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Abstract Assessment of the seismic vulnerability of extended structures (e.g.
bridges and lifelines) as well as of systems of structures covering extended areas
requires to properly account for the effects of ground-motion spatial variability.
Even in cases with relatively uniform soil conditions, ground motions may exhibit
significant variations due to the incoherence and wave-passage effects, respectively
manifested as random differences and deterministic time delays. Differential soil
conditions cause additional variations in the amplitude and frequency content of the
ground motions as these propagate from the bedrock to the surface level. The
present chapter describes methods for the modeling of ground-motion spatial
variability, the simulation of spatially varying ground-motion arrays and the eval-
uation of the response of multiply-supported structures to differential support
excitations. The pertinent uncertainties in the characteristics of the ground motions
are accounted for by employing concepts from stochastic time-series analysis. In
particular, the notion of coherency is employed to describe the spatial variability of
the ground-motion arrays, which are considered as realizations of a random field at
the locations of interest. The statistical properties of the ground motions at separate
locations are described through the respective auto-power spectral densities.
A statistical characterization of linear structural response to differential support
motions is obtained by means of a response-spectrum method, rooted in random
vibration theory, while the non-linear response is investigated on the basis of the
‘equal-displacement’ rule. This chapter is inspired by the doctoral research of the
author under the supervision of Professor Armen Der Kiureghian.
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1 Introduction

Several recent earthquake events across the globe highlight the need for improved
measures to safeguard people’s lives and properties in seismic vulnerable areas. The
immense uncertainties associated with the occurrence and the characteristics of
future ground motions pose a major challenge in dealing with seismic risk. The
work of Professor Armen Der Kiureghian has been fundamental in achieving this
goal by offering pioneering methods for addressing uncertainty in the field of
earthquake engineering, among his numerous valuable contributions in the broader
fields of risk and reliability (e.g. Der Kiureghian and Liu 1986; Der Kiureghian and
Ke 1988; Der Kiureghian et al. 1994; Song and Der Kiureghian 2003; Straub and
Der Kiureghian 2010).

Inspired by the doctoral work of the author under the supervision of Professor
Der Kiureghian, the present chapter focuses on a particular aspect of seismic
analysis that is the spatial variability exhibited by earthquake-induced ground
motions and its effects on structural response. The importance of incorporating
these effects in seismic response analysis arises from the fact that seismic ground
motions may exhibit significant variations over distances that are comparable to the
dimensions of extended structures, such as bridges and lifelines. Furthermore, the
ground-motion spatial variability comes into play when examining seismic vul-
nerability at a systemic level, considering the infrastructure of entire communities
rather than independent structures. It should be emphasized that awareness on the
need for a systemic perspective is currently growing in the engineering research
community.

This chapter provides an overview on the following topics: the modeling
of ground-motion spatial variability, the simulation of spatially varying
ground-motion arrays and the response analysis of extended structures subject to
differential support excitations. In the relevant methods presented herein, effects of
uncertainties are incorporated by considering the ground-motion time histories as
realizations of stochastic processes exhibiting spatial correlations. To this end,
mathematical tools for time-series analysis in both the time and frequency domains
are employed.

Following the Introduction, the coherency function is presented in the next
section, as a means of describing the spatial variability of stochastic processes in the
frequency domain. Moreover, popular models for the coherency function in
the field of earthquake engineering are described. The section continues with the
estimation of coherency from ground-motion records, including a case study using
accelerograms from the 2004 Parkfield earthquake in California.

The subsequent section describes a method for simulating ensembles of spatially
varying ground-motion arrays consistent with a prescribed coherency function. It is
underlined that because recorded strong ground-motion arrays remain scarce,
methods for generating such arrays synthetically are essential in earthquake engi-
neering research and practice. The method described herein relies on the theory of
Gaussian random processes. Two approaches are presented: in the so-called
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unconditioned approach, the power spectral density of the acceleration process at a
reference site is defined on the basis of a given recorded or synthetic accelerogram.
In this case, ensembles of simulated arrays exhibit uniform variability at different
locations, a necessary property when these motions are used as input for statistical
analyses of structural responses. In the second approach, a specific realization
(a recorded or synthetic accelerogram) at a reference site is defined and consistent
time histories are simulated at the locations of interest. The latter comprises the
conditioned approach.

In the next part of this chapter, the focus is set on methods for the evaluation of
structural response to differential support excitations. First, a response-spectrum
method is described, rooted in the theory of random vibrations. This method is well
known as the Multiple-Support Response-Spectrum (MSRS) rule. Developed by
Der Kiureghian and Neuenhofer (1992), the MSRS rule is nowadays incorporated
in seismic design codes. The extension of the MSRS rule to account for quasi-static
contributions of truncated high-frequency vibration modes, developed by Konakli
and Der Kiureghian (2011a), is also presented. In the sequel, effects of spatial
variability on the ‘equal-displacement’ rule, relating mean peak non-linear to mean
peak linear structural responses, are discussed.

A summary is included in the final section of this chapter, followed by a grateful
acknowledgement to Professor Der Kiureghian.

2 Modeling of Ground-Motion Spatial Variability

2.1 The Coherency Function

The spatial variability manifested in earthquake-induced ground motions can be
attributed to three main effects, namely the incoherence, the wave-passage and the
site-response effects (Der Kiureghian 1996). The incoherence effect represents
random differences in the amplitudes and phases of seismic waves due to reflections
and refractions that occur as the waves propagate in the heterogeneous soil medium
and also, due to the super-positioning of waves arriving from different parts of an
extended source. The wave-passage effect represents the deterministic time-lag that
characterizes the arrival of seismic waves at separate locations. The site-response
effect represents the influence of varying local soil profiles on the amplitude and
frequency content of the bedrock motions as they propagate upwards to the surface.
The aforementioned effects are incorporated into the complex-valued coherency
function, which models the ground-motion spatial variability in the frequency
domain. Details on the coherency function are given in the sequel.

Let uk̈ðtÞ and ul̈ðtÞ denote a pair of stationary random processes modeling the
ground-motion accelerations at locations k and l respectively. The coherency
function that characterizes the spatial variability between the two locations is a
normalized version of the cross-power spectral density (PSD) of u ̈kðtÞ and ul̈ðtÞ:
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γklðωÞ=
Gu ̈k ülðωÞ

½Gu ̈k ük ðωÞGülülðωÞ�1 2̸ . ð1Þ

where GxyðωÞ denotes the cross-PSD of the random processes xðtÞ and yðtÞ, and
GxxðωÞ denotes the auto-PSD of process xðtÞ. Although earthquake ground motions
are not stationary, the above definition of the coherency function is commonly used
to describe their spatial variability under the assumption that the strong-motion
phase of an accelerogram is nearly stationary.

In the case of uniform soil conditions, the modulus of the coherency function
characterizes the incoherence effect, whereas its phase angle characterizes the
wave-passage effect. Der Kiureghian (1996) has shown that, under the assumption
of vertical wave propagation from the bedrock level to the ground surface, the
site-response effect influences only the phase angle of the coherency function. This
assumption can be employed in the case of far-field earthquake records. In this case,
the coherency function can be written in the form:

γklðωÞ= γklðωÞj jexp fi½θwpkl ðωÞ + θsrkl ðωÞ�g ð2Þ

where θwpkl ðωÞ and θsrklðωÞ respectively denote the phase angles due to wave-passage
and site-response effects. It is noted that in the case of near-fault motions,
site-response effects may also influence the coherency modulus.

Based on the physics of wave propagation and certain simplifying assumptions,
it is possible to develop theoretical models to describe the phase angle caused by
the wave-passage and site-response effects (the latter for far-field sites). The phase
angle due to the wave-passage effect is typically evaluated as (Luco and Wong
1986; Der Kiureghian 1996):

θwpkl ðωÞ= −
ωdLkl
νapp

ð3Þ

where dLkl is the projected algebraic horizontal distance in the longitudinal direction
of propagation of waves and νapp is the surface apparent wave velocity. Under the
assumptions of linear (or linearized) behavior of the soil columns, vertical wave
propagation at each site and neglect of dynamic interaction between sites, the phase
shift due to the site-response effect is given by (Der Kiureghian 1996):

θsrklðωÞ= tan− 1 lm½HkðωÞHlð−ωÞ�
Re½HkðωÞHlð−ωÞ� ð4Þ

where HkðωÞ is the frequency-response function for the absolute acceleration
response of the soil column at location k.

The inherently random nature of the incoherence effect renders the description of
the coherency modulus more challenging. One approach is to use a semi-empirical
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model, i.e. a theoretical model employing parameters that can be determined
through statistical inference. Another approach is to develop a purely empirical
model using data from recorded acceleration arrays. Empirical models account for
the complex phenomena that occur during wave propagation and are not captured
by simplified mathematical models, but characterize only the specific rupture
mechanisms and soil topographies present in the data. Among the most quoted
empirical models are those by Harichandran and Vanmarcke (1986) and Abra-
hamson et al. (1991), which are based on ground motions recorded by two arrays
located in an alluvial valley in Taiwan. Ancheta et al. (2011) updated the coeffi-
cients of the latter so that the new model additionally fits data from the Borrego
Valley Differential Array in California.

One of the most widely used semi-empirical models in engineering applications
was derived by Luco and Wong (1986) considering the propagation of shear waves
in a random medium. According to this model, the coherency modulus for a pair of
acceleration processes at stations k and l separated by a distance dkl is evaluated as:

γklj j= exp ½− ðαdklωÞ2� ð5Þ

in which the coherency drop parameter α is given by α= η ν̸s, where vs is the
average shear-wave velocity of the ground medium along the wave travel-path and
η is a constant. Luco and Wong suggested that typical values of α approximately
vary from 2 × 10–4 to 3 × 10–4 s/m, whereas Zerva and Harada (1994) proposed
an analytical expression for α in terms of the properties and depth of the soil layers
at the site under consideration. The Luco and Wong model represents a special case
of the model developed by Der Kiureghian (1996) based on the theory of random
processes.

2.2 Estimation of the Coherency Modulus

Consider an array of zero-mean, jointly stationary Gaussian ground-acceleration
processes at n sites defined by auto-PSDs GkkðωÞ, k=1, 2, . . . , n, and cross-PSDs
Gkl ωð Þ, k, l=1, 2, . . . , n, for k≠ l. Let akðtiÞ and alðtiÞ, i=1, . . . ,N, represent
realizations of the acceleration processes at locations k and l respectively, each
sampled at equal time intervals Δt, i.e. ti = ði− 1ÞΔt. To simplify the algebra, N is
considered even. According to Eq. 1, estimation of the coherency function from
given realizations requires the respective auto- and cross-PSDs. Under the
assumption of ergodicity, these quantities can be estimated from a single realization
of a random field, as described below.

An estimator of the auto-PSD of the acceleration record at location k is the
periodogram:
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Ikk ωp
� �

= ðNΔt 4̸πÞ A2
pk +B2

pk

� �
ð6Þ

in which ωp =2πp N̸Δt, p=1, . . . ,N 2̸− 1, denote discrete frequencies and
Apk,Bpk

� �
are the Fourier coefficients of the acceleration record (Chatfield 2004).

Though asymptotically unbiased, the periodogram is an inconsistent estimator and
exhibits erratic behavior. The traditional method to obtain a consistent estimator is
to smooth the periodogram over a frequency band (Brillinger 2001). The resulting
estimates of the PSD depend on the selected width of the smoothing window and, to
a lesser extent, on the type of smoother (Priestley 1981). Because smoothing
introduces bias to the estimates, the width of the smoothing window should be
selected considering the tradeoff between bias and variance.

A consistent estimator of the cross-PSD of two acceleration records is the
smoothed cross-periodogram. The real and imaginary parts of the
cross-periodogram are respectively determined by Chatfield (2004):

Re IklðωpÞ
� 	

= ðNΔt 4̸πÞ ApkApl +BpkBpl
� � ð7Þ

and:

Im IklðωpÞ
� 	

= ðNΔt 4̸πÞ ApkBpl −AplBpk
� � ð8Þ

Finally, an estimate of the coherency function is obtained by substituting in
Eq. 1 the smoothed version of IklðωÞ in the place of GklðωÞ and the smoothed
versions of IkkðωÞ and IllðωÞ in the places of GkkðωÞ and GllðωÞ respectively. To
estimate the coherency modulus for a pair of accelerograms at sites k and l, the real
and imaginary parts of the coherency function are substituted into the expression

γklðωÞj j= Re γklðωÞð Þ½ �2 + Im γklðωÞð Þ½ �2
n o1 2̸

.

2.3 The Case of the UPSAR Array

Recordings of the UPSAR array during the 2004 Parkfield earthquake in California
provided a rare opportunity to examine the coherency function for near-fault strong
ground motions. Konakli et al. (2014) investigated the coherency modulus for this
particular event and tectonic setting and compared their estimates with commonly
used semi-empirical and empirical models. This subsection provides a summary of
the analysis and main findings of this study.

The coherency analysis in Konakli et al. (2014) was based on the acceleration
time-histories recorded at the 12 operational stations of the UPSAR array. By
focusing on inter-station distances 0–500 m, the analysis considered 47 station
pairs. Estimates of the coherency modulus were obtained for each station pair and
for each of the EW, NS (two horizontal) and UD (vertical) components, by
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analyzing nearly-stationary segments of the recorded accelerograms. The consid-
ered segments were defined by a time window of 7.5 s width, containing the
strongest shaking. The selection of the time window was based on an analysis of the
following three measures: the integral of the squared acceleration in time (M1),
the cumulative count of zero-level up-crossings (M2), and the cumulative count of
negative maxima and positive minima (M3). Figure 1 (originally presented in
Konakli et al. 2014) shows the time evolution of the aforementioned measures for
the accelerograms in the EW direction. Approximately constant slopes of the M1,
M2 and M3 curves respectively indicate nearly-constant variance, predominant
frequency and bandwidth (Rezaeian and Der Kiureghian 2008). The resulting
periodograms for the so selected segments were smoothed using a 5-point Ham-
ming window. Details on the selection of the smoothing window can be found in
Konakli et al. (2014).

In order to compare the coherency estimates from the UPSAR recordings to the
model by Luco and Wong, values of parameter α in Eq. 5 that fit the UPSAR
estimates were determined by means of non-linear least-squares minimization. In
examining the coherency at specific distances as a function of frequency, the
least-squares minimization was applied on the variance-stabilizing transformation
tanh− 1 γklj j (Abrahamson et al. 1991; Ancheta et al. 2011). Figure 2 (originally
presented in Konakli et al. 2014) shows the fitter values versus inter-station dis-
tances for pairs of components in the NS, EW and UD directions. The figure
indicates a strong dependence of α on distance, with α tending to decrease with
increasing inter-station distance at a rate that is higher at smaller distances. Overall,
the fitted α values for the vertical component are slightly larger than those for the
two horizontal components, which tend to be close to each other. This indicates a
slightly larger spatial variability among the vertical components than among the
horizontal components for the same inter-station distance. The estimated standard
deviations of the fitted α values normalized with the respective α values were below
0.2 in all cases.

It is noted that under the assumption of homogeneity, a single estimate of the
coherency modulus can be obtained for a relatively narrow inter-station distance bin
through averaging. Moreover, under the assumption of isotropy, a single estimate

M1 M2 M3

Fig. 1 Evolving measures of variance, predominant frequency and bandwidth of the UPSAR
accelerograms in the EW direction
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can be obtained for the horizontal component of the ground motion. This averaging
is important in reducing the noise in the estimates. Fitted α values under the
assumptions of homogeneity and isotropy are reported in Konakli et al. (2014).

Next, the behavior of the coherency modulus as a function of inter-station dis-
tance is examined at specific frequencies. In this case, the non-linear least-squares
minimization is directly applied on γklj j. Figure 3 (originally presented in Konakli
et al. 2014) shows the α values obtained for each of the NS, EW and UD com-
ponents. Frequencies up to 2.5 Hz are shown, because coherency estimates for
higher frequencies are dominated by noise. Considering the frequency range below
1.5 Hz, where the effect of noise is relatively small, the figure indicates both
direction dependence, with smaller values of α corresponding to the horizontal
components, and frequency dependence, with values of α tending to decrease with
increasing frequency. The respective estimates of the standard deviation normalized
with the fitted α value were below 0.14 in all cases.

α

Fig. 2 Fitted α values versus distance using coherency estimates as a function of frequency

α

ω π

Fig. 3 Fitted α values versus frequency using coherency estimates as a function of distance
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According to Figs. 2 and 3, the estimates of α for the UPSAR recordings are
within the range suggested by Luco and Wong for distances approximately in the
range 100–300 m and for frequencies approximately in the range 0.5–2 Hz.
However, unlike the Luco and Wong model where α is a constant, the UPSAR data
indicate dependence of α on both inter-station distance and frequency. It is also
noted that the rate of decay of the coherency modulus with frequency and distance
tends to be higher for the vertical component. This trend is more pronounced for the
rate of decay of the coherency modulus with distance at the lower frequencies.

Konakli et al. (2014) further compared estimates of the coherency modulus from
the UPSAR recordings with two widely used empirical models. They considered
the empirical model by Ancheta et al. (2011) for inter-station distances smaller than
100 m and the model by Harichandran and Vanmarcke (1986) for inter-station
distances larger than 100 m. As mentioned earlier in this section, the model by
Ancheta et al. (2011) is an update on the earlier model by Abrahamson et al. (1991).
For separation distances 100–300 m, the empirical model was found to be in fair
agreement with the UPSAR estimates for frequencies up to approximately 4 Hz.
For smaller separation distances, the UPSAR coherency modulus was found smaller
than that given by the empirical model in the entire frequency range examined, but
the trend reversed for separation distances greater than 300 m. These differences
indicated a complex dependence of the spatial variability exhibited by earthquake
ground motions on source, propagation, topography and site effects.

3 Simulation of Spatially Varying Ground Motions

3.1 The Unconditioned and Conditioned Approaches

The simulation method described in the present section, originally proposed by
Konakli and Der Kiureghian (2012a), generates arrays of ground-motion time
histories with temporal and spectral non-stationarity, incorporating effects of
incoherence, wave passage and differential site response. The method is based on
the representation of ground accelerations as realizations of Gaussian random
processes and builds upon the earlier works of Vanmarcke and Fenton (1991),
Kameda and Morikawa (1992) and Liao and Zerva (2006). The required input
comprises: (i) a recorded or synthetic accelerogram at a reference site, (ii) a
coherency function that describes the spatial variability of the ground-motion
random field and (iii) the frequency-response functions of the soil columns at the
locations of interest.

Two approaches are considered. In the unconditioned approach, the simulated
motions are consistent with the statistical characteristics of the ground-motion
random field at the reference site, derived from the auto-PSD of the given
accelerogram. In the conditioned approach, the simulated motions are consistent
with the specific realization of the ground-motion random field at the reference site,
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represented by the given accelerogram. In the latter approach, the variance of the
simulated motions increases with increasing distance from the reference site, which
is an undesirable property if the motions are used to perform statistical analysis of
structural responses. The unconditioned approach should thus be considered when
uniform variance of the simulated motions at different locations is essential.

In both approaches, temporal and spectral non-stationarities are accounted for by
considering nearly stationary segments of the given accelerogram. These are used to
simulate consistent segments of acceleration time-histories at the target locations,
which are appropriately stitched together in the sequel. It is underlined that this
method is not directly applicable to near-fault ground motions that contain direc-
tivity pulses and thus, cannot be represented as stationary segments even in
approximation. One way to include the directivity pulse is to separately model the
pulse and superimpose it on a synthetic ground-motion array, the latter generated
according to the methodology presented herein.

In the following, after a brief description of the discrete representation of an
array of Gaussian processes, the conditioned and unconditioned simulation
approaches are outlined for the case of stationary motions. The extension to
non-stationary motions is explained in the sequel, followed by an example
application.

3.2 Discrete Representation of an Array of Gaussian
Processes

Similarly to the previous section, an array of zero-mean, jointly stationary Gaussian
acceleration processes at n sites is considered, defined by auto-PSDs GkkðωÞ,
k=1, 2, . . . , n, and cross-PSDs Gkl ωð Þ, k, l=1, 2, . . . , n, for k≠ l. Each process is
sampled at time instants ti = ði− 1ÞΔt, i=1, . . . ,N, with the number of samples N
considered even. Such an array of processes can be represented in terms of the finite
Fourier series (see, e.g. Chatfield 2004):

ak tið Þ=A0k + ∑
N 2̸− 1

p=1
Apk cos ωpti

� �
+Bpk sin ωpti

� �� 	
+ − 1ð ÞiA N 2̸ð Þk ð9Þ

where ωp =2πp N̸Δt are discrete frequencies and Apk,Bpk
� �

are the Fourier coef-
ficients. Note that the above representation uses N parameters to describe N
observations and can thus be made to exactly fit the given realizations.

The Fourier coefficients Apk,Bpk
� �

are zero-mean, jointly Gaussian random
variables, uncorrelated for different frequencies, i.e. E ApkAqk

� 	
=E BpkBqk

� 	
=

E ApkBqk
� 	

=0 for p≠ q. At frequency ωp, the following relations hold:
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E Apk Apl
� 	

=E Bpk Bpl
� 	

=
Gkk ωp

� �
Δω, if k= l

Re Gkl ωp
� �� 	

Δω, if k≠ l



ð10Þ

and

E Apk Bpl
� 	

= −E Bpk Apl
� 	

=
0, if k= l
Im Gkl ωp

� �� 	
Δω, if k≠ l



ð11Þ

with Δω=2π N̸Δt. Obviously, given the auto- and cross-PSDs (or equivalently the
auto-PSDs and the coherency function), the variance/covariances of all Fourier
coefficients can be determined.

3.3 Simulation of Stationary Motions
with the Unconditioned Approach

Let k=1, . . . , n denote the index of a target site with frequency-response functions
Hk ωð Þ and let γkl ωð Þ denote the coherency function describing the variability of the
motions between two sites k and l. Let Xp = Ap1 Bp1 . . . Apn Bpn½ � denote
the set of Fourier coefficients at frequency ωp and let Σpp denote the 2n×2n
covariance matrix of these coefficients. The covariance matrix fully defines the
zero-mean joint Gaussian distribution of vector Xp. The elements Σpp, ij of this
matrix are determined using Eqs. 10 and 11. The latter equations involve the
auto-PSDs Gkk ωp

� �
, k=1, . . . , n, and the cross-PSDs Gkl ωp

� �
, k, l=1, . . . , n, k≠ l.

To determine the auto-PSDs, first, the auto-PSD of the given realization is estimated
through the (optionally smoothed) periodogram given in Eq. 6. In the sequel, the
full set of auto-PSDs is obtained in terms of the estimated auto-PSD of the given
realization and the site frequency-response functions, using the relation between the
PSDs of the surface motions at two locations k and l:

GllðωÞ=GkkðωÞ Hl ωð Þj j2
Hk ωð Þj j2 ð12Þ

The above equation is based on the same assumptions as those behind Eq. 4. The
full set of cross-PSDs can then be obtained in terms of the auto-PSDs and the given
coherency function (see Eq. 1).

Once the covariance matrix is determined, sample vectors from the 2n-dimen-
sional zero-mean joint Gaussian distribution of Xp are obtained as xp =LT

pzp, where
Lp is an upper triangular matrix such that LT

pLp =Σpp and zp is a 2n-vector of
uncorrelated standard normal variables. A computationally efficient method to
obtain Lp is to write it as Lp =DpRp, where Dp is the diagonal matrix of standard
deviations and Rp is the Cholesky decomposition of the correlation matrix.
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After sampling at all frequencies ωp =2πp N̸Δt, p=0, 1, . . . ,N 2̸, Eq. 9 is used to
obtain the acceleration time-histories at the n sites. Note that the ground motions are
fully coherent at ωp =0 and the Fourier coefficients have the same values at all
locations. Thus, at ωp =0, one only needs to sample from a 1-dimensional
zero-mean Gaussian distribution with variance Gkk 0ð ÞΔω.

3.4 Simulation of Stationary Motions
with the Conditioned Approach

In the current approach, the Fourier coefficients of the acceleration processes at the
target locations are sampled from a joint Gaussian distribution derived by proba-
bilistic conditioning. Consider again the vector of zero-mean Fourier coefficients
Xp = Ap1 Bp1 . . . Apn Bpn½ � at frequency ωp, and the 2n×2n covariance
matrix Σpp of these coefficients. The vector Xp is partitioned into two subvectors,
Xp1 and Xp2, with the former including the Fourier coefficients at sites with known
ground motions. The conditional distribution of Xp2 given Xp1 = xp1 is jointly
normal with mean:

Mp, 21 =Σpp, 21 Σpp, 11
� �− 1xp1 ð13Þ

and covariance matrix:

Σp, 22 11 =Σpp, 22 −Σpp, 21 Σpp, 11
� �− 1Σpp, 12 ð14Þ

where Σpp, ij denotes the sub-matrix of Σpp giving the covariance of vectors Xpi and
Xpj. The covariance matrix Σpp, is obtained as described in the previous subsection.

The case when the acceleration process is specified at location k=1 only is
herein considered. Accordingly, conditioned acceleration time-histories are simu-
lated for locations k=2, . . . , n. The 2ðn− 1Þ-dimensional joint Gaussian distribu-
tion of the Fourier coefficients for the target n− 1 locations is defined through the
conditional mean vector and covariance matrix in Eqs. 13 and 14 respectively. In
these equations, xp1 = Ap1 Bp1½ � is the set of Fourier coefficients of the given
accelerogram. At each frequency ωp =2πp N̸Δt, p=1, . . .,N 2̸, a sample-set of
Fourier coefficients for the target locations is obtained as xp2 =Mp, 2j1 +LT

p, 2j1zp,
where Lp, 2 1 is an upper triangular matrix such that LT

p, 2j1Lp, 2j1 =Σpp, 22j11, and zp is
a 2ðn− 1Þ-vector of uncorrelated standard normal variables. Sampling is not
required for p=0, because at ωp =0 the ground motions are fully coherent and the
Fourier coefficients have the same values at all locations. After the vectors xp2 at all
frequencies are obtained, Eq. 9 is used to assemble the realizations of acceleration
time-histories at the target locations.
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3.5 Extension to Non-stationary Motions

As explained earlier, typical earthquake accelerograms that do not contain a
directivity pulse can be seen as consisting of nearly-stationary segments. The
segments should be defined so that they maintain nearly time-invariant statistical
characteristics, i.e. variance, predominant frequency and bandwidth, respectively
measured in terms of the integral of the squared acceleration in time, the cumulative
count of zero-level up-crossings and the cumulative count of negative maxima or
positive minima (see also the subsection on estimation of the coherency modulus).

The basic idea of the non-stationary extension of the unconditioned simulation is
to apply the method described earlier to each “stationary” segment of the given
accelerogram and then, for each location, assemble the entire realization by joining
together the corresponding simulated segments. Following the segmentation of the
given accelerogram, both ends of each segment need to be tapered with appropriate
(e.g. cosine-type) functions so as not to introduce fake high-frequency components
in the Fourier series. To avoid shifting the segments for different sites, the
wave-passage effect is separately applied as a deterministic time-shift on the entire
realization. Finally, the shifted accelerograms are further processed following
standard techniques in earthquake engineering, i.e. subtraction of the mean value of
the entire acceleration time-history, application of a short cosine taper function to
set the initial value to zero and application of a high-pass filter to ensure zero
residual velocity and displacement. The resulting acceleration time-histories are
integrated to obtain the corresponding velocity and displacement realizations.

The non-stationary extension of the conditioned simulation method is performed
in a manner similar to that described above for the unconditioned simulation.
However, in order to obtain a consistent set of ground motions, the given
accelerogram at the reference site must be slightly modified by joining together the
tapered segments and post-processing the entire time-history in a manner identical
to the simulated motions. The resulting motion at the reference site does not have
any random characteristics but is slightly different from the given record. The
segmentation and post-processing mainly influence the low-frequency content of
the motion, which is more apparent in the displacement waveform. As a result, the
displacement time-history of the original record may somewhat differ from the
simulated displacement time-history at zero distance. If accurate representation of
the displacement time-history of the original record is important, the following
alternative procedure can be applied: (a) the low-frequency component of the
original record is separated, e.g. by use of a high-pass filter; (b) conditioned
non-stationary motions are simulated based on the remaining component; (c) the
low-frequency component is added back to the simulated time-histories after it has
been deterministically modified to account for the wave-passage effect and,
optionally, for the site-response effect.
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3.6 Example Application

An example application from Konakli and Der Kiureghian (2012a) is herein pre-
sented in brief. Support motions are simulated for an example four-span bridge in
California with its five supports located at sites with varying soil conditions. The
five supports comprise abutment 1, bent 2, bent 3, bent 4 and abutment 5. The
acclererogram at the reference site (abutment 1) is the fault-normal component of
the Izmit record from the 1999 Kocaeli earthquake. For further details on the bridge
configuration and the characteristics of the ground motion random field, the reader
is referred to Konakli and Der Kiureghian (2012a).

Figure 4 shows example sets of support motions generated with the uncondi-
tioned and conditioned approaches (left and right graphs respectively). For each
example simulation, acceleration, velocity and displacement time-histories at the
five supports are shown. Note that both simulation approaches preserve the
non-stationary nature of the ground motion and that all records approach zero with
increasing time. The motions in the pair of abutments 1 and 5 and the pair of bents 2
and 4 differ only due to incoherence and wave passage, and thus, have the same
frequency contents. For any other pair of support motions, the variability is addi-
tionally due to the effect of varying soil conditions. These differences in the fre-
quency contents are more apparent in the acceleration than in the velocity and
displacement time-histories, with the lower frequency contents indicating softer
sites.

Figure 5 shows 5% damped pseudo-acceleration response spectra at each sup-
port point for 20 realizations obtained from unconditioned and conditioned simu-
lations (left and right graphs respectively). For the unconditioned case, the
variances at all support points are similar, which, as explained before, is a desirable
characteristic for ground motions to be used in statistical analyses of structural
responses. For the conditioned case, one notes the increasing variance of the
spectral amplitude with increasing distance from abutment 1, at which the variance
is zero.

Figure 6 compares the acceleration coherency estimates from the simulated
motions with the corresponding target theoretical models for an example pair of
support points (abutment 1 and bent 3). The real and imaginary parts of the
coherency function are shown in the upper and bottom graphs respectively. The
coherency estimates are obtained by averaging the estimates from 20 realizations.
Excellent agreement of the coherency estimates with the theoretical model validates
the accuracy of both the unconditioned and the conditioned approaches (see left and
right graphs of the figure respectively). It is noted that an equally good agreement of
the estimated coherency with the target theoretical models has also been verified for
the other pairs of supports.
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Unconditioned approach Conditioned approach

Fig. 4 Example sets of simulated support motions
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4 Structural Response to Differential Support Excitation

4.1 Linear Response Analysis with Response-Spectrum
Methods

Analysis of structural response to differential support excitations can be performed
using time-history analysis (e.g. Saxena et al. 2000; Sextos et al. 2004; Lou and
Zerva 2005; Lupoi et al. 2005) the methods of random vibration (e.g. Dumanogluid
and Soyluk 2003; Zembaty and Rutenberg 2002; Zhang et al. 2009; Heredia‐Zavoni
et al. 2015) or response spectrum methods (e.g. Berrah and Kausel 1992;

Unconditioned approach Conditioned approach

Fig. 5 Pseudo-acceleration response spectra for 20 simulated arrays
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Der Kiureghian and Neuenhofer 1992; Konakli and Der Kiureghian 2011a). The
random vibration and response spectrum approaches provide a statistical charac-
terization of the response and therefore, their results are not specific to a particular
set of ground motions. In this respect, the aforementioned two approaches are
deemed advantageous to time-history analysis. Due to the simplicity of character-
izing ground motions with response spectra, the response-spectrum approach is
particularly appealing in engineering practice.

The Multiple-Support Response-Spectrum (MSRS) rule, developed by Der
Kiureghian and Neuenhofer (1992), evaluates the mean peak response of
multiply-supported linear structures subjected to spatially varying ground motions.
This rule has become a popular method of analysis of multiply-supported structures
(see, e.g. Kahan et al. 1996; Soyluk 2004; Wang and Chen 2005; Yu and Zhou
2008; Wang and Der Kiureghian 2014) and is also incorporated by seismic codes
(Eurocode 8 1998). The original formulation of this method only considered
responses that could be expressed as linear functions of the total displacements at
unconstrained degrees of freedom (DOF) of the structure. Konakli and Der
Kiureghian (2011a) generalized the original formulation to account for response
quantities that also depend on the support motions. Such dependence is pervasive
among response quantities of interest; for instance, when rotational DOF are con-
densed out in the analysis, most response quantities of interest indirectly depend on
the support motions. Konakli and Der Kiureghian (2011a) further developed an
extended version of the MSRS rule that accounts for quasi-static contribution of
truncated high-frequency modes. This extension is particularly important in engi-
neering practice, where computational costs necessitate the truncation of modes
beyond a number far smaller than the total number of DOF of the structure.
The generalized and extended MRSS rules are described in the sequel.

Unconditioned approach Conditioned approach

Fig. 6 Acceleration coherency estimates from 20 simulated arrays
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4.2 The Generalized MSRS Rule

Consider a linear structural system with N unconstrained DOF and subjected to m
support motions. Let x= x1 . . . xN½ �T denote the N-vector of (total) displace-
ments at the unconstrained DOF and u= u1 . . . um½ �T denote the m-vector of
prescribed support displacements. Assuming classical damping, let
Φ= Φ1 . . . ΦN½ �, ωi and, ζi, i=1, . . . ,N, respectively denote the modal
matrix, natural frequencies, and modal damping ratios of the fixed-base structure.
Moreover, let skiðtÞ denote the normalized response of the ith mode to the kth
support motion, obtained as the solution to:

sk̈i tð Þ+2ζiωisk̇i tð Þ+ω2
i ski tð Þ= − u ̈kðtÞ ð15Þ

A generic response quantity of interest zðtÞ can be written as a linear combi-
nation of the support displacements and the displacements at the unconstrained
DOF:

z tð Þ= qTuu tð Þ+ qTx xðtÞ ð16Þ

where qu = qu, 1 . . . qu,m½ �T and qx = qx, 1 . . . qx,N½ �T are coefficient vectors.
Equation 16 represents a generalization of the original formulation by Der
Kiureghian and Neuenhofer (1992), who considered z tð Þ a function of x tð Þ only.
This generalization allows consideration of response quantities that are functions of
displacements at both the constrained as well as support DOF, e.g. the drift of a
bridge column or an internal force of a structural model with condensed rotational
DOF.

Based on principles of modal analysis, Eq. 16 can be written as (Konakli and
Der Kiureghian 2011a):

z tð Þ= ∑
m

k=1
akuk tð Þ+ ∑

m

k =1
∑
N

i=1
bkiskiðtÞ ð17Þ

where ak represents the response quantity of interest when the kth support DOF is
statically displaced by a unit amount while all other support DOF remaining fixed,
and bki represents the contribution of the ith mode to the response arising from the
excitation at the kth support DOF when the normalized modal response skiðtÞ is
equal to unity. The coefficients ak and bki are given by:

ak = qu, k + qTx rk ð18Þ

where rk represents the displacements at the unconstrained DOF when the kth
support DOF is displaced by a unit amount, and:
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bki =qTxΦi βki ð19Þ

where βki =ΦT
i Mrk Φ̸T

i MΦi is the modal participation factor associated with the
ith mode and kth support DOF; in the latter expression, M denotes the mass matrix
of the structure associated with the unconstrained DOF. The coefficients ak and bki
depend only on the structural properties and can be computed by use of any
conventional static analysis program (see Konakli and Der Kiureghian 2011a, b, for
further details on properties of these coefficients and their computation).

Using Eq. 17 and the principles of stationary random vibration theory, the mean
of the peak of the generic response quantity zðtÞ can be approximately obtained in
the form (Der Kiureghian and Neuenhofer 1992):

E max zðtÞj j½ �

≈ ∑
m

k=1
∑
m

l=1
akalρukuluk,maxul,max

�

+2 ∑
m

k=1
∑
m

l=1
∑
N

j=1
akbljρuksljuk,maxDlðωj, ζjÞ

+ ∑
m

k=1
∑
m

l=1
∑
N

i=1
∑
N

j=1
bkibljρskisljDkðωi, ζiÞDlðωj, ζjÞ

#1 2̸

ð20Þ

The preceding equation represents the MSRS combination rule. The mean of the
peak response is given in terms of: (i) the structural properties, reflected in the
coefficients ak and bki, (ii) the mean peak ground displacements uk, max and
the ordinates of the mean displacement response spectra Dkðωi, ζiÞ, and (iii) three
sets of correlation coefficients. The latter comprise the coefficients ρukul , describing
the correlation between the kth and lth support displacements, the coefficients ρukslj ,
describing the correlation between the kth support displacement and the response of
the jth mode to the lth support motion, and the coefficients ρskislj , describing the
correlation between the responses of the ith and jth modes to the kth and lth support
motions respectively.

The correlation coefficient for two processes x tð Þ and yðtÞ is defined as:

ρxy =
∫ +∞

−∞ Gxy ωð Þdω
½∫ +∞

−∞ Gxx ωð Þdω ∫ +∞
−∞ Gyy ωð Þdω�1 2̸ ð21Þ

where Gxx ωð Þ is the auto-PSD of x tð Þ, and Gxy ωð Þ= γxy ωð Þ½Gxx ωð ÞGyy ωð Þ�1 2̸ is the
cross-PSD of xðtÞ and yðtÞ, with γxy ωð Þ denoting the coherency function. The
processes involved in the computation of the correlation coefficients of the MSRS
rule are the support displacements uk tð Þ and the normalized modal responses ski tð Þ.
The auto-PSD of uk tð Þ can be obtained in terms of the response spectrum Dkðω, ζÞ,
while the auto-PSD of ski tð Þ additionally involves the frequency-response function

Seismic Response Analysis with Spatially … 217



of the ith mode (see Der Kiureghian and Neuenhofer 1992, for details). It follows
that the complete set of correlation coefficients can be obtained in terms of the
response spectra at the support DOF, the coherency function and the modal
properties of the structure.

Konakli and Der Kiureghian (2012b) investigated the accuracy of the MSRS rule
by comparing the MSRS estimates of mean peak structural responses with the
corresponding ‘exact’ mean values obtained by time-history analysis. The consid-
ered structural systems comprised four bridge models designed by the California
Department of Transportation and characterized by distinctly different configura-
tions and dynamic properties. The focus of the study was set on pier drifts, which
are quantities particularly important in performance-based design of bridges. The
analysis assumed uniform soil conditions, but incorporated effects of incoherence
and wave passage. Support-motion arrays for the time-history analysis were
obtained with the unconditioned simulation method, described in the previous
section. The study considered two recorded accelerograms as seeds in the simu-
lation of the support motions and two levels of incoherence. For each ground
motion random field, 20 ensembles of ground-motions arrays were generated. The
mean response spectra of the motions at all supports of a bridge were used as input
in the MSRS analysis.

As an example, Fig. 7 shows the time histories of three pier drifts (from different
bridges) for a particular ground-motion random field (20 realizations) together with
the corresponding MSRS estimates, the latter depicted by horizontal lines. Exam-
ining absolute values of the MSRS errors, the mean and standard deviation over all
pier drifts and ground-motion random fields considered were found equal to 4.6%
and 3.7% respectively. The maximum error observed was 12.3%, but in most cases,
the errors were smaller than 10%.

It is emphasized that the MSRS method is intended for use in conjunction with
smooth response spectra that represent broadband excitations and a smooth
coherency function. In the aforementioned analysis however, jagged response
spectra from relatively narrowband excitations were used. Furthermore, the smooth
coherency function used for evaluation of the correlation coefficients in the MSRS
analysis differs from the actual coherency values for pairs of simulated support
motions, which may exhibit fluctuations around the theoretical model. In view of
these differences, the reported MSRS errors are deemed remarkably small.

4.3 The Extended MSRS Rule

When high-frequency modes are truncated, an improved approximation of the
response can be obtained by accounting for the quasi-static contributions of the
truncated modes. If ωi is large relative to the frequencies of the input excitation,
the last term in the left-hand side of Eq. 15 is dominant and the ith normalized
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modal response to the kth support motion can be approximated by
ski tð Þ≈−ω− 2

i uk̈ðtÞ. Using this relation in Eq. 17 for modes i> n leads to:

z tð Þ≈ ∑
m

k=1
akuk tð Þ+ ∑

m

k=1
∑
n

i=1
bkiski tð Þ− ∑

N

i= n+1

bki
ω2
i
uk̈ðtÞ

� �
ð22Þ

The coefficients bki for i> n can be eliminated from Eq. 22 by employing the
identity (Konakli and Der Kiureghian 2011a):

Fig. 7 Response
time-histories and
corresponding MSRS
estimates
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− ∑
N

i=1

bki
ω2
i
= − qTxK

− 1Mrk ð23Þ

where K denotes the stiffness matrix of the structure associated with the uncon-
strained DOF. By rearranging terms, one obtains:

∑
N

i= n+1

bki
ω2
i
= qTxK

− 1Mrk − ∑
n

i=1

bki
ω2
i
= dk ð24Þ

Using the above identity, Eq. 22 can be written in a form that involves the
dynamic properties of only the first n modes:

z tð Þ≈ ∑
m

k=1
akuk tð Þ+ ∑

m

k=1
∑
n

i=1
bkiskiðtÞ− ∑

m

k=1
dkuk̈ tð Þ ð25Þ

Note that this improved expression of the response additionally involves the
support accelerations uk̈ tð Þ.

Based on Eq. 25 and principles of random vibration theory, the extended MSRS
rule that accounts for contributions of truncated modes is obtained as:

E max zðtÞj j½ �

≈ ∑
m

k =1
∑
m

l=1
akalρukuluk,maxul,max

�

+2 ∑
m

k=1
∑
m

l=1
∑
n

j=1
akbljρukslj uk,maxDlðωj, ζjÞ

+ ∑
m

k=1
∑
m

l=1
∑
n

i=1
∑
n

j=1
bkibljρskisljDkðωi, ζiÞDlðωj, ζjÞ

+ ∑
m

k=1
∑
m

l=1
dkdlρu ̈k ül uk̈,maxul̈,max − 2 ∑

m

k=1
∑
m

l=1
ρukül uk,maxul̈,max

− 2 ∑
m

k=1
∑
m

l=1
∑
n

i=1
bkidlρskiu ̈lDkðωi, ζiÞul̈,max

�1 2̸

ð26Þ

The extended MSRS rule adds the last three terms to the original formulation.
The first of these terms represents the static contribution of the truncated modes.
The second term arises from the covariances of the support displacements and
accelerations, while the last term arises from the covariances between the responses
of the included modes and the static responses of the truncated modes. These terms
involve the peak support accelerations and three sets of correlation coefficients. The
new coefficients ρüku ̈l , ρuku ̈l and ρskiu ̈l respectively describe: the correlation between
the ground accelerations at the kth and lth support DOF, the correlation between the
ground displacement at the kth support DOF and the ground acceleration at the lth
support DOF, and the correlation between the ith modal response to the excitation
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at the kth support DOF and the ground acceleration at the lth support DOF. The
accuracy of the MSRS coefficients ρukul , ρu ̈ku ̈l and ρukül (the last two appearing only
in the extended rule) was examined by Konakli (2013).

For an assessment of the improvement obtained with the extended rule, the
interested reader is referred to Konakli and Der Kiureghian (2011a).

4.4 Non-linear Response: The ‘Equal Displacement’ Rule

Non-linear response-history analysis (RHA) represents the most accurate method
for the evaluation of inelastic structural response to a specified set of support
motions. However, non-linear RHA faces two important constraints: (i) it is com-
putationally costly and (ii) by providing results that are particular to the selected
input time-histories, it has limited ability to characterize effects of uncertainties that
surround future ground motions. Although response-spectrum methods overcome
these limitations, they are restricted to linear response analysis. It is thus of interest
to investigate relations between non-linear responses and their linear counterparts.

Observations by Veletsos and Newmark (1960) on the responses of
elasto-plastic and the corresponding linear single-DOF systems gave rise to the
‘equal displacement’ rule. Under certain conditions, this rule allows estimation of
the maximum displacement response of inelastic structures from analysis of their
elastic counterparts. The ‘equal displacement’ rule is particularly useful in
displacement-based design procedures (Moehle 1992, Kowalsky 2002), which are
of growing interest in performance-based earthquake engineering. Therefore, sev-
eral studies have been devoted to assessing its accuracy and limitations for different
types of structures and ground motions. The applicability of the ‘equal displace-
ment’ rule for extended structures subjected to differential support motions was
investigated by Konakli and Der Kiureghian (2014); a brief description of the
analysis and main findings of this study is given next.

Konakli and Der Kiureghian (2014) compared responses from linear and non-
linear time-history analyses for idealized models of four actual bridges in California
with distinctly different configuration and dynamic properties. They performed
statistical analyses of the maximum pier drifts for ground-motion random fields
with different frequency contents and spatial variability characteristics. In particular,
the analysis considered two seed recorded accelerograms and four cases of spatial
variability:

• Case 1 represents uniform support excitations.
• Case 2 incorporates effects of incoherence and wave passage, but assumes

uniform soil conditions.
• Case 3 differs from case 2 in considering a higher level of incoherence.
• Case 4 differs from case 2 in assuming varying soil profiles.
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As ensemble of 20 support-motion arrays were simulated for each bridge model
and ground-motion random field. Based on the respective pier-drift responses from
linear and non-linear RHA, Konakli and Der Kiureghian (2014) analyzed the
statistics of two dimensionless response quantities: (i) the ductility factor μ, rep-
resenting the ratio of peak pier drift from non-linear RHA to the corresponding
yield drift, and (ii) the inelasticity factor Cμ, representing the ratio of peak
non-linear to peak linear drift. Graphs of inelasticity versus ductility factors for one
seed accelerogram are shown in Fig. 8, where graphs in the same row correspond to
a single bridge model, whereas graphs in the same column correspond to a certain
case of spatial variability.

Under uniform support motions (case 1) and for moderate levels of inelastic
behavior, the ‘equal displacement’ rule was found fairly accurate for cases when the
fundamental period of the bridge was beyond the acceleration-controlled range of
the response spectrum. For bridges with shorter fundamental periods, the rule was
found non-conservative for cases with mean ductility factors in the range from 3 to
4 and overly conservative for cases with mean ductility factors smaller than
approximately 2. Wave passage and incoherence (cases 2 and 3) reduced the mean
inelasticity factors, but the latter increased when the effect of differential site
response was additionally incorporated by locating piers on softer soils (case 4).
Effects of spatial variability on the pier-drift response were more pronounced for
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Fig. 8 Inelasticity versus ductility factors
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longer and stiffer bridges. In most cases, mild or moderate positive linear correla-
tions between inelasticity and ductility factors were observed, with the higher
correlations observed for bridges with fundamental periods shorter than the tran-
sition period between the acceleration- and velocity-controlled ranges of the
response spectrum.

5 Conclusions and Perspectives

This chapter provided an overview on methods for incorporating effects of
ground-motion spatial variability in seismic response assessment, based on con-
cepts of stochastic time-series analysis and random vibration theory. The examined
topics included the modeling of ground-motion spatial variability, the simulation of
spatially varying ground-motion arrays and the evaluation of structural response to
differential support motions. The modeling of the ground-motion spatial variability
relied on the coherency function; the different elements of this function as well as its
estimation based on recorded motions were explained. The presented method for
simulating spatially varying ground motions incorporates the incoherence,
wave-passage and site-response effects and preserves the temporal and spectral
non-stationarity of a specified reference accelerogram. In particular, the uncondi-
tioned simulation approach yields arrays with uniform variability that can be used
as input for the statistical analysis of structural response. The Multiple-Support
Response-Spectrum (MSRS) rule and its extended version were described as a
means for obtaining a statistical characterization of the peak linear structural
response. Finally, investigations into the relations between peak linear and
non-linear responses under effects of ground-motion spatial variability provided
insights into the validity of the ‘equal displacement’ rule in this case of excitation.

Inspired by the particular case of seismic response analysis to correlated support
motions, this chapter closes with the hope that methods of stochastic analysis will
be more widely employed in engineering practice, as a valuable tool for dealing
with the significant uncertainties facing engineering design. The importance of a
systemic perspective that properly accounts for the pertinent inter-dependencies and
correlations is also emphasized. The most modern research findings in the afore-
mentioned areas can be effectively transferred into engineering practice through the
continuing education of engineers, the interactions between research and practice
and the systematic research-informed updating of the engineering codes.
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