc
G
∞ degX (21)

for rj associated to Zj contained in the hyperplane at infinity.

Proof of Theorem 1.6. Let V,X,Gj , Fj and Φ be as in Theorem 1.6. Let d′ be the
maximum of the degrees of all the polynomials Fj and let fj and gj be the d′ and
d-homogenization of Fj and Gj , respectively. Let

φ = zρ−degΦ
0 Φ(z0/z)z

degΦ
0 (22)

be the ρ-homogenization of Φ. We consider fj and gj as sections of O(d′) and

O(d) restricted to X . The bundle K−1
X ⊗ O(k) is ample for k large enough, say

k ≥ kX . By Remark 1.3 we may therefore use Theorem 1.1 on φ if ρ is big enough,
φ belongs to J (f) even at the hyperplane at infinity, and the inequality

|φ| ≤ C|g|μ+r−1 (23)

is valid on the whole of X . Let us first show that φ belongs to J (f) provided
that ρ is larger than some constant depending on F1, . . . , Fm and V . If Rf is the
residue associated to a locally free resolution of J (f), then by the second part of
Theorem 2.3 we only need to prove that Rf is annihilated by φ. Remember that
we may write

Rf = 1V R
f + 1X\V Rf , (24)

cf. Section 2. Since φ ∈ J (f) on V it follows from Theorem 2.3 that φ annihilates
1V R

f . We know that 1X\V Rf has support on the hyperplane at infinity so zν0
annihilates 1X\V Rf if ν is large enough, say larger than νf . This means that if ρ
in (22) is chosen so that

ρ ≥ deg Φ + νf , (25)

then Rf is annihilated by φ and thus φ ∈ J (f).
To make sure that (23) holds we consider the normalization

X̃
π−→ X,

of the blow-up of X along J (g). Let X∞ be the part of X that intersect the
hyperplane at infinity and write the exceptional divisor as W =

∑
rjWj . Then,

by definition, the distinguished subvarieties Zj are the images of Wj , and hence

rj ≤ dc
G
∞ degX

if Wj ⊆ X∞ by (21). The polynomial Φ satisfies (3) by hypothesis so we get that
π∗φ vanishes to order (μ+ r− 1)rj on Wj if πWj � X∞. If πWj ⊆ X∞, then π∗φ
vanishes to order ρ− deg Φ on Wj . If we choose ρ such that

ρ ≥ (μ+ r − 1)dc
G
∞ degX + degΦ, (26)

we get that π∗φ vanishes to order (μ + r − 1)rj on all Wj . This means that

|π∗φ| ≤ C|π∗g|μ+r−1 on the whole of X̃ and hence (23) holds.
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If also

ρ ≥ d(n+ r) + (d′ + kX)s0, (27)

where s0 is the same as the one in Theorem 1.1 we may apply that theorem on φ
with

M = O(d)
∣∣
X
, L = O(d′ + kX)

∣∣
X
.

To sum up, we may use Theorem 1.1 if ρ satisfies the inequalities (25), (26),
and (27). The only thing left is that we need to make sure that the sections αI,j

that we get after applying Theorem 1.1 have extensions to global sections of O(ρ).
However, that is true if ρ is larger than an absolute number η depending on X .
The theorem follows with κ1 = (d′ + kX)s0 and κ2 = νf + η. �

If V = Cn and hence X = Pn so that degX = 1 and moreover J(F ) = J(1)
and r = 1, then it follows from the proof of Theorem 1.1 and Theorem 1.6 that
κ2 = κ1 = 0. However, one can actually take κ1 = −n. To see this we just modify
the proof of Theorem 1.1 slightly. Instead of taking S = O(sd) we could take
S = O(s). In this case we get that s should be so large so that the cohomology
groups Hj(Pn,O(s − d(n + 1))) vanishes. From Kodaira’s vanishing theorem we
see that s ≥ d(n + 1) − n does the trick. Together with Remark 3.2 we get the
following effective version of the Briançon–Skoda theorem.

Theorem 4.1. For every set of polynomials G1, . . . , G� on Cn with degree less than
or equal to d the following holds: If Φ is a polynomial such that |Φ| ≤ C|G|min(�,n),
then there exist polynomials Pj such that

Φ = P1G1 + · · ·+ P�G�,

and the degree of PjGj is at most

max
(
min(�, n)dc

G
∞ + degΦ, (n+ 1)d− n

)
.

The theorem above was already proved in [AG11]. Note that if we also assume
that the common zero set is empty we almost get back the optimal degree estimate,
dmin(�,n), of Kollár and Jelonek, mentioned in Section 1. If we also assume that
G1, . . . , G� have no common zeros at infinity we do get back the classical theorem
of Macaulay, [Mac16]. That is, we may write

1 =
∑

PjGj ,

where the degree of PjGj is at most (n+ 1)d− n.
If we assume that degGj = 0, the common zero set of F1, . . . , Fm is a discrete

set, m = n, and that there are no zeros at the hyperplane at infinity, then we get
back the theorem of Max Noether, i.e., we may write

Φ =
∑

PjFj ,

where the degree of PjFj is at most degΦ, [Max73]. To see this we first note that
cG∞ = −∞ and that κ2 = 0. This means that degPjFj ≤ max(deg Φ, κ1). From
the proof of Theorem 1.6 we know that κ1 is a multiple of s0 from Theorem 1.1.
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In this case this means that κ1 is a number so that Hk−1(Pn,O(κ1 − dkd
′)) = 0,

where dk are the numbers in the proof of Theorem 1.1 and d′ is the maximum
degree of the Fj :s. Since J (f) is a complete intersection we may use the Koszul
complex as the exact sequence that defines the residue associated with J (f). In
particular, it has length n which means that we may choose κ1 as 0.

5. The non-smooth case

One can deduce an Artin–Rees type theorem even for singular varieties from the
smooth case.

Theorem 5.1. Let V ⊂ CN be a singular reduced algebraic variety of dimension n
and let F1, . . . , Fm be polynomials on V . Then there exist constants μ and ν such
that the following holds: Assume that G1, . . . , G� are polynomials of degree at most
d and that Φ is a polynomial such that

|Φ| ≤ |G|μ+ν (28)

and
Φ ∈ (F1, . . . , Fm)

on V . Then there exist polynomials Ai,j such that

Φ =
∑

Ai,jGiFj

on V and

deg(Aj,�GjF�) ≤ deg Φ + (ν + μ)dn degX + μdN +O(d).

The degree estimate in this result is of type O(dN ) and not as expected of
type O(dn). It is probably true that there is an estimate of type O(dn) but we
cannot prove any such result at this time.

Proof. Let F1 . . . , Fm be polynomials on V ⊂ CN , let X be the closure of V in
PN , and let H1, . . . , Ht cut out V , i.e., JV = (H1, . . . , Ht).

First, Theorem 1.6 implies that there exists a constant μ such that for every

set of polynomials G1, . . . , G� in CN and every polynomial Φ̂ in CN we have that

|Φ̂| ≤ |G|μ, Φ̂ ∈ (F1, . . . , Fm, H1, . . . , Ht) (29)

=⇒ Φ̂ =
∑

Aj,�GjF� +
∑

Bj,�GjH�,

where Aj,�, Bj,� are polynomials and

degAj,�GjF� ≤ deg Φ̂ + μdN +O(d).

Second, there is a Briançon–Skoda–Huneke constant ν on V , see [AW15,
Theorem 6.4], such that if Φ and G1, . . . , G� are as in Theorem 5.1 and (28) holds
on V , then

Φ =
∑
|I|=μ

aIG
I
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on V with

deg aIG
I ≤ deg Φ + (ν + μ)dn degX +O(d).

Consider

Φ̂ =
∑
|I|=μ

aIG
I

as a polynomial in CN . Then clearly |Φ̂| ≤ |G|μ in CN and moreover, Φ̂ = Φ on

V which means that Φ̂ ∈ (F1, . . . , Fm, H1, . . . , Ht). Therefore, by Theorem 1.6 as
above we get that

Φ̂ =
∑

Ai,jGiFj +
∑

Bi,jGiHj ,

with

deg(Ai,jGiFj) ≤ deg Φ̂ + μdN +O(d).

This means that

Φ =
∑

AijGiFj

on V with

deg(Ai,jGiFj) ≤ degΦ + (ν + μ)dn degX + μdN +O(d).

Note that the linear termO(d) is independent of Φ and the polynomialsG1, . . . , G�.
�
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contact à l’infini, Ann. Inst. Fourier 51 (2001), 707–744.

[Hun92] Huneke C., Uniform bounds in Noetherian rings, Invent. Math. 107 (1992),
203–223.

[Jel05] Jelonek Z., On the Effective Nullstellensatz, Invent. Math. 162 (2005), 1–17.

[Kol88] Kollár J., Sharp effective Nullstellensatz, J. American Math. Soc. 1 (1988), 963–
975.

[Laz04] Lazarsfeld R., Positivity in algebraic geometry I, Springer-Verlag 2004.

[Mac16] Macaulay F. S., The algebraic system of modular systems, Cambridge Univ.
Press 1916.

[May82] Mayer A., Mayr E., The complexity of the word problem for commutative semi-
groups and polynomial ideals, Adv. in math. 46 (1982), 305–329.
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Amoebas of Half-dimensional Varieties

Grigory Mikhalkin

To the memory of Mikael Passare

Abstract. An n-dimensional algebraic variety in (C×)2n covers its amoeba as
well as its coamoeba generically finite-to-one. We provide an upper bound for
the volume of these amoebas as well as for the number of points in the inverse
images under the amoeba and coamoeba maps.

1. Introduction

1.1. Definitions

Consider an n-dimensional algebraic variety V ⊂ (C×)2n.

Definition 1.1 (Gelfand–Kapranov–Zelevinsky [4]). The amoeba A of V is the
image

A = Log(V ) ⊂ R2n

of V under the coordinatewise logarithm map Log : (C×)2n → R2n,

Log(z1, . . . , z2n) = (log |z1|, . . . , log |z2n|).
The restriction Log |V is called the amoeba map for V .

Definition 1.2 (cf. Passare [15]). The coamoeba (or alga, cf. [3]) B of V is the image

B = Arg(V ) ⊂ (S1)2n

of V under the coordinatewise argument map Arg : (C×)2n → (R/2πZ)2n ≈
(S1)2n,

Arg(z1, . . . , z2n) = (arg(z1), . . . , arg(z2n)).

The restriction Arg |V is called the coamoeba map for V .
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For coamoebas it is often more convenient to use argument taken mod π
instead of mod 2π, (cf. [12]). Namely, we denote Tπ = R/πZ and for z ∈ C× we
define

argπ(z) = (arg(z)mod π) ∈ Tπ.

In other words, argπ is the composition of arg and the double covering R/2πZ→
Tπ. Then we define Argπ : (C×)2n → (R/πZ)2n = T 2n

π , and

Argπ(z1, . . . , z2n) = (argπ(z1), . . . , argπ(z2n)).

We call Bπ = Argπ(V ) ⊂ T 2n
π the rolled coamoeba of V .

We consider two antiholomorphic involutions

conj, conj′ : (C×)2n → (C×)2n

defined by

conj(z1, . . . , z2n) = (z̄1, . . . , z̄2n), conj′(z1, . . . , z2n) =
(

1

z̄1
, . . . ,

1

z̄2n

)
. (1.1)

To each n-dimensional variety V ⊂ (C×)2n we associate two integer numbers. Note
that if A,B ⊂ (C×)2n are two complex subvarieties of complimentary dimensions
then for an open dense subset of ε ∈ (C×)2n all intersection points from A ∩ εB
are transverse and their number does not depend on ε (as long as it is generic).
Here εB stands for the coordinatewise multiplication of B by ε in (C×)2n (in other
words for the multiplicative translation). We define the toric intersection number
A.B ∈ Z≥0 to be the number of points in #(A ∩ εB) for a generic ε (times the
corresponding multiplicities in the case when the corresponding components of A
or B are not simple, i.e., if A or B are not reduced). Clearly, A.B = B.A.

Definition 1.3. We define the conj-degree

α(V ) = V. conj(V ) ∈ Z≥0

and the conj′-degree
β(V ) = V. conj′(V ) ∈ Z≥0.

Definition 1.4. Let A and B be two smooth (differentiable) manifolds of the same
dimension and f : A → B be a smooth map. We say that f covers its image at
most m times if for any point p ∈ B which is regular for f the inverse image f−1(p)
consists of at most m points.

More generally, if A is a (not necessarily smooth) real or complex algebraic
variety (such as V ⊂ (C×)2n in the case when it is singular), it admits a stratifi-
cation into smooth manifolds. Consider a map f : A → B whose restriction f |Σ
to every stratum Σ ⊂ A is smooth. Similarly, we say that f covers its image at
most m times if for any point p ∈ B the inverse image f−1(p) consists of at most
m points unless p is a critical point for f |Σ, where Σ ⊂ A is a stratum of our
stratification.
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1.2. Statement of the results

The main results of this paper are contained in the following theorem.

Theorem 1. Let V ⊂ (C×)2n be an algebraic n-dimensional variety. Then the
amoeba A(V ) is covered by the map Log |V at most β(V ) times, while the rolled
coamoeba Bπ(V ) is covered by the map Argπ |V at most α(V ) times. Furthermore,

Vol(A) ≤ π2n

2
α(V ).

Note that the conventional (i.e., non-rolled) coamoeba B(V ) cannot be cov-
ered more than the rolled coamoeba. Thus it is also covered by the coamoeba map
at most α(V ) times.

If V is a complete intersection then we can easily compute the conj-degree α
as well as the conj′-degree β by means of the Bernstein–Kouchnirenko calculus as
follows.

Definition 1.5. We say that

V =
n⋂

j=1

Vj ⊂ (C×)2n

is a toric complete intersection of hypersurfaces V1, . . . , Vn ∈ (C×)2n if

V = lim
εj→0

n⋂
j=1

εjVj .

Here the limit is taken in the sense of Hausdorff metric on the subsets of (C×)2n

(with a group invariant metric) and εj. In particular, we require this limit to exist.

Proposition 2. Suppose that V =
n⋂

j=1

Vj ⊂ (C×)2n is a complete intersection of

hypersurfaces Vj with Newton polyhedra Δj ⊂ R2n, j = 1, . . . , n. Then we have

α(V ) = Vol(Δ1, . . . ,Δn,Δ1, . . . ,Δn)

and

β(V ) = Vol(−Δ1, . . . ,−Δn,Δ1, . . . ,Δn).

Here Vol stands for the mixed volume of 2n polyhedra in R2n.

Remark 1.6. Proposition 2 and Theorem 1 produce upper bounds for the volumes
of amoebas in the case of toric complete intersections in terms of the mixed volumes
of the corresponding Newton polyhedra. Such bounds were conjectured in the talk
by Mounir Nisse on the memorial conference for Mikael Passare in Summer 2013.
Finiteness of Vol(A) was observed in [9].

Proof. Note that conj(V ) is a also a toric complete intersection defined by the
polynomials with the same Newton polyhedra, but conjugate coefficients while
conj′(V ) is a toric complete intersection defined by the polynomials with −Δj
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as their Newton polyhedra as we need to make a substitution zj �→ 1
zj

before

conjugation. The proposition now follows from the Bezout theorem in the form of
Bernstein–Kouchnirenko [1], [6]. �

In particular, if V is a toric complete intersection with

Δ1 = · · · = Δn =

⎧⎨⎩(x1, . . . , x2n) ∈ R2n
≥0 |

2n∑
j=1

xj ≤ 1

⎫⎬⎭ (1.2)

then α(V ) = 1 and β(V ) = (2n)!
(n!)2 so Theorem 1 has the following corollary.

Corollary 3. If V = V̄ ∩ (C×)2n, and V̄ is a complete intersection of hypersurfaces
of degrees d1, . . . , dn in CP2n then A(V ) is covered by the amoeba map at most
(2n)!
(n!)2

n∏
j=1

d2j while Bπ(V ) (as well as B(V ) itself) is covered at most
n∏

j=1

d2j times by

the coamoeba map. Furthermore,

Vol(A) ≤ π2n

2

n∏
j=1

d2j .

2. Proof of the theorem

2.1. Bounds for the number of inverse images for the amoeba and coamoeba maps

In this section we prove the first part of Theorem 1 establishing bounds for the
number of inverse images of Log |V and Argπ |V .

Note that (Argπ |V )−1(0) = V ∩ (R×)2n ⊂ (C×)2n. We may compare this
with (Arg |V )−1(0) = V ∩ (R>0)

2n in the case of the conventional (not rolled)
coamoeba map. Similarly, for p ∈ T 2n

π = (R/πZ)2n we have

(Argπ |V )−1(p) = V ∩ eip(R×)2n ⊂ (C×)2n

where eip ∈ (C×)2n is obtained by coordinatewise exponentiating of ip. If p is a
regular value of Argπ |V then V intersects eip(R×)2n transversally. This means that
every stratum in a stratification of V into smooth manifolds intersects eip(R×)2n

transversally. By the dimension considerations, the top-dimensional stratum in-
tersects eip(R×)2n in finitely many points while smaller-dimensional strata are
disjoint from eip(R×)2n.

Furthermore, we have the inclusion

(Argπ |V )−1(p) = V ∩ eip(R×)2n ⊂ V ∩ e2ip conj(V ) (2.1)

as eip(R×)2n ⊂ (C×)2n is the invariant locus for the complex conjugation

(z1, . . . , z2n) �→ e2ip(z1, . . . , z2n)

in (C×)2n. Thus the cardinality of (Argπ |V )−1(p) for regular p is bounded by α(V )
as stated in Theorem 1.
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Similarly, for a regular value q ∈ R2n of Log |V we have a finite number of
points in (Log |V )−1(q) as well as the inclusion

(Log |V )−1(q) = V ∩ eqS ⊂ V ∩ e2q conj′(V ), (2.2)

where S ⊂ (C×)2n is the unit torus (the fixed point locus of conj′). Thus the car-
dinality of (Log |V )−1(q) for regular p is bounded by β(V ) as stated in Theorem 1.

2.2. Estimating the volume of amoeba

To finish the proof of Theorem 1 we consider the real-valued 2n-form on (C×)2n

ω =
2n∏
j=1

dxj −
2n∏
j=1

dyj . (2.3)

Here product stands for the exterior product of differential forms dxj = �dzj ,
dyj = Im dzj..

Lemma 4. We have ω|V ≡ 0.

Proof. We may write

ω =
1

22n

( 2n∏
j=1

(dzj + dz̄j)− (−1)n
2n∏
j=1

(dzj − dz̄j)

)
. (2.4)

The right-hand side of this expression is the sum of monomials of degree 2n in
dzj and dz̄k. Note that if n is odd then there are no monomials with odd number
of dz̄j. Similarly, if n is even then there are no monomials with even number of
dz̄j . Thus the right-hand side of (2.4) contains only monomials where either the
number of dzj is more than n or the number of dz̄k is more than n. Thus, ω must
vanish everywhere on a holomorphic n-variety V . �

We may consider the cardinality #(Log |V )−1 of the inverse image of the
amoeba map as a measurable function on R2n (since the critical locus of Log |V is
nowhere dense). Then

MultiVol(A) =
∫

R2n

#((Log |V )−1(x1, . . . , x2n))dx1 . . . dx2n

can be thought of as the volume of A taken with the multiplicities corresponding
to the covering by the amoeba map. Similarly,

MultiVol(Bπ) =

∫
T 2n
π

#((Argπ |V )−1(y1, . . . , y2n))dy1 . . . dy2n

can be thought of as the volume of Bπ taken with the multiplicities corresponding
to the covering by the coamoeba map.

Corollary 5. MultiVol(A) = MultiVol(Bπ).
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Proof. Let V+ ⊂ V be the open subset of V where the real 2n-form dx1 ∧ · · · ∧
dx2n is non-degenerate and defines the orientation that agrees with the complex
orientation of V . Let V− ⊂ V be the open set where these orientations disagree.
Note that by Lemma 4 the form dy1 ∧ · · · ∧ dy2n also agrees with the complex
orientation on V+ and disagrees on V−. We have

MultiVol(A) =
∫
V+

dx1 ∧ · · · ∧ dx2n −
∫
V−

dx1 ∧ · · · ∧ dx2n

while

MultiVol(Bπ) =

∫
V+

dy1 ∧ · · · ∧ dy2n −
∫
V−

dy1 ∧ · · · ∧ dy2n.

The two multivolumes are equal by Lemma 4. �

Lemma 6.

MultiVol(A) = MultiVol(Bπ) ≤ α(V )π2n.

Proof. By (2.1) the cardinality of (Argπ |V )−1(p) is not greater than α(V ) almost
everywhere on T 2n

π while Vol(T 2n
π ) = π2n. �

Note that Log : (C×)2n → R2n is a proper map (inverse images of compact
sets are compact) and thus Log |V : V → R2n is also proper. Since V and R2n

are oriented manifolds of the same dimension the map Log |V has a well-defined
degree. Recall that this degree is equal to the number of inverse images of a generic
point q ∈ R2n taken with the sign ±1 depending whether Log |V locally preserves
the orientation.

Corollary 7. The degree of the amoeba map is zero. We have

MultiVol(A) = 2

∫
V+

dx1 ∧ · · · ∧ dx2n = −2
∫
V−

dx1 ∧ · · · ∧ dx2n.

Furthermore, Vol(A) ≤ 1
2 MultiVol(A).

Proof. As the multivolume of V is bounded by Lemma 6 we have R2n � A �= ∅
and thus the degree of Log |V must be zero. Each generic point q ∈ A is covered
by V+ and V− the same number of times. �

Remark 2.1. Note that Corollary 7 immediately implies that β(V ) is always even
as it coincides with the degree of the amoeba map Log |V (this fact is also easy to
deduce from symmetry reasons). However, as the maps Arg |V and Argπ |V are not
proper, we cannot apply the same reasoning. Note, in particular, that the parity
of (Arg |V )−1(p) is different for different generic points of (R/2πZ)2n already in
the case when V ⊂ CP2 is a generic line (cf., e.g., [11]).

In the same time, (2.1) implies the parity of (Argπ |V )−1(p) coincides with
that of α(V ) for generic points p ∈ T 2n

π as non-real intersection points of e−ipV
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and eip conj(V ) come in pairs. Thus the rolled coamoeba map has a well-defined
degree mod 2 determined by α(V ).

Corollary 7 implies that

Vol(A) = Vol(Log(V+)) ≤
1

2
MultiVol(Bπ) ≤

π2n

2
α(V ).

This finishes the proof of Theorem 1.

3. Some remarks and open problems

3.1. Example: linear spaces in CP2n

Let L ⊂ CP2n be an n-dimensional linear subspace that is generic with respect to
the coordinate hyperplanes of CP2n. Then V = L ∩ (C×)2n can be presented as
a complete intersection of hyperplanes with the Newton polyhedra given by (1.2).
By Proposition 2 we have α(V ) = 1. By Remark 2.1 the set (Argπ |V )−1(p) must
consist of a single point for almost all values p ∈ T 2n

π , so the inequality of Lemma
6 turns into equality. We get the following proposition.

Proposition 8 (cf. [5], [14]). If V =
n⋂

j=1

Hj ⊂ (C×)2n is a transverse intersection

of n hyperplanes

Hj =

{
(z1, . . . , z2n) | aj0 +

2n∑
k=1

ajkzk = 0

}

with
n∏

j=1

2n∏
k=0

ajk �= 0 then

MultiVol(A) = MultiVol(Bπ) = Vol(Bπ) = π2n.

In the case of n = 1 we have β(V ) = 2. By Corollary 7 we have

Vol(A) = 1

2
MultiVol(A) = π2

2

in this case as in [17]. This equality was used by Passare [16] to give a new proof

of Euler’s formula ζ(2) = π2

6 . In the case n > 1 we have β(V ) > 2, so Proposition
8 only implies the inequalities

π2n(n!)2

(2n!)2
≤ Vol(A) ≤ π2n

2
, (3.1)

and Vol(A) might vary with V . Note that our linear subspace V ⊂ (C×)2n varies
in a (n2−n)-dimensional family if we identify subspaces that can be obtained from
each other by multiplication by ε ∈ (C×)2n (such multiplication corresponds to a
translation of amoeba and thus does not change its shape or its volume).

Problem 3.1. What are the maximal and minimal possible values of Vol(A)? It
would be interesting to solve this problem already for n = 2.
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3.2. MultiHarnack varieties in RP2n

Definition 3.2. We say that an n-dimensional variety V ⊂ (C×)2n is multiHar-
nack if

MultiVol(A) = π2nα(V ).

Let us recall the notion of simple Harnack curves in (C×)2 (introduced in
[10]). According to the maximal volume characterization given in [13] a curve
V ⊂ (C×)2 can be presented as V = εC for a simple Harnack curve C ⊂ (C×)2

and a multiplicative vector ε ∈ (C×)2 if and only if we have Vol(A) = π2

2 α(V ).

This class of curves was generalized to a larger class of curves in (C×)2, (also
called multiHarnack curves) by Lionel Lang ([8], [7]). Definition 3.2 gives the
multiHarnack curves in the case n = 1.

According to Proposition 8 all generic linear spaces in CP2n are multiHarnack.

Problem 3.3. Do there exist multiHarnack varieties of higher degree?

Note that once n > 1 being multiHarnack no longer implies being real even
after multiplication by ε ∈ (C×)2n already for linear spaces.

Remark 3.4. It might be instructive to compare Definition 3.2 against another
attempt to generalize the definition of simple Harnack curves from [10] to higher
dimensions. The survey [11] gave a definition of torically maximal hypersurfaces of
dimension n generalizing the Definition from [10]. However, it was recently shown
(see [2]) that all torically maximal hypersurfaces in RPn+1 for n > 1 have degree 1.

3.3. Foliation of ∂A
In this subsection we suppose for simplicity that V ⊂ (C×)2n is smooth (otherwise
we may restrict ourselves to the smooth part of V ). Let us look at the critical locus
C ⊂ V of the map Log |V and its image D = Log(C) ⊂ A ⊂ R2n (also called the
discriminant locus). We have the following generalization of Lemma 3 from [10].

Proposition 9. The set C consists of the points z ∈ V where V and z(R×)2n are
tangent.

As usual, z(R×)2n stands for the coordinatewise multiplication of (R×)2n by
z ∈ (C×)2n.

Proof. We have z ∈ C iff there are vectors in TzV tangent to the argument torus
Log−1(q), where q = Log(z). Any such vector multiplied by i gives a vector tangent
both to V and z(R×)2n, and vice versa. �

Definition 3.5. Let z ∈ C. Denote

F (z) = Tz(V ) ∩ Tz(z(R×)2n) ⊂ Tz((C×)2n).

It is a real vector subspace of the tangent space Tz((C×)2n). The rank of z ∈ C is
dimR F (p).
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We denote with Cr ⊂ C the locus of critical points of rank at least r. The fol-
lowing proposition follows immediately from the injectivity of dLog on the tangent
space to z(R×)2n.

Proposition 10. The subspace

(dLog)(F (z)) ⊂ Tq(R2n)

has dimension r for z ∈ Cr, q = Log(z).

Thus we get a preferred r-dimensional subspace in the tangent space of Log(z)
for each z ∈ Cr.

Let us choose a stratification of the discriminant locus D to k-dimensional
(non-closed) subvarieties Σk,

D =

2n−1⋃
k=0

Σk.

By a k-dimensional multidistribution on an open set U of a manifold we mean
specifying a finite set of k-dimensional subspaces of TqU for every q ∈ U so that
they depend on q smoothly.

Lemma 11. For a generic point q of Σ2n−k the set Log−1(q)∩Ck is finite and dis-
joint from Ck+1. Furthermore, for each point z ∈ Log−1(q)∩Ck the k-dimensional
space (dLog)(F (z)) is tangent to Σ2n−k. We have a k-dimensional multidistribu-
tion (perhaps empty) of an open dense subset of Σ2n−k.

Proof. Since dimΣk = k and the rank of d(Log |Ck+1
) is at most 2n−k−1, the im-

age Log(Ck+1) is nowhere dense in Σk. Also the critical values of Log |Ck∩Log−1(Σk)

(treated as a map from any of its smooth stratum to the open manifold Σ2n−k)
are nowhere dense in Σk. If (dLog)(F (z)) is not tangent to Σk � Log(F (z)) at a
regular point of Log |Ck

then the rank of d(Log |V ) is at least 2n − k + 1 which
contradicts to the definition of Ck. �

Suppose that A ⊂ R2n is non-degenerate, i.e., the interior of A is non-
empty. (This condition is equivalent to the condition C �= V , i.e., to the condition
that Log |V has a regular point.) Then the amoeba boundary ∂A is a (2n − 1)-
dimensional subset of D. Let us denote with ∂1A the subset of ∂A formed by
points q such that Log−1(q) ∩C consists of a single point.

Corollary 12. We have a 1-dimensional non-empty multifoliation on an open dense
set in ∂A. This is a genuine 1-dimensional foliation on an open dense set in ∂1A.

Remark 3.6. Since V is n-dimensional (over C) and z(R×)2n is 2n-dimensional
(over R) and totally real, the maximal dimension of F (z) is n.

Suppose that V = conjV , i.e., V is defined over R. Then we have RV =
V ∩ (R×)2n ⊂ Cn.
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3.4. Dimensions greater than a half

Suppose that V is a k-dimensional algebraic variety in (C×)n with k > n
2 . Then

the generic fibers of Log |V and Argπ |V are (2k − n)-dimensional varieties as V
is 2k-dimensional (over R) and Rn is n-dimensional. We may still present generic
fibers of Argπ |V and Log |V as real algebraic varieties in a way similar to the
half-dimensional case (where those fibers were points). For p ∈ T n

π and q ∈ Rn we
consider the antiholomorphic involutions conjp, conj

′
q : (C×)n → (C×)n defined by

conjp(z) = eip(conj(e−ipz)), conj′q(z) = eq(conj′(e−qz)), (3.2)

where conj and conj′ are defined as in (1.1):

conj(z1, . . . , zn) = (z̄1, . . . , z̄n), conj′(z1, . . . , zn) =
(

1

z̄1
, . . . ,

1

z̄n

)
.

Note that the fixed point set of conjp is Arg−1
π (p) = eip(R×)n while the fixed point

set of conj′q is Log−1(q). The following proposition is straightforward.

Proposition 13. The antiholomorphic involutions conjp, conj
′
q act on algebraic va-

rieties V ∩conjp(V ) and V ∩conj′q(V ) so that the fixed point sets are (Argπ |V )−1(p)

and (Log |V )−1(q).
Thus we may think of the fibers of Argπ |V and Log |V as real algebraic

varieties whose complexification is V ∩ conjp(V ) and V ∩ conj′q(V ). For regular
fibers these varieties are non-singular (2k − n)-dimensional varieties near their
real points.

Example 3.7. Consider the plane

V = {(x, y, z) ∈ (C×)3 | 1 + x+ y + z = 0} (3.3)

in (C×)3. Both V and conjp(V ) are planes, so fibers of Argπ |V are intersections

of two real planes in (R×)3 after a multiplicative translation by eip. For generic
fibers these two planes are transversal, so their intersection is a line. For special
fibers these planes might be parallel planes, or two copies of the same plane. These
special cases correspond to empty or two-dimensional fibers of Arg π|V .

The surface conj′q(V ) is the image of a plane under the Cremona transforma-

tion x �→ 1
x , y �→

1
y , z �→

1
z . For a generic q the intersection of V and conj′q(V ) is a

smooth elliptic curve. Its real locus may be empty, or consist of one or two circles.
All three cases are realized as generic fibers of Log |V for V given by (3.3).
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Priložen., 9(3):1–4, 1975.
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A log Canonical Threshold Test

Alexander Rashkovskii

To the memory of Mikael Passare

Abstract. In terms of log canonical threshold, we characterize plurisubhar-
monic functions with logarithmic asymptotical behaviour.

1. Introduction and statement of results

Let u be a plurisubharmonic function on a neighborhood of the origin of Cn. Its
log canonical threshold at 0,

cu = sup{c > 0 : e−c u ∈ L2
loc(0)},

is an important characteristic of asymptotical behavior of u at 0. The log canonical
threshold c(I) of a local ideal in I ⊂ O0 can be defined as cu for the function
u = log |F |, where F = (F1, . . . , Fp) with {Fj} generators of I. (Surprisingly,
the latter notion was introduced later than its plurisubharmonic counterpart.)
For general results on log canonical thresholds, including their computation and
applications, we refer to [9], [17], [18].

A classical result due to Skoda [23] states that

cu ≥ ν−1
u , (1)

where νu is the Lelong number of u at 0. A more recent result is due to Demailly
[8]: if 0 is an isolated point of u−1(−∞), then

cu ≥ Fn(u) := n en(u)
−1/n. (2)

Here ek(u) = (ddcu)k ∧ (ddc log |z|)n−k(0) are the Lelong numbers of the currents
(ddcu)k at 0 for k = 1, . . . , n, and d = ∂+∂̄, dc = (∂−∂̄)/2πi; note that e1(u) = νu.
This was extended by Zeriahi [24] to all plurisubharmonic functions with a well-
defined Monge–Ampère operator near 0.

In [20], inequality (2) was used to obtain the ‘intermediate’ bounds

cu ≥ Fk(u) := k ek(u)
−1/k, 1 ≤ k ≤ l, (3)
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l being the codimension of an analytic set A containing the unbounded locus L(u)
of u. None of the bounds for different values of k can be deduced from the others.

It is worth mentioning that relation (2) was proved in [8] on the base of a
corresponding result for ideals1 obtained in [6]:

c(I) ≥ n e(I)−1/n, (4)

where e(I) is the Hilbert–Samuel multiplicity of the (zero-dimensional) ideal I.
Furthermore, it was shown in [6] that an equality in (4) holds if and only if the in-
tegral closure of I is a power of the maximal ideal m0. Accordingly, the question of
equality in (2) has been raised in [8] where it was conjectured that, similarly to the
case of ideals, the extremal functions would be those with logarithmic singularity
at 0.

The conjecture was proved in [21] where it was shown that

cu = Fn(u) (5)

if and only if the greenification gu of u has the asymptotics gu(z) = e1(u) log |z|+
O(1) as z → 0. Here the function gu is the upper semicontinuous regularization
of the upper envelope of all negative plurisubharmonic functions v on a bounded
neighborhood D of 0, such that v ≤ u + O(1) near 0, see [19]. Note that if u =
log |F |, then gu = u+O(1) [22, Prop. 5.1].

The equality situation in (1) (i.e., in (3) with k = 1) was first treated in [5]
and [11] for the dimension n = 2: the functions satisfying cu = ν−1

u were proved
in that case to be of the form u = c log |f | + v, where f is an analytic function,
regular at 0, and v is a plurisubharmonic function with zero Lelong number at 0.
In [16], the result was extended to any n. This was achieved by a careful slicing
technique reducing the general case to the aforementioned two-dimensional result.
In addition, it used a regularization result for plurisubharmonic functions with
keeping the log canonical threshold (see Lemma 1 below).

Concerning inequalities (3), it was shown in [20] that the only multi-circled
plurisubharmonic functions u(z) = u(|z1|, . . . , |zn|) satisfying cu = Fl(u) are essen-
tially of the form cmaxj∈J log |zj| for an l-tuple J ⊂ {1, . . . , n}. Here we address
the question on equalities in the bounds (3) in the general case.

We present an approach that is different from that of [16] and which actually
works also for the ‘intermediate’ equality situations. It is based on a recent result
of Demailly and Pham Hoang Hiep [10]: if the complex Monge–Ampère operator
(ddcu)n is well defined near 0 and e1(u) > 0, then

cu ≥ En(u) :=
∑

1≤j≤n

ej−1(u)

ej(u)
,

where e0(u) = 1. In particular, this implies (2) and sharpens, for the case of
functions with a well-defined Monge–Ampère operator, inequality (1). Moreover,

1A direct proof was given later in [2].
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it is this bound that was used in [21] to prove the conjecture from [8] on functions
satisfying (5).

Given 1 < l ≤ n, let El be the collection of all plurisubharmonic functions u
whose unbounded loci L(u) have zero 2(n− l+1)-dimensional Hausdorff measure.
For such a function u, the currents (ddcu)k are well defined for all k ≤ l [12].
In particular, u ∈ El if L(u) lies in an analytic variety of codimension at least l.
Furthermore, we set E1 to be just the collection of all plurisubharmonic functions
near 0.

Let cu(z) denote the log canonical threshold of u at z and, similarly, let
ek(u, z) denote the Lelong number of (ddcu)k at z; in our notation, cu(0) = cu
and ek(u, 0) = ek(u). As is known, the sets {z : cu(z) ≤ c} are analytic for all
c > 0. Our first result describes, in particular, regularity of such a set for c = cu,
provided cu = Fl(u).

For u ∈ El we set

Ek(u) =
∑

1≤j≤k

ej−1(u)

ej(u)
, k ≤ l.

Note that, by the arithmetic-geometric mean inequality, we have

Ek(u) ≥ Fk(u), 1 ≤ k ≤ l. (6)

Theorem 1. Let u ∈ El for some l ≥ 1, and let e1(u) > 0. Then

(i) cu ≥ Ek(u) for all k ≤ l;
(ii) cu ≥ Fk(u) for all k ≤ l;
(iii) if u satisfies cu = Fk(u) for some k ≤ l, then k = l and there is a neighborhood

V of the origin such that the set A = {z : cu(z) ≤ cu} is an l-codimensional
manifold in V . Furthermore, A = {z : el(u, z) ≥ el(u)}.

For l = 1, assertion (iii) re-proves the aforementioned result from [16]. Let
A = {z1 = 0}, then the function u− cu log |z1| is locally bounded from above near
A and thus extends to a plurisubharmonic function v; evidently, νv = 0. On the
other hand, all the functions u = cu log |z1|+ v with νv = 0 satisfy cu = νu.

When l > 1, there are functions u such that {z : cu(z) ≤ cu} is an
l-codimensional manifold, but cu > Fl(u). Indeed, let us take u(z1, z2, z3) =
max{log |z1|, 2 log |z2|} ∈ E2. Then A = {z ∈ Cn : cu(z) ≤ cu} = {z1 = z2 = 0},
while F2(u) =

√
2 < 3/2 = cu. (Note that cu = E2(u) in this case.)

Furthermore, the same example shows that the equality (ddcu)2 = δ2 [z1 =
z2 = 0] does not imply u = δ log |(z1, z2)|+ v with plurisubharmonic v and νv = 0.

Therefore, in the higher-dimensional situation we need to deduce a more
precise information on asymptotical behavior of u near A. By analogy with the
case l = n, it is tempting to make the following conjecture.

Let u ∈ El, then
cu = Fl(u) (7)
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if and only if, for a choice of coordinates z = (z′, z′′) ∈ Cl×Cn−l, the greenification
gu of u near 0 satisfies

gu = e1(u) log |z′|+O(1) as z → 0.

The ‘if’ direction is obvious in view of cu = cgu [21] and the trivial fact
clog |z′| = l, however the reverse statement might be difficult to prove even in the
case l = 1 because that would imply non-existence of a plurisubharmonic function
φ with e1(φ) = 0 and en(φ) > 0, which is a known open problem. Namely, let such
a function φ exist, and set u = φ + log |z1|. Then 1 = νu ≤ cu ≤ clog |z1| = 1. On
the other hand, for D = Dn, gu = gφ + log |z1| and the relation en(φ) > 0 implies
gφ �= 0 and thus lim inf(gu − log |z1|) = −∞ when z → 0.

What we can prove is the following, slightly weaker statement.

Theorem 2. If u ∈ El satisfies (7), then ek(u) = e1(u)
k for all k ≤ l and, for

a choice of coordinates z = (z′, z′′) ∈ Cl × Cn−l, the function u satisfies u ≤
e1(u) log |z′|+O(1) near 0, while the greenification guN of uN = max{u,N log |z|}
with any N ≥ e1(u) satisfies

guN = max{e1(u) log |z′|, N log |z′′|}+O(1), z → 0. (8)

Let us fix a neighborhood D ⊂ V of 0 to be the product of unit balls in Cl

and Cn−l and consider the greenifications with respect to D. Then the functions
guN are equal to max{e1(u) log |z′|, N log |z′′|} and they converge, as N → ∞, to
e1(u) log |z′| ≥ gu.

Denote, for any bounded neighborhood D of 0 and any u plurisubharmonic
in D,

g̃u = lim
N→∞

guN .

where uN = max{u,N log |z|}. Evidently, g̃u ≥ gu.

Theorem 3. Let u ∈ El be such that g̃u = gu. Then it satisfies (7) if and only if,
for a choice of coordinates z = (z′, z′′) ∈ Cl × Cn−l, gu = e1(u) log |z′| + O(1) as
z → 0.

In particular, this is true for u = α log |F |+O(1), where F is a holomorphic
mapping, F (0) = 0. Moreover, in this case we also have u = e1(u) log |z′|+O(1).

The statement on α log |F | can be reformulated in algebraic terms as follows.
Let I be an ideal of the local ring O0, and let V (I) be its variety: V (I) = {z :
f(z) = 0 ∀f ∈ I}. If codim0V (I) ≥ k, then the mixed Rees multiplicity ek(I,m0)
of k copies of I and n − k copies of the maximal ideal m0 is well defined [4]. If
k = n, then, as shown in [8], the Hilbert–Samuel multiplicity e(I) of I equals
en(u), where, as before, u = log |F | for generators {Fp} of I. By the polarization
formula, ek(I,m0) = ek(u) for all k; by a limit transition, this holds true for all
k ≤ l if codim0V (I) = l.

Bounds (3) specify for this case as

c(I) ≥ k ek(I,m0)
−1/k, 1 ≤ k ≤ l.
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From Theorems 1 and 3 we thus derive

Corollary 1. If codim0V (I) = l and c(I) = k ek(I,m0)
−1/k for some k ≤ l, then

k = l, V (I) is an l-codimensional hypersurface, regular at 0, and there exists an
ideal n0 generated by coordinate (smooth transversal) germs f1, . . . , fl ∈ O0 such
that I = ns0 for some s ∈ Z+.

2. Proofs

In what follows, we will use the mentioned regularization result by Qi’an Guan
and Xiangyu Zhou. Note that its proof rests on the strong openness conjecture
from [9], proved in [13] and [14], see also [3] and [15].

Lemma 1 ([16, Prop. 2.1]). Let u be a plurisubharmonic function near the origin,
cu = 1. Then there exists a plurisubharmonic function ũ ≥ u on a neighborhood
of 0 such that e−2u − e−2ũ is integrable on V and ũ is locally bounded on V \ {z :
cu(z) ≤ 1}.

We will also refer to the following uniqueness theorem.

Lemma 2 ([19, Lem. 6.3]2 and [21, Lem. 1.1]). If u and v are two plurisubharmonic
functions with isolated singularity at 0, such that u ≤ v+O(1) near 0 and en(u) =
en(v), then their greenifications coincide.

Proof of Theorem 1. Since all the functionals u �→ cu, Ek(u), Fk(u) are positive
homogeneous of degree −1, we can always assume cu = 1.

Let ũ be the function from Lemma 1. Its unbounded locus L(ũ) is contained in
the analytic variety A = {z : cu(z) ≤ 1}. Since A ⊂ L(u) and u ∈ El, codimA ≥ l.

For ũ, statement (i) is proved in [21, Thm. 1.4]. Note that the relation u ≤ ũ
implies ek(u) ≥ ek(ũ) for all k ≤ l and thus El(u) ≤ El(ũ) [10]. Since cu = cũ, this
gives us (i).

Assertion (ii) follows from (i) by (6).

To prove (iii), we first note that (i) implies cu ≥ El(u) > Ek(u) ≥ Fk(u) for
any k < l, so we cannot have cu = Fk(u) unless k = l.

Next, if the analytic variety A has codimension m > l, then ũ ∈ Em, so
cu = cũ ≥ Em(ũ) > El(ũ) ≥ El(u) ≥ Fl(u), which contradicts the assumption, so
codimA = l.

Now we prove that 0 is a regular point of the variety A. By Siu’s representa-
tion formula,

(ddcu)l =
∑

pj [Aj ] +R

on a neighborhood V of 0, where pj > 0, [Aj ] are integration currents along l-
codimensional analytic varieties containing 0, and R is a closed positive current
such that for any a > 0 the analytic variety {z ∈ V : ν(R, z) ≥ a} has codimension

2For the general case of non-isolated singularities, see [1, Thm. 3.7]
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strictly greater than l. If ν(R, 0) > 0, then for almost all points z ∈ A we have
el(u, z) < el(u). This implies, by (ii), cu(z) > cu for all such points z, which is
impossible. The same argument shows that the collection {Aj} consists of at most
one variety and 0 is its regular point. �

Proof of Theorem 2. By (6) and Theorem 1(i), the condition cu = Fl(u) implies
El(u) = Fl(u). Therefore, by the arithmetic-geometric mean theorem, we get the
relations

ek−1(u)

ek(u)
=

ej−1(u)

ej(u)

for any k, j ≤ l, which gives us ek(u) = [e1(u)]
k for all k ≤ l.

Since relation (8) for e1(u) = 0 is obvious (in this case guN ≡ 0), we can
assume e1(u) = 1.

Note that for any z, we have ek(u, z) ≥ [e1(u, z)]
k. As follows from the proof

of (iii), the relation cu = Fl(u) implies then, on a neighborhood V of 0,

A ∩ V = {z ∈ V : cu(z) ≤ 1} = {z ∈ V : Fl(u, z) ≤ 1} = {z ∈ V : ek(u, z) ≥ 1}
for all k ≤ l. Moreover, we have ek(u, z) = e1(u, z)

k = 1 for almost all z ∈ A ∩ V .
Let us choose, according to Theorem 1, a coordinate system such that A∩V =

{z ∈ V : zk = 0, 1 ≤ k ≤ l}. Denote v(z) = log |z′|, z = (z′, z′′) ∈ Cl×Cn−l, then
A ∩ V = {z : ek(u, z) ≥ ek(v, z)}, with equalities almost everywhere.

In particular, we have u(z) ≤ log |z − (0, ζ ′′)| + C(ζ ′′) as z → (0, ζ′′) for all
z ∈ Cn and ζ′′ ∈ Cn−l that are close enough to 0. Assuming u(z) ≤ 0 for all z
with max |zk| < 2, we get u(z) ≤ log |z− (0, ζ′′)| for all z ∈ V and ζ′′ ∈ Cn−l with
(0, ζ′′) ∈ V . By choosing ζ′′ = z′′ this gives us u(z) ≤ v(z) on V .

Let uN = max{u,N log |z|} and vN = max{v,N log |z|}. Then uN ≤ vN ,
while for N ≥ 1 we get, by Demailly’s comparison theorem for the Lelong num-
bers [7],

en(uN) ≤ (ddcu)l ∧ (ddcN log |z|)n−l(0) = Nn−lel(u) = Nn−l = en(vN ).

By Lemma 2, guN = gvN . �

Proof of Theorem 3. The only part to prove is the one concerning u = α log |F |+
O(1); we assume α = 1. As follows from Theorem 2, one can choose coordinates
such that the zero set ZF of F is {z : z′ = 0} ∩ V ⊂ {0}×Cn−l. Observe that for
such a function u we have ek(u, z) = e1(u)

k for all z ∈ ZF near 0.
Let I be the ideal generated by the components of the mapping F . Then, as

mentioned in Section 1, el(u) equals el(I,m0), the mixed multiplicity of l copies of
the ideal I and n−l copies of the maximal ideal m0. By [4, Prop. 2.9], el(I,m0) can
be computed as the multiplicity e(J ) of the ideal J generated by generic functions
Ψ1, . . . ,Ψl ∈ I and ξ1, . . . , ξn−l ∈ m0. Since e(J ) = el(w), where w = log |Ψ|, we
have el(u) = el(w).

Let now

v = e1(u) log |z′|, wN = max{w,N log |z′′|}, and vN = max{v,N log |z′′|}.
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Since w ≤ log |F | + O(1), we have from Theorem 2 the inequality w ≤ v + O(1)
and thus wN ≤ vN + O(1). Note that the mapping Ψ satisfies the 
Lojasiewicz
inequality |Ψ0(z)| ≥ |z′|M near 0 for some M > 0. Therefore, for sufficiently big
N we have wN = w′

N = max{w,N log |z|}. Then, as in the proof of Theorem 2,
we compute

en(wN ) = en(w
′
N ) ≤ (ddcw)l ∧ (ddcN log |z|)n−l(0)

= Nn−lel(w) = Nn−lel(u) = en(vN ),

which, by Lemma 2, implies gwN = gvN for the greenifications on a bounded
neighborhood D of 0.

We can assume D = {|z′| < 1}×{|z′′| < 1}, then gvN = vN , while gwN ≤ wN

because the latter function is maximal on D and nonnegative on ∂D. Letting
N →∞ we get w ≥ v.

Since w ≤ u + O(1), we have, in particular, u ≥ v + O(1), which, in view of
Theorem 2, completes the proof. �
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Root-counting Measures of Jacobi Polynomials
and Topological Types and Critical Geodesics
of Related Quadratic Differentials

Boris Shapiro and Alexander Solynin

To Mikael Passare, in memoriam

Abstract. Two main topics of this paper are asymptotic distributions of zeros
of Jacobi polynomials and topology of critical trajectories of related quadratic
differentials. First, we will discuss recent developments and some new results
concerning the limit of the root-counting measures of these polynomials. In
particular, we will show that the support of the limit measure sits on the criti-

cal trajectories of a quadratic differential of the form Q(z) dz2 = az2+bz+c
(z2−1)2

dz2.

Then we will give a complete classification, in terms of complex parameters
a, b, and c, of possible topological types of critical geodesics for the quadratic
differential of this type.

Mathematics Subject Classification (2010). 30C15, 31A35, 34E05.

Keywords. Jacobi polynomials, asymptotic root-counting measure, quadratic
differentials, critical trajectories.

1. Introduction: From Jacobi polynomials to quadratic differentials

Two main themes of this work are asymptotic behavior of zeros of certain poly-
nomials and topological properties of related quadratic differentials. The study of
asymptotic root distributions of hypergeometric, Jacobi, and Laguerre polynomi-
als with variable real parameters, which grow linearly with degree, became a rather
hot topic in recent publications, which attracted attention of many authors [15],
[16], [17], [18], [19], [23], [25], [26], [28]. In this paper, we survey some known results
in this area and present some new results keeping focus on Jacobi polynomials.
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Recall that the Jacobi polynomial P
(α,β)
n (z) of degree n with complex pa-

rameters α, β is defined by

P (α,β)
n (z) = 2−n

n∑
k=0

(
n+ α

n− k

)(
n+ β

k

)
(z − 1)k(z + 1)n−k,

where
(
γ
k

)
= γ(γ−1)...(γ−k+1)

k! with a non-negative integer k and an arbitrary com-

plex number γ. Equivalently, P
(α,β)
n (z) can be defined by the well-known Rodrigues

formula:

P (α,β)
n (z) =

1

2nn!
(z − 1)−α(z + 1)−β

(
d

dz

)n

[(z − 1)n+α(z + 1)n+β].

The following statement, which can be found, for instance, in [25, Proposition 2],
gives an important characterization of Jacobi polynomials as solutions of second-
order differential equation.

Proposition 1. For arbitrary fixed complex numbers α and β, the differential equa-
tion

(1− z2)y′′ + (β − α− (α+ β + 2)z)y′ + λy = 0

with a spectral parameter λ has a non-trivial polynomial solution of degree n if and
only if λ = n(n+α+ β+1). This polynomial solution is unique (up to a constant

factor) and coincides with P
(α,β)
n (z).

Working with root distributions of polynomials, it is convenient to use root-
counting measures and their Cauchy transforms, which are defined as follows.

Definition 1. For a polynomial p(z) of degree n with (not necessarily distinct)
roots ξ1, . . . , ξn, its root-counting measure μp is defined as

μp =
1

n

n∑
i=1

δξi ,

where δξ is the Dirac measure supported at ξ.

Definition 2. Given a finite complex-valued Borel measure μ compactly supported
in C, its Cauchy transform Cμ is defined as

Cμ(z) =
∫
C

dμ(ξ)

z − ξ
. (1.1)

and its logarithmic potential uμ is defined as

uμ(z) =

∫
C

log |z − ξ|dμ(ξ).

We note that the integral in (1.1) converges for all z, for which the Newtonian

potential U|μ|(z) =
∫
C

d|μ|(ξ)
|ξ−z| of μ is finite, see, e.g., [20, Ch. 2].

In case when μ = μp is the root-counting measure of a polynomial p(z), we
will write Cp instead of Cμp . It follows from Definitions 1 and 2 that the Cauchy
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transform Cp(z) of the root-counting measure of a monic polynomial p(z) of degree
n coincides with the normalized logarithmic derivative of p(z); i.e.,

Cp(z) =
p′(z)
np(z)

=

∫
C

dμp(ξ)

z − ξ
, (1.2)

and its logarithmic potential up(z) is given by the formula:

up(z) =
1

n
log |p(z)| =

∫
C

log |z − ξ|dμp(ξ). (1.3)

Let {pn(z)} be a sequence of Jacobi polynomials pn(z) = P
(αn,βn)
n (z) and let

{μn} be the corresponding sequence of their root-counting measures. The main
question we are going to address in this paper is the following:

Problem 1. Assuming that the sequence {μn} weakly converges to a measure μ
compactly supported in C, what can be said about properties of the support of
the measure μ and about its Cauchy transform Cμ?

Regarding the Cauchy transform Cμ, our main result in this direction is the
following theorem.

Theorem 1. Suppose that a sequence {pn(z)} of Jacobi polynomials

pn(z) = P (αn,βn)
n (z)

satisfies conditions:

(a) the limits A = limn→∞ αn

n and B = limn→∞ βn

n exist, and 1 +A+B �= 0;
(b) the sequence {μn} of the root-counting measures converges weakly to a prob-

ability measure μ, which is compactly supported in C.
Then the Cauchy transform Cμ of the limit measure μ satisfies almost everywhere
in C the quadratic equation:

(1 − z2)C2μ − ((A+B)z +A−B)Cμ +A+B + 1 = 0. (1.4)

The proof of Theorem 1 given in Section 2 consists of several steps. Our
arguments in Section 2 are similar to the arguments used in a number of earlier
papers on root asymptotics of orthogonal polynomials.

Equation (1.4) of Theorem 1 implies that the support of the limit measure
μ has a remarkable structure described by Theorem 2 below. And this is exactly
the point where quadratic differentials, which are the second main theme of this
paper, enter into the play.

Theorem 2. In notation of Theorem 1, the support of μ consists of finitely many
trajectories of the quadratic differential

Q(z) dz2 = − (A+B + 2)2z2 + 2(A2 −B2)z + (A−B)2 − 4(A+B + 1)

(z − 1)2(z + 1)2
dz2

and their end points.



372 B. Shapiro and A. Solynin

Thus, to understand geometrical structure of the support of μ we have to
study geometry of critical trajectories, or more generally critical geodesics of the
quadratic differential Q(z) dz2 of Theorem 1. We will consider a slightly more gen-
eral family of quadratic differentials Q(z; a, b, c) dz2 depending on three complex
parameters a, b, c ∈ C, a �= 0, where

Q(z; a, b, c) dz2 =
az2 + bz + c

(z − 1)2(z + 1)2
dz2. (1.5)

It is well known that quadratic differentials appear in many areas of mathe-
matics and mathematical physics such as moduli spaces of curves, univalent func-
tions, asymptotic theory of linear ordinary differential equations, spectral theory of
Schrödinger equations, orthogonal polynomials, etc. Postponing necessary defini-
tions and basic properties of quadratic differentials till Section 3, we recall here that
any meromorphic quadratic differential Q(z) dz2 defines the so-calledQ-metric and
therefore it defines Q-geodesics in appropriate classes of curves. Motivated by the
fact that the family of quadratic differentials (1.5) naturally appears in the study
of the root asymptotics for sequences of Jacobi polynomials and is one of very few
examples allowing detailed and explicit investigation in terms of its coefficients,
we will consider the following two basic questions:

1) How many simple critical Q-geodesics may exist for a quadratic differential
Q(z) dz2 of the form (1.5)?

2) For given a, b, c ∈ C, a �= 0, describe topology of all simple critical Q-
geodesics.

A complete description of topological structure of trajectories of quadratic
differentials (1.5) which, in particular, answers questions 1) and 2), is given by
lengthy Theorem 5 stated in Section 9.

The rest of the paper consists of two parts and is structured as follows. The
first part, which is the area of expertise of the first author, includes Sections 2, 4,
and 5. Section 2 contains the proof of Theorem 1 and related results. The ma-
terial presented in Section 4 is mostly borrowed from a recent paper [12] of the
first author. It contains some general results connecting signed measures, whose
Cauchy transforms satisfy quadratic equations, and related quadratic differentials
in C. In particular, these results imply Theorem 2 as a special case. In Section 5,
we formulate a number of general conjectures about the type of convergence of
root-counting measures of polynomial solutions of a special class of linear differen-
tial equations with polynomial coefficients, which includes Riemann’s differential
equation.

Remaining sections constitute the second part, which is the area of expertise
of the second author. In Section 3, we recall basic information about quadratic
differentials, their critical trajectories and geodesics. This information is needed
for presentation of our results in Sections 6–10. In Section 6, we describe possible
domain configurations for the quadratic differentials (1.5). Then, in Section 7,
we describe possible topological types of the structure of critical trajectories of



Root-counting Measures and Quadratic Differentials 373

quadratic differentials of the form (1.5). Finally in Sections 8–10, we identify sets
of parameters corresponding to each topological type. The latter allows us to
answer some related questions.

We note here that our main proofs presented in Sections 6–10 are geometrical
based on general facts of the theory of quadratic differentials. Thus, our methods
can be easily adapted to study trajectory structure of many quadratic differentials
other then quadratic differential (1.5).

Section 11 is our Figures Zoo, it contains many figures illustrating our results
presented in Sections 6–10.

2. Proof of Theorem 1

To settle Theorem 1 we will need several auxiliary statements. Lemma 1 below can
be found as Theorem 7.6 of [3] and apparently was originally proven by F. Riesz.

Lemma 1. If a sequence {μn} of Borel probability measures in C weakly converges
to a probability measure μ with a compact support, then the sequence {Cμn(z)} of its
Cauchy transforms converges to Cμ(z) in L1

loc. Moreover there exists a subsequence
of {Cμn(z)} which converges to Cμ(z) pointwise almost everywhere.

The next result is recently obtained by the first author jointly with R. Bøgvad
and D. Khavinsion, see Theorem 1 of [13] and has an independent interest.

Proposition 2. Let {pm} be any sequence of polynomials satisfying the following
conditions:
1. nm := deg pm →∞ as m→∞,
2. almost all roots of all pm lie in a bounded convex open Ω ⊂ C when n →
∞. (More exactly, if Inm denotes the number of roots of pm counted with
multiplicities which are located in Ω, then limm→∞ Inm

nm
= 1), then for any

ε > 0,

lim
m→∞

In′
m(ε)

nm
= 1,

where In′
m(ε) is the number of roots of p′m counted with multiplicities which

are located inside Ω(ε), the latter set being the ε-neighborhood of Ω in C.

The next statement is a strengthening of Lemma 8 of [5] based on Proposi-
tion 2.

Lemma 2. Let {pm} be any sequence of polynomials satisfying the following con-
ditions:
1. nm := deg pm →∞ as m→∞,
2. the sequence {μm} (resp. {μ′

m}) of the root-counting measures of {pm} (resp.
{p′m}) weakly converges to compactly supported measures μ (resp μ′).
Then u and u′ satisfy the inequality u ≥ u′ with equality on the unbounded
component of C \ supp(μ). Here u (resp. u′) is the logarithmic potential of
the limiting measure μ (resp. μ′).
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Proof. Without loss of generality, we can assume that all pm are monic. Let K be
a compact convex set containing almost all the zeros of the sequences {pm} and

{p′m}, i.e., limm→∞
Inm(K)

nm
= limm→∞

In′
m(K)
nm

= 1. By (1.3) we have

u(z) = lim
m→∞

1

nm
log |pm(z)|

and

u′(z) = lim
m→∞

1

nm − 1
log

∣∣∣∣p′m(z)

nm

∣∣∣∣ = lim
m→∞

1

nm
log

∣∣∣∣p′m(z)

nm

∣∣∣∣
with convergence in L1

loc. Hence by (1.2),

u′(z)− u(z) = lim
m→∞

1

nm
log

∣∣∣∣ p′m(z)

nmpm(z)

∣∣∣∣ = lim
m→∞

1

nm
log

∣∣∣∣∫ dμm(ζ)

z − ζ

∣∣∣∣ . (2.1)

Now, if φ is a positive compactly supported test function, then∫
φ(z)(u′(z)− u(z)) dA(z) = lim

m→∞
1

nm

∫
φ(z) log

∣∣∣∣∫ dμm(ζ)

z − ζ

∣∣∣∣ dA(z)
≤ lim

m→∞
1

nm

∫
φ(z)

∫
dμm(ζ)

|z − ζ| dA(z)

= lim
m→∞

1

nm

∫∫
φ(z) dA(z)

|z − ζ| dμm(ζ)

(2.2)

where dA denotes Lebesgue measure in the complex plane. Since 1/|z| is locally
integrable, the function

∫
φ(z)|z − ζ|−1 dA(z) is continuous, and hence bounded

by a constant M for all z in K. Since asymptotically almost all zeros of {pm}
belong to K, the last expression in (2.2) tends to 0 when m → ∞. This proves
that u′ ≤ u.

In the complement of suppμ, u is harmonic and u′ is subharmonic, hence
u′−u is a negative subharmonic function. Moreover, in the complement of suppμ,
p′m/(nmpm) converges to the Cauchy transform C(z) of μ a.e. in C. Since C(z) is
a nonconstant holomorphic function in the unbounded component of C � suppμ,
it follows from (2.1) that u′ − u ≡ 0 there. �

Notice that Lemma 2 implies the following interesting fact.

Corollary 1. In notation of Lemma 2, if suppμ has Lebesgue area 0 and the com-
plement C � suppμ is path-connected, then μ = μ′. In particular, in this case the
whole sequence {μ′

m} weakly converges to μ.

In general, however μ �= μ′ as shown by a trivial example of the sequence
{zn − 1}∞n=1. Also even if μ = limm→∞ μn exists the limit limm→∞ μ′

n does not
have to exist for the whole sequence. An example of this kind is the sequence
{pn(z)} where p2l(z) = z2l − 1 and p2l+1(z) = z2l+1 − z, l = 1, 2, . . . .

Luckily, the latter phenomenon can never occur for sequences of Jacobi poly-
nomials, see Proposition 3 below. (Apparently it cannot occur for a much more
general class of polynomial sequences introduced in § 5.)
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Lemma 3. If the sequence {μn} of the root-counting measures of a sequence of

Jacobi polynomials {pn(z)} = {P (αn,βn)
n (z)} weakly converges to a measure μ com-

pactly supported in C, and the sequence {μ′
n} of the root-counting measures of a

sequence {p′n(z)} weakly converges to a measure μ′ compactly supported in C, then
one of the following alternatives holds:

(i) the sequences
{

αn+βn

n

}
and

{
βn−αn

n

}
(and, therefore, the sequences

{
αn

n

}
and

{
βn

n

}
) are bounded;

(ii) the sequence
{

αn+βn

n

}
is unbounded and the sequence

{
βn−αn

n

}
is bounded,

in which case {μn} → δ0 where δ0 is the unit point mass at z = 0 (or,
equivalently, Cδ0(z) = 1/z);

(iii) both sets
{

αn+βn

n

}
and

{
βn−αn

n

}
are unbounded, in which case, there exists

at least one κ ∈ C and a subsequence {nm} such that limm→∞
βnm−αnm

αnm+βnm
= κ

and {μnm} → δκ, where δκ is the unit point mass at z = κ (or, equivalently,
Cδκ(z) = 1/(z − κ)).

Proof. Indeed, assume that the alternative (i) does not hold. Then there is a subse-

quence {nm} such that at least one of
∣∣∣αnm+βnm

nm

∣∣∣ , ∣∣∣βnm−αnm

nm

∣∣∣ is unbounded along

this subsequence. By our assumptions μn → μ and μ′
n → μ′ weakly. Hence, by

Lemma 1, there exists a subsequence of indices along which Cμn :=
p′
n

npn
pointwise

converges to Cμ and Cμ′
n
:=

p′′
n

(n−1)p′
n
pointwise converges to Cμ′ a.e. in C. Consider

the sequence of differential equations satisfied by {pn} and divided termwise by
n(n− 1)pn:

(1− z2)
p′′n

(n− 1)p′n
· p′n
npn

+

(
(βn − αn)− (αn + βn + 2)z

n− 1

)
p′n
npn

+
n+ αn + βn + 1

n− 1
= 0.

(2.3)

If for a subsequence of indices,
∣∣∣βn−αn

n

∣∣∣ → ∞ while
∣∣∣αn+βn

n

∣∣∣ stays bounded,
then the Cauchy transform Cμ of the limiting (along this subsequence) measure μ
must vanish identically in order for (2.3) to hold in the limit n→∞. But Cμ ≡ 0
is obviously impossible.

On the other hand, if for a subsequence of indices,
∣∣∣αn+βn

n

∣∣∣ → ∞ while∣∣∣βn−αn

n

∣∣∣ stays bounded, then the limit of (2.3) when n→∞ coincides with −zCμ+
1 = 0⇔ Cμ = 1

z implying μ = δ0. Thus in Case (ii), the sequence {μn} converges
to δ0.

Now assume, that or a subsequence of indices, both
∣∣∣αn+βn

n

∣∣∣ and
∣∣∣βn−αn

n

∣∣∣
tend to ∞. Then dividing (2.3) by αn+βn

n and letting n → ∞, we conclude that
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the sequence
{

βn−αn

αn+βn

}
must be bounded. Therefore there exists its subsequence

which converges to some κ ∈ C. Taking the limit along this subsequence, we obtain

(z − κ)Cμ = 1.

This is true for all z, for which the Cauchy transform converges, i.e., almost
everywhere outside the support of μ. Using the main results of [7, 8] claiming
that the support of μ consists of piecewise smooth compact curves and/or isolated
points together with the fact that Cμ must have a discontinuity along every curve
in its support, we conclude that the support of μ is the point z = κ. Thus in Case
(iii), the sequence {μnm} converges to δκ. �

The next statement provides more information about Case (i) of Lemma 3.

Proposition 3. Assume that the sequence {μn} of the root-counting measures for

a sequence of Jacobi polynomials {pn(z) = P
(αn,βn)
n (z)} weakly converges to a

compactly supported measure μ in C. Assume additionally that limn→∞ αn

n = A

and limn→∞ βn

n = B with 1 + A + B �= 0. Then, for any positive integer j, the

sequence {μ(j)
n } of the root-counting measures for the sequence {p(j)n (z)} of the jth

derivatives converges to the same measure μ.

Proof. Observe that if an arbitrary polynomial sequence {pm} of increasing degrees
has almost all roots in a convex bounded set Ω ⊂ C, then, by Proposition 2, almost
all roots of {p′m} are in Ωε, for any ε > 0. Therefore, if the sequence {μm} of
the root-counting measures of {pm} weakly converges to a compactly supported
measure μ, then there exists at least one weakly converging subsequence of {μ′

m}.
Additionally, by the Gauss–Lucas Theorem, the support of its limiting measure
belongs to the (closure of the) convex hull of the support of μ. Thus the weak
convergence of {μm} implies the existence of a weakly converging subsequence
{μ′

nm
}.
Proposition 3 is obvious in Cases (ii) and (iii) of Lemma 3. Let us concentrate

on the remaining Case (i). Our assumptions imply that along a subsequence of

the sequence
{

p′
n

npn

}
of Cauchy transforms of polynomials pn converges pointwise

almost everywhere. We first show that the above sequence
{

p′
n

npn

}
cannot converge

to 0 on a set of positive measure.

Indeed, the differential equation satisfied by pn after its division by n(n −
1)pn is given by (2.3). Since the sequences

{
αn+βn

n

}
and

{
βn−αn

n

}
converge and

1 + A + B �= 0, equation (2.3) shows that
p′
n

npn
cannot converge to 0 on a set of

positive measure. Analogously, we see that
p′′
n

(n−1)p′
n
cannot converge to 0 on a set

of positive measure either. Indeed, differentiating (2.3), we get that p′n satisfies the
equation

(1−z2)p′′′n +((βn−αn)−(αn+βn+4)z)p′′n+(n(n+αn+βn+1)+(αn+βn+2))p′n = 0.
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Using the same analysis as for pn, we can conclude that the limit
p′′
n

n(n−1)pn
along

a subsequence exists pointwise and is non-vanishing almost everywhere.

Denote the logarithmic potentials of the root-counting measures associated
to pn and p′n by un and u′

n respectively. Denote their limits by u and u′ (where u′

apriori is a limit only along some subsequence). With a slight abuse of notation,
the following holds

|u− u′| = lim
n→∞ |un − u′

n| = lim
n→∞

1

n
log

∣∣∣∣ p′′n
n(n− 1)pn

∣∣∣∣ = 0

due to the above claim about
p′′
n

n(n−1)pn
. But since u ≥ u′ by Lemma 2, we see

that u = u′ and, in particular u′ exists as a limit over the whole sequence. Hence
the asymptotic root-counting measures of {pn} and {p′n} actually coincide. Similar
arguments apply to higher derivatives of the sequence {pn}. �

Proof of Theorem 1. The polynomial pn(z) = P
(αn,βn)
n (z) satisfies equation (2.3).

By Proposition 3 we know that, under the assumptions of Theorem 1, if
{

p′
n

npn

}
converges to Cμ a.e. in C, then the sequence

{
p′′
n

np′
n

}
also converges to the same Cμ

a.e. in C. Therefore, the expression p′′
n

n2pn
=

p′′
np

′
n

n2pnp′
n
converges to C2μ a.e. in C. Thus

Cμ (which is well defined a.e. in C) should satisfy the equation

(1 − z2)C2μ − ((A+B)z +A−B)Cμ +A+B + 1 = 0,

where A = limn→∞ αn

n and B = limn→∞ βn

n . �

Remark 1. Apparently the condition that the sequences
{
αn

n

}
and

{
βn

n

}
are

bounded should be enough for the conclusion of Theorem 1. (The existence of

the limits lim αn

n and lim βn

n should follow automatically with some weak addi-

tional restriction.) Indeed, since the sequences
{
αn

n

}
and

{
βn

n

}
are bounded, we

can find at least one subsequence {nm} of indices along which both sequences of
quotients converge. Assume that we have two possible distinct (pairs of) limits
(A1, B1) and (A2, B2) along different subsequences. But then the same complex-
analytic function Cμ(z) should satisfy a.e. two different algebraic equations of the
form (1.4) which is impossible at least for generic (A1, B1) and (A2, B2).

3. Preliminaries on quadratic differentials

In this section, we recall some definitions and results of the theory of quadratic
differentials on the complex sphere C = C∪{∞}. Most of these results remain true
for quadratic differentials defined on any compact Riemann surface. But for the
purposes of this paper, we will focus on results concerning the domain structure and
properties of geodesics of quadratic differentials defined onC. For more information
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on quadratic differentials in general, the interested reader may consult classical
monographs of Jenkins [22] and Strebel [34] and papers [31] and [32].

A quadratic differential on a domain D ⊂ C is a differential form Q(z) dz2

with meromorphic Q(z) and with conformal transformation rule

Q1(ζ) dζ
2 = Q(ϕ(z)) (ϕ′(z))2 dz2, (3.1)

where ζ = ϕ(z) is a conformal map from D onto a domain G ⊂ C. Then zeros and
poles of Q(z) are critical points of Q(z) dz2, in particular, zeros and simple poles
are finite critical points of Q(z) dz2. Below we will use the following notations.
By Hp, C, and H we denote, respectively, the set of all poles, set of all finite
critical points, and set of all infinite critical points of Q(z) dz2. Also, we will use
the following notations: C′ = C \H , C′′ = C \Hp, C′′′ = C \ (C ∪H).

A trajectory (respectively, orthogonal trajectory) of Q(z) dz2 is a closed an-
alytic Jordan curve or maximal open analytic arc γ ⊂ D such that

Q(z) dz2 > 0 along γ (respectively, Q(z) dz2 < 0 along γ).

A trajectory γ is called critical if at least one of its end points is a finite critical
point ofQ(z) dz2. By a closed critical trajectory we understand a critical trajectory
together with its end points z1 and z2 (not necessarily distinct), assuming that
these end points exist.

Let Φ denote the closure of the set of points of all critical trajectories of
Q(z) dz2. Then, by Jenkins’ Basic Structure Theorem [22, Theorem 3.5], the set
C \ Φ consists of a finite number of circle, ring, strip and end domains. The
collection of all these domains together with so-called density domains constitute
the so-called domain configuration of Q(z) dz2. Here, we give definitions of circle
domains and strip domains only; these two types will appear in our classification
of possible domain configurations in Section 5. Figures 1–4 show several domain
configurations with circle and strip domains. For the definitions of other domains,
we refer to [22, Ch. 3].

We recall that a circle domain of Q(z) dz2 is a simply connected domain D
with the following properties:

1) D contains exactly one critical point z0, which is a second-order pole,
2) the domain D \ {z0} is swept out by trajectories of Q(z) dz2 each of which is

a Jordan curve separating z0 from the boundary ∂D,
3) ∂D contains at least one finite critical point.

Similarly, a strip domain of Q(z) dz2 is a simply connected domain D with
the following properties:

1) D contains no critical points of Q(z) dz2,
2) ∂D contains exactly two boundary points z1 and z2 belonging to the set H

(these boundary points may be situated at the same point of C),
3) the points z1 and z2 divide ∂D into two boundary arcs each of which contains

at least one finite critical point,
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4) D is swept out by trajectories of Q(z) dz2 each of which is a Jordan arc
connecting points z1 and z2.

As we mentioned in the Introduction, every quadratic differential Q(z)dz2

defines the so-called (singular)Q-metric with the differential element |Q(z)|1/2 |dz|.
If γ is a rectifiable arc in D then its Q-length is defined by

|γ|Q =

∫
γ

|Q(z)|1/2 |dz|.

According to their Q-lengthes, trajectories of Q(z) dz2 can be of two types.
A trajectory γ is called finite if its Q-length is finite, otherwise γ is called infinite.
In particular, a critical trajectory γ is finite if and only if it has two end points
each of which is a finite critical point.

An important property of quadratic differentials is that transformation rule
(8.1) respects trajectories and orthogonal trajectories and their Q-lengthes, as
well as it respects critical points together with their multiplicities and trajectory
structure nearby.

Definition 3. A locally rectifiable (in the spherical metric) curve γ ⊂ C′ is called
a Q-geodesic if it is locally shortest in the Q-metric.

Next, given a quadratic differential Q(z) dz2, we will discuss geodesics in
homotopic classes. For any two points z1, z2 ∈ C′, let HJ = HJ(z1, z2) denote the
set of all homotopic classes H of Jordan arcs γ ⊂ C′ joining z1 and z2. Here the
letter J stands for “Jordan”. It is well known that there is a countable number of
such homotopic classes. Thus, we may write HJ = {HJ

k }∞k=1.

Every class HJ
k can be extended to a larger class Hk by adding non-Jordan

continuous curves γ joining z1 and z2, each of which is homotopic on C′ to some
curve γ0 ∈ HJ

k in the following sense.
There is a continuous function ϕ(t, τ) from the square I2 := [0, 1]× [0, 1] to

C′ such that

1) ϕ(0, τ) = z1, ϕ(1, τ) = z2 for all 0 ≤ τ ≤ 1,
2) γ0 = {z = ϕ(t, 0) : 0 ≤ t ≤ 1},
3) γ = γ1 = {z = ϕ(t, 1) : 0 ≤ t ≤ 1},
4) For every fixed τ, 0 < τ < 1, the curve γτ = {z = ϕ(t, τ) : 0 ≤ t ≤ 1} is in

the class HJ
k .

The following proposition is a special case of a well-known result about
geodesics, see, e.g., [34, Theorem 18.2.1].

Proposition 4. For every k, there is a unique curve γ′ ∈ Hk, called Q-geodesic in
Hk, such that |γ′|Q < |γ|Q for all γ ∈ Hk, γ �= γ′. This geodesic is not necessarily
a Jordan arc.

A Q-geodesic from z1 to z2 is called simple if z1 �= z2 and γ is a Jordan arc on
C′′′ joining z1 and z2. A Q-geodesic is called critical if both its end points belong
to the set of finite critical points of Q(z) dz2.
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Proposition 5. Let Q(z) dz2 be a quadratic differential on C. Then for any two
points z1, z2 ∈ C′ and every continuous rectifiable curve γ on C′′′ joining the
points z1 and z2 there is a unique shortest curve γ0 belonging to the homotopic
class of γ.

Furthermore, γ0 is a geodesic in this class.

Definition 4. Let z0 ∈ C′. A geodesic ray from z0 is a maximal simple rectifiable
arc γ : [0, 1)→ C′′′ ∪ {z0} with γ(0) = z0 such that for every t, 0 < t < 1, the arc
γ((0, 1)) is a geodesic from z0 to z = γ(t).

Lemma 4. Let D be a circle domain of Q(z) dz2 centered at z0 and let γa : [0, 1)→
C′′′ ∪{a} be a geodesic ray from a ∈ ∂D such that γa([0, t0]) ⊂ D for some t0 > 0.

Then either γa enters into D through the point a and then approaches to z0
staying in D or γa is an arc of some critical trajectory γ ⊂ ∂D.

Lemma 5. Let a be a second-order pole of Q(z) dz2 and let Γ be the homotopic
class of closed curves on C′′ separating a from Hp \ {a}. Then there is exactly one
real θ0, 0 ≤ θ0 < 2π, such that the quadratic differential eiθ0Q(z) dz2 has a circle
domain, say D0, centered at a. Furthermore, the boundary ∂D0 is the only critical
Q-geodesic (non-Jordan in general) in the class Γ.

In particular, Γ may contain at most one critical geodesic loop.

We will need some simple mapping properties of the canonical mapping re-
lated to the quadratic differential Q(z) dz2, which is defined by

F (z) =

∫
z0

√
Q(z) dz

with some z0 ∈ C and some fixed branch of the radical. A simply connected domain
D without critical points of Q(z) dz2 is called a Q-rectangle if the boundary of D
consists of two arcs of trajectories of Q(z) dz2 separated by two arcs of orthogonal
trajectories of this quadratic differential. As well a canonical mapping F (z) maps
any Q-rectangle conformally onto a geometrical rectangle in the plane with two
sides parallel to the horizontal axis.

4. Cauchy transforms satisfying quadratic equations
and quadratic differentials

Below we relate the question for which triples of polynomials (P,Q,R) the equation

P (z)C2 +Q(z)C +R(z) = 0, (4.1)

with degP = n + 2, degQ ≤ n + 1, degR ≤ n admits a compactly supported
signed measure μ whose Cauchy transform satisfies (4.1) almost everywhere in C
to a certain problem about rational quadratic differentials. We call such measure
μ a motherbody measure for (4.1).

For a given quadratic differential Ψ on a compact surface R, denote by KΨ ⊂
R the union of all its critical trajectories and critical points. (In general, KΨ can
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be very complicated. In particular, it can be dense in some subdomains of R.) We
denote by DKΨ ⊆ KΨ (the closure of) the set of finite critical trajectories of (4.2).
(One can show that DKΨ is an imbedded (multi)graph in R. Here by a multigraph
on a surface we mean a graph with possibly multiple edges and loops.) Finally,
denote by DK0

Ψ ⊆ DKΨ the subgraph of DKΨ consisting of (the closure of) the
set of finite critical trajectories whose both ends are zeros of Ψ.

A non-critical trajectory γz0(t) of a meromorphic Ψ is called closed if ∃ T > 0
such that γz0(t+T ) = γz0(t) for all t ∈ R. The least such T is called the period of
γz0 . A quadratic differential Ψ on a compact Riemann surfaceR without boundary
is called Strebel if the set of its closed trajectories covers R up to a set of Lebesgue
measure zero.

Going back to Cauchy transforms, we formulate the following necessary con-
dition of the existence of a motherbody measure for (4.1).

Proposition 6. Assume that equation (4.1) admits a signed motherbody measure
μ. Denote by D(z) = Q2(z)− 4P (z)R(z) the discriminant of equation (4.1). Then
the following two conditions hold:

(i) any connected smooth curve in the support of μ coincides with a horizontal
trajectory of the quadratic differential

Θ = − D(z)

P 2(z)
dz2 =

4P (z)R(z)−Q2(z)

P 2(z)
dz2. (4.2)

(ii) the support of μ includes all branching points of (4.1).

Remark. Observe that if P (z) and Q(z) are coprime, the set of all branching points
coincides with the set of all zeros of D(z). In particular, in this case part (ii) of
Proposition 6 implies that the set DK0

Θ for the differential Θ should contain all
zeros of D(z).

Remark. Proposition 6 applied to quadratic differential Q(z) dz2 of Theorem 1
implies Theorem 2.

Proof. The fact that every curve in supp(μ) should coincide with some horizontal
trajectory of (4.2) is well known and follows from the Plemelj–Sokhotsky’s formula.
It is based on the local observation that if a real measure μ = 1

π
∂C
∂z̄ is supported on a

smooth curve γ, then the tangent to γ at any point z0 ∈ γ should be perpendicular

to C1(z0)−C2(z0) where C1 and C2 are the one-sided limits of C when z → z0, see,
e.g., [5]. (Here ¯ stands for the usual complex conjugation.) Solutions of (4.1) are
given by

C1,2 =
−Q(z)±

√
Q2(z)− 4P (z)R(z)

2P (z)
,

their difference being

C1 − C2 =

√
Q2(z)− 4P (z)R(z)

P (z)
.



382 B. Shapiro and A. Solynin

Since the tangent line to the support of the real motherbody measure μ satisfying

(4.1) at its arbitrary smooth point z0, is orthogonal to C1(z0)−C2(z0), it is exactly
given by the condition 4P (z0)R(z0)−Q2(z0)

P 2(z0)
dz2 > 0. The latter condition defines the

horizontal trajectory of Θ at z0.
Finally the observation that supp μ should contain all branching points of

(4.1) follows immediately from the fact that Cμ is a well-defined univalued function
in C \ supp μ. �

In many special cases statements similar to Proposition 6 can be found in
the literature, see, e.g., recent [1] and references therein.

Proposition 6 allows us, under mild nondegeneracy assumptions, to formulate
necessary and sufficient conditions for the existence of a motherbody measure for
(4.1) which however are difficult to verify. Namely, let Γ ⊂ CP1 × CP1 with affine
coordinates (C, z) be the algebraic curve given by (the projectivization of) equation
(4.1). Γ has bidegree (2, n+2) and is hyperelliptic. Let πz : Γ→ C be the projection
of Γ on the z-plane CP1 along the C-coordinate. From (4.1) we observe that πz

induces a branched double covering of CP1 by Γ. If P (z) and Q(z) are coprime
and if degD(z) = 2n+2, the set of all branching points of πz : Γ→ CP1 coincides
with the set of all zeros of D(z). (If degD(z) < 2n+2, then∞ is also a branching
pont of πz of multiplicity 2n+ 2− degD(z).) We need the following lemma.

Lemma 6. If P (z) and Q(z) are coprime, then at each pole of (4.1), i.e., at each
zero of P (z), only one of two branches of Γ goes to ∞. Additionally the residue of

this branch at this zero equals that of −Q(z)
P (z) .

Proof. Indeed if P (z) and Q(z) are coprime, then no zero z0 of P (z) can be a
branching point of (4.1) since D(z0) �= 0. Therefore only one of two branches

of Γ goes to ∞ at z0. More exactly, the branch C1 =
−Q(z)+

√
Q2(z)−4P (z)R(z)

2P (z)

attains a finite value at z0 while the branch C2 =
−Q(z)−

√
Q2(z)−4P (z)R(z)

2P (z) goes

to ∞ where we use the agreement that limz→z0

√
Q2 − 4P (z)R(z) = Q(z0). Now

consider the residue of the branch C2 at z0. Since residues depend continuously on
the coefficients (P (z), Q(z), R(z)) it suffices to consider only the case when z0 is a
simple zero of P (z). Further if z0 is a simple zero of P (z), then

Res(C2, z0) =
−2Q(z0)

2P ′(z0)
= Res

(
−Q(z)

P (z)
, z0

)
,

which completes the proof. �

By Proposition 6 (besides the obvious condition that (4.1) has a real branch
near∞ with the asymptotics α

z for some α ∈ R) the necessary condition for (4.1) to

admit a motherbody measure is that the setDK0
Θ for the differential (4.2) contains

all branching points of (4.1), i.e., all zeros ofD(z). Consider Γcut := Γ\π−1
z (DK0

Θ).
Since DK0

Θ contains all branching points of πz , Γcut consists of some number of
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open sheets, each projecting diffeomorphically on its image in CP1 \DK0
Θ. (The

number of sheets in Γcut equals to twice the number of connected components in
C\DK0

Θ.) Observe that since we have chosen a real branch of (4.1) at infinity with
the asymptotics α

z , we have a marked point pbr ∈ Γ over ∞. If we additionally
assume that degD(z) = 2n+2, then∞ is not a branching point of πz and therefore
pbr ∈ Γcut.

Lemma 7. If degD(z) = 2n + 2, then any choice of a spanning (multi)subgraph
G ⊂ DK0

Θ with no isolated vertices induces the unique choice of the section SG of

Γ over CP1 \G which:

a) contains pbr;
b) is discontinuous at any point of G; c) is projected by πz diffeomorphically

onto CP1 \G.

Here by a spanning subgraph we mean a subgraph containing all the vertices
of the ambient graph. By a section of Γ over CP1 \G we mean a choice of one of
two possible values of Γ at each point in CP1 \ G. After these clarifications the
proof is evident.

Observe that the section SG might attain the value ∞ at some points, i.e.,
contain some poles of (4.1). Denote the set of poles of SG by PolesG. Now we can
formulate our necessary and sufficient conditions.

Theorem 3. Assume that the following conditions are valid:

(i) equation (4.1) has a real branch near ∞ with the asymptotic behavior α
z for

some α ∈ R;
(ii) P (z) and Q(z) are coprime, and the discriminant D(z) = Q2(z)−4P (z)R(z)

of equation (4.1) has degree 2n+ 2;
(iii) the set DK0

Θ for the quadratic differential Θ given by (4.2) contains all zeros
of D(z);

(iv) Θ has no closed horizontal trajectories.
Then (4.1) admits a real motherbody measure if and only if there exists a
spanning (multi)subgraph G ⊆ DK0

Θ with no isolated vertices, such that all
poles in Polesg are simple and all their residues are real, see notation above.

Proof. Indeed assume that (4.1) satisfying (ii) admits a real motherbody measure
μ. Assumption (i) is obviously neccesary for the existence of a real motherbody
measure and the necessity of assumption (iii) follows from Proposition 6 if (ii) is
satisfied. The support of μ consists of a finite number of curves and possibly a finite
number of isolated points. Since each curve in the support of μ is a trajectory of
Θ and Θ has no closed trajectories, then the whole support of μ consists of finite
critical trajectories of Θ connecting its zeros, i.e., belongs to DK0

Θ. Moreover the
support of μ should contain sufficiently many finite critical trajectories of Θ such
that they include all the branching points of (4.1). By (ii) these are exactly all
zeros of D(z). Therefore the union of finite critical trajectories of Θ belonging to
the support of μ is a spanning (multi)graph of DK0

Θ without isolated vertices. The
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isolated points in the support of μ are necessarily the poles of (4.1). Observe that
the Cauchy transform of any (complex-valued) measure can only have simple poles
(as opposed to the Cauchy transform of a more general distribution). Since μ is real
the residue of its Cauchy transform at each pole must be real as well. Therefore
the existence of a real motherbody under the assumptions (i)–(iv) implies the
existence of a spanning (multi)graph G with the above properties. The converse
is also immediate. �

Remark. Observe that if (i) is valid, then assumptions (ii) and (iv) are generically
satisfied. Notice however that (iv) is violated in the special case when Q(z) is
absent. Additionally, if (iv) is satisfied, then the number of possible motherbody
measures is finite. On the other hand, it is the assumption (iii) which imposes severe
additional restrictions on admissible triples (P (z), Q(z), R(z)). At the moment
the authors have no information about possible cardinalities of the sets PolesG
introduced above. Thus it is difficult to estimate the number of conditions required
for (4.1) to admit a motherbody measure. Theorem 3 however leads to the following
sufficient condition for the existence of a real motherbody measure for (4.1).

Corollary 2. If, additionally to assumptions (i)–(iii) of Theorem 3, one assumes

that all roots of P (z) are simple and all residues of Q(z)
P (z) are real, then (4.1) admits

a real motherbody measure.

Proof. Indeed if all roots of P (z) are simple and all residues of Q(z)
P (z) are real,

then all poles of (4.1) are simple with real residues. In this case for any choice of
a spanning (multi)subgraph G of DK0

Θ, there exists a real motherbody measure
whose support coincides with G plus possibly some poles of (4.1). Observe that if

all roots of P (z) are simple and all residues of Q(z)
P (z) are real one can omit assumption

(iv). In case when Θ has no closed trajectories, then all possible real motherbody
measures are in a bijective correspondence with all spanning (multi)subgraphs
of DK0

Θ without isolated vertices. In the opposite case such measures are in a
bijective correspondence with the unions of a spanning (multi)subgraph of DK0

Θ

and an arbitrary (possibly empty) finite collection of closed trajectories. �

5. Does weak convergence of Jacobi polynomials imply
stronger forms of convergence?

Observe that, if one considers an arbitrary sequence {sn(z)}, n = 0, 1, . . . of monic
univariate polynomials of increasing degrees, then even if the sequence {θn} of their
root-counting measures weakly converges to some limiting probability measure Θ
with compact support in C, in general, it is not true that the roots of sn stay on
some finite distance from suppΘ for all n simultaneously. Similarly nothing can
be said in general about the weak convergence of the sequence {θ′n} of the root-
counting measures of {s′n(z)}. However we have already seen that the situation
with sequences of Jacobi polynomials seems to be different, compare Proposition 3.
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In the present appendix we formulate a general conjecture (and give some ev-
idence of its validity) about sequences of Jacobi polynomials as well as sequences of
more general polynomial solutions of a special class of linear differentials equations
which includes Riemann’s differential equation.

Consider a linear ordinary differential operator

d(z) =

k∑
i=1

Qj(z)
dj

dzj
(5.1)

with polynomial coefficients. We say that (5.1) is exactly solvable if a) degQj ≤ j,
for all j = 1, . . . , k; b) there exists at least one value j0 such that degQj0(z) = j0.
We say that an exactly solvable operator (5.1) is non-degenerate if degQk = k.

Observe that any exactly solvable operator d(z) has a unique (up to a constant
factor) eigenpolynomial of any sufficiently large degree, see, e.g., [5]. Fixing an
arbitrary monic polynomial Qk(z) of degree k, consider the family FQk

of all

exactly solvable operators of the form (5.1) whose leading term is Qk(z)
dk

dzk . (FQk

is a complex affine space of dimension
(
k+1
2

)
− 1.) Given a sequence {dn(z)} of

exactly solvable operators from FQk
of the form

dn(z) = Qk(z)
dk

dzk
+

k−1∑
i=1

Qj,n(z)
dj

dzj
,

we say that this sequence has a moderate growth if, for each j = 1, . . . , k − 1, the

sequence of polynomials
{

Qj,n(z)
nk−j

}
has all bounded coefficients. (Recall that ∀n,

degQj,n ≤ j.)

Conjecture 1. 1 For any sequence {dn(z)} of exactly solvable operators of moderate
growth, the union of all roots of all the eigenpolynomials of all dn(z) is bounded
in C.

Now take a sequence {sn(z)}, deg sn = n of polynomial eigenfunctions of
the sequence of operators dn(z) ∈ FQk

. (Observe that, in general, we have a
different exactly solvable operator for each eigenpolynomial but with the same
leading term.)

Conjecture 2. In the above notation, assume that {dn(z)} is a sequence of exactly
solvable operators of moderate growth and that {sn(z)} is the sequence of their
eigenpolynomials (i.e., sn(z) is the eigenpolynomial of dn(z) of degree n) such
that:

a) the limits Q̃j(z) := limn→∞ 1
nk−j Qj,n(z), j = 1, . . . , k − 1 exist;

b) the sequence {θn} of the root-counting measures of {sn(z)} weakly converges
to a compactly supported probability measure Θ in C,

then

1Conjecture 1 was disproved in a very recent article [14].
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(i) the Cauchy transform CΘ of Θ satisfies a.e. in C the algebraic equation

Qk(z)

(
CΘ
γ

)k

+

k−1∑
j=1

Q̃j(z)

(
CΘ
γ

)j

= 1, (5.2)

where γ = limn→∞
k√λn

n , λn being the eigenvalue of sn(z).

(ii) for any positive ε > 0, there exist nε such that, for n ≥ nε, all roots of all
eigenpolynomials sn(z) are located within ε-neighborhood of suppΘ, i.e., the
weak convergence of θn → Θ implies a stronger form of this convergence.

Certain cases of Part (i) of the above Conjecture are settled in [5] and [9] and
a version of Part (ii) is discussed in an unpublished preprint [11].

Now we present some partial confirmation of the above conjectures. Consider
the family of linear differential operators of second order depending on parameter
λ and given by

Tλ = Q2(z)
d2

dz2
+
(
Q1(z)λ+ P1(z)

) d

dz
+ (λ2 + pλ+ q)Q0, (5.3)

where Q2(z) is a quadratic polynomial in z, Q1(z) and P1(z) are polynomials in z
of degree at most 1, and Q0 is a non-vanishing constant. (Observe that our use of
parameter λ here is the same as of the parameter γ in the latter Conjecture.)

Denote Qi(z) =
∑i

j=0 qjiz
j , i = 0, 1, 2 and put P1 = p11z + p01. The qua-

dratic polynomial

q22 + q11t+ q00t
2 (5.4)

is called the characteristic polynomial of Tλ. Here q22 �= 0 and q00 = Q0 �= 0.

Definition 5. We say that the family Tλ has a generic type if the roots of (5.4) have
distinct arguments (and in particular 0 is not a root of (5.4) which is guaranteed
by q22 �= 0 together with q00 �= 0), comp. [9].

Below we will denote the roots of characteristic polynomial (5.4) by α1 and
α2. Thus Tλ has a generic type if and only if argα1 �= argα2.

Lemma 8. Equation (5.4) has two roots with the same arguments if and only if
q22q00 = ρq211, where 0 ≤ ρ ≤ 1

4 .

Proof. Straightforward calculation, see Example 1 of [10]. �

Lemma 9. In the above notation, for a family Tλ of generic type, there exists a
positive integer N such that, for any integer n ≥ N, there exist two eigenvalues
λ1,n and λ2,n such that the differential equation

Tλ(y) = 0 (5.5)

has a polynomial solution of degree n. Moreover, limn→∞
λi,n

n = αi where α1, α2

are the roots of the characteristic polynomial of Tλ.
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Proof. Observe that for any λ ∈ C, the operator Tλ acts on each linear space Poln
of all polynomials of degree at most n, n = 0, 1, 2, . . . , and its matrix presentation
(cij)

n
i,j=0 in the standard monomial basis (1, z, z2, . . . , zn) of Poln is an upper-

triangular matrix with diagonal entries

cjj = j(j − 1)q22 + jq11 + q + (jq11 + p)λ+ q00λ
2.

Therefore, for any given non-negative integer n, we have a (unique) polynomial
solution of (5.5) of degree n if and only if cnn = 0 but cjj �= 0 for 0 ≤ j < n. The
asymptotic formula for λi,n follows from the form of the equation cnn = 0. The
genericity assumption that the equations

n(n− 1)q22 + nq11 + q + (nq11 + p)λ+ q00λ
2 = 0

and

j(j − 1)q22 + jq11 + q + (jq11 + p)λ+ q00λ
2 = 0

should not have a common root, for 0 ≤ j < n and n sufficiently large, is clearly
satisfied if we assume that the characteristic equation does not have two roots with
the same argument. �

We can now prove the following stronger result.

Proposition 7. For a general type family of differential operators Tλ of the form
(5.3), all roots of all polynomial solutions of Tλ(p) = 0, λ ∈ C are located in some
compact set K ⊂ C.

Proof. Since Tλ is assumed to be of general type, one gets Q0 �= 0. Therefore,
without loss of generality we can assume that Q0 = 1 in (5.5). Let {pn}, deg(pn) =
n be a sequence of eigenpolynomials for (5.5), and assume that limn→∞ λn

n = α.

(By Lemma 9, α equals either α1 or α2.) Define wn =
p′
n

λnpn
and notice that

pn = eλn

∫
wndz. We then have

p′n = λnwnpn; p
′′
n = (λ2

nw
2
n + λnw

′
n)pn.

Substituting these expressions in (5.5), we obtain:

pn(Q2(z)(λ
2
nw

2
n(z)+λnw

′
n(z))+λ2

nQ1(z)wn(z)+P1(z)λnwn(z)+λ2
n+pλn+q = 0.

For each fixed n, near z =∞ we can conclude that

Q2(z)(λ
2
nw

2
n(z) + λnw

′
n(z)) + λ2

nQ1(z)wn(z) + P1(z)λnwn(z) + λ2
n + pλn + q = 0.

This relation defines a rational function wn near infinity. We will show that the
sequence {wn} converges uniformly to an analytic function w in a sufficiently
small disc around ∞. Moreover w does not vanish identically. Proposition 7 will
immediately follow from this claim. Introducing t = 1

z , one obtains

Q̃2

((wn

t

)2

− 1

λn
w′

n

)
+ Q̃1

(wn

t

)
+

1

λn
P̃1

(wn

t

)
+ 1 +

p

λn
+

q

λ2
n

= 0,

where Q̃2(t) := t2Q2(1/t), Q̃1(t) := tQ1(1/t) and P̃1(t) := tP1(1/t). Expand
wn = c1t+ c2t

2 + · · · in a power series around ∞, i.e., around t = 0. (By a slight
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abuse of notation, we temporarily disregard the fact that the coefficients ck depend
on n until we make their proper estimate.) Set (wn/t)

2 = b0 + b1t+ · · · . Then
bk = c1ck+1 + c2ck + · · ·+ ckc2 + ck+1c1.

Finally, introduce εn = 1/λn. Using these notations we obtain the following system
of recurrence relations for the coefficients ck:

q22c
2
1+(q11−εnq22+εnp11)c1+1+εnp+ε2nq=0,

q22(b1−2εnc2)+q12(b0−εnc1)+(q11+εnp11)c2+(q01+εnp01)c1=0,

q22(b2−3εnc3)+q12(b1−2εnc2)+q02(b0−εnc1)

+(q11+εnp11)c3+(q01+εnp01)c2=0,

and, more generally,

q22(bk − (k + 1)εnck+1) + q12(bk−1 − kεnck) + q02(bk−2 − (k − 1)εnck−1)

+(q11 + εnp11)ck+1 + (q01 + εnp01)ck = 0 for k ≥ 2.

Therefore, for any given n, we get 2 possible values for c1(n), which tend to the
roots of q22t

2+q11t+1 = 0 as n→∞. Notice that c1(n)→ 1
α as n→∞. Choosing

one of two possible values for c1, we uniquely determine the remaining coefficients
(as rational functions of the previously calculated coefficients). Introducing b̃k =

bk − 2c1ck+1, we can observe that b̃k is independent of ck+1 and we obtain the
following explicit formulas:

c2 = −q12(c
2
1 − εnc1) + (q01 + εnp01)c1

(2c1 − 2εn)q22 + q11 + εnp11
,

c3 = −q22b̃2 + q12(b1 − 2εnc2) + q02(b0 − εnc1) + (q01 + εnp01)c2
(2c1 − 3εn)q22 + q11 + εnp11

,

and more generally,

ck = − q22b̃k−1 + q12(bk−2 − (k − 1)εnck−1)

(2c1 − kεn)q22 + q11 + εnp11

+
q02(bk−2 − (k − 3)εnck−3) + (q01 + εnp01)ck−1

(2c1 − kεn)q22 + q11 + εnp11
.

We will now include the dependence of ck on n and show that the coefficients ck(n)
are majorated by the coefficients of a convergent power series independent of n.
First we show that the denominators in these recurrence relations are bounded
from below. Notice that under our assumption, the rational functions wn exist
and have a power series expansion near z = ∞ with coefficients given by the
above recurrence relations. Therefore the denominators in these recurrences do
not vanish. Notice also that εn & c1(n)

n asymptotically. For fixed k, it is therefore
clear that the limits

lim
n→∞(2c1(n)− kεn)q22 + q11 + εnp11 = lim

n→∞ 2c1(n)q22 + q11
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vanish if and only if the characteristic polynomial (5.4) has a double root. We must
however find a uniform bound for ck(n) valid for all k simultaneously. Indeed, there
might exist a subsequence I ⊂ N of kn such that

lim
n∈I;n→∞

(2c1(n)− knεn)q22 + q11 + εnp11 = 0. (5.6)

But this implies, using the asymptotics of c1(n) and εn, the existence of a real
number r such that 1−r

α = − q22
2q11

which is clearly impossible if the characteristic

equation does not have two roots with the same argument. Thus we have estab-
lished a positive lower bound for the absolute value of the denominators in the
recurrence relations for the coefficients ck. The latter circumstance gives us a pos-
sibility of majorizing the coefficients ck(n) independently of k and n. Namely, if
there is a unbounded sequence knεn, then we can factor it out from the rational
functions in the recurrence. The existence of the sequence mentioned above follow
from an elementary lemma stated below, which we leave without a proof. Thus,
Proposition 7 is now settled. �

Lemma 10. Consider a recurrence relation cm+1 = Pm(c1, . . . , cm) where each Pm

is a polynomial and assume that dm+1 = Qm(d1, . . . , dm) is a similar recurrence
relation whose polynomials have all positive coefficients. If the polynomials under
consideration satisfy the inequalities

|Pm(z1, . . . , zm)| ≤ Qm(|z1|, . . . , |zm|),
then the power series

∑
ciz

i is dominated by the series
∑

diz
i whenever d1 ≥ |c1|.

6. Domain configurations of normalized quadratic differentials

Let Q(z; a, b, c) dz2 be a quadratic differential of the form (1.5). Multiplying
Q(z; a, b, c) dz2 by a non-zero constant A ∈ C, we rescale the corresponding
Q-metric |Q|1/2 |dz| by a positive constant |A|1/2. Hence AQ(z; a, b, c) dz2 has the
same geodesics as the quadratic differential Q(z; a, b, c) dz2 has. Obviously, multi-
plication does not affect the homotopic classes. Thus, while studying geodesics of
the quadratic differential Q(z; a, b, c) dz2, we may assume without loss of generality
that it has the form

Q(z) dz2 = − (z − p1)(z − p2)

(z − 1)2(z + 1)2
dz2. (6.1)

In Sections 6–9, we will work with the generic case; i.e., we assume that

p1 �= ±1, p2 �= ±1, p1 �= p2, (6.2)

unless otherwise is mentioned. Some typical configurations in the limit (or non-
generic) cases are shown in Figures 5a–5g. Expanding Q(z) into Laurent series at
z =∞, we obtain

Q(z) = − 1

z2
+ higher degrees of z as z →∞. (6.3)
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Since the leading coefficient in the series expansion (6.3) is real and negative
it follows that Q(z) dz2 has a circle domain D∞ centered at z = ∞. The bound-
ary L∞ = ∂D∞ of D∞ consists of a finite number of critical trajectories of the
quadratic differential Q(z) dz2 and therefore L∞ contains at least one of the zeros
p1 and p2 of Q(z) dz2.

Next, we will discuss possible trajectory structures of Q(z) dz2 on the com-
plement D0 = C \D∞. As we have mentioned in Section 3, according to the Basic
Structure Theorem, [22, Theorem 3.5], the domain configuration of a quadratic
differential Q(z) dz2 on C, which will be denoted by DQ, may include circle do-
mains, ring domains, strip domains, end domains, and density domains. For the
quadratic differential (6.1), by the Three Pole Theorem [22, Theorem 3.6], there
are no density domains in its domain configuration DQ. In addition, since Q(z) dz2

has only three poles of order two each, the domain configuration DQ does not con-
tain end domains and may contain at most three circle domains centered at z =∞,
z = −1, and z = 1.

We note here that DQ may have strip domains (also called bilaterals) with
vertices at the double poles z = −1 and z = 1 but DQ does not have ring domains.

Indeed, if there were a ring domain D̂ ⊂ D0 with boundary components l1 and
l2 then, by the Basic Structure Theorem, each component must contain a zero of
Q(z) dz2. In particular, p1 �= p2 in this case. Suppose that l1 contains a zero p1
and that p1 ∈ L∞. Then L∞ contains a critical trajectory γ′, which has both its
end points at p1. There is one more critical trajectory γ′′, which has one of its end
points at p1. This trajectory γ′′ is either lies on the boundary of the circle domain

D∞ or it lies on the boundary of the ring domain D̂. Therefore the second end
point of γ′′ must be at a zero ofQ(z) dz2. Since the only remaining zero is p2, which
lies on the boundary component l2 not intersecting l1, we obtain a contradiction
with our assumption. The latter shows that DQ does not have ring domains.

Next, we will classify topological types of domain configurations according
to the number of circle domains in DQ. The first digit in our further classifica-
tions stands for the section where this classification is introduced. The second and
further digits will denote the case under consideration.

6.1. Assume first that DQ contains three circle domains D∞ � ∞, D−1 � −1, and
D1 � 1. Then, of course, there are no strip domains in DQ. In this case, the domains
D∞, D−1, D1 constitute an extremal configuration of the Jenkins extremal problem
for the weighted sum of reduced moduli with appropriate choice of positive weights
α∞, α−1, and α1; see, for example, [34], [31], [32]. More precisely, the problem is
to find all possible configurations realizing the following maximum:

max
(
α2
∞m(B∞,∞) + α2

−1m(B−1,−1) + α2
1m(B1, 1)

)
(6.4)

over all triples of non-overlapping simply connected domains B∞ � ∞, B−1 � −1,
and B1 � 1. Here, m(B, z0) stands for the reduced module of a simply connected
domain B with respect to the point z0 ∈ B; see [22, p.24].
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Since the extremal configuration of problem (6.4) is unique it follows that
the domains D∞, D−1, and D1 are symmetric with respect to the real axis. In
particular, the zeros p1 and p2 are either both real or they are complex conjugates
of each other. Of course, this symmetry property of zeros can be derived directly
from the fact that the leading coefficient of the Laurent expansion of Q(z) at
each its pole is negative in the case under consideration. We have three essentially
different possible positions for the zeros:

(a) −1 < p2 < p1 < 1,
(b) 1 < p2 < p1 or p1 < p2 < −1,
(c) p1 = p2 = p, where 'p > 0.

We note here that in the case when −1 < p2 < 1 and, in addition, p1 > 1 or
p1 < −1 the domain configuration DQ must contain a strip domain.

Case (a). The trajectory structure of Q(z) dz2 corresponding to this case is
shown in Figure 1a. There are three critical trajectories: γ−1, which is on the
boundary of D−1 and has both its end points at z = p2; γ1, which is on the
boundary of D1 and has both its end points at z = p1, and γ0, which is the
segment [p2, p1].

Case (b). An example of a domain configuration for the case 1 < p2 < p1 is
shown in Figure 1b. The boundary of D1 consists of a single critical trajectory γ1
having both end points at p2. The boundary of D−1 consists of critical trajectories
γ∞, γ1, and γ0, which is the segment [p2, p1]. In the case p1 < p2 < −1, the domain
configuration is similar.

Case (c). Since the domain configuration is symmetric, p1 and p2 both belong
to the boundary of D∞. Furthermore, there are three critical trajectories: γ−1,
which joins p1 and p2 and intersects the real axis at some point d−1 < −1, γ1,
which joins p1 and p2 and intersects the real axis at some point d1 > 1, and γ0,
which joins p1 and p2 and intersects the real axis at some point d0, −1 < d0 < 1. In
this case, γ1 ∪γ0 ⊂ ∂D1, γ−1 ∪γ0 ⊂ ∂D−1. An example of a domain configuration
of this type is shown in Figure 1c.

6.2. Next we consider the case when DQ has exactly two circle domains. Suppose
that these domains areD∞ � ∞ andD−1 � −1. In this case it is not difficult to see
that L∞ contains exactly one zero. Indeed, if p1, p2 ∈ L∞, then L∞ must contain
one or two critical trajectories joining p1 and p2. Suppose that L∞ contains one
such trajectory, call it γ0. Since p1, p2 ∈ L∞ the boundary of D∞ must contain a
trajectory γ1, which has both its end points at p1 and a trajectory γ−1, which has
both its end points at p2. Thus, γ1 ∪{p1} and γ−1 ∪ {p2} each surrounds a simply
connected domain, which must contain a critical point of Q(z) dz2. This implies
that z = −1 and z = 1 are centers of circle domains of Q(z) dz2, which is the case
considered in part 6.1(a).

If L∞ contains two critical trajectories joining p1 and p2, then there are
critical trajectories γ′ having one of its end points at p1 and γ′′ having one of its
end points at p2. If γ

′ = γ′′, then D0\γ′ consists of two simply connected domains,
which in this case must be circle domains of Q(z) dz2 as it is shown in Figure 1c.
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If γ′ �= γ′′, then each of these trajectories must have its second end point at
one of the poles z = −1 or z = 1. Moreover, if γ′ has an end point at z = −1 then
γ′′ must have its end point at z = 1. Thus, there is no second circle domain of
Q(z) dz2 in this case. Instead, there is one circle domain D∞ and a strip domain,
call it G2, as it shown in Figures 3a–3e.

Now, let p1 be the only zero of Q(z) dz2 lying on L∞. Then L∞ consists of a
single critical trajectory of Q(z) dz2, call it γ∞, together with its end points, each
of which is at p1. There is one more critical trajectory, call it γ+

1 , that has one of
its end points at p1. Then the second end point of γ+

1 is either at the point p2 or
at the second-order pole at z = 1.

If γ+
1 terminates at p2, then there is one more critical trajectory, call it γ2,

having one of its end points at p2. Since D−1 is a circle domain and ∂D−1 contains
at least one zero of Q(z) dz2 it follows that γ2 belongs to the boundary of D−1.
Since γ2 lies on the boundary of D−1 it have to terminate at a finite critical point
of Q(z) dz2 and the only possibility for this is that γ2 terminates at p2. In this
case, γ∞, γ+

1 , and γ2 divide C into three circle domains, the case which was already
discussed in part 6.1(b).

Suppose that γ+
1 joins the points z = p1 and z = 1. Then DQ contains a strip

domain G1. Since z = 1 is the only second-order pole of Q(z) dz2, which has a
non-negative non-zero leading coefficient, the strip domain G1 has both its vertices
at the point z = 1. Furthermore, one side of G1 consists of two critical trajectories
γ∞ and γ+

1 . Therefore there is a critical trajectory, call it γ−
1 of Q(z) dz2 lying

on ∂G1, which joins z = 1 and z = p2. Now, the remaining possibility is that the
boundary of D−1 consists of a single critical trajectory γ−1, which has both its
end points at p2. Then G1 is the only strip domain in DQ and the second side

of G1 consists of the critical trajectories γ−
1 and γ−1. Two examples of a domain

configuration of this type, symmetric and non-symmetric, are shown in Figure 2a
and Figure 2b.

6.3. Finally, we consider the case when D∞ is the only circle domain of Q(z) dz2.
We consider two possibilities.

Case (a). Suppose that both zeros p1 and p2 belong to the boundary of D∞.
As we have found in part 6.2 above, the domain configuration in this case consists
of the circle domain D∞ and the strip domain G2. The boundary of D∞ consists
of two critical trajectories γ+

∞ and γ−
∞ and their end points, while the boundary

of G2 consists of the trajectories γ+
∞, γ−

∞, γ1, and γ−1 and their end points, as it
is shown in Figures 3a–3c.

Case (b). Suppose that the boundary L∞ of D∞ contains only one zero p1.
Then there is a critical trajectory γ∞ having both its end points at p1 such that
L∞ = γ∞ ∪ {p1}. Since p1 is a simple zero of Q(z) dz2 there is one more critical
trajectory having one of its end points at p1. The second end point of this trajectory
is either at the pole z = 1, or at the pole z = −1, or at the zero z = p2. Depending
on which of these possibilities is realized, this trajectory will be denoted by γ1, or
γ−1, or γ0, respectively. Thus, we have two essentially different subcases.
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Case (b1). Suppose that there is a critical trajectory γ0 joining the zeros p1
and p2. Then there are two critical trajectories, call them γ1 and γ−1, each of
which has one of its end point at p2. We note that γ1 �= γ−1. Indeed, if γ1 = γ−1,
then the closed curve γ1 ∪{p2} must enclose a bounded circle domain of Q(z) dz2,
which does not exist. Furthermore, γ1 and γ−1 both cannot have their second end
points at the same pole at z = 1 or z = −1. If this occurs then again γ1 and
γ−1 will enclose a simply connected domain having a single pole of order 2 on
its boundary, which is not possible. The remaining possibility is that one of these
critical trajectories, let assume that γ1, joins the zero z = p2 and the pole at z = 1
while γ−1 joins z = p2 and z = −1.

In this case the domain configuration DQ consists of the circle domain D∞
and the strip domain G2; see Figure 3d and Figure 3e. The boundary of G2 consists
of two sides, call them l1 and l2. The side l1 is the set of boundary points of G2

traversed by the point z moving along γ1 from z = 1 to z = p2 and then along
γ−1 from the point z = p2 to z = −1. The side l2 is the set of boundary points of
G2 traversed by the point z moving along γ1 from z = 1 to z = p2, then along γ0
from z = p2 to z = p1, then along γ∞ from z = p1 to the same point z = p1, then
along γ0 from z = p1 to z = p2, and finally along γ−1 from z = p2 to z = −1.

Case (b2). Suppose that there is a critical trajectory γ1 joining the zero p1
and the pole z = 1. Then there is a strip domain, call it G1, which has both its
vertices at the pole z = 1 and has the critical trajectories γ1 and γ∞ on one of
its sides, call it l11. More precisely, the side l11 is the set of boundary points of G1

traversed by the point z moving along γ1 from z = 1 to z = p1, then along γ∞
from z = p1 to the same point z = p1, and then along γ1 from z = p1 to z = 1.

Let l21 denote the second side of G1. Since a side of a strip domain always
has a finite critical point it follows that l21 contains two critical trajectories, call
them γ+

0 and γ−
0 , which join the pole z = 1 with zero z = p2. There is one critical

trajectory of Q(z) dz2, call it γ−1, which has one of its end points at z = p2. Since
z = −1 is a second-order pole, which is not the center of a circle domain, there
should be at least one critical trajectory of Q(z) dz2 approaching z = −1 at least
in one direction. Since the end points of all critical trajectories, except γ−1, are
already identified and they are not at z = −1, the remaining possibility is that γ−1

has its second end point at z = −1. In this case there is one more strip domain,
call it G2, which has vertices at the poles z = 1 and z = −1 and sides l12 and
l22. Two examples of configurations with one circle domain and two strip domains,
symmetric and non-symmetric, are shown in Figure 4a and Figure 4b. Now we can
identify all sides of G1 and G2. The side l21 is the set of boundary points of G1

traversed by the point z moving along γ+
0 from z = 1 to z = p2 and then along

γ−
0 from z = p2 to z = 1. The side l12 is the set of boundary points of G2 traversed

by the point z moving along γ+
0 from z = 1 to z = p2 and then along γ−1 from

z = p2 to z = −1. Finally, the side l22 is the set of boundary points of G2 traversed
by the point z moving along γ−

0 from z = 1 to z = p2 and then along γ−1 from
z = p2 to z = −1; see Figure 4a and Figure 4b.
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Case (b3). In the case when there is a critical trajectory joining the zero p1
and the pole z = −1, the domain configuration is similar to one described above,
we just have to switch the roles of the poles at z = 1 and z = −1.

Remark 2. We have described above all possible configurations in the generic case;
i.e., under conditions (6.2). The remaining special cases can be obtained from the
generic case as limit cases when p2 → −1, when p2 → p1; etc. In the case p1 = p2,
possible configurations are shown in Figures 5a–5c.

In the case when p2 = −1, p1 �= ±1, possible configurations are shown in
Figures 5d–5g.

In the case when p1 = p2 = 1, the limit position of critical trajectories is just
a circle centers at z = −1 with radius 2configuration and in the case when p1 = 1,
p2 = −1 there is one critical trajectory which is an open interval from z = −1
to z = 1.

7. How parameters determine the type of domain configuration

Our goal in this section is to identify the ranges of the parameters p1 and p2
corresponding to topological types discussed in Section 6. For a fixed p1 with
'p1 �= 0, we will define four regions of the parameter p2. These regions and their
boundary arcs will correspond to domain configurations with specific properties;
see Figure 6.

It will be useful to introduce the following notation. For a ∈ C with 'a �= 0,
by L(a) and H(a) we denote, respectively, an ellipse and hyperbola with foci
at z = 1 and z = −1, which pass through the point z = a. If 'a �= 0, then
the set C \ (L(a) ∪ H(a)) consists of four connected components, which will be
denoted by E+

1 (a), E−
1 (a), E+

−1(a), and E−
−1(a). We assume here that 1 ∈ E+

1 (a),

−1 ∈ E+
−1(a), E

−
1 (a) ∩ R+ �= ∅, and E−

−1(a) ∩ R− �= ∅. Furthermore, assuming

that 'a �= ∅, we define the following open arcs: L+(a) = (L(a)∩ ∂E+
1 (a)) \ {a, ā},

L−(a) = (L(a) ∩ ∂E+
−1(a)) \ {a, ā}, H+(a) = (H(a) ∩ ∂E+

1 (a)) \ {a, ā}, H−(a) =
(H(a) ∩ ∂E−

1 (a)) \ {a, ā}. Let l1(a) and l−1(a) be straight lines passing through
the points 1 and ā and −1 and ā, respectively. Let l+1 (a) and l+−1(a) be open rays
issuing from the points z = 1 and z = −1, respectively, which pass through the
point z = a and let l−1 (a) and l−−1(a) be their complementary rays. The line l1(a)
divides C into two half-planes, we call them P1 and P2 and enumerate such that
P1 � 2. Similarly, the line l−1(a) divides C into two half-planes P3 and P4, where
P3 � −2.

Before we state the main result of this section, we recall the reader that the
local structure of trajectories near a pole z0 is completely determined by the leading
coefficient of the Laurent expansion of Q(z) at z0, see [22, Ch. 3]. In particular,
for the quadratic differential Q(z) dz2 defined by (6.1) we have

Q(z) = −1

4

C1

(z − 1)2
+ higher degrees of (z − 1) as z → 1 (7.1)
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and

Q(z) = −1

4

C−1

(z + 1)2
+ higher degrees of (z + 1) as z → −1.

Then, assuming that p1 �= ±1, p2 �= ±1, we find

C1 = (p1 − 1)(p2 − 1) �= 0 and C−1 = (p1 + 1)(p2 + 1) �= 0. (7.2)

A complete description of sets of pairs p1, p2 with 'p1 > 0 corresponding to
all possible types of domain configurations discussed in Section 6 is given by the
following theorem.

Theorem 4. Let p1 with 'p1 > 0 be fixed. Then the following holds.

7.A. The types of domain configurations DQ correspond to the following sets of the
parameter p2.

(1) If p2 = p̄1, then the domain configuration DQ is of the type 6.1(c).

(2) If p2 ∈ l+1 (p1)\{p̄1}, then DQ has the type 6.2 with circle domains D∞ � ∞
and D1 � 1. Furthermore, if p2 ∈ l+1 (p1) ∩ E+

1 (p1), then p1 ∈ ∂D∞ and if
p2 ∈ l+1 (p1) ∩E−

−1(p1), then p2 ∈ ∂D∞.

If p2 ∈ l+−1(p1) \ {p̄1}, then DQ has the type 6.2 with circle domains

D∞ � ∞ and D−1 � −1. Furthermore, if p2 ∈ l+−1(p1) ∩ E+
−1(p1), then

p1 ∈ ∂D∞ and if p2 ∈ l+−1(p1) ∩ E−
−1(p1), then p2 ∈ ∂D∞.

(3a) If p2 ∈ L(a) \ {p1, p̄1}, then the domain configuration DQ has type 6.3(a).
Furthermore, if p2 ∈ L+(p1), then there is a critical trajectory having
one end point at p2, which in other direction approaches the pole z = 1.
Similarly, if p2 ∈ L−(p1), then there is a critical trajectory having one end
point at p2, which in other direction approaches the pole z = −1.

(3b1) If p2 ∈ H(p1) \ {p1, p̄1}, then DQ has type 6.3(b1). Furthermore, if p2 ∈
H+(p1), then there is a critical trajectory having both end points at p1.
If p2 ∈ H−(p1), then there is a critical trajectory having both end points
at p2.

(3b2) In all remaining cases, i.e., if p2 �∈ L(p1)∪H(p1)∪l+1 (p1)∪l+−1(p1)∪{−1, 1},
the domain configuration DQ belongs to type 6.3(b2). Furthermore, if p2 ∈
(E+

1 (p1) ∪ E+
−1(p1)) \ (l+1 (p1) ∪ l+−1(p1) ∪ {−1, 1}), then p1 ∈ ∂D∞ and if

p2 ∈ (E−
1 (p1) ∪ E−

−1(p1)) \ (l+1 (p1) ∪ l+−1(p1)), then p2 ∈ ∂D∞.

In addition, if p2 ∈ E+
1 (p1)\(l+1 (p1)∪{1}), then the pole z = 1 attracts

only one critical trajectory of the quadratic differential (6.1), which has its
second end point at z = p2 and if p2 ∈ E−

−1(p1) \ (l+1 (p1)), then the pole
z = 1 attracts only one critical trajectory of the quadratic differential (6.1),
which has its second end point at z = p1. If p2 ∈ E+

−1(p1)\(l+−1(p1)∪{−1}),
then the pole z = −1 attracts only one critical trajectory of the quadratic
differential (6.1), which has its second end point at z = p2 and if p2 ∈
E−

1 (p1)\(l+−1(p1)), then the pole z = −1 attracts only one critical trajectory
of the quadratic differential (6.1), which has its second end point at z = p1.
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7.B. The local behavior of the trajectories near the poles z = 1 and z = −1 is
controlled by the position of the zero p2 with respect to the lines l1(p1) and l−1(p1).
Precisely, we have the following possibilities.

(1) If p2 ∈ l−1 (p1) or, respectively, p2 ∈ l−−1(p1), then Q(z) dz2 has radial structure
of trajectories near the pole z = 1 or, respectively, near the pole z = −1.

(2) If p2 ∈ P1 or, respectively, p2 ∈ P2, then the trajectories of Q(z) dz2 ap-
proaching the pole z = 1 spiral counterclockwise or, respectively, clockwise.

If p2 ∈ P3 or, respectively, p2 ∈ P4, then the trajectories of Q(z) dz2 ap-
proaching the pole z = −1 spiral counterclockwise or, respectively, clockwise.

Proof. 7.A(1). We have shown in Section 6 that a domain configuration DQ of the
type 6.1(c) occurs if and only if p2 = p̄1. Thus, we have to consider cases 7.A(2)
and 7.A(3). We first prove statements about positions of zeros p1 and p2 for each
of these cases. Then we will turn to statements about critical trajectories.

7.A(2). A domain configuration DQ contains exactly two circle domains cen-
tered at z = ∞ and z = −1 if and only if C−1 > 0 and C1 is not a positive real
number. This is equivalent to the following conditions:

arg(p1 + 1) = − arg(p2 + 1) mod (2π), (7.3)

arg(p1 − 1) � = − arg(p2 − 1) mod (2π). (7.4)

Geometrically, equations (7.3) and (7.4) mean that the points p1 and p2 lie
on the rays issuing from the pole z = −1, which are symmetric to each other with
respect to the real axis. Furthermore, each ray contains one of these points and
p1 �= p̄2.

Assuming (7.3), (7.4), we claim that p1 ∈ ∂D∞ if and only if |p2+1| < |p1+1|.
First we prove that the claim is true for all p2 sufficiently close to z = −1 if p1 is
fixed. Arguing by contradiction, suppose that there is a sequence sk → −1 such
that arg(sk+1) = − arg(p1+1) and p1 ∈ ∂Dk

−1, sk ∈ ∂Dk
∞ for all k = 1, 2, . . . Here

Dk−1 � −1 and Dk∞ � ∞ denote the corresponding circle domains of the quadratic
differential

Qk(z) dz
2 = − (z − p1)(z − sk)

(z − 1)2(z + 1)2
dz2. (7.5)

Changing variables in (7.5) via z = (sk + 1)ζ − 1 and then dividing the
resulting quadratic differential by δk = |sk +1|, we obtain the following quadratic
differential:

Q̂k(ζ) dζ
2 =

ζ − 1

ζ2
|1 + p1| − δ−1

k (sk + 1)2ζ

(2 − (sk + 1)ζ)2
dζ2. (7.6)

We note that the trajectories of Qk(z) dz
2 correspond under the mapping z =

(sk + 1)ζ − 1 to the trajectories of the quadratic differential Q̂k(ζ) dζ
2. Thus,

Q̂k(ζ) dζ
2 has two circle domains D̂k,∞ � ∞ and D̂k,0 � 0. The zeros of Q̂k(ζ) dζ

2

are at the points

ζ′k = 1 ∈ ∂D̂k,∞, ζ′′k = δk|1 + p1|(sk + 1)−2 ∈ ∂D̂k,0. (7.7)
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From (7.6), we find that

Q̂k(ζ) dζ
2 → Q̂(ζ) dζ2 :=

|1 + p1|
4

ζ − 1

ζ2
dζ2, (7.8)

where convergence is uniform on compact subsets of C \ {0}. Since
Q̂(ζ) = −(|1 + p1|/4)ζ−2 + · · · as ζ → 0

the quadratic differential Q̂(ζ) dζ2 has a circle domain D̂ centered at ζ = 0. Let

γ̂ be a trajectory of Q̂(ζ) dζ2 lying in D̂ and let γ̂k be an arbitrary trajectory of

Q̂k(ζ) dζ
2 lying in the circle domain D̂k,0. Since γ̂k is a Q̂k-geodesic in its class

and by (7.8) we have

|γ̂k|Q̂k
≤ |γ̂|Q̂k

→ |γ̂|Q̂ = |1 + p1|1/2 as k →∞. (7.9)

On the other hand, conditions (7.7) imply that for everyR > 1 there is k0 such that
for every k ≥ k0 there is an arc τk joining the circles {ζ : |ζ| = 1} and {ζ : |ζ| = R},
which lies on regular trajectory of the quadratic differential Q̂k(ζ) dζ

2 lying in the

circle domain D̂k,0. Then, using (7.6), we conclude that there is a constant C > 0
independent on R and k such that

|γ̂k|Q̂k
≥ |τk|Q̂k

=

∫
τk

∣∣∣Q̂k(ζ)
∣∣∣1/2 |dζ| ≥ C

∫ R

1

√
|ζ| − 1

|ζ| d|ζ|

for all k ≥ k0. Since
∫ R

1
x−1

√
x− 1 dx → ∞ as R → ∞, the latter equation

contradicts equation (7.9). Thus, we have proved that if p1 is fixed and p2 is
sufficiently close to z = −1 then p1 ∈ ∂D∞ and p2 ∈ ∂D−1.

Now, we fix p1 with 'p1 �= 0 and consider the set A consisting of all points
p′2 on the ray r = {z : arg(z+1) = − arg(p1+1)} such that p1 ∈ ∂D∞(p1, p2) and
p2 ∈ ∂D−1(p1, p2) for all p2 ∈ r such that |p2 +1| < |p′2 +1|. Here D∞(p1, p2) and
D−1(p1, p2) are corresponding circle domains of the quadratic differential (6.1).
Our argument above shows that A �= ∅. Let pm2 ∈ r be such that

|pm2 + 1| = supp2∈A |p2 + 1|.
Consider the quadratic differential Q(z; p1, p

m
2 ) dz2 of the form (6.1) with p2

replaced by pm2 . Let D∞(p1, p
m
2 ) � ∞ and D−1(p1, p

m
2 ) � −1 be the corresponding

circle domains of Q(z; p1, p
m
2 ) dz2. Since the quadratic differential (6.1) depends

continuously on the parameters p1 and p2, it is not difficult to show, using our
definition of pm2 , that both zeros of Q(z; p1, p

m
2 ) dz2 belong to the boundary of each

of the domains D−1(p1, p
m
2 ) and D∞(p1, p

m
2 ). But, as we have shown in part 6.2

of Section 6, in this case the domain configuration of Q(z; p1, p
m
2 ) dz2 must consist

of three circle domains. Therefore, as we have shown in part 6.1 of Section 6, we
must have pm1 = p̄1.

Thus, we have shown that p2 ∈ ∂D−1 if p1 and p2 satisfy (7.3) and |p2+1| <
|p1 + 1|. The Möbius map w = 3−z

1+z interchanges the poles z = ∞ and z = −1
of the quadratic differential (6.1) and does not change the type of its domain
configuration. Therefore, our argument shows also that p1 ∈ ∂D∞ if |p2 + 1| <



398 B. Shapiro and A. Solynin

|p1 + 1|. This completes the proof of our claim that p1 ∈ ∂D∞ if and only if
|p2 + 1| < |p1 + 1|.

Similarly, if Q(z) dz2 has exactly two circle domains D∞ � ∞ and D1 � 1,
then p2 ∈ ∂D1 and p1 ∈ ∂D∞ if and only if

arg(p1 − 1) = − arg(p2 − 1) mod 2π and |p2 − 1| < |p1 − 1|.

7.A(3). In this part, we will discuss cases 6.3(a), 6.3(b1), and 6.3(b2) discussed in
Section 6. A domain configurationDQ contains exactly one circle domains centered
at z = ∞ if and only if neither C1 or C−1 is a positive real number. As we have
found in Section 6, in this case there exist one or two strip domains G1 and G2

having their vertices at the poles z = 1 and z = −1. In what follows, we will use
the notion of the normalized height h of a strip domain G, which is defined as

h =
1

2π
'
∫
γ

√
Q(z)dz > 0,

where the integral is taken over any rectifiable arc γ ⊂ G connecting the sides
of G.

The sum of normalized heights in the Q-metric of the strip domains, which
have a vertex at the pole z = 1 or at the pole z = −1 can be found using integration
over circles {z : |z−1| = r} and {z : |z+1| = r} of radius r, 0 < r < 1, as follows:

h+ =
1

2π
'
∫
|z−1|=r

√
Q(z)dz =

1

2
'
√
C1 =

1

2
'
√
(p1 − 1)(p2 − 1) (7.10)

if z = 1 and

h− =
1

2π
'
∫
|z+1|=r

√
Q(z)dz =

1

2
'
√
C−1 =

1

2
'
√
(p1 + 1)(p2 + 1) (7.11)

if z = −1. The branches of the radicals in (7.10) and (7.11) are chosen such that
h+ ≥ 0, h− ≥ 0. Also, we assume here that if a strip domain has both vertices at
the same pole then its height is counted twice.

Comparing h+ and h−, we find three possibilities:

1) If h+ = h−, then the domain configuration DQ has only one strip domain
G2. This is the case discussed in parts 6.3(a) and 6.3(b1) in Section 6.

2) The case h+ > h− corresponds to the configuration with two strip domains
G1 and G2 discussed in part 6.3(b2) in Section 6. In this case, the normalized
heights h1 and h2 of the strip domainsG1 and G2 can be calculated as follows:

h1 =
1

2
(h+ − h−) , h2 = h−. (7.12)

3) The case h+ < h−1 corresponds to the configuration with two strip domains
mentioned in part 6.3(b3) in Section 6.

Next, we will identify pairs p1, p2, which correspond to each of the cases
6.3(a), 6.3(b1), and 6.3(b2). The domain configuration DQ has exactly one strip
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domain if and only if h+ = h−. Now, (7.10) and (7.11) imply that the latter
equation is equivalent to the following equation:(√

(p1 − 1)(p2 − 1)−
√
(p̄1 − 1)(p̄2 − 1)

)2

=
(√

(p1 + 1)(p2 + 1)−
√
(p̄1 + 1)(p̄2 + 1)

)2

.

Simplifying this equation, we conclude that h+ = h− if and only if p1 and p2
satisfy the following equation:

p1 + p̄1 + p2 + p̄2 + |p1 − 1||p2 − 1| − |p1 + 1||p2 + 1| = 0 (7.13)

We claim that for a fixed p1 with 'p1 �= 0, the pair p1, p2 satisfies equation
(7.13) if and only if p2 ∈ L(p1) or p2 ∈ H(p1). Indeed, p2 ∈ L(p1) if and only if

|p1 − 1|+ |p1 + 1| = |p2 − 1|+ |p2 + 1|. (7.14)

Similarly, p2 ∈ H(p1) if and only if

|p1 − 1| − |p1 + 1| = |p2 − 1| − |p2 + 1|. (7.15)

Multiplying equations (7.14) and (7.15), after simplification we again obtain equa-
tion (7.13). Therefore, p2 ∈ L(p1) or p2 ∈ H(p1) if and only if the pair p1,
p2 satisfy equation (7.13). Thus, DQ has only one strip domain if and only if
p2 ∈ L(p1) \ {p1, p̄1} or p2 ∈ H(p2) \ {p1, p̄1}. This proves the first parts of state-
ments 6.3(a) and 6.3(b1).

Now, we will prove that p1 ∈ ∂D∞ for all p2 ∈ E+
−1(p1). First, we claim that

p1 ∈ ∂D∞ for all p2 sufficiently close to −1. Arguing by contradiction, suppose
that there is a sequence sk → −1 such that sk ∈ ∂Dk

∞ for all k = 1, 2, . . . Here
Dk∞ � ∞ denotes the corresponding circle domain of the quadratic differential
Qk(z) dz

2 having the form (7.5). From (7.5) we find that

Qk(z) dz
2 → Q̂(z) dz2 := − z − p1

(z + 1)(z − 1)2
dz2,

where convergence is uniform on compact subsets of C \ {−1, 1}. Since the residue
of Q̂(z) at z =∞ equals 1, the quadratic differential Q̂(z) dz2 has a circle domain

D̂∞ � ∞ and if γ ⊂ D̂∞ is a closed trajectory of Q̂(z) dz2, then |γ|Q̂ = 2π.

Let us show that the boundary of D̂∞ consists of a single critical trajectory

γ̂∞ of Q̂(z) dz2, which has both its end points at z = p1. Indeed, ∂D̂∞ consists

of a finite number of critical trajectories of Q̂(z) dz2, which have their end points

at finite critical points. Therefore, if −1 ∈ ∂D̂∞, then ∂D̂∞ contains a critical
trajectory, call it γ̂1, which joins z = −1 and z = p1. Some notations used in this
part of the proof are shown in Figure 7a. This figure shows the limit configuration,

which is, in fact, impossible as we explain below. In this case, ∂D̂∞ must contain
a second critical trajectory, call it γ̂2, which has both its end points at z = p1.

This implies that z = 1 is the only pole of Q̂(z) dz2 lying in a simply connected

domain, call it D̂1, which is bounded by critical trajectories. Hence, D̂1 must be a

circle domain of Q̂(z) dz2. Furthermore, the domain configuration DQ̂ consists of
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two circle domains D̂1, D̂∞, which in this case must be the extremal domains of
Jenkins module problem on the following maximum of the sum of reduced moduli:

m(B∞,∞) + t2m(B1, 1) with some fixed t > 0,

where the maximum is taken over all pairs of simply connected non-overlapping
domainsB∞ � ∞ and B1 � 1. It is well known that such a pair of extremal domains

is unique; see for example, [31]. Therefore, D̂1 and D̂∞ must be symmetric with
respect to the real line (as is shown, for instance, in Figure 5d), which is not the

case since Q̂(z) dz2 has only one zero p1 with 'p1 > 0.

Thus, ∂D̂∞ = γ̂∞ ∪ {p1} and z = −1 lies in the domain complementary to

the closure of D̂∞. Figure 7b illustrates notations used further on in this part of
the proof.

Let γ̃−1 denote the Q̂-geodesic in the class of all curves having their end
points at z = −1, which separate the points z = 1 and z = p1 from z =∞. Since

−1 �∈ ∂D̂∞ it follows that

|γ̃−1|Q̂ > |γ̂∞|Q̂ = 2π. (7.16)

Let ε > 0 be such that

ε <
1

4

(
|γ̃−1|Q̂ − 2π

)
. (7.17)

Let r > 0 be sufficiently small such that

|[−1,−1 + reiθ ]|Q̂ < ε/8 for all 0 ≤ θ < 2π. (7.18)

Now let γ̃r be the shortest in the Q̂-metric among all arcs having their end points
on the circle Cr(−1) = {z : |z + 1| = r} and separating the points z = 1 and
z = p1 from the point z =∞ in the exterior of the circle Cr(−1). It is not difficult
to show that there is at least one such curve γ̃r. It follows from (7.18) that

|γ̃r|Q̂ > |γ̃−1|Q̂ − ε/4. (7.19)

Since sk → −1, sk ∈ ∂Dk
∞, and p1 �∈ Dk

∞, it follows that for every sufficiently
large k there is a regular trajectory γ(k) of Qk(z) dz

2 intersecting the circle Cr(−1)
and such that the arc γ′(k) = γ(k) \ {z : |z + 1| ≤ r} separates the points z = 1
and z = p1 from z =∞ in the exterior of Cr(−1). Since |γ(k)|Qk

= 2π for all k and
since every quadratic differential Qk(z) dz

2 has second-order poles at z = 1 and
z =∞ it follows from (7.5) that there is r0 > 0 small enough such that γ′(k) lies
on the compact set K0 = {z : |z| ≤ 1/r0} \ ({z : |z − 1| < r0} ∪ {z : |z + 1| < r})
for all k sufficiently large. We note also that Qk(z)→ Q̂(z) uniformly on K0. This
implies, in particular, that for all k the Euclidean lengthes of γ′(k) are bounded
by the same constant and that

|γ′(k)|Qk
≥ |γ′(k)|Q̂ − ε/4 (7.20)

for all k sufficiently large.
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Combining (7.16)–(7.20), we obtain the following relations:

2π = |γ(k)|Qk
≥ |γ′(k)|Qk

≥ |γ′(k)|Q̂ − ε/4 ≥ |γ̃r|Q̂ − ε/4

> |γ̃−1|Q̂ − ε/2 > |γ̃−1|Q̂ −
1
2

(
|γ̃−1|Q̂ − 2π

)
= 1

2

(
|γ̃r|Q̂ + 2π

)
> 2π,

which, of course, is absurd. Thus, p2 ∈ ∂D∞ for all p2 sufficiently close to −1.
Let Δ �= ∅ be the set of all p2 ∈ E+

−1(p1) such that p1 ∈ ∂D∞. To prove

that Δ = E+
−1(p1) \ {−1}, it is sufficient to show that Δ is closed and open in

E+
−1(p1). Arguing by contradiction, we suppose that there is a sequence of poles

sk := pk2 ∈ E+
−1(p1), k = 1, 2, . . . , such that sk → s0 := p02 ∈ E+

−1(p1) and

p1 ∈ ∂Dk
∞ for all k = 1, 2, . . . but p1 �∈ ∂D0

∞. In this part of the proof, the index
k = 0, 1, 2, . . ., used in the notationsDk

∞, γ̃k, etc., will denote domains, trajectories,
and other objects corresponding to the quadratic differential Qk(z) dz

2 defined by
(7.5). Since ∂D0

∞ contains a critical point and p1 �∈ ∂D0
∞, we must have p02 ∈ ∂D0

∞.
Figure 7c illustrates some notations used in this part of the proof. In this case,

the boundary ∂D0∞ consists of a single critical trajectory γ0∞ and its end points,
each of which is at z = p02. In addition, there is a critical trajectory of infinite
Q0-length, called it γ̂, which has one end point at p02 and which approaches to the
pole z = −1 or the pole z = 1 in the other direction. Let P0 be a point on γ̂ such
that the Q0-length of the arc γ̂0 of γ̂ joining p02 and P0 equals L, where L > 0 is
sufficiently large. For δ > 0 sufficiently small, let γ⊥

1 and γ⊥
2 denote disjoint open

arcs on the orthogonal trajectory of Q0(z) dz2 passing through P0 such that each
of γ⊥

1 and γ⊥
2 has one end point at P0 and each of them has Q0-length equal to

δ. If δ is small enough, then there is an arc of a trajectory of Q0(z) dz2, call it γ̃,
which connects the second end point of γ⊥

1 with the second end point of γ⊥
2 . Now,

let D(δ) be the domain, the boundary of which consists of the arcs γ0
∞, γ̂0, γ

⊥
1 ,

γ⊥
2 , and their end points. In the terminology explained in Section 3, the domain

D(δ) is a Q0-rectangle of Qo-height δ.
If δ > 0 is sufficiently small, then p1 belong to the bounded component of

C \ D(δ). Let γ̃1 be the arc of a trajectory of Q0(z) dz2, which divide D(δ) into
two Q0-rectangles, each of which has the Q0-height equal to δ/2. Since p1 ∈ ∂Dk

for all k and p1 belongs to the bounded component of C \D(δ), it follows that, for
each k = 1, 2, . . . , there is a closed trajectory γ̂k of Qk(z) dz

2 lying in Dk
∞, which

intersects γ̃1 at some point z̃k ∈ D(δ).
Since Qk(z)→ Q0(z) it follows that, for all sufficiently large k, the trajectory

γ̂k has an arc γ̃k such that γ̃k ⊂ D(δ) and γ̃k has one end point on each of the
arcs γ⊥

1 and γ⊥
2 .

Now, since Qk(z)→ Q0(z) uniformly on D(δ) it follows that

|γ̂k|Qk
≥ |γ̃k|Qk

→ |γ̃1|Q0 = |γ0
∞|Q0 + 2|γ̂0|Q0 = 2π + 2L,

contradicting to the fact that |γ̂k|Qk
= 2π. The latter fact follows from the assump-

tion that γ̂k is a closed trajectory of Qk(z) dz
2, which lies in a circle domain Dk∞.

Thus, we have proved that Δ is closed in E+
−1(p1). A similar argument can

be used to show that Δ is open in E+
−1(p1). The difference is that to construct a
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domain D(δ), we now use an arc γ̃1 of a critical trajectory γ̂1, which has one of its
end points at the pole p1 and not at the pole p01 as we had in the previous case.

Therefore, we have proved that if p2 ∈ E+
−1(p1), then p1 ∈ ∂D∞. The same

argument can be used to prove that if p2 ∈ E+
1 (p1), then p1 ∈ ∂D∞.

Finally, if p2 ∈ E−
1 (p1) or p2 ∈ E−

−1(p1), then we can switch the roles of the
poles p1 and p2 in our previous proof and conclude that p2 ∈ ∂D∞ in these cases.
This proves the first part of statement 6.3(b2).

Now, possible positions of zeros p1 and p2 on boundaries of the corresponding
circle and strip domains are determined for all cases. Next, we will discuss limiting
behavior of critical trajectories. We will give a proof for the most general case
when the domain configuration consists of a circle domain D∞ and strip domains
G1 and G2. In all other cases proofs are similar.

Let Δ denote the set of pairs (p1, p2), for which the limiting behavior of
critical trajectories is shown in Fig. 4a or in more general case in Fig. 4b. That is
when γ1 joins p1 ∈ ∂D∞ ∩ ∂G1 and z = 1, γ−1 joins p2 ∈ ∂G1 ∩ ∂G2 and z = −1,
and γ+

0 and γ−
0 each joins p2 and z = 1. First, we note that Δ is not empty since

(p1, p2) ∈ Δ when p1 > 1 and −p1 < p2 < −1. In this case the intervals (p2,−1)
and (1, p1) represent critical trajectories γ1 and γ−1 and critical trajectories γ+

0

and γ−
0 connect a zero at p2 with a pole at z = 1; see Fig. 4a.
We claim that Δ is open. To prove this claim, suppose that (p01, p

0
2) ∈ Δ and

that (pk1 , p
k
2)→ (p01, p

0
2) as k →∞, k = 1, 2, . . . Fix ε > small enough and consider

the arc γ0
1(ε) = γ0

1 \ {z : |z− 1| < ε} of the critical trajectory γ0
1 , which goes from

p01 to the pole z = 1. Since (pk1 , p
k
2)→ (p01, p

0
2) it follows that for all k sufficiently big

there is a critical trajectory γk
1 having one point at pk1 which has a subarc γk

1 (ε)
which lies in the ε/10-neighborhood of the arc γ0

1(ε). In particular, eventually,
γk
1 (ε) enters the disk {z : |z − 1| < ε}. Therefore, it follows from the standard

continuity argument and Lemma 4 that γk
1 approaches the pole z = 1. The same

argument works for all other critical trajectories of the quadratic differential (6.1)
with p1 = pk1 , p2 = pk2 . Thus, we have proved that Δ is open.

Same argument can be applied to show that all other sets of points (p1, p2)
responsible for different types of limiting behavior of critical trajectories mentioned
in part 6.3(b2) of Theorem 4 are also nonempty and open. The latter implies that
each of these sets must coincide with some connected component of the set C \
(L(p1)∪H(p1)). This proves the desired statement in the case under consideration.

7.B. The local behavior of trajectories near second-order poles at z = 1 and z = −1
is controlled by Laurent coefficients C1 and C−1, respectively, which are given by
formula (7.2). The radial structure near z = 1 or near z = −1 occurs if and only
if C1 < 0 or C−1 < 0, respectively. The latter inequalities are equivalent to the
following relations:

arg(p1 − 1) = − arg(p2 − 1) + π (7.21)

or

arg(p1 + 1) = − arg(p2 + 1) + π. (7.22)
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Now, statement (1) about radial behavior follows from (7.21) and (7.22).
Next, trajectories of Q(z) dz2 approaching the pole z = 1 spiral clockwise if

and only if 0 < argC1 < π. The latter is equivalent to the inequalities:

− arg p1 − 1 < arg(p2 − 1) < − arg(p1 − 1) + π,

which imply the desired statement for the case when trajectories of Q(z) dz2 ap-
proaching z = 1 spiral clockwise. In the remaining cases the proof is similar.

The proof of Theorem 4 is now complete. �
Remark 3. The case when 'p1 = 0 but 'p2 �= 0 can be reduced to the case
covered by Theorem 4 by changing numeration of zeros. In the remaining case
when 'p1 = 0 and 'p2 = 0, the domain configurations are rather simple; they are
symmetric with respect to the real axis as it is shown in Figures 1a, 1b, 2a, 3a,
and some other figures.

8. Identifying simple critical geodesics and critical loops

Topological information obtained in Section 6 is sufficient to identify all critical
geodesics and all critical geodesic loops of the quadratic differential (6.1) in all
cases. In particular, we can identify all simple geodesics.

Cases 6.1(a) and 6.1(b); see Figure 1a and Figure 1b. Let γ be a geodesic
joining p1 and p2. Since D∞, D1, and D−1 are simply connected and p1 ∈ ∂D∞ ∩
∂D1 and p2 ∈ ∂D∞∩∂D−1 it follows from Lemma 4 that γ does not intersect D∞,
D1, and D−1. In this case, γ must be composed of a finite numbers of copies of
γ0, a finite number of copies of γ1, and a finite number of copies of γ−1. Therefore
the only simple geodesic joining p1 and p2 in this case is the segment γ0 = [p2, p1].

In addition, by Lemma 5, γ1 is the only simple non-degenerate geodesic from
the point p1 to itself and γ−1 is the only short geodesic from p2 to p2.

Case 6.1(c); see Figure 1c. As in the previous case, any geodesic γ joining p1
and p2 must be composed of a finite number of copies of γ0, a finite number of
copies of γ1, and a finite number of copies of γ−1. Thus, in this case there exist
exactly three simple geodesics joining p1 and p2, which are γ0, γ1, and γ−1. By
Lemma 5, there are no geodesic loops in this case.

Case 6.2; see Figures 2a, 2b. Suppose that DQ consists of circle domains D∞
andD−1 and a strip domain G1. Let γ be a geodesic joining p1 and p2. If γ contains
a point ζ ∈ γ−1 or a point ζ ∈ γ∞, then it follows from Lemma 4 that γ−1 or,
respectively, γ∞ is a subarc of γ. Thus, γ is not simple in these cases.

Suppose now that γ ⊂ G1 ∪ γ+
1 ∪ γ−

1 . Since G1 is a strip domain the function
w = F (z) defined by

F (z) =
1

2π

∫ z

p1

√
Q(z)dz, (8.1)

with an appropriate choice of the radical, maps G1 conformally and one-to-one
onto the horizontal strip Sh1 , where Sh = {w : 0 < 'w < h1}, in such a way
that the trajectory γ∞ is mapped onto an interval (x1, x

′
1) ⊂ R with x1 = 0 and
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x′
1 = 1. Here h1 is the normalized height of the strip domain G1 defined by (7.12).

Figure 8a and Figure 9a illustrate some notions relevant to Case 6.2. To simplify
notations in our figures, we will use the same notations for Q-geodesics (such as
γ∞, γ11, γ

′
12, etc.) in the z-plane and for their images under the mapping w = F (z)

in the w-plane.

The indefinite integral Φ(z) = 1
2π

∫ √
Q(z)dz can be expressed explicitly in

terms of elementary functions as follows:

Φ(z) = 1
4πi

(√
(p1 − 1)(p2 − 1) log(z − 1)−

√
(p1 + 1)(p2 + 1) log(z + 1)

+ 4 log(
√
z − p1 +

√
z − p2) (8.2)

+ 2
√
(p1 + 1)(p2 + 1) log(

√
(p1 + 1)(z − p2)−

√
(p2 + 1)(z − p1))

− 2
√
(p1 − 1)(p2 − 1) log(

√
(p1 − 1)(z − p2)−

√
(p2 − 1)(z − p1))

)
.

Equation (8.2) can be verified by straightforward differentiation. Alternatively, it
can be verified with Mathematica or Maple. With (8.2) at hands, the function F (z)
can be written as

F (z) = Φ(z)− Φ(p1), (8.3)

where

Φ(p1) =
1

4πi

(
2 +

√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

)
log(p1 − p2). (8.4)

Calculating Φ(p2), after some algebra, we find that:

F (p2) =
1

2
+

1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

)
. (8.5)

Of course, all branches of the radicals and logarithms in (8.2)–(8.5) have to be
appropriately chosen.

To explain more precisely our choice of branches of multi-valued functions
in (8.2)–(8.5), we note that the points p1, p2 and points of the arcs γ+

1 and γ−
1

each represents two distinct boundary points of G1 and therefore every such point
has two images under the mapping F (z). These images will be denoted by x1(ζ)
and x′

1(ζ) if ζ ∈ γ+
1 ∪ {p1} and by x2(ζ) + ih1 and x′

2(ζ) + ih1 if ζ ∈ γ−
1 ∪ {p2}.

We assume here that x1(ζ) < x′
1(ζ) for all ζ ∈ γ+

1 ∪ {p1} and x2(ζ) < x′
2(ζ)

for all ζ ∈ γ−
1 ∪ {p2}. In accordance with our notation above, x1(p1) = x1 = 0

and x′
1(p1) = x′

1 = 1. We also will abbreviate x2(p2) and x′
2(p2) as x2 and x′

2,
respectively.

For every ζ ∈ γ+
1 , the segments [x1(ζ), x1] and [x′

1, x
′
1(ζ)] are the images of

the same arc on γ+
1 . Therefore they have equal lengthes. Similarly, the segments

[x2(ζ) + ih1, x2 + ih1] and [x′
2 + ih1, x

′
2(ζ) + ih1] have equal lengthes. Thus, for

every ζ ∈ γ+
1 and every ζ ∈ γ−

1 , we have, respectively:

x1 − x1(ζ) = x′
1(ζ)− x′

1 and x2 − x2(ζ) = x′
2(ζ)− x′

2. (8.6)
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We know that the preimage under the mapping F (z) of every straight line
segment is a geodesic. This immediately implies that in the case under considera-
tion there exist four simple critical geodesics, which are the following preimages:

γ12 = F−1((x1, x2 + ih1)), γ′
12 = F−1((x1, x

′
2 + ih1)),

γ21 = F−1((x′
1, x2 + ih1)), γ′

21 = F−1((x′
1, x

′
2 + ih1)).

(8.7)

The geodesic loops γ∞ and γ−1 are the following preimeges:

γ∞ = F−1((x1, x1)), γ−1 = F−1((x2 + ih1, x
′
2 + ih1)). (8.8)

We claim that there is no other simple geodesic joining the points p1 and p2.
Figure 9a illustrates some notation used in the proof of this claim. Suppose that
τ is a geodesic ray issuing from p1 into the region G1. Let τk, k = 1, . . . , N , be
connected components of the intersection τ ∩G1 enumerated in their natural order
on τ . In particular, τ1 starts at p1. We may have finite or infinite number of such
components. Thus, N is a finite number or N = ∞. Let lk = F (τk). Since all τk
lie on the same geodesic it follows that lk are parallel line intervals in S joining
the real axis and the horizontal line Lh1 , where Lh = {w : 'w = h}. Let v′k and
v′′k be the initial point and terminal point of lk, respectively. Then v′k = e′k and
v′′k = e′′k + ih1 with real e′k and e′′k if k is odd and v′k = e′k + ih1, v

′′
k = e′′k with real

e′k and e′′k if k is even.

The interval l1 may start at x1 or at x′
1. To be definite, suppose that e′1 = x1.

For the position of e′′1 we have the following possibilities:

(a) e′′1 = x2 or e′′1 = x′
2. In this case, τ1 = γ12 or τ1 = γ′

12. Thus we obtain two
out of four geodesics in (8.7).

(b) x1 < e′′1 < x′
1. In this case, τ1 has its end point on γ−1. By Lemma 4, the

continuation of τ1 as a geodesic will stay in D−1 and will approach to the
pole z = −1. Thus, τ is not a geodesic from p1 to p2 or a geodesic loop from
p1 to itself in this case.

(c) e′′1 > x′
2. Let d = e′′1 − x′

2. It follows from (8.6) that e′2 = x2 − d. Then
e′′2 = x1−d. In general, e′2k−1 = x′

1+(k−1)d, e′′2k−1 = x′
2+kd for k = 1, 2, . . .,

and e′2k = x2 − kd, e′′2k = x1 − kd for k = 1, 2, . . .. Thus, τ cannot terminate
at p1 or p2. Instead, τ approaches to the pole at z = 1 as a logarithmic spiral.

(d) e′′1 < x2. Let d0 = x2− e′′1 . Then e′2 = x′
2 + d0 by (8.6). For the position of e′′2

we have three possibilities.
(α) x1 < e′′2 < x′

1. In this case by Lemma 4, the continuation of τ2 as a
geodesic ray will stay in D∞ and will approach to the pole z = ∞.
Thus, τ is not a geodesic from p1 to p2 or a geodesic loop in this case.

(β) e′′2 = x′
1. In this case, τ is a critical geodesic loop γ11 = F−1((x1, v

′′
1 ] ∪

[v′2, x′
1)) from p1 to itself. We emphasize here, that since the segments

l1 and l2 are parallel a critical geodesic loop from p1 to itself occurs if
and only if |γ∞|Q = x′

1 − x1 > x′
2 − x2 = |γ−1|Q. If |γ∞|Q < |γ−1|Q,

then there is a critical geodesic loop γ22 with end points at p2.
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(γ) e′′2 > x′
1. Let d = e′′2−x′

1. Then, as in the case c), we obtain that e′2k+1 =
x1 − kd, e′′2k+1 = x2 − d0 − kd for k = 1, 2, . . ., and e′2k = x′

2 + d0 + kd,
e′′2k = x′

1 + kd for k = 1, 2, . . .. Therefore, τ does not terminate at p1 or
p2. Instead, τ approaches to the pole at z = 1 as a logarithmic spiral.

If l1 has its initial point at x′
1, the same argument shows that there are

exactly two geodesics joining p1 and p2, which are the geodesics γ21 and γ′
21 defined

by (8.7).

Combining our findings for Case 6.2, we conclude that in this case there exist
exactly four distinct geodesics joining p1 and p2, which are given by (8.7). The
geodesic loops γ∞ and γ−1 are given by (8.8). In addition, if |γ∞|Q �= |γ−1|Q, then
there is exactly one geodesic loop containing the pole z = 1 in its interior domain,
which has its end points at a zero of Q(z) dz2. This loop has the pole z = 1 in
its interior domain, which does not contain other critical points of Q(z) dz2, and
has both its end points at p1 or at p2, if |γ∞|Q > |γ−1|Q or |γ∞|Q < |γ−1|Q,
respectively.

Finally, if |γ∞|Q = |γ−1|Q, then the geodesics γ12 and γ′
21 together with points

z = p1 and p2 form a boundary of a simply connected bounded domain, which
contains the pole z = 1 and does not contain other critical points of Q(z) dz2.
There are no geodesic loops containing z = 1 in its interior domain in this case.

The argument based on the construction of parallel segments divergent to
∞, which was used above to prove non-existence of some geodesics, will be used
for the same purpose in several other cases considered below. Since the detailed
construction is rather lengthy, the detailed exposition will be given for one more
case when we have two strip domains. In other cases, we will just refer to this
argument (which actually is rather standard, see [34, Ch. IV]) and call it the
“proof by construction of divergent geodesic segments”.

Case 6.3(a); see Figure 8b. In this case, the domain configuration DQ consists
of a circle domain D∞ and a strip domain G2 having its vertices at the poles z = 1
and z = −1. The function F (z) defined by (8.1) maps G2 conformally and one-
to-one onto the strip Sh1 such that the trajectory γ+

∞ is mapped onto the interval
(x1, x2) ⊂ R with x1 = 0 and some x2, 0 < x2 < 1. The points z = p1 and z = p2
each has two images under the mapping F (z). Let x1 = 0 and x′

1 + ih1 with some
real x′

1 be the images of p1 and let x2 and x′
2 + ih1 with x′

2 = x′
1 + (1 − x2) be

the images of p2. Arguing as in Case 6.2, one can easily find four distinct simple
geodesics joining the points p1 and p2. These geodesics are:

γ12 = F−1((x1, x2)) = γ+
∞, γ′

12 = F−1((x′
1 + ih1, x

′
2 + ih1)) = γ−

∞,

γ21 = F−1((x1, x
′
2 + ih1)), γ′

21 = F−1((x2, x
′
1 + ih1)).

In addition, there are two critical geodesic loops:

γ11 = F−1((x1, x
′
1 + ih1)) and γ22 = F−1((x2, x

′
2 + ih1)).

It follows from Lemma 5 that there are no other such loops.
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Using the proof by construction of divergent geodesic segments as in Case
6.2, we can show that there are no other simple geodesics joining p1 and p2.

Case 6.3(b1); see Figure 8c. We still have a circle domain D∞ and a strip
domain G2. In this case, the function F (z) defined by (8.1) as in Case 6.2 maps
G2 conformally and one-to-one onto Sh1 such that γ∞ is mapped onto the interval
(x1, x

′
1) ⊂ R, where x1 = 0 and x′

1 = 1. The difference is that now the point p2
represents three boundary points of G2. Two of them belong to the side l2 and the
third point belongs to the side l1. Accordingly, there are three images of p2 under
the mapping F (z), which we will denote by x2 + ih1, x

′
2, and x′′

2 . Here x2 may be
any real number while x′

2 and x′′
2 satisfy the following conditions:

x′
2 > x′

1, x′′
2 < x1, and x′

2 − x′
1 = x1 − x′′

2 .

In this case, there are three short geodesics, which are the following preim-
ages:

γ0 = F−1((x′′
1 , x1)) = F−1((x′

1, x
′
2))

and

γ12 = F−1((x1, x2 + ih1)), γ′
12 = F−1((x′

1, x2 + ih1)).

In addition, there are three geodesic loops:

γ∞ = F−1((x1, x
′
1)), γ′

22 = F−1((x2 + ih1, x
′
2)), γ′′

22 = F−1((x2 + ih1, x
′′
2 )).

Using the proof by construction of divergent segments as above, it is not
difficult to show that there are no other simple geodesics joining the points p1
and p2.

Case 6.3(b2). This is the most general case with many subcases illustrated in
Figures 10a–10i. In this case we have a circle domain D∞ and two strip domains
G1 and G2. We assume that DQ has topological type shown in Figure 4b. In other
cases the proof follows same lines. The function F (z) defined by (8.1) maps G1

conformally and one-to-one onto the strip Sh1 such that γ∞ is mapped onto the
interval (x1, x

′
1) ⊂ R, where x1 = 0 and x′

1 = 1. The point p2 represents one
boundary point of G1 and two boundary points of G2. Let x2 + ih1 be the image
of p2 considered as a boundary point of G1. Then the trajectory γ+

0 considered as
boundary arc of G1 is mapped onto the ray r1 = {w = t + ih1 : t < x2}, while
the trajectory γ−

0 is mapped onto the ray r2 = {w = t+ ih1 : t > x2}. The func-
tion F (z) can be continued analytically through the trajectory γ+

0 . The continued
function (for which we keep our previous notation F (z)) maps G2 conformally and
one-to-one onto the strip S(h1, h) = {w : h1 < 'w < h} with h = h1 + h2, where
h1 and h2 are defined by (7.12). Two boundary points of G2 situated at p2 are
mapped onto the points x2 + ih1 and x′

2 + ih with some x′
2 ∈ R. Thus, the domain

D̃ = G1 ∪ G2 ∪ γ+
0 is mapped by F (z) conformally and one-to-one onto the slit

strip Ŝ(h1, h) = {w : 0 < 'w < h} \ {w = t+ ih1 : t ≥ x2}.
We note that every boundary point ζ ∈ γ1∪γ−1∪γ−

0 under the mapping F (z)
has two images w1(ζ) and w2(ζ), which satisfy the following conditions similar to
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conditions (8.6):

x1 − w1(ζ) = w2(ζ) − x′
1 > 0 if ζ ∈ γ1, (8.9)

w1(ζ) = u1(ζ) + ih, w2(ζ) = u2(ζ) + ih1, (8.10)

where x′
2 − u1(ζ) = u2(ζ) − x2 > 0 if ζ ∈ γ−

0 , and

w1(ζ) = u1(ζ) + ih, w2(ζ) = u2(ζ) + ih1,

where u1(ζ)− x′
2 = u2(ζ) − x2 > 0 if ζ ∈ γ−1.

Consider four straight lines Pk, k = 1, 2, 3, 4, where P2 passes through x′
1 and

x2 + ih1, P3 passes through x1 and x2 + ih1, P1 passes through x1 and is parallel
to P2, and P4 passes through x′

1 and is parallel to P3. Let uk+ ih denote the point
of intersection of Pk and the horizontal line L(h), where L(m) stands for the line
{w : 'w = m}. Then the points uk + ih, k = 1, 2, 3, 4, are ordered in the positive
direction on L(h); see Figure 10a.

Next, we consider five possible positions for x′
2, which correspond to “non-

degenerate” cases and four positions corresponding to “degenerate” cases. Fig-
ures 10a–10i illustrate our constructions of critical geodesics and critical geodesic
loops in all these cases. First, we will work with non-degenerate cases, which are
cases (a), (c), (e), (g), and (i) and after that we will briefly mention degenerate
cases (b), (d), (f), and (h).

(a) x′
2 < u1. Then the slit strip S1 contains four intervals: (x1, x2+ih1), (x

′
1, x2+

ih1), (x1, x
′
2+ih), and (x′

1, x
′
2+ih). Therefore the preimages of these intervals

under the mapping F (z) provide four distinct geodesics joining the points p1
and p2:

γ12 = F−1((x1, x2 + ih1)), γ′
12 = F−1((x′

1, x2 + ih1)),

γ21 = F−1((x1, x
′
2 + ih)), γ′

21 = F−1((x′
1, x

′
2 + ih)).

(8.11)

In addition, there are two critical geodesic loops:

γ∞ = F−1((x1, x
′
1)) and γ22 = F−1((x2 + ih1, x

′
2 + ih)). (8.12)

The curve γ22 ∪ {p2} bounds a simply connected domain, call it D−1, which
contains the trajectory γ2 and the pole z = −1.

One more critical geodesic loop can be found as follows. Let P5 be
the line through x′

2 + ih that is parallel to P1 and let u′
5 be the point of

intersection of P5 with the real axis. It follows from elementary geometry
that there exists a point u5, u′

5 < u5 < x1 such that the line segments
[x′

2 + ih, u5] and [u6, x2 + ih1] with u6 = x′
1 + x1 − u5 are parallel to each

other. Therefore, it follows from equation (8.9) that the preimage γ′
22 =

F−1((x′
2 + ih, u5]∪ [u6, x2 + ih1)) is a geodesic loop from p2 to p2 containing

the pole z = 1 in its interior domain.
We claim that there no other simple critical geodesics in this case. The

proof is by the method of construction of divergent geodesic segments. An
example of such construction for the case under consideration is shown in
Figure 9b.
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Suppose that τ is a geodesic ray issuing from p1 into the region G̃.
Let τk, k = 1, . . . , N , where N is a finite integer or N = ∞, be connected

component of τ ∩ G̃ enumerated in the natural order on τ . Let lk = F (τk)
and let e′k and e′′k be the initial and terminal points of lk, respectively.

The interval l1 may start at x1 or at x′
1. To be definite, assume that

e′1 = x1. Then for e′′1 we have the following cases:

(α) e′′1 = x′
2 − d1 + ih with some d1 > 0,

(β) e′′1 = x′
2 + d1 + ih with some d1 > 0,

(γ) e′′1 = x2 + d1 + ih1 with some d1 > 0.

We give a proof for the case α). In two other case the proof is similar.
By (8.10), e′2 = x2 + d1 + ih1 and e′′2 > x′

1. Let d = e′′2 − x′
1. Continuing, we

find the following expressions for the end points of the segments lk:

e′2k−1 = x1 + (k − 1)d, e′′2k−1 = x′
2 + d1 + (k − 1)d+ ih,

e′2k = x2 + d1 + (k − 1)d+ ih1, e′′2k = x′
1 + kd.

Thus, in this case τ cannot terminate at p2. Instead, it approaches to the
pole z = 1 as a logarithmic spiral.

(c) u1 < x′
2 < u2. In this case we still have geodesics (8.11) and loops (8.12). The

only difference is that we cannot construct the loop γ′
22 as in part (a). Instead,

we can construct a loop γ′
11 from p1 to p1. Indeed, using elementary geometry,

we easily find that there is a point u7+ih with u7 < x′
2 such that the segments

[x1, u7 + ih] and [u8 + ih1, x
′
1] with u8 = x2 + x′

2 − u7 are parallel. Therefore
using (8.10), we conclude that γ′

11 = F−1((x1, u7 + ih] ∪ [u8 + ih1, x1)) is a
critical geodesic loop.

(e) u2 < x′
2 < u3. We still have geodesics γ12, γ

′
12, and γ21 given by (8.11) and

the loops γ∞, γ22, and γ′
11 as in the case c). But the geodesic γ′

21 in (8.11)
should be replaced with a geodesic constructed as follows. From elementary
geometry we find that there is u9 > x2 such that the segments [x′

1, u9 + ih1]
and [u10 + ih, x2 + ih1] with u10 = x′

2 − u9 + x2 are parallel. Using (8.10),
we conclude that the arc γ′

21 = F−1((x′
1, u9 + ih1] ∪ [u10 + ih, x2 + ih1)) is a

geodesic from p1 to p2.
(g) u3 < x′

2 < u4. The geodesics γ12, γ
′
12, and γ′

21 and all three critical geodesic
loops can be constructed as in part (e). The geodesic γ21 in this case can be
constructed as follows. Using elementary geometry one can find that there
is u11 > x2 such that the segments [x1, u11 + ih1] and [u12 + ih, x2 + ih1]
with u12 = x′

2 + x2 − u11 are parallel. Using (8.10) we conclude that the arc
γ21 = F−1((x1, u11 + ih1] ∪ [u12 + ih, x2 + ih1)) is a geodesic from p1 to p2.

(i) x′
2 > u4. The geodesics from p1 to p2 can be constructed as in case (g).

Of course, we still have loops (8.12). The third geodesic critical loop can be
obtained as follows. For u13 < x1 = 0, let l1 be the line segment joining the
real axis and the line L(h), which has its initial point at z = u13 and passes
through z = x2 + i. Let z = u14 + ih be the terminal point of l1 on L(h). We
consider only those values of u13, for which u14 < x′

2. Let d = x′
2 − u14 and

let l2 be a line segment joining the real axis and L(h1), which is parallel to
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l1 and has its initial point at u15 = x′
1 + d. Let z = u16 + ih1 be the terminal

point of l2 on L(h1). It follows from elementary geometry that we can find a
unique value of u13 such that for this value u16 − x2 = x′

2 − u14.
It follows from our construction and from the identification properties

(8.9) and (8.10) that the preimage

γ′
22 = F−1([u13, x2 + ih1) ∪ (x2 + ih1, u14 + ih] ∪ [u15, u16 + ih1])

is a geodesic loop from the point p2 to itself. In addition, this loop contains
the pole z = 1 in its interior, which does not contain other critical points.

Now we consider four “degenerate” cases.

(b) If x′
2 = u1, then we still have critical geodesics (8.11) and critical geodesic

loops (8.12). But there is no critical geodesic loop separating the pole z =
1 from other critical points. Instead, the boundary of a simply connected
domain having z = 1 inside and bounded by critical geodesics will consist of
geodesics γ′

12 and γ22.
(d) If x′

2 = u2, then we have all critical geodesic loops and geodesics γ12, γ
′
12,

and γ21 as in the case u1 < x′
2 < u2 but instead of geodesic γ′

21 we have a
non-simple geodesic, which is the union γ′

12 ∪ γ22.
(f) If x′

2 = u3, then we have all critical geodesic loops and geodesics γ12, γ
′
12,

and γ′
21 as in the case u2 < x′

2 < u3 but instead of geodesic γ21 we have a
non-simple geodesic, which is the union γ12 ∪ γ22.

(h) If x′
2 = u4, then we have all geodesics and loops γ∞, γ22 constructed as in

the case u3 < x′
2 < u4 but instead of the loop γ′

11 we will have non-simple
critical geodesic separating the pole z = 1 from all other critical points. This
non-simple critical geodesic is the union γ12 ∪ γ′

21.

Using the proof by construction of divergent geodesic segments one can show
that in all cases considered above there are no any other critical geodesics or
critical geodesic loops.

Quadratic differentials defined by formula (6.1) depend on four real param-
eters which are real parts and imaginary parts of zeroes p1 and p2. As the reader
may noticed in the generic case configurations shown in Figures 10 also depend on
four real parameters which are x2, x

′
2, h1, and h. This is not a coincidence; in fact,

the set of pairs (p1, p2) is in a one-to-one correspondence with the set of these di-
agrams. To explain how this one-to-one correspondence works, we will show three
basic steps. To be definite, we assume that the domain configuration consists of a
circle domain D∞ and strip domains G1 and G2. Thus, we will consider diagrams
shown in Figures 10.

• As we described above, for any given p1 and p2, the function F (z) defined by
(8.1) maps G1 and G2 onto horizontal strips shown in Figures 10. Further-
more, for fixed p1 and p2, the values of the parameters x2, x

′
2, h1, and h are

uniquely defined via function F (z).
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• To prove that different pairs (p1, p2) define different diagrams, we argue by
contradiction. Suppose that mappings F1(z) and F2(z) constructed by for-
mula (8.1) for distinct pairs (p11, p

1
2) and (p21, p

2
2) produce identical diagrams

of the form shown in Figures 10. Then the composition ϕ = F−1
1 ◦ F2 is well

defined and defines a one-to-one meromorphic mapping from C onto itself.
Since ϕ(1) = 1, ϕ(−1) = −1, and ϕ(∞) = ∞ we conclude that ϕ is the
identity mapping. Thus, ϕ(z) ≡ z and therefore p11 = p21 and p12 = p22.

• Now, we want to show that every diagram of the form shown in Figures 10a–
10i corresponds via a mapping defined by formula (8.1) to a quadratic differ-
ential of the form (6.1) with some p1 and p2.

To show this, we will construct a compact Riemann surface R using
identification of appropriate edges of the diagram. For more general quadratic
differentials, similar construction was used in [32].

To be definite, we will give detailed construction for the diagram shown
in Figure 10a. In all other cases constructions of an appropriate Riemann
surface follow same lines. Consider a domain Ω defined by

Ω = {w : x1 < �w < x′
1, 'w ≤ 0}∪

{w : 0 < 'w < h} \ {w = t+ ih1 : t ≥ x2}.
Thus, Ω is a slit horizontal strip shown in Figure 10a with a vertical half-
strip {w : x1 < �w < x′

1, 'w ≤ 0} attached to this horizontal strip along the
interval (x1, x

′
1); see Figure 11. To construct a Riemann surface R mentioned

above, we identify boundary points of Ω as follows:

iy & 1 + iy for y ≤ 0,
−x & 1 + x for x ≥ 0,

x+ x2 + i(h1 − 0) & −x+ x′
2 + ih for x ≥ 0,

x+ x2 + i(h1 + 0) & x+ x′
2 + ih for x ≥ 0.

(8.13)

After identifying points by rules (8.13), we obtain a surface, which is
homeomorphic to a complex sphere C punctured at three points. These punc-
tures correspond boundary points of Ω situated at ∞. One puncture corre-
sponds to the point of ∂Ω, we call it b1, which is accessible along the path
{z = 1

2 + it} as t → −∞. Second puncture corresponds to a point b2 in ∂Ω,

which is accessible along the path {z = t + ih1+h
2 } as t → ∞. The third

puncture corresponds to two boundary points of Ω; one of them, we call it
b13, is accessible along the path {z = t+ ih1} as t→ −∞ and the other one,
we call it b23, is accessible along the path {z = t+ h1

2 } as t→∞. Adding these
three punctures, we obtain a compact surface R which is homeomorphic to
a sphere C.

Next, we introduce a complex structure on R as follows. Every point
of R corresponding to a point of Ω inherits its complex structure from Ω
as a subset of C. A point of R corresponding to iy inherits its complex
structure from two half-disks {z : |z − iy| < ε,−π/2 ≤ arg(z − iy) ≤ π/2}
and {z : |z − (1 + iy)| < ε, π/2 ≤ arg(z − iy) ≤ 3π/2}. Similarly, every
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point of R corresponding to a finite boundary point of Ω, except those which
corresponds to the points x1, and x2 + ih1, inherits its complex structure
from the corresponding boundary half-disks.

Now we assign complex charts for five remaining special points. For a
point x1 & x′

1 a complex chart can be assigned as follows:

ζ =

{
(w − 1)

2
3 if |w − 1| < ε, 0 ≤ argw ≤ 3π

2 ,

(−w) 2
3 if |w| < ε, −π

2 ≤ argw ≤ π,
(8.14)

where the branches of the radicals are taken such that ζ(w) > 0 when w is
real such that w > 1 or w < 0.

Similarly, to assign a complex chart to a point x2 + ih1 & x′
2 + ih, we

use the following mapping:

ζ =

⎧⎪⎪⎨⎪⎪⎩
(w − (x2 + ih1))

2
3 if |w − (x2 + ih1)| < ε,

0 ≤ arg(w − (x2 + ih1)) ≤ 2π,

(w − (x′
2 + ih))

2
3 if |w − (x′

2 + ih)| < ε,
π ≤ arg(w − (x′

2 + ih)) ≤ 2π,

(8.15)

with appropriate branches of the radicals.
To a point of R corresponding to an infinite boundary point b1, a com-

plex chart can be assigned via the function

ζ = exp(−2πiw) for w such that 0 ≤ �w ≤ 1, 'w < 0, (8.16)

which maps the half-strip {w : 0 ≤ �w ≤ 1, 'w < 0} onto the unit disc
punctured at ζ = 0. This mapping respects the first identification rule in
(8.13) and the origin ζ = 0 represents the point b1.

To assign a complex chart to a puncture corresponding to a pair of
boundary points b13 and b23, we will work with horizontal half-strips H1

3 and
H2

3 defined as follows. The boundary of H1
3 consists of two horizontal rays

{w : w = t : t ≥ u6} and {w = t + ih1 : t ≥ x2} and a line segment
[u6, x2 + ih1]; the boundary of H2

3 consists of two horizontal rays {w : w =
t : t ≤ u5} and {w = t + ih : t ≤ x′

2} and a line segment [u5, x
′
2 + ih].

To construct a required chart, we rotate the half-strip H1
3 by angle π with

respect to the point w = 1/2 and then we glue the result to the half-strip

H2
3 along the interval (−∞, u5). As a result, we obtain a wider half-strip H̃3

the boundary of which consists of horizontal rays {w = t+ ih : t < x′
2} and

{w = t − ih1 : t < 1 − x2} and a line segment [1 − x2 − ih1, x
′
2 + ih]. After

that we map an obtained wider half-strip H̃3 conformally onto the unit disk
in such a way that horizontal rays are mapped onto appropriate logarithmic
spirals. The conformal mapping just described can be expressed explicitly in
the following form:

ζ =

{
exp(2πiC3(1− u5 − w)) if w ∈ H1

3 ,
exp(2πiC3w) if w ∈ H2

3 ,
(8.17)
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where

C3 =
(x2 + x′

2 − 1)− i(h+ h1)

|(x2 + x′
2 − 1)− i(h+ h1)|2

.

In a similar way we can assign a complex chart to the puncture corre-
sponding to the boundary point b2. In this case, we use the following mapping
from the horizontal half-strip H2, the boundary of which consists of the rays
{w = t + ih1 : t ≥ x2} and {w = t + ih : t ≥ x′

2} and a line segment
[x2 + ih1, x

′
2 + ih], onto the unit disk:

ζ = exp(−2πiC2(w − (x2 + ih1))) for w ∈ H2, (8.18)

where

C2 =
(x′

2 − x2)− i(h− h1)

|(x′
2 − x2)− i(h− h1)|2

.

Now, our compact surface R with conformal structure introduced above is
conformally equivalent to the Riemann sphere C. Let Φ(w) be a conformal mapping
from R onto C uniquely determined by conditions

Φ(b1) =∞, Φ(b2) = 1, Φ(b13) = Φ(b23) = −1.

Next, we consider a quadratic differential Q(w) dw2 on R defined by

Q(w) dw2 = 1 · dw2 (8.19)

if w is finite and w �= x1 and w �= x2 + ih1. This quadratic differential can be
extended to the points w = x1 and w = x2 + ih1 as a quadratic differential having
simple zeroes at these points in terms of the local parameters defined by formulas
(8.14) and (8.15), respectively.

Similarly, using local parameters defined by formulas (8.16), (8.17), and
(8.18), we can extend quadratic differential (8.19) to the points of R corresponding
to the infinite boundary points of Ω situated at b1 b2, and b13 & b23, respectively.

We note that the horizontal strips {w : 0 < 'w < h1} and {w : h1 <
'w < h} are strip domains of the quadratic differential (8.19), while the half-strip
{w : 0 ≤ �w ≤ 1, 'w < 0}, which boundary points are identified by the first rule
in (8.13), defines a circle domain of this quadratic differential.

Now, when the quadratic differential (8.19) have been extended to a qua-
dratic differential defined on the whole Riemann surface R, we may use conformal
mapping z = Φ(w) to transplant this quadratic differential to get a quadratic

differential Q̂(z) dz2 defined on C. Since critical points of a quadratic differential

are invariant under conformal mapping, it follows that Q̂(z) dz2 has second-order
poles at the points z = ∞, z = 1 and z = −1 and it has simple zeroes at the
images Φ(x1) and Φ(x2 + ih1) of the points w = x1 and w = x2 + ih1.

Furthermore, the pole z = ∞ belongs to a circle domain of Q̂(z) dz2 and
every trajectory in this circle domain has length 1. Using the above information,

we conclude that Q̂(z) dz2 = 1
4π2Q(z) dz2, where Q(z) dz2 is given by formula (6.1)

with p1 = Φ(x1) and p2 = Φ(x2 + ih1).
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Combining our observations made in this section, we conclude the following:

Every quadratic differential of the form (6.1) having two strip domains
generates a diagram of the type shown in Figures 10a–10i and every dia-
gram of this type corresponds to one and only one quadratic differential
with two strip domains in its domain configuration of the form (6.1).

9. How parameters count critical geodesics and critical loops

In Section 8, we described Q-geodesics corresponding to the quadratic differential
(6.1) in terms of Euclidean geodesics in the w-plane. In this section, we explain how
this information can be used to find the number of short geodesics and geodesic
loops for each pair of zeros p1 and p2.

To be definite, we will work with the case 6.3(b2) of Theorem 4 assuming
that

'p1 > 0, and p2 ∈ E+
−1(p1). (9.1)

In all other cases, the number of short geodesics and geodesic loops can be found
similarly.

Under conditions (9.1), the domain configuration of the quadratic differential
(6.1) consists of domains D∞, G1, and G2 as it is shown in Figure 4a and Figure 4b
and possible configurations of images of G1 and G2 under the mapping (8.1) are
shown in Figures 10a–10i.

Let ε > 0 be sufficiently small and let dz+ε denote a tangent vector to the
trajectory of the quadratic differential (6.1) at z = 1+ ε, which can be found from
the equation Q(z) dz2 > 0. Using (7.1) and (7.2), we find that

arg(dz+ε ) =
π

2
− 1

2
argC1 + o(1) =

π

2
− 1

2
arg((p1 − 1)(p2 − 1)) + o(1), (9.2)

where o(1)→ 0 as ε→ 0. We assume here that −π
2 ≤ arg(dz+ε ) ≤ π

2 .

If 1 + ε ∈ γ1 then the tangent vector dz+ε corresponds to the direction on
γ1 from z = 1 to z = p1. Let α+

ε = α+ + o(1), where α+ is a constant such that
0 ≤ α+ ≤ π, denote the angle formed at the point 1 + ε ∈ γ1 by dz+ε and the
vector −→v = −i, which is tangent to the circle {z : |z − 1| = ε} at z = 1 + ε. It
follows from (9.2) that

α+ = π − 1

2
argC1 = π − 1

2
arg((p1 − 1)(p2 − 1)). (9.3)

Similarly, if dz−ε denote the tangent vector to the trajectory of the quadratic
differential (6.1) at z = −1 + ε, then

arg(dz−ε ) =
π

2
− 1

2
argC−1 + o(1) =

π

2
− 1

2
arg((p1 + 1)(p2 + 1)) + o(1). (9.4)

Suppose that 1 + ε ∈ γ−1 and that d−ε shows direction on γ−1 from z = −1
to z = p2. As before we can find constant α−, 0 ≤ α− ≤ π, such that the angle
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formed at z = −1+ ε ∈ γ−1 by the vectors dz+ε and −→v = −i is equal to α−+ o(1),
where o(1)→ 0 as ε→ 0 and

α− = π − 1

2
argC−1 = π − 1

2
arg((p1 + 1)(p2 + 1)). (9.5)

To relate angles α+ and α− to geometric characteristics of diagrams in Fig-
ures 10a–10i, we recall that geodesics are conformally invariant and that for small
ε > 0 a geodesic loop γ+

ε which passes through the point z = 1+ ε and surrounds
the pole z = 1 is an infinitesimal circle. Therefore the angle formed by the vector
dz+ε and the tangent vector to γ+

ε at z = 1 + ε equals α+ + o(1).

Similarly, the angle formed by the vector dz−ε and the tangent vector to the
corresponding geodesic loop γ−

ε � −1+ ε surrounding the pole at z = −1 is equal
to α− + o(1).

Since geodesics are conformally invariant and since conformal mappings pre-
serve angles, we conclude that trajectories of the quadratic differential Q(w) dw2

defined in Section 8 (see formula (8.19) ) form angles of opening α+ or α− with
the images of the corresponding geodesic loops γ+

ε or γ−
ε , respectively. Since the

metric defined by the quadratic differential (8.19) is Euclidean, it follows that the
corresponding images of geodesic loops are line segments joining pairs of points
identified by relations (8.13).

Using this observation and identification rule −x + x′
2 + ih & x + x2 + ih1,

we conclude that the segment [x2 + ih1, x
′
2 + ih] forms an angle π − α− with the

positive real axis; i.e.,

π − α− = arg((x′
2 − x2) + i(h− h1)). (9.6)

To find an equation for the angle α+, we will use the half-strip H̃3 constructed
at the end of Section 8, which is related to a conformal mapping defined by for-
mula (8.17). In this case, π − α+ is equal to the angle formed by the segment
[1− x2 − ih1, x

′
2 + ih] with the positive real axis; i.e.,

π − α+ = arg((x2 + x′
2 − 1) + i(h+ h1)). (9.7)

Equating the right-hand sides of equations (9.3) and (9.4) to the right-hand
sides of equations (9.7) and (9.6), respectively, we obtain two equations, which
relate parameters x2, x

′
2, h1, and h. Combining this with equations (7.10)–(7.12),

we obtain the following system of four equations:

arg((x2 + x′
2 − 1) + i(h+ h1)) =

1
2 arg((p1 − 1)(p2 − 1))

arg((x′
2 − x2) + i(h− h1)) =

1
2 arg((p1 + 1)(p2 + 1))

h1 = 1
4'

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

)
h = 1

4'
(√

(p1 − 1)(p2 − 1) +
√
(p1 + 1)(p2 + 1)

)
.
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This system of equations can be solved to obtain the following:

x2 + ih1 =
1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

)
,

x′
2 + ih = 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

)
.

(9.8)

Now, when the points x2+ih1 and x′
2+ih are determined, we can give explicit

conditions on the zeros p1 and p2 which correspond to all subcases (a)–(i) of the
case 6.3(b2) discussed in Section 8.

Theorem 5. Suppose that zeros p1 and p2 satisfy conditions (9.1). Then the number
of short geodesics and geodesic loops and their topology are determined by the
following inequalities, which corresponds to the subcases (a)–(i) of Case 6.3(b2)
described in Section 8 and shown in Figures 10a–10i:

Case (a) with four short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< arg

(
1
2 + 1

4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (b) with four short geodesics and two critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
= arg

(
1
2 + 1

4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (c) with four short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(

1
2 + 1

4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< arg

(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< π,

0 < arg
(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< arg

(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (d) with three short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
= arg

(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.
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Case (e) with four short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< arg

(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< π,

0 < arg
(

1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< arg

(
1
2 + 1

4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (f) with three short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(

1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
= arg

(
1
2 + 1

4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (g) with four short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(

1
2 + 1

4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< arg

(
1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< π,

0 < arg
(

1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< arg

(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (h) with four short geodesics and two critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(

1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
= arg

(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< π.

Case (i) with four short geodesics and three critical geodesic loops occurs if
the following conditions are satisfied:

0 < arg
(
− 1

2 + 1
4

(√
(p1 − 1)(p2 − 1) +

√
(p1 + 1)(p2 + 1)

))
< arg

(
1
2 + 1

4

(√
(p1 − 1)(p2 − 1)−

√
(p1 + 1)(p2 + 1)

))
< π.
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10. Some related questions

Our results presented in Sections 6–9 provide complete information concerning
critical trajectories and Q-geodesic of the quadratic differential (6.1). This allows
us to answer many related questions. As an example, we will discuss three questions
originated in the study of limiting distributions of zeros of Jacobi polynomials.

Below, we suppose that p1, p2 ∈ C are fixed. Then we consider the family of
quadratic differentials Qs(z) dz

2 depending on the real parameter s, 0 ≤ s < 2π,
such that

Qs(z) dz
2 := e−isQ(z) dz2 = −e−is (z − p1)(z − p2)

(z − 1)2(z + 1)2
dz2. (10.1)

1) For how many values of s, 0 ≤ s < 2π, the quadratic differential Qs(z) dz
2

has a trajectory loop with end points at p1 and for how many values of s
Qs(z) dz

2 has a trajectory loop with end points at p2?
2) For how many values of s, 0 ≤ s < 2π, the corresponding quadratic differen-

tial Qs(z) dz
2 has a short critical trajectory?

3) How we can find the values of s, 0 ≤ s < 2π, mentioned in questions stated
above?

To answer these questions we need two simple facts:

(a) First, we note that γ is a short trajectory loop or, respectively, a short critical
trajectory for the quadratic differential (10.1) with some s if and only if γ is a
short geodesic loop or, respectively, a short geodesic joining points p1 and p2
for the quadratic differential (6.1). Thus, the numbers of values s in question
1) and question 2), respectively, are bounded by the number of short geodesic
loops and the number of short geodesics, respectively. In the most general
case with one circle domain and two strip domains, these short geodesic loops
and short geodesics were described in Theorem 5 and their images under the
canonical mapping were shown in Figures 10a–10i. Of course, one value of
s can correspond to more than one short geodesic loop and more than one
short geodesic.

(b) To find the values of s in question 3), we use the following observation. If l is a
straight line segment in the image domain Ω forming an angle α, 0 ≤ α < π,
with the direction of the positive real axis, then l is an image under the
canonical mapping (8.1) of an arc of a trajectory of the quadratic differential
(10.1) with

s = 2α. (10.2)

We will use (10.2) to find values of s which turn short geodesic loops and
short geodesics into short trajectory loops and short trajectories, respectively. It is
convenient to introduce notations α∞, α12, α

′
12, α22, α

′
22, α

′′
22, and so on, to denote

the angles formed by corresponding geodesics γ∞, γ12, γ
′
12, γ22, γ

′
22, γ

′′
22, and so

on (considered in the w-plane) with the positive direction of the real axis. Fur-
thermore, we will use notations A(6.1), A(6.1(a)), A(6.2), A(6.3(a)), A(6.3(b1)),
A(6.3(b2)(a)), and so on, to denote the sets of all angles introduced above in the
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cases under consideration; i.e., in the cases 6.1, 6.2, 6.3(a), 6.3(b1), 6.3(b2)(a),
and so on.

Now, we are ready to answer questions stated above. We proceed with two
steps. First, we identify the type of domain configuration DQ. This will provide
us with the first portion of necessary information. We recall that in general there
are at most three geodesic loops centered at z = ∞, z = 1, and z = −1. Thus,
the maximal number of values s in question 1) is at most three. Then we identify
which of the schemes corresponds to the parameters p1, p2 (in the most general
case these schemes are shown in Figures 10a–10i). This will provide us with the
remaining portion of necessary information.

• Suppose that DQ has type 6.1. Then we already have three circle domains
and therefore s = 0 is the only value for which Qsz) dz

2 may have short trajectory
loops. In case 6.1(a), we have short trajectory loops centered at z = 1 and z = −1
and no other such loops. In case 6.1(b) with 1 < p2 < p1 (respectively with
p1 < p2 < −1), we have short trajectory loops centered at z = ∞ and z = 1
(respectively, at z = ∞ and z = −1). In case 6.1(c), there are no short geodesic
loops.

As concerns short critical trajectories for domain configuration of type 6.1,
again s = 0 is the only value for which there are such trajectories. This follows
from the fact discussed in Section 8 that in case 6.1 there are no other simple
geodesics joining p1 and p2. In cases 6.1(a) and 6.1(b), there is a single short
critical trajectory which is the interval γ0 = (p2, p1). In case 6.1(c), there are three
short critical trajectories which are arcs γ0, γ1, and γ−1 shown in Figure 1c.

• Next, we consider the case when DQ has type 6.2. For s = 0, we have
two short trajectory loops. As before, we assume that these loops surround points
z = −1 and z = ∞. In other cases discussion is similar, we just have to switch
roles of the poles of the quadratic differential (10.1).

In this case, A(6.2) = {0, α11, α12, α
′
12, α21, α

′
21}. One more value of s, for

which we may have a short trajectory loop (centered at z = 1) may occur for
s = 2α11 = − arg((1 − p1)(1 − p2)). If |γ∞|Q > |γ−1|Q then we will have a short
geodesic loop from p1 to p1. This loop corresponds to a geodesic γ11 in Figure 8a.
If |γ∞|Q < |γ−1|Q, then we will have a similar short geodesic loop from p2 to p2.
In the case |γ∞|Q = |γ−1|Q, we have α11 = α12 = α′

21. In this case, we do not
have the third short geodesic loop. Instead, we have two short critical trajectories
joining p1 and p2.

By (10.2), the value of s, which corresponds to the third loop (if it exists) is
equal to 2α11. As concerns values of s corresponding to short critical trajectories,
in case 6.2 with |γ∞|Q �= |γ−1|Q we have four such values. These values are 2α12,
2α′

12, 2α21, and 2α′
21 (see Fig. 8a).

If |γ∞|Q = |γ−1|Q, then there are three values of s, which produce short
geodesics from p1 to p2. Two of these values, s = 2α′

12 and s = 2α21, generate
one short critical trajectory each. The third value s = 2α12 generates two short
critical trajectories.
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• Turning to the most general case 6.3, we will give detailed account for
subcases 6.3(b1) and 6.3(b2)(i), in all other subcases consideration is similar.

First, we consider the subcase 6.3(b1) when the domain configuration DQ

consists of one circle domain and one strip domain; see Figures 3a–3e. In this case,
A(6.3(b1)) = {0, α′

22, α
′′
22, α12, α

′
12}. The value s = 0 generates one short trajectory

loop and one short trajectory. The values s = 2α′
22 and s = 2α′′

22 generate one
short trajectory loop each and the values s = 2α12 and s = 2α′

12 generate one
short trajectory each.

Let us consider case 6.3(b2)(i) shown in Figure 10i. We have A(6.3(b2)(i)) =
{0, α22, α

′
22, α12, α

′
12, α21, α

′
21} where all angles are distinct. The values s = 0,

s = 2α22, and s = 2α′
22 generate short trajectory loops γ∞, γ22, and γ′′

22, respec-
tively. Remaining values s = 2α12, s = 2α′

12, s = 2α21, s = 2α′
21 generate short

trajectories γ12, γ
′
12, γ21, and γ′

21, respectively.
Finally, we note that position of points x1, x

′
1, x2+ ih1, and x′

2+ ih are given
explicitly; see formulas (9.8). Using these formulas one can find explicit expressions
for all angles α12, α

′
12, α21, α

′
21, and so on, in all possible cases.

11. Figures Zoo

This section contains all our figures. For convenience, we divide the set of all figures
in eleven groups.

I. Configurations with three circle domains.

Fig. 1a. Three circle domains. Case 6.1(a).
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Fig. 1b. Three circle domains. Case 6.1(b).

Fig. 1c. Three circle domains. Case 6.1(c).
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II. Configurations with two circle domains.

Fig. 2a. Two circle domains. Case 6.2 with symmetric domains.

Fig. 2b. Two circle domains. Case 6.2 with non-symmetric domains.
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III. Configurations with one circle domain and one strip domain.

Fig. 3a. One circle domain. Case 6.3(a) with axial symmetry.

Fig. 3b. One circle domain. Case 6.3(a) with central symmetry.
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Fig. 3c. One circle domain. Case 6.3(a) with non-symmetric domains.

Fig. 3d. One circle domain. Case 6.3(b1) with symmetric domains.
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Fig. 3e. One circle domain. Case 6.3(b1) with non-symmetric domains.

IV. Configurations with one circle domain and two strip domains.

Fig. 4a. One circle domain. Case 6.3(b2) with symmetric domains.
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Fig. 4b. One circle domain. Case 6.3(b2) with non-symmetric domains.

V. Degenerate configurations.

Fig. 5a. Degenerate case with −1 < p1 = p2 < 1.
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Fig. 5b. Degenerate case with p1 = p2 > 1.

Fig. 5c. Degenerate case with p1 = p2, 'p1 > 0.
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Fig. 5d. Degenerate case with p2 = −1, −1 < p1 < 1.

Fig. 5e. Degenerate case with p2 = −1, p1 < −1.
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Fig. 5f. Degenerate case with p2 = −1, p1 > 1.

Fig. 5g. Degenerate case with p2 = −1, 'p1 > 0.
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VI. Type regions.

•
1

•
−1

• q1

•q2

•
p1

•
p1

H+(p1)

H−(p1)

H−(p1)

L+(p1)

L−(p1)

E+
1 (p1)E+

−1(p1)

E−
1 (p1)

E−
−1(p1)

l+1 (p1)

l−1 (p1)

l+−1(p1)

l−−1(p1)

P1P2

P4

P3

Fig. 6. Type regions.

VII. Figures for the proof of Theorem 4.

Fig. 7a. Proof of Theorem 4: Impossible limit configuration.
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Fig. 7b. Proof of Theorem 4: Limit configuration.

Fig. 7c. Proof of Theorem 4: Q0-rectangle D(δ) with trajectories.
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VIII. Geodesics and loops in simple cases.

•

•

x1

v′2 v′′1

•
x′
1

•• •

γ11

γ∞

γ11

γ−1

x2 + ih1 x′
2 + ih1

γ∞

γ12 γ′
21

γ′
12

γ21

Fig. 8a. Geodesics and loops. Case 6.2.

•
x1

•
x2

• •
γ−
∞

x′
1 + ih1 x′

2 + ih1

γ+
∞

γ11 γ22

γ21 γ′
21

Fig. 8b. Geodesics and loops. Case 6.3(a).

•• •
x1x′′

2 x′
2

•
x′
1

•x2 + ih1

γ∞

γ12
γ′
22γ′′

22 γ′
12

γ0 γ0

Fig. 8c. Geodesics and loops. Case 6.3(b1).
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IX. Divergent segments.

•
x1

•
x′
1

• •

γ∞

γ−1

x2 + ih1 x′
2 + ih1

γ∞

l1l3l5 l2 l4 l6· · · · · ·

Fig. 9a. Divergent segments. Case 6.2.

•
x1

•
x′
1

•

•

γ1

γ−1

γ−
0

γ−1• • •

• • •

γ1

γ+
0

γ−
0

γ∞

x′
2 + ih

γ∞

x2 + ih1l1l3l5l7

l2 l4 l6 l8

Fig. 9b. Divergent segments. Case 6.3(b2).

X. Geodesics and loops in the most general case.

•

•

x1

•
x′
1

•••

•

• •

• •

u4 + ihu3 + ihu2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u5 u6
γ∞

x′
2 + ih u1 + ih

γ∞

x2 + ih1

Fig. 10a. Critical geodesics and loops. Case 6.3(b2)(a).
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•
x1

•
x′
1

••

•

• • u4 + ihu3 + ihu2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

γ∞

x′
2 + ih

γ∞

x2 + ih1

Fig. 10b. Critical geodesics and loops. Case 6.3(b2)(b).

•

•

x1

•
x′
1

•••

•

• ••

•

u4 + ihu3 + ihu2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u7

u8

γ∞

x′
2 + ihu1 + ih

γ∞

x2 + ih1

Fig. 10c. Critical geodesics and loops. Case 6.3(b2)(c).

•
x1

•
x′
1

••

•

• ••

•

u4 + ihu3 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u7

u8

γ∞

x′
2 + ihu1 + ih

γ∞

x2 + ih1

Fig. 10d. Critical geodesics and loops. Case 6.3(b2)(d).
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•

•

x1

•
x′
1

•••

•

• ••

••

u4 + ihu3 + ihu2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u10

u8

u7

u9

x′
2 + ihu1 + ih

x2 + ih1

Fig. 10e. Critical geodesics and loops. Case 6.3(b2)(e).

•
x1

•
x′
1

••

••

• • ••

•

u4 + ihu2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u7

u8u9

u10

γ∞

x′
2 + ihu1 + ih

γ∞

x2 + ih1

Fig. 10f. Critical geodesics and loops. Case 6.3(b2)(f).

••

•••

•
x1

•
x′
1

••

•

• • •• u4 + ihu2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u10

u8

u7

u9

u12

u11

x′
2 + ihu1 + ih

x2 + ih1

Fig. 10g. Critical geodesics and loops. Case 6.3(b2)(g).
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•

•
x1

•
x′
1

••

••

• •

•

u2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u9u11

u10 u12

γ∞

x′
2 + ihu1 + ih

γ∞

x2 + ih1

Fig. 10h. Critical geodesics and loops. Case 6.3(b2)(h).

•u10•u14

•
u13

•
u15

u16
••u9•

•
x1

•
x′
1

••

•

• • ••u2 + ih

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

u11

u12 x′
2 + ihu1 + ih

x2 + ih1

Fig. 10i. Critical geodesics and loops. Case 6.3(b2)(i).

XI. Identification rules.

•

•

x1

•
x′
1

•

•−x •
1 + x

•iy •1 + iy

•−x+ x′
2 + ih •x+ x′

2 + ih

•
x+ x2 + h1

•

γ1

γ−1

γ−
0

γ−1

γ1

γ+
0

γ−
0

x′
2 + ih

x2 + ih1

γ∞

Ω

Fig. 11. Domain Ω and identification rules.

Acknowledgement.The authors want to acknowledge the hospitality of the Mittag-
Leffler Institute in Spring 2011 where this project was initiated. The first author is
also sincerely grateful to R. Bøgvad, A. Kuijlaars, A. Mart́ınez-Finkelshtein, and
A. Vasiliev for many useful discussions.



Root-counting Measures and Quadratic Differentials 437

References

[1] M. J. Atia, A. Mart́ınez-Finkelshtein, P. Mart́ınez-González, and F. Thabet, Qua-
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Interior Eigenvalue Density of Jordan Matrices
with Random Perturbations
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Abstract. We study the eigenvalue distribution of a large Jordan block subject
to a small random Gaussian perturbation. A result by E.B. Davies and M.
Hager shows that as the dimension of the matrix gets large, with probability
close to 1, most of the eigenvalues are close to a circle.

We study the expected eigenvalue density of the perturbed Jordan block
in the interior of that circle and give a precise asymptotic description.

Résumé. Nous étudions la distribution de valeurs propres d’un grand bloc de
Jordan soumis à une petite perturbation gaussienne aléatoire. Un résultat de
E.B. Davies et M. Hager montre que quand la dimension de la matrice devient
grande, alors avec probabilité proche de 1, la plupart des valeurs propres sont
proches d’un cercle.

Nous étudions la répartitions moyenne des valeurs propres à l’intérieur
de ce cercle et nous en donnons une description asymptotique précise.

Mathematics Subject Classification (2010). 47A10, 47B80, 47H40, 47A55.

Keywords. Spectral theory; non-self-adjoint operators; random perturbations.

1. Introduction

In recent years there has been a renewed interest in the spectral theory of non-
self-adjoint operators. We begin by recalling that for a closed linear operator P :
D(P ) → H on a complex Hilbert space H with dense domain D(P ), we denote
the resolvent set of P by

ρ(P ) := {z ∈ C; (P − z) : D(P )→ H is a bijection with bounded inverse} .
For z ∈ ρ(P ) we call (P − z)−1 the resolvent of P at z. The spectrum of P is
defined as

σ(P ) := C\ρ(P ).
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In case when P is self-adjoint (or more generally normal) we have a spectral
theorem which yields a very good estimate on the norm of the resolvent, i.e.,

‖(P − z)−1‖ = 1

dist (z, σ(P ))
, z ∈ ρ(P ).

However, in the case of non-normal operators the norm of the resolvent can be
very large even far away from the spectrum, since generically we only have the
lower bound

‖(P − z)−1‖ ≥ 1

dist (z, σ(P ))
, z ∈ ρ(P ).

Equivalently, the spectrum of such operators can be highly unstable even under
very small perturbations of the operator. Originating from renewed interest in
the phenomenon of spectral instability of non-self-adjoint operators in numerical
analysis (cf [22, 21]) we possess an excellent tool to describe the region of spectral
instability, i.e., the notion of ε-pseudospectrum. For ε > 0 it is defined by

σε(P ) :=

{
z ∈ ρ(P ) : ‖(P − z)−1‖ > 1

ε

}
∪ σ(P ).

The phenomenon of spectral instability of non-self-adjoint operators has be-
come a popular and vital subject of study since it poses a serious difficulty, for
example in numerical application when we are interested in determining the eigen-
values of a large non-normal matrix, but it can also be the source of many inter-
esting effects, as emphasized by the works of L.N. Trefethen and M. Embree (eg
[21]), E. B. Davies, M. Zworski and many others [3, 4, 6, 25, 5]. In view of this it
is very natural to add small random perturbations.

One line of recent research concerns the case of elliptic (pseudo)differential
operators subject to small random perturbations, cf. [1, 9, 8, 10, 16, 23], which show
that for a very large class of semiclassical non-self-adjoint (pseudo-)differential
operators we obtain a probabilistic Weyl law for the eigenvalues in the interior of
the range of the principal symbol after adding a tiny random perturbation.

Perturbations of Jordan blocks

In this paper we shall study the spectrum of a random perturbation of the large
Jordan block A0:

A0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . .
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ : CN → CN , (1.1)

whose spectrum is σ(A0) = {0}. M. Zworski [24] noticed that for every z ∈ D(0, 1),
there are associated exponentially accurate quasi-modes when N →∞. Hence the
open unit disc is a region of spectral instability. In C \ D(0, 1) we have spectral
stability (a good resolvent estimate), since ‖A0‖ = 1. Thus, if Aδ = A0 + δQ is
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a small (random) perturbation of A0 we expect the eigenvalues to move inside a

small neighborhood of D(0, 1).
In the special case when Qu = (u|e1)eN , where (ej)

N
1 is the canonical basis

in CN , the eigenvalues of Aδ are of the form

δ1/Ne2πik/N , k ∈ Z/NZ,

so if we fix 0 < δ ) 1 and let N →∞, the spectrum “will converge to a uniform
distribution on S1”.

E.B. Davies and M. Hager [5] studied random perturbations of A0: Let 0 <
δ ) 1 and consider the following random perturbation of A0 as in (1.1):

Aδ = A0 + δQ, Q = (qj,k(ω))1≤j,k≤N , (1.2)

where qj,k(ω) are independent and identically distributed complex random vari-
ables, following the complex Gaussian law NC(0, 1). Recall that a random variable
α has complex Gaussian distribution law NC(0, 1) if

α∗(P(dω)) = π−1e−ααL(dα)

where L(dα) denotes the Lebesgue measure on C and ω is the random parameter
living in a probability space with probability measure P. The above implies that

E[α] = 0, and E
[
|α|2

]
= 1,

or in other words α ∼ NC(0, 1) has expectation 0 and variance 1.
Davies and Hager showed that with probability close to 1, most of the eigen-

values are close to a circle:

Theorem 1.1 ([5]). Let Aδ be as in (1.2). If 0 < δ ≤ N−7, R = δ1/N , σ > 0, then
with probability ≥ 1− 2N−2, we have σ(Aδ) ⊂ D(0, RN3/N ) and

#(σ(Aδ) ∩D(0, Re−σ)) ≤ 2

σ
+

4

σ
lnN.

The main purpose of this paper is to obtain, for a small coupling constant
δ, more information about the distribution of eigenvalues of Aδ in the interior
of a disc (cf Theorem 1.2), where the result of Davies and Hager only yields a
logarithmic upper bound on the number of eigenvalues.

Theorem 1.2. Let Aδ be the N×N -matrix in (1.2) and restrict the attention to the
parameter range e−N/O(1) ≤ δ ) 1, N � 1. Let r0 belong to a parameter range,

1

O(1) ≤ r0 ≤ 1− 1

N
,

rN−1
0 N

δ
(1− r0)

2 + δN3 ) 1, (1.3)

so that δ ) N−3. Then, for all ϕ ∈ C0(D(0, r0 − 1/N))

E

⎡⎣1B
CN2 (0,C1N)(Q)

∑
λ∈σ(Aδ)

ϕ(λ)

⎤⎦ =
1

2π

∫
ϕ(z)Ξ(z)L(dz),



442 J. Sjöstrand and M. Vogel

where

Ξ(z) =
4

(1 − |z|2)2

(
1 +O

(
|z|N−1N

δ
(1 − |z|)2 + δN3

))
.

is a continuous function independent of r0. C1 > 0 is a large enough constant
(satisfying (4.19)).

A recent result by A. Guionnet, P. Matched Wood and O. Zeitouni [7] implies
that when δ is bounded from above by N−κ−1/2 for some κ > 0 and from below
by some negative power of N , then

1

N

∑
μ∈σ(Aδ)

δ(z − μ)→ the uniform measure on S1,

weakly in probability.

We conclude the discussion of the results with some comments on Theorem
1.2:

Condition (1.3) is equivalent to δN3 ) 1 and

rN−1
0 (1− r0)

2 ) δ

N
.

For this inequality to be satisfied, it is necessary that

r0 < 1− 2(N + 1)−1.

For such r0 the function [0, r0] � r �→ rN−1(1− r)2 is increasing, and so inequality
(1.3) is preserved if we replace r0 by |z| ≤ r0.

The leading contribution to the density Ξ(z) is independent of N and is equal
to the Lebesgue density of the volume form induced by the Poincaré metric on the
disc D(0, 1). This yields a small density of eigenvalues close to the center of the
disc D(0, 1) which is, however, growing towards the boundary of D(0, 1).

A similar result has been obtained by M. Sodin and B. Tsirelson in [20] for the
distribution of zeros of a certain class of random analytic functions with domain
D(0, 1) linking the fact that the density is given by the volume form induced by
the Poincaré metric on D(0, 1) to its invariance under the action of SL2(R).

In order to obtain Theorem 1.2, we will study the expected eigenvalue density,
adapting the approach of [23]. (For random polynomials and Gaussian analytic
functions such results are more classical, see for example [12, 15, 11, 19, 14, 13].)

Organization. In Section 2 we will present some numerical simulations to illustrate
the result of Theorem 1.2. In Section 3 we present a general formula for the average
density of zeros of a holomorphic function g depending holomorphically on some
parameters Q. In Section 4 we will set up an auxiliary Grushin problem yielding
an effective function g, as above. Section 5 deals with the appropriate choice of
coordinates Q and the calculation of the corresponding Jacobian J(f). Finally, in
Section 6 we complete the proof of Theorem 1.2.
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2. Numerical simulations

To illustrate the result of Theorem 1.2, we present the following numerical calcu-
lations (Figure 1 and 2 which have been obtained using MATLAB) for the eigen-
values of the N ×N -matrix in (1.2), where N = 500 and the coupling constant δ
varies from 10−5 to 10−2.
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Figure 1. On the left-hand side δ = 10−5 and on the right-hand side
δ = 10−4.
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Figure 2. On the left-hand side δ = 10−3 and on the right-hand side
δ = 10−2.

Note that on the right-hand side of Figure 2 we can see the onset of a different
phenomenon: When the perturbation becomes too strong the spectral band will
grow larger (for more details on this effect see [2] and [18, Chapter 13]).
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3. A general formula

To start with, we shall obtain a general formula (due to [23] in a similar context).
Our treatment is slightly different in that we avoid the use of approximations of
the delta function and also that we have more holomorphy available.

Let g(z,Q) be a holomorphic function on Ω×W ⊂ C× CN2

, where Ω ⊂ C,

W ⊂ CN2

are open bounded and connected. Assume that

for every Q ∈ W, g(·, Q) �≡ 0. (3.1)

To start with, we also assume that

for almost all Q ∈W, g(·, Q) has only simple zeros. (3.2)

Let φ ∈ C∞
0 (Ω) and let m ∈ C0(W ). We are interested in

Kφ =

∫ ( ∑
z; g(z,Q)=0

φ(z)

)
m(Q)L(dQ), (3.3)

where we frequently identify the Lebesgue measure with a differential form,

L(dQ) & (2i)−N2

dQ1 ∧ dQ1 ∧ · · · ∧ dQN2 ∧ dQN2 =: (2i)−N2

dQ ∧ dQ.

In (3.3) we count the zeros of g(·, Q) with their multiplicity and notice that the
integral is finite: For every compact set K ⊂ W the number of zeros of g(·, Q)
in suppφ, counted with their multiplicity, is uniformly bounded, for Q ∈ K. This
follows from Jensen’s formula.

Now assume,

g(z,Q) = 0⇒ dQg �= 0. (3.4)

Then

Σ := {(z,Q) ∈ Ω×W ; g(z,Q) = 0}
is a smooth complex hypersurface in Ω×W and from (3.2) we see that

Kφ =

∫
Σ

φ(z)m(Q)(2i)−N2

dQ ∧ dQ, (3.5)

where we view (2i)−N2

dQ∧ dQ as a complex (N2, N2)-form on Ω×W , restricted
to Σ, which yields a non-negative differential form of maximal degree on Σ.

Before continuing, let us eliminate the assumption (3.2). Without that as-
sumption, the integral in (3.3) is still well defined. It suffices to show (3.5) for all
φ ∈ C∞0 (Ω0 ×W0) when Ω0 ×W0 is a sufficiently small open neighborhood of any
given point (z0, Q0) ∈ Ω×W . When g(z0, Q0) �= 0 or ∂zg(z0,Ω0) �= 0 we already
know that this holds, so we assume that for some m ≥ 2, ∂k

z g(z0, Q0) = 0 for
0 ≤ k ≤ m− 1, ∂m

z g(z0, Q0) �= 0.
Put gε(z,Q) = g(z,Q) + ε, ε ∈ neigh(0,C). By Weierstrass’ preparation

theorem, if Ω0,W0 and r > 0 are small enough,

gε(z,Q) = k(z,Q, ε)p(z,Q, ε) in Ω0 ×W0 ×D(0, r),
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where k is holomorphic and non-vanishing, and

p(z,Q, ε) = zm + p1(Q, ε)zm−1 + · · ·+ pm(Q, ε).

Here, pj(Q, ε) are holomorphic, and pj(0, 0) = 0.

The discriminant D(Q, ε) of the polynomial p(·, Q, ε) is holomorphic on W0×
D(0, r). It vanishes precisely when p(·, Q, ε) – or equivalently gε(·, Q) – has a
multiple root in Ω0.

Now for 0 < |ε| ) 1, the m roots of gε(·, Q0) are simple, so D(Q0, ε) �= 0.
Thus, D(·, ε) is not identically zero, so the zero set of D(·, ε) in W0 is of measure
0 (assuming that we have chosen W0 connected). This means that for 0 < |ε| ) 1,
the function gε(·, Q) has only simple roots in Ω for almost all Q ∈ W0.

Let Σε be the zero set of gε, so that Σε → Σ in the natural sense. We have∫ ( ∑
z; gε(z,Q)=0

φ(z)

)
m(Q)(2i)−N2

dQ ∧ dQ =

∫
Σε

φ(z)m(Q)(2i)−N2

dQ ∧ dQ

for φ ∈ C∞0 (Ω0 ×W0), when ε > 0 is small enough, depending on φ, m. Passing
to the limit ε = 0 we get (3.5) under the assumptions (3.1), (3.4), first for φ ∈
C∞0 (Ω0 ×W0), and then by partition of unity for all φ ∈ C∞0 (Ω×W ). Notice that
the result remains valid if we replace m(Q) by m(Q)1B(Q) where B is a ball in
W .

Now we strengthen the assumption (3.4) by assuming that we have a non-

zero Z(z) ∈ CN2

depending smoothly on z ∈ Ω (the dependence will actually be
holomorphic in the application below) such that

g(z,Q) = 0⇒
(
Z(z) · ∂Q

)
g(z,Q) �= 0. (3.6)

We have the corresponding orthogonal decomposition

Q = Q(α) = α1Z(z) + α′, α′ ∈ Z(z)⊥, α1 ∈ C,

and if we identify unitarily Z(z)⊥ with CN2−1 by means of an orthonormal basis

e2(z), . . . , eN2(z), so that α′ =
∑N2

2 αjej(z) we get global coordinates α1, α2, . . . ,
αN2 on Q-space.

By the implicit function theorem, at least locally near any given point in Σ,

we can represent Σ by α1 = f(z, α′), α′ ∈ Z(z)⊥ & CN2−1, where f is smooth. (In
the specific situation below, this will be valid globally.) Clearly, since z, α2, . . . , αN2

are complex coordinates on Σ, we have on Σ that

1

(2i)N2 dQ ∧ dQ = J(f)
dz ∧ dz

2i
∧ dα2 ∧ dα2 ∧ ... ∧ dαN2 ∧ dαN2

(2i)N2−1

with the convention that

J(f)
dz ∧ dz

2i
≥ 0, (2i)1−N2

dα2 ∧ dα2 ∧ · · · ∧ dαN2 ∧ dαN2 > 0.
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Thus

Kφ =

∫
φ(z)m

(
f(z, α′)Z(z) + α′) J(f)(z, α2, . . . , αN2)

× (2i)−N2

dz ∧ dz ∧ dα2 ∧ dα2 ∧ · · · ∧ dαN2 ∧ dαN2 .

(3.7)

The Jacobian J(f) is invariant under any z-dependent unitary change of variables,
α2, . . . , αN2 �→ α̃2, . . . , α̃N2 , so for the calculation of J(f) at a given point (z0, α

′
0),

we are free to choose the most appropriate orthonormal basis e2(z), . . . , eN2(z) in
Z(z)⊥ depending smoothly on z. We write (3.7) as

Kφ =

∫
φ(z)Ξ̃(z)

dz ∧ dz

2i
, (3.8)

where the density Ξ̃(z) is given by

Ξ̃(z) =

∫
α′=

∑
N2

2 αjej(z)

m(f(z, α′)Z(z) + α′)J(f)(z, α2, . . . , αN2)

× (2i)1−N2

dα2 ∧ dα2 ∧ · · · ∧ dαN2 ∧ dαN2 .

(3.9)

4. Grushin problem for the perturbed Jordan block

4.1. Setting up an auxiliary problem

Following [17], we introduce an auxiliary Grushin problem. Define R+ : CN → C by

R+u = u1, u = (u1 . . . uN)t ∈ CN . (4.1)

Let R− : C→ CN be defined by

R−u− = (0 0 . . . u−)t ∈ CN . (4.2)

Here, we identify vectors in CN with column matrices. Then for |z| < 1, the
operator

A0 =

(
A0 − z R−
R+ 0

)
: CN+1 → CN+1 (4.3)

is bijective. In fact, identifying

CN+1 & �2([1, 2, . . . , N + 1]) & �2(Z/(N + 1)Z),

we have A0 = τ−1 − zΠN , where τu(j) = u(j − 1) (translation by 1 step to the
right) and ΠNu = 1[1,N ]u. Then A0 = τ−1(1− zτΠN ), (τΠN )N+1 = 0,

A−1
0 = (1 + zτΠN + (zτΠN )2 + · · ·+ (zτΠN )N ) ◦ τ.

Write

E0 := A−1
0 =:

(
E0 E0

+

E0− E0−+

)
.

Then

E0 & ΠN (1 + zτΠN + · · · (zτΠN )N−1)τΠN , (4.4)
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E0
+ =

⎛⎜⎜⎝
1
z
. . .

zN−1

⎞⎟⎟⎠ , E0
− =

(
zN−1 zN−2 . . . 1

)
, (4.5)

E0
−+ = zN . (4.6)

A quick way to check (4.5), (4.6) is to write A0 as an (N + 1) × (N + 1)-matrix
where we moved the last line to the top, with the lines labeled from 0 (≡ N + 1
mod (N + 1)Z) to N and the columns from 1 to N + 1.

Continuing, we see that

‖E0‖ ≤ G(|z|), ‖E0
±‖ ≤ G(|z|) 1

2 , ‖E0
−+‖ ≤ 1, (4.7)

where ‖ · ‖ denote the natural operator norms and

G(|z|) := min

(
N,

1

1− |z|

)
5 1 + |z|+ |z|2 + . . .+ |z|N−1. (4.8)

Next, consider the natural Grushin problem for Aδ. If δ‖Q‖G(|z|) < 1, we
see that

Aδ =

(
Aδ − z R−
R+ 0

)
(4.9)

is bijective with inverse

Eδ =

(
Eδ Eδ

+

Eδ
+ Eδ

−+

)
,

where

Eδ = E0 − E0δQE0 + E0(δQE0)2 − . . . = E0(1 + δQE0)−1,

Eδ
+ = E0

+ − E0δQE0
+ + (E0δQ)2E0

+ − . . . = (1 + E0δQ)−1E0
+,

Eδ
− = E0

− − E0
−δQE0 + E0

−(δQE0)2 − . . . = E0
−(1 + δQE0)−1,

Eδ
−+ = E0

−+ − E0
−δQE0

+ + E0
−δQE0δQE0

+ − . . .

= E0
−+ − E0

−δQ(1 + E0δQ)−1E0
+.

(4.10)

We get

‖Eδ‖ ≤ G(|z|)
1− δ‖Q‖G(|z|) , ‖E

δ
±‖ ≤

G(|z|) 1
2

1− δ‖Q‖G(|z|) ,

|Eδ
−+ − E0

−+| ≤
δ‖Q‖G(|z|)

1− δ‖Q‖G(|z|) .
(4.11)

Indicating derivatives with respect to δ with dots and omitting sometimes
the super/sub-script δ, we have

Ė = −EȦE = −
(

EQE EQE+

E−QE E−QE+.

)
(4.12)



448 J. Sjöstrand and M. Vogel

Integrating this from 0 to δ yields

‖Eδ − E0‖ ≤ G(|z|)2δ‖Q‖
(1− δ‖Q‖G(|z|))2 , ‖Eδ

± − E0
±‖ ≤

G(|z|) 3
2 δ‖Q‖

(1− δ‖Q‖G(|z|))2 . (4.13)

We now sharpen the assumption that δ‖Q‖G(|z|) < 1 to

δ‖Q‖G(|z|) < 1/2. (4.14)

Then

‖Eδ‖ ≤ 2G(|z|), ‖Eδ
±‖ ≤ 2G(|z|) 1

2 ,

|Eδ
−+ − E0

−+| ≤ 2δ‖Q‖G(|z|).
(4.15)

Combining this with the identity Ė−+ = −E−QE+ that follows from (4.12), we
get

‖Ė−+ + E0
−QE0

+‖ ≤ 16G(|z|)2δ‖Q‖2, (4.16)

and after integration from 0 to δ,

Eδ
−+ = E0

−+ − δE0
−QE0

+ +O(1)G(|z|)2(δ‖Q‖)2. (4.17)

Using (4.5), (4.6) we get with Q = (qj,k),

Eδ
−+ = zN − δ

N∑
j,k=1

qj,kz
N−j+k−1 +O(1)G(|z|)2(δ‖Q‖)2, (4.18)

still under the assumption (4.14).

4.2. Estimates for the effective Hamiltonian

We now consider the situation of (1.2):

Aδ = A0 + δQ, Q = (qj,k(ω))
N
j,k=1, qj,k(ω) ∼ NC(0, 1) independent.

W. Bordeaux-Montrieux [1] observed the following result.

Proposition 4.1. There exists a C0 > 0 such that the following holds: Let Xj ∼
NC(0, σ

2
j ), 1 ≤ j ≤ N < ∞ be independent complex Gaussian random variables.

Put s1 = maxσ2
j . Then, for every x > 0, we have

P

[
N∑
j=1

|Xj |2 ≥ x

]
≤ exp

(
C0

2s1

N∑
j=1

σ2
j −

x

2s1

)
.

According to this result we have

P (‖Q‖2HS ≥ x) ≤ exp

(
C0

2
N2 − x

2

)
and hence if C1 > 0 is large enough,

‖Q‖2HS ≤ C2
1N

2, with probability ≥ 1− e−N2

. (4.19)
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In particular (4.19) holds for the ordinary operator norm of Q. In the following,
we often write | · | for the Hilbert–Schmidt norm ‖·‖HS and we shall work under
the assumption that |Q| ≤ C1N . We let |z| < 1 and assume:

δNG(|z|)) 1. (4.20)

Then with probability ≥ 1−e−N2

, we have (4.14), (4.18) which give for g(z,Q) :=
Eδ

−+,

g(z,Q) = zN − δ(Q|Z(z)) +O(1)(G(|z|)δN)2. (4.21)

Here, Z is given by

Z =
(
zN−j+k−1

)N
j,k=1

. (4.22)

A straightforward calculation shows that

|Z| =
N−1∑
0

|z|2ν =
1− |z|2N
1− |z|2 =

1− |z|N
1− |z|

1 + |z|N
1 + |z| , (4.23)

and in particular,
G(|z|)/ 2 ≤ |Z| ≤ G(|z|). (4.24)

The middle term in (4.21) is bounded in modulus by δ|Q||Z| ≤ δC1NG(|z|)
and we assume that |z|N is much smaller than this bound:

|z|N ) δC1NG(|z|). (4.25)

More precisely, we work in a disc D(0, r0), where

rN0 ≤ C−1δC1NG(r0) ≤ C−2, r0 ≤ 1−N−1 (4.26)

and C � 1. In fact, the first inequality in (4.26) can be written m(r0) ≤ C−1δC1N
and m(r) = rN (1 − r) is increasing on [0, 1−N−1] so the inequality is preserved
if we replace r0 by |z| ≤ r0. Similarly, the second inequality holds after the same
replacement since G is increasing.

In view of (4.20), we see that

(G(|z|)δN)
2 ) δG(|z|)N

is also much smaller than the upper bound on the middle term.
By the Cauchy inequalities,

dQg = −δZ · dQ+O(1)G(|z|)2δ2N. (4.27)

The norm of the first term is 5 δG � G2δ2N , since GδN ) 1. (When applying
the Cauchy inequalities, we should shrink the radius R = C1N by a factor θ < 1,
but we have room for that, if we let C1 be a little larger than necessary to start
with.)

Writing

Q = α1Z(z) + α′, α′ ∈ Z(z)⊥ & CN2−1,

we identify g(z,Q) with a function g̃(z, α) which is holomorphic in α for every
fixed z and satisfies

g̃(z, α) = zN − δ|Z(z)|2α1 +O(1)G(|z|)2δ2N2, (4.28)
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while (4.27) gives

∂α1 g̃(z, α) = −δ|Z(z)|2 +O(1)G(|z|)3δ2N, (4.29)

and in particular,
|∂α1 g̃| 5 δG(|z|)2.

This derivative does not depend on the choice of unitary identification Z
⊥ &

CN2−1. Notice that the remainder in (4.28) is the same as in (4.21) and hence
a holomorphic function of (z,Q). In particular it is a holomorphic function of
α1, . . . , αN2 for every fixed z and we can also get (4.29) from this and the Cauchy
inequalities. In the same way, we get from (4.28) that

∂αj g̃(z, α) = O(1)G(|z|)2δ2N, j = 2, . . . , N2. (4.30)

The Cauchy inequalities applied to (4.21) give,

∂zg(z,Q) = NzN−1 − δQ · ∂zZ(z) +O(1)(G(|z|)δN)2

r0 − |z|
. (4.31)

Then, for g̃(z, α1, α
′) = g(z, α1Z(z) + α′), α′ =

∑N2

2 αjej we shall see that

∂z g̃ = NzN−1 − δα1∂z
(
|Z|2

)
+O(1)(GδN)2

r0 − |z|
+O(1)G2δ2N

∣∣∣∣N
2∑

2

αj∂zej

∣∣∣∣, (4.32)

∂z g̃ = −δα1∂z
(
|Z|2

)
+O(1)G2δ2N

∣∣∣∣α1∂zZ +
N2∑
2

αj∂zej

∣∣∣∣. (4.33)

The leading terms in (4.32), (4.33) can be obtained formally from (4.28) by
applying ∂z, ∂z and we also notice that

∂z|Z|2 = Z · ∂zZ, ∂z|Z|2 = Z · ∂zZ.
However it is not clear how to handle the remainder in (4.28), so we verify (4.32),
(4.33), using (4.27), (4.31):

∂z g̃ = ∂zg + dQg ·
N2∑
2

αj∂zej

= NzN−1− δQ · ∂zZ +O(1)(GδN)2

r0 − |z|
+ (−δZ · dQ+O(1)G2δ2N) ·

N2∑
2

αj∂zej

= NzN−1 − δα1∂z
(
|Z|2

)
− δ

N2∑
2

αjej · ∂zZ − δZ ·
N2∑
2

αj∂zej

+ the remainders in (4.32).

The 3d and the 4th terms in the last expression add up to

δ∂z

(∑N2

2
αjej · Z

)
= δ∂z(0) = 0,

and we get (4.32).
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Similarly,

∂z g̃ = dQg ·
(
α1∂zZ +

N2∑
2

αj∂zej

)

=
(
−δZ · dQ+O(1)G2δ2N

)
·
(
α1∂zZ +

N2∑
2

αj∂zej

)
.

Up to remainders as in (4.33), this is equal to

−δα1Z · ∂zZ − δ
N2∑
2

αjZ · ∂zej = −δα1∂z
(
|Z|2

)
− δ

N2∑
2

αj∂z (Z · ej)

= −δα1∂z
(
|Z|2

)
.

Here, we know that

|Z(z)| =
N−1∑
0

(zz)ν =: K(zz),

∂z
(
|Z(z)|2

)
= 2KK ′z,

∂z
(
|Z(z)|2

)
= 2KK ′z.

(4.34)

Observe also that K(t) 5 G(t) and that G(|z|) 5 G(|z|2).
The following result implies that K ′(t) and K(t)2 are of the same order of

magnitude.

Proposition 4.2. For k ∈ N, 2 ≤ N ∈ N ∪ {+∞}, 0 ≤ t < 1, we put

MN,k(t) =

N−1∑
ν=1

νktν , (4.35)

so that K(t) = KN(t) = MN,0(t)+1, K ′(t) 5MN−1,1(t)+1. For each fixed k ∈ N,
we have uniformly with respect to N , t:

M∞,k(t) 5
t

(1− t)k+1
, (4.36)

M∞,k(t)−MN,k(t) 5
tN

1− t

(
N +

1

1− t

)k

. (4.37)

For all fixed C > 0 and k ∈ N, we have uniformly,

MN,k(t) 5M∞,k(t), for 0 ≤ t ≤ 1− 1

CN
, N ≥ 2. (4.38)

Notice that under the assumption in (4.38), the estimate (4.37) becomes

M∞,k(t)−MN,k(t) 5
tNNk

1− t
.
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We also see that in any region 1−O(1)/N ≤ t < 1, we have

MN,k(t) 5 Nk+1,

so together with (4.38), (4.36), this shows that

MN,k(t) 5 tmin

(
1

1− t
, N

)k+1

. (4.39)

Proof. The statements are easy to verify when 0 ≤ t ≤ 1 − 1/O(1) and the N -
dependent statements (4.37), (4.38) are clearly true when N ≤ O(1). Thus we can
assume that 1/2 ≤ t < 1 and N � 1.

Write t = e−s so that 0 < s ≤ 1/O(1) and notice that s 5 1− t. For N ∈ N,
we put

PN,k(s) =

∞∑
ν=N

νke−νs, (4.40)

so that

PN,k(s) =

{
M∞,k(t) when N = 1,

M∞,k(t)−MN,k(t) when N ≥ 2.
(4.41)

We regroup the terms in (4.40) into sums with5 1/s terms where e−νs has constant
order of magnitude:

PN,k(s) =
∞∑
μ=1

Σ(μ), Σ(μ) =
∑

N+μ−1
s ≤ν<N+μ

s

νke−νs.

Here, since the sum Σ(μ) consists of 5 1/s terms of the order νke−(Ns+μ),

Σ(μ) 5 e−(Ns+μ)
∑

N+μ−1
s ≤ν<N+μ

s

νk 5 e−(Ns+μ) (Ns+ μ)k

sk+1
.

Hence,

PN,k(s) 5
e−Ns

sk+1

∞∑
μ=1

e−μ(Ns+ μ)k

5 e−Ns

sk+1
(Ns+ 1)k =

e−Ns

s

(
N +

1

s

)k

.

Recalling (4.41) and the fact that s 5 1−t, 1/2 ≤ t < 1, we get (4.36) when N = 1
and (4.37) when N ≥ 2.

It remains to show (4.38) and it suffices to do so for 1/2 ≤ t ≤ 1−C/N ,N � 1
and for C ≥ 1 sufficiently large but independent of N . Indeed, for 1−C/N ≤ t ≤
1−1/O(N), both MN,k(t) and M∞,k(t) are 5 N1+k. We can also exclude the case
k = 0 where we have explicit formulae.
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To get the equivalence (4.38) for 1/2 ≤ t ≤ 1 − C/N , k ≥ 1, it suffices, in
view of (4.36), (4.37), to show that for such t and for N � 1, we have

NktN

1− t
≤ 1

D

1

(1− t)k+1
,

for any given D ≥ 1, provided that C is large enough. In other terms, we need

tN(1 − t)k ≤ 1

D
N−k, for

1

2
≤ t ≤ 1− C

N
,

when C = C(D) is large enough and N ≥ N(C) � 1. The left-hand side in
this inequality is an increasing function of t on the interval [0, 1/ (1 + k/N)]. If
t ≤ 1−C/N ≤ 1/(1+ k/N) (which is fulfilled when C ≥ 2k and N � N(C)) it is

≤
(
1− C

N

)N (
C

N

)k

=

(
1 +OC

(
1

N

))
e−CCkN−k.

This is ≤ N−k/D if C ≥ C(D), N ≥ N(C). �

For simplicity we will restrict the attention to the region

|z| ≤ r0 − 1/N, (4.42)

where G 5 (1− |z|)−1, G′ 5 (1− |z|)−2.
It follows from the calculation (5.6) below, that

|∂zZ|2 =

(
2

t

(
K(t∂t)

2K + (t∂tK)2
))

t=|z|2
.

This is 5 1 for |z| ≤ 1/2 and for 1/2 ≤ |z| < 1 − 1/N it is in view of Proposition
4.2 and the subsequent observation

5MN,0MN,2 +M2
N,1 5

1

(1− t)4
, t = |z|2.

In the region (4.42) we get:
|Z ′(z)| 5 G(|z|)2. (4.43)

(4.34), (4.42), (4.43) will be used in (4.32), (4.33).
Combining the implicit function theorem and Rouché’s theorem with (4.28),

we see that for |α′| < C1N , α′ =
∑N

2 αjej ∈ Z(z)⊥, the equation

g̃(z, α1, α
′) = 0 (4.44)

has a unique solution

α1 = f(z, α′) ∈ D(0, C1N/G(|z|)). (4.45)

Here, we also use (4.20), (4.25). Moreover, f satisfies

f(z, α′) =
zN

δ|Z|2 +O(1)δN2 = O(1)
(
|z|N
δG2

+ δN2

)
. (4.46)

Differentiating the equation (4.44) (where α1 = f) we get

∂z g̃ + ∂α1 g̃∂zf = 0, ∂z g̃ + ∂α1 g̃∂zf = 0.
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Hence, {
∂zf = − (∂α1 g̃)

−1 ∂z g̃,

∂zf = − (∂α1 g̃)
−1

∂z g̃.
(4.47)

Since g̃ is holomorphic in α1, α
′ and in α1, α2, . . . , αN2 , we see that f is holomorphic

in α′ and in α2, . . . , αN2 Applying ∂α2 , . . . , ∂αN2 to (4.44), we get

∂αjf = − (∂α1 g̃)
−1

∂αj g̃, 2 ≤ j ≤ N2. (4.48)

Combining (4.29) in the form,

∂α1 g̃(z, α) = −(1 +O(G(|z|)δN))δ|Z(z)|2,

(4.30), (4.32), (4.33) with (4.47) and (4.48), we get

∂zf =
(1 +O(GδN))

δ|Z(z)|2 (4.49)

×
(
NzN−1 − δf∂z

(
|Z|2

)
+O

(
G2δ2N

) ∣∣∣∣N
2∑

2

αj∂zej

∣∣∣∣+O(1)(GδN)2

r0 − |z|

)
.

∂zf =
(1 +O(GδN))

δ|Z(z)|2

×
(
−δf∂z

(
|Z|2

)
+O

(
G2δ2N

) ∣∣∣∣f∂zZ +

N2∑
2

αj∂zej

∣∣∣∣
)
, (4.50)

∂αjf = O(1)G
2δ2N

δG2
= O(δN), 2 ≤ j ≤ N2. (4.51)

From (4.34) and the observation prior to Proposition 4.2 we know that

∂z
(
|Z|2

)
, ∂z

(
|Z|2

)
5 G(|z|)3|z|.

Recall also that |Z| 5 G(|z|). Using this in (4.49), (4.50), we get

∂zf =
O(1)
δG2

(4.52)

×
(
N |z|N−1 + δ|f |G3|z|+O

(
G2δ2N

) ∣∣∣∣N
2∑

2

αj∂zej

∣∣∣∣+O(1)G2δ2N2

r0 − |z|

)
.

5. Choosing appropriate coordinates

The next task will be to choose an orthonormal basis e1(z), e2(z), . . . , eN2(z) in

CN2

with e1(z) = |Z(z)|−1Z(z) such that we get a nice control over
∑N2

2 αj∂zej ,∑N2

2 αj∂zej and such that

dQ1 ∧ · · · ∧ dQN2 |α1=f(z,α′)
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can be expressed easily up to small errors. Consider a point z0 ∈ D(0, r0 −N−1).

We shall see below that the vectors Z(z), ∂zZ(z) are linearly independent for every
z ∈ D(0, 1)

Proposition 5.1. There exists an orthonormal basis e1(z), e2(z), . . . , eN2(z) in CN2

,
depending smoothly on z ∈ neigh (z0) such that

e1(z) = |Z(z)|−1Z(z), (5.1)

Ce1(z0)⊕ Ce2(z0) = CZ(z0)⊕ ∂zZ(z0), (5.2)

ej(z)− ej(z0) = O((z − z0)
2), j ≥ 3. (5.3)

Proof. We choose e1(z) as in (5.1). Let e3(z0), . . . , eN2(z0) be an orthonormal basis

in
(
CZ(z0)⊕ C∂zZ(z0)

)⊥
. Then we get an orthonormal family e3(z), . . . , eN2(z)

in e1(z)
⊥ in the following way:

Let V0 be the isometry CN2−2 → CN2

, defined by V0ν
0
j = ej(z0), j =

3, . . . , N2, where ν03 , . . . , ν
0
N2 is the canonical basis in CN2−2 with a non-canonical

labeling. Let π(z)u = (u|e1(z))e1(z) be the orthogonal projection onto Ce1(z). For
z ∈ neigh (z0,C), let V (z) = (1 − π(z))V0. Then fj(z) = V (z)ν0j , j = 3, . . . , N2

form a linearly independent system in e1(z)
⊥ and we get an orthonormal system

of vectors that span the same hyperplane in e1(z)
⊥ by Gram orthonormalization,

ej(z) = V (z)(V ∗(z)V (z))−
1
2 ν0j , 3 ≤ j ≤ N2.

We have

V (z)ν0j = (1− π(z))ej(z0) = ej(z0)− (ej(z0)|e1(z))e1(z),

(ej(z0)|e1(z)) =
(ej(z0)|Z(z))

|Z(z)| = O((z − z0)
2),

since (ej(z0)|Z(z)) = ej(z0) · Z(z) =: k(z) is a holomorphic function of z with

k(z0) = (ej(z0)|Z(z0)) = 0, k′(z0) = (ej(z0)|∂zZ(z0)) = 0. Thus, V (z) = V (z0) +
O((z − z0)

2) and we conclude that (5.3) holds. Let e2(z) be a normalized vector
in (e1(z), e3(z), e4(z), . . . , eN2(z))⊥ depending smoothly on z. Then e1(z), e2(z),
. . . , eN2(z) is an orthonormal basis and since e3(z0), . . . , eN2(z0) are orthogonal
to Z(z0), ∂Z(z0) by construction, we get (5.2). �

We can make the following explicit choice:

e2(z) = |f2(z)|−1f2(z), f2(z) = ∂zZ(z)−
∑
j �=2

(∂zZ(z)|ej(z))ej(z), (5.4)

so that for z = z0,

e2(z0) = |f2(z0)|−1f2(z0), f2(z0) = ∂zZ(z0)− (∂zZ(z0)|e1(z0))e1(z0). (5.5)

We next compute some scalar products and norms with Z and ∂zZ. Re-

call that Z(z) =
(
zN−j+k−1

)N
j,k=1

and that |Z(z)| = K(|z|2), K(t) =
∑N−1

0 tν .
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Repeating basically the same computation, we get

z∂zZ =
(
(N − j + k − 1)zN−j+k−1

)N
j,k=1

,

and

|z∂zZ|2 =
N∑

j,k=1

(N − j + k − 1)2|z|2(N−j+k−1) =
N−1∑
ν,μ=0

(ν + μ)2|z|2(ν+μ)

=

N−1∑
0

ν2|z|2ν
N−1∑
0

|z|2μ + 2

N−1∑
0

ν|z|2ν
N−1∑
0

μ|z|2μ +

N−1∑
0

|z|2ν
N−1∑
0

μ2|z|2μ

= 2
(
K(t∂t)

2K + (t∂tK)2
)
t=|z|2 .

(5.6)

Similarly,

(z∂zZ|Z) =
N∑

j,k=1

(N − j + k − 1)|z|2(N−j+k−1)

=

N−1∑
ν=0

N−1∑
μ=1

(ν + μ)|z|2(ν+μ)

= 2(Kt∂tK)t=|z|2 .

Then, by a straightforward calculation,

|∂zZ|2 −
|(∂zZ|Z)|2
|Z|2 =

(
2

t

(
K(t∂t)

2K − (t∂tK)2
))

t=|z|2
(5.7)

Here,

2

t

(
K(t∂t)

2K − (t∂tK)2
)
=

2

t

N−1∑
0

tν
N−1∑
0

ν2tν − 2

t

(
N−1∑
0

νtν

)2

=

N−1∑
ν,μ=0

(
ν2 + μ2 − 2νμ

)
tν+μ−1 =

N−1∑
ν,μ=0

(ν − μ)2tν+μ−1

=

2N−3∑
k=0

ak,N tk,

where

ak,N =
∑

ν+μ−1=k
0≤ν,μ≤N−1

(ν − μ)2.

We observe that

ak,N ≤ O(1)(1 + k)3 uniformly with respect to N,

ak,N = ak,∞ is independent of N for k ≤ N − 2,

ak,∞ ≥ (1 + k)3/O(1).
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We conclude that
1

C
(1 +MN−1,3) ≤

2

t

(
K(t∂t)

2K − (t∂tK)2
)
≤ C (1 +M2N−2,3)

and (4.39) shows that the first and third members are of the same order of mag-
nitude,

5 1 +MN,3(t) 5 min

(
1

1− t
, N

)4

which is 5 1 +M∞,3(t), for 0 ≤ t ≤ 1 − 1/N . From this and Proposition 4.2 we
get:

Proposition 5.2. We have

2

t
(K(t∂t)

2K − (t∂tK)2) 5 K4, 0 < t ≤ 1− 1/N, (5.8)

where we recall that K = KN depends on N and that

KN = K∞ − tN

1− t
.

We have ⎧⎨⎩t∂tKN = t∂tK∞ +O
(

NtN

1−t

)
, t ≤ 1− 1

N ,

(t∂t)
2KN = (t∂t)

2K∞ +O
(

N2tN

1−t

)
, t ≤ 1− 1

N ,
(5.9)

and it follows that

2

t

(
KN (t∂t)

2KN − (t∂tKN)2
)
− 2

t

(
K∞(t∂t)

2K∞ − (t∂tK∞)2
)

= O
(

N2tN

(1− t)2

)
, (5.10)

for t ≤ 1− 1/N .

Proposition 5.2 and (5.7) give

|∂zZ|2 −
|(∂zZ|Z)|2
|Z|2 5 K(|z|2)4. (5.11)

This implies that ∂zZ, Z are linearly independent.
Assume that

|∇ze1(z)| = O(m)

for some weightm ≥ 1. We shall see below that this holds whenm = K(|z|2). Then
‖∇zπ(z)‖ = O(m) and hence ‖∇zV ‖ = O(m). It follows that ‖∇z(V

∗(z)V (z))‖ =
O(m). By standard (Cauchy–Riesz) functional calculus, using also that ‖V (z)−1‖=
O(1), we get ‖∇z(V

∗(z)V (z))−
1
2 ‖ = O(m). Hence ‖∇zU(z)‖ = O(m), where

U(z) = V (z)(V ∗(z)V (z))−1/2 is the isometry appearing in the proof of Proposi-
tion 5.1. Since ∇zej = (∇zU(z))ν0j , we conclude that∣∣∣∣∣

N2∑
3

αj∇zej

∣∣∣∣∣ ≤ O(m)‖α‖
CN2−2 . (5.12)
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We next show that we can take m = K(|z|2). We have

∇ze1 =
∇zZ

|Z| −
∇z|Z|
|Z|2 Z =

∇zZ

K
− K ′∇z(zz)

K2
Z. (5.13)

By (5.6),

|∂zZ| =
(
2

t

(
K(t∂t)

2K + (t∂tK)2
)) 1

2

t=|z|2
= O(K2).

Since Z is holomorphic, this leads to the same estimates for |∇zZ| and |∇zZ|,
and |∂2

zZ| = O(K3), for |z| < 1 −N−1, by the Cauchy inequalities. Using this in
(5.13), we get

|∇ze1| = O(K). (5.14)

Thus we can take m = K(|z|2) in (5.12). Let f2 be the vector in (5.4) so that
e2(z) = |f2|−1f2. Recall that ej = U(z)ν0j , where we now know that ‖∇zU(z)‖ =
O(K). Write,

∇zf2 = ∇z∂zZ −
∑
j �=2

(
(∇z∂zZ|ej)ej + (∂zZ|∇zej)ej + (∂zZ|ej)∇zej

)
.

Here, |∇z∂zZ| = O(K3), as we have just seen. It is also clear that the term for
j = 1 in the sum above is O(K3). It remains to study |I+II+III| ≤ |I|+ |II|+ |III|,
where

I =
N2∑
3

(∇z∂zZ|ej)ej ,

II =

N2∑
3

(∂zZ|∇zej)ej ,

III =

N2∑
3

(∂zZ|ej)∇zej .

Here, |I| ≤ |∇z∂zZ| = O(K3) and by (5.12) we have |III| ≤ O(K)|∂zZ| =
O(K3). Further,

II =

N2∑
3

(∂zZ|(∇zU(z))ν0j )ej

=
N2∑
3

((∇zU(z))∗∂zZ|ν0j )ej ,

so

|II| = |(∇zU(z))∗∂zZ| = O(K)K2 = O(K3).

Thus,

|∇zf2| = O(K3). (5.15)



Interior Eigenvalue Density of Jordan Matrices 459

Recall from (5.5) that for z = z0,

f2 = ∂zZ − (∂zZ|e1)e1,

|f2|2 = |∂zZ|2 −
|(∂zZ|Z)|2
|Z|2 ,

so by (5.11),

|f2(z0)| 5 K(|z0|2)2,
Hence,

|f2(z)| 5 K2, z ∈ neigh (z0).

From this, (5.4) and (5.15), we conclude first that ∇z |f2| = O(K3) and then that

|∇ze2| = O(K). (5.16)

This completes the proof of the fact that we can take m = K above. In particular
(5.12) holds with m = K(|z|2) 5 G(|z|), so∣∣∣∣∣∣

N2∑
2

αj∂zej

∣∣∣∣∣∣ ≤ O(1)G|α| ≤ O(1)GN, (5.17)

where we used the assumption that |Q| ≤ C1N in the last step.

Combining this with (4.52), (4.51), (4.46), (4.34) and the observation prior
to Proposition 4.2, we get

∂zf =
O(1)
δG2

(
N |z|N−1 + δ

(
|z|N
δG2

+ δN2

)
G3 +G2δ2NGN +

G2δ2N2

r0 − |z|

)
= O(1)

(
N |z|N−1

δG2
+
|z|N
δG

+GδN2 +
δN2

r0 − |z|

)
.

In the last parenthesis the second term is dominated by the first one and the third
term is dominated by the fourth. If we recall that r0 − |z| ≥ 1/N , we get

∂zf = O(1)
(
N |z|N−1

δG2
+ δN3

)
. (5.18)

Similarly, from (4.50), (4.43) we get

∂zf =
O(1)
δG2

(
δ

(
|z|N
δG2

+ δN2

)
G3 +G2δ2N

((
|z|N
δG2

+ δN2

)
G2 +GN

))
= O(1)

(
|z|N
δG

+ δN2G+N |z|N +G2δ2N3 +GδN2

)
.

Using (4.20), we get

∂zf = O(1)
(
|z|N
δG

+ δN2G

)
, (5.19)

see (4.46). This will be used together with the estimates ∂αjf = O(δN) in (4.51).
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Proposition 5.3. We express Q in the canonical basis in CN2

or in any other fixed

orthonormal basis. Let e1(z), . . . , eN2(z) be an orthonormal basis in CN2

depending
smoothly on z and with e1(z) = |Z(z)|−1Z(z), Ce1(z)⊕Ce2(z) = CZ(z)⊕∂zZ(z).

Write Q = α1Z(z) +
∑N2

2 αjej(z), and recall that the hypersurface

{(z,Q) ∈ D(0, r0 − 1/N)×B(0, C1N); Eδ
−+(z,Q) = 0}

is given by (4.45) with f as in (4.46). Then the restriction of dQ ∧ dQ to this
hypersurface, is given by

dQ ∧ dQ = J(f)dz ∧ dz ∧ dα′ ∧ dα′,

J(f) = −|α2|2
|Z|2

∣∣(e2|∂zZ)∣∣2 +O(1)(N |z|N−1

δG
+GδN3 + |α2|δNG2

)2

+O(1)|α2|G
(
N |z|N−1

δG
+GδN3 + |α2|G2δN

)
.

(5.20)

Here α′ = (α2, . . . , αN2), dα′ ∧ dα′ = dα2 ∧ dα2 ∧ · · · ∧ dαN2 ∧ dαN2 .

Proof. The differential form dQ1 ∧ dQ2 ∧ · · · ∧ dQN2 will change only by a factor
of modulus one if we express Q in another fixed orthonormal basis and we will
choose for that the basis e1(z0), . . . , eN2(z0):

Q =

N2∑
1

Qkek(z0), Qk = (Q|ek(z0)).

Write

Q = α1 Z(z)︸︷︷︸
|Z(z)|e1(z)

+
N2∑
2

αkek(z)

and restrict to α1 = f(z, α2, . . . , αN2), where we sometimes identify α′ ∈ Z(z)⊥

with (α2, . . . , αN2):

Q|α1=f(z,α′) = f(z, α′)Z(z) +

N2∑
2

αkek(z).

Then,

Qj = f(Z(z)|ej(z0)) +
N2∑
k=2

αk(ek(z)|ej(z0)),

dQj =(dzf + dα′f)(Z(z)|ej(z0)) + f(dzZ(z)|ej(z0))

+

N2∑
k=2

αk(dzek(z)|ej(z0)) +
N2∑
k=2

dαk(ek(z)|ej(z0)).
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Taking z = z0 until further notice, we get with α′ = (α2, . . . , αN2):

dQj = (dzf + dα′f)(Z|ej) + f(∂zZ|ej)dz + α2(dze2|ej) +
{
dαj , j ≥ 2,

0, j = 1.

Here, we used (5.3). The first term to the right is equal to (dzf + dα′f)|Z| when
j = 1 and it vanishes when j ≥ 2. The second term vanishes for j ≥ 3, by
(5.2). The third term is equal to −α2(e2|dzej) (by differentiation of the identity
(e2|ej) = δ2,j) and it vanishes for j ≥ 3 (remember that we take z = z0). Thus,
for z = z0:

dQ1 = |Z|(dzf + dα′f) + f(∂zZ|e1)dz − α2(e2|dze1),
dQ2 = dα2 + f(∂zZ|e2)dz − α2(e2|dze2),
dQj = dαj , j ≥ 3.

When forming dQ1∧dQ1∧· · ·∧dQN2∧dQN2 we see that the terms in dαj for j ≥ 3
in the expression for dQ1 will not contribute, so in that expression we can replace
dα′f by ∂α2fdα2. Using (5.18), (5.19), (4.51), (4.46), (4.43) this gives, where “≡”
means equivalence up to terms that do not influence the 2N2 form above:

dQ1 ≡− α2(e2|dze1) +O(1)
(
N |z|N−1

δG
+GδN3

)
dz

+O(1)
(
|z|N
δ

+G2δN2

)
dz +O(δNG)dα2.

Similarly, using also (5.16),

dQ2 = dα2 +O
(
|z|N
δ

+ δN2G2 + |α2|G
)
dz +O (|α2|G) dz.

When computing dQ1 ∧ dQ2 we notice that the terms in dz ∧ dz will not
contribute to the 2N2-form dQ1 ∧ dQ1 ∧ · · · ∧ dQN2 ∧ dQN2 . We get

dQ1 ∧ dQ2 ≡− α2(e2|dze1) ∧ dα2

+O(1)
(
N |z|N−1

δG
+GδN3 + |α2|δNG2

)
dz ∧ dα2

+O(1)
(
|z|N
δ

+G2δN2 + |α2|δNG2

)
dz ∧ dα2.

(5.21)

Here,

(e2|dze1) =
(
e2|dz

(
|Z|−1

)
Z
)
=
(
e2||Z|−1dzZ

)
+
(
e2|dz

(
|Z|−1

)
Z
)

= |Z|−1
(
e2|∂zZdz

)
+ 0 = |Z|−1(e2|∂zZ)dz,

so the first term in (5.21) is equal to

− α2

|Z| (e2|∂zZ)dz ∧ dα2 = O(1)α2Gdz ∧ dα2.
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Notice that dQ1 ∧ dQ1 ∧ dQ2 ∧ dQ2 = −dQ1 ∧ dQ2 ∧ dQ1 ∧ dQ2. From (5.21) and
its complex conjugate we get

dQ1 ∧ dQ1 ∧ dQ2 ∧ dQ2

≡
(
−|α2|2
|Z|2

∣∣(e2|∂zZ)∣∣2 +O(1)(N |z|N−1

δG
+GδN3 + |α2|δNG2

)2

+O(1)|α2|G
(
N |z|N−1

δG
+GδN3 + |α2|G2δN

))
dz ∧ dz ∧ dα2 ∧ dα2. �

6. Proof of Theorem 1.2

Let Q ∈ CN2

be an N×N matrix whose entries are independent random variables
∼ NC(0, 1), so that the corresponding probability measure is

π−N2

e−|Q|2(2i)−N2

dQ1 ∧ dQ1 ∧ · · · ∧ dQN2 ∧ dQN2 =
1

(2πi)N2 e
−|Q|2dQ ∧ dQ.

We are interested in

Kφ = E

(
1B

CN2 (0, 1)
∑

λ∈σ(A0+δQ)

φ(λ)

)
, φ ∈ C0(D(0, r0 − 1/N), (6.1)

which is of the form (3.3) with

m(Q) = 1B
CN2 (Q)π−N2

e−|Q|2 , (6.2)

so we have (3.8), (3.9) with J(f) as in (5.20) and f as in (4.45). More explicitly,

Ξ̃(z) =

∫
|f |2|Z(z)|2+|α′|2≤C2

1N
2

π−N2

e−|f(z,α′)|2|Z(z)|2−|α′|2J(f)(z, α′)L(dα′).

By (4.46), (4.20), (4.25):

|f | ≤ O(1)N
G

(
|z|N
δNG

+ δNG

)
) N

G
.

We now strengthen (4.20), (4.25) to the assumption

|z|N
δNG

+ δNG) 1

N
, for all z ∈ D(0, r0), (6.3)

implying that |f |G) 1, for all z ∈ D(0, r0). Equivalently, by the same reasoning
as after (4.26), r0 should satisfy

rN0
δNG(r0)

+ δNG(r0))
1

N
. (6.4)

Then

e−|f(z,α′)|2|Z(z)|2 = 1 +O(1)N2

(
|z|N
δNG

+ δNG

)2

,
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and using (5.20), we get

Ξ̃(z) =

(
1 +O(1)N2

(
|z|N
δNG

+ δNG

)2
)

× |(e2|∂zZ)|2
|Z|2

∫
|(f |Z|,α′)|≤C1N

|α2|2e−|α′|2π1−N2

L(dα′)

+O(1)
∫

e−|α′|2
(
N |z|N−1

δG
+GδN3 + |α2|δNG2

)2

π1−N2

L(dα′)

+O(1)
∫

e−|α′|2 |α2|G
(
N |z|N−1

δG
+GδN3 + |α2|δNG2

)
π1−N2

L(dα′).

Since |f ||Z| ) N , the first integral is equal to∫
C

1

π
|w|2e−|w|2L(dw) +O

(
e−N2/O(1)

)
= 1 +O

(
e−N2/O(1)

)
.

The sum of the other two integrals is equal to

O(1)
((

N |z|N−1

δG
+GδN3 + δNG2

)2

+G

(
N |z|N−1

δG
+GδN3 + δNG2

))

= O(1)
((

N |z|N−1

δG
+GδN3

)2

+G

(
N |z|N−1

δG
+GδN3

))
.

Noticing that

|(e2|∂zZ)|2
|Z|2 = O(G2),

we deduce that

Ξ̃(z) =
|(e2|∂zZ)|2
|Z|2

+O(1)
(
G2N2

(
|z|N−1

δG2
+ δN2

)2

+G2N

(
|z|N−1

δG2
+ δN2

))
.

(6.5)

We next study the leading term in (6.5), given by

|(∂zZ|e2)|2
π|Z|2 . (6.6)

Since ∂zZ belongs to the span of e1 = Z/|Z| and e2, we have

|(∂zZ|e2)|2 = |∂zZ|2 − |(∂zZ|e1)|2,
so the leading term (6.6) is

1

π|Z|2

(
|∂zZ|2 −

|(∂zZ|Z)|2
|Z|2

)
,
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which by (5.7) is equal to

2

πt

(
(t∂t)

2K

K
− (t∂tK)2

K2

)
t=|z|2

. (6.7)

Here, K = KN (t) =
∑N−1

0 tν is the function appearing in Proposition 5.2. Let
us first compute the limiting quantity obtained by replacing K = KN in (6.7) by
K∞ = 1/(1− t). Since ∂tK∞ = K2

∞, we get

t∂tK∞ = tK2
∞, (t∂t)

2K∞ = tK2
∞ + 2t2K3

∞,
and

2

πt

(
(t∂t)

2K∞
K∞

− (t∂tK∞)2

K2∞

)
=

2

π
K2

∞ =
2

π

1

(1− t)2
. (6.8)

We next approximate the expression (6.7) with (6.8), using (5.10) and the
fact that K = (1+O(tN ))K∞ (uniformly with respect to N). The expression (6.7)
is equal to

2

πtK2
(K(t∂t)

2K − (t∂tK)2)

=
2(1 +O(tN ))

πtK2∞

(
K∞(t∂t)

2K∞ − (t∂tK∞)2 +O(N2tNK2
∞)

)
.

Here,
(t∂tK∞)2 = O(t2K4

∞), K∞(t∂t)
2K∞ = O(tK3

∞ + t2K4
∞),

so the last expression becomes,

2

πt

(
(t∂t)

2K∞
K∞

− (t∂tK∞)2

K2∞

)
+O(tNK∞ + tN+1K2

∞ + tN−1N2),

where the first two terms in the remainder are dominated by the last one. We
conclude that the difference between the expressions (6.7) and (6.8) is O(tN−1N2),
and using also (6.5), we get,

Ξ̃(z) =
2

π(1− |z|2)2 +O(|z|2(N−1)N2)

+O(1)
(
G2N2

(
|z|N−1

δG2
+ δN2

)2

+G2N

(
|z|N−1

δG2
+ δN2

))
.

(6.9)

The remainder term can be written

O(G2)

(
|z|2(N−1)N2

G2
+
|z|2(N−1)N2

δ2G4
+ δ2N6 +

|z|N−1N

δG2
+ δN3

)
.

By (6.3), 1
δG � N2, so the second term is

� |z|2(N−1)N2

G2
N4,

which is much larger than the first term. We now strengthen (6.3) to

|z|N−1

δG2
+ δN2 ) 1

N
,
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or equivalently to
|z|N−1N

δG2
+ δN3 ) 1. (6.10)

Then the remainder in (6.9) becomes

O(G2)

(
|z|N−1N

δG2
+ δN3

)
,

and (6.9) becomes

Ξ̃(z) =
2

π(1 − |z|2)2

(
1 +O

(
|z|N−1N

δG2
+ δN3

))
. (6.11)

Setting Ξ̃ = 1
2πΞ concludes the proof of Theorem 1.2.
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différentiels non-autoadjoints, Thèse,
pastel.archives-ouvertes.fr/docs/00/50/12/81/PDF/manuscrit.pdf (2008).

[2] C. Bordenave and M. Capitaine, Outlier eigenvalues for deformed i.i.d. random ma-
trices, Communications on Pure and Applied Mathematics 69 (2016), no.11, 2131–
2194.

[3] E. B. Davies, Pseudospectra of Differential Operators, J. Oper. Th 43 (1997), 243–
262.

[4] E. B. Davies, Pseudo–spectra, the harmonic oscillator and complex resonances, Proc.
of the Royal Soc.of London A 455 (1999), no. 1982, 585–599.

[5] E. B. Davies and M. Hager, Perturbations of Jordan matrices, J. Approx. Theory
156 (2009), no. 1, 82–94.

[6] N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical (pseudo-)
differential operators, Communications on Pure and Applied Mathematics 57 (2004),
no. 3, 384–415.

[7] A. Guionnet, P. Matchett Wood, and O. Zeitouni, Convergence of the spectral mea-
sure of non-normal matrices, Proc. AMS 142 (2014), no. 2, 667–679.
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