
Chapter 7
Evolution of Polarization Singularities
of Two Monochromatic Beams in Their
Collinear Interaction in an Isotropic
Medium with Spatial Dispersion of Cubic
Nonlinearity

Vladimir Makarov

7.1 Introduction

I am going talk about the results [1] obtained by our team in the investigation of the
appearance of polarization singularities and its interaction in nonlinear optics
problems, more specifically, about the interaction of two monochromatic beams
with defined structure containing the polarization singularities in the case of their
collinear propagation in an isotropic gyrotropic medium with cubic nonlinearity.
The simplest example of an isotropic chiral medium is an isotropic solution of large
bioorganic molecules, which differ from their mirror images (Fig. 7.1), in a word,
chiral molecules.

Inhomogeneously polarized monochromatic electromagnetic fields may contain
lines of circular polarization also known as lines of polarization singularity
(C-lines) [2]. In paraxial beams, the intersections of the C-lines with the plane
transversal to the propagation direction are treated as C-points. The behavior of the
C-points in various linear media is frequently studied in scientific works (see, for
example, [3–6]). Methods for the description of the C-point dynamics [7] and their
experimental detection [8] have been developed; the statistics of the C-points in
random light fields have also been studied [9–11]. In addition, there are certain
applications of polarization singularities in problems of biology [12].
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The classification scheme for the C-points was first proposed in [2], based on the
analogous scheme for the degenerate points of the two-dimensional symmetric
tensor field. In connection with this, they are assumed to vary among three basic
types of C-points: the lemon, the monstar, and the star. The most important char-
acteristic of the C-point is its topological index, which is the number of full rotations
of the polarization ellipse on a counterclockwise loop around the C-point. The lemon
and the monstar points have a topological index 1/2. This is because the polarization
ellipse rotates at 180° on a counterclockwise loop around the C-point. The difference
between these two types is in the orientation of the polarization ellipses in
the vicinity of the C-point [13]. The star C-point has a topological index −1/2
(see Fig. 7.2).

C-points can also be treated as phase singularities of the circularly polarized
components of the electromagnetic radiation [13]. The complex amplitude of one of
the circularly polarized components of the field becomes zero at the C-point, and

Fig. 7.1 Chiral molecule

Fig. 7.2 a The lemon and the monstar C-points (red circle) with topological index ½. The
polarization ellipse rotates 180° on a counterclockwise loop around the C-point and. b The star
C-point (blue circle) with topological index −½. The polarization ellipse rotates 180° on a
clockwise loop around the C-point
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the phase of this component becomes indefinite. The points of the phase singu-
larities are also known as “optical vortices”. There are a number of fundamental
theoretical works [14–16] devoted to the linear interaction of the beams containing
phase singularities with various structures, and the results of these works can be
generalized for the case of the interacting beams with C-points.

Due to the features accompanying the formation of polarization singularities in
nonlinear optical processes and their subsequent evolution in a nonlinear medium,
there are countless resource-consuming methods for accounting for the polarization
evolution in the process of wave propagation. However, such studies could be
especially interesting. Formation of polarization singularities is possible due to the
three-wave mixing in a nonlocal nonlinear medium, even in the case of uniformly
polarized incident beams [17–20]. Moreover, numerical investigations have shown
that the nonlocality of nonlinear medium plays the key role in the stabilization of
the propagation of singular beams of a specific type [21–23]. Interest in the pro-
cesses accompanying the filamentation of singular beams also increases [24, 25].

The aim of this work is the investigation of the interaction of two monochro-
matic beams with defined structure containing the polarization singularities in the
case of their collinear propagation in an isotropic gyrotropic medium with cubic
nonlinearity.

7.2 Theory

The propagation of the light beam in an isotropic gyrotropic medium with spatial
dispersion of cubic nonlinearity can be described in terms of the following system
of nonlinear equations [26, 27]:

@A�
@z

þ i
2k

D?A� þ i �q0 þðr1=2� q1ÞjA�j2 þ r1=2þr2ð ÞjA�j2
h i

A� ¼ 0

ð7:1Þ

for the slowly varying envelopes A�ðz; x; yÞ ¼ Ax � iAy of the circularly polarized
components of the light field. Here D? is a Laplace operator in transversal coor-
dinates, x is the frequency of the wave propagating in the z-direction, and k is its
wave number. The parameters r1 ¼ 4px2vxyxy=ðkc2Þ and r2 ¼ 2px2vxxyy=ðkc2Þ
are proportional to the components of the fourth-rank tensor of local cubic optical
response v̂ð3Þðx;�x;x;xÞ, which possesses a permutation symmetry for the last
two indices. Parameter q0;1 ¼ 2 px2c0;1

�
c2 is proportional to the pseudoscalar

constants of linear and nonlinear gyration c0 and c1; which are the nonzero com-
ponents of nonlocal linear ĉð1Þ and nonlinear (cubic) ĉð3Þ optical susceptibilities,
contributing ĉð1Þ ~r~E and ĉð3Þ~E~E ~r~E to the polarization of the medium [28–30].
Further we assume that all of these medium parameters have real values.
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The propagating radiation can be fully characterized by the intensity

I x; y; zð Þ ¼ jAþ j2 þ jA�j2
� �

=2, the ellipticity degree of the polarization ellipse

M x; y; zð Þ ¼ jAþ j2 � jA�j2
� �

=2I, and the angle of orientation of the polarization

ellipse W x; y; zð Þ ¼ Arg AþA�
�

� �
=2 (see Fig. 7.3). Let us consider two coherent

monochromatic beams falling along the z-axis onto the medium surface z ¼ 0
normally. We assume the beams each have the following structure: the right-handed
circularly polarized component has a Gaussian profile, while the left-handed cir-
cularly polarized one has a Laguerre–Gaussian profile. Their centers are located on
the x-axis at a distance, each at d/2 from the zero point. Right-handed circularly
polarized components of these beams at z ¼ 0 are given by the following
expressions:

Aþ 1ðx; yÞ ¼ E0 exp �ðxþ d=2Þ2 þ y2

w2

 !
; ð7:2Þ

Aþ 2ðx; yÞ ¼ E0 expðihÞ exp �ðx� d=2Þ2 þ y2

w2

 !
; ð7:3Þ

and the left-handed circularly polarized ones are given as:

A�1ðx; yÞ ¼ hE0
xþ d=2� iy

w

� �
exp �ðxþ d=2Þ2 þ y2

w2

 !
; ð7:4Þ

A�2ðx; yÞ ¼ hE0 expðihÞ x� d=2� iy
w

� �
exp �ðx� d=2Þ2 þ y2

w2

 !
: ð7:5Þ

Here, expðihÞ determines the phase shift between the beams, E0 is the amplitude,
and h is a real-value coefficient. When d[[w, both beams have radial symmetric
intensity distributions and C-points in their centers (�d=2; 0; 0) and (d=2; 0; 0).

Fig. 7.3 Polarization ellipse
parameters
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The radiation is right-handed circularly polarized in these C-points. If there is a “−”
in the expression (7.4) and (7.5) before the imaginary unit, then the topological
index of the C-point is 1/2, and, if there is a “+” in these equations, then the
topological index is −1/2. In the case of positive topological index, the C-point
given by the expressions above will have a “lemon” morphologic type (see
Fig. 7.4), and, in the case of negative topological index, it will be a “star”. Within
the framework of our study, we do not pay attention to the transformation of lemon
to monstar and vice versa, neither do we make any difference between these two
morphological types with positive topological charge. We limit ourselves to the
investigation of topological charge evolution, nucleation, and annihilation of the C-
points with opposite topological charges. Figure 7.4d shows typical transversal
polarization distribution in one of the incident beams in the case of the topological
index 1/2. Each ellipse in the figure shows the polarization ellipse in the corre-
sponding point of the beam cross section with the same parameter (ellipticity
degree, angle of orientation). The sum of squares of axes of the ellipse is propor-
tional to the intensity of light at the given point. Filled ellipses correspond to the
left-handed circularly polarized components, and the open ellipses correspond to
the right-handed circularly polarized radiation.

The system of equations (7.1) is symmetrical to the simultaneous change of E�
to E� and q0; 1 to �q0; 1. In this case, the indices of the C-points of the incident
beams, the ellipticity degrees, and the orientation angles of the polarization ellipses
in them change their sign to the opposite in each point of space. Moreover, the
simultaneous change of the topological indices of the C-points in the incident
beams, which can be achieved by the change of “�” to “�” in (7.4) and (7.5), is
equivalent to the reversion of the y-axis, i.e., the spatial distribution of the elec-
tromagnetic field is mirror-reflected from the plane y = 0. Owing to the medium
symmetry, the trajectories of the singularities (the C-lines) will be reflected relative
to the plane y = 0. The effect of linear gyration (q0 6¼ 0) causes the rotation of the
polarization ellipses in each point in the transversal plane of the propagating field
for any value of z. The angle of rotation is proportional to the propagation

Fig. 7.4 The intensity distribution in right-handed circularly polarized component with Gaussian
profile (a) and in the left-handed circularly polarized one with Laguerre–Gaussian profile (b), the
intensity (c), and polarization (d) distributions in the resulting beam. The right-handed circularly
polarized C-point (red circle) with topological index ½ is located at the center of the beam (x = 0;
y = 0)
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coordinate z and does not depend on the transversal coordinates. Thus, in this
article, we do not take into account the linear gyration, focusing primarily on
non-linear effects.

It is important to remark that the C-points with the opposite handedness of the
polarization rotation do not interact in a linear medium. Thus, we can limit our-
selves to the consideration of incident beams with right-handed circular polarization
in both C-points with equal or opposite topological indices. In these two cases, the
equation system (7.1) with boundary conditions (7.2)–(7.5) was solved numerically
for various values of the incident radiation and nonlinear medium. Then the
polarization distributions, shown in Fig. 7.4 in xy plane for various z values, were
analyzed. The positions of C-points in these polarization distributions were found
as points where the value of the polarization ellipse orientation angle W was
undefined. Afterwards, the topological indices of the C-points were found by the
polarization distribution in their vicinity, and the C-lines were built.

It follows from (7.1) that, in a linear medium (r1;2 ¼ 0, q1 ¼ 0), the circularly
polarized components of the light field A� with opposite handedness do not interact
with each other. For any z, the right-handed circularly polarized component is a
superposition of two non-coaxial Gaussian beams that spread during the propaga-
tion. As the result of merging two Gaussian beams, an intensity maximum is formed
between their centers, which we call the “central maximum” hereafter. The
left-handed circularly polarized component is a superposition of two non-coaxial
Laguerre–Gaussian beams, and its shape experiences more sophisticated changes
during the propagation. Each beam loses its cylindrical symmetry. There appear
spots at their “rings”, where the formation of the intensity maxima take place,
which further we call them the “lateral maxima”. With the increase of z, these
maxima move away from the center. As a result, three intensity maxima appear in
the transversal section of superimposed propagating beams.

In the case of the equal sign of the topological charges of the C-points in the
incident beams, the interference of the beams at z = 0 yields one or three C-points,
depending on d, h, and h, instead of two. The sum of the topological charges of all
of the C-points in both cases is equal to +1/2 or −1/2, depending on the sign of the
topological charge of the separate C-points. The appearance and the propagation of
a sole C-point is not of a major factor, so, therefore, we consider the situation in
which three C-points arise at the border of the medium. The third C-point, which
appears between two initially existing C-points, has the topological charge with the
sign opposite to that of the initial C-points. If h ¼ 1, its coordinates are xc ¼ 0,
yc ¼ �0:5d � tg ðh=2Þ, and they do not change with the propagation when z in-

creases. After traversing a distance of ~z ¼ ðd2ð1þ cos hÞ�1 � 1Þ1=2, a dynamic
inversion of its topological charge occurs, first described in [14]: the central C-point
“exchanges” its topological charge with one of the other two C-points (Fig. 7.5a).
In other words, two C-points with opposite topological charges annihilate, and
afterwards another pair of the “oppositely charged” C-points appears immediately.
Figure 7.5b shows the polarization distribution in the transversal plane for z ¼ 2Ld ,
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where Ld ¼ kw2=2.The circles indicate the C-points with the topological
charge +1/2, and a square indicates the C-point with a topological charge of −1/2.

In the case of opposite topological charges of the C-points in the incident beams,
there can be two or four C-points at the border of the medium as a result of their
interference, depending on d, h, and h. If four C-points appear there, two “addi-
tional” C-points have opposite topological charges, so that the sum of topological
charges of all of the C-points is equal to zero. We will consider only the case when
there are two C-points, located in the centers of incident beams. If h ¼ 0, then for
any value of z ¼ z1 the light in each point of the straight line {x = 0; z = z1} is
right-handed circularly polarized, because the left-handed circularly polarized
Laguerre–Gaussian components suppress each other at this line. In this case, the
abovementioned straight line is a symmetry axis for the intensity distribution in the
transversal plane.

Let us consider the case when there is only one pair of C-points with the
opposite topological charges at the border of the medium. If h 6¼ 0 and d[

ffiffiffi
2

p
,

then, after traversing some distance, an additional pair of C-points with opposite
topological charges is nucleated as shown in Fig. 7.6a. The corresponding
transversal polarization distribution for z ¼ 2Ld is shown in Fig. 7.6b. If the phase
shift h between the initial beams exceeds a certain critical value hcrðdÞ, then one of
the “new” C-points will subsequently be annihilated with one of the “old” C-points
having the opposite topological charge (Fig. 7.6c). The transversal polarization
distribution at z ¼ 2Ld for this case is shown in Fig. 7.6d. The dependence hcrðdÞ is
monotone (Fig. 7.7).

Fig. 7.5 The trajectories of the C-points in a linear medium in the case of equal signs of the
topological indices of the incident beams (a) and the transversal polarization distribution in the
propagating light at z=Ld ¼ 2 (b) The parameters of the incident beams are the following: d ¼ 2;
h ¼ 1, h ¼ 30�. Circles indicate the C-line in (a) (C-points in (b)) with +1/2-topological index,
and squares indicate the C-line in (a) (C-points in (b)) with −1/2-topological index. The point of
pairwise creation/annihilation of the C-points is designated by a star (~z=Ld � 1:07)
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Fig. 7.6 The processes of the nucleation and the annihilation of the C-points (a, c) and the
transversal polarization distributions at z ¼ 3Ld (b, d). Here h ¼ 20� in (a, b), and h ¼ 30� in
(c, d). The topological charges of the C-points in the initial (separate) beams are opposite, d ¼ 2,
h ¼ 1. The critical phase shift for this case is hcr � 24�. Circles indicate the C-points with positive
topological charge, and squares indicate those with the negative topological charge. Pairwise
creation of the C-points is indicated by empty stars in (a) and (c), and pairwise annihilation is
indicated by a filled star in (c)

Fig. 7.7 Dependence of hcr
on the distance between
the centers of the incident
beams d
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In a nonlinear medium, the features of the interaction of the polarization sin-
gularities is determined by the parameters d=w, h, h, r2=r1, q1=r1 and the
so-called dimensionless power P ¼ r1LdE2

0, which can easily be adjusted in the
experiment. Our numerical investigations have shown its predominant influence on
the features accompanying the propagation of the C-points. With the growth of P,
these features take place at a smaller value of the nonlinear susceptibility of the
medium, or at smaller distances traversed in a medium.

The coefficients r1=2� q1 in (7.1) are responsible for the self-action of the
each circularly polarized component. In the case of the equal topological charges of
the C-points in the initial beams, this self-action promotes the amplification of the
central and lateral intensity maxima and their stability during the propagation. If
r1=2þr2 [ 0, the circularly polarized components A� are focused on each other
due to the nonlinear cross-interaction. In this case, each of the lateral maxima will
be attracted to the corresponding central maxima with the opposite handedness of
the polarization. In the case of significant focusing nonlinearity, the central spots of
the Gaussian components do not merge, but propagate separately instead. As a
result, there appear not three, but only two intense peaks in the transversal section
of the propagating light, and their polarization is determined by the value of h. If
h � 1, the polarization is almost linear. The intensity of light in the vicinity of each
of the C-points, where the radiation is right-handed circularly polarized, tends to
zero, since the power of this circularly polarized component is attracted by the
component with the opposite rotation, that is the right-handed circularly polarized
Gaussian is attracted by the left-handed circularly polarized Laguerre–Gaussian
component. If r1=2þr2\0, then the intensity maxima with opposite handedness
of the polarization rotation defocuses on each other and tend to occupy areas in the
beam cross section, which do not overlap. The polarization and the intensity dis-
tributions in this case become similar to those shown in Figs. 7.5 and 7.6 for
approximately the same parameters of the incident beams. The maxima of the
intensity maintain their shapes during the propagation owing to the nonlinear
self-action and its contrasts. The larger one is the absolute value of the negative
quantity r2=r1; the stronger one is the difference between the polarization state of
this maximum and the linear polarization state.

Let us consider now the incidence of two beams with equal topological charges
of the singularities onto the nonlinear medium. For any value of r1=2þr2, the
central C-point, originating in this case from the interference, does not move
straight along the z-axis, as it does in a linear medium (Fig. 7.5a), and the dynamic
inversion of its topological charge does not occur. Instead, two separate events of
pairwise creation and annihilation of the C-points in a nonlinear medium take place
(Fig. 7.8). Depending on the sign of the r1=2þr2, the sequence of these two
events can be different. Figure 7.9a, b show the dependence of the
nucleation/annihilation distance on the dimensionless power parameter. As can be
seen, the growth of P results in the increase of the z-coordinates of the C-points’
nucleation/annihilation processes for r1=2þr2 [ 0 and in the decrease of these
characteristic coordinates in the case of r1=2þr2\0.
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Fig. 7.8 C-lines in a nonlinear medium for P ¼ 1, r2=r1 ¼ 0:5, r2=r1 ¼ 0:5, q1=r1 ¼ 0
(a) and P ¼ 2, r2=r1 ¼ �0:8, q1=r1 ¼ 0 (b). The parameters of the incident beams are d ¼ 2,
h ¼ 30� and h ¼ 1. Circles designate the C-lines with the topological charge 1/2, while squares
designate ones with the topological charge −1/2. Pairwise creation of the C-points is indicated by
filled stars and pairwise annihilation is indicated by empty ones

Fig. 7.9 The dependence of the distance from the border of the medium, where the
nucleation/annihilation of two C-points takes place, on the dimensionless power parameter.
Filled circles correspond to the nucleation and empty ones to annihilation. a–b equal topological
charges of the initial singularities, h ¼ 30�. c–d opposite topological charges of the initial
singularities, h ¼ 40�. (a, c) r2=r1 ¼ 0:5, (b, d) r2=r1 ¼ �0:8. Other parameters: d ¼ 2, h ¼ 1
and q1=r1 ¼ 0
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In the case of the incident beams with the opposite topological charges of the
polarization singularities, the trajectories of the C-points are similar to those as
shown in Fig. 7.6. If we assume that the phase shift h is greater than hcr, the
pairwise annihilation of C-points is observed at certain z ¼ z� in a linear medium
(see Fig. 7.6c). If r1=2þr2 [ 0, the increase in the dimensionless power results in
the increase in the annihilation coordinate z� until it exceeds the limits of the
calculation area. If r1=2þr2\0, the annihilation occurs at smaller values in z�

with the increase of P. In other words, in the first case (r1=2þr2 [ 0), the
evolution of the C-points proceeds more slowly, while, in the second case, it
proceeds faster, compared to propagation in a linear medium. Such a behavior is
common for small values of the dimensionless power (P1 	P	P2, where P1 ffi 1,
P2 ffi 3). For larger values of P, the self-action of the circularly polarized compo-
nents A� prevents the interaction of the incident beams and, therefore, the inter-
action of the C-points in them. The z-coordinate of the pairwise creation of C-points
is affected by the change of the dimensionless power in a similar way as in
Fig. 7.9c, d.

It can be seen from (7.1), that the spatial dispersion of the cubic nonlinearity
enhances the self-action of one of the circularly polarized components of propa-
gating light. In the case of equal topological charges of the incident beams, the
presence of the spatial dispersion causes faster pairwise creation of the C-points
with opposite topological charges at smaller distances as compared to the case when
the spatial dispersion is absent (q1 ¼ 0). Corresponding transversal polarization
distribution is shown in Fig. 7.10a. The growth of jq1j leads to the formation of
strongly inhomogeneous polarization distribution (Fig. 7.10b). If r1=2þr2\0,
then the spatial dispersion of cubic nonlinearity affects the relative values of the
intense peaks in the transversal intensity distribution of the propagating wave.

Fig. 7.10 The transversal polarization distribution at z ¼ 2Ld in the propagating wave in the case
of equal topological charges of the singularities in the incident beams for the d ¼ 2, h ¼ 1,
h ¼ 30�, P ¼ 2, r2=r1 ¼ 0:5 and a q1=r1 ¼ 0:4, b q1=r1 ¼ �0:4
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7.3 Conclusion

For the first time the interaction of two collinear specific-kind monochromatic
beams with polarization singularities in the nonlinear isotropic gyrotropic medium
was theoretically studied. The relations between the components of local and
nonlocal cubic optical susceptibility tensors determine possible scenarios of the
interaction of circularly polarized components of the light field. In the case of their
mutual focusing, the spatial dispersion of cubic nonlinearity determines the
polarization states of the intensity maxima in the propagating light. Otherwise, in
the case of the defocusing cross-interaction of the circularly polarized components,
the spatial dispersion of cubic nonlinearity directly affects the relative intensities of
the peaks in the transversal intensity distribution.

The processes of pairwise creation and annihilation of the C-points with opposite
topological charges in the bulk of the nonlinear medium were observed. The sum of
the topological charges of all of the C-points in the transversal section of the
propagating light remains constant as the z coordinate changes. The nonlinearity of
the medium plays a key role in the scenario of the evolution of the C-points. In the
case of the mutual focusing of the circularly polarized components of the light field,
the increase in the intensity of the incident beams leads to the retardation of the
interaction of the C-points. In the case of the mutual defocusing of the circularly
polarized components of the propagating light, the greater the intensity of the
incident beams becomes, the faster the processes of pairwise creation/annihilation
proceed.
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