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1 Introduction and Description of the Method

The GDSW preconditioner is a two-level overlapping Schwarz preconditioner
introduced in Dohrmann et al. (2008a) with a proven condition number bound
for the general case of John domains for scalar elliptic and linear elasticity model
problems. It is algebraic in the sense that it can be constructed from the assembled
system matrix. However, compared to FETI-DP (see Toselli and Widlund 2005) or
BDDCmethods, in GDSW the standard coarse space is relatively large, especially in
three dimensions. In Dohrmann andWidlund (2010), a related hybrid preconditioner
with a reduced coarse problem for three-dimensional elasticity was introduced.
Here, the degrees of freedom (d.o.f.) corresponding to the faces are modified.

The GDSW preconditioner is a two-level additive overlapping Schwarz precon-
ditioner with exact local solvers; cf. Toselli and Widlund (2005). It can be written
as
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cf. Dohrmann et al. (2008b). The matrix ˚ is the essential ingredient of the
GDSW preconditioner. It is composed of coarse space functions which are discrete
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harmonic extensions from the interface to the interior degrees of freedom of
nonoverlapping subdomains. The values on the interface are restrictions of the
nullspaces of the operator to the interface.

For ˝ � R
2 being decomposed into John domains, the condition number of the

GDSW preconditioner is bounded by
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cf. Dohrmann et al. (2008a) and Dohrmann et al. (2008b). Here, H is the size of a
subdomain, h is the size of a finite element, and ı is the overlap.

Implementation Our parallel implementation of the GDSW preconditioner is
based on Trilinos version 12.0; cf. Heroux et al. (2005). For the mesh partitioning,
we use ParMETIS, cf. Karypis et al. (2011), the problems corresponding to the local
level are solved using UMFPACK, cf. Davis and Duff (1997) (version 5.3.0), and
the coarse level is solved using Mumps, cf. Amestoy et al. (2001) (version 4.10.0),
in parallel mode. For the finite element implementation, we use the library LifeV;
see Formaggia et al. (2016) (version 3.8.8).

On the JUQUEEN BG/Q supercomputer, we use the clang compiler 4.7.2 and
ESSL 5.1 when compiling Trilinos and the GDSW preconditioner implementation.
On the Cray XT6m at Universität Duisburg-Essen, we use the Intel compiler 11.1
and the Cray Scientific Library (libsci) 10.4.4.

2 Model Problems

We consider model problems in two and three dimensions, i.e. ˝ D Œ0; 1�2 or ˝ D
Œ0; 1�3. The domain is decomposed either in a structured way, i.e., into squares or
cubes, or in an unstructured way, using ParMETIS.

Laplacian in 2D The first model problem is: find u 2 H1 .˝/

��u D 1 in ˝;

u D 0 on @˝:
(3)

Linear Elasticity in 2D and 3D The secondmodel problem is: find u 2 .H1 .˝//2;

div � D f in ˝;

u D 0 on @˝D D @˝ \ fx D 0g (4)

where � D 2�" C �trace."/I is the stress and " D 1
2
.ru C .ru/T/ the strain. The

Lamé parameters are � D 1=2:6 and � D 0:3=0:52.
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3 Numerical Results

We first show parallel scalability results in two and three dimensions. Finally,
we show an application of the preconditioner within a block preconditioner in
monolithic fluid-structure interaction. The model problems are discretized using
piecewise quadratic (P2) finite elements. Our default Krylov method is GMRES and
will be used also for the symmetric positive definite model problems. Our stopping
criterion is the relative criterion
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� 10�7 with r.0/ and r.k/ being the

initial and the k-th residual, respectively. In our experiments, each subdomain is
assigned to one processor core.

Weak Scalability in 2D We use five different meshes with H=h D 100 and
an increasing number of subdomains; see Tables 1 and 2. The results of weak
scaling tests from 4 to 1024 processor cores for both model problems and an
overlap ı D 1h or ı D 2h are presented in Figs. 1 and 2. The GDSW preconditioner

Table 1 Number of degrees of freedom of the total mesh, coarse and local space dimensions of
the GDSW preconditioner for the weak scaling tests in Fig. 1

# Subdomains 4 16 64 256 1024

Total problem, P2 finite
elements

160,801 641,601 2,563,201 10,246,401 40,972,801

Avg. first level, P2, overlap 1h 41,207.5 41,612.6 41,815.7 41,917.3 41,968.1

Avg. first level, P2, overlap 2h 42,020 42,837.8 43,248.7 43,454.7 43,557.8

Coarse level 5 33 161 705 2945

Avg. first level, P2, overlap 1h
(ParMETIS)

41,581.5 41,841.9 42,101.8 42,225.7 42,263.1

Avg. first level, P2, overlap 2h
(ParMETIS)

42,686.5 43,243.7 43,752.9 43,999.4 44,077.9

Coarse level (ParMETIS) 3 45 241 1129 4822

Table 2 Number of degrees of freedom of the total mesh, coarse and local space dimensions of
the GDSW preconditioner for the weak scaling tests in Figs. 2 and 3

# Subdomains 4 16 64 256 1024

Total problem, P2 321,602 1,286,408 5,126,402 20,492,802 81,945,602

Avg. first level, P2, overlap 1h 82,415 83,225.2 83,631.3 83,834.6 83,936.3

Avg. first level, P2, overlap 2h 84,040 85,675.5 86,497.4 86,909.3 87,115.6

Coarse level 14 90 434 1890 7874

Coarse level, no rotations 10 66 322 1410 5890

Avg. first level, P2, overlap 1h
(ParMETIS)

83,163 83,683.9 84,203.6 84,451.3 84,526.2

Avg. first level, P2, overlap 2h
(ParMETIS)

85,373 86,487.4 87,505.8 87,998.7 88,155.9

Coarse level (ParMETIS) 9 120 633 2950 12,567

Coarse level, no rotations
(ParMETIS)

6 90 482 2258 9644
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Fig. 1 Weak scaling for the Laplacian model problem in 2D, cf. (3), using P2 finite elements:
number of iterations (left), runtimes (right). For the structured and the unstructured decomposition
(ParMETIS), we have approximately 40;000 d.o.f. per subdomain
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Fig. 2 Weak scaling for the linear elastic model problem in 2D, cf. (4), using P2 finite elements:
number of iterations (left), runtimes (right). For the structured and the unstructured decomposition
(ParMETIS), we have approximately 80;000 d.o.f. per subdomain

is numerically and parallel scalable, i.e., the number of iterations is bounded, both,
for structured and unstructured decompositions, and the time to solution grows only
slowly. The one-level preconditioner (OS1) does not scale numerically, and the
number of iterations grows very fast. Indeed, for the unstructured decomposition,
no convergence is obtained for OS1 within 500 iterations for more than 256

subdomains for the scalar problem and for more that 16 subdomains for elasticity.
This is, of course, also due to the comparably small overlap. As a result of the
better constant in (2), for the GDSW preconditioner, we observe better convergence
for structured decompositions. Note that for the case of four subdomains the
overlapping subdomains are significantly smaller.

A detailed analysis of different phases of the method is presented for linear
elasticity in 2D in Fig. 3. We consider the standard full GDSW coarse space and
the GDSW coarse space without rotations, i.e., the rotations are omitted from the
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Fig. 3 Weak parallel scalability using the GDSW preconditioner for the model problem of
linear elasticity in 2D, cf. (4): structured (left) and unstructured decomposition (right); number
of iterations (top), timings for overlap ı D 1 h (middle), and timings for overlap ı D 2 h (bottom).
For the structured and the unstructured decomposition (ParMETIS) we use a subdomain size of
roughly 40;000 degrees of freedom

coarse space. This latter case is not covered by the bound (2), but the results indicate
numerical and parallel scalability.

Strong Scalability in 2D Results for strong parallel scaling tests are shown in
Fig. 4 for linear elasticity in 2D. We observe very good strong scalability for
structured and unstructured domain decompositions. Note that the number of d.o.f.
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Fig. 4 Strong parallel scalability using the GDSW preconditioner for the model problem of linear
elasticity in 2D, cf. (4): structured decomposition (left), ParMETIS decomposition (right)
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Fig. 5 Weak parallel scalability using the GDSW preconditioner for the problem of linear
elasticity in 3D: number of iterations (left), timings (right). We use a subdomain size of H=h D 6

and P2 finite elements

per subdomain decreases when increasing the number of processor cores, and, to a
certain extent, we thus benefit from an increasing speed of the local sparse direct
solvers.

Weak Scalability for Linear Elasticity in 3D We present results of weak scalabil-
ity runs for a linear elastic model problem in 3D from 8 to 4096 cores. We consider
a structured decomposition of a cube and use the full GDSW coarse space in 3D.
In Fig. 5, we present the number of iterations and the timings using P2 elements
using an overlap ı of one or two elements. The number of iterations seems to be
bounded by a constant number, whereas the solution times increases, i.e., the cost
of the (parallel) sparse direct solver used for the coarse problem is noticeable in 3D.

Application in Fluid-Structure Interaction (FSI) We consider time-dependent
monolithic FSI as in Balzani et al. (2015) but using a fully implicit scheme
as in Deparis et al. (2015) and Heinlein et al. (2015). We apply a monolithic
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Dirichlet-Neumann preconditioner applying the GDSW preconditioner for the
structural block; see Balzani et al. (2015) and Heinlein et al. (2015) and the
references therein. We use a pressure wave inflow condition for a tube using
Mesh #1 from Heinlein et al. (2015). We consider a Neo-Hookean material for the
tube; as opposed to Heinlein et al. (2015), we here use a fixed time step of 0:0005 s
and show the runtimes during the simulation.

In Fig. 6, the runtimes of ten time steps using 128 cores of the Cray XT6m
at Universität Duisburg-Essen are shown. We compare IFPACK, a one-level
algebraic overlapping Schwarz preconditioner from Trilinos, our geometric one-
level Schwarz preconditioner (OS1), the GDSW preconditioner without rotations
(GDSW-nr), and the standard GDSW preconditioner for the structural block. We see
that, although the computing times vary over the simulation time, the combination
of the geometric overlap and a sufficiently large coarse space consistently reduces
the runtime of the fully coupled monolithic FSI simulation by a factor of about
two compared to the baseline given by IFPACK. Figure 7 shows the pressure and
the deformation at t D 0:007 s where we have the largest computation time per
timestep, cf. Fig. 6.

Fig. 6 Runtimes for the monolithic FSI simulation. For clarity, the runtimes of two subsequent
time steps of size �t D 0:0005 s are combined. The monolithic system has approximately 1:2

million d.o.f. We use a Neo-Hookean material. “OS1” is the one-level Schwarz preconditioner,
“GDSW-nr” is the GDSW preconditioner without rotations, and “GDSW” is the GDSW precondi-
tioner with full coarse space

Fig. 7 Pressure and deformation at time t D 0:007 s. The deformation is magnified by a factor
of 10
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