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In 2006 the Multipreconditioned Conjugate Gradient (MPCG) algorithm was
introduced by Bridson and Greif (2006). It is an iterative linear solver, adapted from
the Preconditioned Conjugate Gradient (PCG) algorithm (Saad, 2003), which can be
used in cases where several preconditioners are available or the usual preconditioner
is a sum of operators. In Bridson and Greif (2006) it was already pointed out that
Domain Decomposition algorithms are ideal candidates to benefit from MPCG. This
was further studied in Greif et al. (2014) which considers Additive Schwarz pre-
conditioners in the Multipreconditioned GMRES (MPGMRES) Greif et al. (2016)
setting. In 1997, Rixen had proposed in his thesis (Rixen, 1997) the Simultaneous
FETI algorithm which turns out to be MPCG applied to FETI. The algorithm is
more extensively studied in Gosselet et al. (2015) where its interpretation as an
MPCG solver is made explicit.

The idea behind MPCG is that if at a given iteration N preconditioners are
applied to the residual, then the space spanned by all of these directions is a
better minimization space than the one spanned by their sum. This can significantly
reduce the number of iterations needed to achieve convergence, as we will observe
in Sect. 3, but comes at the cost of loosing the short recurrence property in CG.
This means that at each iteration the new search directions must be orthogonalized
against all previous ones. For this reason, in Spillane (2016) it was proposed to make
MPCG into an Adaptive MPCG (AMPCG) algorithm where, at a given iteration,
only the contributions that will accelerate convergence are kept, and all others
are added into a global contribution (as they would be in classical PCG). This
works very well for FETI and BDD but the theory in that article does not apply
to Additive Schwarz. Indeed, the assumption is made that the smallest eigenvalue
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of the (globally) preconditioned operator is known. The test (called the �-test),
which chooses at each iteration which contributions should be kept, heavily relies
on it. More precisely, the quantity that is examined by the �-test can be related to a
Rayleigh quotient, and the vectors that are selected to form the next minimization
space correspond to large frequencies of the (globally) preconditioned operator.
These are exactly the ones that are known to slow down convergence of BDD and
FETI. Moreover, they are generated by the first few iterations of PCG (van der Sluis
and van der Vorst, 1986). These two reasons make BDD and FETI ideal for the
AMPCG framework.

The question posed by the present work is whether an AMPCG algorithm can
be developed for Additive Schwarz type preconditioners. The goal is to design an
adaptive algorithm that is robust at a minimal cost. One great feature of Additive
Schwarz is that it is algebraic (all the components in the preconditioner can be
computed from the knowledge of the matrix A), and we will aim to preserve this
property. The algorithms will be presented in an abstract framework. Since the short
recurrence property is lost anyway in the MPCG setting, we will consider the more
efficient (Efstathiou and Gander, 2003) Restricted Additive Schwarz preconditioner
(RAS) (Cai and Sarkis, 1999) in our numerical experiments, instead of its symmetric
counterpart the Additive Schwarz preconditioner [see Toselli and Widlund (2005)].
RAS is a non symmetric preconditioner but, provided that full recurrence is
used, conjugate gradient based algorithms apply and still have nice properties (in
particular the global minimization property). We will detail this in the next section
where we briefly introduce the problem at hand, the Restricted Additive Schwarz
preconditioner, and the MPCG solver. Then in Sect. 2, we propose two ways to make
MPCG adaptive. Finally, Sect. 3 presents some numerical experiments on matrices
arising from the finite element discretization of two dimensional elasticity problems.
Three types of difficulties will be considered: heterogeneous coefficients, automatic
(irregular) partitions into subdomains and almost incompressible behaviour.

These are sources of notoriously hard problems that have been, and are still, at
the heart of much effort in the domain decomposition community, in particular by
means of choosing an adequate coarse spaces (see Sarkis (2002), Nataf et al. (2011),
Spillane et al. (2014), Efendiev et al. (2012), Brezina et al. (1999), Sousedík et al.
(2013), Spillane and Rixen (2013), Haferssas et al. (2015), Klawonn et al. (2015),
Cai et al. (2015), Dohrmann and Widlund (2010), Klawonn et al. (2016) and many
more).

1 Preliminaries

Throughout this work, we consider the problem of solving the linear system

Ax� D b;

where A 2 R
n�n is a sparse symmetric positive definite matrix, b 2 R

n is a given
right hand side, and x� 2 R

n is the unknown. We consider Conjugate Gradient type
solvers preconditioned by the Restricted Additive Schwarz (RAS) preconditioner.
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To construct the RAS preconditioner, a non overlapping partition of the degrees
of freedom into N subsets, or subdomains, must first be chosen and then overlap
must be added to each subset to get an overlapping partition. Denoting for each
s D 1; : : : ;N, by eRs and Rs, the restriction operators from �1; n� into the s-th non
overlapping and overlapping subdomains, respectively, the preconditioner is defined
as:

H D
N

X

sD1

Hs with Hs D eRs>As�1Rs and As D RsARs>:

In Algorithm 1 the MPCG iterations are defined. Each contributionHs to H is treated
separately. This corresponds to the non adaptive algorithm, i.e., the condition in
line 8 is not satisfied and N search directions are added to the minimization space
at each iteration (namely the columns in ZiC1). We have denoted by �

�
i the pseudo

inverse of �i to account for the fact that some search directions may be linearly
dependent [see Gosselet et al. (2015), Spillane (2016)].

Although RAS is a non symmetric preconditioner the following properties
hold:

• kx� � xikA D min
n

kx� � xkAI x 2 x0 C Pi�1
jD0 range.Pj/

o

,

• P>
j APi D 0 (i ¤ j), r>

i Pj D 0 (i > j), and r>
i Hrj D 0 (i > j).

This can be proved easily following similar proofs in Spillane (2016) and the
textbook Saad (2003). The difference from the symmetric case is that the two last
properties only hold for i > j, and not for every pair i ¤ j.

Algorithm 1: Adaptive Multipreconditioned Conjugate Gradient Algorithm for
Ax� D b. Preconditioners: fHsgsD1;:::;N . Initial guess: x0.

1 r0 D b � Ax0; Z0 D �

H1r0j : : : jHNr0

�

; P0 D Z0;
2 for i D 0; 1; : : : ; convergence do
3 Qi D APi;

4 �i D Q>

i Pi; � i D Pi
>ri; ˛i D �

�
i � i;

5 xiC1 D xi C Pi˛i ;
6 riC1 D ri � Qi˛i ;
7 ZiC1 D �

H1riC1j : : : jHNriC1

�

; // Generate N search directions.
8 if Adaptive Algorithm then
9 Reduce number of columns in ZiC1 (see Sect. 2) ;

10 end

11 ˚ i;j D Q>

j ZiC1; ˇi;j D �
�
j ˚ i;j for each j D 0; : : : ; i ;

12 PiC1 D ZiC1 � i
P

jD0

Pjˇi;j ;

13 end
14 Return xiC1;
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Multipreconditioning significantly improves convergence as has already been
observed (Bridson and Greif, 2006; Gosselet et al., 2015; Greif et al., 2014; Spillane,
2016) and as will be illustrated in the numerical result section. The drawback is that
a dense matrix �i 2 R

N�N must be factorized at each iteration and that N search
directions per iteration need to be stored. In the next section, we will try to remove
these limitations by reducing the number of search directions at every iteration. We
aim to do this without having too strong a negative impact on the convergence.

2 An Adaptive Algorithm

There is definitely a balance to be found between the number of iterations, the cost
of each iteration, and the memory required for storage. Here, we do not claim that we
have achieved a perfect balance, but we introduce some ways to influence it. More
precisely, we propose two methods of reducing the number of columns in ZiC1 (or in
other words how to fill in line 9 in Algorithm 1). In Sect. 2.1, we propose a �-test that
measures the relevance of every candidateHsriC1 and only keeps the most relevant
contributions. In Sect. 2.2, we propose to form m coarser subdomains (which are
agglomerates of the initial N subdomains) and aggregate the N candidates into only
m search directions. Note that there is a definite connection with multigrid studies
from where we have borrowed some vocabulary [see Vassilevski (2008), Chartier
et al. (2003), Brandt et al. (2011) and many references therein].

2.1 Select Search Directions with a �-Test

The �-test in the original AMPCG publication (Spillane, 2016) is based on the
assumption that the smallest eigenvalue for the globally preconditioned operatorHA
is known (Toselli and Widlund, 2005). This allows for an error estimate inspired
by those in Axelsson and Kaporin (2001), and the choice of the �-test is a direct
consequence of it. Here, the largest eigenvalue is known and it is the presence of
small eigenvalues that is responsible for slow convergence. Unfortunately, we have
failed to produce an estimate similar to that in Spillane (2016) in this case. Note that
there is no such estimate in Axelsson and Kaporin (2001) either, and we believe that
this is inherent to the properties of the conjugate gradient algorithm.

The approach that we propose here to select local contributions is different. It is
well known by now [see, e.g., Saad (2003)] that, at each iteration, the approximate
solution returned by the conjugate gradient algorithm is the A-orthogonal projection
of the exact solution x� onto the minimization space. Here, the property satisfied by
the update between in iteration i C 1 is

kx� � xiC1kA D min fkx� � xkAI x 2 xi C range.Pi/g ;



Algebraic Adaptive MPCG Applied to RAS 97

where Pi forms a basis of range.Zi/ after orthogonalization against previous search
spaces (line 12 in Algorithm 1).

For this reason, the �-test that we propose aims at evaluating, for each s D
1; : : : ;N, the ratio between the norm of the error projected onto the global vector
HriC1 and the norm of the error projected onto the local candidate HsriC1. More
precisely, we compute (with h�; �i denoting the `2 inner product)

tsi D hriC1;HriC1i2

hHriC1;AHriC1i � hHsriC1;AHsriC1i
hriC1;HsriC1i2

: (1)

This is indeed the announced quantity, since the square of the A-norm of the A
orthogonal projection of x� � xi onto any vector v is

kv.v>Av/�1v> A.x� � xi/
„ ƒ‚ …

Dri

k2
A D hri; vi2

hv;Avi :

Then, given a threshold � , the number of columns in ZiC1 is reduced by
eliminating all those for which tsi > � . In order for the global preconditioned residual
N
P

sD1

HsriC1 to be included in the search space (as is always the case in PCG), we add

it to ZiC1 in a separate column. This way we obtain a minimization space range.Pi/

of dimension anywhere between 1 and N
An important question is of course how to choose � . Considering that tsi measures

the (inverse of the) impact of one of N contributions compared to the impact of the
sum of the N contributions, it is quite natural to choose � � N. In the next section,
we illustrate the behaviour of the adaptive algorithm with the �-test for values of �

ranging between N=10 and 10N with satisfactory results.
In order to determine whether or not tsi � � (i.e., perform the �-test) it is

necessary to compute tsi . Here, we will not discuss how to do this at the smallest cost
but it is of course an important consideration (that was discussed for the AMPCG
algorithm applied to BDD in Spillane (2016)). One noteworthy observation is that if
H were either the Additive Schwarz (AS), or the Additive Schwarz with Harmonic
overlap [ASH Cai and Sarkis (1999)] preconditioner (i.e., H D PN

sD1 R
s>As�1Rs

or H D PN
sD1 R

s>As�1
eRs) then all terms involving Hs>AHs would simplify since,

obviously, As�1RsARs>As�1 D As�1.
Another option is to prescribe a number m of vectors to be selected at each

iteration instead of a threshold � , and keep the m vectors with smallest values of
tsi . Then, only the second factor in (1) would be required. We leave a more in depth
study of these questions for future work.
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2.2 Aggregate Search Directions

Here, we propose a completely different, and much simpler, way of reducing the
number of vectors in ZiC1. This is to choose a prescribed number m, with m � N,
of search directions per iteration, and a partition of �1;N� into m subsets. Then,
the columns of ZiC1 that correspond to the same subset are simply replaced by
their sum, leaving m vectors. We refer to this as aggregation as it is the same as
assembling coarse domains from the original subdomains and computing coarse
search directions as sums of the Hs

iC1. The question of how to choose m is of course
important. It can be a fraction of N or the maximal size of the dense matrix that the
user is prepared to factorize. In the next section, we consider values ranging from
N=20 to N.

3 Numerical Results with FreeFem++ (Hecht, 2013)
and GNU Octave (Eaton et al., 2009)

In this section, we consider the linear elasticity equations posed in ˝ D Œ0; 1�2 with
mixed boundary conditions. We search for u D .u1; u2/

> 2 H1.˝/2 such that

8

ˆ

ˆ

<

ˆ

ˆ

:

�div.� .u// D .0; 0/>; in ˝;

u D .1=2.y.1 � y//; 0/>; on f.x; y/ 2 @˝ W x D 0g;
u D .�1=2.y.1 � y//; 0/>; on f.x; y/ 2 @˝ W x D 1g;

�.u/ � n D 0; on the rest of @˝.n W outward normal/:

The stress tensor �.u/ is defined by �ij.u/ D 2�"ij.u/ C �ıijdiv.u/ for i; j D 1; 2

where "ij.u/ D 1
2

�

@ui
@xj

C @uj
@xi

�

, ıij is the Kronecker symbol and the Lamé coefficients

are functions of Young’s modulus E and Poisson’s ratio � : � D E
2.1C�/

; � D
E�

.1C�/.1�2�/
. In all test cases, � is uniform and equal either to 0:4 (compressible test

case) or 0:49999 (almost incompressible test case) while E varies between 106 and
1012 in a pattern presented in Fig. 1-left. The geometries of the solutions are also
presented in this figure.

The computational domain is discretized into a uniform mesh with mesh
size: h D 1=60, and partitioned into N D 100 subdomains by the automatic
graph partitioner METIS (Karypis and Kumar, 1998). One layer of overlap is
added to each subdomain. In the compressible case, the system is discretized by
piecewise second order polynomial (P2) Lagrange finite elements. In the almost
incompressible setting it is known that the locking phenomenon occurs rendering the
solution unreliable. To remedy this, the problem is rewritten in a mixed formulation
with an additional unknown p D div.u/, and then discretized. Although the P2 �P0

mixed finite element does not satisfy the discrete inf-sup condition it is often used
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Fig. 1 Test case setup (all three configurations are drawn to scale). Left: Young’s modulus—E D
106 with square inclusions of larger E, up to 1012. Middle: Solution for � D 0:4. Right: Solution
for � D 0:49999

Table 1 Summary of all numerical results presented

Compressible Incompressible

� -test (see Fig. 2) Aggregates (see Fig. 4) � -test (see Fig. 3) Aggregates (see Fig. 5)

� iter: # vec: m iter: # vec: � iter: # vec: m iter: # vec:

10 104 6059 1 889 890 10 124 4865 1 > 999 >1000

25 85 5769 5 381 1910 25 99 4889 5 512 2565

50 91 6625 10 277 2780 50 79 4621 10 345 3460

100 82 6339 20 186 3740 100 72 4521 20 194 3900

200 84 6876 40 111 4480 200 68 4593 40 125 5040

400 78 6817 100 60 6100 400 65 4552 100 56 5700

1000 69 6153 1000 68 5156

iter:: number of iterations needed to reduce the initial error by a factor 10�7

# vec:: size of the minimization space. There are two test cases: Compressible and Incompressible,
and for each there are two ways of reducing the number of search directions at each iteration: with
the � -test (as proposed in Sect. 2.1) or by aggregating into m directions (as proposed in Sect. 2.2)

in practice, and we choose it here. Finally, the pressure unknowns are eliminated by
static condensation.

In both cases the problem has 28798 degrees of freedom (once degrees of
freedom corresponding to Dirichlet boundary conditions have been eliminated).
As an initial guess, we first compute a random vector v and then scale it to form
x0 D b>v

kvk2
A

, according to what is proposed in Strakoš and Tichý (2005). This

guarantees that kx� � x0kA � kx�kA: the initial error is at most as large as it would
be with a zero initial guess.

In Table 1, we report on the number of iterations needed to reduce the initial
error kx� �x0kA by a factor 10�7 and on the size of the minimization space that was
constructed to do this, which is

P

i
rank.Pi/. Note that, although they are presented in

the same table, we cannot compare the compressible and incompressible test cases
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Fig. 2 Compressible test case—reducing the number of directions with the � -test—error norm
versus iteration count for different values of �

Fig. 3 Incompressible test case—reducing the number of directions with the � -test—error norm
versus iteration count for different values of �

as they are simply not the same problem. Figures 2, 3, 4 and 5 show in more detail
the convergence behaviour of each method.

The first point to be made is that the MPCG algorithm does an excellent job at
reducing the number of iterations. This can be observed by looking at the data for
m D 100 D N directions per iteration in Figs. 4 and 5. The iteration counts are
reduced from 889 to 60 and from over 999 to 56 compared to the classical PCG
iterations (m D 1 direction per iteration). Secondly the adaptation steps that we
introduced seem to do their job since they ensure fast convergence with smaller
minimization spaces. In particular, all of these adaptive methods converged in less
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Fig. 4 Compressible test case—reducing the number of directions by aggregating them into m
vectors—error norm versus iteration count for different values of m

Fig. 5 Incompressible test case—reducing the number of directions by aggregating them into m
vectors—error norm versus iteration count for different values of m

than 512 iterations even for the incompressible case (for which the usual PCG still
has a relative error of 8 � 10�4 after 999 iterations).

With the �-test, the number of iterations is always reduced by a factor at least 8

compared to PCG even with the smallest threshold � D 10 D N=10. With � D 10N
the number of iterations is almost the same as with the full MPCG. For these test
cases the choice � D N advocated in Sect. 2 seems to be a good compromise.

With the aggregation procedure, convergence is achieved even when the coars-
ening is quite aggressive (5 vectors per iteration means that 20 local contributions



102 N. Spillane

have been added together to form the search direction). As expected, keeping more
vectors per iteration yields significantly better results in terms of iteration count.

Based on these results, it is not possible to compare the two approaches and future
work will definitely be focused on an optimized implementation and on decreasing
the CPU time.

4 Conclusions and Future Work

In this work, we have implemented the MPCG (Bridson and Greif, 2006; Greif
et al., 2014) algorithm for Restricted Additive Schwarz. We have observed very
good convergence on test cases with known difficulties (heterogeneities and almost
incompressible behaviour). This is a confirmation that multipreconditioning is a
valuable tool to improve robustness. The main focus of this article has been to
propose an adaptive version of the algorithm so that, when possible, the cost of each
iteration and the cost of storage can be reduced while maintaining fast convergence.
To this end, we have introduced two methods to reduce the number of search
directions at each iteration: one is based on the so called �-test, and the other on
adding some local components together. Numerical results have confirmed that both
these approaches behave as expected.

One important feature of the algorithms proposed is that they are completely
algebraic in that they can be applied to any symmetric, positive definite matrix A
without any extra knowledge.

An optimized parallel implementation is the subject of ongoing work in order to
compare MPCG and the two AMPCG algorithms in terms of CPU time. Scalability
must also be measured. The author is quite confident that the best AMPCG
algorithm should be a combination of the two adaptive approaches. Additionally
there is no reason why the components that are added together in the aggregation
procedure should not first be weighted by some optimized coefficients, turning the
algorithm into a multilevel one.
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