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1 Introduction

Cyclic reduction was conceived in 1965 for the solution of tridiagonal linear sys-
tems, such as the one-dimensional Poisson equation (Hockney 1965). Generalized
to higher dimensions by recursive blocking, it is known as block cyclic reduction
(BCR) (Buzbee et al. 1970). It can be used for general (block) Toeplitz and (block)
tridiagonal linear systems; however, it is not competitive for large problems, because
its arithmetic complexity grows superlinearly. Cyclic reduction can be thought of
as a direct Gaussian elimination that recursively computes the Schur complement
of half of the system. The complexity of Schur complement computations is
dominated by the inverse. By considering a tridiagonal system and an even/odd
ordering, cyclic reduction decouples the system such that the inverse of a large
block is the block-wise inverse of a collection of independent smaller blocks. This
addresses the most expensive step of the Schur complement computation in terms of
operation complexity and does so in a way that launches concurrent subproblems.
Its concurrency feature, in the form of recursive bisection, makes it interesting for
parallel environments, provided that its arithmetic complexity can be improved.

We address the time and memory complexity growth of the traditional cyclic
reduction algorithm by approximating dense blocks as they arise with hierarchical
matrices (H-Matrices). The effectiveness of the block approximation relies on
the rank structure of the original matrix. Many relevant operators are known to
have blocks of low rank off the diagonal. This philosophy follows recent work
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discussed below, but to our knowledge this is the first demonstration of the utility of
complexity-reducing hierarchical substitution in the context of cyclic reduction.

The synergy of cyclic reduction and hierarchical matrices leads to a parallel
fast direct solver of log-linear arithmetic complexity,O.N log2 N/, with controllable
accuracy. The algorithm is purely algebraic, depending only on a block tridiagonal
structure. We call it Accelerated Cyclic Reduction (ACR). Using a well-known
implementation of H-LU (Grasedyck et al. 2009), we demonstrate the range of
applicability of ACR over a set of model problems including the convection-
diffusion equation with recirculating flow and the wave Helmholtz equation,
problems that cannot be tackled with the traditional FFT enabled version of cyclic
reduction, FACR (Swarztrauber 1977). We show that ACR is competitive in time
to solution as compared with a global H-LU factorization that does not exploit the
cyclic reduction structure. The fact that ACR is completely algebraic expands its
range of applicability to problems with arbitrary coefficient structure within the
block tridiagonal sparsity structure, subject to their amenability to rank compres-
sion. This gives the method robustness in some applications that are difficult for
multigrid. The concurrency and flexibility to tune the accuracy of individual matrix
block approximations makes it interesting for emerging many-core architectures.
Finally, as with other direct solvers, there are complexity-accuracy tradeoffs that
would naturally lead to the development of a new scalable preconditioner based on
ACR.

2 Related Work

Exploiting underlying low-rank structure is a trending strategy for improving the
performance of sparse direct solvers.

Nested dissection based clustering of anH-Matrix is known as H-Cholesky by
Ibragimov et al. (2007) andH-LU by Grasedyck et al. (2009), the main idea being to
introduceH-Matrix approximation on Schur complements based on domain decom-
position. This is accomplished by a nested dissection ordering of the unknowns, and
the advantage is that large blocks of zeros are preserved after factorization. The non-
zero blocks are replaced with low-rank approximations, and an LU factorization
is performed, using hierarchical matrix arithmetics. Recently, Kriemann (2013)
demonstrated that H-LU implemented with a task-based scheduling based on a
directed acyclic graph is well suited for modern many-core systems when compared
with the conventional recursive algorithm. A similar line of work by Xia and Gu
(2010) also proposes the construction of a rank-structured Cholesky factorization
via the HSS hierarchical format (Chandrasekaran et al. 2006). Figure 1 illustrates
the differences between nested dissection ordering and the even/odd (or red/black)
ordering of cyclic reduction.
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Consider a 2D domain
Nested dissection 
clusters contiguous

 unknowns

Cyclic reduction 
clusters staggered

 unknowns

Fig. 1 The nested dissection ordering recursively clusters contiguous unknowns by bisection,
whereas the red/black ordering recursively clusters staggered unknowns, allowing isolation of a
new readily manipulated diagonal block

Multifrontal factorization, with low-rank approximations of frontal matri-
ces, as in the work of Xia et al. (2010) also relies on nested dissection as the
permutation strategy, but it uses the multifrontal method as a solver. Frontal matrices
are approximated with the HSS format, while the solver relies on the corresponding
HSS algorithms for elimination (Xia et al. 2010). A similar line of work is the
generalization of this method to 3D problems and general meshes by Schmitz and
Ying (2012, 2014). More recently, Ghysels et al. (2015) introduced a method based
on a fast ULV decomposition and randomized sampling of HSS matrices in a many-
core environment, where HSS approximations are used to approximate fronts of
large enough size, as the complexity constant in building an HSS approximation is
only convenient for large matrices.

This strategy is not limited to any specific hierarchical format. Aminfar et al.
(2016) proposed the use of the HODLR matrix format Ambikasaran and Darve
(2013), also in the context of the multifrontal method. The well known solver
MUMPS now also exploits the low-rank property of frontal matrices to accelerate
its multifrontal implementation, as described in Amestoy et al. (2014).

3 Accelerated Cyclic Reduction

Consider the two-dimensional linear variable-coefficient Poisson equation (1) and
its corresponding block tridiagonal matrix structure resulting from a second order
finite difference discretization, as shown in (2):

� r � �.x/ru D f .x/; (1)
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A D tridiag.Ei;Di;Fi/ D

2
666664

D1 F1

E2 D2 F2

: : :
: : :

: : :

En�1 Dn�1 Fn�1

En Dn

3
777775

: (2)

We leverage the fact that for arbitrary �.x/, the tridiagonal blocks Di are exactly
representable by rank 1 H-Matrix since the off-diagonal blocks have only one
entry regardless of their coefficient, and the blocks Ei and Fi are diagonal. As
cyclic reduction progresses, the resulting blocks will have a bounded increase in the
numerical ranks of their off-diagonal blocks. This numerical off-diagonal rank may
be tuned to accommodate for a specified accuracy. We choose the H-Matrix format
proposed in Hackbusch (1999) by Hackbusch, although ACR is not limited to a
specific hierarchical format. In terms of admissibility condition, we choose weak
admissibility, as the sparsity structure is known beforehand and it proved effective
in our numerical experiments.

Approximating each block as an H-Matrix, we use the corresponding hierarchi-
cal arithmetic operations as cyclic reduction progresses, instead of the conventional
linear algebra arithmetic operations. The following table summarizes the complexity
estimates in terms of time and memory while dealing with a n� n block in a typical
dense format and as a block-wise approximation with a rank-rH-Matrix.

Inverse Storage

Dense Block O.n3/ O.n2/

H Block O.r2n log2 n/ O.rn log n/

The following table summarizes the complexity estimates of the methods
discussed so far in a two-dimensional square mesh where N is the total number of
unknowns, neglecting the dependence upon rank. The derivation of the complexity
estimates for H-LU can be found in Bebendorf (2008).

Operations Memory

BCR O.N2/ O.N1:5/

H-LU O.N log2 N/ O.N logN/

ACR O.N log2 N/ O.N logN/

With block-wise approximations in place, block cyclic reduction becomes ACR.
BCR consists of two phases: reduction and back-substitution. The reduction phase
is equivalent to block Gaussian elimination without pivoting on a permuted system
.PAPT/.Pu/ D Pf . Permutation decouples the system, and the computation of the
Schur complement reduces the problem size by half. This process is recursive and
finishes when a single block is reached, although the recursion can be stopped when
the system is small enough to be solved directly.
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As an illustration, consider a system of n D 8 points per dimension, which
translates into a N � N sparse matrix, with N D n2. The first step is to permute
the system, which with an even/odd ordering becomes:

2
6666666664

D0 F0

D2 E2 F2

D4 E4 F4

D6 E6 F6

E1 F1 D1

E3 F3 D3

E5 F5 D5

E7 D7

3
7777777775

2
6666666664

u0

u2

u4

u6

u1

u3

u5

u7

3
7777777775

D

2
6666666664

f0
f2
f4
f6
f1
f3
f5
f7

3
7777777775

: (3)

Consider the above 2 � 2 partitioned system (3) as H. The upper-left block
is block-diagonal, which means that its inverse can be computed as the inverse
of each individual block (D0, D2, D4, and D6), in parallel and with hierarchical
matrix arithmetics. The Schur complement of the upper-left partition may then be
computed as follows:

�
H11 H12

H21 H22

� �
ueven
uodd

�
D
�
feven
fodd

�
: (4)

.H22 � H21H
�1
11 H12/uodd D f .1/; f .1/ D fodd � H21H

�1
11 feven: (5)

Superscripts indicates algorithmic steps. A key property of the Schur comple-
ment of a block tridiagonal matrix is that it yields another block tridiagonal matrix,
as can been seen in the resulting permuted matrix system (5):

2
6664

D.1/
0 F.1/

0

D.1/
2 E.1/

2 F.1/
2

E.1/
1 F.1/

1 D.1/
1

E.1/
3 D.1/

3

3
7775

2
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0

u.1/
2

u.1/
1

u.1/
3

3
7775 D

2
6664

f .1/
0

f .1/
2

f .1/
1

f .1/
3

3
7775 : (6)

One step further, the computation of the Schur complement of the permuted
system (6), results in:

2
664
D.2/

0 F.2/
0

E.2/
1 D.2/

1

3
775

2
664
u.2/

0

u.2/
1

3
775 D

2
664
f .2/
0

f .2/
1

3
775 : (7)

A last round of permutation and Schur complement computation leads to the
D.3/

0 block, which is the last step of the reduction phase of Cyclic Reduction. A
back-substitution phase to recover the solution also consists of log n steps. Each
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step involves matrix-vector products involving the off-diagonal blocks E.i/ and
F.i/ and the inverses of the diagonal D.i/ blocks computed during the elimination
phase. These matrix-vector operations are done efficiently with hierarchical matrix
arithmetics.

4 Numerical Results in 2D

We select two test cases to provide a baseline of performance and robustness as
compared with the H-LU implementation in HLIBpro Hackbusch et al. (xxxx), and
with the AMG implementation in Hypre Lawrence Livermore National Laboratory
(2017). Tests are performed in the shared memory environment of a 36-core Intel
Haswell processor.

The first test is the wave Helmholtz equation.

r2u C k2u D f .x/; x 2 ˝ D Œ0; 1�2 u.x/ D 0; x 2 �

f .x/ D 100e�100..x�0:5/2C.y�0:5/2/:
(8)

For large values of kh, where h is the mesh spacing, discretization leads to an
indefinite matrix. Performance over a range of k is shown in Fig. 2, for h D 2�10.
We compare ACR and H-LU with AMG as a direct solver and as a preconditioner
in combination with GMRES. For small ˛ AMG outperforms the direct methods,
but AMG loses robustness with rising indefiniteness.

Fig. 2 Runtime versus wavenumber for fixed mesh size in the Wave Helmhotz equation. AMG is
the method of choice for small k, but loses robustness with indefiniteness
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Fig. 3 Runtime versus velocity magnitude in convection-diffusion. AMG is the method of choice
in the diffusion dominated limit, but loses robustness with skew-symmetry

The second test is convection-diffusion equation with recirculating flow.

� r2u C ˛b.x/ � ru D f .x/; x 2 ˝ D Œ0; 1�2 u.x/ D 0; x 2 �

b.x/ D
 

sin.4�x/ sin.4�y/

cos.4�x/ cos.4�y/

!
f .x/ D 100e�100..x�0:5/2C.y�0:5/2/:

(9)

Discretization of this equation, again with h D 2�10, leads to a nonsymmetric
matrix, whose eigenvalues go complex (with central differencing) when the cell
Peclet number exceeds 2. Direct algebraic methods are unaffected.

We progressively increase the convection dominance with ˛. For small ˛ AMG
outperforms the direct methods, but AMG is not robust with respect to the rising
skew-symmetry. ACR maintains its performance for any ˛, as shown in Fig. 3.

5 Extensions

The discretization of 3D elliptic operators also leads to a block tridiagonal structure,
with the difference that each block is of size n2 � n2, instead of n � n, as in the 2D
discretization. A similar reduction strategy in the outermost dimension is possible,
and leads to a solver with log-linear complexity in N and similar parallel structure,
except that ranks grow.

The controllable accuracy feature of hierarchical matrices suggests the possibility
of using ACR as a preconditioner, with rank becoming a tuning parameter balancing
the cost per and the number of iterations, while preserving the rich concurrency
features of the method.
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6 Concluding Remarks

We present a fast direct solver, ACR, for structured sparse linear systems that arise
from the discretization of 2D elliptic operators. The solver approximates every block
using an H-Matrix, resulting in a log-linear arithmetic complexity of O.N log2 N/

with memory requirements of O.N logN/.
Robustness and applicability are demonstrated on model scalar problems and

contrasted with established solvers based on the H-LU factorization and algebraic
multigrid. Multigrid maintains superiority in scalar problems with sufficient defi-
niteness and symmetry, whereas hierarchical matrix-based replacements of direct
methods tackle some problems where these properties are lacking. Although being
of the same asymptotic complexity as H-LU, ACR has fundamentally different
algorithmic roots which produce a novel alternative for a relevant class of problems
with competitive performance, and concurrency that grows with the problem size.

In Chávez et al. (2016) we expand on the consideration of cyclic reduction as a
fast direct solver for 3D elliptic operators.
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