
Continuous Random Variables
and Probability Distributions 3

As emphasized at the beginning of Chap. 2, the two important types of random variables are discrete

and continuous. In this chapter, we study the second general type of random variable that arises in

many applied problems. Sections 3.1 and 3.2 present the basic definitions and properties of continu-

ous random variables, their probability distributions, and their various expected values. The normal

distribution, arguably the most important and useful model in all of probability and statistics, is

introduced in Sect. 3.3. Sections 3.4 and 3.5 discuss some other continuous distributions that are often

used in applied work. In Sect. 3.6, we introduce a method for assessing whether given sample data is

consistent with a specified distribution. Section 3.7 presents methods for obtaining the distribution of

a rv Y from the distribution of Xwhen the two are related by some equation Y¼ g(X). The last section
of this chapter is dedicated to the simulation of continuous rvs.

3.1 Probability Density Functions and Cumulative Distribution Functions

A discrete random variable (rv) is one whose possible values either constitute a finite set or else can be

listed in an infinite sequence (a list in which there is a first element, a second element, etc.). A random

variable whose set of possible values is an entire interval of numbers is not discrete.

Recall from the beginning of Chap. 2 that a random variable X is continuous if (1) its possible
values comprise either a single interval on the number line (for some A < B, any number x between

A and B is a possible value) or a union of disjoint intervals, and (2) P(X¼ c)¼ 0 for any number c that

is a possible value of X.

Example 3.1 If in the study of the ecology of a lake, we make depth measurements at randomly

chosen locations, then X ¼ the depth at such a location is a continuous rv. Here A is the minimum

depth in the region being sampled, and B is the maximum depth. ■

Example 3.2 If a chemical compound is randomly selected and its pH X is determined, then X is a

continuous rv because any pH value between 0 and 14 is possible. If more is known about the

compound selected for analysis, then the set of possible values might be a subinterval of [0, 14], such

as 5.5 � x � 6.5, but X would still be continuous. ■
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Example 3.3 Let X represent the amount of time a randomly selected customer spends waiting for a

haircut. Your first thought might be that X is a continuous random variable, since a measurement is

required to determine its value. However, there are customers lucky enough to have no wait

whatsoever before climbing into the barber or stylist’s chair. So it must be the case that P(X ¼ 0)

> 0. Conditional on no chairs being empty, however, the waiting time will be continuous since

X could then assume any value between some minimum possible time A and a maximum possible

time B. This random variable is neither purely discrete nor purely continuous but instead is a mixture

of the two types. ■

One might argue that although in principle variables such as height, weight, and temperature are

continuous, in practice the limitations of our measuring instruments restrict us to a discrete (though

sometimes very finely subdivided) world. However, continuous models often approximate real-world

situations very well, and continuous mathematics (the calculus) is frequently easier to work with than

the mathematics of discrete variables and distributions.

3.1.1 Probability Distributions for Continuous Variables

Suppose the variable X of interest is the depth of a lake at a randomly chosen point on the surface. Let

M¼ the maximum depth (in meters), so that any number in the interval [0,M] is a possible value of X.

If we “discretize” X by measuring depth to the nearest meter, then possible values are nonnegative

integers less than or equal to M. The resulting discrete distribution of depth can be pictured using a

probability histogram. If we draw the histogram so that the area of the rectangle above any possible

integer k is the proportion of the lake whose depth is (to the nearest meter) k, then the total area of all

rectangles is 1. A possible histogram appears in Fig. 3.1a.

If depth is measured much more precisely and the same measurement axis as in Fig. 3.1a is used,

each rectangle in the resulting probability histogram is much narrower, although the total area of all

rectangles is still 1. A possible histogram is pictured in Fig. 3.1b; it has a much smoother appearance

than the histogram in Fig. 3.1a. If we continue in this way to measure depth more and more finely, the

resulting sequence of histograms approaches a smooth curve, as pictured in Fig. 3.1c. Because for

each histogram the total area of all rectangles equals 1, the total area under the smooth curve is also

1. The probability that the depth at a randomly chosen point is between a and b is just the area under

the smooth curve between a and b. It is exactly a smooth curve of the type pictured in Fig. 3.1c that

specifies a continuous probability distribution.

cba

0 M 0 M 0 M

Fig. 3.1 (a) Probability histogram of depth measured to the nearest meter; (b) probability histogram of depth

measured to the nearest centimeter; (c) a limit of a sequence of discrete histograms
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DEFINITION

Let X be a continuous rv. Then a probability distribution or probability density function

(pdf) of X is a function f(x) such that for any two numbers a and b with a � b,

P a � X � bð Þ ¼
ðb
a

f ðxÞdx

That is, the probability that X takes on a value in the interval [a, b] is the area above this

interval and under the graph of the density function, as illustrated in Fig. 3.2. The graph of f(x) is

often referred to as the density curve.

For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

1. f(x) � 0 for all x

2.
Ð
�1
1 f(x)dx ¼ [area under the entire graph of f(x)] ¼ 1

Example 3.4 The direction of an imperfection with respect to a reference line on a circular object

such as a tire, brake rotor, or flywheel is often subject to uncertainty. Consider the reference line

connecting the valve stem on a tire to the center point, and let X be the angle measured clockwise to

the location of an imperfection. One possible pdf for X is

f ðxÞ ¼
1

360
0 � x < 360

0 otherwise

8<:
The pdf is graphed in Fig. 3.3. Clearly f(x)� 0. The area under the density curve is just the area of a

rectangle: heightð Þ baseð Þ ¼ 1

360

� �
ð360Þ ¼ 1. The probability that the angle is between 90� and 180� is

P 90 � X � 180ð Þ ¼
ð180
90

1

360
dx ¼ x

360

���x¼180

x¼90
¼ 1

4
¼ :25

The probability that the angle of occurrence is within 90� of the reference line is

P 0 � X � 90ð Þ þ P 270 � X < 360ð Þ ¼ :25þ :25 ¼ :50

a b
x

f(x)

Fig. 3.2 P(a � X � b) ¼ the area under the density curve between a and b
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Because the pdf in Fig. 3.3 is completely “level” (i.e., has a uniform height) on the interval

[0, 360], X is said to have a uniform distribution.

DEFINITION

A continuous rv X is said to have a uniform distribution on the interval [A, B] if the pdf of X is

f x;A,Bð Þ ¼
1

B� A
A � x � B

0 otherwise

8<:
The statement that X has a uniform distribution on [A, B] will be denoted X � Unif[A, B].

The graph of any uniform pdf looks like the graph in Fig. 3.3 except that the interval of positive

density is [A, B] rather than [0, 360).

In the discrete case, a probability mass function (pmf) tells us how little “blobs” of probability

mass of various magnitudes are distributed along the measurement axis. In the continuous case,

probability density is “smeared” in a continuous fashion along the interval of possible values. When

density is smeared evenly over the interval, a uniform pdf, as in Fig. 3.3, results.

When X is a discrete random variable, each possible value is assigned positive probability. This is

not true of a continuous random variable, because the area under a density curve that lies above any

single value is zero:

P X ¼ cð Þ ¼ P c � X � cð Þ ¼
ðc
c

f ðxÞ dx ¼ 0

The fact that P(X ¼ c) ¼ 0 when X is continuous has an important practical consequence: The

probability that X lies in some interval between a and b does not depend on whether the lower limit

a or the upper limit b is included in the probability calculation:

P a � X � bð Þ ¼ P a < X < bð Þ ¼ P a < X � bð Þ ¼ P a � X < bð Þ ð3:1Þ
In contrast, if X were discrete and both a and b were possible values of X (e.g., X� Bin(20, .3) and

a ¼ 5, b ¼ 10), then all four of the probabilities in Eq. (3.1) would be different. This also means that

whether we include the endpoints of the range of values for a continuous rv X is somewhat arbitrary;

for example, the pdf in Example 3.4 could be defined to be positive on (0, 360) or [0, 360] rather than

[0, 360), and the same applies for a uniform distribution on [A, B] in general.

The zero probability condition has a physical analog. Consider a solid circular rod (with cross-

sectional area of 1 in2 for simplicity). Place the rod alongside a measurement axis and suppose that the

density of the rod at any point x is given by the value f(x) of a density function. Then if the rod is sliced

x

1

360

3600
x

36027018090

f (x) f (x)

Shaded area = P(90 ≤ X ≤ 180) 

Fig. 3.3 The pdf and probability for Example 3.4 ■
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at points a and b and this segment is removed, the amount of mass removed is
Ð
a
b f(x)dx; however, if

the rod is sliced just at the point c, no mass is removed. Mass is assigned to interval segments of the

rod but not to individual points.

So, if P(X ¼ c) ¼ 0 when X is a continuous rv, then what does f(c) represent? After all, if X were

discrete, its pmf evaluated at x ¼ c, p(c), would indicate the probability that X equals c. To help

understand what f(c) means, consider a small window near x ¼ c—say, [c, c + Δx]. Using a rectangle
to approximate the area under f(x) between c and c + Δx (the usual “Riemann approximation” idea

from calculus), one obtains
Ð
c
c + Δxf(x)dx � Δx � f(c), from which

f ðcÞ �

ðcþΔx

c

f ðxÞdx
Δx

¼ P c � X � cþ Δxð Þ
Δx

This indicates that f(c) is not a probability, but rather roughly the probability of an interval divided

by the length of the chosen interval. If we associate mass with probability and remember that interval

length is the one-dimensional analog of volume, then f represents their quotient, mass per volume,

more commonly known as density (hence, the name pdf). The height of the function f(x) at a particular

point reflects how “dense” the values of X are near that point—taller sections of f(x) contain more

probability within a fixed interval length than do shorter sections.

Example 3.5 “Time headway” in traffic flow is the elapsed time between the time that one car

finishes passing a fixed point and the instant that the next car begins to pass that point. Let X ¼ the

time headway for two randomly chosen consecutive cars on a freeway during a period of heavy flow.

The following pdf of X is essentially the one suggested in “The Statistical Properties of Freeway

Traffic” (Transp. Res., 11: 221–228):

f ðxÞ ¼ :15e�:15 x�:5ð Þ x � :5

0 otherwise

(

The graph of f(x) is given in Fig. 3.4; there is no density associated with headway times less than .5,

and headway density decreases rapidly (exponentially fast) as x increases from .5. The fact that the

graph of f(x) is taller near x ¼ .5 and shorter near, say, x ¼ 10 indicates that time headway values are

more dense near the left boundary, i.e., there is a higher proportion of time headways in the interval

[.5, 1.5] than in [10, 11], even though these two intervals have the same length.

Clearly, f(x) � 0; to show that

ð1
�1

f(x)dx ¼ 1 we use the calculus result

ð1
a

e� kxdx ¼ (1/k)e– ka.

Then ð1
�1

f ðxÞdx ¼
ð:5
�1

0 dxþ
ð1
:5

:15e�:15 x�5ð Þdx

¼ :15e:075
ð1
:5

e�:15xdx ¼ :15e:075 � 1

:15
e�:15ð:5Þ ¼ 1

The probability that headway time is at most 5 seconds is
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P X � 5ð Þ ¼
ð5
�1

f ðxÞ dx ¼
ð5
:5

:15e�:15 x�:5ð Þ dx ¼ :15e:075
ð5
:5

e�:15xdx

¼ :15e:075 � �1

:15
e�:15x

����x¼5

x¼:5

¼ e:075 �e�:75 þ e�:075
� � ¼ 1:078 �:472þ :928ð Þ ¼ :491

Since X is a continuous rv, .491 also equals P(X< 5), the probability that headway time is (strictly)

less than 5 s. The difference between these two events is {X¼ 5}, i.e., that headway time is exactly 5 s,

which has probability zero: P(X ¼ 5) ¼Ð 5
5
f(x)dx ¼ 0.

This last statement may feel uncomfortable to you: Is there really zero chance that the headway

time between two cars is exactly 5 s? If time is treated as continuous, then “exactly 5 s” means X ¼
5.000. . ., with an endless repetition of 0s. That is to say, X isn’t rounded to the nearest second (or even

tenth of a second); we are asking for the probability that X equals one specific number, 5.000. . ., out

of the (uncountably) infinite collection of possible values of X. ■

Unlike discrete distributions such as the binomial, hypergeometric, and negative binomial, the

distribution of any given continuous rv cannot usually be derived using simple probabilistic

arguments. Instead, one must make a judicious choice of pdf based on prior knowledge and available

data. Fortunately, some general pdf families have been found to fit well in a wide variety of

experimental situations; several of these are discussed later in the chapter.

Just as in the discrete case, it is often helpful to think of the population of interest as consisting of

X values rather than individuals or objects. The pdf is then a model for the distribution of values in this

numerical population, and from this model various population characteristics (such as the mean) can

be calculated.

Several of the most important concepts introduced in the study of discrete distributions also play

an important role for continuous distributions. Definitions analogous to those in Chap. 2 involve

replacing summation by integration.

3.1.2 The Cumulative Distribution Function

The cumulative distribution function (cdf) F(x) for a discrete rv X gives, for any specified number x,

the probability P(X � x). It is obtained by summing the pmf p(y) over all possible values y satisfying
y� x. The cdf of a continuous rv gives the same probabilities P(X � x) and is obtained by integrating

the pdf f(y) between the limits �1 and x.

x

.15

5 10 15

f (x)
P(X ≤ 5)

.5

Fig. 3.4 The density curve for headway time in Example 3.5
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DEFINITION

The cumulative distribution function F(x) for a continuous rv X is defined for every number

x by

FðxÞ ¼ P X � xð Þ ¼
ðx
�1

f ðyÞdy

For each x, F(x) is the area under the density curve to the left of x. This is illustrated in

Fig. 3.5, where F(x) increases smoothly as x increases.

Example 3.6 Let X, the thickness of a membrane, have a uniform distribution on [A, B]. The density
function is shown in Fig. 3.6.

For x< A, F(x)¼ 0, since there is no area under the graph of the density function to the left of such

an x. For x�B,F(x)¼ 1, since all the area is accumulated to the left of such an x. Finally, forA� x<B,

FðxÞ ¼
ðx
�1

f ðyÞdy ¼
ðx
A

1

B� A
dy ¼ 1

B� A
� y
����y¼x

y¼A

¼ x� A

B� A

The entire cdf is

FðxÞ ¼
0 x < A

x� A

B� A
A � x < B

1 x � B

8>><>>:

f(x) F(x)

x x

F(8)

Shaded area = F(8)

.5 1.0

.8

.6

.4

.2

0

.4

.3

.2

.1

0
5 6 7 8 9 10 5 6 7 8 9 10

Fig. 3.5 A pdf and associated cdf

1

A B A Bxx

f(x)

B − A
1

B − A

Shaded area = F(x)

Fig. 3.6 The pdf for a

uniform distribution
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The graph of this cdf appears in Fig. 3.7.

3.1.3 Using F(x) to Compute Probabilities

The importance of the cdf here, just as for discrete rvs, is that probabilities of various intervals can be

computed from a formula or table for F(x).

PROPOSITION

Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a,

P X > að Þ ¼ 1�FðaÞ
and for any two numbers a and b with a < b,

P a � X � bð Þ ¼ FðbÞ�FðaÞ

Figure 3.8 illustrates the second part of this proposition; the desired probability is the shaded area

under the density curve between a and b, and it equals the difference between the two shaded

cumulative areas. This is different from what is appropriate for a discrete integer-valued rv (e.g.,

binomial or Poisson): P(a � X � b) ¼ F(b) � F(a � 1) when a and b are integers.

Example 3.7 Suppose the pdf of the magnitude X of a dynamic load on a bridge (in newtons) is

given by

f ðxÞ ¼
1

8
þ 3

8
x 0 � x � 2

0 otherwise

8<:
For any number x between 0 and 2,

A B x

1

F(x)

Fig. 3.7 The cdf for a uniform distribution ■

a b b a

f(x)

= −

Fig. 3.8 Computing P(a � X � b) from cumulative probabilities
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FðxÞ ¼
ðx
�1

f ðyÞdy ¼
ðx
0

1

8
þ 3

8
y

� �
dy ¼ x

8
þ 3x2

16

Thus

FðxÞ ¼
0 x < 0

x

8
þ 3x2

16
0 � x � 2

1 2 < x

8>><>>:
The graphs of f(x) and F(x) are shown in Fig. 3.9. The probability that the load is between 1 and

1.5 N is

P 1 � X � 1:5ð Þ ¼ Fð1:5Þ � Fð1Þ ¼ 1

8
ð1:5Þ þ 3

16
ð1:5Þ2

� �
� 1

8
ð1Þ þ 3

16
ð1Þ2

� �
¼ 19

64
¼ :297

The probability that the load exceeds 1 N is

P X > 1ð Þ ¼ 1� P X � 1ð Þ ¼ 1� Fð1Þ ¼ 1� 1

8
ð1Þ þ 3

16
ð1Þ2

� �
¼ 11

16
¼ :688

The beauty of the cdf in the continuous case is that once it is available, any probability involving

X can easily be calculated without any further integration.

3.1.4 Obtaining f(x) from F(x)

For X discrete, the pmf is obtained from the cdf by taking the difference between two F(x) values. The

continuous analog of a difference is a derivative. The following result is a consequence of the

Fundamental Theorem of Calculus.

PROPOSITION

If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at which the derivative F0(x)
exists, F0(x) ¼ f(x).

1
8

7
8

20 2

1

xx

f(x) F (x)

Fig. 3.9 The pdf and cdf for Example 3.7 ■
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Example 3.8 (Example 3.6 continued) When X � Unif[A, B], F(x) is differentiable except at

x ¼ A and x ¼ B, where the graph of F(x) has sharp corners. Since F(x) ¼ 0 for x < A and F(x)
¼ 1 for x > B, F0(x) ¼ 0 ¼ f(x) for such x. For A < x < B,

FðxÞ ¼ d

dx

x� A

B� A

� �
¼ 1

B� A
¼ f ðxÞ ■

3.1.5 Percentiles of a Continuous Distribution

When we say that an individual’s test score was at the 85th percentile of the population, we mean that

85% of all population scores were below that score and 15% were above. Similarly, the 40th

percentile is the score that exceeds 40% of all scores and is exceeded by 60% of all scores.

DEFINITION

Let p be a number between 0 and 1. The (100p)th percentile of the distribution of a continuous

rv X, denoted by ηp, is defined implicitly by the equation

p ¼ F ηp
� � ¼ ðηp

�1
f ðyÞdy ð3:2Þ

Assuming we can find the inverse of F(x), this can also be written as

ηp ¼ F�1ðpÞ

In particular, the median of a continuous distribution is the 50th percentile, η.5 or F
�1(.5).

That is, half the area under the density curve is to the left of the median and half is to the right of

the median. We will occasionally denote the median of a distribution simply as η (i.e., without
the .5 subscript).

According to Expression (3.2), ηp is that value on the measurement axis such that 100p% of the

area under the graph of f(x) lies to the left of ηp and 100(1 � p)% lies to the right. Thus η.75, the 75th
percentile, is such that the area under the graph of f(x) to the left of η.75 is .75. Figure 3.10 illustrates

the definition.

f(x) F(x)

x x

p = F(hp)

Shaded area = p

.5 1.0

.8

.6

.4

.2

0

.4

.3

.2

.1

0
5 6 7 8

hp

9 10 5 6 7 8 9 10
hp

Fig. 3.10 The (100p)th percentile of a continuous distribution
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Example 3.9 The distribution of the amount of gravel (in tons) sold by a construction supply

company in a given week is a continuous rv X with pdf

f ðxÞ ¼
3

2
1� x2
� �

0 � x � 1

0 otherwise

8<:
The cdf of sales for any x between 0 and 1 is

FðxÞ ¼
ðx
0

3

2
1� y2
� �

dy ¼ 3

2
y� y3

3

� �����y¼x

y¼0

¼ 3

2
x� x3

3

� �
The graphs of both f(x) and F(x) appear in Fig. 3.11. The (100p)th percentile of this distribution

satisfies the equation

p ¼ F ηp
� � ¼ 3

2
ηp �

η3p
3

 !

that is,

η3p � 3ηp þ 2p ¼ 0

For the median, p¼ .5 and the equation to be solved is η3 � 3η + 1 ¼ 0; the solution is η ¼ .347. If

the distribution remains the same from week to week, then in the long run 50% of all weeks will result

in sales of less than .347 tons and 50% in more than .347 tons.

A continuous distribution whose pdf is symmetric—which means that the graph of the pdf to the

left of some point is a mirror image of the graph to the right of that point—has median η equal to the

point of symmetry, since half the area under the curve lies to either side of this point. Figure 3.12

gives several examples. The amount of error in a measurement of a physical quantity is often assumed

to have a symmetric distribution.

f(x) F(x)

2 1

.5

0 1 0 1.347x x

Fig. 3.11 The pdf and cdf for Example 3.9 ■

xx x
A B

f(x) f (x) f (x)

h h h

Fig. 3.12 Medians of symmetric distributions
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3.1.6 Exercises: Section 3.1 (1–18)

1. The current in a certain circuit as measured by an ammeter is a continuous random variable

X with the following density function:

f ðxÞ ¼ :075 xþ :2 3 � x � 5

0 otherwise

(

(a) Graph the pdf and verify that the total area under the density curve is indeed 1.

(b) Calculate P(X � 4). How does this probability compare to P(X < 4)?

(c) Calculate P(3.5 � X � 4.5) and P(X > 4.5).

2. Suppose the reaction temperature X (in �C) in a chemical process has a uniform distribution with

A ¼ �5 and B ¼ 5.

(a) Compute P(X < 0).

(b) Compute P(�2.5 < X < 2.5).

(c) Compute P(�2 � X � 3).

(d) For k satisfying �5 < k < k + 4 < 5, compute P(k < X < k + 4). Interpret this in words.

3. Suppose the error involved in making a measurement is a continuous rv X with pdf

f ðxÞ ¼ :09375 4� x2ð Þ � 2 � x � 2

0 otherwise

(

(a) Sketch the graph of f(x).
(b) Compute P(X > 0).

(c) Compute P(�1 < X < 1).

(d) Compute P(X < �.5 or X > .5).

4. Let X denote the vibratory stress (psi) on a wind turbine blade at a particular wind speed in a wind

tunnel. The article “Blade Fatigue Life Assessment with Application to VAWTS” (J. Solar

Energy Engr., 1982: 107–111) proposes the Rayleigh distribution, with pdf

f x; θð Þ ¼
x

θ2
� e�x2= 2θ2ð Þ x > 0

0 otherwise

8<:
as a model for X, where θ is a positive constant.

(a) Verify that f(x; θ) is a legitimate pdf.

(b) Suppose θ ¼ 100 (a value suggested by a graph in the article). What is the probability that

X is at most 200? Less than 200? At least 200?

(c) What is the probability that X is between 100 and 200 (again assuming θ ¼ 100)?

(d) Give an expression for the cdf of X.

5. A college professor never finishes his lecture before the end of the hour and always finishes his

lectures within 2 min after the hour. Let X¼ the time that elapses between the end of the hour and

the end of the lecture and suppose the pdf of X is
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f ðxÞ ¼ kx2 0 � x � 2

0 otherwise

(

(a) Find the value of k and draw the corresponding density curve. [Hint: Total area under the

graph of f(x) is 1.]
(b) What is the probability that the lecture ends within 1 min of the end of the hour?

(c) What is the probability that the lecture continues beyond the hour for between 60 and 90 s?

(d) What is the probability that the lecture continues for at least 90 s beyond the end of the hour?

6. The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer

can be regarded as a continuous rv X with pdf

f ðxÞ ¼ k 1� x� 3ð Þ2
h i

0

8<: 2 � x � 4

otherwise

(a) Sketch the graph of f(x).

(b) Find the value of k.
(c) What is the probability that the actual tracking weight is greater than the prescribed weight?

(d) What is the probability that the actual weight is within .25 g of the prescribed weight?

(e) What is the probability that the actual weight differs from the prescribed weight by more

than .5 g?

7. The article “Second Moment Reliability Evaluation vs. Monte Carlo Simulations for Weld

Fatigue Strength” (Quality and Reliability Engr. Intl., 2012: 887-896) considered the use of a

uniform distribution with A¼ .20 and B¼ 4.25 for the diameter X of a certain type of weld (mm).

(a) Determine the pdf of X and graph it.

(b) What is the probability that diameter exceeds 3 mm?

(c) What is the probability that diameter is within 1 mm of the mean diameter?

(d) For any value a satisfying .20 < a < a + 1 < 4.25, what is P(a < X < a + 1)?

8. Commuting to work requires getting on a bus near home and then transferring to a second bus. If

the waiting time (in minutes) at each stop has a Unif[0, 5] distribution, then it can be shown that

the total waiting time Y has the pdf

f ðyÞ ¼

1

25
y 0 � y < 5

2

5
� 1

25
y 5 � y � 10

0 y < 0 or y > 10

8>>>><>>>>:
(a) Sketch the pdf of Y.

(b) Verify that
Ð1
�1f(y)dy ¼ 1.

(c) What is the probability that total waiting time is at most 3 min?

(d) What is the probability that total waiting time is at most 8 min?

(e) What is the probability that total waiting time is between 3 and 8 min?

(f) What is the probability that total waiting time is either less than 2 min or more than 6 min?
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9. Consider again the pdf of X ¼ time headway given in Example 3.5. What is the probability that

time headway is

(a) At most 6 s?

(b) More than 6 s? At least 6 s?

(c) Between 5 and 6 s?

10. A family of pdfs that has been used to approximate the distribution of income, city population

size, and size of firms is the Pareto family. The family has two parameters, k and θ, both> 0, and

the pdf is

f x; k, θð Þ ¼
k � θk
xkþ1

x � θ

0 x < θ

8<:
(a) Sketch the graph of f(x; k, θ).
(b) Verify that the total area under the graph equals 1.

(c) If the rv X has pdf f(x; k, θ), obtain an expression for the cdf of X.

(d) For θ < a < b, obtain an expression for the probability P(a � X � b).

(e) Find an expression for the (100p)th percentile ηp.
11. Let X denote the amount of time a book on 2-h reserve is actually checked out, and suppose the

cdf is

FðxÞ ¼
0 x < 0

x2

4
0 � x < 2

1 2 � x

8>><>>:
Use this to compute the following:

(a) P(X � 1)

(b) P(.5 � X � 1)

(c) P(X > 1.5)

(d) The median checkout duration η [Hint: Solve F(η) ¼ .5.]

(e) F0(x) to obtain the density function f(x)

12. The cdf for X ¼ measurement error of Exercise 3 is

FðxÞ ¼

0 x < �2

1

2
þ 3

32
4x� x3

3

� �
�2 � x < 2

1 2 � x

8>>><>>>:
(a) Compute P(X < 0).

(b) Compute P(�1 < X < 1).

(c) Compute P(X > .5).

(d) Verify that f(x) is as given in Exercise 3 by obtaining F0(x).
(e) Verify that η ¼ 0.

13. Example 3.5 introduced the concept of time headway in traffic flow and proposed a particular

distribution for X¼ the headway between two randomly selected consecutive car. Suppose that in

a different traffic environment, the distribution of time headway has the form
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f ðxÞ ¼
k

x4
x > 1

0 x � 1

8<:
(a) Determine the value of k for which f(x) is a legitimate pdf.

(b) Obtain the cumulative distribution function.

(c) Use the cdf from (b) to determine the probability that headway exceeds 2 s and also the

probability that headway is between 2 and 3 s.

14. Let X denote the amount of space occupied by an article placed in a 1-ft3 packing container. The

pdf of X is

f ðxÞ ¼ 90x8 1� xð Þ 0 < x < 1

0 otherwise

(

(a) Graph the pdf. Then obtain the cdf of X and graph it.

(b) What is P(X � .5) [i.e., F(.5)]?

(c) Using part (a), what is P(.25 < X � .5)? What is P(.25 � X � .5)?

(d) What is the 75th percentile of the distribution?

15. Answer parts (a)–(d) of Exercise 14 for the random variable X, lecture time past the hour, given in

Exercise 5.

16. The article “A Model of Pedestrians’ Waiting Times for Street Crossings at Signalized

Intersections” (Transportation Research, 2013: 17–28) suggested that under some circumstances

the distribution of waiting time X could be modeled with the following pdf:

f x; θ, τð Þ ¼
θ

τ
1� x=τð Þθ�1

0 � x < τ

0 otherwise

8<:
where θ, τ > 0.

(a) Graph f(x; θ, 80) for the three cases θ ¼ 4, 1, and .5 (these graphs appear in the cited article)

and comment on their shapes.

(b) Obtain the cumulative distribution function of X.

(c) Obtain an expression for the median of the waiting time distribution.

(d) For the case θ ¼ 4 and τ ¼ 80, calculate P(50 � X � 70) without doing any additional

integration.

17. Let X be a continuous rv with cdf

FðxÞ ¼

0 x � 0

x

4
1þ ln

4

x

� �� �
0 < x � 4

1 x > 4

8>>><>>>:
[This type of cdf is suggested in the article “Variability in Measured Bedload-Transport Rates”

(Water Resources Bull., 1985: 39–48) as a model for a hydrologic variable.] What is

(a) P(X � 1)?

(b) P(1 � X � 3)?

(c) The pdf of X?
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18. Let X be the temperature in �C at which a chemical reaction takes place, and let Y be the

temperature in �F (so Y ¼ 1.8X + 32).

(a) If the median of the X distribution is η, show that 1.8η + 32 is the median of the

Y distribution.

(b) How is the 90th percentile of the Y distribution related to the 90th percentile of the

X distribution? Verify your conjecture.

(c) More generally, if Y¼ aX + b, how is any particular percentile of the Y distribution related to

the corresponding percentile of the X distribution?

3.2 Expected Values and Moment Generating Functions

In Sect. 3.1 we saw that the transition from a discrete cdf to a continuous cdf entails replacing

summation by integration. The same thing is true in moving from expected values of discrete

variables to those of continuous variables.

3.2.1 Expected Values

For a discrete random variable X, the mean μX or E(X) was defined as a weighted average and

obtained by summing x � p(x) over possible X values. Here we replace summation by integration and

the pmf by the pdf to get a continuous weighted average.

DEFINITION

The expected value or mean value of a continuous rv X with pdf f(x) is

μ ¼ μX ¼ EðXÞ ¼
ð1
�1

x � f ðxÞ dx

Example 3.10 (Example 3.9 continued) The pdf of weekly gravel sales X was

f ðxÞ ¼
3

2
1� x2
� �

0 � x � 1

0 otherwise

8<:
so

EðXÞ ¼
ð1
�1

x � f ðxÞdx ¼
ð1
0

x � 3
2

1� x2
� �

dx ¼ 3

2

ð1
0

x� x3
� �

dx ¼ 3

2

x2

2
� x4

4

� �����x¼1

x¼0

¼ 3

8

If gravel sales are determined week after week according to the given pdf, then the long-run

average value of sales per week will be .375 ton. ■

Similar to the interpretation in the discrete case, the mean value μ can be regarded as the balance

point (or fulcrum or center of mass) of a continuous distribution. In Example 3.10, if a piece of

cardboard were cut out in the shape of the region under the density curve f(x), then it would balance if

supported at μ ¼ 3/8 along the bottom edge. When a pdf f(x) is symmetric, then it will balance at its
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point of symmetry, which must be the mean μ. Recall from Sect. 3.1 that the median is also the point

of symmetry; in general, if a distribution is symmetric and the mean exists, then it is equal to the

median.

Often we wish to compute the expected value of some function h(X) of the rv X. If we think of h(X)

as a new rv Y, methods from Sect. 3.7 can be used to derive the pdf of Y, and E(Y ) can be computed

from the definition. Fortunately, as in the discrete case, there is an easier way to compute E[h(X)].

PROPOSITION

If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

μhðXÞ ¼ E hðXÞ½ 	 ¼
ð1
�1

hðxÞ � f ðxÞ dx

This is sometimes called the Law of the Unconscious Statistician.

Importantly, except in the case where h(x) is a linear function (see later in this section), E[h(X)] is

not equal to h(μX), the function h evaluated at the mean of X.

Example 3.11 The variation in a certain electrical current source X (in milliamps) can be modeled by

the pdf

f ðxÞ ¼ 1:25� :25x 2 � x � 4

0 otherwise

(

The average current from this source is

EðXÞ ¼
ð4
2

x 1:25� :25xð Þdx ¼ 17

6
¼ 2:833mA

If this current passes through a 220-Ω resistor, the resulting power (in microwatts) is given by the

expression h(X) ¼ (current)2(resistance) ¼ 220X2. The expected power is given by

E hðXÞð Þ ¼ E 220X2
� � ¼ ð4

2

220x2 1:25� :25xð Þdx ¼ 5500

3
¼ 1833:3μW

Notice that the expected power is not equal to 220(2.833)2, a common error that results from

substituting the mean current μX into the power formula. ■

Example 3.12 Two species are competing in a region for control of a limited amount of a resource.

Let X ¼ the proportion of the resource controlled by species 1 and suppose X has pdf

f ðxÞ ¼ 1 0 � x � 1

0 otherwise

(

which is a uniform distribution on [0, 1]. (In her book Ecological Diversity, E. C. Pielou calls this the

“broken-stick” model for resource allocation, since it is analogous to breaking a stick at a randomly

chosen point.) Then the species that controls the majority of this resource controls the amount
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h Xð Þ ¼ max X, 1� Xð Þ ¼
1� X if 0 � X <

1

2

X if
1

2
� X � 1

8><>:
The expected amount controlled by the species having majority control is then

E hðXÞ½ 	 ¼
ð1
�1

max x, 1� xð Þ � f ðxÞdx ¼
ð1
0

max x, 1� xð Þ � 1 dx

¼
ð1=2
0

1� xð Þ � 1 dxþ
ð1
1=2

x � 1 dx ¼ 3

4 ■

In the discrete case, the variance of X was defined as the expected squared deviation from μ and

was calculated by summation. Here again integration replaces summation.

DEFINITION

The variance of a continuous random variable X with pdf f(x) and mean value μ is

σ2X ¼ VarðXÞ ¼
ð1
�1

x� μð Þ2 � f ðxÞ dx ¼ E X � μð Þ2
h i

The standard deviation of X is σX ¼ SDðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞp

:

As in the discrete case, σ2X is the expected or average squared deviation about the mean μ, and σX
can be interpreted roughly as the size of a representative deviation from the mean value μ. Note that
σX has the same units as X itself.

Example 3.13 Let X� Unif[A, B]. Since a uniform distribution is symmetric, the mean of X is at the

density curve’s point of symmetry, which is clearly the midpoint (A + B)/2. This can be verified by

integration:

μ ¼
ðB
A

x � 1

B� A
dx ¼ 1

B� A

x2

2
jB

A
¼ 1

B� A

B2 � A2

2
¼ Aþ B

2

The variance of X is then given by

σ2 ¼
ðB
A

x� μð Þ2 � 1

B� A
dx ¼ 1

B� A

ðB
A

x� Aþ B

2

� �2
dx

¼ 1

B� A

ð B�Að Þ=2

� B�Að Þ=2
u2 du substitute u ¼ x� Aþ B

2

¼ 2

B� A

ð B�Að Þ=2

0

u2du symmetry

¼ 2

B� A

u3

3
j B�Að Þ=2
0

¼ 2

B� A

B� Að Þ3
23 � 3 ¼ B� Að Þ2

12
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The standard deviation of X is the square root of the variance: σ ¼ B�Að Þ= ffiffiffiffiffi
12

p
. Notice that the

standard deviation of a Unif[A, B] distribution is proportional to the length of the interval, B � A,

which matches our intuitive notion that a larger standard deviation corresponds to greater “spread” in

a distribution. ■

Section 2.3 presented several properties of expected value, variance, and standard deviation for

discrete random variables. Those same properties hold for the continuous case; proofs of these results

are obtained by replacing summation with integration in the proofs presented in Chap. 2.

PROPOSITION

Let X be a continuous rv with pdf f(x), mean μ, and standard deviation σ. Then the following

properties hold.

1. (variance shortcut) Var(X) ¼ E(X2) � μ2 ¼
ð1
�1

x2 � f(x)dx �
ð1
�1

x � f ðxÞdx
� �2

2. (Chebyshev’s inequality) For any constant k � 1,

P X � μj j � kσð Þ � 1

k2

3. (linearity of expectation) For any functions h1(X) and h2(X) and any constants a1, a2, and b,

E a1h1ðXÞ þ a2h2ðXÞ þ b½ 	 ¼ a1E h1ðXÞ½ 	 þ a2E h2ðXÞ½ 	 þ b

4. (rescaling) For any constants a and b,

E aX þ bð Þ ¼ aμþ b Var aX þ bð Þ ¼ a2σ2 σaXþb ¼ aj jσ

Example 3.14 (Example 3.10 continued) For X ¼ weekly gravel sales, we computed E(X) ¼ 3/8.

Since

E X2
� � ¼ ð1

�1
x2 � f ðxÞdx ¼

ð1
0

x2 � 3
2

1� x2
� �

dx ¼ 3

2

ð1
0

x2 � x4
� �

dx ¼ 1

5
,

VarðXÞ ¼ 1

5
� 3

8

� �2
¼ 19

320
¼ :059 and σX ¼

ffiffiffiffiffiffiffiffiffi
:059

p
¼ :244

Suppose the amount of gravel actually received by customers in a week is h(X) ¼ X � .02X2; the

second term accounts for the small amount that is lost in transport. Then the average weekly amount

received by customers is

E X � :02X2
� � ¼ EðXÞ � :02E X2

� � ¼ 3

8
� :02 � 1

5
¼ :371 tons ■

Example 3.15 When a dart is thrown at a circular target, consider the location of the landing point

relative to the bull’s eye. Let X be the angle in degrees measured from the horizontal, and assume that

X � Unif[0, 360). By Example 3.13, E(X) ¼ 180 and SDðXÞ ¼ 360=
ffiffiffiffiffi
12

p
. Define Y to be the angle
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measured in radians between�π and π, so Y¼ (2π/360)X� π. Then, applying the rescaling properties
with a ¼ 2π/360 and b ¼ �π,

EðYÞ ¼ 2π
360

� EðXÞ � π ¼ 2π
360

180� π ¼ 0

and

σY ¼ 2π
360

���� ���� � σX ¼ 2π
360

360ffiffiffiffiffi
12

p ¼ 2πffiffiffiffiffi
12

p ■

3.2.2 Moment Generating Functions

Moments and moment generating functions for discrete random variables were introduced in

Sect. 2.7. These concepts carry over to the continuous case.

DEFINITION

The moment generating function (mgf) of a continuous random variable X is

MXðtÞ ¼ E etX
� � ¼ ð1

�1
etxf ðxÞdx:

As in the discrete case, the moment generating function exists iff MX(t) is defined for an

interval that includes zero as well as positive and negative values of t.

Just as before, when t ¼ 0 the value of the mgf is always 1:

MXð0Þ ¼ E e0X
� � ¼ ð1

�1
e0xf ðxÞdx ¼

ð1
�1

f ðxÞdx ¼ 1:

Example 3.16 At a store, the checkout time X in minutes has the pdf f(x) ¼ 2e�2x, x � 0; f(x) ¼
0 otherwise. Then

MXðtÞ ¼
ð1
�1

etxf ðxÞdx ¼
ð1
0

etx 2e�2x
� �

dx ¼
ð1
0

2e� 2�tð Þxdx

¼ � 2

2� t
e� 2�tð Þxj1

0
¼ 2

2� t
� 2

2� t
lim
x!1 e� 2�tð Þx

The limit above exists (in fact, it equals zero) provided the coefficient on x is negative, i.e.,

�(2� t)< 0. This is equivalent to t < 2. The mgf exists because it is defined for an interval of values

including 0 in its interior, specifically (�1, 2). For t in that interval, the mgf of X isMX(t)¼ 2/(2� t).
Notice that MX(0) ¼ 2/(2 � 0) ¼ 1. Of course, from the calculation preceding this example we

know that MX(0) ¼ 1 must always be the case, but it is useful as a check to set t ¼ 0 and see if the

result is 1. ■

Recall that in Sect. 2.7 we had a uniqueness property for the mgfs of discrete distributions. This

proposition is equally valid in the continuous case: two distributions have the same pdf if and only if

they have the same moment generating function, assuming that the mgf exists. For example, if a
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random variable X is known to have mgfMX(t) ¼ 2/(2 � t) for t < 2, then from Example 3.16 it must

necessarily be the case that the pdf of X is f(x) ¼ 2e�2x for x � 0 and f(x) ¼ 0 otherwise.

In the discrete case we also had a theorem on how to get moments from the mgf, and this theorem

applies also in the continuous case: the rth moment of a continuous rv with mgf MX(t) is given by

E Xrð Þ ¼ M
ðrÞ
X ð0Þ,

the rth derivative of the mgf with respect to t evaluated at t ¼ 0, if the mgf exists.

Example 3.17 (Example 3.16 continued) The mgf of the rv X¼ checkout time at the store was found

to beMX(t)¼ 2/(2� t)¼ 2(2 � t)�1 for t < 2. To find the mean and standard deviation, first compute

the derivatives:

M
0
XðtÞ ¼ �2 2� tð Þ�2 �1ð Þ ¼ 2

2� tð Þ2

M
0 0
XðtÞ ¼

d

dt
2 2� tð Þ�2
h i

¼ �4 2� tð Þ�3 �1ð Þ ¼ 4

2� tð Þ3

Setting t to 0 in the first derivative gives the expected checkout time as

EðXÞ ¼ M
ð1Þ
X ð0Þ ¼ M

0
Xð0Þ ¼ :5min:

Setting t to 0 in the second derivative gives the second moment

E X2
� � ¼ M

ð2Þ
X ð0Þ ¼ M

0 0
Xð0Þ ¼ :5,

from which the variance of the checkout time is Var(X)¼ σ2¼ E(X2)� [E(X)]2¼ .5�.52¼.25 and the

standard deviation is σ ¼ ffiffiffiffiffiffiffi
:25

p ¼ :5min: ■

We will sometimes need to transform X using a linear function Y ¼ aX + b. As discussed in the

discrete case, if X has the mgf MX(t) and Y ¼ aX + b, then MY(t) ¼ ebtMX(at).

Example 3.18 Let X � Unif[A, B]. As verified in Exercise 32, the moment generating function of

X is

MXðtÞ ¼
eBt � eAt

B� Að Þt t 6¼ 0

1 t ¼ 0

8<:
In particular, consider the situation in Example 3.15. Let X, the angle measured in degrees, be

uniform on [0, 360], so A ¼ 0 and B ¼ 360. Then

MXðtÞ ¼ e360t � 1

360t
t 6¼ 0, MXð0Þ ¼ 1

Now let Y¼ (2π/360)X� π, so Y is the angle measured in radians between�π and π. Using the mgf

rule for linear transformations with a ¼ 2π/360 and b ¼ �π, we get
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MYðtÞ ¼ ebtMXðatÞ ¼ e�πtMX
2πt
360

� �
¼ e�πt e

360 2π=360ð Þt � 1

360
2πt
360

� �
¼ eπt � e�πt

2πt
t 6¼ 0, MYð0Þ ¼ 1

This matches the general form of the moment generating function for a uniform random variable

with A ¼ �π and B ¼ π. Thus, by the mgf uniqueness property, Y � Unif[�π, π]. ■

3.2.3 Exercises: Section 3.2 (19–38)

19. Reconsider the distribution of checkout duration X described in Exercise 11. Compute the

following:

(a) E(X)

(b) Var(X) and SD(X)

(c) If the borrower is charged an amount h(X) ¼ X2 when checkout duration is X, compute the

expected charge E[h(X)].

20. The article “Modeling Sediment and Water Column Interactions for Hydrophobic Pollutants”

(Water Res., 1984: 1169–1174) suggests the uniform distribution on the interval [7.5, 20] as a

model for depth (cm) of the bioturbation layer in sediment in a certain region.

(a) What are the mean and variance of depth?

(b) What is the cdf of depth?

(c) What is the probability that observed depth is at most 10? Between 10 and 15?

(d) What is the probability that the observed depth is within 1 standard deviation of the mean

value?

Within 2 standard deviations?

21. For the distribution of Exercise 14,

(a) Compute E(X) and SD(X).

(b) What is the probability that X is more than 1 standard deviation from its mean value?

22. Consider the pdf given in Exercise 6.

(a) Obtain and graph the cdf of X.

(b) From the graph of f(x), what is the median, η?
(c) Compute E(X) and Var(X).

23. Let X � Unif[A, B].

(a) Obtain an expression for the (100p)th percentile.

(b) Obtain an expression for the median, η. How does this compare to the mean μ, and why

does that make sense for this distribution?

(c) For n a positive integer, compute E(Xn).

24. Consider the pdf for total waiting time Y for two buses
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f ðyÞ ¼

1

25
y 0 � y < 5

2

5
� 1

25
y 5 � y � 10

0 otherwise

8>>>><>>>>:
introduced in Exercise 8.

(a) Compute and sketch the cdf of Y. [Hint: Consider separately 0 � y < 5 and 5 � y � 10 in

computing F(y). A graph of the pdf should be helpful.]

(b) Obtain an expression for the (100p)th percentile. [Hint: Consider separately 0< p< .5 and

.5 � p < 1.]

(c) Compute E(Y ) and Var(Y ). How do these compare with the expected waiting time and

variance for a single bus when the time is uniformly distributed on [0, 5]?

(d) Explain how symmetry can be used to obtain E(Y ).

25. An ecologist wishes to mark off a circular sampling region having radius 10 m. However, the

radius of the resulting region is actually a random variable R with pdf

f ðrÞ ¼
3

4
1� 10� rð Þ2
h i

9 � r � 11

0 otherwise

8<:
What is the expected area of the resulting circular region?

26. The weekly demand for propane gas (in 1000s of gallons) from a particular facility is an rv

X with pdf

f ðxÞ ¼ 2 1� 1

x2

� �
1 � x � 2

0 otherwise

8<:
(a) Compute the cdf of X.

(b) Obtain an expression for the (100p)th percentile. What is the value of the median, η?
(c) Compute E(X). How do the mean and median of this distribution compare?

(d) Compute Var(X) and SD(X).

(e) If 1.5 thousand gallons are in stock at the beginning of the week and no new supply is due

in during the week, how much of the 1.5 thousand gallons is expected to be left at the end

of the week? [Hint: Let h(x) ¼ amount left when demand is x.]

27. If the temperature at which a compound melts is a random variable with mean value 120�C and

standard deviation 2�C, what are the mean temperature and standard deviation measured in �F?
[Hint: �F ¼ 1.8�C + 32.]

28. Let X have the Pareto pdf introduced in Exercise 10:

f x; k, θð Þ ¼
k � θk
xkþ1

x � θ

0 x < θ

8<:
(a) If k > 1, compute E(X).
(b) What can you say about E(X) if k ¼ 1?

(c) If k > 2, show that Var(X) ¼ kθ2(k � 1)�2(k � 2)�1.
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(d) If k ¼ 2, what can you say about Var(X)?

(e) What conditions on k are necessary to ensure that E(Xn) is finite?

29. The time (min) between successive visits to a particular Web site has pdf f(x) ¼ 4e�4x, x � 0;

f(x) ¼ 0 otherwise. Use integration by parts to obtain E(X) and SD(X).

30. Consider the weights, in grams, of walnuts harvested at a nearby farm. Suppose this weight

distribution can be modeled by the following pdf:

f ðxÞ ¼ :5� x

8
0 � x � 4

0 otherwise

8<:
(a) Show that E(X) ¼ 4/3 and Var(X) ¼ 8/9.

(b) The skewness coefficient is defined as E[(X� μ)3]/σ3. Show that its value for the given pdf is

.566. What would the skewness be for a perfectly symmetric pdf?

31. The delta method provides approximations to the mean and variance of a nonlinear function h(X)

of a rv X. These approximations are based on a first-order Taylor series expansion of h(x) about

x ¼ μ, the mean of X:

hðXÞ � h1ðXÞ ¼ h μð Þ þ h
0
μð Þ X�μð Þ

(a) Show that E[h1(X)] ¼ h(μ). (This is the delta method approximation to E[h(X)].)

(b) Show that Var[h1(X)] ¼ [h0(μ)]2Var(X). (This is the delta method approximation to

Var[h(X)].)
(c) If the voltage v across a medium is fixed but current I is random, then resistance will also be

a random variable related to I by R¼ v/I. If μI ¼ 20 and σI ¼ .5, calculate approximations to

μR and σR.
(d) Let R have the distribution in Exercise 25, whose mean and variance are 10 and 1/5,

respectively. Let h(R) ¼ πR2, the area of the ecologist’s sampling region. How does

E[h(R)] from Exercise 25 compare to the delta method approximation h(10)?
(e) It can be shown that Var[h(R)]¼ 14008π2/175. Compute the delta method approximation to

Var[h(R)] using the formula in (b). How good is the approximation?

32. Let X � Unif[A, B], so its pdf is f(x) ¼ 1/(B � A), A � x � B, f(x) ¼ 0 otherwise. Show that the

moment generating function of X is

MXðtÞ ¼
eBt � eAt

B� Að Þt t 6¼ 0

1 t ¼ 0

8><>:
33. Let X�Unif[0, 1]. Find a linear function Y¼ g(X) such that the interval [0, 1] is transformed into

[�5, 5]. Use the relationship for linear functionsMaX+b(t)¼ ebtMX(at) to obtain the mgf of Y from

the mgf of X. Compare your answer with the result of Exercise 32, and use this to obtain the pdf

of Y.

34. If the pdf of a measurement error X is f(x)¼ .5e�|x|,�1< x<1, show thatMXðtÞ ¼ 1= 1� t2ð Þ
for |t| < 1.

35. Consider the rv X ¼ time headway in Example 3.5.

(a) Find the moment generating function and use it to find the mean and variance.

(b) Now consider a random variable whose pdf is

170 3 Continuous Random Variables and Probability Distributions



f ðxÞ ¼ :15e�:15x x � 0

0 otherwise

(

Find the moment generating function and use it to find the mean and variance. Compare with

(a), and explain the similarities and differences.

(c) Let Y ¼ X � .5 and use the relationship for linear functionsMaX + b(t) ¼ ebtMX(at) to obtain
the mgf of Y from (a). Compare with the result of (b) and explain.

36. Define LX(t) ¼ ln[MX(t)]. It was shown in Exercise 120 of Chap. 2 that LX
0 (0) ¼ E(X) and

LX
00 (0) ¼ Var(X).
(a) Determine MX(t) for the pdf in Exercise 29, and use this mgf to obtain E(X) and Var(X).

How does this compare, in terms of difficulty, with the integration by parts required in that

exercise?

(b) Determine LX(t) for this same distribution, and use LX(t) to obtain E(X) and Var(X). How

does the computational effort here compare with that of (a)?

37. Let X be a nonnegative, continuous rv with pdf f(x) and cdf F(x).
(a) Show that, for any constant t > 0,ð1

t

x � f ðxÞdx � t � P X > tð Þ ¼ t � 1� FðtÞ½ 	

(b) Assume the mean of X is finite (i.e., the integral defining μ converges). Use part (a) to show

that

lim
t!1 t � 1� FðtÞ½ 	 ¼ 0

[Hint: Write the integral for μ as the sum of two other integrals, one from 0 to t and another

from t to 1.]

38. Let X be a nonnegative, continuous rv with cdf F(x).

(a) Assuming the mean μ of X is finite, show that

μ ¼
ð1
0

1� FðxÞ½ 	dx

[Hint: Apply integration by parts to the integral above, and use the result of the previous

exercise.] This is the continuous analog of the result established in Exercise 48 of Chap. 2.

(b) A similar argument can be used to show that the kth moment of X is given by

E Xk
� � ¼ k

ð1
0

xk�1 1� FðxÞ½ 	dx

and that E(Xk) exists iff tk[1 � F(t)] ! 0 as t ! 1. (This was the topic of a 2012 article in The

American Statistician.) Suppose the lifetime X, in weeks, of a low-grade transistor under

continuous use has cdf F(x) ¼ 1 � (x + 1)�3 for x > 0. Without finding the pdf of X, determine

its mean and its standard deviation.
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3.3 The Normal (Gaussian) Distribution

The normal distribution, often called the Gaussian distribution by engineers, is the most important

one in all of probability and statistics. Many numerical populations have distributions that can be fit

very closely by an appropriate normal curve. Examples include heights, weights, and other physical

characteristics, measurement errors in scientific experiments, measurements on fossils, reaction times

in psychological experiments, measurements of intelligence and aptitude, scores on various tests, and

numerous economic measures and indicators. Even when the underlying distribution is discrete, the

normal curve often gives an excellent approximation. In addition, even when individual variables

themselves are not normally distributed, sums and averages of the variables will, under suitable

conditions, have approximately a normal distribution; this is the content of the Central Limit Theorem

discussed in Chap. 4.

DEFINITION

A continuous rv X is said to have a normal distribution (or Gaussian distribution) with
parameters μ and σ, where �1 < μ < 1 and σ > 0, if the pdf of X is

f x; μ, σð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þ �1 < x < 1 ð3:3Þ

The statement that X is normally distributed with parameters μ and σ is often abbreviated

X � N(μ, σ).

Figure 3.13 presents graphs of f(x;μ,σ) for several different (μ, σ) pairs. Each resulting density

curve is symmetric about μ and bell-shaped, so the center of the bell (point of symmetry) is both the

mean of the distribution and the median. The value of σ is the distance from μ to the inflection points

of the curve (the points at which the curve changes between turning downward to turning upward).

Large values of σ yield density curves that are quite spread out about μ, whereas small values of σ
yield density curves with a high peak above μ and most of the area under the density curve quite close

to μ. Thus a large σ implies that a value of X far from μmay well be observed, whereas such a value is

quite unlikely when σ is small.

Clearly f(x; μ, σ) � 0, but a somewhat complicated calculus argument is required to prove thatÐ1
�1 f(x; μ, σ)dx ¼ 1 (see Exercise 66). It can be shown using calculus (Exercise 67) or moment

generating functions (Exercise 68) that E(X)¼ μ and Var(X)¼ σ2, so the parameters μ and σ are the
mean and the standard deviation, respectively, of X.

m m + s m  m + sm m + s

Fig. 3.13 Normal density curves
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3.3.1 The Standard Normal Distribution

To compute P(a � X � b) when X � N(μ, σ), we must evaluateðb
a

1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þdx ð3:4Þ

None of the standard integration techniques can be used here, and there is no closed-form

expression for the integral. Table 3.1 at the end of this section provides the code for performing

such normal distribution calculations in both Matlab and R. For the purpose of hand calculation of

normal distribution probabilities, we now introduce a special normal distribution.

DEFINITION

The normal distribution with parameter values μ ¼ 0 and σ ¼ 1 is called the standard normal

distribution. A random variable that has a standard normal distribution is called a standard
normal random variable and will be denoted by Z. The pdf of Z is

f z; 0, 1ð Þ ¼ 1ffiffiffiffiffi
2π

p e�z2=2 �1 < z < 1

The cdf of Z is P Z � zð Þ ¼
ðz
�1

1ffiffiffiffiffi
2π

p e�y2=2dy, which we will denote by Φ(z).

The standard normal distribution does not frequently serve as a model for a naturally arising

population, since few variables have mean 0 and standard deviation 1. Instead, it is a reference

distribution from which information about other normal distributions can be obtained. Appendix

Table A.3 gives values ofΦ(z) for z¼�3.49,�3.48, . . ., 3.48, 3.49 and is referred to as the standard

normal table or z table. Figure 3.14 illustrates the type of cumulative area (probability) tabulated in

Table A.3. From this table, various other probabilities involving Z can be calculated.

Example 3.19 Here we demonstrate how the z table is used to calculate various probabilities

involving a standard normal rv.

(a) P(Z � 1.25) ¼ Φ(1.25), a probability that is tabulated in Table A.3 at the intersection of the row

marked 1.2 and the column marked .05. The number there is .8944, so P(Z� 1.25)¼ .8944. See

Fig. 3.15a. In Matlab, we may type normcdf(1.25,0,1); in R, use pnorm(1.25,0,1)

or just pnorm(1.25).

(b) P(Z > 1.25) ¼ 1 � P(Z � 1.25) ¼ 1 � Φ(1.25), the area under the standard normal curve to the

right of 1.25 (an upper-tail area). Since Φ(1.25) ¼ .8944, it follows that P(Z > 1.25) ¼ .1056.

Since Z is a continuous rv, P(Z � 1.25) also equals .1056. See Fig. 3.15b.

0 z

Standard normal (z) curve

Shaded area = Φ(z) Fig. 3.14 Standard

normal cumulative areas

tabulated in Appendix

Table A.3
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(c) P(Z � �1.25) ¼ Φ(�1.25), a lower-tail area. Directly from the z table, Φ(�1.25) ¼ .1056. By

symmetry of the normal curve, this is identical to the probability in (b).

(d) P(�.38 � Z � 1.25) is the area under the standard normal curve above the interval [�.38, 1.25].

From Sect. 3.1, if Z is a continuous rv with cdf F(z), then P(a� Z� b)¼ F(b)� F(a). This gives

P(�.38� Z� 1.25)¼Φ(1.25)�Φ(�.38)¼ .8944� .3520¼ .5424. (See Fig. 3.16.) To evaluate

this probability in Matlab, type normcdf(1.25,0,1)-normcdf(.38,0,1); in R,

type pnorm(1.25,0,1)-pnorm(-.38,0,1) or just pnorm(1.25)-pnorm(-.38).

From Sect. 3.1, we have that the (100p)th percentile of the standard normal distribution, for any

p between 0 and 1, is the solution to the equation Φ(z) ¼ p. So, we may write the (100p)th percentile

of the standard normal distribution as ηp ¼Φ�1( p). Matlab, R, or the z table can be used to obtain this
percentile.

Example 3.20 The 99th percentile of the standard normal distribution, Φ�1(.99), is the value on the

horizontal axis such that the area under the curve to the left of the value is .9900, as illustrated in

Fig. 3.17. To solve the “inverse” problem Φ(z) ¼ p, the standard normal table is used in an inverse

fashion: Find in the middle of the table .9900; the row and column in which it lies identify the 99th

z percentile. Here .9901 lies in the row marked 2.3 and column marked .03, soΦ(2.33)¼ .9901� .99

and the 99th percentile is approximately z ¼ 2.33. By symmetry, the first percentile is the negative of

the 99th percentile, so it equals �2.33 (1% lies below the first and above the 99th). See Fig. 3.18.

z curve z curve

0

ba

1.251.25 0

Shaded area = Φ(1.25) 

P(Z > 1.25)

Fig. 3.15 Normal curve areas (probabilities) for Example 3.19

0 1.25−.38 0−.38

−=

0 1.25

z curve

Fig. 3.16 P(�.38 � Z � 1.25) as the difference between two cumulative areas ■

z curve

99th percentile

0

Shaded area = .9900Fig. 3.17 Finding the 99th

percentile
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To find the 99th percentile of the standard normal distribution in Matlab, use the command

norminv(.99,0,1); in R, qnorm(.99,0,1) or just qnorm(.99) produces that same

value of roughly z ¼ 2.33. ■

3.3.2 Non-standardized Normal Distributions

When X � N(μ, σ), probabilities involving X may be computed by “standardizing.” A standardized

variable has the form (X � μ)/σ. Subtracting μ shifts the mean from μ to zero, and then dividing by σ
scales the variable so that the standard deviation is 1 rather than σ.

Standardizing amounts to nothing more than calculating a distance from the mean and then

reexpressing the distance as some number of standard deviations. For example, if μ ¼ 100 and σ ¼
15, then x ¼ 130 corresponds to z ¼ (130 � 100)/15 ¼ 30/15 ¼ 2.00. That is, 130 is 2 standard

deviations above (to the right of) the mean value. Similarly, standardizing 85 gives (85 � 100)/15 ¼
�1.00, so 85 is 1 standard deviation below the mean. According to the next proposition, the z table
applies to any normal distribution provided that we think in terms of number of standard deviations

away from the mean value.

PROPOSITION

If X � N(μ, σ), then the “standardized” rv Z defined by

Z ¼ X � μ

σ

has a standard normal distribution. Thus

P a � X � bð Þ ¼ P
a� μ

σ
� Z � b� μ

σ

� �
¼ Φ

b� μ

σ

� �
�Φ

a� μ

σ


 �
,

P X � að Þ ¼ Φ
a� μ

σ


 �
, P X � bð Þ ¼ 1�Φ

b� μ

σ

� �
,

and the (100p)th percentile of the N(μ, σ) distribution is given by

ηp ¼ μþΦ�1ðpÞ � σ:

Conversely, if Z� N(0, 1) and μ and σ are constants (with σ > 0), then the “un-standardized”

rv X ¼ μ + σZ has a normal distribution with mean μ and standard deviation σ.

Proof Let X � N(μ, σ) and define Z ¼ (X � μ)/σ as in the statement of the proposition. Then the cdf

of Z is given by

Shaded area = .01

z curve

0

−2.33 = 1st percentile 2.33 = 99th percentile

Fig. 3.18 The relationship

between the 1st and 99th

percentiles
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FzðzÞ ¼ P Z � zð Þ
¼ P

X � μ

σ
� z

� �
¼ P X � μþ zσð Þ ¼

ðμþzσ

�1
f x; μ, σð Þdx ¼

ðμþzσ

�1

1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þdx

Now make the substitution u ¼ (x � μ)/σ. The new limits of integration become �1 to z, and the

differential dx is replaced by σ du, resulting in

FzðzÞ ¼
ðz
�1

1

σ
ffiffiffiffiffi
2π

p e�u2=2σdu ¼
ðz
�1

1ffiffiffiffiffi
2π

p e�u2=2du ¼ ΦðzÞ

Thus, the cdf of (X � μ)/σ is the standard normal cdf, which establishes that (X � μ)/σ � N(0, 1).
The probability formulas in the statement of the proposition follow directly from this main result,

as does the formula for the (100p)th percentile:

p ¼ P X � ηp
� � ¼ P

X � μ

σ
� ηp � μ

σ

� �
¼ Φ

ηp � μ

σ


 �
) ηp � μ

σ
¼ Φ�1ðpÞ )

ηp ¼ μþΦ�1ðpÞ � σ

The converse statement Z � N(0, 1) ) μ + σZ � N(μ, σ) is derived similarly. ■

The key idea of this proposition is that by standardizing, any probability involving X can be

expressed as a probability involving a standard normal rv Z, so that the z table can be used. This is

illustrated in Fig. 3.19.

Software eliminates the need for standardizing X, although the standard normal distribution is still

important in its own right. Table 3.1 at the end of this section details the relevant R and Matlab

commands, which are also illustrated in the following examples.

Example 3.21 The time that it takes a driver to react to the brake lights on a decelerating vehicle is

critical in avoiding rear-end collisions. The article “Fast-Rise Brake Lamp as a Collision-Prevention

Device” (Ergonomics, 1993: 391–395) suggests that reaction time for an in-traffic response to a brake

signal from standard brake lights can be modeled with a normal distribution having mean value 1.25 s

and standard deviation of .46 s. What is the probability that reaction time is between 1.00 s and 1.75 s?

If we let X denote reaction time, then standardizing gives 1.00 � X � 1.75 if and only if

1:00� 1:25

:46
� X � 1:25

:46
� 1:75� 1:25

:46

The middle expression, by the previous proposition, is a standard normal rv. Thus

xm 0

(x− m)/s

N(m,s)
N(0,1)

=

Fig. 3.19 Equality of

nonstandard and standard

normal curve areas
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P 1:00 � X � 1:75ð Þ ¼ P
1:00� 1:25

:46
� Z � 1:75� 1:25

:46

� �
¼ P �:54 � Z � 1:09ð Þ ¼ Φð1:09Þ �Φ �:54ð Þ
¼ :8621� :2946 ¼ :5675

This is illustrated in Fig. 3.20. The same answer may be produced in Matlab with the command

normcdf(1.75,1.25,.46)-normcdf(1.00, 1.25,.46); Matlab gives the answer .5681,

which is more accurate than the value .5675 above (due to rounding the z-values to two decimal

places). The analogous R command is pnorm(1.75,1.25,.46)-pnorm(1.00,1.25,.46).

Similarly, if we view 2 s as a critically long reaction time, the probability that actual reaction time

will exceed this value is

P X > 2ð Þ ¼ P Z >
2� 1:25

:46

� �
¼ P Z > 1:63ð Þ ¼ 1�Φð1:63Þ ¼ :0516

This probability is determined in Matlab and R by executing the commands

1-normcdf(2,1.25,.46) and 1-pnorm(2,1.25,.46), respectively. ■

Example 3.22 The amount of distilled water dispensed by a machine is normally distributed with

mean value 64 oz and standard deviation .78 oz. What container size c will ensure that overflow

occurs only .5% of the time? If X denotes the amount dispensed, the desired condition is that P(X> c)

¼ .005, or, equivalently, that P(X � c) ¼ .995. Thus c is the 99.5th percentile of the normal

distribution with μ ¼ 64 and σ ¼ .78. The 99.5th percentile of the standard normal distribution is

Φ�1(.995) � 2.58, so

c ¼ η:995 ¼ 64þ ð2:58Þð:78Þ ¼ 64þ 2:0 ¼ 66:0 oz

This is illustrated in Fig. 3.21.

1.25

1.751.00

0

1.09−.54

z curve

Normal, m = 1.25, s = .46 P(1.00 ≤ X ≤ 1.75)Fig. 3.20 Normal curves

for Example 3.21

c = 99.5th percentile = 66.0

Shaded area = .995

m = 64

Fig. 3.21 Distribution of

amount dispensed for

Example 3.22
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The Matlab and R commands to calculate this percentile are norminv(.995,64,.78) and

qnorm(.995,64,.78), respectively. ■

Example 3.23 The return on a diversified investment portfolio is normally distributed. What is the

probability that the return is within 1 standard deviation of its mean value? This question can be

answered without knowing either μ or σ, as long as the distribution is known to be normal; in other

words, the answer is the same for any normal distribution. Going one standard deviation below μ
lands us at μ � σ, while μ + σ is one standard deviation above the mean. Thus

P
X is within one standard

deviation of its mean

� �
¼ P μ� σ � X � μþ σð Þ

¼ P

�
μ� σ � μ

σ
� Z � μþ σ � μ

σ

�
¼ P �1 � Z � 1ð Þ
¼ Φ 1ð Þ �Φð�1� ¼ :6826

The probability that X is within 2 standard deviations of the mean is P(�2 � Z � 2) ¼ .9544 and

the probability that X is within 3 standard deviations of the mean is P(�3 � Z � 3) ¼ .9973. ■

The results of Example 3.23 are often reported in percentage form and referred to as the empirical

rule (because empirical evidence has shown that histograms of real data can very frequently be

approximated by normal curves).

EMPIRICAL RULE

If the population distribution of a variable is (approximately) normal, then

1. Roughly 68% of the values are within 1 SD of the mean.

2. Roughly 95% of the values are within 2 SDs of the mean.

3. Roughly 99.7% of the values are within 3 SDs of the mean.

3.3.3 The Normal MGF

The moment generating function provides a straightforward way to establish several important results

concerning the normal distribution.

PROPOSITION

The moment generating function of a normally distributed random variable X is

MXðtÞ ¼ eμtþσ2t2=2

Proof Consider first the special case of a standard normal rv Z. Then

MZðtÞ ¼ E etZ
� � ¼ ð1

�1
etz

1ffiffiffiffiffi
2π

p e�z2=2dz ¼
ð1
�1

1ffiffiffiffiffi
2π

p e� z2�2tzð Þ=2dz

Completing the square in the exponent, we have
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MZðtÞ ¼ et
2=2

ð1
�1

1ffiffiffiffiffi
2π

p e� z2�2tzþt2ð Þ=2dz ¼ et
2=2

ð1
�1

1ffiffiffiffiffi
2π

p e� z�tð Þ2=2dz

The last integral is the area under a normal density curve with mean t and standard deviation 1, so

the value of the integral is 1. Therefore, MZðtÞ ¼ et
2=2.

Now let X be any normal rv with mean μ and standard deviation σ. Then, by the proposition earlier
in this section, (X� μ)/σ ¼ Z, where Z is standard normal. Rewrite this relationship as X¼ μ + σZ, and
use the property MaY+b(t) ¼ ebtMY(at):

MXðtÞ ¼ MμþσZðtÞ ¼ eμtMZ σtð Þ ¼ eμteσ
2t2=2 ¼ eμtþσ2t2=2 ■

The normal mgf can be used to establish that μ and σ are indeed the mean and standard deviation of

X, as claimed earlier (Exercise 68). Also, by the mgf uniqueness property, any rv X whose moment

generating function has the form specified above is necessarily normally distributed. For example,

if it is known that the mgf of X is MXðtÞ ¼ e8t
2

, then X must be a normal rv with mean μ ¼ 0 and

standard deviation σ ¼ 4 (since the N(0, 4) distribution has e8t
2

as its mgf).

Itwas established earlier in this section that ifX�N(μ, σ) andZ¼ (X� μ)/σ, thenZ�N(0, 1), and vice

versa. This standardizing transformation is actually a special case of a much more general property.

PROPOSITION

Let X � N(μ, σ). Then for any constants a and b with a 6¼ 0, aX + b is also normally distributed.

That is, any linear rescaling of a normal rv is normal.

The proof of this proposition uses mgfs and is left as an exercise (Exercise 70). This proposition

provides a much easier proof of the earlier relationship between X and Z. The rescaling formulas and

this proposition combine to give the following statement: if X is normally distributed and Y ¼ aX +

b (with a 6¼ 0), then Y is also normal, with mean μY ¼ aμX + b and standard deviation σY ¼ |a|σX.

3.3.4 The Normal Distribution and Discrete Populations

The normal distribution is often used as an approximation to the distribution of values in a discrete

population. In such situations, extra care must be taken to ensure that probabilities are computed in an

accurate manner.

Example 3.24 IQ (as measured by a standard test) is known to be approximately normally

distributed with μ ¼ 100 and σ ¼ 15. What is the probability that a randomly selected individual

has an IQ of at least 125? Letting X ¼ the IQ of a randomly chosen person, we wish P(X � 125). The

temptation here is to standardize X � 125 immediately as in previous examples. However, the IQ

population is actually discrete, since IQs are integer-valued, so the normal curve is an approximation

to a discrete probability histogram, as pictured in Fig. 3.22.

The rectangles of the histogram are centered at integers, so IQs of at least 125 correspond to

rectangles beginning at 124.5, as shaded in Fig. 3.22. Thus we really want the area under the

approximating normal curve to the right of 124.5. Standardizing this value gives P(Z � 1.63) ¼
.0516. If we had standardized X� 125, we would have obtained P(Z� 1.67)¼ .0475. The difference

is not great, but the answer .0516 is more accurate. Similarly, P(X ¼ 125) would be approximated by

the area between 124.5 and 125.5, since the area under the normal curve above the single value

125 is zero.
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The correction for discreteness of the underlying distribution in Example 3.24 is often called a

continuity correction; it adjusts for the use of a continuous distribution in approximating a proba-

bility involving a discrete rv. It is useful in the following application of the normal distribution to the

computation of binomial probabilities. The normal distribution was actually created as an approxi-

mation to the binomial distribution (by Abraham de Moivre in the 1730s).

3.3.5 Approximating the Binomial Distribution

Recall that the mean value and standard deviation of a binomial random variable X are μ ¼ np and

σ ¼ ffiffiffiffiffiffiffiffi
npq

p
, respectively. Figure 3.23a displays a probability histogram for the binomial distribution

with n ¼ 20, p ¼ .6 [so μ ¼ 20(.6) ¼ 12 and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20ð:6Þð:4Þp ¼ 2:19]. A normal curve with mean

value and standard deviation equal to the corresponding values for the binomial distribution has been

superimposed on the probability histogram. Although the probability histogram is a bit skewed

(because p 6¼ .5), the normal curve gives a very good approximation, especially in the middle part

of the picture. The area of any rectangle (probability of any particular X value) except those in the

extreme tails can be accurately approximated by the corresponding normal curve area. For example,

P X ¼ 10ð Þ ¼ 20

10

� �
ð:6Þ10ð:4Þ10 ¼ :117, whereas the area under the normal curve between 9.5 and

10.5 is P(�1.14 � Z � �.68) ¼ .120.

On the other hand, a normal distribution is a poor approximation to a discrete distribution that is

heavily skewed. For example, Figure 3.23b shows a probability histogram for the Bin(20, .1)

125

Fig. 3.22 A normal approximation to a discrete distribution ■
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Fig. 3.23 Binomial probability histograms with normal approximation curves superimposed: (a) n ¼ 20 and p ¼ .6

(a good fit); (b) n ¼ 20 and p ¼ .1 (a poor fit)
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distribution and the normal pdf with the same mean and standard deviation (μ ¼ 2 and σ ¼ 1.34).

Clearly, we would not want to use this normal curve to approximate binomial probabilities, even with

a continuity correction.

PROPOSITION

Let X be a binomial rv based on n trials with success probability p. Then if the binomial

probability histogram is not too skewed, X has approximately a normal distribution with μ¼ np

and σ ¼ ffiffiffiffiffiffiffiffi
npq

p
. In particular, for x ¼ a possible value of X,

P(X � x) ¼ B(x; n, p) � (area under the normal curve to the left of x + .5)

¼ Φ
xþ :5� npffiffiffiffiffiffiffiffi

npq
p

� �
In practice, the approximation is adequate provided that both np � 10 and nq � 10.

If either np < 10 or nq < 10, the binomial distribution may be too skewed for the (symmetric)

normal curve to give accurate approximations.

Example 3.25 Suppose that 25% of all licensed drivers in a state do not have insurance. Let X be the

number of uninsured drivers in a random sample of size 50 (somewhat perversely, a success is an

uninsured driver), so that p¼ .25. Then μ ¼ 12.5 and σ ¼ 3.062. Since np¼ 50(.25)¼ 12.5� 10 and

nq ¼ 37.5 � 10, the approximation can safely be applied:

P X � 10ð Þ ¼ B 10; 50, :25ð Þ � Φ
10þ :5� 12:5

3:062

� �
¼ Φ �:6532ð Þ ¼ :2568

Similarly, the probability that between 5 and 15 (inclusive) of the selected drivers are uninsured is

P 5 � X � 15ð Þ ¼ B 15; 50, :25ð Þ � B 4; 50, :25ð Þ
� Φ

15:5� 12:5

3:062

� �
�Φ

4:5� 12:5

3:062

� �
¼ :8319

The exact probabilities are .2622 and .8348, respectively, so the approximations are quite good.

In the last calculation, the probability P(5 � X � 15) is being approximated by the area under

the normal curve between 4.5 and 15.5—the continuity correction is used for both the upper and

lower limits. ■

The wide availability of software for doing binomial probability calculations, even for large values

of n, has considerably diminished the importance of the normal approximation. However, it is

important for another reason. When the objective of an investigation is to make an inference about

a population proportion p, interest will focus on the sample proportion of successes bP ¼ X=n rather

than on X itself. Because this proportion is just X multiplied by the constant 1/n, the earlier rescaling

proposition tells us that bP will also have approximately a normal distribution (with mean μ ¼ p and

standard deviation σ ¼ ffiffiffiffiffiffiffiffiffiffi
pq=n

p
) provided that both np � 10 and nq � 10. This normal approximation

is the basis for several inferential procedures to be discussed in Chap. 5.
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It is quite difficult to give a direct proof of the validity of this normal approximation (the first one

goes back about 270 years to de Moivre). In Chap. 4, we’ll see that it is a consequence of an important

general result called the Central Limit Theorem.

3.3.6 Normal Distribution Calculations with Software

Many software packages, including Matlab and R, have built-in functions to determine both

probabilities under a normal curve and quantiles (aka percentiles) of any given normal distribution.

Table 3.1 summarizes the relevant code in both packages.

In the special case of a standard normal distribution, R (but not Matlab) will allow the user to drop

the last two arguments, μ and σ. That is, the R commands pnorm(x) and pnorm(x,0,1) yield the

same result for any number x, and a similar comment applies to qnorm. Both software packages also

have built-in function calls for the normal pdf: normpdf(x,μ,σ) and dnorm(x,μ,σ), respectively.
However, these two commands are generally only used when one desires to graph a normal density

curve (x vs. f(x; μ, σ)), since the pdf evaluated at particular x does not represent a probability, as

discussed in Sect. 3.1.

3.3.7 Exercises: Section 3.3 (39–70)

39. Let Z be a standard normal random variable and obtain each of the following probabilities,

drawing pictures wherever appropriate.

(a) P(0 � Z � 2.17)

(b) P(0 � Z � 1)

(c) P(�2.50 � Z � 0)

(d) P(�2.50 � Z � 2.50)

(e) P(Z � 1.37)

(f) P(�1.75 � Z )

(g) P(�1.50 � Z � 2.00)

(h) P(1.37 � Z � 2.50)

(i) P(1.50 � Z )

(j) P(|Z| � 2.50)

40. In each case, determine the value of the constant c that makes the probability statement correct.

(a) Φ(c) ¼ .9838

(b) P(0 � Z � c) ¼ .291

(c) P(c � Z) ¼ .121

(d) P(�c � Z � c) ¼ .668

(e) P(c � |Z|) ¼ .016

Table 3.1 Normal probability and quantile calculations in Matlab and R

Function: cdf quantile, i.e., the (100p)th percentile

Notation: Φ x�μ
σ

� �
ηp ¼ μ + Φ� 1( p) � σ

Matlab: normcdf(x, μ, σ) norminv(p, μ, σ)

R: pnorm(x, μ, σ) qnorm(p, μ, σ)
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41. Find the following percentiles for the standard normal distribution. Interpolate where

appropriate.

(a) 91st

(b) 9th

(c) 75th

(d) 25th

(e) 6th

42. Suppose the force acting on a column that helps to support a building is a normally distributed

random variable X with mean value 15.0 kips and standard deviation 1.25 kips. Compute the

following probabilities.

(a) P(X � 15)

(b) P(X � 17.5)

(c) P(X � 10)

(d) P(14 � X � 18)

(e) P(|X � 15| � 3)

43. Mopeds (small motorcycles with an engine capacity below 50 cc) are very popular in Europe

because of their mobility, ease of operation, and low cost. The article “Procedure to Verify the

Maximum Speed of Automatic Transmission Mopeds in Periodic Motor Vehicle Inspections”

(J. of Automobile Engr., 2008: 1615-1623) described a rolling bench test for determining

maximum vehicle speed. A normal distribution with mean value 46.8 km/h and standard

deviation 1.75 km/h is postulated. Consider randomly selecting a single such moped.

(a) What is the probability that maximum speed is at most 50 km/h?

(b) What is the probability that maximum speed is at least 48 km/h?

(c) What is the probability that maximum speed differs from the mean value by at most 1.5

standard deviations?

44. Let X be the birth weight, in grams, of a randomly selected full-term baby. The article “Fetal

Growth Parameters and Birth Weight: Their Relationship to Neonatal Body Composition”

(Ultrasound in Obstetrics and Gynecology, 2009: 441–446) suggests that X is normally

distributed with mean 3500 and standard deviation 600.

(a) Sketch the relevant density curve, including tick marks on the horizontal scale.

(b) What is P(3000 < X < 4500), and how does this compare to P(3000 � X � 4500)?

(c) What is the probability that the weight of such a newborn is less than 2500 g?

(d) What is the probability that the weight of such a newborn exceeds 6000 g (roughly

13.2 lb)?

(e) How would you characterize the most extreme .1% of all birth weights?

(f) Use the rescaling proposition from this section to determine the distribution of birth weight

expressed in pounds (shape, mean, and standard deviation), and then recalculate the

probability from part (c). How does this compare to your previous answer?

45. Based on extensive data from an urban freeway near Toronto, Canada, “it is assumed that free

speeds can best be represented by a normal distribution” (“Impact of Driver Compliance on the

Safety and Operational Impacts of Freeway Variable Speed Limit Systems,” J. of Transp. Engr.,

2011: 260–268). The mean and standard deviation reported in the article were 119 km/h and

13.1 km/h, respectively.

(a) What is the probability that the speed of a randomly selected vehicle is between 100 and

120 km/h?

(b) What speed characterizes the fastest 10% of all speeds?
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(c) The posted speed limit was 100 km/h. What percentage of vehicles was traveling at speeds

exceeding this posted limit?

(d) If five vehicles are randomly and independently selected, what is the probability that at

least one is not exceeding the posted speed limit?

(e) What is the probability that the speed of a randomly selected vehicle exceeds 70 miles/h?

46. The defect length of a corrosion defect in a pressurized steel pipe is normally distributed with

mean value 30 mm and standard deviation 7.8 mm (suggested in the article “Reliability

Evaluation of Corroding Pipelines Considering Multiple Failure Modes and Time-Dependent

Internal Pressure,” J. of Infrastructure Systems, 2011: 216–224).

(a) What is the probability that defect length is at most 20 mm? Less than 20 mm?

(b) What is the 75th percentile of the defect length distribution, i.e., the value that separates the

smallest 75% of all lengths from the largest 25%?

(c) What is the 15th percentile of the defect length distribution?

(d) What values separate the middle 80% of the defect length distribution from the smallest

10% and the largest 10%?

47. The plasma cholesterol level (mg/dL) for patients with no prior evidence of heart disease who

experience chest pain is normally distributed with mean 200 and standard deviation 35.

Consider randomly selecting an individual of this type. What is the probability that the plasma

cholesterol level

(a) Is at most 250?

(b) Is between 300 and 400?

(c) Differs from the mean by at least 1.5 standard deviations?

48. Suppose the diameter at breast height (in.) of trees of a certain type is normally distributed with

μ ¼ 8.8 and σ ¼ 2.8, as suggested in the article “Simulating a Harvester-Forwarder Softwood

Thinning” (Forest Products J., May 1997: 36–41).

(a) What is the probability that the diameter of a randomly selected tree will be at least 10 in.?

Will exceed 10 in.?

(b) What is the probability that the diameter of a randomly selected tree will exceed 20 in.?

(c) What is the probability that the diameter of a randomly selected tree will be between 5 and

10 in.?

(d) What value c is such that the interval (8.8 � c, 8.8 + c) includes 98% of all diameter values?

(e) If four trees are independently selected, what is the probability that at least one has a

diameter exceeding 10 in.?

49. There are two machines available for cutting corks intended for use in wine bottles. The first

produces corks with diameters that are normally distributed with mean 3 cm and standard

deviation .1 cm. The second machine produces corks with diameters that have a normal

distribution with mean 3.04 cm and standard deviation .02 cm. Acceptable corks have diameters

between 2.9 and 3.1 cm. Which machine is more likely to produce an acceptable cork?

50. Human body temperatures for healthy individuals have approximately a normal distribution with

mean 98.25 �F and standard deviation .75 �F. (The past accepted value of 98.6 �F was obtained by

converting the Celsius value of 37�, which is correct to the nearest integer.)

(a) Find the 90th percentile of the distribution.

(b) Find the 5th percentile of the distribution.

(c) What temperature separates the coolest 25% from the others?

51. The article “Monte Carlo Simulation—Tool for Better Understanding of LRFD” (J. Struct. Engr.,

1993: 1586–1599) suggests that yield strength (ksi) for A36 grade steel is normally distributed

with μ ¼ 43 and σ ¼ 4.5.
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(a) What is the probability that yield strength is at most 40? Greater than 60?

(b) What yield strength value separates the strongest 75% from the others?

52. The automatic opening device of a military cargo parachute has been designed to open when the

parachute is 200 m above the ground. Suppose opening altitude actually has a normal distribution

with mean value 200 m and standard deviation 30 m. Equipment damage will occur if the

parachute opens at an altitude of less than 100 m. What is the probability that there is equipment

damage to the payload of at least one of five independently dropped parachutes?

53. The temperature reading from a thermocouple placed in a constant-temperature medium is

normally distributed with mean μ, the actual temperature of the medium, and standard deviation

σ. What would the value of σ have to be to ensure that 95% of all readings are within .1� of μ?
54. Vehicle speed on a particular bridge in China can be modeled as normally distributed (“Fatigue

Reliability Assessment for Long-Span Bridges under Combined Dynamic Loads fromWinds and

Vehicles,” J. of Bridge Engr., 2013: 735–747).
(a) If 5% of all vehicles travel less than 39.12 mph and 10% travel more than 73.24 mph, what

are the mean and standard deviation of vehicle speed? [Note: The resulting values should

agree with those given in the cited article.]

(b) What is the probability that a randomly selected vehicle’s speed is between 50 and 65 mph?

(c) What is the probability that a randomly selected vehicle’s speed exceeds the speed limit of

70 mph?

55. If adult female heights are normally distributed, what is the probability that the height of a

randomly selected woman is

(a) Within 1.5 SDs of its mean value?

(b) Farther than 2.5 SDs from its mean value?

(c) Between 1 and 2 SDs from its mean value?

56. A machine that produces ball bearings has initially been set so that the true average diameter of

the bearings it produces is .500 in. A bearing is acceptable if its diameter is within .004 in. of this

target value. Suppose, however, that the setting has changed during the course of production, so

that the bearings have normally distributed diameters with mean value .499 in. and standard

deviation .002 in. What percentage of the bearings produced will not be acceptable?

57. The Rockwell hardness of a metal is determined by impressing a hardened point into the surface

of the metal and then measuring the depth of penetration of the point. Suppose the Rockwell

hardness of an alloy is normally distributed with mean 70 and standard deviation 3. (Rockwell

hardness is measured on a continuous scale.)

(a) If a specimen is acceptable only if its hardness is between 67 and 75, what is the probability

that a randomly chosen specimen has an acceptable hardness?

(b) If the acceptable range of hardness is (70 � c, 70 + c), for what value of c would 95% of all

specimens have acceptable hardness?

(c) If the acceptable range is as in part (a) and the hardness of each of ten randomly selected

specimens is independently determined, what is the expected number of acceptable

specimens among the ten?

(d) What is the probability that at most eight of ten independently selected specimens have a

hardness of less than 73.84? [Hint: Y ¼ the number among the ten specimens with hardness

less than 73.84 is a binomial variable; what is p?]
58. The weight distribution of parcels sent in a certain manner is normal with mean value 12 lb and

standard deviation 3.5 lb. The parcel service wishes to establish a weight value c beyond which

there will be a surcharge. What value of c is such that 99% of all parcels are at least 1 lb under the

surcharge weight?
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59. Suppose Appendix Table A.3 containedΦ(z) only for z� 0. Explain how you could still compute

(a) P(�1.72 � Z � �.55)

(b) P(�1.72 � Z � .55)

Is it necessary to tabulate Φ(z) for z negative? What property of the standard normal curve

justifies your answer?

60. Chebyshev’s inequality (Sect. 3.2) states that for any number k satisfying k� 1, P(|X� μ|� kσ) is
no more than 1/k2. Obtain this probability in the case of a normal distribution for k ¼ 1, 2, and

3, and compare to Chebyshev’s upper bound.

61. Let X denote the number of flaws along a 100-m reel of magnetic tape (an integer-valued

variable). Suppose X has approximately a normal distribution with μ ¼ 25 and σ ¼ 5. Use the

continuity correction to calculate the probability that the number of flaws is

(a) Between 20 and 30, inclusive.

(b) At most 30. Less than 30.

62. Let X have a binomial distribution with parameters n¼ 25 and p. Calculate each of the following

probabilities using the normal approximation (with the continuity correction) for the cases p¼ .5,

.6, and .8 and compare to the exact probabilities calculated from Appendix Table A.1.

(a) P(15 � X � 20)

(b) P(X � 15)

(c) P(20 � X)
63. Suppose that 10% of all steel shafts produced by a process are nonconforming but can be

reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let

X denote the number among these that are nonconforming and can be reworked. What is the

(approximate) probability that X is

(a) At most 30?

(b) Less than 30?

(c) Between 15 and 25 (inclusive)?

64. Suppose only 70% of all drivers in a state regularly wear a seat belt. A random sample of

500 drivers is selected. What is the probability that

(a) Between 320 and 370 (inclusive) of the drivers in the sample regularly wear a seat belt?

(b) Fewer than 325 of those in the sample regularly wear a seat belt? Fewer than 315?

65. In response to concerns about nutritional contents of fast foods, McDonald’s announced that it

would use a new cooking oil for its french fries that would decrease substantially trans fatty acid

levels and increase the amount of more beneficial polyunsaturated fat. The company claimed that

97 out of 100 people cannot detect a difference in taste between the new and old oils. Assuming

that this figure is correct (as a long-run proportion), what is the approximate probability that in a

random sample of 1000 individuals who have purchased fries at McDonald’s,

(a) At least 40 can taste the difference between the two oils?

(b) At most 5% can taste the difference between the two oils?

66. The following proof that the normal pdf integrates to 1 comes courtesy of Professor Robert

Young, Oberlin College. Let f(z) denote the standard normal pdf, and consider the function of two

variables

g x, yð Þ ¼ f ðxÞ � f ðyÞ ¼ 1ffiffiffiffiffi
2π

p e�x2=2 1ffiffiffiffiffi
2π

p e�y2=2 ¼ 1

2π
e� x2þy2ð Þ=2

Let V denote the volume under g(x, y) above the xy-plane.

(a) Let A denote the area under the standard normal curve. By setting up the double integral for

the volume underneath g(x, y), show that V ¼ A2.
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(b) Using the rotational symmetry of g(x, y), V can be determined by adding up the volumes of

shells from rotation about the y-axis:

V ¼
ð1
0

2πr � 1
2π

e�r2=2dr

Show this integral equals 1, then use (a) to establish that the area under the standard normal

curve is 1.

(c) Show that
Ð1
�1 f(x; μ, σ)dx¼ 1. [Hint: Write out the integral, and then make a substitution to

reduce it to the standard normal case. Then invoke (b).]

67. Suppose X � N(μ, σ).
(a) Show via integration that E(X) ¼ μ. [Hint: Make the substitution u ¼ (x � μ)/σ, which will

create two integrals. For one, use the symmetry of the pdf; for the other, use the fact that the

standard normal pdf integrates to 1.]

(b) Show via integration that Var(X) ¼ σ2. [Hint: Evaluate the integral for E[(X�μ)2] rather
than using the variance shortcut formula. Use the same substitution as in part (a).]

68. The moment generating function can be used to find the mean and variance of the normal

distribution.

(a) Use derivatives of MX(t) to verify that E(X) ¼ μ and Var(X) ¼ σ2.
(b) Repeat (a) using LX(t)¼ ln[MX(t)], and compare with part (a) in terms of effort. (Refer back

to Exercise 36 for properties of the function LX(t).)

69. There is no nice formula for the standard normal cdf Φ(z), but several good approximations have

been published in articles. The following is from “Approximations for Hand Calculators Using

Small Integer Coefficients” (Math. Comput., 1977: 214–222). For 0 < z � 5.5,

P Z � zð Þ ¼ 1�ΦðzÞ � :5exp � 83zþ 351ð Þzþ 562

703=zð Þ þ 165

� �� 

The relative error of this approximation is less than .042%. Use this to calculate approximations

to the following probabilities, and compare whenever possible to the probabilities obtained from

Appendix Table A.3.

(a) P(Z � 1)

(b) P(Z < �3)

(c) P(�4 < Z < 4)

(d) P(Z > 5)

70. (a) Use mgfs to show that if X has a normal distribution with parameters μ and σ, then Y¼ aX +

b (a linear function of X) also has a normal distribution. What are the parameters of the

distribution of Y [i.e., E(Y ) and SD(Y)]?
(b) If when measured in �C, temperature is normally distributed with mean 115 and standard

deviation 2, what can be said about the distribution of temperature measured in �F?

3.4 The Exponential and Gamma Distributions

The graph of any normal pdf is bell-shaped and thus symmetric. In many practical situations, the

variable of interest to the experimenter might have a skewed distribution. A family of pdfs that yields

a wide variety of skewed distributional shapes is the gamma family. We first consider a special case,

the exponential distribution, and then generalize later in the section.
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3.4.1 The Exponential Distribution

The family of exponential distributions provides probability models that are widely used in engineer-

ing and science disciplines.

DEFINITION

X is said to have an exponential distribution with parameter λ (λ > 0) if the pdf of X is

f x; λð Þ ¼ λe�λx x > 0

0 otherwise

(

Some sources write the exponential pdf in the form (1/β)e�x/β, so that β ¼ 1/λ. Graphs of several
exponential pdfs appear in Fig. 3.24.

The expected value of an exponentially distributed random variable X is

EðXÞ ¼
ð1
0

x � λe�λxdx

Obtaining this expected value requires integration by parts. The variance of X can be computed

using the shortcut formula Var(X) ¼ E(X2) � [E(X)]2; evaluating E(X2) uses integration by parts

twice in succession. In contrast, the exponential cdf is easily obtained by integrating the pdf. The

results of these integrations are as follows.

PROPOSITION

Let X be an exponential variable with parameter λ. Then the cdf of X is

0 1 2 3 4 5 6 7 8

f(x;λ)

2

1.5

1

.5

0 x

λ = 2

λ = 1
λ = .5

Fig. 3.24 Exponential

density curves
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F x; λð Þ ¼ 0 x � 0

1� e�λx x > 0

(

The mean and standard deviation of X are both equal to 1/λ.

Under the alternative parameterization, the exponential cdf becomes 1 � e�x/β for x > 0, and the

mean and standard deviation are both equal to β.

Example 3.23 The response time X at an on-line computer terminal (the elapsed time between the

end of a user’s inquiry and the beginning of the system’s response to that inquiry) has an exponential

distribution with expected response time equal to 5 s. Then E(X)¼ 1/λ¼ 5, so λ¼ .2. The probability

that the response time is at most 10 s is

P X � 10ð Þ ¼ F 10; 2ð Þ ¼ 1� e�ð:2Þð10Þ ¼ 1� e�2 ¼ 1� :135 ¼ :865

The probability that response time is between 5 and 10 s is

P 5 � X � 10ð Þ ¼ F 10; 2ð Þ � F 5; 2ð Þ ¼ 1� e�2
� �� 1� e�1

� � ¼ :233 ■

The exponential distribution is frequently used as a model for the distribution of times between the

occurrence of successive events, such as customers arriving at a service facility or calls coming in to a

call center. The reason for this is that the exponential distribution is closely related to the Poisson

distribution introduced in Chap. 2. We will explore this relationship fully in Sect. 7.5 (Poisson

Processes).

Another important application of the exponential distribution is to model the distribution of

component lifetimes. A partial reason for the popularity of such applications is the “memoryless”
property of the exponential distribution. Suppose component lifetime is exponentially distributed

with parameter λ. After putting the component into service, we leave for a period of t0 hours and then

return to find the component still working; what now is the probability that it lasts at least an

additional t hours? In symbols, we wish P(X � t + t0 | X � t0). By the definition of conditional

probability,

P X � tþ t0jX � t0ð Þ ¼ P X � tþ t0ð Þ \ X � t0ð Þ½ 	
P X � t0ð Þ

But the event X � t0 in the numerator is redundant, since both events can occur if and only if

X � t + t0. Therefore,

P X � tþ t0jX � t0ð Þ ¼ P X � tþ t0ð Þ
P X � t0ð Þ ¼ 1� F tþ t0; λð Þ

1� F t0; λð Þ ¼ e�λ tþt0ð Þ

e�λt0
¼ e�λt

This conditional probability is identical to the original probability P(X � t) that the component

lasted t hours. Thus the distribution of additional lifetime is exactly the same as the original

distribution of lifetime, so at each point in time the component shows no effect of wear. In other

words, the distribution of remaining lifetime is independent of current age (we wish that were true

of us!).

Although the memoryless property can be justified at least approximately in many applied

problems, in other situations components deteriorate with age or occasionally improve with age

(at least up to a certain point). More general lifetime models are then furnished by the gamma,
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Weibull, and lognormal distributions (the latter two are discussed in the next section). Lifetime

distributions are at the heart of reliability models, which we’ll consider in depth in Sect. 4.8.

3.4.2 The Gamma Distribution

To define the family of gamma distributions, which generalizes the exponential distribution, we first

need to introduce a function that plays an important role in many branches of mathematics.

DEFINITION

For α > 0, the gamma function Γ(α) is defined by

Γ αð Þ ¼
ð1
0

xα�1e�xdx

The most important properties of the gamma function are the following:

1. For any α > 1, Γ(α) ¼ (α � 1) � Γ(α � 1) (via integration by parts)

2. For any positive integer n, Γ(n) ¼ (n � 1)!

3. Γ 1
2

� � ¼ ffiffiffi
π

p

The following proposition will prove useful for several computations that follow.

PROPOSITION

For any α, β > 0, ð1
0

xα�1e�x=βdx ¼ βαΓ αð Þ ð3:5Þ

Proof Make the substitution u ¼ x/β, so that x ¼ βu and dx ¼ β du:ð1
0

xα�1e�x=βdx ¼
ð1
0

βuð Þα�1e�uβdu ¼ βα
ð1
0

uα�1e�udu ¼ βαΓ αð Þ

The last equality comes from the definition of the gamma function. ■

With the preceding proposition in mind, we make the following definition.

DEFINITION

A continuous random variable X is said to have a gamma distribution if the pdf of X is

f x; α, βð Þ ¼
1

βαΓ αð Þ x
α�1e�x=β x > 0

0 otherwise

8<: ð3:6Þ

where the parameters α and β satisfy α > 0, β > 0. When β ¼ 1, X is said to have a standard
gamma distribution, and its pdf may be denoted f(x; α).
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The exponential distribution results from taking α ¼ 1 and β ¼ 1/λ.
It’s clear that f(x; α, β) � 0 for all x; the previous proposition guarantees that this function

integrates to 1, as required. Figure 3.25a illustrates the graphs of the gamma pdf for several (α, β)
pairs, whereas Fig. 3.25b presents graphs of the standard gamma pdf. For the standard pdf, when

α � 1, f(x; α) is strictly decreasing as x increases; when α > 1, f(x; α) rises to a maximum and then

decreases. Because of this difference, α is referred to as a shape parameter. The parameter β in

Eq. (3.6) is called the scale parameter because values other than 1 either stretch or compress the pdf

in the x direction.

The mean and variance of a gamma random variable are

EðXÞ ¼ μ ¼ αβ VarðXÞ ¼ σ2 ¼ αβ2

These can be calculated directly from the gamma pdf using integration by parts, or by employing

properties of the gamma function along with Expression (3.5); see Exercise 83. Notice these are

consistent with the aforementioned mean and variance of the exponential distribution: with α¼ 1 and

β ¼ 1/λ we obtain E(X) ¼ 1(1/λ) ¼ 1/λ and Var(X) ¼ 1(1/λ)2 ¼ 1/λ2.
In the special case where the shape parameter α is a positive integer, n, the gamma distribution is

sometimes rewritten with the substitution λ ¼ 1/β, and the resulting pdf is

f x; n, 1=λð Þ ¼ λn

n� 1ð Þ! x
n�1e�λx, x > 0

This is often called an Erlang distribution, and it plays a central role in the study of Poisson

processes (again, see Sect. 7.5; notice that the n ¼ 1 case of the Erlang distribution is actually the

exponential pdf). In Chap. 4, it will be shown that the sum of n independent exponential rvs follows

this Erlang distribution.

When X is a standard gamma rv, the cdf of X, which for x > 0 is

G x; αð Þ ¼ P X � xð Þ ¼
ðx
0

1

Γ αð Þ y
α�1e�ydy ð3:7Þ

is called the incomplete gamma function. (In mathematics literature, the incomplete gamma

function sometimes refers to Eq. (3.7) without the denominator Γ(α) in the integrand.) In Appendix

Table A.4, we present a small tabulation of G(x; α) for α ¼ 1, 2, . . . , 10 and x ¼ 1, 2, . . . , 15.

1 2 3 4 51 2 3 4 5 6 7
0

0.5

1.0
 13

ba

x 0

0.5

1.0

x

f (x; a, b) f (x; a)

a = 1

a = 2, b =

a = 1, b = 1

a = 2, b = 2

a = 2, b = 1

a = .6

a = 2 a = 5 

Fig. 3.25 (a) Gamma density curves; (b) standard gamma density curves
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Table 3.2 at the end of this section provides the Matlab and R commands related to the gamma cdf,

which are illustrated in the following examples.

Example 3.27 Suppose the reaction time X (in seconds) of a randomly selected individual to a

certain stimulus has a standard gamma distribution with α ¼ 2. Since X is continuous,

P 3 � X � 5ð Þ ¼ P X � 5ð Þ�P X � 3ð Þ ¼ G 5; 2ð Þ�G 3; 2ð Þ
¼ :960�:801 ¼ :159

This probability can be obtained in Matlab with gamcdf(5,2,1)-gamcdf(3,2,1) and in R

with pgamma(5,2)-pgamma(3,2).

The probability that the reaction time is more than 4 s is

P X > 4ð Þ ¼ 1�P X � 4ð Þ ¼ 1�G 4; 2ð Þ ¼ 1�:908 ¼ :092 ■

The incomplete gamma function can also be used to compute probabilities involving gamma

distributions for any β > 0.

PROPOSITION

Let X have a gamma distribution with parameters α and β. Then for any x > 0, the cdf of X is

given by

P X � xð Þ ¼ G
x

β
; α

� �
,

the incomplete gamma function evaluated at x/β.

The proof is similar to that of Eq. (3.5).

Example 3.28 Suppose the survival time X in weeks of a randomly selected male mouse exposed to

240 rads of gamma radiation has, rather fittingly, a gamma distribution with α ¼ 8 and β ¼ 15. (Data

in Survival Distributions: Reliability Applications in the Biomedical Services, by A. J. Gross and

V. Clark, suggest α � 8.5 and β � 13.3.) The expected survival time is E(X) ¼ (8)(15) ¼ 120 weeks,

whereas SDðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8Þð15Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffi

1800
p ¼ 42:43 weeks. The probability that a mouse survives

between 60 and 120 weeks is

P 60 � X � 120ð Þ ¼ P X � 120ð Þ�P X � 60ð Þ
¼ G 120=15; 8ð Þ�G 60=15; 8ð Þ
¼ G 8; 8ð Þ�G 4; 8ð Þ ¼ :547�:051 ¼ :496

In Matlab, the command gamcdf(120,8,15)-gamcdf(60,8,15) yields the desired prob-

ability; the corresponding R code is pgamma(120,8,1/15)-pgamma(60,8,1/15).

The probability that a mouse survives at least 30 weeks is

P X � 30ð Þ ¼ 1�P X < 30ð Þ ¼ 1�P X � 30ð Þ ¼ 1�G 30=15; 8ð Þ ¼ :999 ■
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3.4.3 The Gamma MGF

The integral proposition earlier in this section makes it easy to determine the mean and variance of a

gamma rv. However, the moment generating function of the gamma distribution — and, as a special

case, of the exponential model — will prove critical in establishing some of the more advanced

properties of these distributions in Chap. 4.

Proposition

The moment generating function of a gamma random variable is

MXðtÞ ¼ 1

1� βtð Þα t < 1=β

Proof By definition, the mgf is

MXðtÞ ¼ E etX
� � ¼ ð1

0

etx
xα�1

Γ αð Þβα e
�x=βdx ¼ 1

Γ αð Þβα
ð1
0

xα�1e� �tþ1=βð Þxdx

Now use Expression (3.5): provided �t + 1/β > 0, i.e., t < 1/β,

1

Γ αð Þβα
ð1
0

xα�1e� �tþ1=βð Þxdx ¼ 1

Γ αð Þβα � Γ αð Þ 1

�tþ 1=β

� �α

¼ 1

1� βtð Þα ■

The exponential mgf can then be determined with the substitution α ¼ 1, β ¼ 1/λ:

MXðtÞ ¼ 1

1� 1=λð Þtð Þ1 ¼
λ

λ� t
t < λ

3.4.4 Gamma and Exponential Calculations with Software

Table 3.2 summarizes the syntax for gamma and exponential probability calculations in Matlab

and R, which follows the pattern of the other distributions. In a sense, the exponential commands are

redundant, since they are just a special case (α ¼ 1) of the gamma distribution.

Notice that Matlab and R parameterize the distributions differently: in Matlab, both the gamma

and exponential functions require β (that is, 1/λ) as the last input, whereas the R functions take as their

last input the “rate” parameter λ ¼ 1/β. So, for the gamma rv with parameters α ¼ 8 and β ¼ 15 from

Example 3.28, the probability P(X � 30) would be evaluated as gamcdf(30,8,15) in Matlab but

pgamma(30,8,1/15) in R. This inconsistency of gamma inputs can be remedied by using a name

assignment in the last argument in R; specifically, pgamma(30,8,scale¼15) will instruct R to

Table 3.2 Matlab and R code for gamma and exponential calculations

Gamma Exponential

Function: cdf cdf

Notation: G(x/β; α) F(x; λ) ¼ 1 � e�λx

Matlab: gamcdf(x, α, β) expcdf(x, 1/λ)

R: pgamma(x, α, 1/β) pexp(x, λ)
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use β ¼ 15 in its gamma probability calculation and produce the same answer as the previous

expressions. Interestingly, as of this writing the same option does not exist in the pexp function.

To graph gamma or exponential distributions, one can request their pdfs by replacing cdf with

pdf (in Matlab) or the leading letter p with d (in R). To find quantiles of either of these distributions,

the appropriate replacements are inv and q, respectively. For example, the 75th percentile of the

gamma distribution from Example 3.28 can be determined with gaminv(.75,8,15) in Matlab or

qgamma(.75,8,scale¼15) in R (both give 145.2665 weeks).

3.4.5 Exercises: Section 3.4 (71–83)

71. Let X ¼ the time between two successive arrivals at the drive-up window of a local bank. If

X has an exponential distribution with λ ¼ 1, compute the following:

(a) The expected time between two successive arrivals

(b) The standard deviation of the time between successive arrivals

(c) P(X � 4)

(d) P(2 � X � 5)

72. Let X denote the distance (m) that an animal moves from its birth site to the first territorial

vacancy it encounters. Suppose that for banner-tailed kangaroo rats, X has an exponential

distribution with parameter λ ¼ .01386 (as suggested in the article “Competition and Dispersal

from Multiple Nests,” Ecology, 1997: 873–883).

(a) What is the probability that the distance is at most 100 m? At most 200 m? Between

100 and 200 m?

(b) What is the probability that distance exceeds the mean distance by more than 2 standard

deviations?

(c) What is the value of the median distance?

73. In studies of anticancer drugs it was found that if mice are injected with cancer cells, the survival

time can be modeled with the exponential distribution. Without treatment the expected survival

time was 10 h. What is the probability that

(a) A randomly selected mouse will survive at least 8 h? At most 12 h? Between 8 and 12 h?

(b) The survival time of a mouse exceeds the mean value by more than 2 standard deviations?

More than 3 standard deviations?

74. Data collected at Toronto Pearson International Airport suggests that an exponential distribution

with mean value 2.725 h is a good model for rainfall duration (Urban Stormwater Management

Planning with Analytical Probabilistic Models, 2000, p.69).
(a) What is the probability that the duration of a particular rainfall event at this location is at

least 2 h? At most 3 h? Between 2 and 3 h?

(b) What is the probability that rainfall duration exceeds the mean value by more than

2 standard deviations? What is the probability that it is less than the mean value by more

than one standard deviation?

75. Evaluate the following:

(a) Γ(6)
(b) Γ(5/2)
(c) G(4; 5) (the incomplete gamma function)

(d) G(5; 4)

(e) G(0; 4)
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76. Let X have a standard gamma distribution with α ¼ 7. Evaluate the following:

(a) P(X � 5)

(b) P(X < 5)

(c) P(X > 8)

(d) P(3 � X � 8)

(e) P(3 < X < 8)

(f) P(X < 4 or X > 6)

77. Suppose that when a type of transistor is subjected to an accelerated life test, the lifetime

X (in weeks) has a gamma distribution with mean 24 weeks and standard deviation 12 weeks.

(a) What is the probability that a transistor will last between 12 and 24 weeks?

(b) What is the probability that a transistor will last at most 24 weeks? Is the median of the

lifetime distribution less than 24? Why or why not?

(c) What is the 99th percentile of the lifetime distribution?

(d) Suppose the test will actually be terminated after t weeks. What value of t is such that only

.5% of all transistors would still be operating at termination?

78. The two-parameter gamma distribution can be generalized by introducing a third parameter γ,
called a threshold or location parameter: replace x in Eq. (3.6) by x� γ and x� 0 by x� γ. This
amounts to shifting the density curves in Fig. 3.25 so that they begin their ascent or descent at γ
rather than 0. The article “Bivariate Flood Frequency Analysis with Historical Information

Based on Copulas” (J. of Hydrologic Engr., 2013: 1018–1030) employs this distribution to

model X ¼ 3-day flood volume (108 m3). Suppose that values of the parameters are α ¼ 12, β ¼
7, γ ¼ 40 (very close to estimates in the cited article based on past data).

(a) What are the mean value and standard deviation of X?

(b) What is the probability that flood volume is between 100 and 150?

(c) What is the probability that flood volume exceeds its mean value by more than one

standard deviation?

(d) What is the 95th percentile of the flood volume distribution?

79. If X has an exponential distribution with parameter λ, derive an expression for the (100p)th
percentile of the distribution. Then specialize to obtain the median.

80. A system consists of five identical components connected in series as shown:

1 2 3 4 5

As soon as one component fails, the entire system will fail. Suppose each component has a

lifetime that is exponentially distributed with λ¼ .01 and that components fail independently of

one another. Define events Ai¼ {ith component lasts at least t hours}, i¼ 1, . . ., 5, so that the Ais

are independent events. Let X ¼ the time at which the system fails—that is, the shortest

(minimum) lifetime among the five components.

(a) The event {X � t} is equivalent to what event involving A1, . . ., A5?

(b) Using the independence of the five Ais, compute P(X� t). Then obtain F(t)¼ P(X� t) and
the pdf of X. What type of distribution does X have?

(c) Suppose there are n components, each having exponential lifetime with parameter λ. What

type of distribution does X have?

81. Based on an analysis of sample data, the article “Pedestrians’ Crossing Behaviors and Safety at

Unmarked Roadways in China” (Accident Analysis and Prevention, 2011: 1927–1936) pro-
posed the pdf f(x) ¼ .15e�.15(x � 1) when x � 1 as a model for the distribution of X ¼ time (sec)

spent at the median line. This is an example of a shifted exponential distribution, i.e., an

exponential model beginning at an x-value other than 0.
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(a) What is the probability that waiting time is at most 5 s? More than 5 s?

(b) What is the probability that waiting time is between 2 and 5 s?

(c) What is the mean waiting time?

(d) What is the standard deviation of waiting times?

[Hint: For (c) and (d), you can either use integration or write X ¼ Y + 1, where Y has an

exponential distribution with parameter λ ¼ .15. Then, apply rescaling properties of mean

and standard deviation.]

82. The double exponential distribution has pdf

f ðxÞ ¼ :5λe�λ xj j for �1 < x < 1
The article “Microwave Observations of Daily Antarctic Sea-Ice Edge Expansion and Contri-

bution Rates” (IEEE Geosci. and Remote Sensing Letters, 2006: 54-58) states that “the

distribution of the daily sea-ice advance/retreat from each sensor is similar and is approximately

double exponential.” The standard deviation is given as 40.9 km.

(a) What is the mean of a random variable with pdf f(x)? [Hint: Draw a picture of the

density curve.]

(b) What is the value of the parameter λ when σX ¼ 40.9?

(c) What is the probability that the extent of daily sea-ice change is within 1 standard deviation

of the mean value?

83. (a) Find the mean and variance of the gamma distribution using integration and Expression

(3.5) to obtain E(X) and E(X2).

(b) Use the gamma mgf to find the mean and variance.

3.5 Other Continuous Distributions

The normal, gamma (including exponential), and uniform families of distributions provide a wide

variety of probability models for continuous variables, but there are many practical situations in

which no member of these families fits a set of observed data very well. Statisticians and other

investigators have developed other families of distributions that are often appropriate in practice.

3.5.1 The Weibull Distribution

The family of Weibull distributions was introduced by the Swedish physicist Waloddi Weibull in

1939; his 1951 article “A Statistical Distribution Function of Wide Applicability” (J. Appl. Mech., 18:
293–297) discusses a number of applications.

DEFINITION

A randomvariableX is said to have aWeibull distributionwith parametersα and β (α> 0, β> 0)

if the pdf of X is

f x; α, βð Þ ¼
α

βα
xα�1e� x=βð Þα x � 0

0 x < 0

8<: ð3:8Þ
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In some situations there are theoretical justifications for the appropriateness of the Weibull

distribution, but in many applications f(x; α, β) simply provides a good fit to observed data for

particular values of α and β. When α ¼ 1, the pdf reduces to the exponential distribution (with λ ¼
1/β), so the exponential distribution is a special case of both the gamma and Weibull distributions.

However, there are gamma distributions that are not Weibull distributions and vice versa, so one

family is not a subset of the other. Both α and β can be varied to obtain a number of different

distributional shapes, as illustrated in Fig. 3.26. Note that β is a scale parameter, so different values

stretch or compress the graph in the x-direction; α is referred to as a shape parameter. Integrating to

obtain E(X) and E(X2) yields

μ ¼ βΓ 1þ 1

α

� �
σ2 ¼ β2 Γ 1þ 2

α

� �
� Γ 1þ 1

α

� �� �2( )

The computation of μ and σ2 thus necessitate using the gamma function from Sect. 3.4. (The

moment generating function of the Weibull distribution is very complicated, and so we do not include

it here.) On the other hand, the integration
Ð x
0
f(y; α, β)dy is easily carried out to obtain the cdf of X:
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F x; α, βð Þ ¼ 0 x < 0

1� e� x=βð Þα x � 0

�
ð3:9Þ

Example 3.29 In recent years the Weibull distribution has been used to model engine emissions of

various pollutants. Let X denote the amount of NOx emission (g/gal) from a randomly selected four-

stroke engine of a certain type, and suppose that X has a Weibull distribution with α ¼ 2 and

β ¼ 10 (suggested by information in the article “Quantification of Variability and Uncertainty in

Lawn and Garden Equipment NOx and Total Hydrocarbon Emission Factors,” J. Air Waste Manag.
Assoc., 2002: 435–448). The corresponding density curve looks exactly like the one in Fig. 3.26 for

α¼ 2, β ¼ 1 except that now the values 50 and 100 replace 5 and 10 on the horizontal axis (because β
is a “scale parameter”). Then

P X � 10ð Þ ¼ F 10; 2, 10ð Þ ¼ 1� e� 10=10ð Þ2 ¼ 1� e�1 ¼ :632

Similarly, P(X � 25) ¼ .998, so the distribution is almost entirely concentrated on values between

0 g/gal and 25 g/gal. The value c which separates the 5% of all engines having the largest amounts of

NOx emissions from the remaining 95%, satisfies

:95 ¼ F c; 2, 10ð Þ ¼ 1� e� c=10ð Þ2

Isolating the exponential term on one side, taking logarithms, and solving the resulting equation

gives c � 17.3 g/gal as the 95th percentile of the emission distribution. ■
Frequently, in practical situations, a Weibull model may be reasonable except that the smallest

possible X value may be some value γ other than zero (Exercise 78 considered this for a gamma

model). The quantity γ can then be regarded as a third parameter of the distribution, which is what

Weibull did in his original work. For, say, γ ¼ 3, all curves in Fig. 3.26 would be shifted 3 units to the

right. This is equivalent to saying that X � γ has the pdf Eq. (3.8), so that the cdf of X is obtained by

replacing x in Eq. (3.9) by x � γ.

Example 3.30 An understanding of the volumetric properties of asphalt is important in designing

mixtures that will result in high-durability pavement. The article “Is a Normal Distribution the Most

Appropriate Statistical Distribution for Volumetric Properties in Asphalt Mixtures” (J. of Testing and
Evaluation, Sept. 2009: 1–11) used the analysis of some sample data to recommend that for a

particular mixture, X ¼ air void volume (%) be modeled with a three-parameter Weibull distribution.

Suppose the values of the parameters are γ ¼ 4, α¼ 1.3, and β ¼ .8, which are quite close to estimates

given in the article.

For x � 4, the cumulative distribution function is

F x; α, β, γð Þ ¼ F x; 1:3, :8, 4ð Þ ¼ 1� e� x�4ð Þ=:8½ 	1:3

The probability that the air void volume of a specimen is between 5% and 6% is

P 5 � X � 6ð Þ ¼ F 6; 1:3, :8, 4ð Þ � F 5; 1:3, :8, 4ð Þ ¼ e� 5�4ð Þ=:8½ 	1:3 � e� 6�4ð Þ=:8½ 	1:3

¼ :263� :037 ¼ :226

Figure 3.27 shows a graph of the correspondingWeibull density function, in which the shaded area

corresponds to the probability just calculated.
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3.5.2 The Lognormal Distribution

Lognormal distributions have been used extensively in engineering, medicine, and more recently,

finance.

DEFINITION

A nonnegative rv X is said to have a lognormal distribution if the rv Y ¼ ln(X) has a normal

distribution. The resulting pdf of a lognormal rv when ln(X) is normally distributed with

parameters μ and σ is

f x; μ; σð Þ ¼
1ffiffiffiffiffi
2π

p
σx
e� ln xð Þ�μ½ 	2= 2σ2ð Þ x � 0

0 x < 0

8<:
Be careful here: the parameters μ and σ are not the mean and standard deviation of X but of ln(X).

The mean and variance of a lognormal random variable can be shown to be

EðXÞ ¼ eμþσ2=2 VarðXÞ ¼ e2μþσ2 � eσ
2 � 1


 �
In Chap. 4, we will present a theoretical justification for this distribution in connection with the

Central Limit Theorem, but as with other distributions, the lognormal can be used as a model even in

the absence of such justification. Figure 3.28 illustrates graphs of the lognormal pdf; although a

normal curve is symmetric, a lognormal curve has a positive skew.

Because ln(X) has a normal distribution, the cdf of X can be expressed in terms of the cdf Φ(z) of a

standard normal rv Z. For x � 0,

F x; μ, σð Þ ¼ P X � xð Þ ¼ P ln Xð Þ � ln xð Þ½ 	 ¼ P
lnðXÞ � μ

σ
� lnðxÞ � μ

σ

� �
¼ P Z � lnðxÞ � μ

σ

� �
¼ Φ

lnðxÞ � μ

σ

� � ð3:10Þ

Differentiating F(x; μ, σ) with respect to x gives the pdf f(x; μ, σ) above.
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Fig. 3.27 Weibull density curve with threshold ¼ 4, shape ¼ 1.3, scale ¼ .8 ■
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Example 3.31 According to the article “Predictive Model for Pitting Corrosion in Buried Oil and

Gas Pipelines” (Corrosion, 2009: 332–342), the lognormal distribution has been reported as the best

option for describing the distribution of maximum pit depth data from cast iron pipes in soil. The

authors suggest that a lognormal distribution with μ¼ .353 and σ ¼ .754 is appropriate for maximum

pit depth (mm) of buried pipelines. For this distribution, the mean value and variance of pit depth are

EðXÞ ¼ e:353þð:754Þ2=2 ¼ e:6383 ¼ 1:893

VarðXÞ ¼ e2ð:353Þþð:754Þ2 � eð:754Þ
2 � 1


 �
¼ ð3:57697Þð:765645Þ ¼ 2:7387

The probability that maximum pit depth is between 1 and 2 mm is

P 1 � X � 2ð Þ ¼ P lnð1Þ � ln Xð Þ � ln 2ð Þð Þ ¼ P 0 � ln Xð Þ � :693ð Þ

¼ P
0� :353

:754

� �
� Z � :693� :353

:754

� �
¼ Φð:45Þ �Φ �:47ð Þ ¼ :354

This probability is illustrated in Fig. 3.29.

What value c is such that only 1% of all specimens have a maximum pit depth exceeding c? The
desired value satisfies
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:99 ¼ P X � cð Þ ¼ Φ
lnðcÞ � :353

:754

� �
Appendix Table A.3 indicates that z ¼ 2.33 is the 99th percentile of the standard normal

distribution, which implies that

lnðcÞ � :353

:754
¼ 2:33

Solving for c gives ln(c) ¼ 2.1098 and c ¼ 8.247. Thus 8.247 mm is the 99th percentile of the

maximum pit depth distribution. ■

As with the Weibull distribution, a third parameter γ can be introduced so that the distribution has

positive density for x > γ rather than for x > 0.

3.5.3 The Beta Distribution

All families of continuous distributions discussed so far except for the uniform distribution have

positive density over an infinite interval (although typically the density function decreases rapidly to

zero beyond a few standard deviations from the mean). The beta distribution provides positive density

only for X in an interval of finite length.

DEFINITION

A random variable X is said to have a beta distribution with parameters α, β (both positive), A,
and B if the pdf of X is

f x; α, β,A,Bð Þ ¼
1

B� A
� Γ αþ βð Þ
Γ αð Þ � Γ βð Þ

x� A

B� A

� �α�1 B� x

B� A

� �β�1

A � x � B

0 otherwise

8<:
The case A ¼ 0, B ¼ 1 gives the standard beta distribution.

Figure 3.30 illustrates several standard beta pdfs. Graphs of the general pdf are similar, except they

are shifted and then stretched or compressed to fit over [A, B]. Unless α and β are integers, integration

.8.6.4 1.2

1
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x

f(x; a, b )Fig. 3.30 Standard beta

density curves

3.5 Other Continuous Distributions 201



of the pdf to calculate probabilities is difficult, so either a table of the incomplete beta function or

software is generally used.

The standard beta distribution is commonly used to model variation in the proportion or percent-

age of a quantity occurring in different samples, such as the proportion of a 24-h day that an

individual is asleep or the proportion of a certain element in a chemical compound.

The mean and variance of X are

μ ¼ Aþ B� Að Þ � α

αþ β
σ2 ¼ B� Að Þ2αβ

αþ βð Þ2 αþ β þ 1ð Þ
The moment generating function of the beta distribution is too complicated to be useful.

Example 3.32 Project managers often use a method labeled PERT—for program evaluation and

review technique—to coordinate the various activities making up a large project. (One successful

application was in the construction of the Apollo spacecraft.) A standard assumption in PERT analysis

is that the time necessary to complete any particular activity once it has been started has a beta

distribution with A ¼ the optimistic time (if everything goes well) and B ¼ the pessimistic time

(if everything goes badly). Suppose that in constructing a single-family house, the time X (in days)

necessary for laying the foundation has a beta distribution with A ¼ 2, B ¼ 5, α ¼ 2, and β ¼ 3. Then

α/(α + β) ¼ .4, so E(X) ¼ 2 + (3)(.4) ¼ 3.2. For these values of α and β, the pdf of X is a simple

polynomial function. The probability that it takes at most 3 days to lay the foundation is

P X � 3ð Þ ¼
ð3
2

1

3
� 4!

1! � 2!
x� 2

3

� �
5� x

3

� �2

dx

¼ 4

27

ð3
2

x� 2ð Þ 5� xð Þ2dx ¼ 4

27
� 11
4

¼ 11

27
¼ :407 ■

Software, including Matlab and R, can be used to perform probability calculations for the Weibull,

lognormal, and beta distributions. Interested readers should consult the help menus in those packages.

3.5.4 Exercises: Section 3.5 (84–100)

84. The lifetime X (in hundreds of hours) of a type of transistor has a Weibull distribution with

parameters α ¼ 2 and β ¼ 3. Compute the following:

(a) E(X) and Var(X)

(b) P(X � 6)

(c) P(1.5 � X � 6)

(This Weibull distribution is suggested as a model for time in service in “On the Assess-

ment of Equipment Reliability: Trading Data Collection Costs for Precision,” J. Engrg.
Manuf., 1991: 105–109.)

85. The authors of the article “A Probabilistic Insulation Life Model for Combined Thermal-

Electrical Stresses” (IEEE Trans. Electr. Insul., 1985: 519–522) state that “the Weibull distri-

bution is widely used in statistical problems relating to aging of solid insulating materials

subjected to aging and stress.” They propose the use of the distribution as a model for time

(in hours) to failure of solid insulating specimens subjected to ac voltage. The values of the

parameters depend on the voltage and temperature; suppose α ¼ 2.5 and β ¼ 200 (values

suggested by data in the article).
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(a) What is the probability that a specimen’s lifetime is at most 250? Less than 250? More

than 300?

(b) What is the probability that a specimen’s lifetime is between 100 and 250?

(c) What value is such that exactly 50% of all specimens have lifetimes exceeding that value?

86. Let X ¼ the time (in 10�1 weeks) from shipment of a defective product until the customer

returns the product. Suppose that the minimum return time is γ ¼ 3.5 and that the excess X� 3.5

over the minimum has a Weibull distribution with parameters α ¼ 2 and β ¼ 1.5 (see the article

“Practical Applications of the Weibull Distribution,” Indust. Qual. Control, 1964: 71–78).

(a) What is the cdf of X?

(b) What are the expected return time and variance of return time? [Hint: First obtain both

E(X � 3.5) and Var(X � 3.5).]

(c) Compute P(X > 5).

(d) Compute P(5 � X � 8).

87. Let X have a Weibull distribution. Verify that μ ¼ βΓ(1 + 1/α). [Hint: In the integral for E(X),

make the change of variable y ¼ (x/β)α, so that x ¼ βy1/α.]
88. (a) In Exercise 84, what is the median lifetime of such tubes? [Hint: Use Expression (3.9).]

(b) In Exercise 86, what is the median return time?

(c) If X has a Weibull distribution with the cdf from Expression (3.9), obtain a general

expression for the (100p)th percentile of the distribution.

(d) In Exercise 86, the company wants to refuse to accept returns after t weeks. For what value

of t will only 10% of all returns be refused?

89. Let X denote the ultimate tensile strength (ksi) at �200� of a randomly selected steel specimen

of a certain type that exhibits “cold brittleness” at low temperatures. Suppose that X has a

Weibull distribution with α ¼ 20 and β ¼ 100.

(a) What is the probability that X is at most 105 ksi?

(b) If specimen after specimen is selected, what is the long-run proportion having strength

values between 100 and 105 ksi?

(c) What is the median of the strength distribution?

90. The article “On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design

Loads from the Environmental Contour Method” (Intl. J. of Offshore and Polar Engr., 2005:

132–140) proposes the Weibull distribution with α ¼ 1.817 and β ¼ .863 as a model for 1-h

significant wave height (m) at a certain site.

(a) What is the probability that wave height is at most .5 m?

(b) What is the probability that wave height exceeds its mean value by more than one standard

deviation?

(c) What is the median of the wave-height distribution?

(d) For 0 < p < 1, give a general expression for the 100pth percentile of the wave-height

distribution.

91. Nonpoint source loads are chemical masses that travel to the main stem of a river and its

tributaries in flows that are distributed over relatively long stream reaches, in contrast to those

that enter at well-defined and regulated points. The article “Assessing Uncertainty in Mass

Balance Calculation of River Nonpoint Source Loads” (J. of Envir. Engr., 2008: 247–258)

suggested that for a certain time period and location, nonpoint source load of total dissolved

solids could be modeled with a lognormal distribution having mean value 10,281 kg/day/km and

a coefficient of variation CV ¼ .40 (CV ¼ σX/μX).
(a) What are the mean value and standard deviation of ln(X)?
(b) What is the probability that X is at most 15,000 kg/day/km?
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(c) What is the probability that X exceeds its mean value, and why is this probability not .5?

(d) Is 17,000 the 95th percentile of the distribution?

92. The authors of the article “Study on the Life Distribution of Microdrills” (J. of Engr. Manufac-

ture, 2002: 301-305) suggested that a reasonable probability model for drill lifetime was a

lognormal distribution with μ ¼ 4.5 and σ ¼ .8.

(a) What are the mean value and standard deviation of lifetime?

(b) What is the probability that lifetime is at most 100?

(c) What is the probability that lifetime is at least 200? Greater than 200?

93. Use Equation (3.10) to write a formula for the median η of the lognormal distribution. What is the

median for the load distribution of Exercise 91?

94. As in the case of the Weibull distribution, the lognormal distribution can be modified by the

introduction of a third parameter γ such that the pdf is shifted to be positive only for x > γ. The
article cited in Exercise 46 suggested that a shifted lognormal distribution with shift ¼ 1.0, mean

value ¼ 2.16, and standard deviation ¼ 1.03 would be an appropriate model for the rv X ¼
maximum-to-average depth ratio of a corrosion defect in pressurized steel.

(a) What are the values of μ and σ for the proposed distribution?

(b) What is the probability that depth ratio exceeds 2?

(c) What is the median of the depth ratio distribution?

(d) What is the 99th percentile of the depth ratio distribution?

95. Sales delay is the elapsed time between the manufacture of a product and its sale. According to

the article “Warranty Claims Data Analysis Considering Sales Delay” (Quality and Reliability

Engr. Intl., 2013: 113–123), it is quite common for investigators to model sales delay using a

lognormal distribution. For a particular product, the cited article proposes this distribution with

parameter values μ ¼ 2.05 and σ2 ¼ .06 (here the unit for delay is months).

(a) What are the variance and standard deviation of delay time?

(b) What is the probability that delay time exceeds 12 months?

(c) What is the probability that delay time is within one standard deviation of its mean value?

(d) What is the median of the delay time distribution?

(e) What is the 99th percentile of the delay time distribution?

(f) Among 10 randomly selected such items, how many would you expect to have a delay time

exceeding 8 months?

96. The article “The Statistics of Phytotoxic Air Pollutants” (J. Roy. Statist Soc., 1989: 183–198)

suggests the lognormal distribution as a model for SO2 concentration above a forest. Suppose the

parameter values are μ ¼ 1.9 and σ ¼ .9.

(a) What are the mean value and standard deviation of concentration?

(b) What is the probability that concentration is at most 10? Between 5 and 10?

97. What condition on α and β is necessary for the standard beta pdf to be symmetric?

98. Suppose the proportion X of surface area in a randomly selected quadrat that is covered by a

certain plant has a standard beta distribution with α ¼ 5 and β ¼ 2.

(a) Compute E(X) and Var(X).
(b) Compute P(X � .2).

(c) Compute P(.2 � X � .4).

(d) What is the expected proportion of the sampling region not covered by the plant?

99. Let X have a standard beta density with parameters α and β.
(a) Verify the formula for E(X) given in the section.

(b) Compute E[(1� X)m]. If X represents the proportion of a substance consisting of a particular

ingredient, what is the expected proportion that does not consist of this ingredient?
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100. Stress is applied to a 20-in. steel bar that is clamped in a fixed position at each end. Let Y ¼ the

distance from the left end at which the bar snaps. Suppose Y/20 has a standard beta distribution

with E(Y ) ¼ 10 and VarðYÞ ¼ 100=7.

(a) What are the parameters of the relevant standard beta distribution?

(b) Compute P(8 � Y � 12).

(c) Compute the probability that the bar snaps more than 2 in. from where you expect it

to snap.

3.6 Probability Plots

An investigator will often have obtained a numerical sample consisting of n observations and wish to

know whether it is plausible that this sample came from a population distribution of some particular

type (e.g., from a normal distribution). For one thing, many formal procedures from statistical

inference (Chap. 5) are based on the assumption that the population distribution is of a specified

type. The use of such a procedure is inappropriate if the actual underlying probability distribution

differs greatly from the assumed type. Additionally, understanding the underlying distribution can

sometimes give insight into the physical mechanisms involved in generating the data. An effective

way to check a distributional assumption is to construct what is called a probability plot. The basis

for our construction is a comparison between percentiles of the sample data and the corresponding

percentiles of the assumed underlying distribution.

3.6.1 Sample Percentiles

The details involved in constructing probability plots differ a bit from source to source. Roughly

speaking, sample percentiles are defined in the same way that percentiles of a population distribution

are defined. The sample 50th percentile (i.e., the sample median) should separate the smallest 50% of

the sample from the largest 50%, the sample 90th percentile should be such that 90% of the sample

lies below that value and 10% lies above, and so on. Unfortunately, we run into problems when we

actually try to compute the sample percentiles for a particular sample of n observations. If, for

example, n ¼ 10, then we can split off 20% or 30% of the data, but there is no value that will split off

exactly 23% of these ten observations. To proceed further, we need an operational definition of

sample percentiles (this is one place where different people and different software packages do

slightly different things).

Statistical convention states that when n is odd, the sample median is the middle value in the

ordered list of sample observations, for example, the sixth-largest value when n¼ 11. This amounts to

regarding the middle observation as being half in the lower half of the data and half in the upper half.

Similarly, suppose n ¼ 10. Then if we call the third-smallest value the 25th percentile, we are

regarding that value as being half in the lower group (consisting of the two smallest observations) and

half in the upper group (the seven largest observations). This leads to the following general definition

of sample percentiles.
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DEFINITION

Order the n sample observations from smallest to largest. Then the ith-smallest observation in

the list is taken to be the sample [100(i � .5)/n]th percentile.

For example, if n ¼ 10, the percentages corresponding to the ordered sample observations are 100

(1� .5)/10¼ 5%, 100(2� .5)/10¼ 15%, 25%, . . ., and 100(10� .5)/10¼ 95%. That is, the smallest

observation is designated the sample 5th percentile, the next-smallest value the sample 15th percen-

tile, and so on. All other percentiles could then be determined by interpolation, e.g., the sample 10th

percentile would then be halfway between the 5th percentile (smallest sample observation) and the

15th percentile (second smallest observation) of the n ¼ 10 values. For the purposes of a probability

plot, such interpolation will not be necessary, because a probability plot will be based only on the

percentages 100(i � .5)/n corresponding to the n sample observations.

3.6.2 A Probability Plot

We now wish to determine whether our sample data could plausibly have come from some particular

population distribution (e.g., a normal distribution with μ ¼ 10 and σ ¼ 3). If the sample was actually

selected from the specified distribution, the sample percentiles (ordered sample observations) should

be reasonably close to the corresponding population distribution percentiles. That is, for i ¼ 1, 2, . . .,

n there should be reasonable agreement between the ith-smallest sample observation and the

theoretical [100(i � .5)/n]th percentile for the specified distribution. Consider the (sample percentile,

population percentile) pairs—that is, the pairs

ith smallest sample

observation
,

�
100 i� :5ð Þ=n�th percentile

of the population distribution

� �
for i ¼ 1, . . ., n. Each such pair can be plotted as a point on a two-dimensional coordinate system. If

the sample percentiles are close to the corresponding population distribution percentiles, the first

number in each pair will be roughly equal to the second number, and the plotted points will then fall

close to a 45� line. Substantial deviations of the plotted points from a 45� line suggest that the

assumed distribution might be wrong.

Example 3.33 The value of a physical constant is known to an experimenter. The experimenter

makes n = 10 independent measurements of this value using a measurement device and records the

resulting measurement errors (error = observed value� true value). These observations appear in the

accompanying table.

Percentage 5 15 25 35 45

Sample observation �1.91 �1.25 �.75 �.53 .20

z percentile �1.645 �1.037 �.675 �.385 �.126

Percentage 55 65 75 85 95

Sample observation .35 .72 .87 1.40 1.56

z percentile .126 .385 .675 1.037 1.645

Is it plausible that the random variable measurement error has a standard normal distribution? The

needed standard normal (z) percentiles are also displayed in the table and were determined as follows:
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the 5th percentile of the distribution under consideration, N(0,1), is given by Φ(z) = .05. From

software or Appendix Table A.3, the solution is roughly z = �1.645. The other nine population (z)

percentiles were found in a similar fashion.

Thus the points in the probability plot are (�1.91,�1.645), (�1.25,�1.037), . . ., and (1.56,1.645).

Figure 3.31 shows the resulting plot. Although the points deviate a bit from the 45� line, the

predominant impression is that this line fits the points reasonably well. The plot suggests that the

standard normal distribution is a realistic probability model for measurement error.

An investigator is typically not interested in knowing whether a completely specified probability

distribution, such as the normal distribution with μ ¼ 0 and σ ¼ 1 or the exponential distribution with

λ ¼ .1, is a plausible model for the population distribution from which the sample was selected.

Instead, the investigator will want to know whether some member of a family of probability

distributions specifies a plausible model—the family of normal distributions, the family of exponen-

tial distributions, the family of Weibull distributions, and so on. The values of the parameters of a

distribution are usually not specified at the outset. If the family of Weibull distributions is under

consideration as a model for lifetime data, the issue is whether there are any values of the parameters

α and β for which the corresponding Weibull distribution gives a good fit to the data. Fortunately, it is

almost always the case that just one probability plot will suffice for assessing the plausibility of an

entire family. If the plot deviates substantially from a straight line, but not necessarily the 45� line, no
member of the family is plausible.

To see why, let’s focus on a plot for checking normality. As mentioned earlier, such a plot can be

very useful in applied work because many formal statistical procedures are appropriate (i.e., give

accurate inferences) only when the population distribution is at least approximately normal. These

procedures should generally not be used if a normal probability plot shows a very pronounced

departure from linearity. The key to constructing an omnibus normal probability plot is the relation-

ship between standard normal (z) percentiles and those for any other normal distribution, which was

presented in Sect. 3.3:

percentile for a

N μ; σð Þ distribution ¼ μþ σ � corresponding z percentileð Þ
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Fig. 3.31 Plots of pairs (observed value, z percentile) for the data of Example 3.33 ■
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If each sample observation were exactly equal to the corresponding N(μ, σ) percentile, then the

pairs (observation, μ + σ � [z percentile]) would fall on the 45� line, y = x. But since μ + σz is itself a
linear function, the pairs (observation, z percentile) would also fall on a straight line, just not the line
with slope 1 and y-intercept 0. (The latter pairs would pass through the line z = x/σ � μ/σ, but the
equation itself isn’t important.)

DEFINITION

A plot of the n pairs

(ith-smallest observation, [100(i � .5)/n]th z percentile)

on a two-dimensional coordinate system is called a normal probability plot. If the sample

observations are in fact drawn from a normal distribution then the points should fall close to a

straight line (although not necessarily a 45� line). Thus a plot for which the points fall close to

some straight line suggests that the assumption of a normal population distribution is plausible.

Example 3.34 The accompanying sample consisting of n¼ 20 observations on dielectric breakdown

voltage of a piece of epoxy resin appeared in the article “Maximum Likelihood Estimation in the

3-Parameter Weibull Distribution” (IEEE Trans. Dielectrics Electr. Insul., 1996: 43–55). Values of
(i � .5)/n for which z percentiles are needed are (1 � .5)/20 ¼ .025, (2 � .5)/20¼ .075, . . ., and .975.

Observation 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

z percentile �1.96 �1.44 �1.15 �.93 �.76 �.60 �.45 �.32 �.19 �.06

Observation 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

z percentile .06 .19 .32 .45 .60 .76 .93 1.15 1.44 1.96

Figure 3.32 shows the resulting normal probability plot. The pattern in the plot is quite straight,

indicating it is plausible that the population distribution of dielectric breakdown voltage is normal.

27262524 28 29 30 31
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1

2

0

Voltage

z percentile

Fig. 3.32 Normal probability plot for the dielectric breakdown voltage sample ■
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There is an alternative version of a normal probability plot in which the z percentile axis is

replaced by a nonlinear probability axis. The scaling on this axis is constructed so that plotted points

should again fall close to a line when the sampled distribution is normal. Figure 3.33 shows such a

plot from Matlab, obtained using the normplot command, for the breakdown voltage data of

Example 3.34. The plot remains essentially the same, and it is just the labeling of the axis that

changes.

3.6.3 Departures from Normality

A nonnormal population distribution can often be placed in one of the following three categories:

1. It is symmetric and has “lighter tails” than does a normal distribution; that is, the density curve

declines more rapidly out in the tails than does a normal curve.

2. It is symmetric and heavy-tailed compared to a normal distribution.

3. It is skewed; that is, the distribution is not symmetric, but rather tapers off more in one direction

than the other.

A uniform distribution is light-tailed, since its density function drops to zero outside a finite

interval. The density function f(x)¼ 1/[π(1 + x2)], for�1< x<1, is one example of a heavy-tailed

distribution, since 1/(1 + x2) declines much less rapidly than does e�x2=2. Lognormal and Weibull

distributions are among those that are skewed. When the points in a normal probability plot do not

adhere to a straight line, the pattern will frequently suggest that the population distribution is in a

particular one of these three categories.

Figure 3.34 illustrates typical normal probability plots corresponding to three situations above.

If the sample was selected from a light-tailed distribution, the largest and smallest observations are
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usually not as extreme as would be expected from a normal random sample. Visualize a straight line

drawn through the middle part of the plot; points on the far right tend to be above the line (z percentile

> observed value), whereas points on the left end of the plot tend to fall below the straight line

(z percentile< observed value). The result is an S-shaped pattern of the type pictured in Fig. 3.34a. For

sample observations from a heavy-tailed distribution, the opposite effect will occur, and a normal

probability plot will have an S shape with the opposite orientation, as in Fig. 3.34b. If the underlying

distribution is positively skewed (a short left tail and a long right tail), the smallest sample

observations will be larger than expected from a normal sample and so will the largest observations.

In this case, points on both ends of the plot will fall below a straight line through the middle part,

yielding a curved pattern, as illustrated in Fig. 3.34c. For example, a sample from a lognormal

distribution will usually produce such a pattern; a plot of (ln(observation), z percentile) pairs should

then resemble a straight line.

Even when the population distribution is normal, the sample percentiles will not coincide exactly

with the theoretical percentiles because of sampling variability. How much can the points in the

probability plot deviate from a straight-line pattern before the assumption of population normality is

no longer plausible? This is not an easy question to answer. Generally speaking, a small sample from

a normal distribution is more likely to yield a plot with a nonlinear pattern than is a large sample.
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Fig. 3.34 Probability plots that suggest a non-normal distribution: (a) a plot consistent with a light-tailed distribution;
(b) a plot consistent with a heavy-tailed distribution; (c) a plot consistent with a (positively) skewed distribution
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The book Fitting Equations to Data by Daniel Cuthbert and Fred Wood presents the results of a

simulation study in which numerous samples of different sizes were selected from normal

distributions. The authors concluded that there is typically greater variation in the appearance of

the probability plot for sample sizes smaller than 30, and only for much larger sample sizes does a

linear pattern generally predominate. When a plot is based on a small sample size, only a very

substantial departure from linearity should be taken as conclusive evidence of nonnormality. A

similar comment applies to probability plots for checking the plausibility of other types of

distributions.

3.6.4 Beyond Normality

Consider a generic family of probability distributions involving two parameters, θ1 and θ2, and let

F(x; θ1, θ2) denote the corresponding cdf. The family of normal distributions is one such family, with

θ1 ¼ μ, θ2 ¼ σ, and F(x; μ, σ) ¼ Φ[(x � μ)/σ]. Another example is the Weibull family, with θ1 ¼ α,
θ2 ¼ β, and

F x; α, βð Þ ¼ 1� e� x=βð Þα

Still another family of this type is the gamma family, for which the cdf is an integral involving the

incomplete gamma function that cannot be expressed in any simpler form.

The parameters θ1 and θ2 are said to be location and scale parameters, respectively, if F(x; θ1, θ2)
is a function of (x � θ1)/θ2. The parameters μ and σ of the normal family are location and scale

parameters, respectively. Changing μ shifts the location of the bell-shaped density curve to the right

or left, and changing σ amounts to stretching or compressing the measurement scale (the scale on the

horizontal axis when the density function is graphed). Another example is given by the cdf

F x; θ1, θ2ð Þ ¼ 1� e�e x�θ1ð Þ=θ2 �1 < x < 1
A random variable with this cdf is said to have an extreme value distribution. It is used in

applications involving component lifetime and material strength.

The parameter β of the Weibull distribution is a scale parameter. However, α is not a location

parameter but instead is called a shape parameter. The same is true for the parameters α and β of the
gamma distribution. In the usual form, the density function for any member of either the gamma or

Weibull distribution is positive for x > 0 and zero otherwise. A location (or shift) parameter can be

introduced as a third parameter γ (we did this for the Weibull distribution in Sect. 3.5) to shift the

density function so that it is positive if x > γ and zero otherwise.

When the family under consideration has only location and scale parameters, the issue of whether

any member of the family is a plausible population distribution can be addressed by a single

probability plot. This is exactly what we did to obtain an omnibus normal probability plot. One

first obtains the percentiles of the standardized distribution, i.e. the one with θ1 ¼ 0 and θ2 ¼ 1, for

percentages 100(i � .5)/n (i ¼ 1, . . ., n). The n (observation, standardized percentile) pairs give the

points in the plot.

Somewhat surprisingly, this methodology can be applied to yield an omnibus Weibull probability

plot. The key result is that if X has a Weibull distribution with shape parameter α and scale parameter

β, then the transformed variable ln(X) has an extreme value distribution with location parameter θ1 ¼
ln(β) and scale parameter θ2 ¼ 1/α (see Exercise 169). Thus a plot of the
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ln observationð Þ, extreme value standardized percentileð Þ
pairs that shows a strong linear pattern provides support for choosing the Weibull distribution as a

population model.

Example 3.35 The accompanying observations are on lifetime (in hours) of power apparatus

insulation when thermal and electrical stress acceleration were fixed at particular values (“On the

Estimation of Life of Power Apparatus Insulation Under Combined Electrical and Thermal Stress,”

IEEE Trans. Electr. Insul., 1985: 70–78). A Weibull probability plot necessitates first computing the

5th, 15th, . . ., and 95th percentiles of the standard extreme value distribution. The (100p)th percentile

ηp satisfies

p ¼ F ηp; 0, 1
� � ¼ 1� e�eηp

from which ηp ¼ ln(�ln(1 � p)).

Observation 282 501 741 851 1072 1122 1202 1585 1905 2138

ln(Obs.) 5.64 6.22 6.61 6.75 6.98 7.02 7.09 7.37 7.55 7.67

Percentile �2.97 �1.82 �1.25 �.84 �.51 �.23 .05 .33 .64 1.10

The pairs (5.64, �2.97), (6.22, �1.82), . . ., (7.67, 1.10) are plotted as points in Fig. 3.35. The

straightness of the plot argues strongly for using the Weibull distribution as a model for insulation

life, a conclusion also reached by the author of the cited article.

The gamma distribution is an example of a family involving a shape parameter for which there is

no transformation into a distribution that depends only on location and scale parameters. Construction

of a probability plot necessitates first estimating the shape parameter from sample data (some general

methods for doing this are described in Chap. 5).

Sometimes an investigator wishes to know whether the transformed variable Xθ has a normal

distribution for some value of θ (by convention, θ ¼ 0 is identified with the logarithmic transforma-

tion, in which case X has a lognormal distribution). The book Graphical Methods for Data Analysis
by John Chambers et al. discusses this type of problem as well as other refinements of probability

plotting.

7.57.06.56.05.5

1
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−3
ln(x)
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Fig. 3.35 A Weibull probability plot of the insulation lifetime data ■
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3.6.5 Probability Plots in Matlab and R

Matlab, along with many statistical software packages (including R), have built-in probability

plotting commands that vitiate the need for manual calculation of percentiles from the assumed

population distribution. In Matlab, the normplot(x) command will produce a graph like the one

seen in Fig. 3.33, assuming the vector x contains the observed data. The R command qqnorm(x)

creates a similar graph, except that the axes are transposed (ordered observations on the vertical axis,

theoretical quantiles on the horizontal). Both Matlab and R have a package called probplot that,

with appropriate specifications of the inputs, can create probability plots for distributions besides

normal (e.g., Weibull, exponential, extreme value). Refer to the help documentation in those

languages for more information.

3.6.6 Exercises: Section 3.6 (101–111)

101. The accompanying normal probability plot was constructed from a sample of 30 readings on

tension for mesh screens behind the surface of video display tubes. Does it appear plausible that

the tension distribution is normal?

0

200 250 300 350

1

−1

−2

2

Tension

z percentile

102. A sample of 15 female collegiate golfers was selected and the clubhead velocity (km/h) while

swinging a driver was determined for each one, resulting in the following data (“Hip Rotational

Velocities during the Full Golf Swing,” J. of Sports Science and Medicine, 2009: 296-299):

69.0 69.7 72.7 80.3 81.0

85.0 86.0 86.3 86.7 87.7

89.3 90.7 91.0 92.5 93.0

The corresponding z percentiles are

�1.83 �1.28 �0.97 �0.73 �0.52

�0.34 �0.17 0.0 0.17 0.34

0.52 0.73 0.97 1.28 1.83

Construct a normal probability plot. Is it plausible that the population distribution is normal?

103. Construct a normal probability plot for the following sample of observations on coating

thickness for low-viscosity paint (“Achieving a Target Value for a Manufacturing Process:

A Case Study,” J. Qual. Tech., 1992: 22–26). Would you feel comfortable estimating population

mean thickness using a method that assumed a normal population distribution?
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.83 .88 .88 1.04 1.09 1.12 1.29 1.31

1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

104. The article “A Probabilistic Model of Fracture in Concrete and Size Effects on Fracture

Toughness” (Mag. Concrete Res., 1996: 311–320) gives arguments for why fracture toughness

in concrete specimens should have a Weibull distribution and presents several histograms of

data that appear well fit by superimposed Weibull curves. Consider the following sample of size

n ¼ 18 observations on toughness for high-strength concrete (consistent with one of the

histograms); values of pi ¼ (i � .5)/18 are also given.

Observation .47 .58 .65 .69 .72 .74

pi .0278 .0833 .1389 .1944 .2500 .3056

Observation .77 .79 .80 .81 .82 .84

pi .3611 .4167 .4722 .5278 .5833 .6389

Observation .86 .89 .91 .95 1.01 1.04

pi .6944 .7500 .8056 .8611 .9167 .9722

Construct a Weibull probability plot and comment.

105. The propagation of fatigue cracks in various aircraft parts has been the subject of extensive

study. The accompanying data consists of propagation lives (flight hours/104) to reach a given

crack size in fastener holes for use in military aircraft (“Statistical Crack Propagation in Fastener

Holes Under Spectrum Loading,” J. Aircraft, 1983: 1028-1032):

.736 .863 .865 .913 .915 .937 .983 1.007

1.011 1.064 1.109 1.132 1.140 1.153 1.253 1.394

Construct a normal probability plot for this data. Does it appear plausible that propagation life

has a normal distribution? Explain.

106. The article “The Load-Life Relationship for M50 Bearings with Silicon Nitride Ceramic Balls”

(Lubricat. Engrg., 1984: 153–159) reports the accompanying data on bearing load life (million

revs.) for bearings tested at a 6.45 kN load.

47.1 68.1 68.1 90.8 103.6 106.0 115.0

126.0 146.6 229.0 240.0 240.0 278.0 278.0

289.0 289.0 367.0 385.9 392.0 505.0

(a) Construct a normal probability plot. Is normality plausible?

(b) Construct a Weibull probability plot. Is the Weibull distribution family plausible?

107. The accompanying data on rainfall (acre-feet) from 26 seed clouds is taken from the article “A

Bayesian Analysis of a Multiplicative Treatment Effect in Weather Modification”

(Technometrics, 1975: 161-166). Construct a probability plot that will allow you to assess the

plausibility of the lognormal distribution as a model for the rainfall data, and comment on what

you find.

4.1 7.7 17.5 31.4 32.7 40.6 92.4

115.3 118.3 119.0 129.6 198.6 200.7 242.5

255.0 274.7 274.7 302.8 334.1 430.0 489.1

703.4 978.0 1656.0 1697.8 2745.6
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108. The accompanying observations are precipitation values during March over a 30-year period in

Minneapolis–St. Paul.

.77 1.20 3.00 1.62 2.81 2.48

1.74 .47 3.09 1.31 1.87 .96

.81 1.43 1.51 .32 1.18 1.89

1.20 3.37 2.10 .59 1.35 .90

1.95 2.20 .52 .81 4.75 2.05

(a) Construct and interpret a normal probability plot for this data set.

(b) Calculate the square root of each value and then construct a normal probability plot based

on this transformed data. Does it seem plausible that the square root of precipitation is

normally distributed?

(c) Repeat part (b) after transforming by cube roots.

109. Allowable mechanical properties for structural design of metallic aerospace vehicles requires an

approval method for statistically analyzing empirical test data. The article “Establishing

Mechanical Property Allowables for Metals” (J. of Testing and Evaluation, 1998: 293-299)
used the accompanying data on tensile ultimate strength (ksi) as a basis for addressing the

difficulties in developing such a method.

122.2 124.2 124.3 125.6 126.3 126.5 126.5 127.2 127.3

127.5 127.9 128.6 128.8 129.0 129.2 129.4 129.6 130.2

130.4 130.8 131.3 131.4 131.4 131.5 131.6 131.6 131.8

131.8 132.3 132.4 132.4 132.5 132.5 132.5 132.5 132.6

132.7 132.9 133.0 133.1 133.1 133.1 133.1 133.2 133.2

133.2 133.3 133.3 133.5 133.5 133.5 133.8 133.9 134.0

134.0 134.0 134.0 134.1 134.2 134.3 134.4 134.4 134.6

134.7 134.7 134.7 134.8 134.8 134.8 134.9 134.9 135.2

135.2 135.2 135.3 135.3 135.4 135.5 135.5 135.6 135.6

135.7 135.8 135.8 135.8 135.8 135.8 135.9 135.9 135.9

135.9 136.0 136.0 136.1 136.2 136.2 136.3 136.4 136.4

136.6 136.8 136.9 136.9 137.0 137.1 137.2 137.6 137.6

137.8 137.8 137.8 137.9 137.9 138.2 138.2 138.3 138.3

138.4 138.4 138.4 138.5 138.5 138.6 138.7 138.7 139.0

139.1 139.5 139.6 139.8 139.8 140.0 140.0 140.7 140.7

140.9 140.9 141.2 141.4 141.5 141.6 142.9 143.4 143.5

143.6 143.8 143.8 143.9 144.1 144.5 144.5 147.7 147.7

Use software to construct a normal probability plot of this data, and comment.

110. Let the ordered sample observations be denoted by y1, y2, . . ., yn (y1 being the smallest and yn the

largest). Our suggested check for normality is to plot the (yi, Φ�1[(i � .5)/n]) pairs. Suppose we
believe that the observations come from a distribution with mean 0, and let w1, . . ., wn be the

ordered absolute values of the observed data. A half-normal plot is a probability plot of the

wis. More specifically, since P(|Z| � w) ¼ P(�w � Z � w) ¼ 2Φ(w)� 1, a half-normal plot is a

plot of the (wi,Φ�1[(pi + 1)/2]) pairs, where pi¼ (i� .5)/n. The virtue of this plot is that small or

large outliers in the original sample will now appear only at the upper end of the plot rather than

at both ends. Construct a half-normal plot for the following sample of measurement errors, and

comment:

�3.78, �1.27, 1.44, �.39, 12.38, �43.40, 1.15, �3.96, �2.34, 30.84.
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111. The following failure time observations (1000s of hours) resulted from accelerated life testing

of 16 integrated circuit chips of a certain type:

82.8 11.6 359.5 502.5 307.8 179.7

242.0 26.5 244.8 304.3 379.1 212.6

229.9 558.9 366.7 203.6

Use the corresponding percentiles of the exponential distribution with λ ¼ 1 to construct a

probability plot. Then explain why the plot assesses the plausibility of the sample having been

generated from any exponential distribution.

3.7 Transformations of a Random Variable

Often we need to deal with a transformation Y ¼ g(X) of the random variable X. Here g(X) could be a
simple change of time scale. If X is the time to complete a task in minutes, then Y ¼ 60X is the

completion time expressed in seconds. How can we get the pdf of Y from the pdf of X? Consider first a

simple example.

Example 3.36 The interval X in minutes between calls to a 911 center is exponentially distributed

with mean 2 min, so its pdf is fX(x) ¼ .5e�.5x for x > 0. In order to get the pdf of Y ¼ 60X, we first
obtain its cdf:

FYðyÞ ¼ P Y � yð Þ ¼ P 60X � yð Þ ¼ P X � y=60ð Þ ¼ FX y=60ð Þ

¼
ð y=60

0

:5e�:5xdx ¼ 1� e�y=120

Differentiating this with respect to y gives fY(y) ¼ (1/120)e�y/120 for y > 0. We see that the

distribution of Y is exponential with mean 120 s (2 min).

There is nothing special here about the mean 2 and the multiplier 60. It should be clear that if we

multiply an exponential random variable with mean μ by a positive constant c we get another

exponential random variable with mean cμ. ■

Sometimes it isn’t possible to evaluate the cdf in closed form. Could we still find the pdf of

Y without evaluating the integral? Yes, thanks to the following theorem.

TRANSFORMATION THEOREM

Let X have pdf fX(x) and let Y¼ g(X), where g is monotonic (either strictly increasing or strictly

decreasing) on the set of all possible values of X, so it has an inverse function X¼ h(Y ). Assume

that h has a derivative h0(y). Then

f YðyÞ ¼ f X hðyÞð Þ � h
0ðyÞ�� �� ð3:11Þ

Proof Here is the proof assuming that g is monotonically increasing. The proof for g monotonically

decreasing is similar. First find the cdf of Y:
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FYðyÞ ¼ P Y � yð Þ ¼ P gðXÞ � yð Þ ¼ P X � hðyÞð Þ ¼ FX hðyÞð Þ
The third equality above, wherein g(X) � y is true iff X � g�1(y) ¼ h(y), relies on g being a

monotonically increasing function. Now differentiate the cdf with respect to y, using the Chain Rule:

f YðyÞ ¼
d

dy
FYðyÞ ¼ d

dy
FX hðyÞð Þ ¼ F

0
X hðyÞð Þ � h0 ðyÞ ¼ f X hðyÞð Þ � h0 ðyÞ

The absolute value on the derivative in Eq. (3.11) is needed only in the other case where g is

decreasing. The set of possible values for Y is obtained by applying g to the set of possible values

for X. ■

Example 3.37 Let’s apply the Transformation Theorem to the situation introduced in Example 3.36.

There Y ¼ g(X) ¼ 60X and X ¼ h(Y ) ¼ Y/60.

f YðyÞ ¼ f X hðyÞð Þ h0 ðyÞ�� �� ¼ :5e�:5x 1

60

���� ���� ¼ 1

120
e�y=120 y > 0

This matches the pdf of Y derived through the cdf in Example 3.36. ■

Example 3.38 Let X � Unif[0, 1], so fX(x) ¼ 1 for 0 � x � 1, and define a new variable Y ¼ 2
ffiffiffiffi
X

p
.

The function g(x) ¼ 2
ffiffiffi
x

p
is monotone on [0, 1], with inverse x ¼ h(y) ¼ y2/4. Apply the

Transformation Theorem:

f YðyÞ ¼ f X hðyÞð Þ h0 ðyÞ�� �� ¼ ð1Þ 2y
4

���� ���� ¼ y

2
0 � y � 2

The range 0 � y � 2 comes from the fact that y ¼ 2
ffiffiffi
x

p
maps [0, 1] to [0, 2]. A graphical

representation may help in understanding why the transformation Y ¼ 2
ffiffiffiffi
X

p
yields fY(y) ¼ y/2 if

X � Unif[0, 1]. Figure 3.36a shows the uniform distribution with [0, 1] partitioned into ten

subintervals. In Fig. 3.36b the endpoints of these intervals are shown after transforming according

to y¼2
ffiffiffi
x

p
. The heights of the rectangles are arranged so each rectangle still has area .1, and therefore

the probability in each interval is preserved. Notice the close fit of the dashed line, which has the

equation fY(y) ¼ y/2.
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Fig. 3.36 The effect on the pdf if X is uniform on [0, 1] and Y ¼ 2
ffiffiffiffi
X

p
■
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Example 3.39 The variation in a certain electrical current source X (in milliamps) can be modeled by

the pdf

f XðxÞ ¼
1:25� :25x 2 � x � 4

0 otherwise

(

If this current passes through a 220-Ω resistor, the resulting power Y (in microwatts) is given by the

expression Y ¼ 220X2. The function y ¼ g(x) ¼ 220x2 is monotonically increasing on the range of X,

the interval [2, 4], and has inverse function x ¼ hðyÞ ¼ g�1ðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
. (Notice that g(x) is a

parabola and thus not monotone on the entire real number line, but for the purposes of the theorem

g(x) only needs to be monotone on the range of the rv X.) Apply Eq. (3.11):

f YðyÞ ¼ f X hðyÞð Þ � h
0 ðyÞ�� ��

¼ f X
ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
 �
� d

dy

ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p���� ����
¼ 1:25� :25

ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
 �
� 1

2
ffiffiffiffiffiffiffiffiffiffi
220y

p ¼ 5

8
ffiffiffiffiffiffiffiffiffiffi
220y

p � 1

1760

The set of possible Y-values is determined by substituting x ¼ 2 and x ¼ 4 into g(x) ¼ 220x2; the

resulting range for Y is [880, 3520]. Therefore, the pdf of Y ¼ 220X2 is

f YðyÞ ¼
5

8
ffiffiffiffiffiffiffiffiffiffi
220y

p � 1

1760
880 � y � 3520

0 otherwise

8<:
The pdfs of X and Y appear in Fig. 3.37.

The Transformation Theorem requires a monotonic transformation, but there are important

applications in which the transformation is not monotone. Nevertheless, it may be possible to use

the theorem anyway with a little trickery.
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Fig. 3.37 pdfs from Example 3.39: (a) pdf of X; (b) pdf of Y ■
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Example 3.40 In this example, we start with a standard normal random variable Z, and we transform

to Y ¼ Z2. Of course, this is not monotonic over the interval for Z, (�1, 1). However, consider the

transformation U ¼ |Z|. Because Z has a symmetric distribution, the pdf of U is fU(u)¼ fZ(u) + fZ(�u)

¼ 2 fZ(u). (Don’t despair if this is not intuitively clear, because we’ll verify it shortly. For the time

being, assume it to be true.) Then Y ¼ Z2 ¼ |Z|2 ¼ U2, and the transformation in terms of U is

monotonic because its set of possible values is [0,1). Thus we can use the Transformation Theorem

with h(y) ¼ y1/2:

f YðyÞ ¼ f U hðyÞ½ 	 h
0 ðyÞ�� �� ¼ 2f X hðyÞ½ 	 h

0 ðyÞ�� ��
¼ 2ffiffiffiffiffi

2π
p e�:5 y1=2ð Þ2 1

2
y�1=2

���� ���� ¼ 1ffiffiffiffiffiffiffi
2πy

p e�y=2 y > 0

This distribution is known as the chi-squared distribution with one degree of freedom. Chi-squared
distributions arise frequently in statistical inference procedures, such as those in Chap. 5.

You were asked to believe intuitively that fU(u) ¼ 2fZ(u). Here is a little derivation that works as

long as the distribution of Z is symmetric about 0. If u > 0,

FUðuÞ ¼ P U � uð Þ ¼ P Zj j � uð Þ ¼ P �u � Z � uð Þ ¼ 2P 0 � Z � uð Þ
¼ 2 FZðuÞ�FZð0Þ½ 	:

Differentiating this with respect to u gives fU(u) ¼ 2 fZ(u). ■

Example 3.41 Sometimes the Transformation Theorem cannot be used at all, and you need to use the

cdf. Let fX(x) ¼ (x + 1)/8, �1 � x � 3, and Y ¼ X2. The transformation is not monotonic on [�1, 3];

and, since fX(x) is not an even function, we can’t employ the symmetry trick of the previous example.

Possible values of Y are {y: 0 � y � 9}. Considering first 0 � y � 1,

FYðyÞ ¼ P Y � yð Þ ¼ P X2 � y
� � ¼ P � ffiffiffi

y
p � X � ffiffiffi

y
p� � ¼ ð ffiffiyp

� ffiffi
y

p
uþ 1

8
du ¼

ffiffiffi
y

p
4

Then, on the other subinterval, 1 < y � 9,

FYðyÞ ¼ P Y � yð Þ ¼ P X2 � y
� � ¼ P � ffiffiffi

y
p � X � ffiffiffi

y
p� � ¼ P �1 � X � ffiffiffi

y
p� �

¼
ð ffiffiyp

�1

uþ 1

8
du ¼ 1þ yþ 2

ffiffiffi
y

p� �
=16

Differentiating, we get

f YðyÞ ¼

1

8
ffiffiffi
y

p 0 < y � 1

yþ ffiffiffi
y

p
16y

1 < y � 9

0 otherwise

8>>>>><>>>>>:
Figure 3.38 shows the pdfs of both X and Y.
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3.7.1 Exercises: Section 3.7 (112–128)

112. Relative to the winning time, the time X of another runner in a ten kilometer race has pdf fX(x)¼
2/x3, x > 1. The reciprocal Y ¼ 1/X represents the ratio of the time for the winner divided by the

time of the other runner. Find the pdf of Y. Explain why Y also represents the speed of the other

runner relative to the winner.

113. Let X be the fuel efficiency in miles per gallon of an extremely inefficient vehicle (a military

tank, perhaps?), and suppose X has the pdf fX(x) ¼ 2x, 0 < x < 1. Determine the pdf of Y ¼ 1/X,

which is fuel efficiency in gallons per mile. [Note: The distribution of Y is a special case of the

Pareto distribution (see Exercise 10).]

114. Let X have the pdf fX(x) ¼ 2/x3, x > 1. Find the pdf of Y ¼ ffiffiffiffi
X

p
.

115. Let X have an exponential distribution with mean 2, so f XðxÞ ¼ 1
2
e�x=2, x > 0. Find the pdf of

Y ¼ ffiffiffiffi
X

p
. [Note: Suppose you choose a point in two dimensions randomly, with the horizontal

and vertical coordinates chosen independently from the standard normal distribution. Then

X has the distribution of the squared distance from the origin and Y has the distribution of the

distance from the origin. Y has a Rayleigh distribution (see Exercise 4).]

116. If X is distributed as N(μ, σ), find the pdf of Y ¼ eX. Verify that the distribution of Y matches the

lognormal pdf provided in Sect. 3.5.

117. If the side of a square X is random with the pdf fX(x) ¼ x/8, 0 < x < 4, and Y is the area of the

square, find the pdf of Y.
118. Let X � Unif[0, 1]. Find the pdf of Y ¼ �ln(X).

119. Let X � Unif[0, 1]. Find the pdf of Y ¼ tan[π(X � .5)]. [Note: The random variable Y has the

Cauchy distribution, named after the famous mathematician.]

120. If X � Unif[0, 1], find a linear transformation Y ¼ cX + d such that Y is uniformly distributed on

[A, B], where A and B are any two numbers such that A< B. Is there any other solution? Explain.

121. If X has the pdf fX(x) ¼ x/8, 0 < x < 4, find a transformation Y ¼ g(X) such that Y � Unif[0, 1].

[Hint: The target is to achieve fY(y) ¼ 1 for 0 � y � 1. The Transformation Theorem will allow

you to find h(y), from which g(x) can be obtained.]

122. If a measurement error X is uniformly distributed on [�1, 1], find the pdf of Y¼ |X|, which is the
magnitude of the measurement error.

123. If X � Unif[�1, 1], find the pdf of Y ¼ X2.
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Fig. 3.38 pdfs from Example 3.41: (a) pdf of X; (b) pdf of Y ■
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124. Ann is expected at 7:00 pm after an all-day drive. She may be as much as 1 h early or as much as

3 h late. Assuming that her arrival time X is uniformly distributed over that interval, find the pdf

of |X � 7|, the unsigned difference between her actual and predicted arrival times.

125. If X � Unif[�1, 3], find the pdf of Y ¼ X2.

126. If a measurement error X is distributed as N(0, 1), find the pdf of |X|, which is the magnitude of

the measurement error.

127. A circular target has radius 1 foot. Assume that you hit the target (we shall ignore misses) and

that the probability of hitting any region of the target is proportional to the region’s area. If you

hit the target at a distance Y from the center, then let X¼ πY2 be the corresponding circular area.
Show that

(a) X is uniformly distributed on [0, π]. [Hint: Show that FX(x) ¼ P(X � x) ¼ x/π.]
(b) Y has pdf fY(y) ¼ 2y, 0 < y < 1.

128. In Exercise 127 suppose instead that Y is uniformly distributed on [0, 1]. Find the pdf of

X ¼ πY2. Geometrically speaking, why should X have a pdf that is unbounded near 0?

3.8 Simulation of Continuous Random Variables

In Sects. 1.6 and 2.8, we discussed the need for simulation of random events and discrete random

variables in situations where an “analytic” solution is very difficult or simply not possible. This

section presents methods for simulating continuous random variables, including some of the built-in

simulation tools of Matlab and R.

3.8.1 The Inverse CDF Method

Section 2.8 introduced the inverse cdf method for simulating discrete random variables. The basic

idea was this: generate a Unif[0, 1) random number and align it with the cdf of the random variable

X we want to simulate. Then, determine which X value corresponds to that cdf value. We now extend

this methodology to the simulation of values from a continuous distribution; the heart of the algorithm

relies on the following theorem, often called the probability integral transform.

THEOREM

Consider any continuous distribution with pdf f and cdf F. Let U � Unif[0, 1), and define a

random variable X by

X ¼ F�1ðUÞ ð3:12Þ
Then the pdf of X is f.

Before proving this theorem, let’s consider its practical usage: Suppose we want to simulate a

continuous rv whose pdf is f(x), i.e., obtain successive values of X having pdf f(x). If we can compute

the corresponding cdf F(x) and apply its inverse F�1 to standard uniform variates u1, . . ., un, the

theorem states that the resulting values x1 ¼ F�1(u1), . . ., xn ¼ F�1(un) will follow the desired

distribution f. (We’ll discuss the practical difficulties of implementing this method a little later.)

A graphical description of the algorithm appears in Fig. 3.39.
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Proof Apply the Transformation Theorem (Sect. 3.7) with fU(u) ¼ 1 for 0 � u < 1, X ¼ g(U ) ¼
F�1(U ), and thus U ¼ h(X) ¼ g�1(X) ¼ F(X). The pdf of the transformed variable X is

f XðxÞ ¼ f U hðxÞð Þ � h
0 ðxÞ�� �� ¼ f U FðxÞð Þ � F

0 ðxÞ�� �� ¼ 1 � f ðxÞj j ¼ f ðxÞ

In the last step, the absolute values may be removed because a pdf is always nonnegative. ■

The following box explains the implementation of the inverse cdf method justified by the

preceding theorem.

INVERSE CDF METHOD

It is desired to simulate n values from a distribution with pdf f(x). Let F(x) be the corresponding

cdf. Repeat n times:

1. Use a random-number generator (RNG) to produce a value, u, from [0, 1).

2. Assign x ¼ F�1(u).

The resulting values x1, . . ., xn form a simulation of a random variable with the original pdf, f(x).

Example 3.42 Consider the electrical current distribution model of Example 3.11, where the pdf of

X is given by f(x) ¼ 1.25 � .25x for 2 � x � 4. Suppose a simulation of X is required as part of some

larger system analysis. To implement the above method, the inverse of the cdf of X is required. First,

compute the cdf:

FðxÞ ¼ P X � xð Þ ¼
ðx
2

f ðyÞdy

¼
ðx
2

1:25� :25yð Þdy ¼ �0:125x2 þ 1:25x� 2, 2 � x � 4

To find the probability integral transform Eq. (3.12), set u ¼ F(x) and solve for x:

u ¼ F xð Þ ¼ �0:125x2 þ 1:25x� 2 ) x ¼ F�1 uð Þ ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p

The equation above has been solved using the quadratic formula; care must be taken to select the

solution whose values lie in the interval [2, 4] (the other solution, x ¼ 5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p
, does not have

that feature). Beginning with the usual Unif[0, 1) RNG, the algorithm for simulating X is the

following: given a value u from the RNG, assign x ¼ 5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p
. Repeating this algorithm

n times gives n simulated values of X. Programs in Matlab and R that implement this algorithm

appear in Fig. 3.40; both return a vector, x, containing n ¼ 10,000 simulated values of the specified

distribution.

1

u1

u2

0

F(x)

F −1(u2) F −1(u1)
x

Fig. 3.39 The inverse cdf

method, illustrated
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As discussed in Chap. 1, both of these programs can be accelerated by “vectorizing” the operations

rather than using a for loop. In fact, a single line of code in either language can produce the desired result:

in Matlab: x¼5-sqrt(9-8*rand(10000,1))

in R: x<-5-sqrt(9-8*runif(10000))

The pdf of the rv X and a histogram of simulation results from R appear in Fig. 3.41.

Example 3.43 The lifetime of a certain type of drill bit has an exponential distribution with mean

100 h. An analysis of a large manufacturing process that uses these drill bits requires the simulation of

this lifetime distribution, which can be achieved through the inverse cdf method. From Sect. 3.4, the

cdf of this distribution is F(x) ¼ 1 � e�.01x, and so the inverse cdf is x ¼ F�1(u) ¼ �100ln(1 � u).
Applying this function to Unif[0, 1) random numbers will generate the desired simulation. (Don’t let

the negative sign at the front worry you: since 0 � u < 1, 1 � u lies between 0 and 1, and so its

logarithm is negative and the resulting value of x is actually positive.)

As a check, the code x¼-100*log(1-rand(10000,1)) was submitted to Matlab and the

resulting sample mean and sd were obtained using mean(x) and std(x). Exponentially distributed

rvs have standard deviation equal to the mean, so the theoretical answers are μ ¼ 100 and σ ¼ 100.

The Matlab simulation yielded x ¼ 99:3724 and s ¼ 100.8908, both of which are reasonably close to

100 and validate the inverse cdf formula.

In general, an exponential distribution with mean μ (equivalently, parameter λ ¼ 1/μ) can be

simulated using the transform x ¼ �μln(1 � u). ■

The preceding two examples illustrated the inverse cdf method for fairly simple density functions:

a linear polynomial and an exponential function. In practice, the algebraic complexity of f(x) can

x=zeros(10000,1);
for i=1:10000

u=rand; 
x(i)=5-sqrt(9-8*u);

end

x <- NULL
for (i in 1:10000){

u<-runif(1)
x[i]<-5-sqrt(9-8*u)

}

a b

Fig. 3.40 Simulation code for Example 3.42: (a) Matlab; (b) R
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Fig. 3.41 (a) Theoretical pdf and (b) R simulation results for Example 3.42 ■
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often be a barrier to implementing this simulation technique. After all, the algorithm requires that we

can (1) obtain the cdf F(x) in closed form and (2) find the inverse function of F in closed form.

Consider, for example, attempting to simulate values from the N(0, 1) distribution: its cdf is the

function denoted Φ(z) and given by the integral expression 1=
ffiffiffiffiffi
2π

p� � Ð z
�1 e�u2=2du. There is no

closed-form expression for this integral, let alone a method to solve u ¼ Φ(z) for z and implement

Eq. (3.12). (As a reminder, the lack of a closed-form expression forΦ(z) is the reason that software or
tables are always required for calculations involving normal probabilities.) Thankfully, most software

packages, including Matlab and R, have built-in tools to simulate normally distributed variates (using

a very clever algorithm called the Box-Muller method; see Sect. 4.6). We’ll discuss built-in simula-

tion tools at the end of this section.

As the next example illustrates, even when F(x) can be determined in closed form we cannot

necessarily implement the inverse cdf method, because F(x) cannot always be inverted. This

difficulty surfaces in practice when attempting to simulate values from a gamma distribution, for

instance.

Example 3.44 The measurement error X (in mV) of a particular volt-meter has the following

distribution: f(x) ¼ (4 � x2)/9 for �1 � x � 2 (and f(x) ¼ 0 otherwise). To use the inverse cdf

method to simulate X, begin by calculating its cdf:

F xð Þ ¼
ð x
�1

4� y2

9
dy ¼ �x3 þ 12xþ 11

27

To implement step 2 of the inverse cdf method requires solving F(x)¼ u for x; since F(x) is a cubic
polynomial, this is not a simple task. Advanced computer algebra systems can solve this equation,

though the general solution is unwieldy (and such a solution doesn’t exist at all for 5th-degree and

higher polynomials). Readers familiar with numerical analysis methods may recognize that, for any

specified numerical value of u, a root-finding algorithm (such as Newton–Raphson) can be

implemented to approximate the solution x. This latter method, however, is computationally inten-

sive, especially if it’s desirable to generate 10,000 or more simulated values of x. ■

The preceding example suggests that the inverse cdf method is insufficient for simulating all

continuous distributions in practice. We next consider an alternative algorithm that, while less

efficient, has a broader scope.

3.8.2 The Accept–Reject Method

When the inverse cdf method of simulation cannot be implemented, the accept–reject method

provides an alternative. The downside of the accept–reject method, as will be explained below, is

that only some of the random numbers generated by software will be used (“accepted”), while others

will be “rejected.” As a result, one needs to create more—sometimes, many more—random variates

than the desired number of simulated values.

Suppose we wish to simulate a random variable X, whose pdf is f(x). The key to the accept–reject

method is to begin with a different pdf, call it g(x), that satisfies two properties: (1) we can already

simulate values from g(x), so g is either algebraically simple or else built into our software package;

(2) the set of possible x-values for the distribution specified by g(x) equals (or exceeds) that of f(x).

For example, to simulate the distribution in Example 3.44, whose range of x-values is [�1, 2], one

might select for g(x) the uniform distribution on [�1, 2], i.e., g(x)¼ 1/3 for�1� x� 2. If X takes on

values across [0, 1), then an exponential pdf would be a logical choice for g(x).
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ACCEPT–REJECT METHOD

It is desired to simulate n values from a distribution with pdf f(x). Let g(x) be some other pdf

such that the ratio f/g is bounded, i.e., there exists a constant c such that f(x)/g(x) � c for all x.

(The constant c is sometimes called the majorization constant.) Proceed as follows:

1. Generate a variate, y, from the distribution g. This value y is called a candidate.

2. Generate a standard uniform variate, u.

3. If u � c � g(y) � f (y), then assign x ¼ y (i.e., “accept” the candidate). Otherwise, discard

(“reject”) y and return to step 1.

These steps are repeated until n candidate values have been accepted. The resulting accepted
values x1, . . ., xn form a simulation of a random variable with the original pdf, f(x).

A proof that the method works—i.e., that the resulting values really do simulate the target

distribution f(x)— requires material from Chap. 4 (see Exercise 22 at the end of Sect. 4.1).

Figure 3.42 illustrates the key step in this algorithm. A candidate y has been generated on the

common interval of the pdfs f and g. Given y, the left-hand side of the inequality in step 3, U � c � g(y),
is uniformly distributed on the interval from 0 to c � g(y) (since U itself is standard uniform). If it

happens that u � c � g(y) falls between 0 and f(y), i.e., lies underneath the target pdf f, then that y-value
is accepted as coming from f; otherwise, y is rejected.

As a corollary to proving the validity of the accept–reject method, it can also be shown that the

probability any particular candidate y is accepted equals 1/c. (The value of c must always exceed 1;

can you see why?) Since successive candidates are independent, it follows that the number of

candidates required to generate a single acceptable value has a geometric distribution, and the

expected number of candidates to generate one x from f(x) is 1/(1/c) ¼ c. By extension, the expected

number of candidates required to generate our simulation sample of size n is cn. Consequently, the
majorization constant c should always be made as small as possible, i.e., we should find the smallest

value c such that f(x)/g(x) � c for all x under consideration.

Example 3.45 (Example 3.44 continued) In order to simulate 10,000 values from f(x) ¼ (4 � x2)/9,

�1 � x � 2, we will rely on our ability to generate variates from g(x) ¼ 1/3 on �1 � x � 2,

the uniform pdf. To implement the accept–reject method, we must determine the majorization

constant, c, by looking at the ratio f/g:

f(x)

c.g(x)

c.g(y)

f (y)
Reject

Accept
0

y (candidate)

Fig. 3.42 The accept–

reject method
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f ðxÞ
gðxÞ ¼

4� x2ð Þ=9
1=3

¼ 4� x2

3
� 4� 02

3
¼ 4

3
for�1 � x � 2

The expression 4 � x2 represents a downward-facing parabola with vertex at x ¼ 0, so it is clearly

maximized at 0. We conclude that c ¼ 4/3 is the smallest possible majorization constant, and that is

what we shall use. To create the desired simulation, the following steps are repeated until 10,000

values are accepted in step 3.

1. Generate y from the uniform distribution on [�1, 2].

2. Generate u from the standard uniform RNG.

3. If u � 4
3
� 1
3
� 4� y2

9
, assign x ¼ y; otherwise, discard y and return to step 1.

Figure 3.43 shows the preceding algorithm implemented in Matlab and R. Both programs result in

a vector of 10,000 simulated values from the pdf f(x). Figure 3.44 shows f(x) alongside the simulated

values from Matlab. Since c ¼ 4/3, it’s expected to require 4/3(10,000) ¼ 13,333 iterations of the

while loop to create the desired simulation size; by adding a counter to the program, one run of the

Matlab code was found to use 13,303 candidates.

a b
x=zeros(10000,1);
i=0;
while i<10000

y=-1+3*rand;
u=rand; 
if u*4/3*1/3<=(4-y^2)/9

i=i+1;
x(i)=y;

end
end

x <- NULL
i <- 0
while (i<10000){

y <- -1+3*runif(1)
u <- runif(1)
if (u*4/3*1/3<=(4-y^2)/9){

i <- i+1
x[i] <- y

}
}

Fig. 3.43 Simulation code for Example 3.45: (a) Matlab; (b) R
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Fig. 3.44 pdf and histogram of simulated values for Example 3.45
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You may have noticed that step 3 may be simplified: the inequality u � (4 � y2)/4 would be

equivalent to the one presented. In fact, it is very common to see this final step of the accept–reject

algorithm written as “accept y iff u � f(y)/[c � g(y)].” ■

For more information on the accept–reject method and selection of a sensible “candidate”

distribution g(x) consult the text Simulation by Ross listed in the references.

3.8.3 Built-In Simulation Packages for Matlab and R

As was true for the most common discrete distributions, many software packages have built-in tools

for simulating values from the continuous models named in this chapter. Table 3.3 summarizes the

relevant functions in Matlab and R for the uniform, normal, gamma, and exponential distributions;

the variable n refers to the desired number of simulated values of the distribution. Both packages

include similar commands for the Weibull, lognormal, and beta distributions.

As was the case with the cdf commands discussed in Sect. 3.4, Matlab and R parameterize the

gamma and exponential distributions differently: Matlab always requires the “scale” parameter β ¼
1/λ, while R takes in the “rate” parameter λ ¼ 1/β. (In the gamma simulation command, this can be

overridden by naming the final argument scale, as in rgamma(n,α,scale ¼ β).) In R, the

command rnorm(n) will generate standard normal variates (i.e., with μ ¼ 0 and σ ¼ 1), but the

μ and σ arguments are required in Matlab. Similarly, R will generate standard uniform variates

(A ¼ 0 and B ¼ 1), the basis for many of our simulation methods, with the command runif(n).

Matlab’s corresponding syntax is rand(n,1); if you type rand(100) instead of rand(100,1),

you will receive a 100-by-100 matrix of Unif[0, 1) values.

3.8.4 Precision of Simulation Results

Sect. 2.8 discusses in detail the precision of estimates associated with simulating discrete random

variables. The same results apply in the continuous case. In particular, the estimated standard error in

using a sample proportion bp to estimate the true probability of an event is still
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp 1� bpð Þ=np

, where

n is the simulation size. Also, the estimated standard error in using a sample mean, x, to estimate the

true expected value μ of a (continuous) rv X is s=
ffiffiffi
n

p
, where s is the sample standard deviation of the

simulated values of X. Refer back to Sect. 2.8 for more details.

Table 3.3 Functions to simulate major continuous distributions in Matlab and R

Distribution Matlab code R code

Unif[A, B] unifrnd(A, B, n, 1) runif(n, A, B)

N(μ, σ) normrnd(μ, σ, n, 1) rnorm(n, μ, σ)

Gamma(α, β) gamrnd(α, β, n, 1) rgamma(n, α, 1/β)

Exponential(λ) exprnd(1/λ, n, 1) rexp(n, λ)
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3.8.5 Exercises: Section 3.8 (129–139)

129. The amount of time (hours) required to complete an unusually short statistics homework

assignment is modeled by the pdf f(x) ¼ x/2 for 0 < x < 2 (and ¼ 0 otherwise).

(a) Obtain the cdf and then its inverse.

(b) Write a program to simulate 10,000 values from this distribution.

(c) Compare the sample mean and standard deviation of your 10,000 simulated values to the

theoretical mean and sd of this distribution (which you can determine by calculating the

appropriate integrals).

130. The Weibull distribution was introduced in Sect. 3.5.

(a) Find the inverse cdf for the Weibull distribution.

(b) Write a program to simulate n values from a Weibull distribution. Your program should

have three inputs: the desired number of simulated values n and the two parameters α and β.
It should have a single output: an n 
 1 vector of simulated values.

(c) Use your program from part (b) to simulate 10,000 values from aWeibull(4, 6) distribution

and estimate the mean of this distribution. The correct value of the mean is 6Γ(5/4) �
5.438; how close is your sample mean?

131. Consider the pdf for the rv X ¼ magnitude (in newtons) of a dynamic load on a bridge, given in

Example 3.7:

f xð Þ ¼
1

8
þ 3

8
x 0 � x � 2

0 otherwise

8<:
Write a program to simulate values from this distribution using the inverse cdf method.

132. In distributed computing, any given task is split into smaller sub-tasks which are handled by

separate processors (which are then recombined by a multiplexer). Consider a distributed

computing system with 4 processors, and suppose for one particular purpose that pdf of

completion time for a particular sub-task (microseconds) on any one of the processors is

given by

f ðxÞ ¼
20

3x2
4 � x � 10

0 otherwise

8<:
That is, the sub-task completion times X1, X2, X3, X4 of the four processors each have the above

pdf.

(a) Write a program to simulate the above pdf using the inverse cdf method.

(b) The overall time to complete any task is the largest of the four sub-task completion times: if

we call this variable Y, then Y ¼ max(X1, X2, X3, X4). (We assume that the multiplexing

time is negligible). Use your program in part (a) to simulate 10,000 values of the rv Y.
Create a histogram of the simulated values of Y, and also use your simulation to estimate

both E(Y ) and SD(Y ).

133. Exercise 16 in Sect. 3.1 introduced the following model for wait times at street crossings:

f x; θ, τð Þ ¼
θ

τ
1� x=τð Þθ�1

0 � x < τ

0 otherwise

8<:
where θ > 0 and τ > 0 are the parameters of the model.
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(a) Write a function to simulate values from this distribution, implementing the inverse cdf

method. Your function should have three inputs: the desired number of simulated values

n and values for the two parameters for θ and τ.
(b) Use your function in part (a) to simulate 10,000 values from this wait time distribution with

θ ¼ 4 and τ ¼ 80. Estimate E(X) under these parameter settings. How close is your estimate

to the correct value of 16?

134. Explain why the transformation x ¼ �μln(u) may be used to simulate values from an exponen-

tial distribution with mean μ. (This expression is slightly simpler than the one established in this

section.)

135. Recall the rv X ¼ amount of gravel (in tons) sold by a construction supply company in a given

week from Example 3.9, whose pdf is

f xð Þ ¼
3

2
1� x2
� �

0 � x � 1

0 otherwise

8<:
Consider simulating values from this distribution using the accept–reject methodwith aUnif[0, 1]

“candidate” distribution, i.e., g(x)¼ 1 for 0 � x� 1.

(a) Find the smallest majorization constant c so that f(x)/g(x) � c for all x in [0, 1].

(b) Write a program to simulate values from this distribution.

(c) On the average, how many candidate values must your program generate in order to create

10,000 “accepted” values?

(d) Simulate 10,000 values from this distribution, and use these to estimate the mean μ of this

distribution. How close is your sample mean to the true value of μ (which you can

determine using the appropriate integral)?

(e) The supply company’s management looks at quarterly data for X, i.e., values X1, . . ., X13 for

13 weeks (one quarter of a year). Of particular interest is the variableM¼min(X1, . . ., X13),

the least amount of gravel sold in one week during a quarter. Use your program in (b) to

simulate the rv M, and use the results of at least 10,000 simulated values of M to estimate

P(M < .1), the chance that the worst sales week in a quarter saw less than .1 tons of gravel

sold. [Hint: Simulate each Xi 10,000 times for i ¼ 1, . . ., 13, and then compute the

minimum of each set of 13 values to create a value for M.]

136. The time required to complete a 3-h final exam is modeled by the following pdf:

f ðxÞ ¼
4

27
x2 3� xð Þ 0 � x � 3

0 otherwise

8<:
Consider simulating values from this distribution using the accept–reject method with a

uniform “candidate” distribution on the interval [0, 3].

(a) Find the smallest majorization constant c so that f(x)/g(x) � c for all x in [0, 3]. [Hint:

What is the pdf of the uniform distribution on [0, 3]?]

(b) Write a program to simulate values from this distribution.

(c) On the average, how many candidate values must your program generate in order to

create 10,000 “accepted” values?

(d) A professor has 20 students taking her class (lucky professor!). Assume her 20 students’

completion times on the final exam can be modeled as 20 independent observations from

the above pdf. The professor must stay at the final exam until all 20 students are finished

(i.e., until the last student leaves). Use your program in (b) to simulate the rv L ¼ time, in

3.8 Simulation of Continuous Random Variables 229



hours, that the professor sits proctoring her final exam to 20 students. Use your simulation

to estimate P(L � 35/12), the probability she will have to stay into the last 5 min of the

final exam period.

137. The half-normal distribution has the following pdf:

f ðxÞ ¼
ffiffiffi
2

π

r
� e�x2=2 x � 0

0 otherwise

8><>:
This is the distribution of |Z|, where Z � N(0, 1); equivalently, it’s the pdf that arises by

“folding” the standard normal distribution in half along its line of symmetry. Consider

simulating values from this distribution using the accept–reject method with a candidate

distribution g(x) ¼ e�x for x � 0 (i.e., an exponential pdf with λ ¼ 1).

(a) Find the inverse cdf corresponding to g(x). (This will allow us to simulate values from the

candidate distribution.)

(b) Find the smallest majorization constant c so that f(x)/g(x) � c for all x � 0. [Hint: Use
calculus to determine where the ratio f(x)/g(x) is maximized.]

(c) On the average, how many candidate values will be required to generate 10,000

“accepted” values?

(d) Write a program to construct 10,000 values from a half-normal distribution.

138. As discussed previously, the normal distribution cannot be simulated using the inverse cdf

method. One possibility for simulating from a standard normal distribution is to employ the

accept–reject method with candidate distribution

gðxÞ ¼ 1

π 1þ x2ð Þ �1 < x < 1

(This is the Cauchy distribution.)

(a) Find the cdf and inverse cdf corresponding to g(x). (This will allow us to simulate values

from the candidate distribution.)

(b) Find the smallest majorization constant c so that f(x)/g(x) � c for all x, where f(x) is the

standard normal pdf. [Hint: Use calculus to determine where the ratio f(x)/g(x) is

maximized.]

(c) On the average, how many candidate values will be required to generate 10,000 “accepted”

values?

(d) Write a program to construct 10,000 values from a standard normal distribution.

(e) Suppose that you now wish to simulate from a N(μ, σ) distribution. How would you modify

your program in part (d)?

139. Explain why the majorization constant c in the accept–reject algorithm must be � 1. [Hint: If

c < 1, then f(x) < g(x) for all x. Why is this bad?]

3.9 Supplementary Exercises (140–172)

140. An insurance company issues a policy covering losses up to 5 (in thousands of dollars). The loss,

X, follows a distribution with density function:
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f ðxÞ ¼
3

x4
x � 1

0 x < 1

8<:
What is the expected value of the amount paid under the policy?

141. Let X¼ the time it takes a read/write head to locate a desired record on a computer disk memory

device once the head has been positioned over the correct track. If the disks rotate once every

25 msec, a reasonable assumption is that X is uniformly distributed on the interval [0, 25].

(a) Compute P(10 � X � 20).

(b) Compute P(X � 10).

(c) Obtain the cdf F(x).
(d) Compute E(X) and SD(X).

142. A 12-in. bar clamped at both ends is subjected to an increasing amount of stress until it snaps.

Let Y ¼ the distance from the left end at which the break occurs. Suppose Y has pdf

f ðyÞ ¼
y

24
1� y

12


 �
0 � y � 12

0 otherwise

8<:
Compute the following:

(a) The cdf of Y, and graph it.

(b) P(Y � 4), P(Y > 6), and P(4 � Y � 6).

(c) E(Y ), E(Y2), and SD(Y ).
(d) The probability that the break point occurs more than 2 in. from the expected break point.

(e) The expected length of the shorter segment when the break occurs.

143. Let X denote the time to failure (in years) of a hydraulic component. Suppose the pdf of X is f(x)
¼ 32/(x + 4)3 for x > 0.

(a) Verify that f(x) is a legitimate pdf.

(b) Determine the cdf.

(c) Use the result of part (b) to calculate the probability that time to failure is between 2 and

5 years.

(d) What is the expected time to failure?

(e) If the component has a salvage value equal to 100/(4 + x) when its time to failure is x, what

is the expected salvage value?

144. The completion time X for a task has cdf F(x) given by

0 x < 0

x3

3
0 � x < 1

1� 1

2

7

3
� x

� �
7

4
� 3

4
x

� �
1 � x � 7

3

1 x � 7

3

8>>>>>>>>><>>>>>>>>>:
(a) Obtain the pdf f(x) and sketch its graph.

(b) Compute P(.5 � X � 2).

(c) Compute E(X).

145. The breakdown voltage of a randomly chosen diode of a certain type is known to be normally

distributed with mean value 40 V and standard deviation 1.5 V.
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(a) What is the probability that the voltage of a single diode is between 39 and 42?

(b) What value is such that only 15% of all diodes have voltages exceeding that value?

(c) If four diodes are independently selected, what is the probability that at least one has a

voltage exceeding 42?

146. The article “Computer Assisted Net Weight Control” (Qual. Prog., 1983: 22–25) suggests a
normal distribution with mean 137.2 oz and standard deviation 1.6 oz, for the actual contents

of jars of a certain type. The stated contents was 135 oz.

(a) What is the probability that a single jar contains more than the stated contents?

(b) Among ten randomly selected jars, what is the probability that at least eight contain more

than the stated contents?

(c) Assuming that the mean remains at 137.2, to what value would the standard deviation

have to be changed so that 95% of all jars contain more than the stated contents?

147. When circuit boards used in the manufacture of compact disk players are tested, the long-run

percentage of defectives is 5%. Suppose that a batch of 250 boards has been received and that

the condition of any particular board is independent of that of any other board.

(a) What is the approximate probability that at least 10% of the boards in the batch are

defective?

(b) What is the approximate probability that there are exactly 10 defectives in the batch?

148. The article “Reliability of Domestic-Waste Biofilm Reactors” (J. Envir. Engr., 1995:

785–790) suggests that substrate concentration (mg/cm3) of influent to a reactor is normally

distributed with μ ¼ .30 and σ ¼ .06.

(a) What is the probability that the concentration exceeds .25?

(b) What is the probability that the concentration is at most .10?

(c) How would you characterize the largest 5% of all concentration values?

149. Let X ¼ the hourly median power (in decibels) of received radio signals transmitted between

two cities. The authors of the article “Families of Distributions for Hourly Median Power and

Instantaneous Power of Received Radio Signals” (J. Res. Nat. Bureau Standards, vol. 67D,

1963: 753–762) argue that the lognormal distribution provides a reasonable probability model

for X. If the parameter values are μ ¼ 3.5 and σ ¼ 1.2, calculate the following:

(a) The mean value and standard deviation of received power.

(b) The probability that received power is between 50 and 250 dB.

(c) The probability that X is less than its mean value. Why is this probability not .5?

150. Let X be a nonnegative continuous random variable with cdf F(x) and mean E(X).

(a) The definition of expected value is E(X)¼ Ð1
0
xf(x)dx. Replace the first x inside the integral

with
Ð x
0
1 dy to create a double integral expression for E(X). [The “order of integration”

should be dy dx.]

(b) Rearrange the order of integration, keeping track of the revised limits of integration, to

show that

EðXÞ ¼
ð1
0

ð1
y

f ðxÞdxdy

(c) Evaluate the dx integral in (b) to show that E(X) ¼ Ð1
0
[1 � F(y)]dy. (This provides an

alternate derivation of the formula established in Exercise 38.)

(d) Use the result of (c) to verify that the expected value of an exponentially distributed rv with

parameter λ is 1/λ.
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151. The reaction time (in seconds) to a stimulus is a continuous random variable with pdf

f ðxÞ ¼
3

2x2
1 � x � 3

0 otherwise

8<:
(a) Obtain the cdf.

(b) What is the probability that reaction time is at most 2.5 s? Between 1.5 and 2.5 s?

(c) Compute the expected reaction time.

(d) Compute the standard deviation of reaction time.

(e) If an individual takes more than 1.5 s to react, a light comes on and stays on either until one

further second has elapsed or until the person reacts (whichever happens first). Determine

the expected amount of time that the light remains lit. [Hint: Let h(X) ¼ the time that the

light is on as a function of reaction time X.]
152. The article “Characterization of Room Temperature Damping in Aluminum-Indium Alloys”

(Metallurgical Trans., 1993: 1611-1619) suggests that aluminum matrix grain size (μm) for an

alloy consisting of 2% indium could be modeled with a normal distribution with mean 96 and

standard deviation 14.

(a) What is the probability that grain size exceeds 100 μm?

(b) What is the probability that grain size is between 50 and 80 μm?

(c) What interval (a, b) includes the central 90% of all grain sizes (so that 5% are below a and

5% are above b)?
153. The article “Determination of the MTF of Positive Photoresists Using the Monte Carlo Method”

(Photographic Sci. Engrg., 1983: 254–260) proposes the exponential distribution with parame-

ter λ ¼ .93 as a model for the distribution of a photon’s free path length (mm) under certain

circumstances. Suppose this is the correct model.

(a) What is the expected path length, and what is the standard deviation of path length?

(b) What is the probability that path length exceeds 3.0? What is the probability that path

length is between 1.0 and 3.0?

(c) What value is exceeded by only 10% of all path lengths?

154. The article “The Prediction of Corrosion by Statistical Analysis of Corrosion Profiles” (Corro-
sion Sci., 1985: 305–315) suggests the following cdf for the depth X of the deepest pit in an

experiment involving the exposure of carbon manganese steel to acidified seawater:

F x; θ1, θ2ð Þ ¼ e�e� x�θ1ð Þ=θ2 �1 < x < 1
(This is called the largest extreme value distribution or Gumbel distribution.) The investigators
proposed the values θ1 ¼ 150 and θ2 ¼ 90. Assume this to be the correct model.

(a) What is the probability that the depth of the deepest pit is at most 150? At most 300?

Between 150 and 300?

(b) Below what value will the depth of the maximum pit be observed in 90% of all such

experiments?

(c) What is the density function of X?
(d) The density function can be shown to be unimodal (a single peak). Above what value on

the measurement axis does this peak occur? (This value is the mode.)

(e) It can be shown that E(X) � .5772θ2 + θ1. What is the mean for the given values of θ1 and
θ2, and how does it compare to the median and mode? Sketch the graph of the density

function.
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155. Let t ¼ the amount of sales tax a retailer owes the government for a certain period. The article

“Statistical Sampling in Tax Audits” (Statistics and the Law, 2008: 320–343) proposes

modeling the uncertainty in t by regarding it as a normally distributed random variable with

mean value μ and standard deviation σ (in the article, these two parameters are estimated from

the results of a tax audit involving n sampled transactions). If a represents the amount the

retailer is assessed, then an underassessment results if t > a and an overassessment if a > t. We

can express this in terms of a loss function, a function that shows zero loss if t ¼ a but increases
as the gap between t and a increases. The proposed loss function is L(a, t)¼ t� a if t> a and¼
k(a � t) if t � a (k > 1 is suggested to incorporate the idea that over-assessment is more serious

than under-assessment).

(a) Show that a * ¼ μ + σΦ� 1(1/(k + 1)) is the value of a that minimizes the expected loss,

where Φ� 1 is the inverse function of the standard normal cdf.

(b) If k ¼ 2 (suggested in the article), μ ¼ $100,000, and σ ¼ $10,000, what is the optimal

value of a, and what is the resulting probability of over-assessment?

156. A mode of a continuous distribution is a value x* that maximizes f(x).

(a) What is the mode of a normal distribution with parameters μ and σ?
(b) Does the uniform distribution with parameters A and B have a single mode? Why or why

not?

(c) What is the mode of an exponential distribution with parameter λ? (Draw a picture.)

(d) If X has a gamma distribution with parameters α and β, and α > 1, determine the mode.

[Hint: ln[f(x)] will be maximized if and only if f(x) is, and it may be simpler to take the

derivative of ln[f(x)].]
157. The article “Error Distribution in Navigation” (J. Institut. Navigation, 1971: 429–442) suggests

that the frequency distribution of positive errors (magnitudes of errors) is well approximated by

an exponential distribution. Let X ¼ the lateral position error (nautical miles), which can be

either negative or positive. Suppose the pdf of X is

f ðxÞ ¼ :1e�:2 xj j � 1 < x < 1
(a) Sketch a graph of f(x) and verify that f(x) is a legitimate pdf (show that it integrates to 1).

(b) Obtain the cdf of X and sketch it.

(c) Compute P(X� 0), P(X� 2), P(�1� X� 2), and the probability that an error of more than

2 miles is made.

158. The article “Statistical Behavior Modeling for Driver-Adaptive Precrash Systems” (IEEE
Trans. on Intelligent Transp. Systems, 2013: 1-9) proposed the following distribution for

modeling the behavior of what the authors called “the criticality level of a situation” X.

f x; λ1, λ2, pð Þ ¼ pλ1e�λ1x þ 1� pð Þλ2e�λ2x x � 0

0 otherwise

(

This is often called the hyperexponential or mixed exponential distribution.

(a) What is the cdf F(x; λ1, λ2, p)?
(b) Ifp¼ .5, λ1¼ 40, λ2¼ 200 (values of the λs suggested in the cited article), calculateP(X> .01).

(c) If X has f(x; λ1, λ2, p) as its pdf, what is E(X)?
(d) Using the fact that E(X2) ¼ 2/λ2 when X has an exponential distribution with parameter λ,

compute E(X2) when X has pdf f(x; λ1, λ2, p). Then compute Var(X).
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(e) The coefficient of variation of a random variable (or distribution) is CV ¼ σ/μ. What is the

CV for an exponential rv? What can you say about the value of CV when X has a

hyperexponential distribution?

(f) What is the CV for an Erlang distribution with parameters λ and n as defined in Sect. 3.4?

[Note: In applied work, the sample CV is used to decide which of the three distributions

might be appropriate.]

(g) For the parameter values given in (b), calculate the probability that X is within one standard

deviation of its mean value. Does this probability depend upon the values of the λs (it does
not depend on λ when X has an exponential distribution)?

159. Suppose a state allows individuals filing tax returns to itemize deductions only if the total of all

itemized deductions is at least $5,000. Let X (in 1000s of dollars) be the total of itemized

deductions on a randomly chosen form. Assume that X has the pdf

f x; αð Þ ¼ k=xα

0

�
x � 5

otherwise

(a) Find the value of k. What restriction on α is necessary?

(b) What is the cdf of X?

(c) What is the expected total deduction on a randomly chosen form? What restriction on α is

necessary for E(X) to be finite?

(d) Show that ln(X/5) has an exponential distribution with parameter α � 1.

160. Let Ii be the input current to a transistor and Io be the output current. Then the current gain is

proportional to ln(Io/Ii). Suppose the constant of proportionality is 1 (which amounts to choosing

a particular unit of measurement), so that current gain ¼ X ¼ ln(Io/Ii). Assume X is normally

distributed with μ ¼ 1 and σ ¼ .05.

(a) What type of distribution does the ratio Io/Ii have?
(b) What is the probability that the output current is more than twice the input current?

(c) What are the expected value and variance of the ratio of output to input current?

161. The article “Response of SiCf/Si3N4 Composites Under Static and Cyclic Loading—An Exper-

imental and Statistical Analysis” (J. Engr. Materials Tech., 1997: 186–193) suggests that tensile

strength (MPa) of composites under specified conditions can be modeled by a Weibull distribu-

tion with α ¼ 9 and β ¼ 180.

(a) Sketch a graph of the density function.

(b) What is the probability that the strength of a randomly selected specimen will exceed 175?

Will be between 150 and 175?

(c) If two randomly selected specimens are chosen and their strengths are independent of each

other, what is the probability that at least one has strength between 150 and 175?

(d) What strength value separates the weakest 10% of all specimens from the remaining 90%?

162. (a) Suppose the lifetime X of a component, when measured in hours, has a gamma distribution

with parameters α and β. Let Y ¼ lifetime measured in minutes. Derive the pdf of Y.

(b) If X has a gamma distribution with parameters α and β, what is the probability distribution
of Y ¼ cX?

163. Based on data from a dart-throwing experiment, the article “Shooting Darts” (Chance, Summer

1997: 16–19) proposed that the horizontal and vertical errors from aiming at a point target

should be independent of each other, each with a normal distribution having mean 0 and

standard deviation σ. It can then be shown that the pdf of the distance V from the target to the

landing point is
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f ðvÞ ¼ v

σ2
� e�v2= 2σ2ð Þ v > 0

(a) This pdf is a member of what family introduced in this chapter?

(b) If σ ¼ 20 mm (close to the value suggested in the paper), what is the probability that a dart

will land within 25 mm (roughly 1 in.) of the target?

164. The article “Three Sisters Give Birth on the Same Day” (Chance, Spring 2001: 23–25) used the
fact that three Utah sisters had all given birth on March 11, 1998, as a basis for posing some

interesting questions regarding birth coincidences.

(a) Disregarding leap year and assuming that the other 365 days are equally likely, what is the

probability that three randomly selected births all occur on March 11? Be sure to indicate

what, if any, extra assumptions you are making.

(b) With the assumptions used in part (a), what is the probability that three randomly selected

births all occur on the same day?

(c) The author suggested that, based on extensive data, the length of gestation (time between

conception and birth) could be modeled as having a normal distribution with mean value

280 days and standard deviation 19.88 days. The due dates for the three Utah sisters were

March 15, April 1, and April 4, respectively. Assuming that all three due dates are at the

mean of the distribution, what is the probability that all births occurred on March 11?

[Hint: The deviation of birth date from due date is normally distributed with mean 0.]

(d) Explain how you would use the information in part (c) to calculate the probability of a

common birth date.

165. Exercise 49 introduced two machines that produce wine corks, the first one having a normal

diameter distribution with mean value 3 cm and standard deviation .1 cm and the second having

a normal diameter distribution with mean value 3.04 cm and standard deviation .02

cm. Acceptable corks have diameters between 2.9 and 3.1 cm. If 60% of all corks used come

from the first machine and a randomly selected cork is found to be acceptable, what is the

probability that it was produced by the first machine?

166. A function g(x) is convex if the chord connecting any two points on the function’s graph lies

above the graph. When g(x) is differentiable, an equivalent condition is that for every x, the
tangent line at x lies entirely on or below the graph. (See the accompanying figure.) How does

g(μ) ¼ g[E(X)] compare to the expected value E[g(X)]? [Hint: The equation of the tangent line

at x ¼ μ is y ¼ g(μ) + g0(μ) � (x � μ). Use the condition of convexity, substitute X for x, and take
expected values. Note: Unless g(x) is linear, the resulting inequality (usually called Jensen’s

inequality) is strict (< rather than �); it is valid for both continuous and discrete rvs.]

Tangent
line

Chord

x

167. Let X have a Weibull distribution with parameters α ¼ 2 and β. Show that Y ¼ 2X2/β2 has an
exponential distribution with λ ¼ 1/2.
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168. Let X have the pdf f(x) ¼ 1/[π(1 + x2)] for �1 < x < 1 (a central Cauchy distribution), and

show that Y¼ 1/X has the same distribution. [Hint: Consider P(|Y|� y), the cdf of |Y|, then obtain
its pdf and show it is identical to the pdf of |X|.]

169. Let X have a Weibull distribution with shape parameter α and scale parameter β. Show that the

transformed variable Y¼ ln(X) has an extreme value distribution as defined in Section 3.6, with

θ1 ¼ ln(β) and θ2 ¼ 1/α.
170. A store will order q gallons of a liquid product to meet demand during a particular time period.

This product can be dispensed to customers in any amount desired, so demand during the period

is a continuous random variable X with cdf F(x). There is a fixed cost c0 for ordering the product

plus a cost of c1 per gallon purchased. The per-gallon sale price of the product is d. Liquid left

unsold at the end of the time period has a salvage value of e per gallon. Finally, if demand

exceeds q, there will be a shortage cost for loss of goodwill and future business; this cost is f per

gallon of unfulfilled demand. Show that the value of q that maximizes expected profit, denoted

by q*, satisfies

P satisfying demandð Þ ¼ F q*ð Þ ¼ d � c1 þ f

d � eþ f

Then determine the value of F(q*) if d ¼ $35, c0 ¼ $25, c1 ¼ $15, e ¼ $5, and f ¼ $25.

[Hint: Let x denote a particular value of X. Develop an expression for profit when x � q and

another expression for profit when x > q. Now write an integral expression for expected profit

(as a function of q) and differentiate.]

171. An individual’s credit score is a number calculated based on that person’s credit history that

helps a lender determine how much s/he should be loaned or what credit limit should be

established for a credit card. An article in the Los Angeles Times gave data which suggested

that a beta distribution with parameters A ¼ 150, B ¼ 850, α ¼ 8, β ¼ 2 would provide a

reasonable approximation to the distribution of American credit scores. [Note: credit scores are

integer-valued.]

(a) Let X represent a randomly selected American credit score. What are the mean and

standard deviation of this random variable? What is the probability that X is within

1 standard deviation of its mean?

(b) What is the approximate probability that a randomly selected score will exceed 750 (which

lenders consider a very good score)?

172. Let V denote rainfall volume andW denote runoff volume (both in mm). According to the article

“Runoff Quality Analysis of Urban Catchments with Analytical Probability Models”

(J. of Water Resource Planning and Management, 2006: 4–14), the runoff volume will be 0 if

V � vd and will be k(V � vd) if V > vd. Here vd is the volume of depression storage (a constant),

and k (also a constant) is the runoff coefficient. The cited article proposes an exponential

distribution with parameter λ for V.
(a) Obtain an expression for the cdf of W. [Note: W is neither purely continuous nor purely

discrete; instead it has a “mixed” distribution with a discrete component at 0 and is

continuous for values w > 0.]

(b) What is the pdf ofW for w > 0? Use this to obtain an expression for the expected value of

runoff volume.
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