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1 Introduction

The first multilevel method for variational inequalities has been proposed in
Mandel (1984a) for complementarity problems. An upper bound of the asymptotic
convergence rate of this method is derived in Mandel (1984b). The method has been
studied later in Kornhuber (1994) in two variants, standard monotone multigrid
method and truncated monotone multigrid method. These methods have been
extended to variational inequalities of the second kind in Kornhuber (1996, 2002).
Also, versions of this method have been applied to Signorini’s problem in elasticity
in Kornhuber and Krause (2001). In Badea (2003, 2006) global convergence rates
of some projected multilevel relaxation methods of multiplicative type are given.
Also, a global convergence rate was derived in Badea (2008) for a two-level additive
method. Two-level methods for variational inequalities of the second kind and for
some quasi variational inequalities have been analyzed in Badea and Krause (2012).
In Badea (2014), it was theoretically justified the global convergence rate of the
standard monotone multigrid methods and, in Badea (2015), this result has been
extended to the hybrid algorithms, where the type of the iterations on the levels is
different from the type of the iterations over the levels. Finally, a multigrid method
for inequalities containing a term given by a Lipschitz operator is analyzed in
Badea (2016). Evidently, the above list of citations is not exhaustive and, for further
information, we can see the review article (Gräser and Kornhuber, 2009).
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This is a review paper regarding the convergence rate of some multilevel
methods for variational inequalities and also, for more complicated problems such
as variational inequalities of the second kind, quasi-variational inequalities and
inequalities with a term containing a Lipschitz operator. The methods are first
introduced as some subspace correction algorithms in a reflexive Banach space and,
under some assumptions, general convergence results (error estimations, included)
are given. In the finite element spaces, we prove that these assumptions are satisfied
and that the introduced algorithms are in fact one-, two-, multilevel or multigrid
methods. The constants in the error estimations are explicitly written in functions
of the overlapping and mesh parameters for the one- and two-level methods and in
function of the number of levels for the multigrid methods.

In this paper, we denote by V a reflexive Banach space and K � V is a non empty
closed convex subset. Also, F W K ! R is a Gâteaux differentiable functional and
we assume that there exist two real numbers p; q > 1 such that for anyM > 0 there
exist ˛M; ˇM > 0 for which

˛Mjjv � ujjp �< F0.v/ � F0.u/; v � u >
and jjF0.v/ � F0.u/jjV0 � ˇMjjv � ujjq�1;

for any u; v 2 K, jjujj; jjvjj � M. In view of these properties, we can prove that F is
a convex functional and 1 < q � 2 � p.

2 One- and Two-Level Methods

In this section we introduce one- and two-level methods of multiplicative type, first
as a general subspace correction algorithm. Details concerning the proof of its global
convergence can be found in Badea (2003). The one- and two-level methods are
derived from this algorithm by the introduction of the finite element spaces and
details are given in Badea (2006). Similar results can be proved for the additive
variant of the methods [see Badea (2008)].

We consider the variational inequality

u 2 K : < F0.u/; v � u >� 0; for any v 2 K; (1)

and if K is not bounded, we suppose that F is coercive, i.e. F.v/ ! 1 as jjvjj !
1. Then, problem (1) has an unique solution. Let V1; � � � ;Vm be some closed
subspaces of V for which we make the following.
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Assumption 1 There exists a constant C0 > 0 such that for any w; v 2 K and
wi 2 Vi with w C Pi

jD1 wj 2 K, i D 1; � � � ;m, there exist vi 2 Vi, i D 1; � � � ;m,
satisfying

wC
i�1X

jD1
wj C vi 2 K; v �w D

mX

iD1
vi;

mX

iD1
jjvijjp � Cp

0

 

jjv � wjjp C
mX

iD1
jjwijjp

!

:

For linear problems, the last condition has a more simple form and is named the
stability condition of the space decomposition. To solve problem (1), we introduce
the following subspace correction algorithm.

Algorithm 1 We start the algorithm with an arbitrary u0 2 K. At iteration n C 1,
having un 2 K, n � 0, we sequentially compute for i D 1; � � � ;m,

wnC1
i 2 Vi; unC i�1

m C wnC1
i 2 K W hF0.unC i�1

m C wnC1
i /; vi � wnC1

i i � 0;

for any vi 2 Vi; unC i�1
m C vi 2 K; and then we update unC i

m D unC i�1
m C wnC1

i .

The following result proves the global convergence of this algorithm [see Theorem 2
in Badea (2003)].

Theorem 1 On the above conditions on the spaces and the functional F, if
Assumption 1 holds, then there exists an M > 0 such that jjunjj � M, for any
n � 0, and we have the following error estimations:

(i) if p D q D 2 we have jjun � ujj2 � 2
˛M

� QC1QC1C1
�n �

F.u0/� F.u/
�
:

(ii) if p > q we have jju � unjjp � p
˛M

F.u0/�F.u/
�

1Cn QC2.F.u0/�F.u//
p�q
q�1

� q�1
p�q
;

where

QC1 D ˇM.
p
˛M
/
q
p m2�

q
p

h
.1C 2C0/

�
F.u0/ � F.u/

	 p�q
p. p�1/ C

�
ˇM.

p
˛M
/
q
p m2�

q
p

� 1
p�1

C
p

p�1

0 =�
1

p�1

�

=.1 � �/ and

QC2 D p � q

. p � 1/ .F.u0/� F.u//
p�q
q�1 C .q � 1/ OCp�1

q�1

:

The value of � in the expression of QC1 can be arbitrary in .0; 1/, but we can also
chose a �0 2 .0; 1/ such that QC1.�0/ � QC1.�/ for any � 2 .0; 1/.
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One-level methods are obtained from Algorithm 1 by using the finite element
spaces. To this end, we consider a simplicial regular mesh partition Th of mesh size
h over ˝ � Rd. Also, let ˝ D [m

iD1˝i be a domain decomposition of ˝ , the
overlapping parameter being ı, and we assume that Th supplies a mesh partition
for each subdomain ˝i, i D 1; : : : ;m. In ˝ , we use the linear finite element space
Vh whose functions vanish on the boundary of ˝ and, for each i D 1; : : : ;m, we
consider the linear finite element space Vi

h � Vh whose functions vanish outside˝i.
Spaces Vh and Vi

h, i D 1; : : : ;m, are considered as subspaces of W1;� , 1 � � � 1,
and let Kh � Vh be a convex set satisfying.

Property 1 If v;w 2 Kh, and if � 2 C0. N̋ /, � j� 2 C1.�/ for any � 2 Th, and 0 �
� � 1, then Lh.�v C .1 � �/w/ 2 Kh; where Lh is the P1-Lagrangian interpolation.

We see that the convex sets of obstacle type satisfy this property, and we have (see
Proposition 3.1 in Badea (2006) for the proof)

Proposition 1 Assumption 1 holds for the linear finite element spaces, V D Vh and
Vi D Vi

h, i D 1; : : : ;m, and for any convex set K D Kh � Vh having Property 1. The
constant C0 in Assumption 1 can be written as C0 D C.m C 1/.1C m�1

ı
/; where C

is independent of the mesh parameter and the domain decomposition.

In the case of the two-level methods, we consider two regular simplicial mesh
partitions Th and TH on ˝ � Rd, Th being a refinement of TH . Besides the finite
element spaces Vh, Vi

h, i D 1; : : : ;m and the convex set Kh, defined for the one-
level methods, we introduce the linear finite element space V0H corresponding to the
H-level, whose functions vanish on the boundary of ˝ . The two-level method is
obtained from the general subspace correction Algorithm 1 for V D Vh, K D Kh,
and the subspaces V0 D V0H, V1 D V1h , V2 D V2h , : : :, Vm D Vm

h . Also, these spaces
are considered as subspaces of W1;� , 1 � � � 1, and we have the following (see
Proposition 4.1 in Badea (2006) for the proof)

Proposition 2 Assumption 1 is satisfied for the linear finite element spaces V D Vh

and V0 D V0H, Vi D Vi
h, i D 1; : : : ;m, and any convex set K D Kh having Property 1.

The constant C0 can be taken of the form C0 D Cm
�
1C .m � 1/H

ı

	
Cd;� .H; h/;

where C is independent of the mesh and domain decomposition parameters, and

Cd;� .H; h/ D

8
<̂

:̂

1 if d D � D 1 or 1 � d < � � 1
�
ln H

h C 1
	 d�1

d if 1 < d D � < 1
�
H
h

	 d��
� if 1 � � < d < 1:

Some numerical results have been given in Badea (2009) to compare the
convergence of the one-level and two-level methods. They concern the two-obstacle
problem of a nonlinear elastic membrane,

u 2 Œa; b� :
Z

˝

jruj��2rur.v � u/ � 0; for any v 2 Œa; b� (2)
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where ˝ � R2, K D Œa; b�, a � b, a; b 2 W1;�
0 .˝/, 1 < � < 1. These numerical

experiments have confirmed the previous theoretical results.

3 Multilevel and Multigrid Methods

Details concerning the results in this section can be found in Badea (2014, 2015).
As in the case of the one- and two-level methods, we consider problem (1). Let Vj,
j D 1; : : : ; J, be closed subspaces of V D VJ which will be associated with the
level discretizations, and Vji, i D 1; : : : ; Ij, be closed subspaces of Vj which will be
associated with the domain decompositions on the levels. We consider K � V a non
empty closed convex subset and write I D max

jDJ;:::;1
Ij.

To get sharper error estimations in the case of the multigrid method, we consider
some constants 0 < ˇjk � 1, ˇjk D ˇkj, j; k D J; : : : ; 1, for which hF0.v C
vji/ � F0.v/; vkli � ˇMˇjkjjvjijjq�1jjvkljj; for any v 2 V , vji 2 Vji, vkl 2 Vkl

with jjvjj, jjv C vjijj, jjvkljj � M, i D 1; : : : ; Ij and l D 1; : : : ; Il. Also, we fix
a constant p

p�qC1 � � � p and assume that there exists a constant C1 such that

jjPJ
jD1

PIj
iD1 wjijj � C1.

PJ
jD1

PIj
iD1 jjwjijj� / 1� ; for any wji 2 Vji, j D J; : : : ; 1,

i D 1; : : : ; Ij. Evidently, in general, we can take ˇjk D 1; j; k D J; : : : ; 1 and C1 D
.IJ/

��1
� : In the multigrid methods, the convex sets where we look for the corrections

are iteratively constructed from a level to another during the iterations in function
of the current approximation. In this general background we make the following.

Assumption 2 For a given w 2 K, we recursively introduce the level convex sets
Kj, j D J; J � 1; : : : ; 1, satisfying
- at level J: we assume that 0 2 KJ ; KJ � fvJ 2 VJ : w C vJ 2 Kg and consider

a wJ 2 KJ ,
- at a level J � 1 � j � 1: we assume that 0 2 Kj; Kj � fvj 2 Vj : wCwJ C : : :C

wjC1 C vj 2 Kg and consider a wj 2 Kj.

Also, we make a similar assumption with that in the case of the -one and two-level
methods,

Assumption 3 There exists two constants C2; C3 > 0 such that for any w 2 K,
wji 2 Vji, wj1 C : : : C wji 2 Kj, j D J; : : : ; 1, i D 1; : : : ; Ij, and u 2 K, there exist
uji 2 Vji, j D J; : : : ; 1, i D 1; : : : ; Ij, which satisfy

uj1 2 Kj and wj1 C : : :C wji�1 C uji 2 Kj; i D 2; : : : ; Ij; j D J; : : : ; 1;

u � w D
JX

jD1

IjX

iD1
uji;

JX

jD1

IjX

iD1
jjujijj� � C�2 jju � wjj� C C�3

JX

jD1

IjX

iD1
jjwjijj�
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The convex sets Kj, j D J; : : : ; 1, are constructed as in Assumption 2 with the above

w and wj D
IjX

iD1
wji, j D J; : : : ; 1.

The general subspace correction algorithm corresponding to the multigrid method
is written as [see Algorithm 2.2 in Badea (2014) or Algorithm 1.1 in Badea (2015)],

Algorithm 2 We start with an arbitrary u0 2 K. At iteration nC1 we have un 2 K,
n � 0, and successively perform:

- at level J: as in Assumption 2, with w D un, we construct KJ .

Then, we write wn
J D 0, and, for i D 1; : : : ; IJ, we successively calculate w

nC1
Ji 2

VJi, w
nC i�1

IJ
J C wnC1

Ji 2 KJ ,

hF0.un C w
nC i�1

IJ
J C wnC1

Ji /; vJi � wnC1
Ji i � 0

for any vJi 2 VJi, w
nC i�1

IJ
J C vJi 2 KJ , and write w

nC i
IJ

J D w
nC i�1

IJ
J C wnC1

Ji .

- at a level J � 1 � j � 1: as in Assumption 2, we construct Kj with w D un and
wJ D wnC1

J ; : : : ;wjC1 D wnC1
jC1 .

Then, we write wn
j D 0, and for i D 1; : : : ; Ij, we successively calculate w

nC1
ji 2 Vji,

w
nC i�1

Ij

j C wnC1
ji 2 Kj,

hF0.un C
JX

kDjC1
wnC1
k C w

nC i�1
Ij

j C wnC1
ji /; vji � wnC1

ji i � 0

for any vji 2 Vji, w
nC i�1

Ij

j C vji 2 Kj, and write w
nC i

Ij

j D w
nC i�1

Ij

J C wnC1
ji .

- we write unC1 D un C
JX

jD1
wnC1
j .

Convergence of this algorithm is given by [see Theorem 1.1 in Badea (2015)]

Theorem 2 Under the above conditions on the spaces and the functional F, if
Assumptions 2 and 3 hold, then there exists an M > 0 such that jjunjj � M, for
any n � 0, and we have the following error estimations:

(i) if p D q D 2 we have jjun � ujj2 � 2
˛M
.

QC1QC1C1/
nŒF.u0/ � F.u/�;

(ii) if p > q we have jju � unjjp � p
˛M

F.u0/�F.u/

Œ1Cn QC2.F.u0/�F.u//
p�q
q�1 �

q�1
p�q
;
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where

QC1 D 1

C2"

�
C2
"

C 1C C1C2 C C3

�

;

QC2 D p � q

. p � 1/.F.u0/ � F.u//
p�q
q�1 C .q � 1/ QC

p�1
q�1

3

with

QC3 D
˛M
p

C2"

2

4
C2

"
1

p�1 . ˛Mp /
q�1
p�1

C .1C C1C2 C C3/.IJ/
p��
p�

. ˛Mp /
q
p

.F.u0/ � F.u//
p�q

p. p�1/

3

5

" D ˛M

p

1

2C2ˇMI
��1
� C p�qC1

p J
��1
� � q�1

p . max
kD1;��� ;J

JX

jD1
ˇkj/

:

To get the multilevel method corresponding to Algorithm 2, we consider a family
of regular meshes Thj of mesh sizes hj, j D 1; : : : ; J, over the domain ˝ � Rd and
assume that ThjC1

is a refinement of Thj . Let, at each level j D 1; : : : ; J, f˝ i
jg1�i�Ij

be an overlapping decomposition of˝ , of overlapping size ıj. We also assume that,
for 1 � i � Ij, the mesh partition Thj of ˝ supplies a mesh partition for each ˝ i

j ,
diam.˝ i

jC1/ � Chj and I1 D 1.

We introduce the linear finite element spaces, Vhj D fv 2 C. N̋ j/ : vj� 2
P1.�/; � 2 Thj ; v D 0 on @˝jg, j D 1; : : : ; J, corresponding to the level meshes,
and Vi

hj
D fv 2 Vhj : v D 0 in˝jn˝ i

jg, i D 1; : : : ; Ij, associated with the level
decompositions. Spaces Vhj j D 1; : : : ; J � 1, will be considered as subspaces of
W1;� , 1 � � � 1.

The multilevel and multigrid methods will be obtained from Algorithm 2 for a
two sided obstacle problem (1), i.e. the convex set is of the formK D fv 2 VhJ : ' �
v �  g; with ';  2 VhJ , ' �  . Concerning the construction of the level convex
sets, we have [Proposition 3.1 in Badea (2014)]

Proposition 3 Assumption 2 holds for the convex sets Kj, j D J; : : : ; 1, defined
as,

- for w 2 K, at the level J, we take 'J D ' � w;  J D  � w; KJ D
Œ'J ;  J �; and consider an wJ 2 KJ ;

- at a level j D J � 1; : : : ; 1, we define 'j D Ihj.'jC1 � wjC1/;  j D Ihj. jC1 �
wjC1/; Kj D Œ'j;  j�; and consider an wj 2 Kj, Ihj : VhjC1

! Vhj ; j D 1; : : : ; J �
1; being some nonlinear interpolation operators between two consecutive levels.

Also, our second assumption holds [see Proposition 2 in Badea (2015)],
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Proposition 4 Assumption 3 holds for the convex sets Kj, j D J; : : : ; 1, defined in
Proposition 3. The constants C2 and C3 are written as

C2 D CI
�C1
� .I C 1/

��1
� .J � 1/ ��1

� Œ
PJ

jD2 Cd;� .hj�1; hJ/� �
1
�

C3 D CI2.I C 1/
��1
� .J � 1/ ��1

� Œ
PJ

jD2 Cd;� .hj�1; hJ/� �
1
�

We proved that Assumptions 2 and 3 hold, and have explicitly written constants C2
and C3 in function of the mesh and overlapping parameters. We can then conclude
from Theorem 2 that Algorithm 2 is globally convergent. Convergence rates given in
Theorem 2 depend on the functional F, the maximum number of the subdomains on
each level, I, and the number of levels J. Since the number of subdomains on levels
can be associated with the number of colors needed to mark the subdomains such
that the subdomains with the same color do not intersect with each other, we can
conclude that the convergence rate essentially depends on the number of levels J.

In the general framework of multilevel methods we takeC1 D CJ
��1
� maxkD1;��� ;JPJ

jD1 ˇkj D J and, as functions depending only of J, we have

C2 D C.J � 1/ ��1
� Sd;� .J/ and C3 D C.J � 1/

��1
� Sd;� .J/ where

Sd;� .J/ D
2

4
JX

jD2
Cd;� .hj�1; hJ/�

3

5

1
�

D

8
ˆ̂
<

ˆ̂
:

.J � 1/
1
� if d D � D 1

or 1 � d < � < 1
CJ if 1 < d D � < 1
CJ if 1 � � < d < 1:

In the above multilevel methods a mesh is the refinement of that one on the
previous level, but the domain decompositions are almost independent from one
level to another. We obtain similar multigrid methods by decomposing the domain
by the supports of the nodal basis functions of each level. Consequently, the
subspaces Vi

hj
, i D 1; : : : ; Ij, are one-dimensional spaces generated by the nodal

basis functions associated with the nodes of Thj , j D J; : : : ; 1. In the case of

the multigrid methods, we can take C1 D C and maxkD1;��� ;J
PJ

jD1 ˇkj D C:
Now we can write the convergence rate of the multigrid method corresponding to
Algorithm 2 in function of the number of levels J for a given particular problem. In
Badea (2014), the convergence rate of the multigrid method for the example in (2)
has been written.

Remark 1 (See also Badea (2014))

1. The above results referred to problems in W1;� with Dirichlet boundary condi-
tions, but they also hold for Neumann or mixed boundary conditions.

2. Similar convergence results can be obtained for problems in .W1;� /d.
3. The analysis and the estimations of the global convergence rate which are given

above refers to two sided obstacle problems which arise from the minimization
of functionals defined onW1;� , 1 < � < 1.



Global Convergence Rates of Some Multilevel Methods 11

4. We can compare the convergence rates we have obtained with similar ones in the
literature in the case of H1 (p D q D 2) and d D 2. In this case, we get that
the global convergence rate of Algorithm 2 is 1 � 1

1CCJ3
. The same estimate, of

1 � 1
1CCJ3

, is obtained by R. Kornhuber for the asymptotic convergence rate of
the standard monotone multigrid methods for the complementarity problems.

Algorithm 2 is of multiplicative type over the levels as well as on each level, i.e.
the current correction is found in function of all corrections on both the previous
levels and the current level. We can also imagine hybrid algorithms where the type
of the iteration over the levels is different from the type of the iteration on the
levels. This idea can be also found in Smith et al. (1996). In Badea (2015), such
hybrid algorithms (multiplicative over the levels—additive on levels, additive over
the levels—multiplicative on levels and additive over the levels as well as on levels)
have been introduced and analyzed in a similar manner with that of Algorithm 2. The
following remark contains some conclusions withdrawn in Badea (2015) concerning
the convergence rate (expressed only in function of J) of these hybrid algorithms for
problem (2).

Remark 2

1. Regardless of the iteration type on levels, algorithms having the same type of
iterations over the levels have the same convergence rate, provided that additive
iterations on levels are parallelized.

2. The algorithms which are of multiplicative type over the levels converge better,
by a factor of between 1=J and 1 (depending on �), than their additive similar
variants.

4 One- and Two-Level Methods for Variational Inequalities
of the Second Kind and Quasi-Variational Inequalities

The results in this section are detailed in Badea and Krause (2012) where one- and
two-levelmethods have been introduced and analyzed for the second kind and quasi-
variational inequalities. In the case of the variational inequalities of the second kind,
let ' W K ! R be a convex, lower semicontinuous, not differentiable functional and,
if K is not bounded, we assume that F C ' is coercive, i.e. F.v/C '.v/ ! 1, as
kvk ! 1; v 2 K. We consider the variational of the second kind

u 2 K : hF0.u/; v � ui C '.v/ � '.u/ � 0; for any v 2 K (3)

which, in view of the properties of F and ', has a unique solution. An example
of such a problem is given by the contact problems with Tresca friction. To solve
problem (3), we introduce
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Algorithm 3 We start the algorithm with an arbitrary u0 2 K. At iteration n C
1, having un 2 K, n � 0, we compute sequentially for i D 1; � � � ;m, the local
corrections wnC1

i 2 Vi; unC i�1
m C wnC1

i 2 K as the solution of the variational
inequality

hF0.unC i�1
m C wnC1

i /; vi � wnC1
i i C '.unC i�1

m C vi/� '.unC i�1
m C wnC1

i / � 0;

for any vi 2 Vi; unC i�1
m C vi 2 K, and then we update unC i

m D unC i�1
m C wnC1

i .

To prove the convergence of the algorithm, we introduce a technical assumption,

mX

iD1
Œ'.w C

i�1X

jD1
wj C vi/� '.w C

i�1X

jD1
wj C wi/� � '.v/ � '.w C

mX

iD1
wi/

for v;w 2 K, and vi;wi 2 Vi, i D 1; : : : ;m, in Assumption 1. In general, ' has
not such a property and to show that this assumption holds when the finite element
spaces are used, we have to take a numerical approximation of '. The convergence
of Algorithm 3 is proved by the following

Theorem 3 Under the above assumptions on V, F and ', let u be the solution of
the problem and un, n � 0, be its approximations obtained from Algorithm 3. If
Assumption 1 holds, then there exists M > 0 such that such that kunC i

m k � M,
n � 0; 1 � i � m, and we have the following error estimations:

(i) kun � uk2 � p
˛M

� QC1QC1C1
�n �

F.u0/C '.u0/� F.u/� '.u/
�
if p D q D 2,

(ii) ku � unkp � p
˛M

F.u0/C'.u0/�F.u/�'.u/
�

1Cn QC2.F.u0/C'.u0/�F.u/�'.u//
p�q
q�1

� q�1
p�q

if p > q,

where

QC1 D ˇM.1C 2C0/m
2� q

p .
p

˛M
/
q
p
�
F.u0/� F.u/ C '.u0/� '.u/

	 p�q
p. p�1/ C

ˇMC0m
p�qC1

p 1

"
1

p�1

. p
˛M
/
q�1
p�1 with " D ˛M=

�
pˇMC0m

p�qC1
p

�
;

QC2 D p � q

. p � 1/.F.u0/C '.u0/� F.u/� '.u//
p�q
q�1 C .q � 1/C

p�1
q�1

1

In the case of the quasivariational inequalities, we consider only the case of p D
q D 2 and let ' W K � K ! R be a functional such that, for any u 2 K, '.u; �/ W
K ! R is convex, lower semicontinuous and, if K is not bounded, F.�/C '.u; �/ is
coercive, i.e. F.v/ C '.u; v/ ! 1 as kvk ! 1; v 2 K. We assume that for any
M > 0 there exists a constant cM > 0 such that

j'.v1;w2/C '.v2;w1/� '.v1;w1/� '.v2;w2/j � cMjjv1 � v2jjjjw1 � w2jj
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for any v1; v2; w1 w2 2 K, jjv1jj; jjv2jj; jjw1jj jjw2jj � M. If ' has the above
property, the quasi-variational inequality

u 2 K : hF0.u/; v � ui C '.u; v/ � '.u; u/ � 0; for any v 2 K

has a unique solution. An example of such a problem is given by the contact
problemswith non-local Coulomb friction.We can write three algorithms depending
on the first argument of '.

Algorithm 4 We start the algorithm with an arbitrary u0 2 K. At iteration n C
1, having un 2 K, n � 0, we compute sequentially for i D 1; � � � ;m, the local
corrections wnC1

i 2 Vi; unC i�1
m C wnC1

i 2 K, satisfying

hF0.unC i�1
m C wnC1

i /; vi � wnC1
i i C '.vnC1

i ; unC i�1
m C vi/

�'.vnC1
i ; unC i�1

m C wnC1
i / � 0;

for any vi 2 Vi; unC i�1
m C vi 2 K, and then we update unC i

m D unC i�1
m C wnC1

i .

Above, the first argument vnC1
i of ' can be taken either unC i�1

m CwnC1
i or unC i�1

m or
even un. As we shall see in the next convergence theorem, the three variants of the
algorithm are convergent. Similarly with the case of the inequalities of the second
kind, we introduce the technical assumption

mX

iD1
Œ'.u;w C

i�1X

jD1
wj C vi/� '.u;w C

iX

jD1
wj/� � '.u; v/ � '.u;w C

mX

iD1
wi/

for any u 2 K and for v;w 2 K and vi;wi 2 Vi; unC i�1
m C vi 2 K, i D

1; : : : ;m, in Assumption 1. Also, in the finite element spaces, ' of the continuous
problem is numerically approximated in order to get the above assumption satisfied.
Convergence of the three algorithms is proved by

Theorem 4 Under the above assumptions on V, F and ', let u be the solution of the
problem and un, n � 0, be its approximations obtained from one of the variants of
Algorithm 4. If Assumption 1 holds, and if ˛M

2
� mcM Cp

2m.25C0 C 8/ˇMcM; for

any M > 0, then there exists an M > 0 such that kunC i
m k � M, n � 0; 1 � i � m,

and we have the following error estimation

kun � uk2 � 2

˛M

 QC1
QC1 C 1

!n
�
F.u0/C '.u; u0/ � F.u/� '.u; u/� :
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where

QC1 D QC2= QC3 with QC2 D ˇMm.1C 2C0 C C0
"1
/C cMm.1C 2C0 C 1C3C0

"2
/;

QC3 D ˛M
2

� cM.1C "3/m and "1 D "2 D 2cMm
˛M
2 �cMm

; "3 D
˛M
2 �cMm
2cMm :

Remark 3

1. Extension of the previous methods (given for variational inequalities of the
second kind and quasi-variational inequalities) to methods with more than two
levels, having an optimal rate of convergence, is not very evident because of the
technical conditions we have introduced,which are not satisfied when the domain
decompositions on the coarse levels are considered.

2. By using Newton linearizations of ', R. Kornhuber introducedmultigridmethods
for complementarity problems and estimated the asymptotic convergence rates.

5 Multigrid Methods for Inequalities with a Term Given
by a Lipschitz Operator

In this section, we estimate the global convergence rate of a multigrid method for
the particular case of quasi-variational inequalities when the inequality contains a
term given by a Lipschitz operator. Details concerning the results of this section can
be found in Badea (2016). As in the previous section, we consider the case when
p D q D 2 and ˛M D ˛, ˇM D ˇ, i.e. they not depend on M. Let T W V ! V 0 be a
Lipschitz continuous operator jjT.v/ � T.u/jjV0 � � jjv � ujj for any v; u 2 V; and
we consider the problem

u 2 K : hF0.u/; v � ui C hT.u/; v � ui � 0 for any v 2 K:

In the following algorithm, each iteration contains � intermediate iterations in which
the argument of T is kept unchanged.

Algorithm 5 We start the algorithm with an arbitrary u0 2 K. Assuming that at
iteration nC1 we have un 2 K, n � 0, we write Qun D un and carry out the following
two steps:

1. We perform � � 1 iterations of Algorithm 2 starting with Qun and keeping the
argument of T equal with un, i.e. we apply Algorithm 2 to the inequality

Qu 2 K : hF0.Qu/; v � Qui C hT.un/; v � Qui � 0 for any v 2 K

After the � iterations we get the approximation QunC� of Qu.
2. We write unC1 D QunC� .
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Convergence condition of Theorem 4 depends on the number m of the subspaces in
the one- or two-level methods. We will see in the next theorem that if the Lipschitz
constant of the operator T is small enough, the convergence condition of the above
algorithm is independent of the number of levels and the number of subdomains on
the levels.

Theorem 5 We assume that V, F and T satisfy the above conditions and that

Assumptions 2–3 hold. Then, if �=˛ < 1=2 and � satisfies . QC
QCC1 /

� <
1�2 �˛

1C3 �˛C4 �2
˛2

C �3

˛3

;

Algorithm 5 is convergent and we have the following error estimation

kun � uk2 � 2
˛
Œ2
�

˛
C .

QC
QCC1/

�.1C 3
�

˛
C 4

�2

˛2
C �3

˛3
/�n

�ŒF.u0/C hT.u/; u0i � F.u/� hT.u/; ui�;

where QC D 1

C2"

�

1C C2 C C1C2 C C2
"

�

; " D ˛

2ˇI.maxkD1;��� ;J
PJ

jD1 ˇkj/C2
:
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