
5Innovative Trend Analyses

Abstract
Innovative trend analysis is the most modern, simple, easy to interpret, and
effective trend analysis procedure that incorporates first visual inspection for
identification of the trend type whether increasing, decreasing, or no trend cases
and then provide numerical calculation for the trend slope again by a very simple
formulation. All the classical trend determination methodologies try to find
holistic monotonic trend either over the whole record period or on pieces of
subperiods. However, the innovative trend method compares last parts of any
desired duration record length with earlier perions within the time series itself,
hence, one can appreciate the trend variation within the record itself. Another
innovative trend method is based on the number of crossings along the trend
line, which should have the maximum number of crossing. This procedure helps
to identify also the surplus and deficit parts of a given time series with respect to
the trend line.
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5.1 General

There are commonly used trend identification techniques such as Mann–Kendall
(MK) and Spearman’s Rho (SR) tests as explained in Chap. 3, but their validity is
possible under a set of restrictive assumptions such as independent structure of the
time series, normality of the distribution and length of data. It is also not possible to
calculate trend magnitude (slope) except through regression approach, which brings
additional assumptions for the theoretical validation in practical applications.
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Recent hydrologic regime changes due to potential climate variability impacts
brought into focus the search for effective trend identification analysis. Numerous
works in different parts of the world showed quasi-periodic natural behavior and
systematic trends of key climate variables due to climate change and/or climate
variability (Chap. 6). It is well known that changing climate is expected to have
notable impacts on the rainfall–runoff processes due to increasing or decreasing
trends in hydro-meteorological time series (floods, droughts, heat waves, etc.).
These impacts can no longer be assumed to be stationary, which means that future
replicates are no more statistically indistinguishable from the historical counter-
parts. If climate change is not taken into account then such changes or variability
can lead to underestimation/overestimation of parameters for the design and
operation of water infrastructures, water shortages, water stresses, and agricultural
failures. Although some test procedures are presented for trend identification, there
are restrictive assumptions with respect to serial structure (ignorance of correlation
coefficient), normal probability distribution function (PDF) of the variables and
rather lengthy datasets.

Two commonly used trend tests are Mann–Kendall (Mann 1945; Kendall 1975)
test and Spearman’s Rho test to the data set (Sen 1978). In many studies, these two
nonparametric rank-based statistical tests are used for detecting monotonic trends in
a given time series. The power of these tests has not been well documented but the
simulation results by Yue et al. (2002a, b, c) indicate that the power depends on the
pre-assigned significance level, magnitude of trend, sample size, and the amount of
variation within a time series. That is, the bigger the absolute magnitude of trend,
the more powerful are the tests; as the sample size increases, the tests become more
powerful; and as the amount of variation increases within a time series, the power of
the tests decrease. When a trend is present, the power is also dependent on the PDF
type and the skewness coefficient. The simulation results also demonstrate that
these two tests have similar power in detecting a monotonic trend, to the point of
being indistinguishable in practice.

In the past, time series were often assumed as stationary or weakly stationary
stochastic processes for simulation purposes. Due to anthropogenic (human dis-
turbance) effects on climate, environment, drainage basin and atmosphere, such an
assumption is not valid anymore. However, this is almost the case with economic
time series. This implies that future predictions cannot be regarded as statistically
indistinguishable from the past records. Current anthropogenic impacts substan-
tially affect natural, environmental and economic variables. For instance, events as
droughts, floods, and streamflow discharges are also influenced by climate impacts.
Monotonic and steadily increasing trends in past records lead to the alteration of
planning, operation and management practices of atmospheric researchers, meteo-
rologists, climatologists, economics, and hydrologists alike. Therefore, prior to any
future predictions, it is necessary to try and identify possible monotonic trend
components in any given time series. Trend identification analyses have been
extensively employed in natural works (Kalra et al. 2008; Miller and Piechota 2008;
McCabe and Wolock 2002; Lins and Slack 1999; Douglas et al. 2000; Lettenmaier
et al. 1994; Groisman et al. 2001).
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This section presents preliminary results and applications of two effective and
potential innovative trend identification methodologies that do not require many of
the restrictive assumptions. The first one is concerned with the plot of a set of
subseries from the original time series on a Cartesian coordinate system, where 45°
straight-line implies no trend but any plot appearance above (below) this line
implies increasing (decreasing) trends. The same methodology is capable to provide
trend magnitude (slope) calculation. The other one, crossing trend analysis, depends
on the crossing number of a given time series at the arithmetic average truncation
level.

5.2 Probability Distribution-Statistical Parameter Trend
Implications

The most important trend or shift component indicator in any time series is the PDF
provided that there is a long series of available data that can be divided into at least
two nonoverlapping equal parts. The frequency distribution function (or histogram)
for each part is than fitted to a theoretical PDF and the comparison of these two
PDFs provide first a visual inspection about the possibility of trend or sudden shift
(jump) component. For the sake of explanation herein the theoretical PDFs are
assumed as a normal PDF. Comparison of the relative position of these two PDFs to
each other leads to seven different cases The first case is shown in Fig. 5.1 where
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the two PDFs of the first and next half of the available time series record fall on
each other then there is no trend component within the time series (Fig. 5.1). The
property implies also that the time series is strictly stationary, because all the
statistical parameters are constant along the time series. If one interprets this graph
under the light of recent climate change she/he can state that there is no climate
change and “hot,” “mild,” and “cold” climate states remain almost the same by
time. Notice that for climate change interpretation the horizontal axis is taken as
representative of temperature records.

As in Fig. 5.2 if there is a shift of the first part (past records) PDF toward higher
values then there is the possibility of either an increasing trend or a jump that maybe
sudden or over a very short period of time. One can decide qualitatively by visual
inspection of the time series graph whether it is a trend or a jump. If the increase in
the time series values toward recent values seems as gradual then one can conclude
that there is an increasing trend, otherwise it is a jump. An important point at this
point is that the time difference between the two PDFs in Fig. 5.2 is equal to the
half duration time of the time series record duration. This last statement implies that
in case of a trend there is a gradual increase from the statistical parameters of the
first half toward the second half. This is a very important scrap of information,
which enables one to calculate any parameters change slope by taking the difference
between the two parameters and its division by the half duration.
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In Fig. 5.2 by taking into consideration that the horizontal axis is for temperature
records then one can make climate change implication interpretations as “colder,”
“extremely cold,” “hotter,” and “extremely hot” weather conditions. The reader
may have his/her interpretations.

Decreasing trend or downward jump possibilities are shown in Fig. 5.3 on the
basis of two-halves PDFs. The shift in the first part PDF is toward lower data
values. Similar to the previous case the statistical parameters are decreased and the
slope values can be calculated for each statistical parameter.

The previous graphs collectively imply that although there are changes in the
arithmetic average values, but the standard deviation remains the same, i.e.,
homoscedasticity exists. These three figures are the fundamental assumption in the
classical trend determination, because all the linear trend lines do not take into
consideration possible changes in the standard deviation.

However, there may also be variations in the standard deviations, which can be
identified by the comparison of the two parts’ PDFs. The change in the variance,
which is also valid for the standard deviation, is referred to as the variability in this
book. For instance, the case in Fig. 5.4 an increasing variability is valid, because
although there is no change in the arithmetic average the standard deviation has
increased again during the half duration of the time series record length. Since, as a
general rule, the area under any PDF is equal to one, expansion in this figure
implies reduction in the peak value probability. As in the previous cases, the reader
may emerge with his/her own interpretation by considering that the horizontal axis
is for temperature records.
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Opposite of increasing variability Fig. 5.5 is the representative of the decreasing
variability. The comparison of the two PDFs indicates that the recent half records
had shrinkage in the PDF, which is the reduction in the standard deviation. If after
visual inspection of the time series graph one come out with gradual decrease in the
standard deviation values then there is a standard deviation trend of which the slope
is equal to the difference between the standard deviations divided by the half time
series duration.

Figures 5.4 and 5.5 also imply that the underlying time series are first order
stationary, because the arithmetic averages remain the same. More detailed infor-
mation and methodological explanations are presented about the variability in
Chap. 7.

It is also possible to have trend and also variability in the same time series, which
is the case in some of the natural and environmental time series records. For
instance, if one considers the relative positions of the first and second half PDFs as
in Fig. 5.6, then s/he can conclude that there is changes in the arithmetic average
and in the standard deviation simultaneously.

After all what have been explained about the relative positions of the first and
second half PDFs, the reader must have got used to the interpretation. Anyone can
interpretate that Fig. 5.7 represents
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Fig. 5.4 Increasing variability
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Fig. 5.5 Decreasing variability
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5.3 Innovative Trend Identification Methodologies

In the following sequel, the innovative trend identification method presents as a
new approach on the basis of subsection time series plots derived from a given time
series on a Cartesian coordinate system. In such a plot trend-free time series sub-
sections appear along the 1:1 (45°) straight-line. Increasing (decreasing) trends
occupy upper (lower) triangular areas of the square area defined by the variation
domain of the variable concerned. The validity of this new approach is documented
through a set of Monte Carlo simulations by taking into consideration independent
and dependent processes (Sect. 5.3). In this new approach, assumptions for the MK
and Spearman’s rho (SR) tests are avoided and additionally it is possible to cal-
culate trend magnitude from square area plots.

The basis of the approach rests on the fact that if two time series are identical to
each other, their plot against each other shows scatter points along 1:1 (45°)
straight-line on the Cartesian coordinate system as in Fig. 5.8a. In the figure, there
are 25 data points, which come from a nonnormal PDF. Whatever the time series,
whether trend free or with monotonic trends, all points fall on the 1:1 straight-line
when plotted. There is no distinction whether the time series are nonnormally
distributed, having small sample lengths or possess serial correlations. One
important conclusion from Fig. 5.8a is that data values sort themselves in ascending
(or descending) order along the 1:1 straight-line. This idea will also be used later in
this section in the trend identification procedure.
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Fig. 5.7 Increasing trend and decreasing variability
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The same 25 data points are added with increasing and decreasing trends sep-
arately and then they are ordered and plotted against the original (trend-free) time
series, which is also sorted in ascending order. The results are shown in Fig. 5.8b, c
for increasing and decreasing trends, respectively. It is obvious that in the case of
increasing (decreasing) monotonic trend, the scatter points fall above (below) the
1:1 straight-line. For any trial with nonnormal, small sample and serially correlated
time series, similar scatter diagrams are obtained for increasing and decreasing
trends.

The next question is how could one identify the existing trend in a given time
series with respect to the idea of 1:1 straight-line? The answer appears as a plot of
the first half of the same time series against the second half according to the
above-mentioned idea. In Fig. 5.9a, b, the same time series as shown in Fig. 5.8b, c
are used, this time by considering two-halves and the sorting procedure. It becomes
obvious that monotone increasing (decreasing) trend in the given time series fall
above (below) the 1:1 straight-line. This idea can be used for engineering, envi-
ronmental, economic, or hydro-climatic time series trend identifications.

On the other hand, it is also possible to have time series with half plots similar to
Fig. 5.9 as in Fig. 5.10, where there are scatter points on both sides of 1:1
straight-line. In Fig. 5.10a low (high) values are more (less) in the first half than the
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Fig. 5.8 a Trendless time series, b increasing trend, c decreasing trend
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next half, whereas in Fig. 5.10b the opposite situation occurs. These cases corre-
spond to nonmonotonic trends where within the same time series there are
increasing and decreasing trends at different scales even hidden ones (Chap. 6).

In practical applications, a mixture of the all the cases explained in this section
appears accordingly, the necessary interpretations can be done for better under-
standing the composition of the time series structure.

5.3.1 Application

The applications of the innovative trend methodology are presented for different
annual runoff and rainfall series recorded at various locations in Turkey in addition
to annual Danube river flows. Aslantas and Menzelet Dams are the catchment areas
in southern Turkey on Ceyhan River that confluences into the Mediterranean Sea.
Cizre streamflow station is on the Tigris River right at the border between Turkey
and Iraq. Danube annual streamflow records are from Orshava station in Romania.
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Fig. 5.9 Time series halves with monotonic trends, a increasing, b decreasing
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Fig. 5.10 Time series halves with nonmonotonic trends, a increasing, b decreasing
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Figure 5.11a, b are from two hydrological catchments in Turkey, each reflecting
annual flows from 1954 to 2003. For the interpretation of these figures, it is better to
think of the annual flows in three clusters as “low,” “middle,” and “high” flows. In
order to make a detailed interpretation, the scatter diagram on 1:1 straight-line
graphs are divided into three verbal clusters as “Low,” “Medium,” and “High.” In
Fig. 5.11a, “low” flows represent points on the increasing trend upper triangle,
which means that there is an increase in the “low” flows during the second half of
the historic record (1979–2003) with respect to the first half (1954–1978). In the
“medium” cluster, there is almost no trend, and finally, the “high” cluster indicates
decreasing trend. All these explanations imply that the annual flow series have a
composition of various trend patterns.

The annual flow scatter diagram between two-halves of Menzelet station are
shown in Fig. 5.11b, where the “low” flows have slight increasing component
within the “low” flow cluster small and big values. The “medium” flow cluster is
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Fig. 5.11 Various 1:1 plots. a Aslantas Dam. b Menzelet Dam. c Cizre Station. e Danube River
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trend free because the scatter of points concentrate closely around 1:1 straight-line.
In the “high” cluster a decreasing trend component is valid. At this station there is a
decrease in the “high” flow values; and hence, in the future, water stress is more
likely to appear.

In Fig. 5.11c, “low” and “high” clusters indicate decreasing trends, whereas the
“medium” cluster is trend free. Comparatively “high” flow trends have shorter
duration than in the “low” cluster portion. Most of the duration is occupied by
“medium” cluster flows with no significant trend component. Furthermore, the
“low” and “high” flows have decreases in the (1971–2003) duration compared to
(1938–1970). This also gives the warning that at this station droughts and floods are
bound to increase in the future.

Finally, Danube river annual flows do not have any significant trend in the “low”
flow cluster, which includes all the annual flows less than about 5750 m3/s
(Fig. 5.11d). “Medium” flows have some decreasing trend and “high” flow cluster
has slightly significant increasing level.

Based on the above explanations, the following important points can be sum-
marized about the innovative trend methodology.

(1) If scatter points on the first quadrant of the Cartesian coordinate system fall on
another straight-line parallel to 1:1 straight-line, then there is a monotonic
increasing (decreasing) trend depending on the fall of the scatter points onto
the upper (lower) triangular area of the scatter region,

(2) The closer the scatter points are to the 1:1 straight-line, the weaker the trend
magnitude (slope),

(3) In the case of nonmonotonic trends (i.e., composition of various trends in the
time series), the scatter points take their positions on a curve.

This innovative trend method does not require restrictive valid assumptions
whatever the sample size, serial correlation structure of the time series, and non-
normal PDFs.

5.4 Innovative Trend Simulation

Trend analyses occupy a significant role in the climate change studies since almost
four decades. It is significant to try and identify monotonic trends in a given time
series so as to make future predictions about the possible consequences on the
urban environment, economics, water resources, agriculture, environmental, and
many other socioeconomic aspects of the life. Although there are now classically
accepted and frequently used trend tests in the open literature such as MK trend
analysis and SR test, they are based on some restrictive assumptions as normality,
serial independence, and rather long sample sizes. Besides they search for a single
monotonic trend without any specification such as “low,” “medium,” and “high”
values, which may have different trend patterns. Many time series records have
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serial dependence and, therefore, it is very helpful to provide a methodology, which
is not affected from such restriction. It is the main purpose of this section to provide
simulation results and applications of an earlier innovative trend analysis
methodology based on the 1:1 (45°) straight-line comparison of the scatter points
on a Cartesian coordinate system.

Natural and human activities affect different processes in a continuous manner
and their impacts appear in the forms of trends or sudden jumps. Some particular
natural phenomena such as El Niño, as well as all kinds of large scale water
resources development projects, may alter hydrological processes and may lead to
abrupt changes in the hydrological time series (Xiong and Guo 2004). The presence
of deterministic trends in the time series may provide information about the future
evolution of the process or at least on the possible modifications. In practical
applications, the knowledge of the trend for a given variable of interest may help to
forecast future realizations and to design future scenarios. Nowadays, with the
growing importance of climate change assessment, trend detection, and evaluation
are subjects of intensive scientific research (Brunetti et al. 2001; Burn et al. 2002;
Kahya and Kalaycı 2004; Groisman et al. 2004; Cohn and Lins 2005; Barbosa et al.
2008), as also testified in the recent fourth assessment report of the Intergovern-
mental Panel on Climate Change (IPCC 2007). One branch of climate change
science is devoted to analyzing the past climate events and inside this branch trend
detection and statistical significance testing assume an important role (Trenberth
2007).

Natural and man–made effects are defined as the long-term behavior of con-
cerned variables on the average, which provides distinctive features for future
behaviors of the same variable. During the last four decades, the most sought such
behavior is the possibility of monotonic trend existence in a given time series,
because the current day change impacts and causative decisions require gradual
increasing or decreasing trends. Especially, time series records are searched for two
reasons; the first one is trend identification, and then its magnitude determination as
reflection of the “increasing” or “decreasing” quantities. Although there are trend
identification methods, which provide answers for the existence of trends, but the
magnitude is measured either by linear regression approach (Hirsh and Slack 1984;
Lettenmaier et al. 1984) or through the median slope calculation according to Sen
(1978) procedure. This estimator is robust to the effect of outliers in the series. It has
been widely used to compute trends in hydro-meteorological series (Wang and
Zhou 2005; Zhang et al. 2001).

None of the classical trend tests such as the MK test takes into account classical
parametric and most commonly used serial correlation and, hence, they require
independence structure in the applications. In general, independence test can be
carried out mainly by examining the autocorrelation coefficients of the time series.
If the absolute values of the autocorrelation coefficients for a time series consisting
of n observations are not larger than the typical critical value, i.e., 1.96/√n corre-
sponding to the 5% significance level (Douglas et al. 2000), then the observations in
this time series can be accepted as being independent from each other. The
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significance of the trend is determined using Kendall’s test because it does not
assume an underlying probability distribution function (PDF) of the data series.

The main purpose of this section is to present extensive computer simulation for
robust trend identification procedure as already proposed by Şen (2012), which is
not dependent on any restrictive assumption as serial correlation, nonnormality, and
sample number. The procedure is based on the plot of time series two-halves
against each other after sorting in ascending order. This procedure helps to identify
trends distinctively in the low, medium, and high values also. The difference of this
section lies in its extensive independent process and dependent first order Markov
process simulation results, which indicate the relationship between the trend slopes
and first order serial correlation coefficient. Additionally, the comparisons of this
trend procedure with the classical methodologies including MK and SR trend
statistics and Sen’s trend slope are given in table form with necessary
interpretations.

5.4.1 Fundamental Methodology

As mentioned in Sect. 5.3, a new trend analysis methodology by Şen (2012)
depends on the 1:1 (45°) straight-line on a Cartesian coordinate system, where it
corresponds to trend-free case and any deviation from this line indicates trend
existence and the closer is the plots to 1:1 (45°) straight-line, the smaller is the trend
slope.

In the innovative trend identification methodologies as explained in Sect. 5.3
upper and lower triangular areas correspond to trend existence. Figure 5.12 is
prepared as the plot of sorted time series versus two trend-embedded synthetic time
series. Each series is obtained by adding a linear monotonic increasing and
decreasing trend into the original time series in the upper and lower graphs of
Fig. 5.12. In the middle square, plots versus trend-free time series are given after
sorting in ascending order. The final product yields the fact that the upper (lower)
triangular area includes increasing (decreasing) trends, respectively. Additionally,
on the 1:1 straight-line plots, increasing trend time series points can be interpreted
by considering low and high values subjectively in two groups. Hence, since low
values are concentrated near the 1:1 straight-line, the trend existence is weaker than
the group of high values, which significantly deviate from the straight-line 1:1
straight-line. On the other hand, in the lower triangular area, the time series have
low values’ cluster, this time away from the line, whereas high values approach the
1:1 straight-line implying comparatively weaker trend existence in the structure of
the time series considered all based on visualization.

In Fig. 5.13, previous increasing and decreasing trend time series are plotted
within themselves by having the whole series first into two and then sorting them in
ascending order. The result is increasing (decreasing) trend in the time series
according to their complete structure. This point provides a new way of trend
assessment, which takes into account not only the ranks (nonparametrically) but
also the measurements parametrically.
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In the following sections, extensive simulation study is performed for the
validity of the innovative trend methodology by use of independent and dependent
processes.

5.4.1.1 Simulation Methodology
There are different aspects in time series analyses depending on the purpose, which
may take shape according to needs in any planning, design, and operation and
maintenance stages. The prime goal is to deduce some useful and objective
information for future works that support final decisions. Initially, Hazen (1914)
was interested in extending the past records to future predictions and for this
purpose he designed a very simple pre-computer era procedure by writing each one
of the past records on separate paper pieces, mixed them thoroughly in a bag and

Fig. 5.12 Decreasing and increasing trends versus trend-free time series
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then drew one by one for future time series construction. This primitive procedure
had the assumptions of almost trend-free synthetic time series with the same sta-
tistical similarity to past time series. The only difference was in the sequence of past
record values. With the appearance of digital computers in 1950s, stochastic pro-
cesses became in use for the analysis of historical records with the purpose of
constructing their future replicates synthetically in such a way that statistical
properties are indistinguishable from the historical records (Şen 1974). Autore-
gressive (AR) and autoregressive integrated moving average (ARIMA) models in
various degrees of order become in use in many disciplines including hydrology for
water resources planning, operation, and management stages (Box and Jenkins
1970; Montanari et al. 1997).

Figure 5.12 can be used as a template to identify trend existence in a given time
series. For this purpose, the square area template in the first quadrant can be thought
in three portions. These are enumerated below:

(1) The main diagonal, 1:1 (45°) straight-line presents no trend line,
(2) The upper right angle triangular area is for increasing trends,
(3) The lower right angle triangular area is for decreasing trends.

These points will be explained by simulation studies based on dependent and
independent process, trend free and trend-embedded time series in addition to
practical applications. Theoretically, in case of exactly the same two time series,
there is no areal scatter on the coordinate system but the scatter is along the 1:1
straight-line only. This means that each time series is its own reflection on the 1:1
straight-line (see Fig. 5.8a), which corresponds to trend free case, whereas upper
(lower) triangular area is for increasing (decreasing) trends. Figure 5.14a presents
30 points from stochastic processes, where all the points are aligned along the 1:1
straight-line in a random scatter manner similar to Fig. 5.8a. Figure 5.14b presents

Fig. 5.13 Half time series
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time series with regular (deterministic) increments. Such plots have the following
results:

(1) Time series own reflections appear along the main diagonal (1:1 straight-line)
scatter irrespective of trend or trend-free serial structure,

(2) Whatever the PDF of the time series, the end plot also appear along the same
diagonal,

(3) Serial correlation of the time series does not play any role in such plots,
(4) Seasonality component also does not affect the appearance along the main

diagonal scatter,
(5) The number of sample has not role and again the plots appear along the 1:1

(45°) straight-line.

After all these points, the main question is whether such plots may help to
identify trend (or trends) in a given time series?

This question brings to mind similar to plot of a given time series versus itself,
what happens when the first half of the series is plotted against its second half time
series? For this purpose, the same time series maybe fragmented into mutual and
successive half subseries. A very significant clue from Figs. 5.13 and 5.14 is that
along the main diagonal the points are sorted according to ascending order auto-
matically. This point gives the idea of sorting the two-halves into ascending orders
and then to plot the first half versus the next on the Cartesian coordinate system.
This opens the door to compare “low” (“medium,” “high”) values with “low”
(“medium,” “high”) values of the two-halves.

In order to explain some of the main points in the innovative trend methodology,
first of all, trend-free independent (normal or non-normal) processes are generated
with zero mean and unit standard deviation, which is then embedded with a
sequence of monotonic trends by considering a set of trend slopes, d,
(−0.009:0.002:0.009). The length of the generated synthetic sequence is adapted as
10,000, which is then divided into two-halves of 5,000 elements each. Inspiration
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Fig. 5.14 a Stochastic time series (o independent; ⋄ dependent), b regular time series

5.4 Innovative Trend Simulation 191



from the above explanations gives rise to the following significant points for the
application of the methodolog:

(1) Generate a set of trend-embedded sequences and divide them into two-halves,
(2) Sort each half in ascending order,
(3) Plot the first half against the second half on the square area (on the Cartesian

coordinate system).

Figure 5.12 is the end product of such a procedure with different time series and
their signatures on the square area, which leads to the following inferences:

(1) Trend-free halves plot appears along the 1:1 (45°) straight-line,
(2) Increasing (decreasing) trends are within the upper (lower) triangle of the

square area,
(3) They are all in the forms of straight-lines parallel to each other with 45° slope,

which implies that the trend slope, d, in the original series does not have any
effect on these straight-lines,

(4) As the trend slope, d, in a time series increases, corresponding straight-line
plot appearances on the square area get away from the trend-free line (main
diagonal, 1:1 or 45° line),

(5) Positive and negative trend slopes have reflective effects with reference to no
trend (1:1 straight-line).

These points indicate that the innovative trend identification methodology does
not give information only about the existence of the trend in the time series but
additionally about its magnitude (slope, d). The significant conclusion is that any
plot of two-halves from a given time series in ascending order is enough to identify
trend existence and its magnitude irrespective of data length. In Fig. 5.15, although
trends are taken from respective 10,000 length time series, just for the sake of
clarity and explanation only 1,000 points are shown. In each one of these time
series increasing and decreasing monotonic trends are shown explicitly with their
corresponding consequences on the square area.

5.4.1.2 Dependent Process Simulation Results
In order to perform the power of the proposed methodology, a set of Monte Carlo
simulations are presented by taking into consideration first order (Markov)
autoregressive (AR) stochastic process with PDFs. The simulation procedure first
generates synthetic time series, Xi, of length 10,000 values according to the fol-
lowing model:

Xi ¼ lþ q Xi�1 � lð Þþ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2

p
ei; ð5:1Þ

where l and r are the mean and standard deviation of the process; q is the first order
serial correlation coefficient and ei is the normal independent process with zero
mean and unit variance, NIP (0, 1). The set of simulations is based on the serial

192 5 Innovative Trend Analyses



correlation coefficients, q = 0.1 (±0.2) ± 0.9. Equation (5.1) generates trend-free
stationary time series, which are converted to nonstationary forms by embedded
with increasing and decreasing trend components of slopes, d = 0.001
(±0.02) ± 0.09. The slope is embedded through the simple linear trend component
addition to the basic stochastic process according to Xi + di, where i = 1, 2, …,
10,000.

Figure 5.16 summarizes the simulation results from above-mentioned AR pro-
cess given a high serial correlation coefficient, q ¼ 0:9; with a set of embedded
trends. Each one of the thick lines includes 5,000 generated normal dependent
values (because 10,000 values were generated for each simulation) as the first half
versus the second half. The fine lines are drawn through these thick simulation
results in each triangular area. It is obvious that as the absolute value of the trend
slope increases the results fall away from the 1:1 straight-line. During the simu-
lation, it is noted that the straight-lines in Fig. 5.16 are a result of normal PDF.

Comparison of Figs. 5.15 and 5.16 indicate that whether the time series is
independent or dependent, there is no difference in the square area procedure and as
long as the basic time series has a monotonic trend, the appearance of the
two-halves sorted magnitude plots will appear along 45° straight-lines without any
distinction. This statement alleviates the drawback of the MK trend test, which
requires independent data. Additional illuminating points can be drawn from the

Fig. 5.15 Independent process trends on square area
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square area plot in Fig. 5.17, where this time the trend slope is kept constant
(d = 0.009) and trend appearances are shown for a set of serial correlation coeffi-
cients (−0.9; −0.7; −0.5; −0.3; 0.0; 0.3; 0.5; 0.7; 0.9).

This figure indicates that the upper (lower) triangle include positive (negative)
correlation coefficient cases, which is another improvement on the MK test, where
the serial correlation cannot be accounted at all in the calculations. The more the
serial correlation coefficient absolute value, at the same trend magnitude (herein,
d = 0.009), the more effective is its occurrence on the square area template.

Fig. 5.16 Trend lines with respect to 1:1 straight-line for a set of slopes

Fig. 5.17 Trend chart of trend (d = 0.009) embedded first order AR processes
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Figure 5.18 provides linear relationship between the trend and square area template
slopes for given serial correlation coefficient. In the same figure corresponding root
mean square (RMS) errors are also presented and they are all very small within
practically acceptable limits.
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It is obvious that there is almost perfect linear relationship between the trend
magnitude (slope, d) and the trend representative line on square area template for
any given serial correlation coefficient. Table 5.1 provides numerical values of the
relationship between q, d, and b.

This table can be used to determine the magnitude of monotonic trend in any
time series provided that the serial correlation coefficient and the slope on the
square area template are determined.

After all what have been explained above, it is possible to state that the new
methodology yields information about the low values of the first half with low
values of the second half leading to the following conclusions:

(1) If low, high, medium, and high value plots of the two-halves are above (be-
low) the 1:1 (45°) straight-line, then there is an increasing or decreasing trend,

(2) In case of increasing (decreasing) trend, if all the low, medium, and high
values fall on almost parallel line to 1:1 (45°) straight-line then there is a single
monotonic trend in the time series,

(3) Otherwise, low, medium, and high values may have different positions on the
plot area, and this implies to the existence of various sub-trends in the time
series structure,

(4) The proposed methodology can provide detailed information about the low,
medium, and high value trends in the time series and their relative effective-
ness to each half.

In Fig. 5.19, a set of trend-embedded (d = 0.009) simulation synthetic sequences
is given, for a set of autocorrelation coefficients.

The corresponding plots of these time series around 1:1 (45°) straight-line are
given in Fig. 5.20 for various serial correlation coefficient. Again straight-lines
parallel to 1:1 (45°) and basic line are plotted based on half time series simulation
result values (5,000 values) according to sorting procedure. Since embedded trends

Table 5.1 Trend slope, serial correlation coefficient and trend line intersection

Trend
slope, d

Independent
process

First order stochastic serial correlation coefficient (q)

0.0 0.1 0.3 0.5 0.7 0.9

−0.09 −45 −50.048 −64.343 −90.080 −150.133 −450

−0.07 −35 −38.934 −50.058 −70.080 −116.800 −350

−0.05 −25 −27.824 −35.772 −50.080 −83.465 −250

−0.03 −15 −16.713 −21.486 −30.078 −50.131 −150

0.00 0.0 0.0 0.0 0.0 0.0 0.0

+0.03 15 16.624 21.372 29.920 49.871 150

+0.05 25 27.736 35.658 49.921 83.205 250

+0.07 35 38.846 49.944 69.922 116.538 350

+0.09 45 49.957 64.223 89.922 149.872 450
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are monotonic, the lines are parallel to 1:1 (45°) straight-line. One can conclude
from this figure that as the absolute value of the serial correlation coefficient
increases the trend representing lines get away from 1:1 (45°) straight-line basic
line. The chart in this figure helps to answer to the following questions:

(1) Is there a linear trend embedded in the given time series?
(2) What is the serial dependence coefficient (q) in the series?
(3) Is it possible to identify the trend in a given series without pre-whitening?

Figure 5.21 represents comparatively weaker (d = 0.009) trend for the same set
of serial correlation coefficients. There is no change in the previous interpretations
and the straight-lines get away from the basic 1:1 line.

Fig. 5.19 Increasing and decreasing trends

Fig. 5.20 Trend lines (0.09) with respect to 1:1 line for a set of correlation coefficient
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All the previous figures had monotonic trends as in Fig. 5.21, but to expand the
applicability of the proposed 1:1 (45°) straight-line methodology. Figure 5.22 is
given as a representative example among numerous simulation results that
increasing but nonmonotonic trends can also be depicted by the same methodology.

In Fig. 5.22a, Gamma PDF simulation results are presented with shape and scale
parameters as 5 and 6, respectively. Four different but successive trends are
embedded onto the basic time series, where the first, second, third, and fourth trend
components appear between 1–1,500; 1,501–5,500; 5,501–8,000; and 8,001–
10,000, and trend slopes are 0.001; 0.003; 0.005; and 0.007, respectively. The same

Fig. 5.21 Trend lines (d = 0.009) with respect to 1:1 (45°) straight-line for a set of correlation
coefficient

Fig. 5.22 Nonmonotonic trends, a Gamma PDF. b Normal independent process
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simulation is repeated for normal independent process, NIP (0, 1), in Fig. 5.7. One
can deduct from Fig. 5.22 the following points:

(1) Even though the PDF is Gaussian the final trend plots in Fig. 5.22b does not
appear along a straight-line parallel to 1:1 (45°) straight-line contrary to
Figs. 5.20, 5.21, 5.22a,b and 5.31 where only monotonic trends exist,

(2) The 1:1 (45°) straight-line methodology is capable of identifying increasing
but nonmonotonic (multiple) trends. This provides a possibility even to
identify hidden (short duration) sub-trends in the whole time series,

(3) In the case of more than one successive trend, the plots according to 1:1 (45°)
straight-line method appear on the upper (piecewise increasing) and lower
(piecewise decreasing) triangular areas as curvature (nonlinear) traces,

(4) Combination of monotonic and piecewise trend embedded time series per-
formances mentioned above, lead to deduction that any nonparallel line
implies a combination of various scale nonmonotonic trends in the same time
series.

There will not be any uncertainty of a trend estimate under few extreme
minimum/maximum values, because the procedure in this section singles them out
on the 1:1 (45°) straight-line plot domain. However, in conventional trend identi-
fications, especially regression line fitting to a given time series will be affected by
the extreme values. In case of small sample size of a time series, again since each
couple of points from two-halves appears without any influence on other points on
the scatter diagram in Fig. 5.22, the possible trend component will show itself.

5.5 Innovative Trend Significance Test

Time series might embed characteristics of past changes concerning climate vari-
ability in terms of shifts, cyclic fluctuations, and more significantly in the form of
trends. Identification of such features from the available records is one of the prime
tasks of hydrologists, climatologists, applied statisticians, or experts in related
topics. Although there are different trend identification and significance tests in the
literature, they require restrictive assumptions, which may not be existent in the
structure of time series. In this section, a method is suggested with statistical
significance test for trend identification in an innovative manner. This method has
nonparametric basis without any restrictive assumption and its application is rather
simple with the concept of subseries comparisons that are extracted from the main
time series. The method provides privilege for selection of sub-temporal half
periods for the comparison, and finally, generates trend on objective and quanti-
tative manners. The necessary statistical equations are derived for innovative trend
identification and statistical significance test application.
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5.5.1 Deterministic Basis

In order to explain the basic idea behind the innovative methodology, first of all a
linear trend function is considered between an independent time variable, t, and
dependent variable, y, as,

y ¼ aþ bt ð5:2Þ

where a and b are the intercept on y axis and slope parameters, respectively. In a
deterministic methodology, there are few alternatives to determine the parameter
values.

(1) The simplest way is applicable provided that the independent, (t1, t2), and
corresponding dependent, (y1, y2), variable pairs are known as two points. The
substitution of these values into Eq. (5.2) helps to calculate the parameters
from resulting two equations by elimination methodology,

(2) Calculation of the slope value, b = (y2 − y1)/(t2 − t1), and its substation into
Eq. (5.2) leaves only one unknown, which can then be calculated by substi-
tution of coordinates either one of the given points leading to a = y1 − bt1 or
a = y2 − bt2,

(3) If a regular sequence of n independent time variable, (t1, t2, …, tn) and cor-
responding dependent variable sequence, (y1, y2,…, yn) are given then one can
calculate the unknown parameters, (a and b), either by considering any two
points and apply the same methodology as in the two previous items or by
consideration of all the given set of coordinates simultaneously through a
linear regression methodology.

The core of the innovative trend test methodology is similar to this last item
parameter calculation. The question is, provided that independent and dependent
variable sequences are available, how to obtain the straight-line trend parameters?
The explanation of this point can be given through the following deterministic
numersimulation results are presented with shapeical example.

Let the parameter values in Eq. (5.2) be as a = 2.5 and b = 0.25 in addition to
the number of data, say, n = 126. It is obvious that the result will appear as a
straight-line given in Fig. 5.23a.

In Fig. 5.23b the innovative trend plot of the same deterministic data is pre-
sented as already explained by Şen (2012, 2014). In brief, the innovative trend plot
requires division of the given time series into two-halves each sorted in ascending
order, and finally, plot of the first half versus the second half as in Fig. 5.23b. In the
preparation of this figure dependent variable sequence values, (y1, y2, …, yn), are
used for data line construction. The following features can be deduced from
Fig. 5.23b.

(1) Deterministic dependent variable half plots fall on a definite straight-line
referred to as “Data line,”
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(2) 1:1 (45°) straight-line indicates neutral trend (notrend) line and any deviation
from this line indicates existence of a trend in the given dependent variable
(Şen 2012). In Fig. 5.23b there is an obvious increasing trend because the data
line is above the 1:1 (45°) straight-line,

(3) The arithmetic averages of the two-halves appear as the “Centroid point” that
falls on the data line,

(4) The vertical difference between the data and 1:1 (45°) straight-lines is related
to the slope of the existing trend in the dependent variable (Şen 2014),

(5) The vertical distance is equal to the difference between the arithmetic means of
the two-halves, which appears as 15.57 in Fig. 5.23.

In the previous studies, there have not been any formulation derivations but
qualitative assessments only. In this chapter, new numerical trend identification
procedure and significance test are presented in the following sequel.

After the completion of above five steps one can calculate the slope, b, of the
trend according to the following expression:

b ¼ 2ðy2 � y1Þ
n

; ð5:3Þ

where y1 and y2 are the arithmetic averages of the first and the second halves of the
dependent variable, y, sequence, and n is the number of data. The substitution of the
numerical values as n = 126, and the arithmetic averages from Fig. 5.23b as y1 ¼
10:50 and y2 ¼ 26:25 into Eq. (5.3) yields b = 0.25, which is exactly the same
value in Fig. 5.1. Hence, the procedure in the preparation of Fig. 5.23b with the use
of Eq. (5.3) helps to find the slope of the trend in a given time series.

On the other hand, the calculation of y axis intercept, a, on the vertical axis in
Fig. 5.23a, can be achieved according to the second item in the abovementioned
parameter value calculations. For this purpose, one needs to know the coordinates
of a single point, which is logically adapted as the arithmetic averages of time
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sequence, t, and, y, of the dependent variables, respectively (Fig. 6.23a). The
substitutions of these coordinate values and the slope from Eq. (5.3) into Eq. (5.2)
gives the trend intercept parameter estimation as

a ¼ y� 2 y2 � y1ð Þ
n

t ¼ y� bt: ð5:4Þ

Finally, the substitution of the relevant quantities into the basic equation
(Eq. 5.2) leads to the most detailed formulation of the innovative trend expression
as

y ¼ y� 2 y2 � y1ð Þ
n

tþ 2 y2 � y1ð Þ
n

t ¼ y� bðt � tÞ: ð5:5Þ

In case of notrend, y1 ¼ y2 and this last expression leads to y ¼ y, which means
that the time series has a constant arithmetic average and, hence, no trend for which
the innovative trend slope is 1:1 (45°) line as in Fig. 5.23b.

5.5.2 Stochastic Basis

In case of stochastic variables most often one has hydro-meteorological time series
that require trend search for different purposes and most often for the climate
change possibilities. In general, any hydro-meteorological time series has deter-
ministic components as possible jumps, periodicities, and trends in addition to the
stochastic residuals that are free of any deterministic parts. Herein, the identification
of trend component is explained similar to the deterministic basis as explained in
the previous subsection. In order to show the effectiveness of the proposed model,
two synthetically generated time series are examined for the establishment of the
stochastic basis of the innovative trend identification. The first example is for a
normal probability distribution (PDF) and the second one is for a skewed Gamma
type PDF.

5.5.2.1 Normally Distributed Stochastic Time Series
A synthetic time series is generated according to a first order Markov process with
the mean, standard deviation and first order correlation coefficient values as l = 10,
r = 5 and q = 0.5, respectively, with normal (Gaussian) PDF random component.
The length of the stochastic time series is considered as n = 1,000 and synthetically
a trend is embedded with slope b = 0.015. The generated synthetic time series with
these specifications is presented in Fig. 5.24a. Generation of synthetic sequences
with different serial correlation coefficients and their innovative trend plots fall on
the same “Data line” within practically acceptable sampling relative errors of less
that ±5%.

All the necessary quantitative values are provided on the innovative trend plot in
Fig. 5.24b. The substitution of these mean values into Eq. (5.3) yields the slope
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value of the embedded trend as s = 2(30.8095 − 23.389)/1000 = 0.0148 ≅ 0.015,
which is the value of the embedded slope in the stochastic process.

The arithmetic averages of the time series independent time, t, and dependent, y,
variables are t ¼ 500 and y ¼ 27:159, respectively. The corresponding intercept
value can be obtained from Eq. (5.4) by substitution of the relevant values as
a = 27.159 − 0.0148 � 500 = 19.76, which is within less than ±5% relative error,
re, from the value in Fig. 5.24a. Herein, re = 100 � (19.845 − 19.760)/19.845 =
0.42% < 5%, and this value is within the acceptable limit of error.

5.5.2.2 Gamma Distributed Stochastic Time Series
In practical applications Gamma PDF is frequently used, because depending on the
parameter values different PDF types appear. In the simulation, again n = 1,000
data set is generated as dependent variable, y, with the trend slope, b = 0.020, shape
parameter, a = 2.3, scale parameter, b = 5.4 and correlation coefficient, q = 0.5.
The final result with trend component is presented in Fig. 5.25a, which is one of the
samples from an ensemble of different 1,000 length synthetic series.

In order to calculate the slope value, all the necessary quantities are given in
Fig. 5.25b. The substitution of the relevant quantities from Fig. 5.25b into Eq. (5.3)
yields the slope value as b = 2 � (40.696 − 29.667)/1000 = 0.021, which is
within ±5% error limits from the slope value in Fig. 5.18a.

On the other hand, the time series time, t, and, y, variable averages are t ¼ 5:4:3
yields a = 35.182 − 0.021 � 500 = 24.682. The relative difference between this
value and the corresponding intercept in Fig. 5.18a is 100 � (24.682 − 24.153)/
24.682 = 2.14%, <10% and, therefore, these results remain within the sampling
error limits.
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5.5.3 Statistical Innovative Trend Test

The trend analysis as presented in this chapter is based on the comparison of
two-half sample means. A test is convenient for the construction of confidence
intervals by taking into consideration the difference between two population means.
For this purpose, the null hypothesis, H0, implies that there is not a significant trend
if the calculated slope value, b, remains below a critical value, bcr. Otherwise, an
alternative hypothesis, Ha, is valid when b > bcr. In order to develop an innovative
significance test, it is necessary to derive the PDF of null hypothesis case. It is not
necessary to search for the significance test of the intercept parameter, because the
trend line is supposed to pass through the arithmetic averages of the independent
and dependent variables. As for the slope parameter Eq. (5.3) shows that the
stochastic property of b is a function of the first and second half time series
arithmetic average values. Since y1 and y2 are also stochastic variables the first
order moment (expectation) of the slope value can be obtained by taking the
expectation of both sides leading to

EðbÞ ¼ 2
n
Eðy2Þ � Eðy1Þ½ �: ð5:6Þ

After all what have been explained in the previous sections in the case of no
trend, the centroid point falls on the 1:1 line, which implies that Eðy1Þ ¼ Eðy2Þ and,
therefore, E(b) = 0.

On the other hand, the variance of the slope can be calculated as r2b ¼
E b2ð Þ�E2 bð Þ or r2b ¼ E b2ð Þ, which is equal to the second order moment of the
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slope variable. This can be obtained by taking the expectation of both sides in
Eq. (5.3) after the square operator resulting in

r2b ¼
4
n2

E y22
� �� 2E y2y1ð ÞþE y21

� �� �
:

Because E y22
� � ¼ E y21

� �
, it is possible to obtain the following expression:

r2b ¼
8
n2

E y22
� �� E y2y1ð Þ� �

: ð5:7Þ

The correlation coefficient between the two mean values is given in the
stochastic processes as follows:

qy2y1¼
E y2y1ð Þ � E y2ð ÞE y1ð Þ

ry2ry1

:
ð5:8Þ

Substitution of the numerator of this expression into Eq. (5.7) and consideration
stochastically that ry2 ¼ ry1 ¼ r=

ffiffiffi
n

p
and, hence, Eq. (5.8) takes its final form as

follows:

r2b ¼
8
n2

r2

n
ð1� qy2y1Þ: ð5:9Þ

In this last expression, qy2y1 implies cross-correlation coefficient between the
ascendingly sorted two-halves’ arithmetic averages. The standard deviation of the
sampling slope value can be obtained from Eq. (5.9) as

rb ¼ 2
ffiffiffi
2

p

n
ffiffiffi
n

p r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qy1y2

q
: ð5:10Þ

Furthermore, the third order moment of the slope variable is also equal to zero
and the same is valid for all the odd order moments. This is the reason why the PDF
of the slope, s, abides with the normal (Gaussian) PDF with zero mean and the
standard deviation given in Eq. (5.10).

The most significant point in the application of this formulation is that the
cross-correlation is between the two-sorted half time series. The statistical signifi-
cance of the innovative trend slope test can be achieved through a normal (Gaus-
sian) PDF with zero mean and standard deviation equal to Eq. (5.10).

5.5.4 Application

The stochastic innovative trend analysis as explained in the previous sections is
applied to time series from different parts of the world. As for the long records
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Southeastern New Jersey annual mean temperature data, Danube River annual
discharge data, and annual mean precipitation data from the Tigris River drainage
basin at Diyarbakir meteorology station are considered for the application to actual
data. The simple statistical quantities of each station are presented in Table 5.2.

In general, most researchers look for the monotonic trend possibility within a
given hydro-meteorological time series along the whole record length. The time
series with trend and the innovative trend plots are given in Figs. 5.26, 5.27 and
5.28 for each data set.

In the application of innovative trend test, the basic criterion is the normal
(Gaussian) PDF with zero mean and standard deviation rb (Eq. 5.10). If at a
percent significance level the confidence limits of a standard normal PDF with zero
mean and standard deviation is bcri then the confidence limits (CL) of the trend
slope can be expressed according to the following expression:

CLð1� aÞ ¼ 0� bcri rb; ð5:11Þ

where rb is the slope standard deviation. All the necessary calculations and addi-
tional information with the operations in the last column are presented in Table 5.3.

One of the important points in this table is high cross-correlation values in row 6,
because they are calculated depending on the ordered sequence in each half series.
Slope value, b, of each station falls outside the lower and upper confidence limits
and, therefore, in row 11 the alternative hypotheses, Ha, are adopted and they
indicate the existence of trends (YES) as decisions. In the last row, the type of trend
is stated depending on the slope sign in row 3.

The trend identification is one of the most significant elements in any climate
change study. The most commonly used methodology for the identification is the
Mann–Kendal (MK) trend test, but it requires few basic assumptions, which may
not be valid in natural hydro-meteorological time series. MK test is misleading in
the presence of data autocorrelation. Although several researchers have suggested
pre-whitening procedure to render the original time series into a serially indepen-
dent structure, but it is noticed that such a procedure cannot yield really embedded
trend in the time series but with some bias. In the classical trend calculations serial
independence, homoscedasticity and normal probability distribution assumptions
must be satisfied. Such assumptions maybe guaranteed to a certain extent after

Table 5.2 Descriptive features of actual data

Name Country Record duration
(year), n

Statistical features

Mean, y St. Dev., ry
New Jersey USA 116 53.04 °F 1.30 °F

Danube River Romania 164 5566.8 m3/s 944.91 m3/s

Tigris River Turkey 49 483.92 mm 124.74 mm
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convenient transformations of the original series, which may not reflect genuine
trend behavior of the series.

The procedure presented in this section does not require assumption, and it is
based on the comparison of the two ascendingly ordered halves from the original
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time series. The necessary formulations for the trend identification are derived
explicitly and then monotonic trend significance test is presented in detail. The
applications of the innovative trend significance statistical test are presented for the
New Jersey temperature, Danube River discharge, and Tigris River meteorology
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Fig. 5.27 Danube River annual mean discharge time series. a Time series and trend, b innovative
trend plot
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station rainfall records at Diyarbakir meteorology station in the Southeastern part of
Turkey. The suggested methodology is easy to apply and all the steps are logically
presented in a rational manner.
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5.6 Crossing Trend Analysis Methodology

Trend analyses are the necessary tools for depicting possible general increase or
decrease in a given hydro-climatologic time series. There are many versions of
trend identification methodologies such as the M–K trend test, S-R, Sen’s slope,
regression line, and Şen’s innovative trend analysis. The literature has many papers
about the use, cons and pros, and comparisons of these methodologies. In this
section, a completely new approach is proposed based on the crossing properties of
a time series. It is suggested that the suitable trend from the centroid of the given
time series should have the maximum number of crossings (total number of
up-crossings or down-crossings). This approach is applicable whether the time
series has dependent or independent structure and also without any dependence on
the type of the probability distribution function. The validity of this method is
presented through extensive Monte Carlo simulation technique and its comparison
with other existing trend identification methodologies.

Trend identification is one of the major topics in data processing concerning
social, medical, industrial, scientific, and engineering studies for betterment of
future predictions. Their physical causes maybe due to the changes in the natural
events such as the climate change or depreciation and improvement in the human
made instruments. Especially, in water sciences increasing and decreasing trend

Table 5.3 Innovative trend test results

No. Name of
stations

New Jersey Danube River Diyarbakir Operations

1 Type of data Annual
temperature (°F)

Annual
discharge (m3/s)

Annual total
rainfall (mm)

2 Number of
data

116 164 49

3 Slope, b 0.021 −0.587 −1.113 Equation (5.3)

4 Intercept, a 51.818 5614.94 511.191 Equation (5.6)

5 Standard dev.,
r

1.3025 944.921 124.738 From the whole series,
y

6 Correlation,
qy1y2

0.9749 0.9767 0.9495 Ordered half series
cross-correlations

7 Slope standard
dev., rb

0.000467 0.1942 0.2386 Equation (5.10)

8 Significance
level

0.05 0.05 0.05 Practically adopted

9 Lower CL −0.000768 −0.3194 −0.3925 Equation (5.11)

10 Upper CL +0.000768 +0.3194 +0.3925 Equation (5.11)

11 Hypothesis Ha Ha Ha Alternative hypothesis

12 Decision Yes Yes Yes According to Ha

13 Type of trend Increasing Decreasing Decreasing According to sign of b
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tendencies bring into consideration the assessments of droughts, water scarcities,
desertifications or floods and flash floods with water inundations. These water
related events are also reflective in the agricultural and food production sectors.
Climate change due to global warming has huge impact on the environment,
weather patterns, and rise in sea level, which can be depicted by temporal trend
analysis.

Although the visual appreciation of trend component in a given
hydro-climatologic time series has been possible since the start of meteorological
records in the second part of the eighteenth century, development of analytical
methodologies came into existence in the first part of the nineteenth century (Mann
1945). His method provides information whether there is a trend within the time
series with its verbal direction as increasing, decreasing, or neutral type. Later, Sen
(1968) provided a quantitative slope calculation method for the trend component
within a given time series. The M–K nonparametric trend test (Mann 1945), is
functionally identical to Kendall’s (tau) test for correlation (Kendall 1975), and the
associated slope estimation by Sen (1968) median procedure.

On the other hand, Spearman’s rho, which is a distribution-free statistic, is useful
for the trend significance test (Spearman 1904). It is less widespread than the
commonly applicable M–K trend test. However, the two tests are equivalent for the
case of serially independent observations. Daniel (1990) has provided further
explanations and improvements in the application of the Spearman’s tau approach.

The regression monotonic line is among the parametric procedures for trend
testing. The two sample t-test can be applied for step type of trends (Iman and
Conover 1983). In these procedures, trend magnitude estimations are the regression
slope and the difference in the means. On the other hand, nonparametric methods
are the Mann–Kendall test and the Rank-Sum test (Bradley 1968), and their trend
estimations are obtained according to Sen (1968), which is equivalent to the median
of all pairwise slopes in the data set. Additionally, the Hodges–Lehmann estimator
is the median of all differences between data in the first data set and data in the
second data set (Hodges and Lehmann 1963).

Nonparametric procedures have significantly higher power than parametric
procedures in cases of substantial departures from normal (Gaussian) probability
distribution function (PDF) and the large sample sizes (Helsel and Hirsch 1988).

In addition to all available trend methodologies, a new one is suggested in this
chapter as the “crossing trend,” which depends on the maximum number of
crossings (up-crossings or down-crossing) within a given hydro-climatological time
series. This method hypothesis a set of different slope trends and the one with the
maximum-crossing point is identified as the valid one.

The main purpose of this chapter is to suggest an innovative crossing trend
analysis methodology with its significance test. The validity of this method is
confirmed by extensive Monte Carlo simulation technique by taking into consid-
eration different sample sizes and probability distribution functions (PDFs). The
results are compared with the Sen’s slope method and it is found that the differences
are within the practically acceptable relative error percentage of ±10%. The
application of the innovative crossing trend analysis is performed for actual
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meteorological records of annual daily extreme (maximum) rainfall from seven
different climatological regions of Turkey.

5.6.1 Rational Concept

The main idea is that at various trend slope truncation levels that passes through the
time series centroid, the number of crossing (up-crossings or down-crossings) is the
maximum (Şen 2017). In order to illustrate this point, a hypothetical time series and
its truncation—at different trend levels are given with the number of crossing points
in Fig. 5.29.

In this figure, a series of increasing and decreasing trends are given and among
them the one with the maximum crossing (up-crossing or down-crossing) number is
the most representative trend-line. In this manner, the trend identification does not
depend on the PDF of the hydro-climatologic variable. Besides, one can also cal-
culate the surplus and deficit quantities on the basis of the trend line, if necessary. In
Fig. 5.30, various quantities along the truncation level are shown. In this figure, SL
(DL) implies surplus (deficit) lengths and there are 5(4) of them.

5.6.2 Theoretical Background

In any hydro-climatologic record series-crossing points at a truncation level provide
not only information on wet and dry spell features, but also about the internal
structure of the series (Şen 1977). For instance, the more is the crossing points at the
median truncation level, the less is the serial dependence. In an independent series
at the median level practically the number of up-crossings is equal to the
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down-crossing number. In Fig. 5.30, up-crossings and down-crossings are indicated
with arrows. Theoretically, in an infinite independent series, irrespective of the
PDF, the number of crossings abide by the Poisson process (Feller 1968). However,
in finite sample lengths, n, the expectation and the variance of the number of
up-crossings, Nu, have been derived by Şen (1991) as

E Nuð Þ ¼ np 1� pð Þ ð5:12Þ

and

V Nuð Þ ¼ E Nuð Þ 1� 3pþ 3p2
� �

; ð5:13Þ

respectively. Herein, p is the probability of surplus numbers over the median
truncation level. The average number of up-crossings increases with the sample
length, n, but decreases as the truncation level increases. The maximum up-crossing
(down-crossing) number occurs at 0.5 truncation level (Fig. 5.31). In general, such
a truncation level corresponds to average = mode = median value in symmetrical
PDFs, but to the median value in unsymmetrical PDFs (Fig. 5.31).

The PDF of up-crossings is shown to be in accord with the normal (Gaussian)
PDF with mean and variance as in Eqs. (5.12) and (5.13), respectively. The stan-
dard deviation of the up-crossing number is shown in Fig. 5.32.

Under the light of the aforementioned information, it is possible to benefit from a
normal (Gaussian) PDF for the significance test of innovative crossing trend either
by the use of Eqs. (5.12) and (5.13) or with their standardization as
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ms ¼ EðNuÞ
n n� 1ð Þ ð5:14Þ

and

ss ¼ VðNuÞ
E Nuð Þð1� 3p� 3p2Þ ð5:15Þ

respectively.
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5.6.3 Monte Carlo Simulations

In order to fix the validity of the crossing trend analysis, a set of Monte Carlo
simulation studies is achieved, where 1,000 synthetic series are generated according
to normal (Gaussian), Gamma and exponential PDF’s. Each synthetic series is
subjected to suggested innovative crossing trend analysis, the Mann–Kendall trend
test, Sen’s slope and Şen (2012, 2014) innovative trend slope and corresponding
trend lines. In the simulations, the set of embedded slopes, sd, are considered as
decreasing (increasing) trends −0.007, −0.005, −0.003, −0.001 (0.1, 0.3, 0.5 and
0.7) with sample sizes as 25, 50, and 100. The simulation results are given as a set
of graphs in Fig. 5.33. In this figure for each PDF three graphs are shown for the
sake of visual inspection each for sample sizes 25, 50, and 100.

The numerical results of extensive simulation study are presented in Table 5.4.
The simulations are carried on for three PDFs, namely standard normal (Gaussian)
PDF with zero mean and unit standard deviation; Gamma PDF with location and
scale parameters as 2 and 1, respectively; finally, the exponential PDF with its
single parameter as 2.

Both Gamma and exponential PDF generations can be achieved with different
parameter sets, but for the sake of brief description in this chapter only the afore-
mentioned parameters are considered.

In this table, n indicates the sample length and R.E. is defined as the absolute
relative error

R:E: ¼ 100
se � scj j
se

; ð5:16Þ

where se and ss are embedded and innovative crossing trend simulation slopes,
respectively. In the first column of Table 5.1 are the embedded slope values, and
simulation trend slopes are shown in the second, fourth, and the sixth columns
under each sample length. It is obvious from this table that the absolute relative
errors are less than practically acceptable 10% level, and the mean R.E. values are
far less that this acceptable percentage level.

After all what have been explained so far as the simulation results are concern, it
is evident that the innovative crossing trend analysis is valid for practical
applications.

5.6.4 Application

For the application of the innovative crossing trend analysis, seven annual daily
extreme rainfall records are considered from seven different climatology regions of
Turkey. Each one has more than 50 years of records and this is a statistically valid
sample size for reliable studies. The meteorology station locations are given in
Fig. 5.34.
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Each station represents different climatological region within Turkey. For
instance, Ankara station is located in a dry, rather arid, and steppic region in the
Central Anatolia, which is far away from the maritime climatic effects. This area
includes the least rainfall receiving region of Turkey with annual average rainfall
amounts less than 250 mm. Antalya is located along the Mediterranean coastal area
of Turkey with typical Mediterranean climate impacts. Toward the northern part of
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this region are the Taurus Mountain chain with elevations more than 3,000 m above
mean sea level, and therefore, it is one of the humid regions in Turkey. Frequent
orographic rainfall types occur, which causes to occasional floods. The geological
composition is of limestone and dolomatic rocks with karstic features, and there-
fore, rainfalls recharge the groundwater in the region. It is regarded as one of the
surface and ground water rich parts of Turkey. Diyarbakir station is in the

Table 5.4 Simulation results with relative error percentages

Gaussian PDF

Embedded slope, se n = 100 R.E. (%) n = 50 R.E. (%) n = 25 R.E. (%)

0.0010 0.0011 9.1000 0.0011 9.0909 0.0011 9.7473

0.0030 0.0033 9.7667 0.0033 9.6386 0.0027 9.4092

0.0050 0.0054 8.5400 0.0051 1.5748 0.0057 12.0338

0.0070 0.0072 2.3000 0.0066 5.3107 0.0078 10.6345

−0.0070 −0.0076 8.8857 −0.0075 6.1788 −0.0073 3.5015

−0.0050 −0.0047 6.2000 −0.0049 2.9442 −0.0057 11.4888

−0.0030 −0.0032 6.8000 −0.0032 6.9479 −0.0033 9.0909

−0.0010 −0.0011 10.3000 −0.0011 9.0082 −0.0010 2.2495

Mean – 7.7365 – 6.3368 – 8.5194

Gamma PDF

0.0010 0.0009 5.4852 0.0010 3.1946 0.0011 5.6604

0.0030 0.0028 8.5384 0.0030 1.4131 0.0031 3.3194

0.0050 0.0050 0.9285 0.0054 7.4417 0.0045 10.6440

0.0070 0.0068 2.3691 0.0073 3.7801 0.0067 4.0583

−0.0070 −0.0073 3.8065 −0.0078 10.4859 −0.0079 10.9641

−0.0050 −0.0051 2.2101 −0.0050 0.1201 −0.0049 1.9992

−0.0030 −0.0031 4.0307 −0.0032 5.2133 −0.0032 7.0344

−0.0010 −0.0009 6.6098 −0.0011 9.5841 −0.0011 9.0909

Mean – 4.2473 – 5.1541 – 6.5963

Exponential PDF

0.0010 0.0010 1.7682 0.0011 9.4203 0.0009 9.2896

0.0030 0.0031 1.9287 0.0033 10.1527 0.0033 9.1460

0.0050 0.0049 2.2077 0.0048 4.3841 0.0050 0.8723

0.0070 0.0077 9.5490 0.0074 4.9946 0.0078 10.1873

−0.0070 −0.0071 1.9471 −0.0076 8.3170 −0.0077 9.2912

−0.0050 −0.0054 6.5246 −0.0048 4.6025 −0.0047 6.8148

−0.0030 −0.0031 3.8770 −0.0028 6.8376 −0.0033 8.2849

−0.0010 −0.0011 7.1495 −0.0011 9.9099 −0.0011 9.4203

Mean – 4.3690 – 7.3273 – 7.9133
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southeastern province of Turkey away from the sea born air mass movements, and
therefore, it has continental climatic features. Due to its unique position at the upper
end of the Mesopotamian valley, the rainfall occurrences are rare and mostly
summer seasons are extremely hot and winter seasons are mild. Erzurum station
represents rugged mountainous region of eastern Turkey with severe winter con-
ditions and rather cool summer months. Izmir location is the representative of the
Aegean Sea at the western coastal area of Turkey. It has hot summer months and
mild winter season with moderate rainfall events throughout the year. Finally,
Trabzon meteorology station is chosen for the representation of the Black Sea
rainfall regime, which is rainy almost throughout the year. This is due to the fact
that North Atlantic born air masses that descend southwesterly over the Europe and
then over the Black Sea with moisture and the coastal parallel mountain chains
cause to frequent orographic and cyclonic rainfall occurrences.

Seven meteorology station records are treated by the innovative crossing trend
analysis and also classical Sen’s slope regressions. Figure 5.35 indicates the
innovative crossing trends in each record and also the test results are presented in
Table 5.6 for each station by considering the Sen slope and the suggested
methodology features as explained in Sects. 5.6.1 and 5.6.2.

Visual inspection of each graph provides reflections that the innovative crossing
trend analysis well identifies the trend component in each location. For the sake of
comparison trend calculated on the basis of Sen’s slope is also given on the same
graphs.

However, for quantitative analyses Table 5.6 is prepared, where both Mann–
Kendall trend test and the innovative crossing trend analysis quantities are pre-
sented. In this table LL and UL are for the lower and upper significance levels. It is

Fig. 5.34 Meteorology station locations
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Fig. 5.35 Innovative crossing trend components
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Fig. 5.35 (continued)
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to be noticed that the confidence limits in the case of Mann–Kendall trend test
remain the same without depending on the sample size. However, as obvious from
Eqs. (5.14) and (5.15) the confidence limits are functions of the sample size for the
innovative crossing trend analysis. Z is the statistics value of the Mann–Kendall
trend test, and C is the number of up-crossing for the innovative crossing trend
calculations. In the table, trend tests are probed for two levels, 90 and 95%.

Trend component identification in the climatological time series constitutes very
important aspect, especially for the climate change description and, therefore, such
studies have increased unprecedentedly since the last three decades. There are
different methodologies for this purpose, but each one with restrictive assumptions.
In this chapter, entirely new concept of trend identification is proposed by taking
into consideration the number of crossings on the possible trend line. It is stated that
the trend component should have the maximum number of crossings among many
different trend alternatives. In order to select the most valid one, the given clima-
tological time series is probed with a set of trend representatives that passes through
the centroid point of the data. The centroid is defined as the point in the time series
with abcissa as the half of the sample size and the ordinate equal to the median of
the recorded values. The formulations are given at the median level as for the
number and the variance of the crossing points with no trend within a serially
independent time series. They do not dependent on the type of probability distri-
bution function. The validity of innovative crossing approach is shown by extensive
Monte Carlo simulation studies based on different sample sizes and probability
distribution functions. The application of the innovative up-crossing trend analysis
is presented for seven distinctive climatological regions of Turkey for annual daily
extreme (maximum) rainfall records, which have physically independent serial
structure so as to abide with the theoretical requirement of the suggested
methodology.
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Fig. 5.35 (continued)
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