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Abstract As the organ responsible for gas exchange, the lung represents the largest 
interface between the external and internal environments. Most of the lung’s surface 
area is a delicate lattice of epithelial-endothelial interfaces that permit the efficient 
exchange of oxygen and carbon dioxide. To maintain its integrity, the lung requires 
a complex network of defenses against external toxins and pathogens. Macrophage 
migration inhibitory factor (MIF) is a multifunctional cytokine that serves as a criti-
cal regulator of the innate immune response and mediates protection from oxidative 
stress in the lung. Both pathologic and protective roles for MIF in lung disease have 
been described. This chapter will focus on the role of MIF in the pathogenesis of 
pulmonary disease.

1  MIF, Pneumonia, and Acute Respiratory  
Distress Syndrome

MIF is secreted into the alveolar space as part of the antimicrobial response to infec-
tion. MIF is a critical mediator of host defense and inflammation; however, MIF can 
be maladaptive when infections lead to excessive inflammation and overwhelming 
lung injury.

Numerous murine models and clinical studies have demonstrated a protective role 
for MIF in the context of pneumonia. Mif-knockout mice show decreased clearance 
of Streptococcus pneumoniae colonization, increased vulnerability to Klebsiella 
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pneumoniae, impaired killing of gram-negative bacteria by macrophages, and an 
impaired ability to clear secondary bacterial infections [1–3]. Additionally, MIF is 
responsible for the transcription of the pattern recognition receptor, dectin-1, which 
mediates the clearance of Mycobacterium tuberculosis [4]. Human MIF alleles asso-
ciated with decreased MIF expression have been associated with increased suscepti-
bility to community-acquired pneumonia [5]. Similarly, there was significant 
enrichment of the low-expressing MIF allele among older individuals with gram-neg-
ative sepsis compared with healthy controls [6]. In these conditions, MIF is important 
for the clearance of infectious agents associated with pneumonia.

However, under other conditions or in the setting of infection by specific organ-
isms, MIF has been demonstrated to be deleterious. Mif-knockout and MIF-inhibited 
mice show lower levels of inflammation and improved survival against lethal doses 
of LPS and gram-positive enterotoxins [7, 8]. Similarly, MIF elevation is associated 
with pathogenicity of Pseudomonas pneumonia, and patients infected with 
Burkholderia pseudomallei show increased MIF expression [9]. Furthermore, neu-
tralization of MIF in animal models improves bacterial clearance of Burkholderia 
pseudomallei [10]. In general, neutralization of MIF or Mif-knockout has been 
shown to improve outcomes in murine models of sepsis [11, 12].

Acute respiratory distress syndrome (ARDS) is a life-threatening condition char-
acterized by widespread inflammation of the lungs. ARDS commonly occurs as a 
consequence of pneumonia or non-pulmonary infections that are complicated by sys-
temic involvement. ARDS has an associated mortality of 25–30%, and currently, the 
only treatment for this disease is mechanical ventilation and supportive care [13].

MIF is elevated in the plasma, immune cells, and endothelial cells of patients 
with ARDS, and circulating MIF levels correlate with clinical severity [14–16]. A 
role for MIF and its receptor CD74 in acute lung injury (ALI) has been suggested 
by numerous studies that correlate decreased MIF activity with attenuated neutro-
phil migration and thus increased protection from damage-induced lung inflamma-
tion. In a study that used ex vivo human macrophages from ARDS-affected patients, 
MIF was demonstrated to mediate injurious inflammation and override glucocorti-
coid anti-inflammatory activity. In this same study, neutralizing MIF attenuates pro- 
inflammatory cytokine production, illustrating the potential for therapeutic use of 
anti-MIF therapy in ARDS [17].

In animal models, attenuating MIF activity results in a decreased pulmonary 
inflammatory response and less severe organ injury [7, 8, 11, 12]. The use of anti- 
MIF and anti-CD74 antibodies in such studies decreased neutrophil migration in 
lipopolysaccharide (LPS)-induced ALI [18–20]. Similar findings have been reported 
in ventilator-induced ALI models and ARDS induced by gram-positive exotoxins 
[20–22]. As an alternative to anti-MIF antibodies, heme oxygenase-1 expression by 
administration of cobalt protoporphyrins has been shown to negatively regulate 
lung MIF and TLR4-induced inflammation in response to LPS [23].

Conversely, MIF has been demonstrated to have a protective effect in certain 
sterile injury models. Hyperoxia (exposure to 100% oxygen) is a commonly used 
ALI model in which Mif-knockout and Cd74-knockout mice demonstrate increased 
sensitivity to hyperoxia-induced lung injury and decreased median survival rela-
tive to WT mice [24]. In neonatal mice, exposure to hyperoxia causes 
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 bronchopulmonary dysplasia (BPD), and Mif-knockout− and Cd74-knockout pups 
are similarly susceptible to hyperoxia-induced BPD [25, 26]. BPD is a respiratory 
disorder that occurs in premature neonates in which prolonged delivery of supple-
mental oxygen causes alveolar septal injury. Genetic studies have associated low-
expression MIF alleles with increased susceptibility to BPD.  Finally, older 
Mif−/− mice demonstrate increased susceptibility to radiation-induced lung injury, 
an effect attributed to the lack of MIF-mediated NRF-2 activation? MIF upregula-
tion of nuclear factor erythroid 2-related factor 2 (NRF-2) in murine endothelial 
cells [27].

2  MIF and Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is the narrowing and thickening of blood 
vessels, involving proliferation of lung vascular endothelial and smooth muscle 
cells, that ultimately leads to hypoxemia and right ventricular failure. Circulating 
MIF is elevated in patients with idiopathic and scleroderma-associated PAH [28, 
29]. In rodent models of PAH, MIF was shown to promote the proliferation of pul-
monary arterial smooth muscle cells and activate anti-apoptotic and pro- 
inflammatory signaling in pulmonary endothelial cells in a CD74-dependent 
manner. Inhibition of MIF-CD74 interaction using ISO-1, in multiple rodent mod-
els, resulted in decreased pulmonary vascular remodeling, cardiac hypertrophy, and 
right ventricular systolic pressure [6, 28, 30]. These results indicate a potential ther-
apeutic effect of MIF inhibition for patients suffering from PAH.

3  MIF and Chronic Pulmonary Inflammatory Disease

3.1  Chronic Obstructive Pulmonary Disease

COPD is the third leading cause of death in the United States. Emphysema, a hall-
mark pathologic finding in COPD, is characterized by an imbalance of lung tissue 
injury and repair. Emphysema is associated with an increase in cellular senescence, 
oxidative stress, and DNA damage [31–34].

Several studies evaluating circulating MIF in relation to COPD disease severity 
have revealed similar trends in MIF concentration and disease pathogenesis. The 
cumulative data from three studies suggest that MIF is significantly increased in 
“healthy” smokers or smokers with mild disease. However, in severe disease, 
 circulating MIF concentrations are diminished [35, 36]. These findings have been 
recapitulated in experimental animal models where mice exposed to cigarette smoke 
for 3  months exhibited increased MIF concentration in bronchoalveolar lavage 
(BAL), but at 6 months of exposure—a time course consistent with COPD develop-
ment in mice—BAL and circulating MIF concentration were decreased [35–38]. 
Both  Mif- knockout and Cd74-knockout mice spontaneously develop airspace 
enlargement, and Mif-knockout mice are prone to cigarette-induced DNA 
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damage, cellular senescence, apoptosis, and emphysema [35, 36, 39]. The role 
for diminished MIF in the pathogenesis of emphysema is unclear, but several 
factors have been shown to contribute to the severe disease phenotype. First, MIF 
may promote the expression of a critical lung antioxidant, NRF-2, such that, low 
MIF levels could increase susceptibility to cellular oxidative damage [40]. 
Additionally, MIF is a repressor of the p16-RB and p53–21 cellular senescence 
pathways [36]. Increased cellular senescence is implicated in the secretion of 
pro-inflammatory cytokines and proteases involved in the pathogenesis severe 
COPD.  Finally, Mif-knockout mice show reduced vascular endothelial growth 
factor (VEGF) VEGF signaling in response to oxidative stress, which results in 
reduced vasculogenesis, a finding implicated in the pathogenesis of COPD [41–
43]. Ultimately, these findings suggest a central role for MIF in mitigating the 
consequences of oxidative damage in the injured lung and suggest a possible 
avenue for therapeutic intervention with MIF in patients with severe COPD.

3.2  Asthma

Asthma is a common type of chronic airway inflammation characterized by variable, 
reversible airway obstruction and bronchospasm. Symptoms include wheezing, 
coughing, chest tightness, and dyspnea resulting from the contraction of tracheo-
bronchial smooth muscle, hypersecretion of mucus, and mucosal edema [43].

Unlike COPD, expression of MIF is inversely correlated to clinical outcomes in 
asthma, as illustrated by a study in which MIF concentration was increased in the BAL 
of asthma patients relative to controls [44, 45]. MIF is stored in circulating eosinophils 
and contributes to the release of cytokines in response to physiologic asthma stimuli, 
such as interleukin-5 [46]. Additionally, staining of sputum cells revealed that MIF was 
co-localized with eosinophil peroxidase in the cytoplasm [47]. Functional MIF alleles 
that contribute to higher basal and stimulated MIF promoter activity are associated with 
more severe disease phenotypes [48, 49]. Notably, severe asthma is associated with 
corticosteroid resistance, and MIF has been shown to override the anti-inflammatory 
effects of corticosteroids, suggesting a potential therapeutic role for MIF antagonism in 
this disease [50]. Notably, there are both distinct and overlapping features of asthma 
and COPD, and the study of MIF in these disease reveals an interesting paradigm 
where increased MIF results in the deleterious inflammatory consequences seen in 
asthma and airway predominant COPD, whereas decreased MIF causes cellular senes-
cence, apoptosis, and vascular attrition commonly observed in emphysema.

4  Cystic Fibrosis

Cystic fibrosis (CF) is a common and fatal genetic disorder caused by mutations in 
the cystic fibrosis transmembrane regulator (CFTR) gene. This disease is character-
ized by chronic buildup of thick mucus in the airways of the lung, followed by 
infections with Pseudomonas sp. and Burkholderia sp. gram-negative bacteria.

T. Baker et al.



139

As discussed previously, Mif-knockout mice were able to clear, but not kill, 
gram-negative bacteria more effectively than in WT mice. Additionally, MIF activ-
ity results in the delayed apoptosis of neutrophils, thus promoting the survival of 
activated leukocytes that contribute to the inflammatory response [51]. Furthermore, 
there is a significant correlation between the Mif promoter polymorphism and clini-
cal severity of cystic fibrosis. Those individuals with the low-expressing MIF allele 
showed decreased Pseudomonas sp. colonization, while those with the higher MIF 
producing alleles showed increased lung injury [52]. The tautomerase enzymatic 
activity of MIF is believed to be critical to the inflammatory response in the lung 
[53]. The pathologic finding of excessive inflammation and the positive clinical 
outcomes associated with reduced MIF expression suggest that targeting MIF may 
yield beneficial outcomes when treating the infectious consequences of CF.

4.1  Lung Fibrosis

Lung fibrosis is a respiratory disease characterized by lung tissue scarring. The 
causes of fibrotic lung disease are commonly genetic, idiopathic, secondary to auto-
immune disease, or secondary to drug reactions. MIF is increased in the BAL of 
patients with idiopathic pulmonary fibrosis (IPF), and immunohistochemical analy-
sis of lung tissue from patients with IPF demonstrated increased MIF in the epithe-
lium and fibroblastic foci [54, 55].

In a mouse model of IPF, administration of the fibrogenic agent bleomycin 
results in increased Mif expression. Although an anti-MIF antibody was able to 
mitigate the acute effects of bleomycin-induced lung injury, there was no difference 
in hydroxyproline content or histopathological lung fibrosis scoring [56]. In a 
radiation- induced lung injury model, aged Mif-knockout mice are more susceptible 
than age-matched control mice. This finding was associated with decreased antioxi-
dant production [57]. In murine models for hepatic fibrosis and chronic liver injury, 
the Mif-knockout mice showed decreased PDGF activation and increased protection 
from injury [58]. Currently, the role of MIF in lung fibrosis remains uncertain.

4.2  MIF and Lung Cancer

Lung cancer is the most common fatal malignancies in the developed world, 
accounting for over one million deaths annually. Chronic inflammatory diseases are 
associated with enhanced risk of cancer, and MIF may be a link between lung 
inflammation and cancer development.

Histologic studies of lung cancer have suggested a pathogenic role for MIF. In 
normal lung tissue, MIF mRNA and protein are observed in the bronchial and 
alveolar epithelium, endothelium, vascular smooth muscle, and alveolar macro-
phages. Conversely, in tissue derived from primary lung adenocarcinoma, MIF is 
more heavily concentrated in the alveolar epithelium relative to normal tissue con-
centrations [59]. Likewise, the presence of MIF in the nuclei of non-small cell lung 
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cancer (NSCLC) is correlated with a worse prognosis compared to malignancies 
without MIF.  It was subsequently demonstrated that NSCLC that produce high 
levels of MIF mRNA were derived from patients who were heavy smokers [60]. 
Furthermore, MIF and CD74 are so prevalent in malignant pulmonary carcinoma 
that increased immunohistochemical staining of MIF and CD74 could potentially 
be a biomarker of the disease [61, 62].

There are multiple mechanisms by which MIF’s biological function can lead to 
pulmonary malignancies. MIF expression induces AKT and ERK 1/2 activation, 
contributing to tumor growth, survival, and invasion. MIF also upregulates VEGF, 
resulting in increased angiogenesis. Implicated in this proangiogenic process is a 
CXC chemokine induced by peripheral blood monocytes [63]. MIF can act together 
with its homolog, D-dopachrome tautomerase, to promote CXC8 and VEGF activ-
ity in NSCLC [64]. Finally, MIF negatively regulates the cell senescence and tumor 
suppressor gene p53 and the Rb-E2F signaling pathway, resulting in increased cell 
proliferation and reduced growth limitation [36, 65–69]. MIF regulates cyclin-
dependent kinases and E2F transcription during cell cycle and growth and may play 
a role in regulating the DNA damage response [70]. Interesting preliminary data 
shows that Mif-knockout mice exhibit increased levels of DNA damage relative to 
controls [35, 71].

5  Conclusion

There is a growing body of evidence that highlights the critical role of MIF in various 
respiratory disorders. MIF acts as a stress-mediated cytokine, activating cellular path-
ways to mitigate harm during certain infections or under conditions of oxidative 
stress. High levels of MIF may perpetuate pulmonary conditions in which chronic 
inflammation becomes detrimental. It may be that MIF is implicated in so many pul-
monary diseases because it functions as a rheostat for critical biologic processes in the 
lung. Therefore, timing, context, and degree determine if MIF serves a beneficial or 
pathologic role. Therapeutic intervention upon the MIF signaling pathway will require 
a better understanding of the cell-specific consequences of MIF as well as the various 
downstream signaling pathways regulated by MIF. However, once elucidated MIF-
based strategies offer immense diagnostic and therapeutic potential.
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