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1 Introduction

Substructuring algorithms such as Balancing Neumann-Neumann (BNN)
or Finite Element Tearing and Interconnecting (FETI) are defined for non
overlapping domain decompositions but not for overlapping subdomains. Schwarz
method (Schwarz, 1870) is defined only for overlapping subdomains. With the help
of a coarse space correction, the two-level versions of both type of methods are
weakly scalable, see Toselli and Widlund (2005) and references therein.

The domain decomposition method introduced by Lions (1990) can be applied
to both overlapping and non overlapping subdomains. It is based on improving
Schwarz methods by replacing the Dirichlet interface conditions by Robin interface
conditions. This algorithm was extended to Helmholtz problem by Després (1993).
Robin interface conditions can be replaced by more general interface conditions that
can be optimized (Optimized Schwarz methods, OSM) for a better convergence, see
Gander et al. (2002), Gander (2006) and references therein. When the domain is
decomposed into a large number of subdomains, these methods are, on a practical
point of view, scalable if a second level is added to the algorithm via the introduction
of a coarse space Japhet et al. (1998), Farhat et al. (2000), Conen et al. (2014). But
there is no systematic procedure to build coarse spaces with a provable efficiency.

The purpose of this article is to define a general framework for building adaptive
coarse space for OSM methods for decomposition into overlapping subdomains.
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We prove that we can achieve the same robustness that what was done for
Schwarz (Spillane et al., 2014) and FETI-BDD (Spillane et al., 2013) domain
decomposition methods with so called GenEO (Generalized Eigenvalue in the
Overlap) coarse spaces. Compared to these previous works, we have to introduce
a non standard symmetric variant of the ORAS method as well as two generalized
eigenvalue problems. Although theory is valid only in the symmetric positive
definite case, the method scales very well for saddle point problems such as highly
heterogeneous nearly incompressible elasticity problems as well as the Stokes
system.

2 Symmetrized ORAS Method

The problem to be solved is defined via a variational formulation on a domain ˝ �
R

d for d 2 N:

Find u 2 V such that : a˝.u; v/ D l.v/ ; 8v 2 V ;

where V is a Hilbert space of functions from ˝ with real values. The problem
we consider is given through a symmetric positive definite bilinear form that is
defined in terms of an integral over any open set ! � ˝ . A typical example is
the elasticity system (C is the fourth-order stiffness tensor and ".u/ is the strain
tensor of a displacement field u):

a!.u; v/ WD
Z

!

C W ".u/ W ".v/ dx :

The problem is discretized by a finite element method. Let N denote the set
of degrees of freedom and .�k/k2N be a finite element basis on a mesh Th. Let
A 2 R

#N�#N be the associated finite element matrix, Akl WD a˝.�l; �k/, k; l 2 N .
For some given right hand side F 2 R

#N , we have to solve a linear system in U of
the form

AU D F :

Domain ˝ is decomposed into N overlapping subdomains .˝i/1�i�N so that all
subdomains are a union of cells of the mesh Th. This decomposition induces a
natural decomposition of the set of indicesN into N subsets of indices .Ni/1�i�N :

Ni WD fk 2 N j meas.supp.�k/ \ ˝i/ > 0g ; 1 � i � N: (1)

For all 1 � i � N, let Ri be the restriction matrix from R
#N to the subset R#Ni and

Di be a diagonal matrix of size #Ni � #Ni, so that we have a partition of unity at the
algebraic level, Id D PN

iD1 R
T
i Di Ri , where Id 2 R

#N�#N is the identity matrix.
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For all subdomains 1 � i � N, let Bi be a SPD matrix of size #Ni � #Ni,
which comes typically from the discretization of boundary value local problems
using optimized transmission conditions, the ORAS preconditioner St-Cyr et al.
(2007) is defined as

M�1
ORAS;1 WD

NX
iD1

RT
i DiB

�1
i Ri : (2)

Due to matrices Di, this preconditioner is not symmetric. We introduce here a non
standard variant of the ORAS preconditioner (2), the symmetrized ORAS (SORAS)
algorithm:

M�1
SORAS;1 WD

NX
iD1

RT
i DiB

�1
i DiRi : (3)

More details are given in Dolean et al. (2015).

3 Two-Level SORAS Algorithm

In order to define the two-level SORAS algorithm, we introduce two generalized
eigenvalue problems.

First, for all subdomains 1 � i � N, we consider the following problem:

Definition 1

Find .Uik; �ik/ 2 R
#Ni n f0g � R such that

DiRiART
i DiUik D �ikBi Uik :

(4)

Let � > 0 be a user-defined threshold, we define Z�
geneo � R

#N as the vector space
spanned by the family of vectors .RT

i DiUik/�ik>� ;1�i�N corresponding to eigenvalues
larger than � .

In order to define the second generalized eigenvalue problem, we introduce for
all subdomains 1 � j � N, QAj, the #Nj � #Nj matrix defined by

VT
j

QAjUj WD a˝j

0
@X

l2Nj

Ujl�l;
X
l2Nj

Vjl�l

1
A ; Uj; Vj 2 R

Nj : (5)

When the bilinear form a results from the variational solve of a Laplace problem,
the previous matrix corresponds to the discretization of local Neumann boundary
value problems.
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Definition 2 We introduce the generalized eigenvalue problem

Find .Vjk; �jk/ 2 R
#Ni n f0g � R such that

QAiVik D �ikBiVik :
(6)

Let � > 0 be a user-defined threshold, we define Z�
geneo � R

#N as the vector space
spanned by the family of vectors .RT

i DiVik/�ik<� ;1�i�N corresponding to eigenvalues
smaller than � .

We are now ready to define the two level SORAS preconditioner

Definition 3 (The SORAS-GenEO-2 Preconditioner) Let P0 denote the A-
orthogonal projection on the coarse space

ZGenEO-2 WD Z�
geneo

M
Z�
geneo ;

the two-level SORAS-GenEO-2 preconditioner is defined as follows:

M�1
SORAS;2 WD P0A

�1 C .Id � P0/

NX
iD1

RT
i DiB

�1
i DiRi.Id � PT

0 / : (7)

Note that this definition is reminiscent of the balancing domain decomposition
preconditioner (Mandel, 1992) introduced for Schur complement based methods
as well as of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula,
see Nocedal and Wright (2006). We have the following theorem

Theorem 1 (Spectral Estimate for the SORAS-GenEO-2 Preconditioner) Let
k0 be the maximum number of neighbors of a subdomain (a subdomain is a neighbor
of itself) and k1 be the maximal multiplicity of the subdomain intersections, �; � > 0

be arbitrary constants used in Definitions 2 and 3.
Then, the eigenvalues of the two-level preconditioned operator satisfy the

following spectral estimate

1

1 C k1

�

� �.M�1
SORAS;2 A/ � max.1; k0 �/

where �.M�1
SORAS;2 A/ is an eigenvalue of the preconditioned operator.

The proof is based on the fictitious space lemma (Nepomnyaschikh, 1991) and is
given in Haferssas et al. (2015).

Remark 1 The following heuristic provides an interpretation to both generalized
eigenvalues (4) and (6).

We first remark that for the ASM preconditioner we have a very good upper
bound for the preconditioned operator that does not depend on the number of
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subdomains but only on the number of neighbors of a subdomain:

�max.M
�1
ASMA/ � k0 :

Thus from definitions of ASM and SORAS, we can estimate that vectors for which
the action of local matrices .Ri A RT/�1 and Di B�1

i Di differ notably might lead to a
bad upper bound forM�1

SORASA. By taking the inverse of both operators this condition
means that Ri A RT andD�1

i Bi D�1
i differ notably. By left and right multiplication by

Di it means we have to look at vectors Vi for which Di Ri A RT Di Vi and Bi Vi have
very different values. This a way to interpret the generalized eigenvalue problem (4)
which controls the upper bound of the eigenvalues ofM�1

SORAS A.
Second, we introduce the following preconditionerM�1

NN

M�1
NN WD

X
1�i�N

Di eAiDi (8)

which is reminiscent of the Neumann-Neumann preconditioner (Tallec et al.,
1998) for substructuring methods. We have a very good lower bound for the
preconditioned operatorM�1

NN A that does not depend on the number of subdomains
but only on the maximum multiplicity of intersections:

1

k1

� �min.M
�1
NN A/ :

If we compare formulas forM�1
NN (8) andM�1

SORAS (3), we see that we have to look at
vectors Vi for which Di eAi Di Vi and Bi Vi have very different values. This is a way
to interpret the generalized eigenvalue problem (6) which controls the lower bound
of the eigenvalues ofM�1

SORAS A.

4 Nearly Incompressible Elasticity

Although our theory does not apply in a straightforward manner to saddle point
problems, we use it for these difficult problems for which it is not possible
to preserve both symmetry and positivity of the problem. Note that generalized
eigenvalue problems (4) and (6) still make sense if A is the matrix of a saddle
point problem and matrices Bi and eAi are properly defined for each subdomain
1 � i � N. The new coarse space was tested quite successfully on Stokes and
nearly incompressible elasticity problems with a discretization based on saddle
point formulations in order to avoid locking phenomena. The mechanical properties
of a solid can be characterized by its Young modulus E and Poisson ratio � or
alternatively by its Lamé coefficients � and �. These coefficients relate to each
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other by the following formulas:

� D E�

.1 C �/.1 � 2�/
and � D E

2.1 C �/
: (9)

The variational problem consists in finding .uh; ph/ 2 Vh WD P
d
2 \H1

0.˝/ �P1 such
that for all .vh; qh/ 2 Vh

8̂
<̂
ˆ̂:

R
˝

2�".uh/ W ".vh/dx � R
˝
phdiv .vh/dx D R

˝
fvhdx

� R
˝
div .uh/qhdx � R

˝
1
�
phqh D 0

H) AU D
�
H BT

B C

� �
u
p

�
D

�
f
0

�
D F:

(10)

Matrix eAi arises from the variational formulation (10) where the integration over
domain˝ is replaced by the integration over subdomain˝i and finite element space
Vh is restricted to subdomain ˝i. Matrix Bi corresponds to a Robin problem and is
the sum of matrix eAi and of the matrix of the following variational formulation
restricted to the same finite element space:

Z
@˝in@˝

2˛�.2� C �/

� C 3�
uh � vh with ˛ D 10 in our test:

In Dolean et al. (2015), we tested our method for a heterogeneous beam of eight
layers of steel .E1; �1/ D .210 � 109; 0:3/ and rubber .E2; �2/ D .0:1 � 109; 0:4999/,
see Fig. 1. The beam is clamped on its left and right sides. Table 7.1 of Dolean
et al. (2015) shows that our method performs consistently much better than various
domain decomposition methods: the one level Additive Schwarz (AS) and SORAS
methods, the two level AS and SORAS methods with a coarse space consisting
of rigid body motions which are zero energy modes (ZEM) and finally AS with a
GenEO coarse space. In our test, the GenEO-2 coarse space defined in Definition 3
was built with � D 0:4 and � D 103. Eigenvalue problem (6) accounts for roughly
90% of the GenEO-2 coarse space size. In Figs. 3 and 2, we plot the eigenvectors
of the generalized eigenvalue problems (4) and (6) for the linear elasticity case.
The domain decomposition is such that all subdomains contain the eight alternating
layers of steel and rubber. The GenEO coarse space for lower bound (Fig. 3) will

Fig. 1 2D elasticity: coefficient distribution of steel and rubber
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Fig. 2 Largest eigenvalues and corresponding eigenmodes of the GenEO II generalized eigen-
problem for the upper bound (4)

consist of the first 12 modes. The first three are known as the rigid body modes.
The other nine eigenmodes display very different behaviors for the steel and the
rubber. The the 13th eigenvalue and the next ones are larger than 0:25 and are not
incorporated into the coarse space. Interestingly enough, steel and rubber have the
same deformations in these modes.

In this paragraph, we perform a parametric study of the dependence of the
convergence on the thresholds � and � of the coarse space. In Fig. 4 we study the
influence of the parameter � alone keeping the parameter � D 1=0:001. We see that
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Fig. 3 Lowest eigenvalues and corresponding eigenmodes of the GenEO II generalized eigen-
problem for lower bound (6)
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Fig. 4 Left: Convergence history vs. threshold � . Right: Eigenvalues for the lower bound
eigenvalue problem (6)

Fig. 5 Left: Convergence history vs. threshold � . Right: Eigenvalues for the upper bound
eigenvalue problem (4)

for � < 10�2, there are plateau in the convergence curves. But for larger values of
� , convergence curves are almost straight lines. This is in agreement with the gap
in the spectrum of the eigenvalue problem (6), see Fig. 4. A comparable study was
made for the impact of the threshold � . We see on Fig. 5 that this parameter has only
a small impact on the iteration count.

We also performed large 3D simulations on 8192 cores of a IBM/Blue Gene Q
machine with 1.6GHz Power A2 processors for both elasticity (200 millions
of d.o.f’s in 200 s) and Stokes (200 millions of d.o.f’s in 150 s ) equations.
Computing facilities were provided by an IDRIS-GENCI project. We focus on
results for the nearly incompressible elasticity problem. The problem is solved
with a geometric overlap of two mesh elements and a preconditioned GMRES
is used to solve the resulting linear system where the stopping criteria for the
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Fig. 6 Weak scaling
experiments
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relative residual norm is fixed to 10�6. All the test cases were performed inside
FreeFem++ code (Hecht, 2012) interfaced with the domain decomposition library
HPDDM (Jolivet and Nataf, 2014; Jolivet et al., 2013). The factorizations are
computed for each local problem and also for the global coarse problem using
MUMPS (Amestoy et al., 2001). Generalized eigenvalue problems to generate the
GenEO space are solved using ARPACK (Lehoucq et al., 1998). The coarse space
is formed only with the generalized eigenvalue problem (6) since we noticed that
the other one (4) has only a little effect on the convergence. These computations,
see Fig. 6, assess the weak scalability of the algorithm with respect to the problem
size and the number of subdomains. All times are wall clock times. The domain is
decomposed automatically into subdomains with a graph partitioner, ranging from
256 subdomains to 8192 and the problem size is increased by mesh refinement. In
3D the initial problem is about 6 millions d.o.f decomposed into 256 subdomains
and solved in 145:2s and the final problem is about 197millions of d.o.f decomposed
into 8192 subdomains and solved in 196s which gives an efficiency near to 75%.
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