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1 Introduction

Over the last decade, an intensive research effort has been devoted to investigate the
time direction in evolution problems for parallelization. This is because modern
supercomputers have now so many processors that often space parallelization
strategies for evolution problems saturate before all available processors can be
used. In the relatively recent field of time parallelization, there are four main
algorithmic techniques that have been investigated: methods based on multiple
shooting (Chartier and Philippe 1993), like the parareal algorithm (Lions et al. 2001)
for which a detailed convergence analysis can be found in Gander and Vandewalle
(2007) for the linear case and in Gander and Hairer (2008) for the nonlinear case;
methods based on space-time decomposition, like classical Schwarz waveform
relaxation (Bjørhus 1995; Gander and Stuart 1998; Giladi and Keller 2002) and
optimized variants (Bennequin et al. 2009; Gander and Halpern 2005, 2007; Gander
et al. 2003), and Dirichlet-Neumann and Neumann-Neumann waveform relaxation
(Gander et al. 2016b; Kwok 2014; Mandal 2014); space-time multigrid methods
(Emmett and Minion 2012; Gander and Neumüller 2016; Hackbusch 1984; Horton
and Vandewalle 1995); and direct time parallelization methods like tensor product
methods (Maday and Rønquist 2008), RIDC (Christlieb et al. 2010), and ParaExp
(Gander and Güttel 2013); for an up to date overview and a historical perspective of
these approaches, see Gander (2015).
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We have recently proposed and analyzed a new approach to make the tensor
product time parallelization technique from Maday and Rønquist (2008) robust.
For linear problems of diffusion type, we have derived in Gander et al. (2014)
asymptotic estimates of the best choice of the main parameter in these methods,
balancing truncation error and roundoff error, and the study for wave equations is
in preparation (Gander et al. 2016a). These methods are however only applicable to
linear problems. We propose here a new idea which permits these techniques also
to be used for nonlinear problems.

2 Scalar Model Problem

We start with the nonlinear scalar model problem

ut D f .u/; u.0/ D u0: (1)

Discretization using a backward Euler method with variable time step leads to

un � un�1

�tn
D f .un/; (2)

and writing this system over several time steps, we obtain
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CCCA DW f.u/: (3)

Parallelization in time based on diagonalization uses the assumption that B can be
diagonalized, B D S�S�1, which is possible if all the time steps are different. One
then diagonalizes the system (3) in time,

� Ou WD S�1BSS�1u D S�1f.u/: (4)

If the right-hand side is linear, f .u/ D au, we get with e1 WD .1; 0; : : : ; 0/T

S�1f.u/ D S�1.au C u0

�t1
e1/ D a Ou C u0

�t1
S�1e1;

and the system is indeed diagonalized in time, and all time steps can be solved in
parallel by a diagonal solve,

.� � aI/ Ou D u0

�t1
S�1e1:
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The solution is then obtained by simply applying S,

u D S Ou:

Since our problem is nonlinear however, it is not possible to directly diagonalize (4).
Since the discretized system (3) is nonlinear, we will have to apply an iterative

method to solve it, e.g. we can apply Newton’s method to

F.u/ WD Bu � f.u/ D 0:

This leads with some initial guess u0 to the iteration

um D um�1 � .F0.um�1//�1F.um�1/:

Now the Jacobian is

F0.u/ D B � diag. f 0.u1/; f
0.u2/; : : : ; f 0.un// DW B � D.u/:

The Newton iteration can thus be rewritten as

.B � D.um�1//um D .B � D.um�1//um�1 � .Bum�1 � f.um�1//

D f.um�1/ � D.um�1/um�1; (5)

and for a given iteration step m � 1, um�1 is known. Denoting by QBm�1 WD B �
D.um�1/ and Qfm�1 WD f.um�1/ � D.um�1/um�1, we have to solve at each iteration
step of Newton the evolution problem

QBm�1um D Qfm�1
:

This can be done by diagonalization now, since it is a linear problem: having QBm�1 D
QS Q�QS�1, we can solve

Q� Oum WD QS�1 QBm�1 QSQS�1um D QS�1Qfm�1

for all Oumj , j D 1; 2; : : : ; n in parallel.
A major disadvantage that is brought in by the nonlinear term is that one has to

compute a factorization of the time stepping matrix QBm�1 at each Newton iteration.
This could be avoided if we do not use the exact Jacobian at each Newton iteration,
but an approximationwhich uses for example a scalar approximation of the diagonal
matrix by averaging,

D.u/ � 1

n

nX
jD1

f 0.uj/I:
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Now we can use the old factorization of the time stepping matrix B and solve in
parallel at each quasi Newton step

.� � 1

n

nX
jD1

f 0.um�1
j /I/ Oum D QS�1f.um�1/ � 1

n

nX
jD1

f 0.um�1
j /um�1: (6)

Using this approximate Jacobian, the quasi Newton method will then however only
converge linearly in general, and we will compare in the numerical section the two
approaches to see how much is lost due to this approximation.

3 A PDE Model Problem

Suppose we want to solve the time dependent semi-linear heat equation

ut D �u C f .u/; u.0; x/ D u0.x/; (7)

with homogeneous Dirichlet boundary conditions. Using a standard five point finite
difference discretization in space over a rectangular grid of size J D J1J2, we obtain
the discrete problem

un � un�1

�tn
D �hun C f .un/; (8)

where now un and un�1 are vectors in R
J . As in the scalar case, we need to

introduce an iteration to solve this nonlinear problem, but here the system has
to be treated also by tensor products to separate space and time. Let It be the
N � N identity matrix associated with the time domain and Ix be the J � J
identity matrix associated with the spatial domain. Setting u WD .u1; : : : ;uN/,
f.u/ WD . f .u1/ C 1

� t1
u0; f .u2/; � � � ; f .uN//, and using the Kronecker symbol, we

can rewrite (8) as one large nonlinear system,

.B ˝ Ix/u D .It ˝ �h/u C f.u/: (9)

To solve (9) with an iterative method, one could for example apply Newton’s method
to solve

F.u/ WD .B ˝ Ix � It ˝ �h/u � f.u/ D 0:



Time Parallelization for Nonlinear Problems Based on Diagonalization 167

To obtain the Jacobian needed, we define the diagonal matrix function

J.u/ WD

0
B@
Js.u1/

: : :

Js.uN/

1
CA ; (10)

where Js.un/ WD diag. f 0.u1
n/; � � � ; f 0.uJn// 2 MJ.R/. We can then write the Jacobian

of F in compact form,

F0.u/ D B ˝ Ix � It ˝ �h � J.u/:

Newton’s method corresponds then to computing for m D 1; 2; : : :

�
B ˝ Ix � It ˝ �h � J.um�1/

�
.um � um�1/ D f .um�1/ � .B ˝ Ix � It ˝ �h/um�1;

and we see that the linear terms cancel, so we can simplify to obtain

�
B ˝ Ix � It ˝ �h � J.um�1/

�
um D f .um�1/ � J.um�1/um�1: (11)

In contrast to the scalar case, where one could simply diagonalize at each New-
ton iteration a modified time stepping matrix QBm�1 to keep Newton’s method
without any approximation, this modified QBm�1 would here also depend on the
space dimension now, and one would have to diagonalize a QBm�1 matrix at each
spatial discretization point, which becomes prohibitive. So we perform a similar
approximation as in the scalar case: we define

QJ.u/ WD 1

N

NX
nD1

Js.un/;

and obtain with this approximation the quasi-Newton algorithm

�
B ˝ Ix � It ˝ .�h C QJ.um�1//

�
um D f.um�1/ � .It ˝ QJ.um�1//um�1: (12)

Now we can use the factorization B D S�S�1, and defining

Qfm�1 WD f.um�1/ � .It ˝ QJ.um�1//um�1;

the quasi-Newton step (12) over all time steps can be parallelized in time by solving

.� ˝ Ix � It ˝ .�h C QJ.um�1/// Oum D .S�1 ˝ Ix/Qfm�1
; (13)

followed by computing um D .S ˝ Ix/ Oum.
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4 Numerical Experiments

We first show a numerical experiment for the scalar model problem (1) where we
chose either f .u/ D �u2 or f .u/ D p

u. We solve these problems on the time
interval .0;T/ using N time steps on a geometrically stretched grid (Gander et al.
2014)

�tn WD .1 C "/nPN
nD1.1 C "/n

T;

with T D 1, N D 10, and initial condition u.0/ D 1. We show in Fig. 1
on the left how the time parallel Newton method (5) and the Quasi-Newton
method (6) converge for " D 0:05. Although the approximation leads only to linear
convergence, the first few steps lead already to a high accuracy approximation, like
for the true Newton method. On the right in Fig. 1, we show how the accuracy at the
end of the time interval is influenced by the stretching of the time grid determined
by ". For a highly anisotropic time grid, " close to 1, the truncation error is bigger
than for a time grid with equal time steps (Gander et al. 2014). When " becomes
too small however, then roundoff errors due to the diagonalization process lead to
large errors, and an optimal choice has been determined asymptotically for linear
problems in Gander et al. (2014). We can see on the right in Fig. 1 that there is also
an optimal choice in the nonlinear case, and it seems to be very similar for the two
examples we considered.

We next test the algorithm for the PDE model problem (7) using the same
two nonlinear functions as for the scalar model problem, homogeneous boundary
conditions and initial condition u.0; x/ D 1. We discretize the Laplacian using
a five point finite difference stencil with mesh size h D 1=20 and use the same
time grid as for the scalar model problem. We show in Fig. 2 on the left how the
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Fig. 1 Left: quadratic and linear convergence of the time parallel Newton and Quasi-Newton
methods for two scalar model problems. Right: accuracy for different choices of the time grid
stretching "
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Fig. 2 Left: linear convergence of the time parallel Quasi-Newton method for two PDE model
problems. Right: accuracy for different choices of the time grid stretching "

Newton method (11) which can only be time parallelized at the cost of many time
steppingmatrix factorizations, and the Quasi-Newtonmethod (13) that is easily time
parallelized converge. Again the approximation still leads to a rapidly converging
method. On the right in Fig. 2, we show how the accuracy at the end of the time
interval is influenced by the stretching of the time grid in the PDE case, and again
we see that there is an optimal choice for the stretching parameter.

5 Conclusion

We have introduced a new method which allows us to use diagonalization for
time parallelization also for nonlinear problems. We have shown two variants for
nonlinear scalar problems, and one for a nonlinear PDE. Numerical experiments
show that the methods converge rapidly, and there is also an optimal choice of the
geometric time grid stretching, like in the original algorithm for linear problems
(Gander et al. 2014, 2016a). The geometric stretching is only one way to make
diagonalization possible: random or adaptive time steps could also be used, but they
must be determined for the entire time window before its parallel solve, and they
must all be different, otherwise the diagonalization is not possible. In an adaptive
setting, one could adaptively determine a macro time step with a larger tolerance as
time window, before parallelizing its solve with smaller geometric or random time
steps. We are currently investigating such variants, and also the generalization to
nonlinear hyperbolic problems.
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