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Summary of Basic Concepts
Recent molecular and structural insights have helped to shed light on the embryo-
logical origins of the lymphatic vasculature. These discoveries have distinct implica-
tions, not only for molecular therapeutics in lymphatic vascular disease but also for 
the broad field of tumor biology and for the study of vascular malformations.

 5 The lymphatic vessels appear substantially later than the blood vascular 
structures.

 5 The lymphatics arise from aggregates of endothelial cells through the com-
bined forces of vasculogenesis and angiogenesis. The earliest identifiable 
embryonic lymphatic precursors are the jugular lymph sacs, paired structures 
that are adjacent to the jugular section of the cardinal vein.

 5 Both centrifugal and centripetal models for lymphatic vascular development 
have been proposed, and both likely play a role in mammalian biology.

 5 Lymphatic vasculogenesis is thought to occur in four identifiably distinct 
stages: lymphatic competence, commitment, specification, and vascular 
coalescence and maturation.

 5 Lymphangiogenesis is a critical pathway in embryonic development that has an 
important, clinically relevant counterpart in wound healing and inflammation.

The lymphatic vasculature was first recognized by Gaspare Aselli more than three cen-
turies ago, and the hypothesized embryonic origin of the lymphatic structures was ini-
tially investigated more than one century ago [6]; nevertheless, it only has been recently, 
during the era of molecular biology, that the mechanisms of mammalian lymphatic 
development have become increasingly well-understood [1, 2, 7].

Still a subject of some unresolved controversy, the embryological origin of the mam-
malian lymphatic system has been extensively explored over the last two decades. Recent 
molecular and structural insights have helped to shed light on this complex and important 
topic, which also has distinct implications, not only for molecular therapeutics in lym-
phatic vascular disease but also for the broad field of tumor biology. Furthermore, defects 
in the growth and development of lymphatic vessels (lymphangiogenesis) underlie numer-
ous disorders, including vascular malformations, lymphedema, and lymphangiectasia [3].

As integral elements of the mammalian circulation, the lymphatic conduits, like all 
vascular structures, arise from aggregates of endothelial cells, through the concerted 
forces of vasculogenesis and angiogenesis (. Fig. 4.1).

The lymphatic vessels appear substantially later than the blood vascular structures 
[8]. In the human embryo, this occurs at 6–7 weeks, nearly 1 month after the appearance 
of the first blood vessels [9]. The earliest identifiable embryonic lymphatic precursors 
are the jugular lymph sacs, paired structures that are adjacent to the jugular section of 
the cardinal vein. The origin of these lymph sacs and their relationship to the adjacent 
cardinal vein has, until quite recently, been central to the theoretical controversy [4]. 
The «centrifugal» model, originally suggested by Florence Sabin, proposes that the pri-
mary lymph sacs arise from the endothelial cell population of the embryonic veins, with 
subsequent, continued endothelial sprouting from the lymph sacs into the surrounding 
tissues and organs.
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The contrasting «centripetal» model of Huntington relies upon the contribution of 
mesenchymal precursor cells, termed lymphangioblasts, to give rise to the lymph sacs, a 
process that occurs independently of the veins.

Although there are lines of evidence to support elements of both of these theories, it 
seems that the centrifugal model more closely predicts the process in higher mammals.

Support for Sabin’s centrifugal model was initially provided by studies in Prox1- 
deficient mice [10, 11] and has subsequently been confirmed by others [12, 13]. 
Nevertheless, mesenchymal cells expressing CD31 and CD45, along with lymphatic 
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       . Fig. 4.1 The embryonic 
development of the vasculature 
originates from mesodermally 
derived endothelial cell precur-
sors, termed vasculogenesis. 
Subsequently, the developing 
vessels grow and remodel into a 
mature vascular network by 
endothelial sprouting and 
splitting, the process called 
angiogenesis (Adapted from 
Oliver [5])
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endothelial markers (Prox1 and LYVE-1), have been observed in mouse embryos, sug-
gesting that these cells might serve as lymph endothelial precursors [14] . This and other 
lines of investigation continue to support elements of the centripetal hypothesis [15, 
16], particularly in the tissue-specific manner in which brain, cardiac, intestinal, vis-
ceral, and dermal lymphatics develop [2].

Prox1 is central to the centrifugal mechanism. This nuclear transcription factor is a 
homolog of the Drosophila homeobox transcription factor prospero 7 and serves as a 
master regulator of lymphatic development. The venous origin of the mammalian lym-
phatic vasculature has been demonstrated by lineage-tracing experiments [12] and sup-
ported by studies in zebrafish [13]. It has furthermore become apparent that CCBE1 is 
crucial for the initial stages of lymphatic vascular development [17, 18].

According to the current prevailing model, lymphatic vasculogenesis is thought to 
occur in four identifiably distinct stages: lymphatic competence, commitment, specifica-
tion, and vascular coalescence and maturation (. Fig. 4.2).

Lymphatic competence refers to the cellular capacity to respond to the initial induction 
signals for lymphatic vascular differentiation [5]. The priming of lymphatic endothelial 
cells (LECs) to initiate lymphatic development seems to depend on molecular signaling 
pathways that are distinct from those that direct blood vascular development [17, 18].
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       . Fig. 4.2 Lymphatic vasculature development and growth. AM adrenomedullin, Ang angiopoietin, 
Angptl angiopoietin-like protein, E mouse embryonic day, FGF fibroblast growth factor, GH growth 
hormone, HGF hepatocyte growth factor, IGF insulin-like growth factor, Nrp2 neuropilin-2, PDGF 
platelet-derived growth factor, VEGF vascular endothelial growth factor (Reproduced with permission 
from Cueni and Detmar [4])
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LEC competence is recognized through cellular expression of lymphatic vessel 
endothelial hyaluronan receptor-1 (LYVE-1) [10, 19] and vascular endothelial growth 
factor receptor-3 (the flt4 gene encodes for VEGFR3) [4]. Mouse embryos that lack 
VEGFR3 expression die without lymphatic development. VEGF-C binding to VEGFR3 
transduces signals that promote lymphatic endothelial cell survival, proliferation, and 
migration [20, 21]. Mouse embryos that lack VEGF-C do not develop lymph sacs [22]. 
VEGF-C/VEGFR3 signaling plays a key role during multiple stages of lymphatic vascu-
lar development; while VEGF-C signals can be transduced by means of multiple recep-
tors, VEGFR3 is undoubtedly the most pivotal of these [3]. In addition, more recently, 
there has been demonstration of the potential for embryonic mechanosensitive activa-
tion of VEGFR3 independently of VEGF-C binding [23]. Various defined roles for 
VEGFR3 signaling in lymphatic vascular development and maturation are summarized 
in . Table 4.1.

Lymphatic commitment is characterized developmentally and functionally by the 
expression of Prox1. The expression of this nuclear transcription factor is exclusive to 
cells of committed lymphatic lineage [10]. Prox1 expression shifts commitment of 
venous endothelial cells from the default blood vascular fate to a lymphatic lineage [11]. 
In mammals [2], the initiation of Prox1 expression in venous endothelial cells is depen-
dent on the transcription factors Sox18 [24] and Nr2f2/Coup-TFII [25].

It seems that expression of Prox1 within the embryonic endothelial cell is necessary 
and sufficient for lymphatic commitment. Prox1-positive lymphatic endothelial.

cells, within both the cardinal and intersomitic veins, subsequently bud and migrate 
away from the veins in connected streams [2] to form an initial lymphatic plexus and, 
with further development, lymph sacs [26–28]. In addition, the expression of CCBE1 
seems to be essential for the egress of the developing LECs.

       . Table 4.1 VEGFR signaling in lymphatic vascular development

VEGFR signaling in lymphatic endothelial progenitor cell specification and migration

Exit of lymphatic endothelial progenitor cells from the embryonic veins

VEGFR signaling during sprouting and expansion of the lymphatic vasculature

VEGF-D, but not VEGF-C, is particularly important for development of the lymphatic vasculature 
in skin

VEGFR2 promotes lymphatic endothelial cell proliferation, but does not result in lymphatic 
vessel sprouting

Increased embryonic interstitial pressure can drive VEGFR3 phosphorylation independently of 
VEGF-C, promoting lymphatic endothelial cell elongation, proliferation, and vessel growth

VEGFR signaling during lymphatic vascular remodeling and vessel maturation

Generation of the superficial lymphatic plexus

VEGFR3 signal transduction is like to be important for generation of lymphatic valves

Adapted from Secker [3]

Embryology of the Lymphatic System and Lymphangiogenesis



52

4

Lymphatic endothelial cell specification entails the expression of the distinguishing 
molecular markers that lead to the unique lymphatic endothelial phenotype. As the 
newly developing LECs leave the veins, they express markers of LEC identity; these 
include podoplanin and higher levels of VEGFR3 and neuropilin-2 [26–28]. Through 
these developmental steps, the committed lymphatic cell population establishes com-
plete autonomy from the local venous microenvironment. Peripheral migration occurs. 
Budding and migration precede the formation of primary lymph sacs throughout the 
embryo. Secondary budding and migration herald the final stages of lymphatic develop-
ment. The cells thereby form capillaries in a centrifugal fashion, establishing the lym-
phatic vasculature throughout the bodily tissues and organs [4].

An important event in lymphatic development is the necessary separation between 
the flow of blood and lymph. A tyrosine kinase, Syk, and an adapter protein, Slp-76, are 
both critical for lymphaticovenous separation. Deficiency of either Syk or Slp76 has 
been shown to create abnormal connections between blood vessels and lymphatics, with 
resultant blood-filled lymphatics and chylous hemorrhage [29]. In the embryo, platelets 
aggregate at sites of lymphaticovenous connections, triggered by binding of LEC- 
specific podoplanin to C-type lectin receptor 2 (CLEC-2), which is specifically expressed 
in platelets; this leads to activation of Syk and Slp-76 [30, 31]. Inadequate megakaryo-
cytes, platelets, podoplanin, CLEC-2, Syk, or Slp-76 in the mouse all can lead to blood- 
filled lymphatic vessels [2, 29–36].

Vascular Coalescence and Maturation After the appearance of the embryonic peripheral 
lymphatic vasculature, these vessels must experience substantial maturation and remodel-
ing. One of the important maturational events is the development of the valve apparatus. 
A forkhead transcription factor, FOXC2, is highly expressed in adult lymphatic valves. It 
seems that FOXC2 specifies a collecting lymphatic vessel phenotype [37, 38]. Valve devel-
opment is also dependent on GATA2 [39]: selective deletion of GATA2  in the murine 
lymphatic endothelium leads to major defects in valve structure and distended collecting 
lymphatic vessels. Additional signaling pathways, among them BMP [40], Notch [41], and 
semaphorin3a- neuropilin-1 [42], play important roles in valvular development.

The ephrins and the angiopoietins also contribute to lymphatic vascular maturation. 
In mutant mice, faulty expression of EphrinB2 leads to hyperplasia of the collecting 
lymphatics, absent valve formation, and failure of lymphatic capillary remodeling [43]. 
There is also a role for EphB4 forward signaling in lymphatic vessel valve development 
[44]. Angiopoietins 1 and 2 (Ang1 and Ang2) also participate in the maturation of the 
lymphatic vasculature [45–47]. In the lymphatics, Ang2 is a Tie2 receptor agonist, in 
contradistinction to its role in the blood vasculature [46]. Mice with a deletion of the 
Tie2 ligand Ang2 exhibit major defects in lymphatic vessel remodeling: their lymphatic 
vessels prematurely recruit smooth muscle cells and fail to develop valves [45, 46]. The 
Tie1 receptor also plays a critical role in early stages of lymphatic development [48, 49]. 
Lymphatic valve development apparently also requires normal expression of integrin- 
alpha9 and deposition of its ligand, fibronectin-EIIIA, in the extracellular matrix [50]. 
Reelin signaling apparently participates in vascular maturation, through its regulation 
of smooth muscle investment of the lymphatic collecting vessels [51].
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All of these developmental events are interrelated and complex. New molecular par-
ticipants in the process continue to be identified. Although lymphangiogenesis is a 
critical pathway in embryonic development, it has a counterpart in wound healing and 
inflammation [52, 53]. These molecular pathways may also have direct implications for 
future molecular therapeutics in lymphedema and other lymphatic vascular disorders 
[1, 54]. These concepts are further explored in 7 Chap. 16.
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