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Preface

Scientific and technological developments in any discipline have become heavily
dependent on the digital data treatment for better and refined deductions from
available time series records that reflect the behavior of natural phenomena or
artificial events as for their performances. These phenomena and events are rather
complex, uncertain at times, vague, and even incomplete in their past records,
which are also embedded with some deterministic components such as linear or
nonlinear trends, sudden jumps, and seasonalities, each of which provide useful
information for prediction of the future behavior so as to be able to control the
natural events to a certain extent. Especially, trend component is the most sought
one, because it shows the direction of general tendency within the partially
uncertain events and especially since four decades their search has become a very
significant task concerning climate change effects on environmental, social, and
health aspects; economic growth indices; business affairs; and industrial production
quality controls.

Currently, there is a trend in automation and data exchange in manufacturing
technologies that leads to a new paradigm shift in industry that is now referred to as
the Industry 4.0, which will be empowered only with innovative methodological
procedures. Trend identification, determination, future extension, and de-trending
procedures will gain refined and progressive advancement that will pave way
towards better management and control of the phenomenon concerned in scientific,
technological, engineering, environmental, social, economic, business, and health
aspects. The success of industrial machines to predict failures and trigger mainte-
nance processes autonomously or self-organized logistics, which react to unex-
pected sudden changes (jumps) or gradual and monotonic expected changes in the
behavior of the phenomenon or production concerned. In order to arrive at
meaningfully guiding information, it is necessary to provide useful insight into the
prediction and management procedures through data processing by means of
innovatively advanced analytical approaches and algorithms. The information
generation algorithms should be able to detect and address visible and hidden issues
in environmental changes such as the climate change impacts on different disci-
plines, machine degradations, depreciations, or improvements in the final industrial
production.
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In order to achieve effective prediction, management, and information generation,
one of the most important data processing issues is the identification and determi-
nation of trend component in a given record especially in the form of time series.
This is the main purpose of this book where after an effective literature review in the
first three chapters different types of innovative trend analysis methodologies are
presented in the science philosophical, logical, rational, and linguistic foundation
leading to the probabilistic, statistical, and stochastic aspects for better and refined
trend identification. The innovative trend template provides first of all visual
inspection for verbal information deductions not only for holistical purposes, but
also for providing better views in terms of at least three categories as “low,”
“medium,” and “high” record values within the data. Spatial and partial trend
component identification methodologies are also provided with simple but illumi-
nating examples. Innovative trend simulation studies and trend test statistical
procedures are explained along with actual example applications from different parts
of the world. Apart from the classical trend analysis on the average, possible trend
behavior in terms of standard deviation is also presented with innovative approaches
under the title of variability. Last but not least, after a brief explanation of fuzzy logic
modeling principles, fuzzy trend analysis fundamentals are explained. In the final
chapter, several examples are presented concerning the climate change impact in
terms of trend analyses.

The content of this book is an outcome from a series of lectures by the author at
the Technical University of Istanbul and also at the King Abdulaziz University,
Jeddah, Kingdom of Saudi Arabia. Furthermore, many aspects of the trend analysis
have been discussed with international students from different countries personally
and through the electronic communication systems. I appreciate all of these pre-
cious discussions, which accumulated and led to the production of this book. It will
give me pleasure and self-satisfaction if the content of this book serves to those who
are interested in the trend analysis.

In writing an international book one has to be very patient and confine his/her
attention for many hours, days, months, and even years without care for many other
things and therefore needs the support of many others. I appreciate and thank those
who have encouraged me to write this book and at the top of the list is my wife
Mr. Fatma Şen for her endurance, patience, and encouragement.

Çubuklu, Istanbul, Turkey Zekâi Şen
2016
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1Introduction

Abstract
Trend analysis has an interdisciplinary context that is shared by many
researchers all over the world. The preliminary recommendation in this chapter
is about visual trend examination and identification in a given time series to feel
what are the possibilities of trend existence either holistically or partially. In this
manner the researcher will be able to decide which type of the probabilistic,
statistical, and mathematical approach for its objective determination. A brief
discussion about trend analysis usage is presented on the basis of a set of
disciplines. Additionally, pros and cons about trend analysis approaches are
presented briefly and finally future trend research directions are mentioned with
the purpose of this book.

Keywords
Concept � Definition � Disciplines � Purpose � Trend � Visualization �
Mathematics � Statistics

1.1 General

Modern lifestyle at every aspect can be improved further through the measurements,
mathematical models, control and prediction for future time periods at short-,
medium- and long terms. With the computational facilities and treatment of data
many social, economic, health, earth, environment and engineering systems can be
modeled for prediction purposes. In practice, natural or artificial time series records
at regular time intervals are available, but unfortunately they are evaluated for certain
purposes without a complete description of deterministic and stochastic parts. Each
time series is full of various qualitative and quantitative features, which are ready for
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logical, rational, analytical, probabilistic, statistical, stochastic, and fuzzy scientific
assessments for deduction of useful information in practical applications. Time
series component identifications are the most important issues that are backbones of
fruitful developments in any discipline.

Among the most significant components of a time series is the trend evolution
lines, which indicate continuous increase, decrease, or stability (balance, neutrality)
along the time axis. Trends are desirable in many human activities depending on the
final goal. For instance, the Olympic Games record breakings are indicators of
increasing trend, because each game is sought to perform better than the previous
ones. In general, any societal development is measured through various indices,
which indicate either a positive or negative change or neural state. Any develop-
ment, concerning a system, can be felt first intuitively and subjectively and later on
objective decision can be achieved through the necessary measurements, which
provide databases, and subsequently, their treatments, by convenient scientific
methodologies leading to useful information.

Time series trend analysis research and application studies have increased during
the last 25 years as a result of interest in the global warming and climate change
impacts on natural events in addition to more refined economic and business pre-
diction purposes. There are trend identification methodologies and statistical trend
significance tests, but each one with different set of assumptions, which may not be
simultaneously valid within the measurement data. In general, the following points
are among the trend study purposes in various disciplines.

(1) Performance of any system toward better conditions, which implies an
increasing trend embed within the time series,

(2) Measurement of system performance quantitatively, whether there is an
improvement (positive trend) or depreciation (negative trend) by time,

(3) Assessment of any system as to its balance and steadiness about temporal
evolution, which is reflected by a neutral (no trend) case,

(4) Random or stochastic behavior identification of a system after systematic
variations (trend, shift, seasonality–periodicity) elimination from a given time
series,

(5) Quality control of a manufacturing system such as factories and depreciation
(decreasing trend) of the machine performances,

(6) Economic performance measure (increasing or decreasing trend) of any
societal activity (business, economics, population, etc.) variation with time.

Trends are also indicators of significant correlation between successive event
occurrences and time or among a set of events at different measurement locations in
space. They are gradually introduced into the records, because of natural or
man-made (artificial) effects. The shifts (jumps) are also due to the similar effects,
but as rather sudden changes at times step by step. Most often, the gradual changes
in environmental phenomena are results of global warming, climate change, pop-
ulation growth, and assessment of available resources. It is also possible to check
gradual urbanization impacts on some changes due to the environmental activities
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around a measurement site. Replacement of measurement instrument by a recent
one or even with similar instrument and compulsory change of location may cause
jump (shift), i.e., sudden step changes in the measurements or records. For this
purpose, it is necessary that the records at any measurement site must not be
numerical only, but also linguistically available causative and consequent infor-
mation are needed for better identifications, interpretations, and predictions (see
Chaps. 4 and 6).

Trend analyses are significant not only in the earth systems researches, but they
have a larger domain of applications in different disciplines including quality
control, economics, pattern recognition, digital signal processing and, in general, in
data mining works. Among the various disciplines, the interest in trend analysis can
be summarized along the following points.

(1) Any researcher that works with time series records would like to identify the
system response in terms of systematic variations (trends, seasonality–peri-
odicity and jumps), nonsystematic and uncertain residuals,

(2) Detection of trends indicate the general tendency toward increasing or
decreasing directions or stability in the system response,

(3) Graphical representation of time series is the first step in data processing prior
to quantitative theoretical technique applications and with naked eye one may
search linguistically (verbally) for different variation patterns leading to pre-
liminary qualitative and fuzzy information deductions (Şen 2010).

1.2 Trend Definition and Analysis

Any systematic and continuous increase or decrease along time axis is referred to as
temporal trend, which may be in the linear or nonlinear forms. Trends are almost
everywhere, but one begins to think or feels about their existence unless someone
talks or when s/he is asked to provide evidence about them. For instance, since birth
human beings are in increasing trend as for the tallness is concerned, but it is not
linear throughout the life. Anyone feels in comfort, if his/her income increases with
time. In general, trends are systematic changes in natural, social and artificial events
over relatively longer time periods preferably with at least 30 or more sample.

There is a variety of trend definition depending on the purpose. In general, it is a
tendency in which some event develops as increasing (upward) or decreasing
(downward) changes. Each trend has a general direction, which may also be
expressed in terms of drift, shift, swing, course, current, leaning, tendency, and
inclination and synonymously as bias and bend. The term trend may also have
social context as modern model, fashion, mode, type, style, vogue, and rage. Some
examples are increasing as warming trend, fashion trend, upwards economic trend,
downward trade trend, quality trend, stock market trend, business trend, etc.
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Trend identification and detection procedure reviews are available in the liter-
ature (Esterby 1996; Hess et al. 2001). They lack a comprehensive text that covers
potential applications in global warming, climate change, hydrology, environment,
health, engineering and climatology disciplines, which are in increasing need for
objective trend identification and prediction. Trend analysis reviews are focused on
a single and monotonic trend search in a given time series with an emphasis on
some classically favorable techniques only. In this book, after extensive literature
review and criticisms, innovative trend identification and detection procedures are
presented with rational and logical bases. No need to say that at the dawn of twenty
first century, there is a need to highlight the importance of time series analysis in
many disciplines including water resources planning, management and new issues
of sustainable management, where innovative trend analysis techniques are ready to
pave objective ways for logical interpretation and quantitative calculations.

1.2.1 Conceptual and Visual Trends

Mental and logical visualization change inspections with time are very helpful to
generate illuminating ideas about the process concerned prior to any quantitative
applications and theoretical developments. There are two ways to establish pre-
liminary ideas about the temporal evolvement of any event performance. These are
conceptualization of the event through mental experiments with a set of possible
logical rules without any data availability and visualization of the event by means of
graphical representations provided that there are measurements in the form of a time
series.

In any scientific work, provided that the numerical data are available, the pre-
liminary work is to try, visualize and explore the data behavior in graphical forms,
which trigger the mind and creative thinking through the geometrical shapes. This
is already reflected in saying that one picture is worth of thousand words. Espe-
cially, in the time series analysis, the temporal evolution of the phenomenon
concerned can be grasped through the relevant graphs so as to see the random and
systematic (trend, seasonality, sudden jumps) behaviors. The graphical represen-
tation and its visual interpretation provide valuable qualitative (verbal, linguisti-
cally) information, which are the basic ingredients of original scientific
developments prior to any quantitative evaluation. Qualitative information deduc-
tion from the temporal behavior of a time series depends on the grasp and intuitive
ability of a person, and although a set of subjective information are derived, among
them there are also objective supportive ones. For instance, in order to be successful
in a business, one may think about the basic principles and rules that are necessary
to provide steadily increasing income economy, and accordingly, systematic
implementations of the conceptualized systematic and rivalry rules into application.
This is a simple way of increasing trend conceptualization.

In general, trend reflects the relationship between two variables; one may think
and reach to a conclusion that there is a direct and increasing (or decreasing)
relationship between two variables. Humans can conceptualize such two-variable
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relationships, because in almost all cases, everybody is capable to appreciate log-
ically whether there is a direct or indirect relationship between any two variables of
his/her concern. Without any specialization, if someone is asked, say, about the
possible relationship between the rainfall and its consequent runoff event, then s/he
responds that there is a direct relationship, which means that increase in the former
variable implies increase in the other in the form of increasing trend. After the
decision on the direct or inverse relationship, the next question is whether this
relationship is in the linear or nonlinear form? Another alternative to these questions
is that there might not be any relationship between the two variables. As a result of
these two questions, there are six possible and simple alternatives, each one of
which is the answer for dependent and independent variable, Y and time, t, and
evolution in the form of two-variable relationship in any discipline with mathe-
matical certainty as in Fig. 1.1.

After the aforementioned conceptualizations and explanations, one can conclude
that mentally, there are two questions; what are the proportionality relationships
between two variables and what the shape (geometry) of the relationship is.
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Fig. 1.1 Proportionality and geometry relationships, a direct-linear, b inverse-linear, c di-
rect-nonlinear, d inverse-nonlinear, e no relation, f no relation
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On the other hand, one can visualize temporal evolution of an event, provided
that there are measurements, which help to fix the position, if the event performs on
the event variable-time coordinate system. If there are no random errors in the
measurements and the system is performing deterministically without any random
component then the plot of the measurement data appears as a systematic scatter of
points along one of the graphs in Fig. 1.1. However, in case of random variabilities
in addition to the systematic variations, the resulting scatter of points appears in one
of the six alternatives as in Fig. 1.2.

The trends in each one of these graphs are obvious and naked eye transforms
visual information into mind and then appropriate qualitative interpretations can be
deduced accordingly and they pave way toward probabilistic, statistical, stochastic
or mathematical assessment. As for the measurements, whatever is the sensitivity,
there are always measurement errors or inherent structural randomness during the
evolution of the event. Trends in these graphs are representatives of systematic
variability and deviations from each trend are the random or stochastic component
of the variable.
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Fig. 1.2 Different time series and trends, a linearly increasing, b linearly decreasing, c nonlinearly
increasing, d nonlinearly decreasing, e no trend (independence), and f no trend (independence)
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Conceptual and visual trend evaluations provide linguistic (verbal) and partially
fuzzy knowledge and information (Chaps. 7–8), which are qualitative, but they are
the fundamentals of subsequent mathematical and statistical trend deduction,
identification, determination and quantitative assessments as well as interpretations
that are the main topics in the next chapters of this book. It should be emphasized at
this junction that expertize about an event can be gained through such basic human
intuitional and visual conceptions prior to any mathematical and statistical data
treatment.

1.2.2 Mathematical Trend

Conceptual and visual trend alternatives provide the geometrical (functional) rela-
tionships of different forms without symbolic (mathematical) expressions, which
provide preliminary objective definition, identification and description of a trend. If
digital data are available in the form of time series then their treatment through
scientific methodologies require first the establishment of mathematical foundations.
For this purpose, simple mathematical functions must be kept in the library to study a
time series for trend analysis. In practical applications, most often trend implies
linear forms as increasing or decreasing tendencies. Hence, frequent trend searches
are confined to Fig. 1.1a, b mathematically and Fig. 1.2a, b statistically. These have
the simplest mathematical forms with two parameters a and b. For the linear trends in
Fig. 1.1, the trend components are completely deterministic without random devi-
ations, and therefore, the mathematical form is given as,

Y ¼ a� bt; ð1:1Þ

where positive (negative) sign is for increasing (decreasing) trend. Equation (1.1) is
the mathematical expression of Fig. 1.1a, b. The parameter values represent the
intercept on the vertical axis and the slope of the line, respectively (see Fig. 1.3).

Equation (1.1) takes an uncertainty form by addition of an uncertain (random)
element, u, with zero arithmetic average into the deterministic trend component as
follows:

t

Y

t

Y (b)(a)

a

a b
b

Fig. 1.3 Linear trend parameters
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Y ¼ a� btþ u: ð1:2Þ

This expression represents Fig. 1.2a, b, because of its linear structure. In con-
ceptual trend works, sometimes it is possible to judge the parameter values,
although there is no measurement. For instance, if there is no currency in the credit
card one cannot buy goods, but depending on the amount of credit the amount of
shopping increases, and therefore, the parameter a is equal to zero. Another
example is the relationship between the rainfall, R, and the surface water flow, F,
over a land piece, where there is no surface flow prior to the rainfall. Logically, one
can conceptualize that the surface flow cannot be more than the rainfall, and hence,
the slope parameter, b, value must be less than 1. In this example, the linear line
also passes through the origin, and consequently, the trend line between the rainfall
and surface water flow passes through the origin (a = 0) with slope b < 1. How-
ever, precise determination of the slope value necessitates simultaneous rainfall and
surface flow measurements.

As for the nonlinearity trends, mathematical functions may be in different forms
including polynomial, exponential, power, logarithmic and other functions, but they
are not frequently used in practice. The most widely used nonlinear trend
description is in the form of second order polynomial function as,

Y ¼ a� bt � ct2; ð1:3Þ

where c is an additional parameter that indicates the curvature of the nonlinear
trend. It is the mathematical formulation of Fig. 1.1c, d. In case of uncertainty
ingredient component existence, it can be rewritten as,

Y ¼ a� bt � ct2 þ u: ð1:4Þ

This is the valid mathematical counterpart of Fig. 1.2c, d.
It is also possible to describe the trend components mathematically by differ-

ential equations. The first order differential expression represents linear trend and
depending on its sign, it may be increasing (positive sign) or decreasing (negative
sign) trend. However, the second order differential equation represents the nonlinear
form again depending on the sign, where positive (negative) sign implies concave
upward (downward) curvature. These alternatives are presented in Fig. 1.4.

The first order differential term of Eq. (1.1) leads to the following expression
that is in accordance with Fig. 1.4a, b

dY
dt

¼ �b ð1:5Þ

On the other hand, the first and second order differentials of Eq. (1.2) yield the
following two differential equations.
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dY
dt

¼ �b� 2ct ð1:6Þ

and

d2Y
dt2

¼ �2c ð1:7Þ

Deterministic mathematical expressions without any random component are not
used much in the data mining studies.

1.2.3 Statistical Trend

Variety of statistical tools is employed for trend analysis as will be explained in the
following chapters and they are accessible to anyone who is interested in such works.

(c) (d)

(a) (b)

(e)

Fig. 1.4 Partial differentials of trends
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After the visual inspection of time series possible trend, sudden changes, outliers and
random pattern around the trend component can be interpreted linguistically. Sub-
sequently, data values can be converted to moving average value, which clarifies the
background patters well because of smoothing (Chap. 2, Sect. 2.8.1). Finally, a
regression model can be fitted to the final pattern (Chap. 3, Sect. 3.4.1).

In most contexts, trends are formed and interpreted from sets of data through
probability, statistics and stochastic methodologies, which imply that there are
random element embeds in the systematic deterministic components (trend, sea-
sonality, step and shift-jump) in a time series. Natural and artificial time series
measurements are not free of errors or inherent random components. In industrial
machines, there are measurement errors but in natural, social and economic events
additionally there are uncontrollable inherent random ingredients. As mentioned
before, in Sect. 1.2.1 time series in Fig. 1.2 have random components, and there-
fore, deterministic equations cannot describe such time series completely. In order
to represent them with trend component, an extra uncertainty component, ui, is
added to the mathematical expressions. The symbolic representation of a time series
is Y1, Y2, …, Xn or Yi (i = 1, 2, …, n), where n is the number of samples. For
statistical expression of time series with a linear trend component, the mathematical
formulation can be written in the most explicit form as,

Yi ¼ a� bti þ ui: ð1:8Þ

t

Y

u1
u2

u3 u4
u5

u3
u4

u5

u1

t

Y

(a)

(b)

Fig. 1.5 Uncertainty
components a increasing
trend, b decreasing trend
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Figure 1.5 indicates the graphical representation of the time series with uncer-
tainty terms that are represented by vertical deviations from the trend line.

This figure indicates that the uncertainty components with respect to the trend
line has + and – values. It brings to the mind logically as the first condition, for the
best trend representation, the summation of the uncertainty terms must be equal to
zero.

Xn

i¼1

ui ¼ 0 ð1:9Þ

This is a necessary condition but not sufficient, because the + and − deviations
may be far away from the trend line, but still their summation may appear as zero.
In the case of complete determinism, satisfaction of this condition is possible only
when each one of the uncertainty amount is equal to zero, which is never the case in
natural or artificial time series. Completely deterministic case can be represented by
taking the absolute value of each uncertainty term and see whether their summation
is equal to zero.

Xn

i¼1

uij j ¼ 0 ð1:10Þ

However, in practice there is never a completely deterministic case, but there are
uncertainties, and therefore, the logic deducts that the summation of absolute errors
must be as small as possible (minimum). In practical calculations, instead of the
absolute value, the square of each term is adapted for calculation convenience and
the second and most significant condition for trend identification is the following
expression.

Xn

i¼1

u2i ¼ minimum ð1:11Þ

Equations (1.9) and (1.11) are the basic requirements in the classical statistical
regression analysis, which is one of the trend identification techniques in the lit-
erature (see Chap. 3).

1.3 Trend in Some Disciplines

In various aspects of life, trends are everywhere vivid, but they need close care for
their identification. Trends may be beneficial or harmful depending on the disci-
plines, circumstances, and the purpose of the study or project.
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1.3.1 Atmospheric Sciences

Each phenomenon in atmospheric sciences has uncertainty component and during
long time durations trends are also observable in time series records. Among the
major atmospheric scientists are meteorologists and climatologists who try and
study characteristics of atmospheric physics, air mass movements and related
processes in order to quantify and make reliable predictions about the atmospheric
environmental activities. Weather forecasting is one of the major subjects, which
involves uncertainties, but also local or temporal monotonic or partial trend com-
ponents are also necessary in the prediction studies (see Chaps. 3 and 8). During the
prediction studies, it is essential to identify and interpret climate trends for better
understanding of the weather conditions and variabilities. Atmospheric studies are
also very significant in air pollution control, agriculture, forestry, air and sea
transportation, defense, and the study of possible trends in the Earth’s climate, such
as global warming, droughts, floods and ozone depletion. Currently, among the
most important trend identification studies are concerned with the global warming,
greenhouse gases concentrations and climate change impacts (Chaps. 7–8).

1.3.2 Environmental Sciences

Environmental changes can be detected and estimated through the classical statis-
tical methodologies, where the trend analysis plays very significant role. In recent
decades, tremendous amount of environmental data have accumulated in digital
medium and their treatments, especially in the forms of time series, reveal decisive
and conclusive results not only for the management but also for the quality and
quantity trend variations and their controls.

It is necessary to understand, identify and quantify the possible temporal and
spatial changes in different aspects of environmental sciences such as air, soil, and
water quality and quantity. Especially, description of past trends and variations are
important for understanding the basic generation mechanism of the phenomenon
concerned and then to make future projections for the purpose of monitoring and
combating the intervention of any undesired effect. Detection and estimation of
possible trends in time series related to environmental sciences can be obtained
through a set of familiar classical procedures. This is especially significant due to
the explosion of environmental information records that provide a common basis
for data treatment so as to reach meaningful and applicable results for better
functioning of environmental systems.

1.3.3 Earth Sciences

In earth sciences, most often not only temporal but especially spatial trend searches
are important in order to appreciate, understand and then explore the mineralogical,
water, soil, oil, and different industrial raw material existences in a region. In earth
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sciences especially trend surface analyses occupy a significant role in description of
surface and subsurface geological tendencies (Chap. 6). Trend surface analysis
helps to separate the spatially available data at irregularly scattered points in a study
area into three components, namely regional trend effect, significant localized
features and random component that cannot be expressed mathematically except by
probabilistic, statistical, geostatistical and stochastic methodologies (Davis 1986).

1.3.4 Engineering

In many engineering aspects, trend analysis plays dominant role especially those
events that have relationships with natural phenomena. In the past, many water
resources planning, management and operation studies assumed implicitly that the
time series (temperature, streamflow, precipitation records) are stationary (Maas
et al. 1962). However, the stationarity assumption is no longer valid due to human
disturbances in the atmospheric and hydrologic environments (IPCC 2007, 2013,
2014). By now, numerous studies have demonstrated that the stationarity principle
is dead, because of substantial impacts due to climate change in the atmospheric
events (Milly et al. 2008).

Changes in the means of hydrometeorological time series and in their extreme
values may imply trend existence, which must be identified and separated from the
main series so as to render it into a stationary state. Since almost three decades
environmental, atmospheric, hydrologic, climatologic and agricultural degradations
have been searched through trend analysis, especially by employing some classical
methodologies such as the Mann–Kendall (MK) analysis (Mann 1945; Kendall
1970). Additionally, trend slope determination by median slope calculation has also
been used coupled with the trend detection as suggested by Sen (1968).

Efficient, effective and optimum management of water resources requires the
identification of trends not only monotonically over the whole time period, but also
whether the “low”, “medium”, and “high” values have separate trends (Chaps. 3
and 8). These help also to identify drought and flood occurrences in their increasing
or decreasing frequencies. In general, a monotonic trend is a gradual change over
the whole record period and it is expected to continue in the future. However, for
“low”, “medium”, and “high” values trend searches, the periods are comparatively
shorter. As Zhang et al. (2010) rightly suggests, the hydrological literature has so
far devoted very limited attention to the characterization of trend pattern. They
sought abrupt or gradual trend patterns in a given time series.

1.3.5 Global Warming

Compared to the past, especially in the twentieth and the current centuries, human
population increase, extravagant style of life, land use, economic ambitions, was-
tages, and fossil energy use to support these activities, initially environment and
currently atmosphere had to absorb all the remnants in the forms of particulate
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matter and greenhouse gasses. Consequently, the chemical composition of the
lower atmosphere (troposphere) had started to change such that the extraterrestrial
irradiation could not escape back to the atmosphere in the form of short waves, and
therefore, accumulation of especially carbon dioxide gas led to warming in the
troposphere. The emission releases into the atmosphere cause to global warming as
explained in detail by Intergovernmental Panel on Climate Change (IPCC) reports
in 2007 and 2013. The most likely changes in physical climate variables or climate
forcing agents are identified based on current knowledge, following the IPCC AR5
uncertainty guidance (Mastrandrea et al. 2010). Global warming and climate change
terms are used interchangeably for average temperature rise in the Earth’s climate
system in the form of increasing trend. Global warming causes changes in the
climate variables such as the hydrometeorological records, which affect conse-
quently the water resources and the food production that are of utmost significance
to human beings. More detailed information is presented in Chaps. 7–8.

1.3.6 Climate Change

Trend analysis evaluation is also needed for long-term infrastructure design and risk
analysis in hydro-meteoro-climatic and social origin time series. As stated by
Fatichi et al. (2013), due to climate change assessment, trend identification,
detection and evaluation are important issues in different disciplines.

Climate does not play role only on present day human activities, but more
significantly and scientifically its future predictions are among the most desirable
elements so as to mitigate and to provide adaptive decisions, projects, plans, nec-
essary preventive structures and their right as well as adjusted operations in order to
reduce expected climate change impacts up to a maximum safety level. Water and
food security plans, human health improvements, environmental protections, social
and economic affairs are all related to climate change in the long run, but on the
present day weather affects in the short-run. All these effects are identifiable through
effective trend analysis as presented in this book. IPCC (2007) report expresses the
importance of future climate change expectations on different regions, sectors and
define the role of anthropogenic atmospheric pollution due to increase of green-
house gases in an unprecedented rate, which must be offset for prosperous and
sustainable future expectancies in various walks of life.

Especially, after 1970 the realization of global warming and the climate change
impacts, it has been understood that in a variety of situations some hydroclimato-
logical and economy variables change over time, and this gives rise to a linear or
nonlinear trends in the related time series.

1.3.7 Social Sciences

Social and cultural values and practices in a society are changing with time and if
asked to most of young people, they may be happy, in general, for the changes, but
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the elder generation by remembering old good days may complain about the dete-
rioration of the societal and cultural virtues. The former (latter) generation looks for
an increasing (decreasing) trend, but whatever the circumstances, there are steady
changes due to economic prosperity, population growth, land use, forestry, global
warming, climate change, terrorism, etc. Social trends cannot be for long-term and
continuous variations and even one can observe such trend changes over 5-year or
shorter duration. Even though the social changes may be initiated by a small group of
people, but their effect may spread to cover large portions from the society.

1.3.7.1 Economy
Economic trends are with all of us every day vividly. For instance, shopping
implies adding to the consumer spending trend, but to the business gaining trend.
The interest rate is also an economic trend and the longer is the time without
payment, the more will be the interest amount along an increasing trend. Unem-
ployment rate is another economic trend. In the economy domain, the foreign
exchange rate in unstable societies is in an increasing trend direction. If the
exchange rate of each month is plotted against time then an economic time series
emerge with a trend component.

Measure of any economic development is through the observation, identification
and comparison of present levels with the previous cases, and accordingly, either an
increasing or decreasing trend shows the degree of the development. In the study of
economic trends, the main focus is on the development trends in the recent decades
as a result of increasing globalization of knowledge, technology and economy.
Industrial processes, information, telecommunication, investments and unprece-
dented digital data records have led to further researches on a number of trends in
economics.

In the economy discipline, a trend can be defined as the overall direction in
which a nation’s economy changes by time. Economists and especially, financial
departments in the governmental or private sectors must be aware of the prevailing
direction of the economic trends. Provided that they are able to detect the current
economic trends, they are then empowered with more reliable, accurate and
effective plans for their establishments.

1.3.7.2 Business
In the strategic business development, it is necessary to observe trends related to the
business sector. Careful concern about the business trends helps to improve the
market possibilities. Early identification of these trends adds to the future value of
the business, because accordingly, the best and successful strategic decision can be
taken. With a good background of the past and present economic trends, one is
capable to preserve the status of the business affairs and avoid unwanted possible
occurrences in the future transactions. Especially, with the availability of computers
and fast computation facilities early interpretation of such trends helps to augment
the business capacity leading to business growth strategical planning. Changes in
the business trends may occur due to the increasing or decreasing product or service
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usages, children to stay at home during longer durations, pricing such as the
increasing use of online purchasing, changes in the interest rates and in the global
factors such as the world economy, housing demand, etc.

Anyone who is working in the business affair should try and identify the most
important trends for his/her market and the ones that are not important for the same
market can be overlooked. Global watch on the business and economy trends may
also help the investor to expect similar trend effects in his/her country or location.
The side effect trends on the business must also be watched for a successful
strategic business planning. In the business sector, it is not necessary that one
should look in finer detail for trend identification and most often conceptual and
visual trend assessments and interpretations in linguistic (verbal) statements may be
more effective. The growths of business always vary, but mostly accord with an
increasing trend.

Future business projections can be achieved through verifiable methods
including trend analysis. Trends may also be early warning tools for impending
failure outcomes. If accurate and reliable numerical and verbal information are
available then trend analysis provides a precise medium for future expectations.
Trend analysis is used to forecast market trends, sales growth, inventory levels and
interest rates.

1.3.7.3 Health
Trend analyses are also important in any society for health care, because all efforts
are toward the improvement of human health. Trends in disease, death and
behaviors such as smoking, alcohol drinking are among the public health domains
and they show the healthcare directions, assessments in addition to better service
planning and policy developments. It is possible to make future predictions and
occurrence frequencies and rates based on numerical data examination by time in
search for temporal trends.

Trend analysis in health sector indicates the performance of a service usage
whether it is beneficial (increasing trend) or not (decreasing trend). In case of
benefit, the slope of the trend indicates the rate of change as “quick” or “slow” in
linguistic terms. It is also possible to compare one time interval with other as will be
explained in the following chapters of this book, to appreciate the effectiveness of
the program and whether there is a steady increase. By means of temporal trend
analysis in the health domain, it is also possible to compare the situations among
geographical locations and populations. Healthcare service improvements may be
aided by trend analysis on the basis of estimating possible future likely occurrences,
frequencies and rates.

In trend analysis of time series, the first step is to plot available data and then try
and observe through examination the change rate. Hence, one is able to grasp
overview of the general trend shape, outliers as extreme values, and hence, the
researcher gains career experience even though it may be conceptual and visual in
fuzzy linguistic (verbal) terminologies (Ross 1995; Şen 2010). In health sector most
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often employed trend analyses have linguistic, verbal, probabilistic, statistical and
fuzzy diagnoses and interpretations in addition to objective identifications by
quantitative methods provided that numerical data are available.

1.4 Pros and Cons of Trend Analysis

With the widespread availability of data virtually in every field and the computer’s
capability to process them applications for trend analysis seem almost limitless.
Since, a trend analysis is based on verifiable data it can be subjected to thorough
scrutiny for validation. The use of numbers makes the analysis more exacting.
A trend analysis can be replicated, checked, updated and refined when necessary.

Historical data may not give a true picture of an underlying trend. Extreme events
like severe floods, droughts and earthquakes distort a normal trend line, while others
are more subtle. A major problem in forecasting trends involves turning point
identifications. With hindsight, turning points are clearly visible, but it can be dif-
ficult to tell in the moment whether they are mere aberrations or the beginning of new
trends (Chap. 7). Long-term projections need more data to support them and that
may not always be available particularly for a new business or product line. In any
case, the further out one forecast the greater is the error possibility, because the
passage of time introduces inevitably the effects of new variables.

In the application of any trend methodology prior to the application one should
care for underlying assumptions and hypotheses so as to reach at reliable conclu-
sions. Otherwise, even the possible trend component in the data may be weakened.

1.5 Future Research Directions

Time series analysis has a tremendous research and especially application possi-
bilities not only in the natural domains but also in many data mining studies
concerning various disciplines as mentioned in Sect. 1.3. In the last two to three
decades, the trend analysis has become one of the boiling research, development
and application aspects in different disciplines. Although the classical Mann–
Kendall trend test is overwhelmingly used in trend identification and assessment in
any time series, it has serious drawbacks as for the basic assumptions of sample
size, normal (Gaussian) probability distribution functions (pdf) and serial correla-
tion structure. This test is considered as the classical approach in the literature.
However, there is still room and need for more efficient and powerful trend
detection tests in future time series analyses, which are within the bulk goal of this
book. Furthermore, research should be directed toward the consideration of con-
temporary multiple comparison tests in addition to the commonly used tests for
checking homogeneity in the natural and artificial time series records. In many
studies, a time series is considered as stationary random variable based on trend
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tests only. Although there are less common methods such as t-test and nonpara-
metric Mann–Whitney test, they have not been employed in full scale (Chap. 3).

Periodicity and dependent structure (persistence) features are ignored in many
time series analysis studies. Each time series component (trend, periodicity, jump
and randomness) is very important in many planning, operation, management and
maintenance projects. Parallel to ever growing global warming and climate change
events, the trend search in recorded time series occupies the top priority in the time
series analysis. As a result, trend analysis gained acceleration over the last 30 years.
It is expected that the well-known “greenhouse effect” will alter the timing and
magnitude of many hydrological, environmental, social and health events, leading
to the possibility of environmental and socioeconomic dislocations that can be
pressed partially by trend component. For instance, trends have important impli-
cations for the planning and management of water resources in the future (Gleick
1989; IPCC 2007). Additionally, variability features are also searched through the
trend analysis as will be explained later in this book.

Hirsh et al. (1982) stated that for a “next generation” of trend analysis techniques
in response to the observations need recent and longer monitoring data sets, new
questions about the effectiveness of control efforts and the availability of new
statistical tools. They identified seven critical attributes for the next generation of
trend analysis. It has been stated that the current trend analyses should,

(1) focus on revealing the nature and magnitude of change rather than strict
hypothesis testing,

(2) not assume that the flow-concentration relationship is constant over time,
(3) make no assumptions that seasonal patterns repeat exactly over the period of

record, but allow the shape of seasonality to evolve over time,
(4) allow the shape of an estimated trend to be driven by the data and not con-

strained to follow a specific form such as linear or quadratic; trend patterns
should be allowed to differ for different seasons or flow conditions,

(5) provide consistent results describing trends in both concentration and load,
(6) provide not only estimates of trends in concentration and flux, but also trend

estimates where the variation in, say, water quality due to variation in
streamflow has been statistically removed,

(7) include diagnostic tools to assist in understanding the nature of the changes
that have taken place over time, e.g., to identify particular time periods of year
or conditions during which quality changes are most pronounced.

1.6 Purpose of This Book

During the last 50 years’ time series analyses methodologies have been applied in a
variety of fields including hydrology, meteorology, climatology, geology,
oceanography, seismology, oceanography, economics, health, space research, earth,
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marine and agricultural sciences, etc. This book presents not only a review of trend
analysis applications in different domains through a set of classical methodologies,
but also provides innovative methodologies for the most effective ways of trend
identification, determination, assessment and interpretation. The comprehensive
review indicates the convenience of the available trend analysis methodologies and
their adaptations based on rational, logical and a set of scientific assumptions for
each approach. On the other hand, many social, health, environmental and engi-
neering aspects attract worldwide attention for time series analysis techniques
application. Although there are numerous applications of the well-known time
series and trend analyses in different domains, unfortunately less number of studies
is developed on innovative approaches/methodologies or even modification of
existing approaches for trend analysis. Hence, the main goal of this book, after the
introduction of the classical time series and trend analyses methodologies, is to
present up to date modernly developed innovative trend analyses of different types,
which provide simple, effective, rational and logical linguistically interpretations
and quantitative theoretical developments with almost no assumption. In the past,
most researchers have employed the applications of the classical trend analyses
without significant improvements except few modifications that could not avoid the
drawbacks and assumptions. In the applications, such trend analyses have been
applied so frequently and consequently that other time series features (stationarity,
homogeneity, periodicity and persistence) have been overlooked by depending on
unchecked assumptions. It is hoped that in the future studies in addition to trend
methodological developments, the basic features and assumptions are also taken
into consideration. It is recommended in this book that in the future more effective
innovative methodologies should be discovered or at least the existing ones are
modified such that the applications comply by the basic theoretical assumptions.

Future researches are expected to deal with the applications of time series
analysis techniques in different disciplines toward more robust and widely
acceptable interpretation and implementation possibilities. The most important and
preliminary requirement is to have reliable measurement records for providing
better and useful methodologies.
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2Uncertainty and Time Series

Abstract
Trends are one of the deterministic parts of a given time series apart from the
natural or artificial seasonality and uncertain components. Trend analysis is a
search for deterministic trend in an uncertain environment, therefore, the basic
concepts of uncertainty are explained as stochastic and completely random
variables and their importance in trend identification studies. Since, probability
and statistics are main subjects for such a search various probabilistic and
statistical concepts are presented in an effective manner so that prior to a proper
trend analysis the reader can appreciate the fundamental elementary concepts,
which are in later chapters are employed for the main goal. In classical trend
analyses, the most restrictive assumption requirement is the serial independence
of given time series, various correlation measurement suggestions are reflected
from the literature. In the meantime for classical trend analysis, the character-
istics of a time series are explained for proper application of the methodologies.

Keywords
Correlation � Frequency �Histogram �Homogeneity � Seasonality � Stationarity �
Uncertainty

2.1 General

Uncertainty has many connotations to common people and experts grasp it in rather
different ways; some considers it as entirely unknown and unpredictable informa-
tion and to some others, it is partial information and knowledge. The uncertainty is
everywhere and one cannot get rid of it completely. Initial knowledge and infor-
mation are concepts that depend on personal observations and experience.
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Uncertainty can be avoided by a set of simplifying assumptions about the phe-
nomenon concerned. For instance, Newtonian classical physics is entirely deter-
ministic. Today almost all branches of science (environmental, atmospheric, earth,
engineering, economics, health and social) are confronted with uncertainty ingre-
dients and many scientific deterministic foundations take uncertainty forms in terms
of random, probability, statistics, chaos, fractal, stochastic, quantum, and fuzzy
implications. In many scientific and technological institutions determinism domi-
nates the education systems. Famous philosophers and scientists spell out the
uncertainty and fuzzy ingredients that are essential bases of scientific progress. For
instance, Russell (1948) stated that

All traditional logic habitually assumes that precise symbols are being employed. It is,
therefore, not applicable to this terrestrial life but only to an imagined celestial existence.

On the other hand, as for the verbal and linguistic fuzzy conceptions Zadeh
(1965) said that

As the complexity of a system increases, our ability to make precise and yet significant
statements about its behavior diminishes until a threshold is reached beyond which pre-
cision and significance (or relevance) become almost mutually exclusive characteristics.

During human thinking evolution, the premises include uncertainty elements
such as vagueness, ambiguousness, possibility, probability, random, and fuzziness.
Implication of mathematical structure from the mental thinking process might seem
exact, but even today it is understood as a result of scientific development that at
every stages of modeling, physical, or mechanical, there are uncertainty pieces, if
not in the macroscale, at least at the microscale. It is clear today that mathematical
conceptualization and idealization leading to satisfactory mathematical structure of
any physical actuality is often an approximation, because as Popper (1954) states
that scientific facts are falsifiable.

The word uncertainty reminds also the probability of occurrences with attach-
ment of a certain percentage. It is not uncommon that everyone is confronted with
probability statements, especially in natural, social, and financial conservations. For
instance, what is the probability of weather status for tomorrow? what will be the
income depending on the number of clients in the next month? what is the prob-
ability of investing on stock? These queries involve uncertainty and their daily
answers are quantitatively through subjective percentage numbers, which are, the
probability statements. Probability in the statistics context helps to investigate past
records of uncertain events so as to make future predictions and dependable
decisions.

Prior to the explanations of systematic components such as trends in any time
series, it is preferable to equip the reader with uncertainty concepts. Uncertainty or
randomness and stochasticity are counter concepts to determinism. For instance,
astronomic events were thought as rather uncertain phenomena by early human
beings, but today they are well known and even one is capable to calculate through
the scientific methodologies the position of any planet at any future time.
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Additionally, any gadget, instrument, automation or machine can be described by
deterministic formulations, equations, and logical rules.

Many natural events in atmospheric, environmental, earth, oceanography,
meteorology, hydrogeology, earthquake and social, economic, health, business, and
similar events do not provide completely well-established behaviors, because they
include some deterministic parts that can be identified by mathematical statistical
methods, but the residuals from the deterministic components are random in
character. Any natural phenomenon takes place under the combined effects of
physical, chemical, mechanical, and thermodynamic conditions and evolves tem-
porally and spatially according to a set of certain laws. These effects cannot be
identified accurately whatever the monitoring instrumentation and scientific
methodologies are. For instance, hydrological events such as rainfall, runoff,
infiltration, and evaporation cannot be controlled precisely over large areas and
future times. The uncertainties in these events affect the economic, environmental,
social, and even physiological conditions of human societies. For instance, human
civilization has long been deeply affected by impacts of droughts on economic,
environmental and social sectors (Wilhite 1993).

On the other hand, the scientific models that are suitable for description of an
event might not be reliable with high confidence. At this stage, it is very convenient
to remember the statement by Einstein that

so far as the laws of mathematics refer to reality, they are not certain. And so far as they are
certain, they do not refer to reality.

Natural event uncertainty is associated with not knowing if and/or when, say for
instance, a rainfall event will cause to the exceedence of a given design discharge.
Additionally, model uncertainty is the inaccuracy of the model used to estimate the
design discharge. In addition to these two uncertainty types the third one is the
measurement error.

The uncertainty in the earth and atmospheric systems arises from the conviction
that generalizations are immensely complicated instantiations of abstract and often
universal physical laws. Such generalizations always contain assumptions of
boundary and initial conditions. The researchers cannot control these conditions
with certainty.

Earth systems sciences deal with spatial and temporal structures (trends, peri-
odicities, jumps) in natural phenomena at every scale for the purpose of predicting
the future replicas of the similar phenomenon, which help to make significant
decisions in planning, management, operation, and maintenance of natural events
that are related to social, environmental, and engineering activities. These phe-
nomena are sampled by measurements with uncertainty ingredient; their analysis,
control, and prediction need to use uncertainty techniques for reliable predictions.
Natural phenomena cannot be monitored at a set of desired instances and locations,
and therefore, such restrictive time and location conditions bring additional irreg-
ularity into the measurements. For instance, floods, earthquakes, car accidents,
illnesses, and rock fracture occurrences are among the irregularly distributed tem-
poral and spatial events. Uncertainty and irregularity are the common properties of
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natural phenomena measurements in many researches, but the analytical solutions
through numerical approximations require mostly regularly available initial and
boundary conditions that cannot be obtained by lying regular measurement sites or
time intervals. In an uncertain environment any cause is associated with different
effects each with different level of possibility. Herein, possibility means some
preference index for the occurrence of each effect. The greater the possibility index,
the more frequent the event’s occurrence.

2.2 Random and Randomness

Random and randomness are the two terms that are used in statistical sense to
describe any phenomenon, which is unpredictable with any degree of certainty. An
illuminating definition of randomness is provided by famous statistician Parzen
(1960) as,

A random (or chance) phenomenon is an empirical phenomenon characterized by the
property that its observation under a given set of circumstances does not always lead to the
same observed outcome (so that there is no deterministic regularity) but rather to different
outcomes in such a way that there is a statistical regularity.

The statistical regularity implies group and subgroup behaviors of a large
number of observations so that the predictions can be made for each group more
accurately than individual ones. For instance, provided that a long sequence of
temperature observations are available at a location, it is then possible to say quite
confidently that the weather will be warm, cool, cold, or hot tomorrow than
specifying exactly by degree of centigrade prediction. The statistical regularities are
as a result of some astronomical, natural, environmental, and social effects.

Deterministic phenomena are those in which outcomes of individual events are
predictable with complete certainty under a given set of circumstances, provided
that the initial and boundary conditions are known. It is necessary to check the
validity of the assumption sets and initial conditions. In a way, with idealization
concepts, assumptions, and simplifications deterministic scientific researches yield
conclusions in the forms of algorithms, procedures, or mathematical formulations,
which should be used with caution. The very essence of determinism is the ide-
alization and assumptions so that uncertain phenomenon becomes graspable and
conceivable to work with the available physical concepts and mathematical pro-
cedures. In a way, idealization and assumption sets render random phenomenon
into conceptually certain case by trashing out the uncertainty components. A sig-
nificant question that may be asked at this point is that, is there not any benefit from
the deterministic approaches in natural studies, where the events are uncertain? The
answer to this question is affirmative, because in spite of the simplifying assump-
tions and idealizations, the skeleton of the uncertain phenomenon can be captured
by deterministic methods. For instance, determination of a trend component in a
time series is a good example.
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Even after the separation of a time series from its systematic components such as
trend, the residuals should be checked for various feature properties so as to be able
to apply probabilistic, statistical, and stochastic methodologies, which have a set of
assumptions such as stationarity or weakly stationarity, homogeneity, independence
or dependence, persistence or fuzziness.

2.3 Empirical Frequency and Distribution Function

An empirical work is possible provided that there is a set of measurements about the
event concerned. In the content of this book measurements are considered as a
sequence of records at equal time intervals, which are referred to as the time series.
In mathematical notation Y1, Y2, …, Yn is a time series with n samples. It can be
shown succinctly as Yi (i = 1, 2, …, n). Such a time series is shown for annual
precipitation records in Fig. 2.1

Visual inspection of this figure indicates that obviously there is not a systematic
follow-up between the successive years, and therefore, it is a random time series.
This visualization is obtained by looking at the figure directly. It is possible to
search visually for any trend, seasonality, and shift components. However, in this
figure, it is not possible to identify any one of these deterministic components.

It is possible to obtain the number of frequencies provided that the variation
domain is divided into equal length classes, which is shown in Fig. 2.2 with five
classes. The frequency means the number of data values that fall within the class
considered. For instance, in Fig. 2.3 the numbers of frequencies from left to right
classes are 3, 30, 43, 27, and 13, respectively. The summation of these frequencies
is equal to 116, which is the number of data in Fig. 2.1.

1905 1915 1925 1935 1945 1955 1965 1975 1985 1995 2005
2

2.5

3

3.5

4

4.5

5

Year, i

A
nn

ua
l p

re
ci

pi
ta

tio
n,

 Y
i, 

(in
ch

)

Fig. 2.1 Annual precipitation time series
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In order to appreciate the frequency concept, Fig. 2.2 is shown on the left-hand
side in Fig. 2.3 vertically, and hence, one can understand, which data values fall
into which class.

The frequency diagram in Fig. 2.2 seems almost symmetrical, which means that
the number of data values more (less) than the arithmetic average is almost 50%.
Such a symmetrical frequency distribution function has the arithmetic average
(mean) value at or very close to the symmetry axis as shown in the same figure. As
a statistical rule, in symmetrical distributions, the mean value is almost equal to the
mode (the most frequently occurring value) and median (the value that divides the
frequency distribution function into two halves) values.
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After all what have been explained above, it is possible to write down an
equation among the class frequencies in a time series. If there are m classes each
with frequencies fi (i = 1, 2, …, m) then,

f1 þ f2 þ � � � þ fm ¼ n; ð2:1Þ

where n is the number of data in the given time series.
It is also possible to appreciate the standard deviation value, which indicates

arithmetic average deviations around the mean value. With this concept in mind,
positive and negative standard deviation values are shown on the right and left of
the arithmetic average value in Fig. 2.2. Apart from the symmetric frequency
distribution function, various skewed (nonsymmetric) types are shown in Fig. 2.4.
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f bimodal empirical distributions
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In practical studies, any one of these empirical frequency distribution functions
emerges from a given time series data. It is possible to make various visual inter-
pretations from each empirical frequency distribution function and this point is left
to the reader so that s/he can increase personal expert views.

A very significant question at this stage; is it possible to identify any systematic
component from the empirical frequency distribution functions? The answer is that
it is not possible to deduce any trend component from the empirical frequency
distributions.

2.3.1 Empirical Frequency and Trend

The unique way to be able to identify trend component through the employment of
empirical frequency analysis is possible if the given time series is divided into two
halves and for each half the empirical frequency distribution functions are obtained
and compared with each other. For visual inspection, Fig. 2.5 presents a time series
of 100 data values, where one can see visually that there is an increasing trend.

In order to see objectively whether there is a trend in the given time series or not,
the time series is divided into two halves 50 and 50 data values and the resulting
two empirical frequency distributions are given in Fig. 2.6.

Comparison of the two-half empirical frequency distributions indicates that there
is significant shift toward the high values as obvious from Fig. 2.6b.

Figure 2.7 indicates decreasing trend component in the time series and it is
identifiable even by naked eye visually without any quantitative methodology
applications.

This time series is also divided into two halves and their empirical frequency
distribution functions’ comparison provides information about the decreasing trend
as the frequency distributions in Fig. 2.8.

Comparison of the second half empirical frequency distribution with the first one
indicates that there is a decreasing trend.
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Fig. 2.6 Two halves empirical frequency distributions
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Fig. 2.7 Time series with visual decreasing trend
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Fig. 2.8 Two halves empirical frequency distributions
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Objective decision about the trend component existence within a time series by
two-half empirical frequency distributions is possible through the chi square test.

Şen (2012, 2014) has proposed an innovative trend analysis methodology by
using the concept of dividing a given time series into two equal halves. However, it
is also possible to divide the time series into more than two equal size pieces and
then in each piece, one can search for possible trend through the same innovative
methodology. Various forms of the innovative trend methodology are explained in
different chapters of this book (Chaps. 5–8).

2.4 Theoretical Probability Distribution Function (Pdf)

The probability has been expressed in daily life as percentages, but in the statistical
context it may assume any value between 0 and 1, inclusive. When its value is equal
to zero (one) then the event is absolutely impossible (possible). If the question is
what is the probability in a given class then one can divide both sides of Eq. (2.1)
by n, and hence, the probability of ith class is defined objectively as fi/n. Finally,
Eq. (2.1) can be written as,

f1
n
þ f2

n
þ � � � þ fn

n
¼ 1 ð2:2Þ

or with probability, pi (i = 1, 2, …, m), notations,

p1 þ p2 þ � � � þ pm ¼ 1 ð2:3Þ

After these definitions, it becomes clear that in order to obtain the pdf one needs
to divide each class frequency diagram in the empirical frequency distribution by
the number of data and the resulting graph is referred to as histogram. Since by
definition the area under any theoretical pdf is equal to 1, the histograms must be
prepared preferably in such a way that the empirical area under it must also be equal
to 1.

As mentioned in the previous subsection for the empirical frequency distribu-
tion, it is possible to search for possible trend component by comparison of two-half
pdfs of a given time series. This is used descriptively for global warming discus-
sions as in Fig. 2.9, where pdfs are shown theoretically as continuous curves.

In this figure, the pdf A can be regarded as the first half of a time series and B and
C are the second halves. Comparison of the first half pdf (A) with the second
(B) indicates that there is a shift toward the high values. If this shift is not sudden
but gradual then it evolves with time along a smooth trend component. This last
statement implies that there is an increasing trend in the given time series. If the
amount of increase is asked then one can say that the arithmetic average (the peak)
value, l, of the first half has shifted toward the right by amount of Dl, and since
this amount took place during the half time, n/2, evolution of a given time series of
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duration (sample number), n, then the slope, S, of the trend component can be
calculated as,

S ¼ ðlþDlÞ � ðlÞ
ðn=2Þ ¼ þ Dl

ðn=2Þ ð2:4Þ

This statement says that in order to find the slope of the trend, take the difference
between the arithmetic averages of the two halves and divide it by the half number
of data. This statement is one of the fundamental points about the innovative trend
analysis in Chap. 5. In cases of nonsymmetrical pdfs, instead of arithmetic average,
if possible, mode or preferably median value can be adapted.

On the other hand, if pdf C is considered as the second half, then there is a
decreasing trend component in the time series and the slope should be calculated
similar to Eq. (2.4) as follows.

S ¼ l� ðlþDlÞ
ðn=2Þ ¼ � Dl

ðn=2Þ ð2:5Þ

Increasing 
trend 

Decreasing 
trend 

C A B

μ-Δ μ μ+Δμ

Fig. 2.9 Probability distribution function trend implications
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These interpretations indicate that visual inspections can lead to quantitative
trend slope calculations in the simplest manner. These expressions will be used in
the subsequent chapters, and especially during the explanation of the innovative
trend analyses methodologies (Chap. 5).

2.5 Statistical Modeling

Complex interactions among the natural event characteristics give rise to spatial and
temporal evolution of the phenomenon concerned, which must be controlled in a
scientific manner so as to render its consequences to beneficial forms for human
activities. For instance, prior to computer age the runoff event analysis dates back to
the original work of Ripple (1881), who presented a deterministic graphical method
for determination of the necessary reservoir capacity from an available sequence of
recorded runoffs. This capacity is regarded in its simplest form as a prediction for
future runoff regulations. However, such an approach has several drawbacks as
follows.

(1) The historical sequences will not reappear in the same order in future,
(2) The statistical correlation structure will not have the same pattern,
(3) The location of the extreme values along the time axis will not be in the same

order as in the historic records.

The use of computers in natural event modeling led researchers to an explosion
of simulation models for prediction purposes. Subsequently, a host of physical,
conceptual, or black box type models are developed continuously and introduced
into the literature. However, initially most of these models aimed at preserving
some low order statistics, but later more specific real-time prediction processes are
presented with rather simple recurrence model types, which extract necessary
information from the available historical data, and later, their future predictions are
achieved. Among the most important statistical parameters are the mean, standard
deviation, coefficient of skewness, and the autocorrelation coefficients.

Especially, in long periods of time, the Hurst coefficient is also suggested for
modeling purposes. Mandelbrot and Wallis (1969a, b, c) works led them to set
horizons of the fractal geometry, which plays significant role in the investigation of
chaotic behaviors of dynamic systems. In order to construct a dynamic model for
the simulation of any natural phenomena, it is necessary to have a finite record of
past observations. Given a historical record, the estimation process consists of
computing an estimate of the variable concerned at time lead k, the position of
which relative to observation period leads to three types of estimations problems.

(1) The estimation of state at any time instant during observation period is referred
to in statistics as “smoothing” operation or in mathematics as “interpolation”,
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(2) Estimation of the state at the final observation time instant is called as
“filtering”,

(3) State variable estimation at a time instant after the final observation, which is
referred to in uncertainty domain as “prediction” or in certainty, i.e., in
mathematics domain as “extrapolation”.

In addition to these stages, after the model adaptation and determination of its
parameters there is “verification” stage where the suitability of chosen model to the
historical observation sequence is sought. This stage includes search for suitable
model theoretically to make parameter estimates for the model and to check the
suitability of the model. However, in any study, the most important stages are the
identification, verification, and subsequent prediction phases, and they follow each
other.

The basic estimation work has been performed by Gauss in early 1800s who
tried to fit the most suitable curve through the scatter of points by having the least
squares technique as a criterion, which constitutes without exception the basis of
any uncertainty event assessment in statistics and stochastic process modeling
studies. The successful application of the least squares technique for almost two
centuries is due to the following factors.

(1) The minimization of sum of squared errors leads to a system of linear equa-
tions, which are easy to solve and do not require an extensive theory. This
approach is used frequently in trend identification calculations,

(2) The sum of the squares corresponds in many different contexts to various
interpretations such as in physics, the energy is expressed as the sum of
squares; in mechanics it represents moment of inertia, in statistics it provides
the variance about the fitted curve, and consequently, it can be used as a
measure of the goodness-of-fit test,

(3) An assumption of a definite explicit analytical form to represent that the
observed data constitutes the principal application of the classical least squares
technique,

(4) Without proposing an explicit analytical expression, it is possible to apply the
least squares technique to filtering problems. For instance, a known differential
equation may represent the phenomenon concerned. Likewise, the storage and
continuity equations are explicit expressions for certain phenomenon in
physics,

(5) Wiener (1949) has founded a different application version of the least squares
technique by assuming certain statistical properties for the useful signal and
noise constituents of observation sequences. The significant difference of
Wiener’s approach lies in the fact that the useful and noise parts are charac-
terized not by analytical forms, but by their statistical properties, such as the
mean values are supposed to be zero or rendered to zero and also serial and
cross-autocorrelations,

2.5 Statistical Modeling 33



(6) After 1960 in order to reduce the computation burden, Kalman suggested an
elegant procedure for the adaptive prediction in the form of recursive filtering.
This technique is generally considered as igniting the widespread interest in
the subject of estimation.

2.5.1 Deterministic-Uncertain Model

In various modeling studies in different disciplines, there are input and output
random structured variables. In any system design, the input and output variable
measurements show randomness in the sense that any data value cannot be pre-
dicted from the previous data values with certainty, therefore, they must be treated
by probabilistic, statistical, and stochastic models. On the basis a convenient pre-
diction model, future replica of the output variables can be obtained within certain
limits of errors such as ±5 or 10%. This was the main problem in front of system
planners and managers and the question is which value to adopt in the model
procedural design? In the beginning of the twentieth century, Hazen (1914) has
suggested the use of the following procedure without the availability of any
computer and even calculator. His method was random drawing of paper pieces that
are mixed in a sack. Each paper piece had a certain number written on it and then
folded and put into the sack. If the past observations of any phenomenon are
denoted as a sequence, Y1, Y2, …, Yn, it is possible to calculate its various statistical
parameters (arithmetic average, standard deviation, serial correlation coefficient,
etc.). This sequence is the naturally ordered record of measurements, and the sta-
tistical parameters are dependent on the whole data values and they are valid for the
record duration only. These historical data series can be used for the simple pre-
diction of the future values according to the following steps.

(1) Historical data record: There are daily, monthly, or annual records of past
variable measurements. Let the number of records be n,

(2) Each one of these measurements is written separately on equal size paper
pieces. They are folded and then put into a sack,

(3) The pieces are drawn one after the other, and hence, a new time series is
constructed of the same duration or even longer with the same data values but
at different times,

(4) After each drawing, the paper pieces are either returned to the sack or not. In
the former case, it is possible to generate sequences as long as desired.
However, in the latter, the maximum length of the synthetic data can be equal
to the length of the original data. After the generation is complete, whole
pieces can be retuned into the sack and again another random sequence
(replica) can be generated. In this manner one is able to obtain an ensemble of
synthetic sequences (time series).
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After the completion of such a generation procedure, the input sequences are
treated for the assessment of decision or determination of design quantity. For
instance, if the sequences are supply levels of some quantity then by knowing the
demand level, it is possible to decide about the supply sufficiency time durations. In
the case of insufficiency, additional supply is withdrawn from available storages.

The sequences obtained by this aforementioned deterministic-uncertain method
can be referred to as synthetic sequences (replicas), which have the following points
in common.

(1) Each synthetic sequence has the same arithmetic average as the original
sequence,

(2) Each synthetic sequence has the same variance and the standard deviation as
the original sequence,

(3) Other statistical parameters (mode, median, skewness, kurtosis, etc.) are also
the same in addition to the relative frequencies, hence also the relative fre-
quency distribution,

(4) The major assumption in such a draw system is that each one of the generated
sequence is regarded as independent from others, but this is not valid prac-
tically. Each one of the generated sequence has its own serial correlation
coefficient that may be significantly different from each other. The general
procedural function of this deterministic-uncertain methodology is shown in
Fig. 2.10.

2.5.2 Probabilistic-Statistical Model

This procedure is more developed than the previous one and instead of using the
same data values in synthetic sequence generation, the relative frequency distri-
bution of the measured data is adopted as the root of the generation procedure and it
is fitted with the most convenient theoretical pdf through the chi square test. This
time the data are not drawn from the sack with the repetition of the historical data,

Sack Discharge  

Historical record Historical data value 
draws (random time 

series)
Synthetic series  

Fig. 2.10 Deterministic-uncertain method sequences
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but the synthetic sequence values are drawn from the theoretical pdf automatically
in computers from random number generators. This approach yields synthetic
sequences that have in the long run almost the same statistical parameters, but it
also provides extreme value contribution into the generation procedure, which is
never possible with the deterministic-uncertainty method. Figure 2.11 shows the
basic stages in the statistical procedure.

In this generation process, although the original time series statistical structure is
preserved, but the serial correlation coefficient is not taken into consideration.

2.5.3 Transitional Probability Model

Although the probabilistic-statistical methods are based on the statistical parameter
preservation by a theoretical pdf adaptation as explained above, they depend on the
class interval relative frequencies obtained from a given measurement series. In the
transitional probability approach, the sequence of class intervals are considered to
remain the same at each time instant as shown in Fig. 2.1, but transition proba-
bilities or transition frequencies are considered from one class interval at t instant to
the next one at t + 1 instant as in Fig. 2.12.

Discharge  

Historical records 
Random generators 

(Probability or 
stochastic processes)     Synthetic series 

Frequency 

Fig. 2.11 Statistical procedure stages

t t + 1

si 

sj 

Fig. 2.12 State and
transition probabilities

36 2 Uncertainty and Time Series



If there are m class intervals, there will be m class interval relative frequencies,
which are referred to herein as the state probabilities. Furthermore, there are
m � m interclass interval transition probabilities, which are relative joint fre-
quencies. Hence, instead of the statistical parameters, the state and transition
probabilities are used in the modeling of a given time series. These are known in the
literature as the Markov chain models (Feller 1968; Box and Jenkins 1970). Their
application requires the following steps:

(1) Construction of the histogram from a given time series,
(2) Calculation of the class interval frequencies (state probabilities) from the

histogram,
(3) Calculation of transition relative frequencies (transition probabilities) between

two successive time instances.

The transition probabilities can be considered in the form of a matrix, where
rows are for time instant t, and columns for t − 1. Such a matrix is called as the
transition probability matrix, PT.

PT ¼

p11 p12 p13 p14 � � � � � p1n
p21 p22 p23 p24 � � � � � p2n
p31 p32 p33 p34 � � � � � p3n
p41 p42 p33 p44 � � � � � p4n
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
pn1 pn2 pn3 pn4 � � � � � pnn

2
666666666666664

3
777777777777775

ð2:6Þ

Since the transition from state, say, si at time t, to state, sj at time t − s is the
same as the transition from state sj at time t − 1 to si at time t, the transition matrix
will have a diagonal symmetric form, i.e., pij = pji. Hence, m(m − 1)/2 transition
probabilities are necessary for the definition of the transition probability matrix. The
transition probabilities along the major diagonal are all equal to 1 (pii = 1), because
they represent the transition from a state to itself. The state and the transition matrix
provide the basis of future phenomenon prediction.

2.6 Stochastic Models

These are the most advanced alternatives for synthetic time series generation with
inclusion of all the properties in the previous models and additionally they have
sound probabilistic, statistical, and transitional foundations collectively. Any time
series Yi (i = 1, 2, …, n), has in general four distinctive components as the periodic
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fluctuations, Pi, trend, Ti, sudden jump (step) Ji and stochastic, Si components.
Hence, it is possible to write a given time series mathematically as,

Yi ¼ Pi þ Ti þ Ji þ Si ð2:7Þ

After the identification of sudden jump and its separation, this expression
becomes with remaining components of jump (sudden change) free Yi time
series as,

Xi ¼ Pi þ Ti þ Si ð2:8Þ

After the trend separation trendless time series, Zi, expression takes the following
form.

Zi ¼ Xi � Ti ¼ Pi þ Si ð2:9Þ

It is now time to try and separate the periodic component, which can be done
through the harmonic analysis (Sect. 2.6.3).

Following the separation of the periodic component, the remaining stochastic
part, Si, has inherit random variability that can be treated by probabilistic, statistical,
and stochastic evaluations methodologies (Box and Jenkins 1970). Most often,
these methodologies are applied automatically to available records, and conse-
quently, there are numerous papers published in different disciplinary journals that
do not provide any new approach, but the application of well-known methods to
specific data sets leads to desired information. It is recommended that original
methodology development foundations are first based on the qualitative information
deductions, which help to establish theoretical backgrounds with a set of funda-
mental assumptions among which the homogeneity and stationarity are the most
important ones.

2.6.1 Homogeneity (Consistency)

This assumption is valid only in the case when the record series originate from the
same population. This implies that the record series has a constant time invariant
arithmetic average, which also means that the record temporal variation is free of
trend or jump (shift) components. Otherwise, the records have heterogeneous
structure, which need comparatively rather complex mathematical, probabilistic,
statistical, and stochastic treatments.

Since, in homogeneous series the arithmetic average is time variant, the simplest
method to check for homogeneity is to compare the arithmetic averages after the
division of the original time series into two or more portions of the same length.
Buishand (1982, 1984), Jayawardena and Lau (1990) have summarized the appli-
cation of three statistical homogeneity tests.
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Under a null hypothesis, Ho, a given time series, Yi (i = 1, 2, …, n) has the same
mean value throughout the effective time period. The alternative hypothesis, Ha, is
generally vague, since often no reliable prior information is available about possible
changes in the mean. Of course, Yi’s have some empirical pdf and in the application
of the homogeneity test, a theoretical joint pdf is assumed for the Yi’s.

In general, tests require serially independent structure for time series. If the tests
are performed on seasonal or annual time series then this point cannot be a signif-
icant restriction. The test statistic pdfs are derived for stochastically independent and
identically distributed time series. If there are slight departures from the normality,
the test can still be applied confidently. In practical homogeneity tests, generally the
pdf of test statistics is overlooked. The properties of test statistics are illustrated for
the case that the Yi’s are normally distributed with mean (Buishand 1982).

EðYiÞ ¼ l i ¼ 1; 2; . . .;m
lþD i ¼ mþ 1;mþ 2; . . .; n

�
ð2:10Þ

and the variance of the time series is simply,

VarðYiÞ ¼ r2Y ð2:11Þ

According to this model, there is a shift (sudden jump) in the time series of
magnitude D after m observations, and therefore, it is not a homogeneous time
series. Homogeneity implies that the data in the series belong to one population,
and hence, have a time invariant mean. Heterogeneity may arise due to changes in
the method of data collection and/or the environment in which it is done (Fernando
and Jayawardena 1994).

2.6.2 Stationarity

Different samples from the same population have practically the same statistical
parameters within the range of sampling error (variability). Any time series with all
the statistical parameters without significant change is referred to as the strictly
stationary process. This is an impossible property in natural records. However, in
practical applications, weakly (second order) stationary records are suitable for the
application of the classical statistical methodologies including the stochastic pro-
cesses. This type of stationarity implies that the time series has the first-order
(arithmetic average) and second-order (variance) moments depending on the time
differences (Box and Jenkins 1970). Independence of the variance from time is
referred to as the homoscedascity in the statistics literature.

In order to check the stationarity property, at least two non-overlapping parts are
considered from the original time series. If these two subseries look similar then
visually one can say that the original series is stationary. This implies that stationary
time series cannot include trends, jumps, or periodicities. Stationarity can be
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checked either by parametric or nonparametric tests. Parametric tests are employed
usually in the analysis of economic time series based on a certain number of data
(Aigner et al. 1977; Bauer 1990).

The researchers who care for the frequency properties of time series prefer to
work with nonparametric stationarity tests. Among these researchers are electronic
engineers and a certain branch of statisticians and stochastic process experts. They
consider the whole system as a “black box”, where only input and output signals are
important and the system identification may be achieved through some simple
procedures such as the regression technique and spectral analyses. Depending on
the work type, researcher uses parametric and nonparametric approaches. The
significance of nonparametric approaches is that they are not based on the
assumption of normal pdf. This point makes the nonparametric approaches to be
used more frequently in practical applications even though they are less powerful
than the parametric alternatives. As suggested by Bethea and Rhinehart (1991) in
order to reach almost to the same conclusions, the nonparametric tests need 5–35%
more data than parametric tests.

2.6.3 Periodicity (Seasonality)

It is well known that the periodic fluctuations are embedded into a natural time
series as a result of mainly astronomic events such as Earth’s rotation around the
sun annually with implication of seasonality; diurnal variations due to day–night
variations. In the social and economic time series, seasonality is the main factor for
the periodic component existence. In general, such variations in any time series
records become graspable and quantifiable at time scales less than a year (daily,
weekly, monthly, three-monthly, and six-monthly). Figure 2.13 presents different
periodicities in the given time series.
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Fig. 2.13 Periodicity (seasonality) components
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In order to quantify and detect the periodicity, the commonly used methodology
is the Fourier series (Maidment and Parzen 1984; Kite 1989; Jayawardena and Lai
1989; Pugacheva et al. 2003). Some researchers like Jayawardena and Lai (1989)
have used the autocorrelation technique for testing the periodicity in time series.

Periodic component is the part of time series which reflects the seasonal effects.
The astronomical effects in any time series can be observed provided that record
durations are less than one year such as day, week, month, and season. Periodic
fluctuations can be expressed as regular sine and cosine waves as in Fig. 2.14.

These waves have their amplitudes, a, basic wave period, T, and phase angle, H.
These three quantities define a sine wave as,

Yt ¼ a sin 2p
t

T
þH

� �
ð2:12Þ

Cosine waves are also defined in a similar way. In order to identify the periodic
component in a time series, a series of waves first a sine (and cosine) wave is
considered with basic wave length equal to the whole record length, then equal to
the half of the total length, then one-third, etc. The summation of regular waves
leads to a rather random (irregular) looking wave as in Fig. 2.15.

In this manner, it is possible to approach an irregular wave, like a given time
series, by the summation of various regular waves. A regular sine wave can be
expressed as,

Yi1 ¼ a1 sin 2p
1
n
iþH1

� �
ð2:13Þ

Each wave is called as a harmonic. In general, the frequency of jth harmonic has
a frequency as j/n and its regular wave expression is,
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Fig. 2.14 Sine and cosine waves

2.6 Stochastic Models 41



Yij ¼ aj sin 2p
1
n
iþHj

� �
ð2:14Þ

The expansion of this sine wave gives,

Yij ¼ aj sin 2p
j

n
i

� �
cosHþ aj cos 2p

j

n
i

� �
sinH ð2:15Þ

Since aj cos Hj and aj sin Hj are constant, they are represented by Aj and Bj, and
hence, the previous expression takes the following form,

Yij ¼ Aj sin 2p
j

n
i

� �
þBj cos 2p

j

n
i

� �
ð2:16Þ

This is the contribution of jth harmonic to ith data value. If m harmonics are
considered then the time series will have the approximation as,

Yi ¼
Xm
i¼1

Aj sin 2p
j

n
i

� �
þBj cos 2p

j

n
i

� �� �
ð2:17Þ

This has a zero arithmetic average value, and hence, it alone cannot represent the
arithmetic average of the time series. Therefore, it is necessary to add the average
term, Y , which leads to,

Yi ¼ Y þ
Xm
i¼1

Ai sin 2p
j

n
i

� �
þBi cos

� �
2p

j

n
i

� �
ð2:18Þ
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In practice, since the number of harmonics, namely m, is a finite value not more
than 7, this last expression approaches a given time series with error term, hi, and
finally, the periodicity equation takes the following form.

Yi ¼ Y þ
Xm
i¼1

Ai sin 2p
j

n
i

� �
þBi cos

� �
2p

j

n
i

� �
þ hi ð2:19Þ

In this expression, Aj’s and Bj (j = 1, 2,…, m), there are 2m unknowns. They can
be obtained from a given time series value by the minimization of sum of error
squares, min (Rhi

2) condition, leading to the following expressions.

Aj ¼ 2
n

Xn�1

i¼1

Yi cos 2p
j

n
i

� �
ð2:20Þ

and

Bj ¼ 2
n

Xn�1

i¼1

Yi sin 2p
j

n
i

� �
ð2:21Þ

The summation of the squares of these terms is equivalent to the variance of the
given time series as,

r2j ¼ A2
j þB2

j ð2:22Þ

and the phase angle is defined as,

Hj ¼ tan�1 Aj

Bj

� �
ð2:23Þ

The major defect of this approach is that the frequencies must be whole number
divisions as 1/n, 2/n, …, m/n.

2.6.3.1 Known Period Case
If the basic period in a time series is known, then the periodicity component can be
eliminated by using simple statistical parameters without any consideration of
trigonometric functions. For instance, if hourly data are available, then it is known
that the periodicities are confined within the 24-h period, and therefore, a table
similar to Table 2.1 can be presented for the exposition of available data and there
are N = 24n hourly values, where n is the number of days. If such a time series is
shown as Y0, Y1, Y2, …, YN−1, their exposition is given in Table 2.1.

In the last two rows, the arithmetic averages, (Yi, i = 0, 1, 2, …, 23), and the
standard deviations, (ri, i = 0, 1, 2, …, 23), of hourly data are calculated. If the
arithmetic average of each hour is subtracted from the corresponding hourly data,
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then the remaining term does not have any more periodic fluctuation on the
arithmetic average level. This subtraction procedure is shown in Table 2.2.

One can notice that in this table, the arithmetic average of each column is zero,
but the standard deviations remain without any change. In order to eliminate the
periodicity effect in the standard deviation, each column in the previous table must
be divided by the standard deviation of the column leading to Table 2.3. The time
series in this table is a standardized data, because it has zero arithmetic average and
unit variance.

Table 2.1 Hourly data

Y0 y1 y2 . . . y24
Y24 y25 y26 . . . y48
Y48 y49 y50 . . . y60
. . . . . . .

. . . . . . .

. . . . . . .

Y24(n−1) y24(n−1)+1 y24(n−1)+2 . . . y24n−1
Y0 Y1 Y2 . . . Y23

r0 r1 r2 . . . r23

Table 2.2 Periodicity free hourly data

Y0 � Y0 Y1 � Y1 . . . Y23 � Y23

Y24 � Y0 Y25 � Y1 . . . Y47 � Y23

Y48 � Y0 Y49 � Y1 . . . Y60 � Y23

. . . . . .

. . . . . .

. . . . . .

Y24ðn�1Þ � Y0 Y25ðn�1Þþ 1 � Y1 . . . Y24n�1 � Y23

0 0 . . . 0

r0 r1 r2 . . r23

Table 2.3 Standardized data

ðY0 � Y0Þ=S0 ðY1 � Y1Þ=S1 . . . ðY23 � Y23Þ=S23
ðY24 � Y0Þ=S0 ðY25 � Y1Þ=S1 . . . ðY47 � Y23Þ=S23
ðY48 � Y0Þ=S0 ðY49 � Y1Þ=S1 . . . ðY60 � Y23Þ=S23
. . . . . .

. . . . . .

. . . . . .

ðY24ðn�1Þ � Y0Þ=S0 ðY25ðn�1Þþ 1 � Y1Þ=S1 . . . ðY24n�1 � Y23Þ=S23
0 0 . . . 0

1 1 . . . 1
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2.7 Time Series Truncation

It is possible to explore the internal structure of any time series by truncating it at a
certain truncation level, Y0 (Şen 2015). Such a truncation gives rise to two-valued
verbal variables such as deficit/surplus, dry/wet, cloudy/non-cloudy, flood/drought,
hot/cold, rainy/non-rainy, gain/loss, etc. These two-valued variables help decision
maker to base his/her final plans toward a certain goal. In some system design
studies, the variables must be categorized into two classes on the basis of a certain
truncation level. Let us consider that for practical applications, the time series given
in Fig. 2.16 is truncated at Y0 level.

After the truncation, the time series is converted into two mutually exclusive
events along the time axis as surplus, Si, and deficit, Di. In mathematical sense,
surpluses have positive and deficits have negative values. In general, when a time
series, Yi (i = 1, 2, …, n) is truncated at Y0 constant level then at the ith location,
there is either Si = Yi − Y0 > 0 or deficit Di = Y0 − Yi < 0. The following proper-
ties are observable from such a truncation.

(1) Along the time series, there are appearances of Si and Di in a randomly
alternate manner. The first important point is that at two successive time
instances there are four possible events as deficit–surplus (DS), deficit–deficit
(DD), surplus–deficit (SD), or surplus–surplus (SS),

(2) If there are n elements in a time series with nd deficits then the number of
surpluses is,

nS ¼ n� nd

or

nd þ nS ¼ n ð2:24Þ

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

Sample number

V
a

ria
b

le
, X

Time series
Truncation level

Surplus

X
0

Deficit

Fig. 2.16 Time series truncation
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Dividing both sides by the total number of elements, n, yields,

pS þ pd ¼ 1 ð2:25Þ

Herein, pd = nd/n is the probability (percentage) of deficits and likewise
ps = ns/n is for surplus probability. Depending on the level of truncation,
Fig. 2.17 indicates the relationship between the truncation level and these
probabilities,
It is noted that the truncation level changes between the maximum, Ymax and
minimum, Ymin data values. In the case of symmetric relative frequency dis-
tribution like the normal (Gaussian) pdf, the truncation level that is equal to
the arithmetic average is also equal to the median and model levels, which
implies that ps = pd = 0.5. In this case approximately, Y0 = (Ymax + Ymin)/2.

(3) In case of uninterrupted sequence of two or more deficit (surplus) events, a
deficit (surplus) period is valid. These periods follow each other along the time
axis alternatively. In a given time series, the difference between the number of
surplus and deficit periods is either 0 or 1.

(4) The maximum deficit duration corresponds to the critical deficit period within
the given time series,

(5) The transition from a deficit period to surplus has DS bivariate event, whereas
SD bivariate event is valid in the case of surplus followed by deficit period.
The first bivariate event is referred to as the upcrossing and the second one as
downcrossing event. The more these bivariate variables are in a time series the
less is the dependence.

(6) The summation of deficits (surpluses) along a deficit (surplus) duration is
referred to as the deficit (surplus) magnitude.

(7) The division of magnitude to duration is the deficit (surplus) intensity.

Ymax 

Ymin 

ps

pd

ps or pd 
0 1.0

YFig. 2.17 Surplus and deficit
percentages
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2.7.1 Statistical Truncations

In the statistical studies, the deviations from the arithmetic average for a given time
series data ðYi � YÞ are very significant. Such deviations constitute the basic def-
initions of variance, covariance, correlation coefficients, and the coefficient of
determination in regression analysis. It is possible to categorize the overall time
series on the basis of standard deviation distances above and below of the arithmetic
average as in Fig. 2.18.

In this figure, r indicates the standard deviation of the whole time series. With 1,
2, and 3 standard deviation limits, a given time series may be viewed in seven
categories as in Table 2.4 with different specifications.

In practice, most of the time series values fall within the normal limits with
extreme values outside above and below normal extreme limits. In order to stan-
dardize all the time series to a common dimensionless base, the standard values, yi,
can be obtained according to the following formulation.

yi ¼ Yi � Y

rY
ði ¼ 1; 2; . . .; nÞ ð2:26Þ

In the case of normal (Gaussian) pdf consideration of 1, 2, 3, and 4 standard
deviation values around the arithmetic mean leads to the following numerical
percentages.

In interval,

−1 < yi < +1 68.269%, i.e., with probability 0.68269
−2 < yi < +2 95.450%, i.e., with probability 0.95450
−3 < yi < +3 99.730%, i.e., with probability 0.99730
−4 < yi < +4 99.994%, i.e., with probability 0.99994
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Fig. 2.18 Standard deviation truncation
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In Fig. 2.19, a standard normal (Gaussian) pdf is shown with arithmetic mean
�y ¼ 0 and variance 1 in addition to the categorical division according to the stan-
dard deviation at three levels.

Different from the statistical truncation, there are others that are useful for
various human activities. In such truncations, the comfort and benefit of humans are
taken into consideration. These are referred to herein as the engineering truncations.
For instance, for the comfort of humans, the temperature must not be under 15 °C,
and for the plant life below 7 °C. The daily water demand of Istanbul City, Turkey,
is 1.5 � 106 m3, which can be considered as the truncation level for water supply to
the city.

In the previous explanations, the values below and above of any truncation level
are given in terms of numbers, percentages, or probabilities. However, as shown in
Table 2.5, it is also possible to specify different phenomena with different words
verbally.

Table 2.4 Truncation levels
and specifications

Truncation Specification

Y þ 3r\Yi Above normal extreme

Y þ 3r\Yi\Y þ 2r Rather super-normal extreme

Y þ 2r\Yi\Y þ 1r Above normal

Y þ 1r\Yi\Y � 1r Normal

Y � 1r\Yi\Y � 2r Below normal

Y � 2r\Yi\Y � 3r Rather subnormal extreme

Yi\Y � 3r Below normal extreme
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Fig. 2.19 Standart normal distributions
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These bivariate specifications play important role in many diverse human social,
environmental, economic, health, and engineering activities.

2.8 Data Smoothing

In the records of time series, there are local haphazard and very random fluctuations
that may sometimes hide the general variation trend. In order to get rid of these
disturbances, it is necessary to smooth the time series through some procedures. In
general, the equation for a time series can be written as composed of deterministic,
Di, and stochastic, Si, parts similar to Eq. (2.7). The time series components are
already explained in Sect. 2.6. The summation of the random component, and
hence, its arithmetic average is equal to zero, and therefore, the arithmetic average
of the process is equal to the arithmetic average of the deterministic part, i.e.,
Y ¼ D. This shows that random component can be eliminated through some
average procedure. The remaining deterministic part is the smoothened part of the
time series which is shown in Fig. 2.20.

Table 2.5 Time series truncation and specifications

Temperature Rainfall Runoff Humidity Cloud General

If Yi < Y0 Cold Rainy Dry Humid Open Deficit

If Yi > Y0 Hot Non-rainy Wet Non-humid Close Surplus
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Fig. 2.20 Smoothened time series
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2.8.1 Moving Averages

Informal regression methods based on moving averages at certain window widths
are used as the smoothing techniques to disclose possible hidden trend components.
Moving average methodology helps to identify and highlight possible long-term
nonlinear trends with smoothing of short-term fluctuations. Moving average pro-
cedure is commonly used in many economy sectors.

The most frequently used procedure for smoothing is the moving average
approach, where a certain length of series is replaced in an overlapping manner by
the arithmetic average. For instance, in Fig. 2.20, 5-year window width is used for
successive arithmetic moving average smoothening. In most applications, first,
third-order moving average procedure is recommended and subsequently the order
can be increased up to seventh order, if necessary. If a time series is, Yi (i = 1, 2,…,
n), its third-order moving average smoothing Xi (i = 1, 2, …, n − 2) can be
achieved as follows.

X1 ¼ Y1 þ Y2 þ Y3
3

; X2 ¼ Y2 þ Y3 þ Y4
3

; . . .; Xn�2 ¼ Yn�2 þ Yn�1 þ Yn
3

In a third-order moving average, there are n − 2 terms from a time series of
length n. In the case of m-order moving average procedure, there are n − m + 1
terms, Xi (i = 1, 2, …, n − m + 1).

The above-mentioned moving average gives equal weights to each part of
smoothened time series. However, in some cases, it is necessary to give different
weights to each smoothening term. In practice, the most frequently used versions
are as follows.

Xi ¼ Yi þ 2Yiþ 1 þ Yiþ 2

4
ð2:27Þ

or

Xi ¼ Yi þ 4Yiþ 1 þ 6Yiþ 2 þ 4Yiþ 3 þ Yiþ 4

16
ð2:28Þ

2.8.2 Difference Smoothing

A very simple procedure is the successive difference method, which for a given
series, Yi, with lag-one difference operation, the terms in a new time series, Xi,
become with n – 1 terms as,

Xð1Þ
1 ¼ Y2 � Y1; Xð1Þ

2 ¼ Y3 � Y2; . . .; Xð1Þ
n�1 ¼ Yn � Yn�1
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If the difference is taken at lag-m apart from each other, then the new series Xi

has n − m terms as,

XðmÞ
1 ¼ Ym � Y1; XðmÞ

2 ¼ Ymþ 1 � Y2; . . . ;XðmÞ
m ¼ Yn � Ym

Example 2.1 In Table 2.6, 23 terms are given as a time series in the first column
and it is smoothened according to difference procedure at lags 1, 2, 3, and 10 in the
same table. It is obvious that lag-10 differences have more fluctuations, because the
successive terms become more independent from each other. In general, the further
away the two values are from each other the less is the dependence between them.

Table 2.6 Application of
difference procedure

Data (Xi) Differences

9.05 1 2 3 10

−0.96

8.08 0.79

−0.17 0.96

7.97 1.75

1.58 −1.00

9.50 0.75

2.33 −4.67

11.83 −3.92

−1.59 7.05

10.84 3.13 242.2

1.54 −1.08

11.78 2.06 67.2

3.59 −4.95

15.37 −2.90 −366.1

0.69 3.38

16.06 0.48 544.5

1.17 −4.83

17.23 −4.35 −622.2

−3.18 6.67

14.05 2.32 661.8

−0.86 −3.13

13.19 −0.81 −714.2

−1.67 5.79

11.52 4.98 759.1

3.31 −8.88

14.83 3.90 −708.8

−0.59 5.02

14.23 1.12 533.7
(continued)
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2.9 Jump (Shift)

This implies a sudden change (downward or upward) in a time series, which may
also have a linear downward or upward trend. Such changes are common in
financial time series and also in a surface flow discharge record series after the
construction of a dam or a diversion channel (Fig. 2.21).

For a jump component, there is almost a sudden change in the effective envi-
ronmental conditions.

Table 2.6 (continued) Data (Xi) Differences

0.53 −3.13

14.77 −2.01 −317.6

1.03

13.29 −0.98 162.2

−2.46 0.78

10.83 −0.20 −90.9

−2.66 2.15

8.17 1.95

−0.71 0.04

7.46 1.99

1.28 −1.22

8.74 0.77

2.05 −3.75

10.79 −2.98

9.86

Sample number, n

23 22 21 20 13

Average

11.68 0.0372 0.001 −0.189 11.60

Time
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Fig. 2.21 Sudden jump components in a time series
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(1) If the location of the measurement station is changed, then the change in the
environmental conditions may lead to sudden effects in the time series mea-
surements. Such a jump may be very distinctive as shown in Fig. 2.21,

(2) After natural hazards, there may appear sudden jumps in the measurements.
For instance, eruptions may load the lower atmosphere with dust, and
accordingly, this may cause sudden jumps in some meteorological records,

(3) Due to miss-maintenance, local defects in the instruments may lead to sudden
jumps. For instance, if there appears a small hole in the rain gauge then the
measurements will be lower than before.

2.10 Correlation Coefficients

In any time series, apart from the visible components in a graph, there are also
non-visible features that need identification and quantitative evaluation. These
features are concerned with the internal structure of a given time series. The most
significant one is the serial dependence, which is concerned with the question,
whether there is an effect of any event occurrence in a time to the next time step
occurrence? Such a feature, which is referred to as the serial autocorrelation is an
indispensable component relevant to any time series whether natural or artificial. It
is also known as a memory effect in two types as the short-memory and
long-memory effects, where the latter type is the persistence. Scientific terminology
for the short memory effect is the autocorrelation coefficient. Linguistically and
qualitatively, the short-term memory effect can be expressed as “time series low
values follow low values and high values follow high values”. This expression
provides an ability to visualize a time series and then to deduce whether there is a
short-memory effect or not.

In general, processes can be viewed under two very broad categories as
dependent and independent according to time scale considerations. Usually, the
smaller the time interval between two successive events the greater is the depen-
dence, and hence, there is persistence, but large-time apart natural events imply
independence. This classification is also in accord with the rarity or frequency of the
event. For instance, flood and earthquake occurrences are among rare natural events
that occur along time axis, and therefore, they are considered as independent from
each other. Similar arguments are valid also for low natural events such as droughts.
In such problems, the serial (internal) correlation coefficient is ignored and the
probabilistic treatment of the successive event occurrences becomes very easy
according to the probabilistic modeling.

Correlation coefficients are useful in determination of the relationship strength
between two variables. Two different time series can be related to each other
proportionally, inversely or there may not be any correlation between them such a
relationship is calculated by the cross-correlation coefficient. For the quantification
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of correlation, there are different procedures as parametric and nonparametric
alternatives.

On the other hand, within the same time series the successive data values might
affect each other, which is expressed by the serial correlation coefficient. For
instance, rainfall of today might be affected partially from yesterday’s rainfall
occurrence. In general, rainy periods follow rainy periods and dry periods follow
dry periods. Furthermore, high rainfall amounts follow high amounts and low
values follow low values. These two statements indicate that so far as the rainfall
occurrences and their amounts are concerned, there are serial (internal) relationships
to a certain extent.

In mathematics, when two variables are related to each other their variation or
plots on a Cartesian coordinate system does not appear as a horizontal or vertical
line (see Fig. 1.2e, f), but rather a straight line with a slope or a curve with many
tangential slopes (see Fig. 1.2a–d). The simplest form of dependence has linearity,
which is always used in the statistics or stochastic modeling works. If there are two
different time series, they can be plotted as one versus the other. By visual in-
spection of the scatter points, one can appreciate whether the dependence is high or
low and directly or reversely proportional. In the case of scatters around a straight
line (trend line) there is dependence.

For serial correlation structure, time series Y1, Y2, …, Yn, is shifted by a certain
lag (for instance lag-one) so as to obtain another parallel time series as Y2, Y3, Y4,
…, Yn−1. They have n − 1 common point. The scatter diagram of these two time
series gives rise to n − 1 scatter points on the Cartesian coordinate system
(Fig. 2.22).

If straight-line trend appears through the scatter points then it is possible to
conclude that there is dependence between the two variables, otherwise they are
independent. The most suitable straight line through these scatter points gives the
dependence measurement as its slope. The more the deviation of the slope
from ±45° (1:1 and −1:−1) line is, the smaller is the dependence. In Fig. 2.23 an
independent scatter diagram is shown.

2.10.1 Pearson Correlation Coefficient

There are two types such as serial correlation and cross-correlation. The serial
correlation coefficient, qk, is expressed for a given time series, Yi, (i = 1, 2, …,
n) and lag-k as follows.

qsk ¼
Pn�k

i¼1
Yi � Y
	 


Yi�k � Y
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�k

i¼1
Yi � Y
	 
2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼n�k
Yi � Y
	 
2s ð2:29Þ
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Fig. 2.22 Dependent scatter diagrams, a positive dependence, b negative dependence
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On the other hand, similarly the Pearson cross-correlation, qc, between two time
series Yi and Xi is defined as,

qc ¼
Pn
i¼1

Xi � X
	 


Yi � Y
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Xi � X
	 
2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yi � Y
	 
2q ; ð2:30Þ

where X and Y are the mean of respective time series. It is also possible to search
for lag-one or more cross-correlations.

The correlation coefficient takes values between −1 and +1. The closer the
cross-correlation coefficient values are to zero the more random, i.e., independent
are the two time series, otherwise, values close to +1 (−1) imply positively (neg-
atively) strong cross- or serial correlations. Positive correlation means direct pro-
portionality (see Fig. 2.22a) and negative value shows inverse proportionality (see
Fig. 2.22b). In the case of positive dependence, high (low) values follow high
(low) values, whereas in the case of negative dependence high (low) values follow
low (high) values. The dependence that is calculated through Eq. (2.29) is the serial
correlation or autocorrelation coefficient. Similarly to lag-one, lag-two or more lag
correlation coefficients can be calculated simply from a given time series. In gen-
eral, there is an upper practical limit for lag-k as k � n/3. The theoretical distri-
bution parameters as the average and variance for lag-one in Eq. (2.29) are given as
(Anderson 1942),

qsk ¼ � 1
ðn� 1Þ ð2:31Þ

and,

r2sk ¼
1

ðn� 1Þ ; ð2:32Þ

respectively. The pdf of qc was shown to be asymptotically normal with the mean
E(qP) = 0 and variance as in Eq. (2.32). In the test of serial correlation, a single-tail
normal pdf is used.

As mentioned earlier, the Pearson correlation coefficients assume any value
between −1 and +1, inclusive with specifications in Table 2.7. One should not
memorize this table, because they are more or less the subjective opinion of the
author. Other authors may deviate slightly from these specifications owing to their
experiences, but such deviations are not significant in practical works. It must be
kept in mind that correlation coefficients are the measure of linear dependence
between two variables or within the same time series. If the correlation is not linear,
then these definitions are invalid.
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The following points are the deficiencies of the Pearson correlation coefficient
concept in practical applications.

(1) Even if the correlation is not linear, the correlation value will appear between
−1 and +1. This may not have logical and physical meaning, because the
Pearson correlation coefficient definition is valid for linear relationships,

(2) If there are one or more extreme values in a time series, then these values
affect Eq. (2.30) in such a manner that the correlation coefficient appears
biased and/or unrepresentative,

(3) The data must abide with a normal pdf, otherwise, the correlation coefficient is
not meaningful,

(4) For meaningful and reliable correlation coefficient calculations, the standard
deviation of the data must be constant, i.e., homoscedasticity property must be
valid,

(5) Correlation coefficient definition in Eq. (2.30) cannot be used for verbal and
linguistic data,

(6) If data is transformed by any means to have normal pdf then the correlation
coefficient of the transformed data is not the same with the original data
(Şen 1977). Even the reverse transformation does not guarantee that the cor-
relation coefficient is equal to the observed correlation value.

After what has been said above, it is obvious that the domain of the Pearson
correlation coefficient is rather restrictive, and prior to its use all necessary
assumptions must be cared for their validity.

Table 2.7 Correlation
coefficient classes

Numerical value
intervals

Linguistic interpretations

qP = −1.0 Completely negative dependence

−1.0 < qP < −0.9 Strong negative dependent

−0.9 < qP < −0.7 Quite negative dependence

−0.7 < qP < −0.5 Weak negative dependence

−0.5 < qP < −0.3 Very weak negative dependence

−0.3 < qP < −0.1 Insignificant negative
dependence

qP = 0.0 Complete independence

0.1 < qP < 0.3 Insignificant positive dependence

0.3 < qP < 0.5 Very weak positive dependence

0.5 < qP < 0.7 Weak positive dependence

0.7 < qP < 0.9 Quite positive dependence

0.9 < qP < 1.0 Strong positive dependence

qP = 1.0 Complete positive dependence

2.10 Correlation Coefficients 57



2.10.2 Kendall Correlation Coefficient

In order to alleviate the defects in the Pearson correlation coefficient, other pro-
cedures are suggested for the same purpose. One of these techniques is the con-
sideration of data ranks instead of data values in natural sequence. This is the
requirement of the Kendall correlation coefficient, qK, which gets rid of the extreme
value effects. This coefficient can be used even though the data may have a skewed
pdf. It is applicable even in the cases of some missing data or incomplete mea-
surements. In general, for the same data series Kendall correlation coefficient is
smaller than the Pearson coefficient. For this reason, although strong correlation is
observed through the use of the Pearson correlation coefficient as 0.9 or more, the
same is valid as 0.7 in the case of Kendall correlation coefficient. Kendall coeffi-
cient can be calculated without any calculator even by hand. It is also capable to
measure nonlinear correlations. The superiority of this coefficient over the Pearson
coefficient is due to the following points.

(1) It measures even the nonlinear relationships,
(2) It is not affected by extreme values,
(3) Even after the transformations Kendall coefficient remains the same.

For instance, if log(Yi) and log(Xi) are used instead of the original data (Yi and
Xi), the Kendall correlation coefficient will remain the same. In the calculation of
this correlation coefficient the following steps are necessary,

(1) Rank one of the time series into ascending order and replace the data in the
next time series with the ranks of this time series. Hence, one of the time series
is ordered and the other had replacement of values according to the ranks of
the first one. In the case of correlation, there will appear simultaneous increase
in both series. If there is increase in the ranked time series, and decrease in the
other time series implies then a negative correlation is valid. Otherwise, there
is no correlation between them,

(2) Any data value in the ranked series, say Yi, is compared with all the data after
its location, Yj (j = i + 1, i + 2, …, n), and if Yi < Yj then +, otherwise for
Yi > Yj a − sign is attached. For the data value at place i, there are
(n – i) number of alternative + and − signs. If the same procedure is repeated
for all the data values without any equal data value to each other, then there are
n(n − 1)/2 signs. If half of these have + sign then the data sequence is con-
sidered as independent. If + (−) signs are more than − (+) signs then there is
positive (negative) dependence,

(3) If the total numbers of + and − signs are denoted by P and N then the Kendal
correlation coefficient is defined as,

qK ¼ 2ðP� NÞ
nðn� 1Þ ð2:33Þ

By definition this has values between −1 and +1,
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(4) For the test of independence the necessary statistical quantity, K, is defined as,

K ¼ P� N ð2:34Þ

which is the difference between the numbers of + and − signs. The K value
may be positive or negative with zero expectation. Theoretical studies indicate
that its standard deviation can be expressed as,

rK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þð2nþ 5Þ

18

r
ð2:35Þ

On the other hand, for more than 10 data values, the distribution of the Kendall
correlation coefficient approaches the Gaussian pdf. Whether qK is different from
zero can be tested by the standard normal pdf. If the necessary standard value is S,
then the test statistics can be calculated as,

zs ¼
S�1
rs

if S� 0
0 if S ¼ 0
Sþ 1
rs

if S� 0

8<
: ð2:36Þ

If this standard value is less than the critical value found on the basis of a certain
significance level then the data is considered as independent.

2.10.3 Spearman Correlation Coefficient

In the nonparametric statistics domain, the analogous to the Pearson correlation is
named as the Spearman’s rank correlation coefficient. Pearson correlation coefficient
requires that both variables should comply by the normal pdf, which is not the case
in many disciplines. For calculating this nonparametric correlation coefficient, both
data sets are ordered separately from each other. Hence, there are two sequences of
ranks, one for Y time series, R(Yi), and other for X time series, R(Xi). If for each i the
ranks are of Yi equal to ranks of Xi, then the Spearman’s rank correlation is regarded
as perfect. The rank correlation is defined as the sum of the difference between the
corresponding ranks of Yi and Xi. Analogous to the parametric version of the
coefficients the correlation values are scaled between −1 (perfect negative) and +1
(perfect positive) correlation. In between the value is equal to zero indicating no
correlation. Spearman’s rank correlation calculation steps are as follows.

(1) As the null hypothesis, H0, the correlation between Yi and Xi is assumed as
equal to zero. This is referred to as the hypothetical correlation value, qs = 0,

(2) Alternative hypothesis, Ha is that this correlation coefficient is different than
zero,
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(3) The test statistic, qS, which is referred to as the Spearman’s rank correlation
coefficient is defined in terms of each data set ranks and the number, n, of data
in each set as,

qS ¼ 1�
6
Pn
i¼1

RðYiÞ � RðXiÞ½ �
nðn2 � 1Þ ð2:37Þ

As with the other nonparametric methods, values of Xi and Yi can vary exten-
sively without affecting the final result. It is necessary to keep in mind that qS does
not imply good linear relationship, rather than linearity. It is quite possible to obtain
low Spearman’s rank correlation coefficient for high Pearson’s parametric corre-
lation coefficient. However, in many applications, it is unusual for Pearson’s
coefficient to provide a statistical test result markedly superior to Spearman’s rank
correlation approach even with normally distributed data. Another version of the
previously defined Spearman correlation coefficient can be found as follows,

qS ¼
Pn
i¼1

RðYiÞRðXiÞ � n nþ 1
2

	 
2
nðn2�1Þ

12

ð2:38Þ

In the case of positive correlation, high values of Yi ranks follow high Xi ranks;
otherwise there is a negative correlation. Theoretical studies indicate that in the case
of trend nonexistence for big data values, this coefficient appears according to a
Gaussian pdf with the following average and variance expressions as,

�qS ¼ 0 ð2:39Þ

and

VqS ¼
1

ðn� 1Þ ; ð2:40Þ

respectively. The test must be carried out with two-tailed pdf by the assumption as
the null hypothesis that there is no trend component in the time series. The test
value at any significance level results as qsig > qS, otherwise the time series is not
homogeneous. In the case of significant level qS > 0 implies the existence of an
increasing trend.
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2.11 Persistence/Nonrandomness

Persistence is one of the most important properties in many system designs con-
cerning the storage capacity of reservoirs, average return periods, failure risks,
hidden periodicities, trends, and drought properties. Its consideration in analytical
derivations of design criteria presents difficulties and for this reason most often the
analytical expressions are obtained on the basis of nonpersistent (independent or
short-memory) processes. Although the conventional autocorrelation coefficients
and functions are used in many design problems, but the very definition of the
autocorrelation function requires that the underlying process generating mechanism
abide with normal (Gaussian) pdf. It is therefore, necessary to convert non-Gaussian
pdf into normal pdf in order to make benefit of the available analytical expressions.
During the transformation process, the very persistence genuine property of the
basic variables is not preserved although the statistical parameters such as the
average, standard deviation, skewness coefficient, and kurtosis are maintained in the
transformed normal pdf.

Persistence and randomness are two distinctive properties of a time series.
Randomness is another term for nonpersistence and it is defined as the indepen-
dence among time series values, whereas persistence (correlation) occurs provided
that the successive time series data affect each other. Persistence (correlation) is a
tendency of the successive time series values to “remember” their antecedent val-
ues’ influence.

2.11.1 Short-Memory (Correlation) Components

Simple successive dependence models are representations of a linear line on a
Cartesian coordinate system between the value from the time series and the fol-
lowing value. Hence, given a time series of Yi, Y2,…, Yn with n observations for the
simplest successive dependence at lag-one apart, this sequence yields n − 1 points
on a scatter diagram as shown in Fig. 2.22a, b. It is the trend slope of the straight
line that is a representative of the simple dependence, i.e., short-term correlation.
All the serial correlations are obtained in this manner. In Fig. 2.22a, b, the hori-
zontal axis represents the previous value, say, Yi−1, whereas the vertical axis is for
current value, Yi. It is possible to infer the simplest model (lag-one Markovian)
mathematically as the straight line with deviations, ui, from this line as,

Yi ¼ aþ bYi�1 þ ui; ð2:41Þ

where, a and b are the model parameters. Such a simple model does not have any
assumption concerning the pdf of the time series, but the model is based on the
linearity assumption. This is one of the most significant conclusions about the serial
dependence that the classical correlation coefficient measures the linear depen-
dence, and therefore, prior to its application, it is necessary to look at the scatter
diagram of successive values so as to infer whether this assumption is valid.
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Otherwise, in the case of nonlinearity one can still obtain classical correlation
coefficient but without knowing the underlying facts of nonlinearity. Unfortunately,
most often in practical applications, this point is overlooked and moreover the
correlation coefficient is calculated and applied rather blindly. The model param-
eters, a and b, can be obtained in any manner without formal procedures. For
instance, Eq. (2.41) can be considered without error and in this case any two data
values give rise to two equations, which can be solved for a and b parameters. If
this procedure is applied to all possible pairs from the sequence, then a set of a and
b parameters can be calculated and their averages are adopted as a and b. However,
this is very naive way of parameters estimation (Chap. 4).

If the necessary tests are not performed and the data are not checked for the basic
assumptions then all what have been explained above leave suspicions in the
coefficient estimations. In practical studies, researchers most often do not care or
even think about these restrictive assumptions, and consequently, the coefficient
estimations might remain biased. Even the amount of the global bias is not known,
and therefore, bias correction procedures cannot be defined and applied (Şen 1974).
Hence, the parameter estimates of Eq. (2.41) remain under suspicion. In order to
avoid all these restrictive assumptions rather than the application of procedural
regression analysis to data with a set of restrictive assumptions, it may be preferable
to try and preserve only the arithmetic averages and variances of the sequence.
After all the arithmetic averages and variances are the most significant statistical
parameters in any design work.

Equation (2.41) can also be interpreted as a first-order Markov process. In such a
case, since always a physical value is assumed to exist, i.e., there is no zero value, it
is possible to consider that a = 0 in this equation. On the other hand, with theo-
retical restrictive assumptions similar to the regression approach especially the
normal (Gaussian) pdf of the physical variable, it can be shown that, Eq. (2.41) can
be brought into a stochastic process form as follows.

Xi � lð Þ ¼ q Xi�1 � lð Þþ r 1� q2
	 
1=2

ui; ð2:42Þ

where l, r, q, and ui are the arithmetic average, standard deviation, first-order
correlation coefficient, and uncertain residual error term, respectively. In such a
model, ui is normally distributed random variable with zero mean and unit standard
deviation. The stochastic model in Eq. (2.42) generates normally (Gaussian) dis-
tributed variables. It is important to notice at this stage that the correlation coeffi-
cient is defined for linear dependence and for normal pdf stochastic variates only.

2.11.2 Long-Memory (Persistence) Component

Persistence is commonly referred to as long-term dependence between successive
observation values in a time series. Natural variables (landslide, earthquake, flood,
and tsunami) are uncertain in character but there are embedded features that give
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rise to better quantitative description of these series. Among these features are
long-term averages and standard deviations and better frequency distribution
behaviors according to a theoretical pdf such as normal, logarithmic normal,
Gamma, Gumbel, Pearson, etc. However, none of these features are capable to give
the measure of successive dependence, except the correlation coefficient or per-
sistence measures such as rescaled ranges (Hurst 1951; Şen 1974). Dependence
measures including classical correlation and persistence strength decreases as the
basic time interval of the time series increases. For instance, daily records have
more dependence characteristic than annual series. Even in high (floods) or low
(droughts) natural events there are persistence, but unfortunately for the sake of
brevity and simplicity these are ignored in many practical applications. Assumption
of serial independence makes calculations simple within the probability theory only
but the conclusions always appear as over-estimations. For instance, the ideal
expected size of a storage reservoir, E(R), is given simply for a first-order
Markovian process as (Şen 1974),

EðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� qÞ
pð1þ qÞ

s
r; ð2:43Þ

where q is the lag-one serial correlation coefficient and r is the standard deviation
of time series. The ratio, (1 − q)/(1 + q) is smaller than 1, and consequently, the
expected size for dependent process is smaller than the independent case, which
appears for q = 0 as,

EðRÞ ¼
ffiffiffi
2
p

r
r ð2:44Þ

It is, therefore, very significant to consider the short- or long-term dependences
within any natural phenomena, if the design is expected to perform in the best
possible manner economically. On the other hand, Douglas et al. (2000) have
shown that even in the low values of seven-day basic time interval, there are
significant serial correlations reaching to 25% at the runoff stations throughout the
USA.

2.11.2.1 Rescaled Range and Hurst Phenomenon
Hurst (1951, 1956), Şen (1974) studied long-term fluctuations within a large
number of geophysical records and found that

Rn

Sn
� nh; ð2:45Þ

where Rn is the range of cumulative departures from the sample mean and Sn is the
standard deviation estimation. The range is based on the cumulative sums of
departures from the time series arithmetic average as in Fig. 2.24.
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In this empirical formulation, h is referred to as the Hurst coefficient, which
assumes values theoretically between 0 and 1 but for independent processes its
value is equal to 0.5. In many geophysical phenomena h does not appear as 0.5, and
hence, its deviation from 0.5 is called as the “Hurst phenomenon” implying
long-term dependence, i.e., persistence. Such a discrepancy has been accounted on
the basis of three factors.

(1) The non-normality of the pdf of the underlying variables,
(2) Effect of small samples, i.e., bias effect in the statistical sense,
(3) The autocorrelation structure.

Especially, the last factor has caused introduction of different theoretical
stochastic models among which the “fractional Brownian processes” (Mandelbrot
and Wallis 1968) are the major ones in addition to the white Markov (Şen 1974) or
AutoRegressive Integrated Moving Average (ARIMA) processes (Box and Jenkins
1974). Division of the range, R, which is the storage volume, by the standard
deviation, S, theoretically leads for serially independent processes to the expectation
value as (Feller 1968),

E
Rn

Sn

� �
¼ 2

ffiffiffiffiffiffi
2
p
n

r
r; ð2:46Þ

where n is the sample length. However, for serially dependent processes, the
expectation of the rescaled range, R/S, is derived by Şen (1974) as follows.

E
R

S

� �
¼ 2

ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn� 1Þp C nþ 1

2

	 

C n

2

	 
 Xn
k¼1

k�
1
2
1þ q
1� q

� 2q 1� qk
	 


kð1� qÞ2
" #1

2

: ð2:51Þ
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3Statistical Trend Tests

Abstract
There are various classically established trend identification tests in the literature
and their preliminary explanations are useful for further and innovative trend
proposal understandings. In general these methodologies are divided into two
groups as parametric and non-parametric approaches. Each group is explained
with its proper assumptions, restrictions and mathematical formulations so as to
give the reader appreciation of the fundamental concepts, which are useful in the
assessment of any trend identification procedure. The regression analysis, which
is the first main methodology for the description of the mathematical expression
of any trend, is presented with a set of restrictive assumption exposition that are
not taken into consideration in many publications throughout the world. It is
recommended that in the application of any methodology the researcher should
be aware of the assumptions, restrictions and difficulties that may be confronted
in the trend identification application researches.

Keywords
Assumptions � Non-parametric � Parametric � Regression � Restrictions �
Statistics � Tests � Trend

3.1 General

Statistical methodologies are effective tools for digital data evaluation, deduction of
central, deviational, skewness, kurtosis, and many representative parameters from a
set of measurements. They are very effective in uncertainty cases that cannot be
evaluated and interpreted by any other method. Statistics help to collect numerical
data for organization, classification, representation, and population characteristic
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descriptions from a given sample of finite length. It deals with facts of a state in
time, space, and spatiotemporal domains. In any discipline, quantification and
summarization of available data in meaningful manner are possible through the
application of the statistical methods. One can compare data groups’ distribution
properties with others and deduction of internal parametric quantities, hypothesis
testing by considering suitable probability distribution functions (pdf), relevant
interpretations in accordance with the probability statements and mathematical
calculations to arrive at the necessary statistical inferences.

Statistics can be defined also as the science dealing with collection, classifica-
tion, and interpretation of numerical data. It can arrive at quantitative results
through the use of mathematical probability theories, which explore order and
regularity on aggregates of more or less disparate elements. In this context, statistics
is a branch of mathematics to deal with uncertainties and their long-term or large
sample behaviors for meaningful deduction to make estimations and predictions of
the uncertain phenomenon future behaviors. It also provides opportunities for
preliminary scientific deductions from small samples.

Statistics provide a set of brief summary parameters for a given data in descriptive
manner and these parameters can then be regarded as the population characteristics
of the phenomenon concerned. Among such parameters are the arithmetic average,
mode, and median that provide information about the general level of the data; the
standard deviation, which represents the average deviation range around the arith-
metic average and the skewness coefficient that shows possible imbalance between
the big and small deviations around the mean value. All these statistics are very
useful in the empirical and analytical studies for historical behavior and future
predictions of the underlying generation mechanism of the phenomenon concerned.

Apart from the descriptive parameters, statistics provide opportunity to search
for various components that build up a time series. The most important systematic
components are the seasonality (periodicity), trend, and shift (step) embedded
within the uncertainty (nonsystematic) component of stochasticity (Chap. 2). In any
scientific and technological study, where uncertainty ingredient exists even at small
extends, the statistical techniques are sought to make firm and valid decisions. For
this purpose, the statistics literature gives great importance to confidence limit
constructions, significance tests and regression approaches.

In this chapter, each one of aforementioned components will be explained
through the classical statistics methodologies, but in the rest of this book trend
identification, assessment, interpretation, and applications will be mentioned by
means of various scientific and technological disciplines.

3.2 Nonparametric Tests

Normally these lack the power of parametric tests, because they do not consider the
population distribution governing the process concerned (Chap. 2). They are based
on the order statistics, i.e., ordering of the data from the smallest to the largest or
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vice versa and the calculations are based only on the ranks. There is always a loss of
information in the transformation from real-data values to ranks. The loss of
information means that the result is conservative, which implies that rejection of a
null hypothesis is less likely, so parametric tests should be preferred for better
results. In general, the nonparametric tests are preferred because of their robustness.
These order values are then attached with exceedance probabilities. In the non-
parametric methods, estimates of rejection probabilities for null hypotheses are not
attempted or if so they are highly uncertain. Nonparametric tests must be used in the
following two cases.

(1) If the data are available in the ordinal scale then the use of nonparametric tests
is a must, because the mean and standard deviation cannot be calculated. This
is due to the fact that only the relative position of the data is meaningful and
arithmetic operations are not applicable,

(2) If the frequency distribution of random event shows marked departures from
the normal pdf, especially for small sample sizes. However, for large sample
sizes, the central limit theorem allows the use of parametric methods on quite
markedly non-normal pdf’s.

On the other hand, nonparametric tests are valid regardless of sample size and
type of pdf. Parametric statistics should be used with more than 30 sample sizes
provided that tests such as normal scores or Kolmogorov–Smirnov (KS) lead to
acceptance of normal pdf as null hypothesis. It is important to remember that all
means of transformations should be applied to the data at hand in an attempt to
normalize the data before parametric methods are abandoned.

Most often the nonparametric tests are based on the median value, since the
calculation of the mean value does not have any relevance in nonparametric cal-
culations. The median value is found without involved calculations, since it rep-
resents the mid-point (50–50%) position within the data sequence. It is possible to
find nonparametric alternatives for the standard parametric tests. Nonparametric
tests often have a null hypothesis as population medians equality.

3.2.1 Data Ordering (Ranks)

It is a simple procedure to obtain the position of a data value in the ordered
sequence from highest (lowest) to lowest (highest) value. In Table 3.1, there are 10
data values, Yi (i = 1, 2, …, n), where n is the sample length. The corresponding
ranks, ri (i = 1, 2, …, n) constitute another sequence ready for use in the non-
parametric methods.

In this ordering, the lowest value has the smallest rank as 1. Nonparametric test
results do not depend on the ordering from the smallest (biggest) to greatest
(smallest) value. For any value greater than the greatest data value, the rank of X8

should remain as r8 = 10. These indicate the irrelevance of the absolute scale and
the loss of information, if there are interval or ratio data types.
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3.3 Statistical Tests

There are various methods to explore the internal structure of a given time series by
parametric and nonparametric methodologies. In this section, nonparametric tests
are explained.

3.3.1 Wald–Wolfowitz

In this test, the run lengths are not taken into consideration and its application
requires extra care. This test is neither powerful nor efficient, but can be used to
determine whether observations of a random variable are independent, and con-
sequently, in such a time series there is no trend component. The sum of squared
lengths test is a more powerful procedure (Himmelblau 1969).

The adjacency test requires that the observations are identically and indepen-
dently distributed under similar conditions (Kanji 2001). In case of large sample
sizes, the difference sign tests are applicable under the similar conditions as in the
adjacency test. The run and successive differences tests can be applied when the
observations in time series appear under similar conditions. Another distribution
free nonparametric test is the Mann–Whitney test (Sect. 3.3.5), which is applicable
only when the observations are random and independent. The most popular trend
test is the Kendall’s rank correlation test, which is employed together with Sen
(1968) slope and Mann (1945) sign methodologies.

3.3.2 Sign Test

This is the simplest nonparametric test analogue of the conventional t-test in the
parametric statistics. The objective is to decide whether the data are drawn from a
population with a specified median. The median, m0, is defined as the point exactly

Table 3.1 Data and ranks Data Rank, ri
Sequence, i Value, Yi
1 2.3 3

2 0.5 1

3 5.0 7

4 6.2 8

5 3.1 4

6 4.9 6

7 8.2 9

8 9.7 10

9 2.1 2

10 3.4 5
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at the half-way location through the rank order; if the sample size is odd, it is the
value at the midpoint position, i.e., at position (n + 1)/2. However, if the sample
size is even then the median is taken as the arithmetic average of values at ranks n/2
and (n + 1)/2. The theoretical basis of nonparametric tests is the probability theory.
In general, if a sample is drawn from a population with specified hypothetical
median then each item in the data has a priori probability equal to 0.50 as being
greater or smaller than the median. Knowing the hypothetical median, m0 each data
value can be attributed with a sign, + for Yi > m0 or − for Yi < m0, respectively.
Logically, the far away the sample median is from the hypothetical median, the
greater is the imbalance between the numbers of +’s and −’s, and consequently, less
likely that the sample comes from that population. Sign test is performed according
to the following steps for a given sequence of data.

(1) Suppose as zero hypothesis, H0, that the population median is equal to the
hypothetical median,

(2) Alternative hypothesis, Ha is that the population median is not equal to the
hypothetical median,

(3) For independent and identically distributed observations, the hypothesis H0

states that the median m0 can be tested with the statistic, T, which is the
number of observations greater than m0. Each observation has probability 0.5
of being greater than m0. If H0 is true then T follows a Binomial pdf law with
p = 0.5, otherwise, p will have some other value. If T is too different from n/2,
as measured by the Binomial probabilities with p = 0.5, then H0 is rejected,
(Connover 1971).

It is also possible to perform this test by considering pairs of observation
sequences. A paired-comparison of two-sample test can be investigated also by the
sign test. Let pairs of samples be denoted by X1, X2, X3, …, Xn and Y1, Y2, Y3, …,
Yn. The differences, Zi = Xi − Yi, are formed and if Xi and Yi are interchangeable
then the median of the differenced series is expected to be equal to zero. Inter-
changeability means that the two series originate from the same population. In order
to confirm this point, a sign test can be performed on the set of differences with the
null hypothesis, H0.

3.3.3 Sign Difference Test

In a given time series, Y1, Y2, …, Yn, the number of, say, positives can be found
after considering the difference of any term from its subsequent terms starting from
the first term in the series. If the sign is indicated by Si, then the new series will have
(n − 1) number of 1 or 0 terms in sequence defined as,

Si ¼ If Xiþ 1 � Xi [ 1 ði ¼ 1; 2; . . .; nÞ
Otherwise 0

�
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The summation of + signs, S+ can be obtained as,

Sþ ¼
Xn�1

i¼1

Si ð3:1Þ

If there is not a trend in the time series then the number of +’s is equal to the
number of –’s, otherwise, there is a trend. The theoretical average and variance
values are given by,

T þ ¼ ðn� 1Þ
2

ð3:2Þ

and

VTþ ¼ nþ 1
12

; ð3:3Þ

respectively. This variable is distributed according to the normal (Gaussian) pdf
with these parameters, and therefore, the trend test can be achieved with normal pdf
test.

3.3.4 Run Test

Similar to the previous one, it is possible to test and classify the data by considering
the standard time series elements as +1 for Yi > 0 and −1 when Yi < 0, which leads
to a two-valued sequence. Run test is based on the number of uninterrupted
sequence of +1’s and −1’s. If the number of +1 runs is shown by P, its theoretical
average value is defined as,

P ¼ 2n1n2
n

þ 1 ð3:4Þ

and the standard deviation as,

Sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1n2 2n1n2 � 1ð Þ

n2 n� 1ð Þ

s
ð3:5Þ

With these two parameters the distribution of P complies by a Gaussian pdf. If n1
and n2 are the numbers of +1 and −1, respectively, in the whole two-valued
sequence then n1 + n2 = n, where n is the number of data. Sneyer (1992) has
recommended the use of Wald–Wolfowitz serial dependence test, which together
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with the following Spearman order serial dependence procedure during the trend
test (Chap. 2). The reason for this is the usual existence of a jump in some topics
concerning the change in the data sequence. The trend analysis in a sequence can be
achieved by the following two nonparametric tests.

3.3.5 Mann–Whitney (MW) Test

This is an analogous test to the two-sample t-test in the parametric statistics liter-
ature. It tests the null hypothesis of population medians equality from which two
samples might be drawn. This test depends on the ranking of two data set mixtures.
The basic idea is that if the two samples are from the same pdf with the same
median value then the summation of ranks for each data set is expected to be equal.
The following steps are necessary for successful application of this nonparametric
test to two data sets.

(1) Consider as the null hypothesis H0 that the median of data population X is
equal to the median of population Y,

(2) As the alternative hypothesis Ha should signify that the median of data pop-
ulation X is not equal to the median of population Y,

(3) Calculate the test statistic, T, by considering ranks, ri and the number of
samples, n, in each data set as,

T ¼
Xn
i¼1

ri � nðnþ 1Þ
2

ð3:6Þ

The first term on the right-hand side corresponds to the summation of ranks
attributed to one data set of sample size n. Theoretically, the second term is the
summation of ranks. The closer these two terms to each other, the median of
X population is equal to the median of population Y. In case of two homogeneous
time series and n1 = n2, then summation of ranks in each time series is similar to
each other. However, when the data numbers are different, the homogeneity is
measured by the closeness of r1/n1 and r2/n2. There are n!/n1!n2! different time
series. For n1 = n2 = 10, there are 184,756 different possibilities of two time series.
The necessary test quantity is given as,

U1 ¼ M1 � n1
2

n1 þ 1ð Þ ð3:7Þ

or

U2 ¼ M2 � n2
2

n2 þ 1ð Þ ð3:8Þ

3.3 Statistical Tests 73

http://dx.doi.org/10.1007/978-3-319-52338-5_2


For each time series there is different test quantity. Theoretic distribution of this
quantity shows that the mean and the standard deviation are,

U ¼ n1n2
2

ð3:9Þ

and

Su ¼ n1n2 n1 þ n2 � 1ð Þ
12

� �
; ð3:10Þ

respectively. The test quantity is distributed according to a normal pdf with these
parameters, and hence, the MW test is similar to a normal distribution test.

(4) The sample sizes n1 and n2 of data sets are required for comparison of calcu-
lated T value with critical values from Table 3.2.

One of the main questions is, if the two time series are serially independent, is it
possible that there may still be theoretically some difference between these time
series? In order to answer to this question, the two time series are assumed to come
from the same population, and hence, there is not significant difference between
them. Such an assumption provides opportunity to exchange values between them.
They may be mixed and the total sample length, n, is equal to the summation of the
first, n1, and the second time series sample length, n2.

Example 3.1 In the following table the number of lightings is given during a
rainfall seeding and non-seeding periods. It is thought that during the seeding there
is expectancy of lighting reduction. For this purpose, in a random manner, the same
cloud group is seeded and the number of lightings is measured. During n1 = 12
seeding operation on the average 19.25, and during n2 = 11 normal case on the
average there were 69.45 lightings. If Table 3.3 is examined, it is observed that
during the non-seeding period the lighting numbers do not appear as normally
(Gaussian) distributed. At least existence of a high number as 358 indicates this
fact.

Solution 3.1 In the application of MW test, the necessary calculations for the rank
quantity are presented in Table 3.4. From Eq. (3.7) MW test quantity is U1 = 108.5
− 6(12 − 1) = 30.5. Arithmetic average and standard deviation values are calcu-
lated from Eqs. (3.9) and (3.10) as U ¼ 12� 11=2 ¼ 66 and Su = [12 � 11
(12 + 11 − 1)/2]1/2 = 16.2. Hence, the standardized U1 value correspondence in a
standard Gaussian pdf is z = (30.5 − 60)/16.2 = −2.19. On the other hand, in a
theoretical standard normal pdf, the critical standard value at 5% significant level is
zcr = 1.96. Since, z value is greater than the critical level, it is understood that there
is a significant reduction in the number of lighting after the seeding. Hence,
heterogeneity is concluded.
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Table 3.3 Lighting numbers

Seeding numbers No-seeding data

49 61

4 33

18 62

26 45

29 0

9 30

16 82

12 10

2 20

22 358

10 63

34

Table 3.4 Joint data

Lighting number Is there seeding? R(SDS1) + R(NS) Separate ranks

(SD) (NS)

0 N 1 1

2 Y 1 2

4 Y 2 2

9 Y 3 3

10 N 4 4

10 Y 5.5 5.5

12 Y 5.5 5.5

16 Y 7 7

18 Y 8 8

20 N 9 9

22 Y 10 10

26 Y 11 11

29 Y 12 12

30 N 13 13

33 N 14 14

34 Y 15 15

45 N 16 16

49 Y 17 17

61 N 18 18

62 N 19 19

63 N 20 20

82 N 21 21

358 N 22 22

Total rank 108.5 167.5

N No-seeding; Y Seeding
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3.3.6 Kruskal–Wallis (KW) Test

This is simply an extension of the previous test and conventional t-test to the cases
where there are multiple sample situations, say k data sets. It is therefore analogous
to one-way analysis of variance. The basic hypothesis is that all the sample sets are
drawn from populations with the same median value. The test is successful if
k median values are significantly close to each other. Otherwise, the failure of this
test is confirmed even if any one of the k median is different than the others. The
following steps are necessary for the performance of KW test.

(1) The null hypothesis, H0, is that the median of all source populations are equal,
(2) The alternative hypothesis Ha says that the median of at least one source

population is different,
(3) The test statistic, T, is calculated from given k data sets as,

T ¼ 12
NðNþ 1Þ

Xk
j¼1

Pnj
i¼1 rij

� �2
nj

� 3 N þ 1ð Þ; ð3:11Þ

where there are k samples each with sizes n1, n2, n3, …, nk, making a total sample
size of N. In Eq. (3.11) rij is the rank of the ith data point in the jth sample,

(4) T is distributed very similarly to chi-square pdf with k − 1 degrees of freedom.
The sample value T should be compared with critical values from Table 3.5.

It is assumed that k time series originate from the same population. It is possible
that in each time series the number of data is different from each other (n1 6¼ n2 6¼,
…, 6¼ nk). In the application of this method the following steps are necessary.

(1) By mixing all the time series, a single time series is obtained that is composed
of n = n1 + n2 + ��� + nk data,

(2) These data are ordered from the smallest to the greatest,
(3) The ordered data are attached with ranks starting from 1, rj (j = 1, 2, …, n). If

there are equal data values in the sequence they are given arithmetic average of
the ranks (Table 3.6).

(4) Find the ranks that correspond to each time series data. Hence, corresponding
to nk time series total ranks rj (j = 1, 2, …, k) are calculated.

Mj ¼
Xnk
i¼1

Mij ð3:12Þ
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Basic test hypothesis is that all k time series have the same behavior, i.e., they
are homogeneous. The alternative hypothesis is that at least one of the k time series
has the average difference behavior. Theoretic studies led to KW test quantity as,

KW ¼ 12
nðnþ 1Þ

Xk
j¼1

Mk � nk nþ 1ð Þ=2½ �1=2
nk

ð3:13Þ

or simply as,

KW ¼ 12
n nþ 1ð Þ

Xk
i¼1

M2
K

nk
� 3 nþ 1ð Þ ð3:14Þ

KW has approximately (k − 1) degrees of freedom and it complies by a
chi-square pdf and chi-square test is applied for the final decision.

Table 3.6 Wilcoxon signed
rank method application

Time series
data

Differences Signed ranks

X Y di Order dij j di < 0 di > 0

53 70 −17 20 20

54 66 −12 17.5 17.5

48 82 −34 21 21

46 58 −12 17.7 17.5

67 78 −11 16 16

75 78 −3 4.5 4.5

66 76 −10 14.5 14.5

76 70 6 9 9

63 73 −10 14.5 14.5

67 59 8 11.5 11.5

75 77 −2 2 2

62 65 −3 4.5 4.5

92 86 6 9 9

78 81 −3 4.5 4.5

92 96 −4 7 7

74 73 1 1 1

91 97 −6 9 9

88 75 13 19 19

100 92 8 11.5 11.5

99 96 3 4.5 4.5

107 98 9 13 13

Rank summations 78.5 152.5
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3.3.7 Nonparametric Correlation Coefficient

In parametric statistics the correlation coefficient is named as the Pearson correla-
tion and it is defined as the product moment (Chap. 2). In the nonparametric
statistics domain the analogous to the Pearson correlation is named as the Spear-
man’s rank correlation coefficient. Pearson correlation coefficient requires that both
variables should comply by the normal pdf, which is not the case in many natural,
social, environmental, economic sciences. In calculation of this nonparametric
correlation coefficient both data sets are ordered separately from each other. Hence,
there are two rank sequences, one for Xi (i = 1, 2,…, n) variable R(Xi) and other for
Yi variable as R(Yi). If for each i the ranks of X equal to ranks of Y, then the
Spearman’s rank correlation is regarded as perfect. The rank correlation is defined
as the sum of the difference between the corresponding ranks of X and Y. Analo-
gously to the parametric version values of the coefficient are scaled between −1
(perfect negative correlation) and +1 (perfect positive correlation). In between there
is a value, which is equal to zero indicating no correlation. Spearman’s rank cor-
relation calculation steps are as follows.

(1) As the null hypothesis, H0, the correlation between X and Y time series is
assumed equal to zero. This is referred to as the hypothetical correlation value,
rs = 0,

(2) Alternative hypothesis, Ha, is that this correlation coefficient is different than
zero,

(3) The test statistic, rS, which is referred to as the Spearman’s rank correlation
coefficient is defined in terms of each data set ranks and the sample number, n,
of data in each set as,

rS ¼ 1� 6
Pn

i¼1 R Xið Þ � R Yið Þ½ �
n n2 � 1ð Þ ð3:15Þ

(4) The calculated rS is compared with critical values from Table 3.7.

For example, if there are 20 pairs of data with a value of 0.53 then there would
be a probability between 0.01 and 0.005 that it had occurred by chance. In other
words, one might expect to get this result by chance once every 100–200 times, and
therefore, it indicates a very significant correlation between the two sets of data.

As with the other nonparametric methods, values of X and Y can vary exten-
sively without affecting the final result. It is necessary to keep in mind that rS do not
imply good linear relationship. It is quite possible to obtain low Spearman’s rank
correlation coefficient for high Pearson’s parametric correlation coefficient. How-
ever, in many applications, it is unusual for Pearson’s coefficient to provide a
statistical test result markedly superior to Spearman’s rank correlation approach
even with normally distributed data.
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3.3.8 Spearman’s Rho Test of Trend

The Spearman’s rho trend test is based on the Spearman’s rho statistic, which is the
standard Pearson correlation coefficient between the rank of the annual summary
statistics and the year (Kolaz and Swinford 1988, 1989; Sweitzer and Kolaz 1984;
Lettenmaier 1976; EPA 1974). No trend and independent structure cases imply that
all ranks are equally likely, which is used to test the statistical significance of the
Spearman’s rho statistic. If the value is significantly different from zero then it
implies a significant trend. When ties in the annual summary statistics are present,
then the significance level has to be adjusted in order to account for the number of
ties. The linear regression power calculations are based on formulae that are
incorrect for small samples but approximately correct for large ones (Lettenmaier
1976).

Table 3.7 Critical values for
Spearman’s rank correlation
coefficient

n
Number of pairs

Probability of record occurrence

0.1 0.05 0.025 0.01 0.005

4 1 1 1 1 1

5 0.7 0.9 0.9 1 1

6 0.6571 0.7711 0.8286 0.9429 0.9429

7 0.5714 0.6786 0.7857 0.8571 0.8929

8 0.5476 0.6529 0.7381 0.8095 0.8571

9 0.4833 0.6 0.6833 0.7667 0.8167

10 0.4424 0.5636 0.6485 0.7333 0.7818

11 0.4182 0.5273 0.6091 0.7 0.7545

12 0.3986 0.5035 0.5874 0.6713 0.2773

13 0.3791 0.478 0.5604 0.6484 0.6978

14 0.367 0.4593 0.5385 0.622 0.6747

15 0.35 0.4429 0.5179 0.6 0.6536

16 0.3382 0.4265 0.5029 0.5824 0.6324

17 0.3271 0.4124 0.4821 0.5577 0.6055

18 0.317 0.4 0.4683 0.5425 0.5897

19 0.3077 0.3887 0.4555 0.5285 0.5751

20 0.2992 0.3783 0.4438 0.5155 0.5614

21 0.2914 0.3687 0.4329 0.5034 0.5487

22 0.2841 0.3598 0.4227 0.4921 0.5368

23 0.2774 0.3515 0.4132 0.4815 0.5256

24 0.2711 0.3438 0.4044 0.4716 0.5151

25 0.2653 0.3365 0.3961 0.4622 0.5052

26 0.2698 0.3297 0.3882 0.4534 0.4958

27 0.2546 0.3233 0.3809 0.4451 0.4869

28 0.2497 0.3172 0.3739 0.4372 0.4785

29 0.2452 0.3115 0.3673 0.4297 0.4705

30 0.2407 0.3061 0.361 0.4226 0.4629
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Consider Y and X as the ranks of the time (e.g., year) and data series (say,
rainfall), respectively; the Spearman (1940) rho statistic, rsc, for data with no tied
ranks is given as,

rsc ¼ 1� 6
Pn

i¼1 Yi � Xið Þ2
n n2 � 1ð Þ ð3:16Þ

In some studies (Khaliq et al. 2009; Sonali and Kumar 2013), it was mentioned
that this expression can be used even when there are ties in the data except that the
convention is to take X as the average rank. If the ties are of significant extent then
more suitable approach can be used for quantifying the extent of the statistical
dependence in the data.

3.3.9 Turning Point Test

One of the easiest methods to apply is the turning point test, which can be visu-
alized from the graphical representation of a time series, because it is possible to see
the systematic and random variations. As stated by Shahin et al. (1993) Kendal
phase test is more valid in case of points that tend to bunch together. Here, the
difficulty is that a comparison of observed and theoretical numbers of phases by the
usual chi-square test is invalidated due to the fact that the lengths of phases are not
independent. Also, the distribution of phase lengths does not tend to be normal for
large sample sizes, but the number of phases follows a normal pdf (Kendall 1973).

The convenience of trend tests to a time series structure is concerned mainly with
the adaptability of a chosen test. The turning points and number of phase tests are
practically outdated due to the availability of much more powerful tests (Shahin
et al. 1993).

In case of a time series with trend component there will be more turning points
(peaks and valleys) expectations than trend free time series. A turning point is
defined at least by three subsequent time series terms. If a time series has n ob-
servations as Y1, Y2, Y3, …, Yn, then the consideration of this sequence as three
successive terms from its beginning until the end indicates turning points as,

Ti ¼ If Yi\Yiþ 1 [ Yiþ 2 1
Otherwise 0

�
ð3:17Þ

The result has (n − 2) terms with 1’s and 0’s in a randomly alternation manner.
The total number of turning points, NT, is given as,

NT ¼
Xn�2

i¼1

Ti ð3:18Þ
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Theoretical studies by some researchers indicate that the turning point number
has a normal (Gaussian) pdf with average and variance as, (Kendall and Stuart
1973),

NT ¼ 2
3
ðn� 2Þ ð3:19Þ

and

VNT ¼ 16n� 29
90

; ð3:20Þ

respectively. Finally, the existence of a trend may be checked by a normal pdf test.

3.3.10 Mann–Kendall (MK) Test

Irrespective of the linearity or curvature of the trend, its identification is possible by
nonparametric MK test. However, the serial correlation structure in a dependent
time series is bound to affect the ability of the MK test (Yue et al. 2004). The
assumptions of the classical parametric tests viz., normality, linearity, and inde-
pendence are usually not met by many natural and artificial time series. Addi-
tionally, the questions of missing values, censored data, flow relatedness, and
seasonality hinder the normal (Gaussian) pdf and MK test analysis depends on the
sign difference between all combinations of earlier and later data measurements.
This provides the possibility of n(n − 1)/2 different types of differences each with
sign 1, 0 or −1. In this sign procedure, there is no need for data pdf, since it is
independent of any specific pdf. This test assumes that a value can always be
declared less than, greater than, or equal to another value; that data are independent;
and that the pdf of data remains constant either in the original or transformed units
(Helsel and Hirsch 1992). The test statistics are invariant to transformations such as
logs (i.e., the test statistics will be the same value for both raw and log-transformed
data), and hence, the Mann–Kendall test is applicable in many situations.

The performance of a MK test requires computation of the difference between
the successive measurements ( j − i) apart, where j > i, and according to the sign of
the difference an integer value is attached to positive differences as 1, no differences
as 0, and negative differences as −1. The test statistic, S, is then computed as the
sum of the integers.

S ¼
Xn�1

i¼1

Xn
j¼iþ 1

sign Yj � Yi
� �

; ð3:21Þ

where Yj and Yi are the sequential data values in a sample of size n, and
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sign Yj � Yi
� � ¼ 1 if Yj � Yi

� �
[ 0

0 if Yj � Yi
� � ¼ 0

�1 if Yj � Yi
� �

\0

8<
: ð3:22Þ

For n � 10, Mann (1945) and Kendall (1975) have documented that S has
approximately normal pdf with the mean E(S) = 0 and variance V(S) given as,

V Sð Þ ¼ 1
18

n n� 1ð Þ 2nþ 5ð Þ ð3:23Þ

In case of tied ranks, V(S) becomes,

V Sð Þ ¼ 1
18

n n� 1ð Þ 2nþ 5ð Þ �
Xm
k¼1

tk tk � 1ð Þ 2tk þ 5ð Þ
" #

; ð3:24Þ

where m is the number of tied groups, and tk is the number of observations in the kth
group. The standardized MK test statistic ZMK, which follows the standard normal
pdf with mean zero and unit variance is defined as,

ZMK ¼

S� 1ffiffiffiffiffiffiffiffiffiffi
V Sð Þp for S[ 0

0 for S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffi
V Sð Þp for S\0

8>>>>><
>>>>>:

ð3:25Þ

A positive (negative) value of S indicates an upward (downward) trend. The
trend is considered insignificant if ZMK is less than the standard normal variate Za/2,
at a% significance level. The trend is significant if ZMK � Za/2.

To deal with the influence of autocorrelation on V(S), Yue and Wang (2004)
suggested a modification at the variance based on the effective sample size, n�, for
variance, V� Sð Þ as,

V� Sð Þ ¼ V Sð Þ n

n�
ð3:26Þ

and

n� ¼ n

1þ 2
Pn�1

i¼1 1� k
n

� �
qk

; ð3:27Þ

where qk is the lag-k serial correlation coefficient of a given series Xi, which can be
computed as,
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qk ¼
1

n�kð Þ
Pn�k

i¼1 Yi � E Yið Þ½ � Yiþ k � E Yið Þ½ �
1
n

Pn
i¼1 Yi � E Yið Þ½ �2 ð3:28Þ

If S is a large positive (negative) number, later-measured values tend to be larger
(smaller) than earlier values indicating an upward (downward) trend. Small absolute
S values imply no-trend. The test statistic, s, is,

s ¼ 2S
n n� 1ð Þ ð3:29Þ

This varies within the range from −1 to +1 and it is analogous to the correlation
coefficient in the regression analysis. The null hypothesis, Ho, of no trend is rejected
in cases when S and s are significantly different from zero.

The slope of a significant trend can be calculated according to the formulation
given by Sen (1968).

b ¼ median
Yj � Yi
j� i

� �
ð3:30Þ

For all i < j where 1 < i n − 1 and 2 < j < n. One of the widely used non-
parametric tests for detecting trends in the time series is the MK test (Mann 1945;
Kendall 1955). This trend test is derived from a rank correlation test for two groups
of observations. In the procedure, the correlation is considered between the rank
order of the observed values and their orders. The null hypothesis, H0, for this test is
that the data are independent and randomly ordered, i.e., there is no trend or serial
correlation structure among the observations.

The MK test statistic, S, for two sets of observations X1, X2, X3, …, Xn and Y1,
Y2, Y3, …, Yn is formulated as,

S ¼
Xn
i� j

aijbij; ð3:31Þ

where

aij ¼ sgn Xj � Xi

� � ¼ 1 Xi �Xj

0 Xi ¼ Xj

�1 Xi �Xj

8<
: ð3:32Þ

and bij is similarly defined for the observations in Y. Under the hypothesis that
X and Y are independent and randomly ordered, the statistic S tends to normal pdf
for large n, with mean and variance given by,

E Sð Þ ¼ 0 ð3:33Þ
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and

Var Sð Þ ¼ n n� 1ð Þ 2nþ 5ð Þ
18

; ð3:34Þ

respectively. If the values are replaced with the time order of the time series Xi,
(i = 1, 2, …, n) then it can be used as a trend test (Mann 1945). In this case, the
statistic S reduces to,

S ¼
X
i� j

aij ¼
X
i� j

sgn Xj � Xi

� � ð3:35Þ

with the same mean and variance as before. Kendall (1955) gave a proof of the
asymptotic normal pdf of the statistic, S. The significance of trends is tested by
comparing the standardized test statistic, Z, as,

Z ¼ S

Var Sð Þ½ �0:5 ð3:36Þ

with the standard normal pdf at the desired significance level.

3.3.10.1 Mann–Kendall Trend Search
This is one of the most frequently used methodologies in trend search (Mann 1945;
Kendall 1955). This trend test is derived from a rank correlation test. For two
groups of observations trend is derived from a rank correlation test and the cor-
relation between the rank order of the observed values and their order in time series.
The null hypothesis, H0, is that the data are independent and have random pdf,
which implies no trend and no serial correlation. In the application of MK method,
the following steps are valid.

(1) Starting from the left side of a time series, each value is compared with the
ones on the left and the number of values greater than the considered value is
counted and written. If these numbers are shown by ni then the new series will
have these values,

(2) The successive summation of these numbers, ti, is considered for the statistical
test as,

ti ¼
X

ni ð3:37Þ

(3) Theoretical studies indicated that this statistic has also normal pdf with the
following arithmetic average and standard deviation values, (Kendall and
Stuart 1952)

t ¼ n n� 1ð Þ
4

ð3:38Þ
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and

rt ¼ n nþ 1ð Þ 2nþ 5ð Þ
72

� �1=2
ð3:39Þ

(4) Previously found ti values from Eq. (3.37) are standardized with these theo-
retical parameters,

ui ¼ t � t

St
ð3:40Þ

(5) The same procedure is applied to this time starting from the right side, i.e.,
beginning of the given time series, which leads to a similar series of t

0
i,

(6) These two series, ti and t
0
i are shown as time series in Fig. 3.1. At this stage

two tailed test is applied. According to MK test, in the case of no trend, these
two series intercross each other several times. In the case of trend the inter-
section of these two time series indicates the trend beginning.

3.3.10.2 Sen Slope Estimator
Sen (1968) suggested a nonparametric alternative for slope estimation, which is
based on the calculation of slopes for all the pairs of time series data and then taking
the median of these slopes as an estimate of the overall trend slope. This method is
insensitive to outliers and can handle a moderate number of values below the
detection limit and missing values. If time series sample length is n (or n periods of
time), and Yi is the data value for the ith time instant, there will be n(n − 1)/2
possible pairs of time points (i, j) in which i > j. Hence, a pairwise slope, bij, is
computed as,

bi ¼ Yj � Yk

j� k
for j[ k; i ¼ 1; 2; . . .; nð Þ; ð3:41Þ

1920    1930     1940    1950    1960    1970     1980    1990    2000 

2

1

0

-2

-1 

t
t’

Fig. 3.1 Mann–Kendall
trend search
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where n is the sample size. In case of no trend, a given Yi has the same chance to be
above or below of another Yj value, and therefore, there is approximately equal
number of positive and negative slopes leading to almost zero median value.

In any given time series, there are N = n(n − 1)/2 slopes. The Sen slope is equal
to the median of all these slopes. A two-tailed significance test can be obtained
concerning this slope value by the nonparametric technique based on the normal
(Gaussian) pdf. It is possible to calculate the confidence limits as,

CLðaÞ ¼ 	Z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðSÞ

p
ð3:42Þ

In this equation Z1−a/2 is taken from a standard normal (Gaussian) pdf.

bij ¼ Yi � Yj
i� j

ð3:43Þ

3.3.10.3 Spearman’s Tau
In parametric statistics, the Pearson correlation is used and defined as the product
moment with the basic assumption that the time series must abide by the normal
(Gaussian) pdf. In the nonparametric statistics domain, the Spearman’s rank cor-
relation coefficient is used and it does not require normal (Gaussian) pdf. The data
sets are ordered for calculating this nonparametric correlation coefficient. Hence,
there are two sequences of ranks, one for X variable, R(Xi), and other for Y variable,
R(Yi). If the ranks of X are equal to ranks of Y, then the Spearman’s rank correlation
is perfect. The rank correlation is defined as the sum of the difference between the
corresponding ranks of X and Y. Analogous to the parametric version of the
coefficients, it is scaled between −1 (perfect negative correlation) and +1 (perfect
positive correlation). In between the value that is equal to zero indicates no cor-
relation. The Spearman test statistic, qS, is defined in terms of each data set ranks
and the number of sample, n, as,

qS ¼ 1� 6
Pn

i¼1 R Xið Þ � R Yið Þ½ �
n n2 � 1ð Þ ð3:44Þ

As with the other nonparametric methods, values of X and Y can vary exten-
sively without affecting the final result. It is necessary to keep in mind that qS does
not imply good linear relationship rather than linearity.

3.3.10.4 Regression Trend
It is a parametric method and equivalent to the classical regression approach, where
the independent variable is the time sequence (t = 1, 2, 3, …, n) with dependent
variable of any physical, social, economic, etc. series, Yi (i = 1, 2, 3, …, n). In
general, the linear regression expression has the following form,

Y ¼ aþ Srt; ð3:45Þ
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where a is the intercept at t = 0 and Sr is the trend slope. The basic equations for
parameter estimations are,

bSr ¼ n
Pn

i¼1 tiYi �
Pn

i¼1 ti
Pn

i¼1 Yi

n
Pn

i¼1 t
2
i �

Pn
i¼1 ti

� �2 ð3:46Þ

and

ba ¼
Pn

i¼1 ti
Pn

i¼1 Y
2
i �

Pn
i¼1 ti

Pn
i¼1 tiYi

n
Pn

i¼1 t
2
i �

Pn
i¼1 ti

� �2 ¼ y� t bSr ð3:47Þ

The trend slope estimation is bSr and the trend line passes through the centroid
point, which is defined by coordinates (t/2, X). This centroid point is also used in
the trend determination by Sen’s slope and other methods in the following sequel.

3.3.11 Two-Sample Wilcoxon Test

Consider two independent random samples as X1, X2, X3, …, Xn and Y1, Y2, Y3, …,
Yn. Let sample X be drawn from a population with distribution FX and Y sample be
taken from another population with distribution function FY.

FX XþDð Þ ¼ FY Xð Þ ð3:48Þ

This means that the two populations differ only by a shift, D. The null hypothesis
is, H0: D = 0 and it is false if D has some value different from zero then one sample
will tend to have larger values than the other. This can be measured by ranking the
combined samples in the order of increasing size and summing the ranks of each
sample within the combination. Let the sum of X ranks be rX and similarly, rY for
Y’s. If rX and rY are too different from each other then H0 is rejected.

Another set of statistics, which measures the differences in ranking, is the
number of inversions, which is also known as the Mann–Whitney statistics that is
defined as IX. It is the number of times X is greater than corresponding Y; and
likewise IY is the number of times Y is greater than X. These have the theoretical
formulations as,

IX ¼ rX � m mþ 1ð Þ
2

ð3:49Þ

and

IY ¼ rY � n
n nþ 1ð Þ

2
ð3:50Þ
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with the common expectation (mean) and variance as,

EðIXÞ ¼ EðIYÞ ¼ mn

2
ð3:51Þ

and

VðIXÞ ¼ VðIYÞ ¼ mn mþ nþ 1ð Þ
12

; ð3:52Þ

respectively. Finally, consideration of these statistics leads to the rejection of the
null hypothesis, H0, if the minimum of IX and IY is too much smaller than mn/2.

3.3.11.1 Signed-Wilcoxon Test
For a given random sequence, Y1, Y2, Y3, …, Yn, it is necessary to test whether the
population is symmetric about m. If so, the random sample of differences
Zi ¼ Yi � m; 1 � i� nð Þ will be symmetric about zero. Let the null hypothesis, H0,
state that Y symmetry about m, is true. Negative values of Zi form one sample of
values, and positive Zi values as a set is another sample. The Wilcoxon rank-sum
statistic is computed from these artificially created two samples. If the sum of ranks
for the positive values is too different from the sum of ranks of the negative values,
H0 is rejected.

3.3.11.2 Wilcoxon Signed Rank Test
Xi and Yi (i = 1, 2,…, n) are two time series of sample length, n. The cross pair data
difference series is di = Xi − Yi. On the assumption that both time series originate
from the same population, rationally and logically the number of +’s is almost the
same with the −‘s, additionally, the magnitudes of differences are close to each
other. For this test, first of all the absolute values of these differences are considered
and then ordered with the definition of a new Di sequence as,

Di ¼ mertebe Fij j ¼ mertebe xi � yij j ð3:53Þ

Based on the sign of this quantity, the ranks are grouped into + and − groups
with the rank summation of each group statistic as,

T þ ¼
X
Fi � 0

Di ð3:54Þ

and

T� ¼
X
Fi � 0

Di ð3:55Þ
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When Di = 0 then the rank is distributed equally between T+ and T−; the
summation of these two quantities is expected to be equal to the summation of the
ranks.

T þ þ T� ¼ 1þ 2þ � � � þ n ¼ n nþ 1ð Þ
2

ð3:56Þ

Enumeration possibility indicates that 2n different time series can be obtained
from two time series random mixture and then pairwise random drawing leads to
new Xi and Yi time series. Again application the same procedure to these two time
series leads to 2n values, which have theoretically a normal (Gaussian) pdf with the
following average and standard deviation,

T ¼ n nþ 1ð Þ
4

ð3:57Þ

and

ST ¼ n nþ 1ð Þ 2nþ 1ð Þ
24

� �1=2
; ð3:58Þ

respectively.

Example 3.2 Wilcoxon sign rank method is applied to two time series given in
Table 3.5. These data are the observed storm numbers at two different locations
during 21 years. Due to the closeness of the two regions, it is expected that these
time series are similar to each other.

Solution 3.2 It is possible to obtain 221 = 2097152 different time series from these
data. After the calculations, it is possible to find that T+ = 78.5, T ¼ 21ð Þ 22ð Þ=4 ¼
115:5 and ST = [21 � 22(42 + 1)/24]1/2 = 28.77. The standard value is obtained as
z = (78.5 − 115.5)/28.77 = −1.29. According to a standard normal pdf test with 5%
significance level, the critical value is 1.96, and hence, one can decide that time
series come from the same population, and therefore, they are similar to each other.

3.3.12 von Neuman Test

This test is applied by the Neumann ratio, which is defined according to the fol-
lowing expression.

N ¼
Pn�1

i¼1 Yi � Yiþ 1ð Þ2Pn
i¼1 Yi � Y

� �2 ; ð3:59Þ
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where Yi’s (i = 1, 2, …, n) represent time series and Y stands for the arithmetic
average of the same series. If the mean value is constant, under the null hypothesis,
the expectation of this ratio is equal to two, E(N) = 2. Qwen (1962) has given a
table of percentage points of N for normal and independent pdf’s. It has been stated
that this ratio is closely related to the first-order serial correlation coefficient (WMO
1966). Yevjevich and Jeng (1969) presented a comprehensive study of the effect of
changes in the mean on the correlation function.

3.3.13 Cumulative Departures Test

Some insights into the general features of a time series including possible changes
and homogeneity can be gained through the graphical methods. Very classical
methodology is the double-mass curve which is obtained by plotting the cumulative
amounts of the station under consideration against the cumulative amounts of a set
of records at neighboring stations (Searcy and Hardison 1960). In case of homo-
geneity the scatter of points falls along a straight-line (Chap. 6). It is also valid for
the cumulative deviations from some average value, which have the advantage that
changes in the mean amount are recognized easily (Craddock 1979).

Although such graphs are useful to detect the shifts in the mean value, but it is
not obvious usually how real changes can be distinguished from purely random
fluctuations. In order to clarify this point objectively, it is necessary to have a
significance test. Although there are commonly employed statistical techniques in
various disciplines such as in climatology and hydrology as stated by the World
Meteorological Organization (WMO 1966), they are not based on some charac-
teristic of the cumulative sums in the graphical analysis.

3.3.13.1 Cumulative Deviations
Homogeneity tests can be based on the cumulative sums of departures, S�k , from the
record mean value, Y .

S�k ¼
Xk
i¼1

Yi � Y
� �

; k ¼ 1; 2; . . .; n ð3:60Þ

Herein, S�n ¼ 0 implies that there is no trend in the time series. In a homogeneous
record, the fluctuations of S�k appear around zero, since there is no systematic
pattern in the deviations of Yi’s from the average value, Y . On the other hand, most
values of S�k are positive, if the Yi’s tend to be larger (smaller) than Y for i�m (for
i > m). In order to further explain this point an illustrative example is presented in
Fig. 3.2.

On the other hand, rescaled adjusted partial sums are obtained by dividing the
S�k’s by the sample standard deviation, DY, as,

3.3 Statistical Tests 95

http://dx.doi.org/10.1007/978-3-319-52338-5_6


S��k ¼ S�k
DY

ðk ¼ 0; 1. . .; nÞ ð3:61Þ

Since S��k ’s are not influenced by any linear transformation of the data, homo-
geneity tests are based on S��k calculations. A statistic that is sensitive to departures
from homogeneity is given as,

Q ¼ max S��k
		 		

0� k� n
ð3:62Þ

High Q values indicate a change in the level. The critical values for the
test-statistic are given in Table 3.6. The percentage points in this table are based on
19,999 synthetic sequences of Gaussian pdf random numbers. For n ! 1 the
critical values of Q can be obtained from Table 3.8 of the Kolmogorow–Smirnov
goodness-of-fit statistic.

Yk

10

20

0
151050

k

S*
k

20

10

0
151050

k

Fig. 3.2 Nonhomogeneous time series and adjusted partial sums
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Another statistic for testing homogeneity is the range, R, given as follows.

R ¼ max S��k
� ��min S��k

� �
0� k� n 0� k� n

ð3:63Þ

Such ranges are very significant statistical parameters in reservoir storage
capacity determination studies. Many works have been done by different
researchers on the ranges and rescaled ranges (Hurst 1951; Şen 1974; Gomide
1978). Higher range values imply shifts ( jumps) in the mean value of the time
series. A figure with percentage points of R distribution under the null hypothesis is
given by Wallis and O’Connell (1973).

3.3.14 Bayesian Test

Chernoff and Zacks (1964) and Gardner (1969) suggested the Bayesian procedures
for the detection of changes in the mean value. In this test, the standard deviation,
rY, of the time series must be known. However, if the population standard deviation
is not known then the sample standard deviation can be employed in the test.
Gardner (1969) statistic for a two-sided test at an unknown point can be written as,

G ¼
Xn�1

i¼1

pk
S�k
rY

� �2

ð3:64Þ

Herein, pk is for the prior probability that the shift occurs just after the kth
observation.

The uniform prior pdf, Pk, has been given as,

U ¼ 1
n n� 1ð Þ

Xn�1

k 1ð Þ
S��k
� �2 ð3:65Þ

or the proportional pdf to 1/[n(n − 1)], is,

Table 3.8 Percentage points
of Q=

ffiffiffi
n

p
and R=

ffiffiffi
n

p n Q=
ffiffiffi
n

p
R=

ffiffiffi
n

p

90% 95% 99% 90% 95% 99%

10 1.05 1.14 1.29 1.21 1.28 1.38

20 1.10 1.22 1.42 1.34 1.43 1.60

30 1.12 1.24 1.46 1.40 1.50 1.70

40 1.13 1.26 1.50 1.42 1.53 1.74

50 1.14 1.27 1.52 1.44 1.55 1.78

100 1.17 1.29 1.55 1.50 1.62 1.86

∞ 1.22 1.36 1.63 1.62 1.75 12.00
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A ¼
Xn�1

k¼1

Z��
k

� �2 ð3:66Þ

Departures from homogeneity are evident provided that test-statistics have large
values. Critical values for U and A are given in Table 3.9 with the percentage points
that are based on 19,999 synthetic sequences of Gaussian pdf random numbers. The
limiting distributions of U and A are those of certain test-statistics of the Cramer–
von Mises type. The statistic U/n corresponds asymptotically with Smirnov’s x2

and the statistic A with the Anderson–Darling statistic.

3.3.15 Relative Error Test

The relative error, a, between two values is equal to absolute difference between
two variables (Xj − Xi) divided by the bigger one and the multiplied by 100.

a ¼ Xi � Xj

		 		
Xj

ð3:67Þ

In practice, if the relative error is less than 5% or in some other applications less
than 10% then the difference between the two values is regarded as insignificant.

The relative error calculation does not require any specific pdf for the data, and
hence, it is free of frequency diagram or pdf It is useful for the preliminary check on
whether the data sequence is homogeneous or not.

Example 3.3 Check the homogeneity of 12 rainfall (cm) values given in the fol-
lowing at 5% level, 12.3, 14.2, 8.3, 11.2, 9.2, 13.4, 10.3, 12.9, 9.9, 11.5, 10.7, 8.9.

Solution 3.3 In the homogeneity test, the arithmetic average of the data can be
compared with the arithmetic average of at least two complementary subdivisions.
For this purpose, herein, the series is divided into two halves and the arithmetic
averages of the whole series with the two halves are X ¼ 11:06 cm, X1 ¼ 11:43 cm
and X2 ¼ 10:70 cm, respectively. Substitution of halve averages together with the

Table 3.9 Percentage U and
A points

n U A

90% 95% 99% 90% 95% 99%

10 0.336 0.414 0.575 1.90 2.31 3.14

20 0.343 0.447 0.662 1.93 2.44 3.50

30 0.344 0.444 0.691 1.92 2.42 3.70

40 0.341 0.448 0.693 1.91 2.44 3.66

50 0.342 0.452 0.718 1.92 2.48 3.78

100 0.341 0.457 0.712 1.92 2.48 3.82

∞ 0.347 0.461 0.743 1.93 2.49 3.86
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overall average into Eq. (3.67) leads to relative averages as a1 ¼ 0:03237 and
a2 ¼ 0:06387. Since both of these are less than 10% significance level, the rainfall
sequence is considered as homogeneous.

In some cases it is possible to obtain homogeneity on the average level, but the
sequence may not be homogeneous with respect to other parameters. In order to
check the homogeneity with respect to any parameter, the relative error procedure is
similar as the average parameter. For instance, in Fig. 3.3, although the given series
is homogeneous with respect to average parameter, but heterogeneity exists so far
as the deviations are concerned, and hence, it needs for standard deviation homo-
geneity checking.

Example Check whether the rainfall sequence in the previous example is homo-
geneous or not?

Solution The standard deviations of the whole and two-half series are
rX ¼ 1:78 cm; r1 ¼ 2:13 cm; and r2 ¼ 1:26 cm. Substitution of these values into
Eq. (3.67) leads to relative error percentages as a1 ¼ 0:1643 and a2 ¼ 0:4084.
Since both of these errors are more than 5 or 10%, the series is not homogeneous
with respect to standard deviation.

It is advised here for better and reasonable results, the series must be divided at
least to three parts and the homogeneity test must be applied on each one through
the use of relative error concept.

3.3.16 t Test

This test is useful in searching for whether the two time series come from the same
population pdf’s. For instance, in order to check whether two time series arithmetic
averages come from the same population, Student’s t-test is employed. If from a
normal distribution pdf different time series of the same length, n, are drawn, their
arithmetic averages are rather different from each other. The frequency distribution
of these arithmetic averages comply by t-distribution for small samples, but as the
sample number increase, it converges to a normal (Gaussian) pdf. Figure 3.4 shows
the shapes of different t-distributions, f(t).

The relative error concept explained in the previous section is attractive for those
who do not care about the pdf and in the case of very small data numbers, but if

Time

Variable

Fig. 3.3 Standard deviation heterogeneity
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sample length is more than 30, the statistical tests must be preferred. If two series
with n1 and n2 data numbers have different arithmetic averages, X1 and X2, then the
use of t-test comes into view. The probability values of a t-distribution are given in
Table 3.10 for different degree of freedom.

The t-test can also be applied to two time series according to the standard
deviation values equality or not as follows.

(1) The same standard deviation case: The test is performed only for the arith-
metic averages. The difference between the two arithmetic averages, X1 � X2,
is not sufficient for identification of whether they are significantly different
from each other. The standard deviations must also play a role in the test. In
order to obtain a dimensionless test statistic, the difference in the arithmetic
averages is divided by the weighted average of the standard deviation by
taking into consideration the data numbers, which leads to,

t ¼ X1 � X2

		 		
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2
n1n2


 �r ; ð3:68Þ

where r is the common standard deviation, which in terms of sample standard
deviations (S1 and S2) given as,

  Standard
normal PDF

df = 

df = 6 df = 3

1.96- 1.96

2.45- 2.45

3.18- 3.18

Fig. 3.4 Different t-distributions
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S2 ¼ n1 � 1ð ÞS21 þ n2 � 1ð ÞS22
n1 þ n2 � 1

ð3:69Þ

This will have the following degree of freedom,

m ¼ n1 þ n2 � 2 ð3:70Þ

With these two last values, if one enters the standard t-distribution table and
obtains the critical t value, tcr at 5 or 10% level. Hence, if t � tcr then on the basis
of arithmetic averages the two time series are indifferent.

(2) Different standard deviations case: The t-test statistics is defined for different r1
and r2 standard deviations of two time series as,

t ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n

þ S22
m

r ; ð3:71Þ

Table 3.10 t-distribution
values

df a = 0.1 a = 0.05 df a = 0.1 a = 0.05

1 6.314 12.706 21 1.721 2.08

2 2.92 4.303 22 1.717 2.074

3 2.353 3.182 23 1.714 2.069

4 2.132 2.776 24 1.711 2.064

5 2.015 2.571 25 1.708 2.06

6 1.943 2.447 26 1.706 2.056

7 1.895 2.365 27 1.703 2.052

8 1.86 2.306 28 1.701 2.048

9 1.833 2.262 29 1.699 2.045

10 1.812 2.228 30 1.697 2.042

11 1.796 2.201 35 1.69 2.03

12 1.782 2.179 40 1.684 2.021

13 1.771 2.16 45 1.68 2.014

14 1.761 2.145 50 1.676 2.009

15 1.753 2.131 60 1.671 2

16 1.746 2.12 70 1.667 1.994

17 1.74 2.11 80 1.664 1.99

18 1.734 2.101 90 1.662 1.987

19 1.729 2.093 100 1.66 1.984

20 1.725 2.086 120 1.658 1.98

/ 1.645 1.96

Note When the degrees of freedom, df, exceeds 30 critical values
are not tabulated for every case
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where n and m are the sample lengths of the time series. The corresponding degree
of freedom is given as,

m ¼ S21
n

þ S22
m

� �
=

S21
�
n

� �2
n� 1

þ S22
�
m

� �
m� 1

" #
ð3:72Þ

The use of the similar procedure with Table 3.10 leads to desired answer. The
distribution and its shape depend on the degrees of freedom (df). The t-distribution
has thicker tails than the normal distribution but as the df increases the t-distribution
approximates the normal distribution. The area under the pdf to the right of t is
equal to a=2 (see Fig. 3.4).

3.3.17 Cramer Test

This test is for the comparison of long-term arithmetic average of a time series with
shorter duration arithmetic averages from the same time series. The test statistic is
given as,

tk ¼ sk n N � 2ð Þ= N � ns2k
� � �1=2 ð3:73Þ

and

sk ¼ Yk � Y

r
; ð3:74Þ

where

Yk ¼ 1
n

Xkþ n

i¼kþ 1

Yi ð3:75Þ

and

Y ¼ 1
N

XN
i¼1

Yi ð3:76Þ

Herein, Y and r are the arithmetic average and the standard deviation of whole
data. However, Yk is the arithmetic average of a sub-length with k data values
within the whole n data number. Theoretical studies indicate that the test statistic in
Eq. (3.73) has a t-distribution with (n − 2) degrees of freedom. In order to depict
any significant difference between the whole and partial arithmetic averages, it is
necessary to make two tailed test.
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3.3.18 F Test

The same question of significance on the basis of standard deviations r1 and r2 of
two time series instead of average values can be tested by Fisher F-test instead of t-
test. In order to understand whether the standard deviations of two time series are
significantly different from each other the variances ratio is defined as,

F ¼ r21
r22

ð3:77Þ

This ratio is calculated such that it is greater than one, i.e., r21 � r22. Theoreti-
cally, the F ratio abides by Fisher (F) pdf, the properties of which are presented in
Fig. 3.5.

(1) There are different F-distributions according to F ratio value and numerator
and denominator degrees of freedom,

(2) Increase in the degrees of freedom of the numerator and denominator leads to
more symmetric F pdf,

(3) For rather big n2 values, the arithmetic average of F-distribution approaches to
one and it is equal exactly to (n2 − 1)/ (n2 − 3).

According to two degrees of freedom defined as m1 = n1 – 1 and m2 = n2 − 1,
the critical F value, Fcr is read from the F-distribution table (Table 3.11) with a
significance level, which is taken in most practical studies as 5% (a = 0.05). If the
F-ratio from Eq. (3.77) is less than the critical F value, then the two time series do
not have significantly different standard deviations. Otherwise, the standard devi-
ation difference is significant.

Area = F(q,df1,df2)

Area = F(p,df1,df2)

Fig. 3.5 F-distributions
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3.3.19 Truncation Test

A given time series, Yi (i = 1, 2, …, n), are truncated by a constant level, Y0, and
hence, multiple data values are reduced to two types, those greater than (Yi > Y0) or
less than (Yi > Y0) the truncation level. The truncation level may be taken statis-
tically as the arithmetic average, mode value, or the median value. For instance, if a
particular value has high frequency of occurrence then the mode value is taken as
truncation. There are also some engineering truncation levels for instance; water
demand can be considered as a truncation level. In the data treatment procedures
unless there is some valid arguments, always the statistical parameters are adapted
as the truncation value. The truncation of a time series in Fig. 3.6 at a given level of
Y0 leads to two linguistic variables as surplus and deficit. This linguistic words may
be plus/minus, yes/no, black/white, hot/cold, dry/wet, empty/full, etc. depending on
the problem at hand.

If the surpluses (deficits) continue successively for a period, this is referred to as
surplus (deficit) spell. The summation of surpluses and deficits is equal to data
number. The number of surplus periods is equal to deficit periods or the difference
between the two is equal to 1. The longer the duration of surplus (deficit) spell the
more is the correlation of successive values within the time series. If the time series
is homogeneous, then the number of surpluses is equal to deficits. In a homoge-
neous time series, the durations are rather small, random and close to each other.
Under the light of all these arguments, if the two time series as in Fig. 3.7 are
compared then the following points can be observed.

If the total number of deficit and surplus period is nds this value should remain
between the following upper and lower limits for the time series to be homogeneous
(Koçak and Şen 1998).

S, surplus
D, deficit

Time

Y

Y0 

Fig. 3.6 SF truncation

Y Y

TimeTime

(a) (b)

Fig. 3.7 Comparative homogeneity analysis
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nupper ¼ 1:104
n

2
þ 2:384;

nlower ¼ 0:931
n

2
� 1:829;

ð3:78Þ

where n is the data number.

3.3.20 Deviations Test

This is also a simple test for deciding whether the time series is homogeneous or not
depending on its serial properties. For a given series Y1, Y2, Y3,…, Yn the deviations
are calculated from the arithmetic average as Y1 � Y , Y2 � Y , Y3 � Y; . . .; Yn � Y .
This is equivalent to saying that the series is truncated at the arithmetic average Y
level. It is possible to calculate the quantities of A = R(Yi)

2 and B = R(Yi − Yi−1),
for i = 1, 2, 3, …, n such than Y ¼ Nn, and finally, the ratio, 2A/B. If the following
expression is valid then the time series is homogeneous.

1�
ffiffiffiffiffiffiffiffi
1=n

p
 �
� 2A=B� 1þ

ffiffiffiffiffiffiffiffi
1=n

p
 �
ð3:79Þ

3.3.21 Subtraction Test

The corresponding values at two time series are subtracted from each other. Hence,
two time series is reduced to a single one, which can be tested by some of the
aforementioned tests. The subtraction test assesses the serial appearance of the
differences. For this purpose, the arithmetic average of the difference time series is
calculated and then subtracted from each one of the difference value. If the result is
positive, it is labeled by S otherwise by D. This yields to a time series including
succession of two symbols as SSSDDDSDSD… DSDSSSSDSDDDDS. This
sequence is then partitioned into two-successive and nonoverlapping pairs as SS,
SD, DD, SD, SD… DS, DS, SS, SD, SD, DD, DS. If the pairs have the same
symbols they are regarded as the same, otherwise they are different. If the number
of the same pairs is A and the different pairs is B, then the difference A − B provides
a quantity, which helps for the decision of the homogeneity of the two time series,
otherwise, when the difference is outside of these two limits, the time series have
heterogeneity.

The test is given as

�
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
�A� B� þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ð3:80Þ
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3.3.22 Şen Autorun Test

It is generally accepted that if a time series is dependent the high values tend to
follow high values and the low values tend to follow low values. This statement
implies a dependent series in which periods of wet and dry spells tend to be greater
than that in the case of an independent series. Such a property is termed “persis-
tence.” There are various attempts to measure “persistence” mainly by three pro-
cedures, namely, autocorrelation function, spectral analysis, and rescaled-range
analysis (Chap. 2). Wet and dry spells are directly related to run properties in
statistics as explained by various researchers (Parzen 1960; Feller 1968) and in
hydrology (Yevjevich 1967; Saldarriga and Yevjevich 1979; Şen 1976).

Autocorrelation analysis is a means of measuring linear dependence between any
two series. As stated by Feller (1968), it is by no means a general measure of
dependence because it involves all the assumptions stated in Chap. 2. The
rescaled-range analysis which was introduced into hydrology by Hurst (1951,
1956), has the advantage of being comparatively more robust than any other
technique, and it is not very sensitive to the marginal pdf (Chap. 2).

The autorun coefficient has already been presented by Şen (1978) based on the
median value and then it is generalized to other exceedance probability levels
(0 < p < 1).

Joint and conditional probabilities are also measures of dependence. A joint
probability is equal to the multiplication of a conditional probability by a marginal
probability (Feller 1968). In particular, if Yi and Yi−k are two dependent events with
joint probability, P (Yi, Yi−k), their conditional probability is denoted by P (Yi/Yi−k).
Herein, k is referred to as the lag and indicates the time difference between the two
events provided that P (Yi−k) is the marginal probability of event Yi−k. The prob-
ability statement between these two probabilities is,

P Yi; Yi�kð Þ ¼ P Yi=Yi�kð ÞP Yi�kð Þ ð3:81Þ

Furthermore, the conditional probability is defined by Şen (1976) as the autorun
coefficient, r = P (Yi/ Yi−k), and hence, the Eq. (3.81) yields,

rk ¼ PðYi�k; YiÞ
PðYiÞ ð3:82Þ

If a time series is truncated at an arbitrary constant level, Y0, and then Eq. (3.82)
can be defined in terms of probabilities as,

rk ¼ PðYi�k [ Y0 ; Yi [ Y0Þ
PðY [ Y0Þ ð3:83Þ

A special case is defined by Şen (1978) for the median, m, truncation level for
which P (Yi > Y0) = 0.5, which is the exceedance probability. The non-exceedance
probability is q = 1 − p. Generally, rk, definition becomes,
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rk ¼ PðYi�k [ Y0; Yi [ Y0Þ
p

ð3:84Þ

An estimate, r̂k, of rk can simply be proposed by considering Eq. (3.84) together
with the classical definition of probability in textbooks. The probability, P(Yi), is
found by counting the total number, nx, of occurrences, exceedances in the autorun
case, and consequently, one can define simply,

P Yi [ Y0ð Þ ¼ nx
n

ð3:85Þ

In the case of a joint event (Yi > Y0, Yi−k > Y0), in a sequence of n observations,
n − k possible alternatives exist for two observations at lag-k apart. If the number of
joint events in a given sequence of length n is nk, then from Eq. (3.85) one can
obtain,

PðYi [ Y0;Yi�k [ Y0Þ ¼ nk
n� k

ð3:86Þ

The substitution of which into Eq. (3.81) leads to the small sample estimate of rk
as,

r̂k ¼ nk
pðn� kÞ ð3:87Þ

The numerator is an integer random variable, whereas the denominator is a fixed
value for given n, k, and p. The random characteristics of r̂k can be obtained directly
from the characteristics of random variable, nk. For instance, if the expected value
E(nk) and the variance V(nk), of nk are known, then the expectation and variance of
r̂k could be evaluated, respectively, as,

Eðr̂kÞ ¼ EðnkÞ
pðn� kÞ ð3:88Þ

and

Vðr̂kÞ ¼ VðnkÞ
pqðn� kÞ2 ð3:89Þ

On the basis of the frequency interpretation of the probability, the estimate r̂k can
be calculated by successive execution of the following steps:

(a) The exceedance probability, p, and its corresponding truncation level Y0 is
calculated from a given time series Y1, Y2, …, Yn,

(b) The series is truncated at the level of x0 giving rise to sequences of surpluses
(Yi > Y0) and deficits (Yi � Y0),
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(c) The number, nk, of overlapping successive surplus pairs (observations lag-
k apart) are counted,

(d) The estimate of rk is then calculated from Eq. (3.89).

These four steps are distribution-free. If the length of time series is very large
then r̂k becomes,

rk ¼ lim
n!1

2nk
n� k

¼ 2PðYi [m; Yi�k [mÞ ð3:90Þ

Contrary to the autocorrelation analysis, the autorun analysis does not distort the
dependence structure of the sequence considered. The autorun coefficients are easier
to calculate than the autocorrelation coefficients. Furthermore, autorun analysis is
directly related to run properties, which play an effective role in various engineering
problems such as droughts, floods, reservoir operation, etc. Extensive simulation
studies using a first-order Markov process are carried out and the autorun function
is calculated according to Eq. (3.87). The simulation graphs are presented in
Fig. 3.8 for q = 0.9. It is possible to obtain many autorun functions each for dif-
ferent truncation level, Y0, but only one autocorrelation function exists.

Each one of the autorun functions starts from r0 = 1 at lag zero and become
asymptotic (large lags) to the exceedance probabilities. The decrease in the autorun
function by lag appears according to an exponential function, and hence, it is
possible to relate the autorun function to the exceedance probability and lag-k as,

rk ¼ 1� 1� pð Þe�pk ð3:91Þ
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Fig. 3.8 Autorun coefficient variations with lag
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3.3.23 Seasonal Kendall Test

Most of the natural phenomena show strong seasonal patterns. For instance, there
are seasonal variations in temperature, evaporation, and precipitation records. In
time series records seasonal component occupy significant portion. Seasonal rise
and fall of temperature imply cooling and heating seasonality in energy demand.

The seasonality can be accounted by two hybrid procedures as the seasonal
Kendall test for residuals from a simple linear regression analysis of Y versus X and
the given data can be deseasonalized by subtracting seasonal means or medians
from all the data within the same season (Chap. 2). The deseasonalized data is then
regressed against time (Montgomery and Reckhow 1984).

First, Mann–Kendall procedure is applied to each season and then each season
results are combined together. The seasonal Kendall test is weakly powerful but
robust. The statistic, Sk, of this procedure is equal to the summation of the Si value
obtained from ith season.

Sk ¼
Xm
i¼1

Si; ð3:92Þ

where m is the number of seasons. If the product of the number of seasons, m, and
number of years, n, m � n is greater than 30, the pdf of Sk has approximate normal
pdf and it is negative for a declining trend, (Gilbert 1987). An estimate of the trend
slope for Y over time can be computed as the median of all slopes between data
pairs within the same season using a generalized version of the Sen’s slope esti-
mator (Sect. 3.3.8).

The seasonal Kendall test is a nonparametric method, which depicts seasonality
on the basis of the MK test (Sect. 3.3.8). In practical applications most often the
seasonality is concerned in the monthly or three-monthly (January–February–
March, April–May–June, July–August–September, and October–November–
December) epochs. Kendall’s S statistic Si for each season i is summed over all
seasons to form the overall test statistic Sk.

The slope of trend in each season is calculated by the Sen’s slope, which is the
median annual slope of all possible pairs of values in each season. For instance, if
for January the slope is sought and two different years’ January parameter (median)
n-year apart is considered. The slope is equal to the difference between the two
values divided by n. A meaningful and statistically significant Kendall test has more
than 1% of the median value.

In many natural time series, there is embedded seasonal effect either due to
natural or man-made impacts. Hence, there is a strong seasonal variation in the time
series. It is necessary to depend on the definition of seasonality prior to any trend
procedure application. In practice frequently monthly or 3-monthly (quarterly
block) seasonality is employed.

The cyclic (seasonal) variations can be described by combination of sine and
cosine functions in the form of Fourier series as a form of parametric multiple
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regression models with a trend component, which has the simplest mathematical
form as,

Yt ¼ aþ b sin
2pt
n

� �
þ c cos

2pt
n

� �
dtþ e; ð3:93Þ

where n is the number of data per year (52 for weekly data, 12 for monthly data, 4
for seasonal data, 2 for 6-monthly data). The trend can be identified, if the
parameter d is significantly different from zero.

3.4 Unit Root Model Trend Determination

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests are helpful as null hypothesis
whether a given time series is stationary around a linear trend, which implies that
the time series is “trend-stationary” and the alternative hypothesis unit root. In the
KPSS test, the absence of a unit root is not a proof of stationarity but of
trend-stationary. It is possible for a time series to be nonstationary without unit root
yet be trend-stationary. In both unit root and trend-stationary processes, the mean
can grow or decrease over time. However, in the presence of a random component,
trend-stationary processes are mean-reverting, while unit-root processes have a
permanent impact on the mean (i.e., no convergence over time).

KPSS-type tests are intended to complement unit root tests, such as the Dickey–
Fuller (DF) tests. By testing both the unit root hypothesis and the stationarity
hypothesis, one can distinguish series that appear to be stationary, series that have a
unit root, and series for which the data (or the tests) are not sufficiently informative
to be sure whether they are stationary or integrated.

Many economic and financial time series exhibit trending behavior or nonsta-
tionarity in the mean (see Chap. 8). Leading examples are asset prices, exchange
rates and the levels of macro-economic aggregates like real GDP. An important
econometric task is determination of the most appropriate trend form in the time
series. For example, in autoregressive moving average (ARMA) modeling, the time
series must be transformed to a stationary form prior to analysis. If the time series
are trending, then some form of trend removal is required.

Two common trend removal or de-trending procedures are first differencing and
time-trend regression. First differencing is appropriate for I(1) time series and
time-trend regression is appropriate for trend-stationary I(0) time series. Unit root
tests can be used to determine, if trending time series should be first differenced or
regressed on deterministic functions of time to render the time series stationary.
Moreover, economic and finance theories often suggest the existence of long-run
equilibrium relationships among nonstationary time series variables. If these vari-
ables are I(1), then co-integration techniques can be used to model these long-run
relations. A common trading strategy in finance involves exploiting mean-reverting
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behavior among the prices of assets pairs. Unit root tests can be used to determine,
which pairs of assets appear to exhibit mean-reverting behavior.

The core of the following explanations is available at the Warsaw School of
Economics (Syczewska 2010). Kwiatkowski–Phillips—Schmidt–Shin (KPSS) test
that is introduced in 1992 is the test for time series stationarity versus alternative of
unit root. Unit root tests started with classic DF test, and later on several refine-
ments such as Perron-type tests have as a null hypothesis presence of unit root in
the series with the alternative hypothesis of stationarity. The KPSS test differs from
the majority of tests used for checking integration in that its null hypothesis of
stationarity is a simple hypothesis.

3.4.1 Integration and Dickey–Fuller (DF) Test

Let a given time series record has a generation process as first-order AutoRegres-
sive, AR(1) structure, which is also referred to as the first-order Markov process,
and it is widely used in many branches of different disciplines.

Yt ¼ UYt�1 þ et; ð3:94Þ

where is a stationary disturbance term or autocorrelation coefficient and et is inde-
pendent stationary random variable. If U = 1 characteristic equation of the process in
Eq. (3.94) has a unit root then the process is nonstationarity. As long as et is stationarity
first differences of Yt are stationary. The series Yt is integration of the first order, I(1).
Provided thatU < 1, Yt time series is stationary in the sense that it is integrated of order
zero, I(0). Integration order of Yt determines its properties (Mills 1993).

In case of I(0) the time series, t, has the following statistical properties, which are
common reflections of stationarity.

(1) The standard deviation of the time series is time independent and constant,
(2) The residual (random variable), et affects the series in a sequence of random

shocks,
(3) Expected time duration between zero crossings has a finite value,
(4) The autocorrelation function diminishes with increasing lag and the summa-

tion of the correlation coefficients attains to a constant value.

On the other hand, if the time series is integrated of order one, I(1), then it will
reflect the following features.

(1) The standard deviation of the time series tends to infinity with time,
(2) The residual, i.e., random shock independent variable, et, effects on Yt at each

time instance, as the summation of all the previous random variables (shocks),
(3) Expected time duration between consecutive crossing points on Y = 0 line is

an infinite number,
(4) The autocorrelation coefficient tends to infinity with increasing lags.
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The aforementioned features have impacts on macro-economic time series
records. These features should be taken into consideration in the construction of any
econometric model.

The DF test (Dickey and Fuller 1979, 1981) is the null hypothesis that in a
model, which is represented by Eq. (3.94) model for d = U − 1 as follows,

Dyt ¼ dYt�1 þ et ð3:95Þ

In case of d = 0 the time series, Yt, is Brownian process with accumulation of
random shocks. Alternative hypothesis as d < 0 implies that the variable is
stationary.

The test statistics is computed as, t ¼ d̂=r̂d similar to the Student’s t-ratio but
with different pdf. In order to make a decision, a critical value is necessary at a
chosen significance level. If the test statistic exceeds a critical value then the null
hypothesis cannot be rejected about presence of unit root in a series. However, if
test statistics is smaller than the critical value, then null hypothesis is rejected in
favor of time series stationarity. In general, disturbance terms in Eq. (3.95) are
correlated and in the augmented DF test, this correlation is taken into consideration
by including lagged values of Yt differences on the right-hand side of Eq. (3.95).
One can also include a constant as follows.

Yt ¼ a0 þU Yt�1 þ et ð3:96Þ

On the other hand, in case of a stationary time series with a linear trend around
the mean, the formulation takes the following form.

yt ¼ a0 þ f tþU yt�1 þ et ð3:97Þ

If Uj j\1 then the time series is stationary around the linear trend, otherwise for
a = 1 there is a unit root (a = 1) in the time series, which is nonstationary.

3.4.2 The Kwiatkowski, Phillips, Schmidt, and Shin Test

Kwiatkowski et al. (1992) suggested a test, shortly KPSS test, with a null
hypothesis of stationarity time series around either mean or a linear trend against the
alternative hypothesis with the assumption that a time series is nonstationary due to
presence of a unit root. The difference of this test from the previous one is that the
null hypothesis assumes presence of a unit root.

In this test, time series record is represented as a sum of three distinctive
components, namely, deterministic trend, ft, a random walk, rt, and a stationary
error term, et.
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Yt ¼ f tþ rt þ et
rt ¼ rt�1 þ ut

ð3:98Þ

where f is the slope of trend, ut is another error (random) term with zero mean andbr2
u similar to et. In Eq. (3.98), r0 is a constant value corresponding to the intercept

of time series.
In case that the variance, br2

u, is greater than zero, then time series has nonsta-
tionary behavior (as sum of a trend and random walk), as a result of a unit root.
Subtracting from both sides of the first line in Eq. (3.5) one can obtain,

Dyt ¼ fþ ut þDet ¼ bþwt; ð3:99Þ

where wt is generated by AR(1) process as wt = mt + Umt−1 (Kwiatkowski et al.
1992). Finally, the KPSS test may be expressed as,

Yt ¼ fþ b Yt�1 þwt

wt ¼ mt þ hmt�1; b ¼ 1
ð3:100Þ

This equation provides an interesting relationship between KPSS test and DF
test. The DF test checks for b = 1 on the assumption that h = 0; where h is a
nuisance parameter. However, Kwiatkowski et al. (1992) assume that b is a nui-
sance parameter and test whether h = −1, assuming that b = 0. They also introduce
one-side Lagrange Multiplier test of null hypothesis r2u ¼ 0 with assumption of a
normal pdf and et as identically distributed independent random variables with zero
expected value and a constant variance, r2e . After all what have been explained
above the KPSS test application steps are given along the following points.

(1) A null hypothesis test of stationarity around a linear trend versus alternative
hypothesis of a unit root presence.

Let et, denote estimated errors from a regression on a constant. Let estimate of
variance be equal to a sum of error squares divided by number of observations, n.
The partial sums of errors should be calculated as,

St ¼
Xt

i¼1

ei ðt ¼ 1; . . .; nÞ ð3:101Þ

This leads to the definition of the LM test statistic as,

LM ¼
Pn

t¼1 S
2
t

r2e
ð3:102Þ
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(2) A null hypothesis test of stationarity around mean, versus alternative
hypothesis of a unit root presence.

The estimated errors, et, are computed as residuals of regression of Yt on a
constant (et ¼ Yt � Y) the rest of definitions are unchanged.

Asymptotic properties of the statistic is based on assumption that et have certain
regularity properties defined by Phillips and Perron (1988, p. 336). The long-run
variance is,

r2 ¼ lim
E S2T
� �
n

� �
ð3:103Þ

The consistent estimate of the long-run variance is the following formula as
(Kwiatkowski et al. 1992),

s2 kð Þ ¼ 1
n

Xn
t¼1

e2t þ
2
n

Xk
j¼1

w j; kð Þ
Xn

t¼sþ 1

et et�1; ð3:104Þ

where w(j, k) denote weights depending on a choice of spectral window. The
authors use the Bartlett window, i.e., wðj; kÞ ¼ 1� j=ðkþ 1Þ, which ensures non-
negativity. They argue that for quarterly data lag k = 8 is the best choice (if k < 8,
test is distorted, if k > 8, power decreases) (Kwiatkowski et al. 1992). The KPSS
test statistic is computed as a ratio of sum of squared partial sums, and estimate of
long-term variance,

bg ¼ 1
n2

Xn
t¼1

S2t
s2 kð Þ ð3:105Þ

Symbols bgl and bgs denote respectively the KPSS statistic for testing stationarity
around mean and around a trend.

Asymptotic distribution of the KPSS test statistic is nonstandard; it converges to
aBrownian bridges of higher order (Kwiatkowski et al. 1992, p. 161). The bgl
statistic for testing stationarity around mean converges to,

bgl !
Z1

0

V2 rð Þ dr; ð3:106Þ

where V(r) = W(r) − rW(r) denotes a standard Brownian bridge defined for a
standard Wiener process W(r), and goes to weak convergence of probability
measures.
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The KPSS test statistic bgs for stationarity around trend, i.e., for n 6¼ 0, weakly
converges to a second order Brownian bridge, V2(r), is defined as (Kwiatkowski
et al. 1992),

V2 rð Þ2¼ WðrÞþ ð2r � 3r2ÞWð1Þþ �6rþ 6r2
� � Z1

0

W sð Þds ð3:107Þ

The statistic weakly converges to a limit,

bgs !
Z1

0

V2
2 rð Þ dr ð3:108Þ

The KPSS test is performed in a following way. One can test null hypothesis
about stationarity around mean or around trend, against alternative hypothesis of
nonstationarity of a time series due to a unit root presence. It is possible to compute
value of a test statistic, bgl or bgs, respectively. If computed value is greater than
critical value, the null hypothesis of stationarity is rejected at given level of
significance.

3.4.3 Critical Values of the KPSS Test

In the original Kwiatkowski et al. (1992) paper the results of Monte Carlo simu-
lation concerning size and power of the KPSS test and asymptotic properties of the
test statistics are obtained with use of Eqs. (3.107) and (3.108). Hence, there is a
need of computing critical values for finite sample size.

Monte Carlo simulation experiments are carried out for computation of KPSS
test critical values based on the definition Eq. (3.107) for Gauss PDF independent
process generation.

Data generating process used for simulation corresponds to the models in
Eqs. (3.103) and (3.104). Number of lags is equal to 8. The model has the following
form.

Yt ¼ f tþ r0 þ et

and two versions for n = 0 model has a constant only, and for n 6¼ 0 constant and a
linear trend. The test statistic is computed for k = 8 from Eq. (3.102) as,

LM ¼
Pn

t¼1 S
2
t

s2 8ð Þ ;
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where, similar to Eq. (3.104) is given as

s2 8ð Þ ¼ 1
T

Xn
t¼1

e2t þ
2
T

X8
j¼1

w j; 8ð Þ
Xn

t¼sþ 1

et et�j

Sample size is set at 15, 20, 25, 30, 40, 50 60, 70, 80, 90, and 100. Number of
replication equals 50,000 and the result of the computed KPSS test statistic are
given in Table 3.12.

3.4.4 Empirical Power of the KPSS

A set of simulation experiments is carried out for checking the power of the KPSS
test. Sample sizes are set at n = 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100, with
10,000 replications. A random walk with nonzero variance is generated for the
alternative of the KPSS test, i.e., nonstationarity of a time series due to a unit root
presence. As explained earlier the error term variance equal to zero corresponds to a
stationarity null hypothesis. Earlier experiments have shown that particular value of
variance, as long as it is nonzero, have little effect on the results. It is assumed that
variance takes three values: 0 (as a benchmark), 0.5, 1.0, and 1.5. Hence, time series
generation process has the following form as,

Yt ¼ f tþ rt þ et;

rt ¼ rt�1 þ ut;

where et are disturbances terms, and ut is independent identically distributed ran-
dom variable according to a normal pdf. These two random variables are also
mutually independent.

The experiments are performed for two versions, namely, with and without
linear trend. In former case n = 0.1, but in the latter case n = 0. Test statistics
values are compared with the critical values and the results are shown in
Table 3.13.

Table 3.14 shows the results of checking whether the value of r̂2u chosen in
simulation has an effect on the empirical power of the KPSS test. The regression is
run of a rejection percentage on two variables with r̂2u ¼ 0:0; 0:1; 0:2; . . .; 1:4f g and
a 2 {0.95, 0.90, 0.50, 0.1}. The choice of r̂2u does not influence the empirical power
of the test for a model with a linear trend.

Table 3.15 presents computation results of the empirical KPSS test power for
25, 30, 40, 50, …, 90, 100 observations. In the DGP, the variance takes the values,
0 (as a benchmark; this corresponds to a null of stationarity); 0.1, 0.2, … 1.4.
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Table 3.12 Critical values
of the KPSS test statistics for
50,000 replications

a Without trend Linear trend

Sample size = 15

0.990 0.48313288 0.41433477

0.975 0.45183890 0.38740080

0.950 0.42608752 0.36435597

0.900 0.39875209 0.34151076

0.500 0.31307493 0.27000041

0.100 0.24775830 0.22441514

0.050 0.23429514 0.21764786

0.025 0.22542106 0.21314635

0.010 0.21814408 0.20935949

Sample size = 20

0.990 0.42612535 0.32710900

0.975 0.40672348 0.30130862

0.950 0.38874144 0.27736290

0.900 0.36425871 0.25185147

0.500 0.25352270 0.18687704

0.100 0.17868235 0.16048566

0.050 0.16906971 0.15720065

0.025 0.13643788 0.15498356

0.010 0.15862807 0.15314154

Sample size = 25

0.990 0.42646756 0.25070640

0.975 0.40531466 0.22643507

0.950 0.38197871 0.20925595

0.900 0.35089080 0.19228778

0.500 0.21829452 0.15145480

0.100 0.14634008 0.12768145

0.050 0.13698973 0.12327038

0.025 0.13060574 0.12031411

0.010 0.12464071 0.11733054

Sample size = 30

0.990 0.44132930 0.200256350

0.975 0.41341759 0.182619190

0.950 0.38597981 0.170824210

0.900 0.34684355 0.159814950

0.500 0.19372352 0.130842290

0.100 0.12651386 0.107294630

0.050 0.11659583 0.102870090

0.025 0.10982029 0.099837474

0.010 0.10324302 0096860084
(continued)
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Table 3.12 (continued) a Without trend Linear trend

Sample size = 40

0.990 0.475156690 0.160712240

0.975 0.433931310 0.153045430

0.950 0.395416130 0.145912950

0.900 0.344645180 0.137426680

0.500 0.169521970 0.105376760

0.100 0.102161600 0.084344769

0.050 0.093148798 0.079845616

0.025 0.086938805 0.076609429

0.010 0.081393647 0.073462161

Sample size = 60

0.990 0.528078950 0.162823760

0.975 0.468351880 0.150524540

0.950 0.412710640 0.139364470

0.900 0.345339490 0.125373750

0.500 0.150605630 0.083937329

0.100 0.080174225 0.062058256

0.050 0.071325513 0.058300785

0.025 0.065485408 0.055667655

0.010 0.060465037 0.052867329

Sample size = 70

0.990 0.549813740 0.165354940

0.975 0.480306630 0.151748190

0.950 0.417638110 0.138643110

0.900 0.344672600 0.123379830

0.500 0.144216790 0.078741199

0.100 0.074349269 0.056075523

0.050 0.065356429 0.052371944

0.025 0.059376144 0.049654444

0.010 0.054097437 0.046988381

Sample size = 80

0.990 0.569931730 0.171982270

0.975 0.493300620 0.154278010

0.950 0.424566150 0.139022010

0.900 0.346647950 0.121706290

0.500 0.141357440 0.075160709

0.100 0.069921053 0.051766687

0.050 0.060900214 0.047949210

0.025 0.054953008 0.045218561

0.010 0.049560220 0.042535417
(continued)

120 3 Statistical Trend Tests



3.4.5 Example: Comparison of the DF and KPSS Tests
for Several Macro-Economic Time Series

Rao (1995) explains that Dickey et al. (1991) show results concerning integration
and co-integration of several macro-economic variables. The data set consists of
quarterly observations, starting in first quarter of 1953 and ending in the last quarter
of 1988, hence, it covers 36 years with 144 measurements. As usual, testing of
integration is an introductory step leading to/co-integration relationship estimation.
It was performed with use of the DF test with three augmentations.

The testing is repeated for integration using DF test, and applied the KPSS test to
the same data set, with use of Gaussian PDF.

The results for the DF test are given in Table 3.16. They are in perfect agreement
with original results of Dickey (1991), where the null hypothesis of a unit root
estimation cannot be rejected.

In Table 3.16 the symbol # means that computed value of the KPSS test statistic
is greater than critical value for 100 observations.

3.4.5.1 Test of Stationarity Around Mean
For all variables computed KPSS test statistic is greater than the critical value.
Hence, the null hypothesis of stationarity around mean is rejected.

Table 3.12 (continued) a Without trend Linear trend

Sample size = 90

0.990 0.587101070 0.175304920

0.975 0.505673320 0.156321150

0.950 0.429490220 0.139885170

0.900 0.344908300 0.121399040

0.500 0.139052120 0.072447229

0.100 0.067168859 0.048548798

0.050 0.057816010 0.044612097

0.025 0.051877068 0.041908084

0.010 0.046780441 0.039386823

Sample size = 100

0.990 0.594603380 0.177754650

0.975 0.510372830 0.157183470

0.950 0.431164860 0.139652320

0.900 0.343732070 0.120403750

0.500 0.135927460 0.070300302

0.100 0.064217752 0.045987879

0.050 0.055225906 0.042096564

0.025 0.049190208 0.039409235

0.010 0.043797820 0.036908227
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Table 3.13 The empirical power of the KPSS test

Variance Significance level

0.99 0.95 0.90 0.10 0.05 0.01

A. Results for model without trend

The tested null hypothesis is of level stationarity

Sample size = 80

0.0 0.00850 0.04900 0.09710 0.89570 0.94740 0.99050

0.1 0.01090 0.05100 0.09890 0.90010 0.94900 0.98890

0.2 0.01060 0.05440 0.10530 0.90410 0.95200 0.99030

0.3 0.00980 0.04710 0.09900 0.89800 0.95000 0.99040

0.4 0.01030 0.04760 0.09980 0.90220 0.95170 0.99000

0.5 0.01090 0.05050 0.10010 0.89960 0.95000 0.99000

0.6 0.01050 0.04970 0.09770 0.89900 0.95060 0.99230

0.7 0.01050 0.04930 0.09810 0.89900 0.94560 0.98940

0.8 0.01200 0.04970 0.09630 0.90280 0.95020 0.99050

0.9 0.00930 0.04780 0.09750 0.90510 0.95080 0.99030

1.0 0.08700 0.04820 0.09800 0.89690 0.94880 0.99140

1.1 0.00780 0.04850 0.09910 0.90380 0.95290 0.99100

1.2 0.00890 0.04690 0.09680 0.90190 0.95220 0.99000

1.3 0.00960 0.04610 0.09500 0.89630 0.94850 0.99210

1.4 0.01130 0.04860 0.09580 0.89610 0.94700 0.98940

Sample size = 90

0.0 0.00890 0.05060 0.10100 0.89820 0.94910 0.98850

0.1 0.00910 0.04920 0.10110 0.89980 0.94960 0.99070

0.2 0.01200 0.04730 0.09770 0.90270 0.95180 0.99130

0.3 0.01100 0.05180 0.09800 0.90460 0.95370 0.99020

0.4 0.01090 0.05110 0.10230 0.89470 0.94580 0.98940

0.5 0.00960 0.04760 0.09890 0.89760 0.95130 0.99080

0.6 0.00960 0.04740 0.09800 0.90050 0.95370 0.99160

0.7 0.01020 0.04770 0.10340 0.89730 0.94860 0.98930

0.8 0.00990 0.04930 0.09940 0.90080 0.94760 0.98880

0.9 0.00970 0.04650 0.09830 0.89780 0.94720 0.98840

1.0 0.00850 0.04580 0.09850 0.89650 0.94760 0.99100

1.1 0.00910 0.04660 0.09860 0.89680 0.94840 0.98910

1.2 0.01100 0.04830 0.10180 0.90040 0.95150 0.99090

1.3 0.01090 0.04760 0.09450 0.89830 0.94660 0.98830

1.4 0.00730 0.04690 0.09910 0.89640 0.94940 0.98900

Sample size = 100

0.0 0.00960 0.04880 0.10480 0.90180 0.95040 0.99160

0.1 0.01050 0.04890 0.09820 0.90420 0.95170 0.99020

0.2 0.00950 0.05190 0.10550 0.89960 0.94860 0.99040

0.3 0.01260 0.05310 0.10560 0.90580 0.95360 0.99060
(continued)
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Table 3.13 (continued)

Variance Significance level

0.99 0.95 0.90 0.10 0.05 0.01

0.4 0.01060 0.05310 0.10170 0.90810 0.95380 0.99250

0.5 0.00940 0.05000 0.09970 0.89960 0.94960 0.99100

0.6 0.01030 0.04760 0.10010 0.90620 0.95080 0.99120

0.7 0.00850 0.08600 0.09990 0.899930 0.94840 0.99020

0.8 0.01020 0.04780 0.09950 089340 0.94730 0.99040

0.9 0.01170 0.04980 0.10120 090150 0.95240 0.98930

1.0 0.00900 0.04530 0.09410 0.90330 0.95260 0.99120

1.1 0.01010 0.05000 0.10160 0.89680 0.94880 0.98970

1.2 0.00990 0.04860 0.09520 0.90170 0.94810 0.98870

1.3 0.00950 0.04970 0.09970 0.89060 0.94560 0.99040

1.4 0.01130 0.05220 0.10060 0.90070 0.94830 0.99000

B. Results for model with linear trend

The tested null hypothesis is of stationarity around linear trend

Sample size = 80

0.0 0.01020 0.04790 0.09780 0.89440 0.94720 0.99040

0.1 0.00890 0.05220 0.10610 0.89910 0.94910 0.99080

0.2 0.01000 0.04930 0.09960 0.90100 0.95150 0.99030

0.3 0.0960 0.04800 0.09710 0.90220 0.95310 0.98990

0.4 0.01130 0.05260 0.09940 0.90330 0.94910 0.98860

0.5 0.00990 0.5050 0.10160 0.90340 0.95260 0.99050

0.6 0.00930 0.05100 0.10310 0.89920 0.94920 0.99030

0.7 0.01120 0.05240 0.10010 0.89430 0.94680 0.98810

0.8 0.00850 0.04800 0.09970 0.89930 0.94980 0.99180

0.9 0.01090 0.05190 0.10340 0.89910 0.94700 0.99120

1.0 0.00940 0.04940 0.09720 0.90050 0.95170 0.99020

1.1 0.00960 0.05350 0.10340 0.90190 0.95070 0.98920

1.2 0.00960 0.05070 0.10390 0.89810 0.94970 0.98970

1.3 0.00830 0.04810 0.09490 0.90000 0.95260 0.99040

1.4 0.00860 0.04860 0.09730 0.89830 0.94790 0.99070

Sample size = 90

0.0 0.00910 0.04930 0.09630 0.90010 0.95180 0.99080

0.1 0.00940 0.05090 0.09800 0.89990 0.95210 0.99020

0.2 0.00850 0.05020 0.09980 0.89390 0.94740 0.98890

0.3 0.00870 0.04720 0.09700 0.89960 0.94960 0.98960

0.4 0.00860 0.04740 0.09980 0.90020 0.95240 0.99030

0.5 0.01020 0.05020 0.10280 0.89870 0.94940 0.98880

0.6 0.00940 0.04640 0.09770 0.89910 0.95180 0.99040

0.7 0.00920 0.05030 0.10120 0.90380 0.95090 0.99000

0.8 0.00920 0.05170 0.10620 0.89830 0.95030 0.99120
(continued)
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3.4.5.2 Test of Stationarity Around a Linear Trend
Only for real money category M1/P and rates of return from 10 Year Government
bonds the null of stationarity around a trend cannot be rejected. For all other
variables this hypothesis is rejected.

Rao (1995) and Dickey et al. (1991) conclude that both the DF test and the
KPSS test give similar results. They stated that all variables can be modeled with
use of AR model with trend, for money and rate of return from bonds coefficient of
autoregression was smaller than 1, and all other variables have a unit root.

3.5 Parametric Tests

There are several parametric tests in the literature and the most famous one is the
classical linear and multiple regression analyses.

Table 3.13 (continued)

Variance Significance level

0.99 0.95 0.90 0.10 0.05 0.01

0.9 0.01060 0.04790 0.09860 0.89720 0.94430 0.98850

1.0 0.00950 0.05000 0.10070 0.89820 0.95080 0.98950

1.1 0.01060 0.04930 0.10050 0.89940 0.94890 0.98980

1.2 0.01020 0.05210 010230 0.90090 0.94820 0.98920

1.3 0.01010 0.04470 0.09410 0.89860 0.94850 0.98860

1.4 0.00980 0.04860 0.10040 0.90110 0.95190 0.99090

Sample size = 100

0.0 0.00920 0.04970 0.09870 0.89550 0.94960 0.98960

0.1 0.00880 0.04500 0.09830 0.89470 0.94770 0.98770

0.2 0.00690 0.04890 0.09940 0.90070 0.94990 0.98880

0.3 0.00920 0.05200 0.09970 0.90410 095130 0.99030

0.4 0.00850 0.05070 0.10360 0.89930 0.94790 0.98730

0.5 0.01000 0.04530 0.09580 0.90140 0.94910 0.98940

0.6 0.00940 0.05180 010170 0.90060 0.94910 0.98780

0.7 0.01150 0.05170 0.09980 089440 0.94560 0.98910

0.8 0.00920 0.05250 0.10340 0.90580 0.95070 0.98980

0.9 0.01060 0.04950 0.09730 0.89820 0.94920 0.98860

1.0 0.01250 0.05540 010640 0.90600 0.95450 0.98960

1.1 0.00870 0.04780 0.09920 0.90200 0.95060 0.98890

1.2 0.00980 0.05130 0.09950 0.89640 0.94650 0.98770

1.3 0.01100 0.05300 0.10000 0.89970 0.95010 0.99040

1.4 0.00980 0.05190 0.10170 090190 0.95090 0.98960
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Table 3.15 The results of the Dickey–Fuller test for macroeconomic variables

Ml/P Real money Ml

M2/P Real money, M2

MB/P Real monetary base

NM1M2/P Part of M2 category outside Ml, real teams

K Proportion of cash to checkable deposits

KSA Proportion of cash to checkable deposits, seasonally adjusted

R3M Nominal percentage rate for 3-month treasury Bills

R10Y Nominal returns from 10-year government securities

RGNP Real GNP

Variable Model with a
constant

Model with a constant and
a linear trend

Variable Model with a
constant

K −0.5490 −2.332 DK −4.223

M2/P −0.8040 −4.737 DM2=P −10.15

Ml/P −0.8001 −1.542 DM1=P −3.639

MP/P 0.4109 −2.624 DMB=P −3.048

RGNP −0.4672 −2.412 DRGNP −6.233

R3M −2.324 −3.743 DR3M −6.346

R10Y −1.874 −2.447 DR10Y −5.590

NM1M2/P −2.156 −1.447 DNM1M2=P −4.029

Table 3.14 Effect of choice of r̂2u value on empirical power of test r̂2u

Model without trend Sample size 80 Sample size 90 Sample size 100

a The value of r̂2u in this regression is

0.99 Significant Significant Insignificant

0.95 Significant Significant Insignificant

0.90 Significant Insignificant Significant

0.10 Insignificant Significant Significant

0.05 Insignificant Insignificant Significant

0.01 Insignificant Insignificant Significant

Model with a linear
trend

80 observations 90 observations 100 observations

a The value of r̂2u in this regression is

0.99 Insignificant Significant Significant

0.95 Insignificant Insignificant Significant

0.90 Insignificant Insignificant Insignificant

0.10 Insignificant Insignificant Insignificant

0.05 Insignificant Significant Insignificant

0.01 Insignificant Insignificant Insignificant

Source Own computations
1. For a fixed significance level a of the KPSS test compute its empirical power for different
sample sizes and values of r̂2u
2. Run a regression of empirical power on sample size and value of r̂2u
3. Check significance of in this regression r̂2u
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3.5.1 Regression Analysis

This statistical methodology provides the most reliable relationship between inde-
pendent, Y, and dependent, X, or even among a single dependent and a set of
independent variables, which is then referred to as a multiple regression method.
A bivariate relationship has already been presented in Chap.1 by Eq. (1.2) with
uncertainty component. Chapter 4 presents detailed procedure for trend identifi-
cation in a given time series by bivariate regression analysis, where independent
variable is time, t, and dependent variable is any variable in the form of time series.

A trend in a given time series can be distinguished mathematically and separated
from the whole time series. The mathematical forms of the trends are either a
straight-line or low-order polynomial. The graphical representation of a time series
with an increasing trend component is shown in Fig. 3.9.

The mathematical expression of such a trend is a function of time according to
the following equation,

Y ¼ aþ bt ð3:109Þ

The classical regression methodology end has to pass through the centroid, i.e.,
arithmetic average values of the two variables (Y ; t) which leads to,

Y ¼ aþ b t ð3:110Þ

The second expression can be found after multiplying both sides of Eq. (3.109)
by the independent t variable and then taking the arithmetic average of both sides
will give,

Table 3.16 The KPSS test
statistics for the same
variables

Variable Test with a constant Test with a trend

K 1.385# 0.2334#

M2 P 1.677# 0.2139#

Ml P 0.5210# 0.1382

RGNP 1.686# 0.2623#

R3M 1.380# 0.1717#

R10Y 1.543# 0.1338

NM1M2/P 1.651# 0.3835#

Variable,Y 

Y = a + bt

Time, t

Fig. 3.9 Linear trend
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Yt ¼ a tþ b t2 ð3:111Þ

It is possible to find a and b parameters by a common solution of these two
equation. Table 3.17 shows all the necessary calculation steps in column forms. In
the first two columns are the time series values of Y and corresponding times,
t. Other columns are opened according the requirements of Eq. (3.111). The last
row in the two columns includes the arithmetic averages of them.

It is possible to prepare similar table for any nonlinear regression models in
Chap. 2 similar to Eq. (3.111).

3.5.2 Regression Line Assumptions

Formally, it is possible to apply the classical least squares estimation of a and b,
which lead to regression estimations, where the regression coefficient is equivalent
with the first-order serial correlation coefficient. The application of regression
approach has six restrictive assumptions as for the parameter estimations.

(1) Linearity: Regression technique fits a straight-line trend through a scatter of
data points, and correlation analysis test for the “goodness-of-fit” of this line.
Clearly, if the trend cannot be represented by a straight-line, regression
analysis will not portray it accurately. The unrestricted model below does not
require such a restriction, since it is concerned with the variances and arith-
metic averages only. In the case of a definite trend, cross-correlation is nec-
essary and it brings the linearity restriction by definition.

(2) Normality: It is widely assumed that use of the linear regression model
requires that the variables have normal pdf. The requirement is not that the raw
data be normally distributed, but the conditional distribution of the residuals
should have normal pdf. It is necessary to test if the data have normal pdf. The
annual time series have normal pdf, whereas the monthly or seasonal variables
have skewed pdf’s, and hence, as abide with logarithmic normal, gamma,
Weibull, etc. pdf’s.

Table 3.17 Trend
calculation table

Time (ti) Data (Yi) ti
2 Yiti

t1 X1 t1
2 X1t1

t2 X2 t2
2 X2t2

t3 X3 t1
2 X3t3

. . . .

. . . .

. . . .

tn Yn tn
2 Yntn

�t �Y t2 Yt
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(3) Means of conditional distributions: For every value of time series the mean
of the differences between the measurement and prediction values obtained by
Eq. (3.110) must be zero. If it is not, the coefficients of the regression equation
(a and b) are biased estimates. The implication of major departure from this
assumption is that there is a nonlinear trend in the scatter diagram.

(4) Homoscedascity: This means equal variances in the conditional distributions
and it is an important assumption. If it is not satisfied then the regression
equation coefficients (a and b) may be severely biased. In order to test for
homoscedascity, the data must be subdivided into three or more nonoverlap-
ping parts and the variance of each group is calculated. If there is a significant
difference between any of these variances then the data does not have
homoscedascity.

(5) Autocorrelation: The crux of this assumption is that the value of each
observation on the independent time series is independent of all others within
the series, so that one cannot predict the value of Yi at time i, if one knows Yi−1
value at time, i − 1. There are two interpretations as to the importance of this
assumption, one is substantively logical and the other is statistically logical.
The statistical interpretation of autocorrelation relates to the linearity
assumption.

(6) Lack of measurement error: This assumption requires the time series mea-
surements are without error. If this is not the case, and the magnitude of the
error is not known, then the coefficients of the regression equation may be
biased to an extent that cannot be estimated.

3.5.3 Goodness of Fit (R2) for Regression

After the regression parameter estimations the goodness of the regression should
depend simply on the square of deviations of the data values from the corre-
sponding theoretical regression line. Figure 3.10 indicates regression data scatter
with nonlinear regression line and deviations.

* *    Data
Regression line,

*   
*

* *

* *

Y 

t

Fig. 3.10 Regression line
components
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If the data points lie on the regression line without any deviation then the
arithmetic mean and the standard deviation of the original data and the regression
data sets corresponding to independent variable, t, are exactly the same. Figure 3.10
indicates that there are deviations from the data set, and therefore, although the
arithmetic average of the original and regression data sets may be the same, but
variances are different. The variance, Vdata, of original data set is always greater
than the regression data set variance, Vregr, i.e., Vdata > Vregr. Vregr is referred to also
the explained variance, and hence, unexplained variance is Vuexp = Vdata − Vregr. In
case of complete explanation Vdata = Vregr, which means that Vregr/Vdata = 1. This is
never possible in natural time series, and therefore, the goodness-of-fit quantity, R2,
is defined as follows.

R2 ¼ 1:0� Vregr

Vdata
ð3:112Þ

R2 is referred to as the coefficient of determination in the statistics literature. Its
value falls in between 0.0 and 1.0, without any unit. The more the R2 value, the
better is the regression curve fitting.

3.5.4 Cumulative Sum (CUSUM) Method

This is a graphical approach for step change identifications in a given time series. It
does not require any prior hypothesis or assumption about the occurrence times of
the changes, but includes simple plotting with advantages. For instance, any change
in slope is identified by the CUSUM graph, and this is comparatively very simple
than conventional approaches. Simply the CUSUM variable, Cj, for the jth data
value is the summation of deviations from the long term arithmetic average, µ, or
the one calculated from the given time series, Y as,

Cj ¼
Xj

i¼1

Yi � Y
� � ð3:113Þ

This can be rendered into a dimensionless form after dividing it by the standard
error of estimation, re, as,

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yi � Yi�1ð Þ2
2 n� 1ð Þ

s
; ð3:114Þ

where n is the sample length. Hence, the standardized CUSUM, CjS, is,

CjS ¼ Cj

re
ð3:115Þ
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The plot of CjS versus j leads to the CUSUM graph and the vertical difference
between the maximum and the minimum values in this graph yields the range, R, and
in cases ofR > 10 a significant statistical change comes into view (see Fig. 2.25). The
shape of the CUSUM graph indicates whether there is a trend in the data.

(1) A straight-line indicates no trend (Fig. 3.11a),
(2) An abrupt change in slope indicates a step change in the variable (Fig. 3.11b),
(3) A downwards parabola indicates an increasing linear trend (Fig. 3.11c),
(4) An upwards parabola indicates a decreasing linear trend (Fig. 3.11d).
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4Temporal Trend Analysis

Abstract
There are various regression analyses in the literature concerning temporal trend
analysis in a classical manner, which have their application domains in various
contexts. Among these are the statistical conventional regression methodologies
as explained to a certain extent in the previous chapter, unrestricted regression,
and partial regression, and cluster regression methodologies. Detailed explana-
tory information is presented for each one of these methodologies explaining the
basic requirements for their applications. In the meantime, there are some new
concepts such as the trend polygons that are applicable for distinction between
different time intervals such as months and associated trend components during
transition from one time step to another.

Keywords
Cluster � Partial polygon � Regression � Temporal � Trend � Unrestricted

4.1 General

Trend identification in time series data is one of the major tasks for long-term
changes and their impacts on various human activities including natural, social,
economic, agricultural, climate, and engineering management systems. Practically,
simple trend identifications are achieved by moving average procedure, which
smooths fluctuations around a trend or periodicity component even without any
mathematical expression for the trend. Theoretically, Mann–Kendall (MK) trend
test is applied to a given time series for possible trend existence with subsequent
application of Sen’s slope mode calculation and then, through the classical
regression analysis trend identification is achieved (Chap. 3). These methodologies
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exploit the whole time series and do not make any categorical distinction, say,
among “low”, “medium” and “high” values in search of partial trends, but they are
more for monotonic trend determination. This section suggests temporal trend
analysis where trends are sought with respect to some baseline either within the
same time series or between two or more records. The former is referred to as
serial-trend and the latter is cross-trend identifications.

Natural phenomena evolve by time and the main question is whether they are
free of trend or there are time intervals during which increasing (decreasing) trends
take place. It is serially possible, to compare the present-day conditions with respect
to some previous nonoverlapping intervals (Şen 2010). For instance, one may
compare a set of recent years’ serial summer (annual, decadal) climatic situation
with another previous years’ serial summer (annual, decadal) climate appearance
each after in ascending sorting. The last sentence implies that “low” (“medium”,
“high”) values are comparable with “low” (“medium”, “high”) values. A given time
series can be considered in terms of subseries and they can be compared with each
other so as to appreciate whether an increasing (or decreasing) trend takes place in
recent time period compared to previous periods. In such comparisons, human does
not think about the absolute sequential appearances within each subseries but with
their orders. In the statistical sense, order irrelevance leads one to think about
nonparametric methodology, which constitutes the basis of the serial- and
cross-trend identification procedures in this chapter. Such a procedure is not con-
cerned with absolute time but its reasoning is based on relativistic bases, where one
subseries is compared with respect to another subperiod of the same time series for
the trend assessments. Consideration of subseries leads to better and finer inter-
pretations, suggestions, and conclusions about the trends of various durations.

Nonparametric Mann–Kendall (Mann 1945; Kendall 1975) statistical test has
been used for the last several decades in search for trends in past time series records
to understand the environmental changes such as water pollution, climate change,
and global warming (Chap. 3). Man–Kendall (MK) test assumes that the time series
has independent serial structure, since dependence (positive serial correlation
structure) may lead to trend detections in the absence of trends. Although a
pre-whitening procedure application is proposed prior to MK test application for
rendering the original series into independent series (von Storch 1995), it has been
shown by Douglas et al. (2000) that such a pre-whitening may lead to trend
detection that is less than the original series. A detailed account of pre-whitening
procedure prior to trend detection has been presented by Yue and Wang (2002).
They concluded that pre-whitening is not suitable for estimating the effects of serial
correlation on the MK test when trend exists within a time series. Various simu-
lation studies have been proposed for pre-whitening, but still one cannot be certain
about the trend identification precision (Bayazit and Önöz 2007). Block bootstrap
MK is a modified form of the MK test devised for serially correlated samples. Its
Type I and Type II errors are investigated by a simulation study. It is found that the
rejection rate of the hypothesis of no trend approaches the nominal significance
level if the block length of bootstrap samples is chosen properly depending upon
the sample size and lag-one autocorrelation coefficient (Önöz and Bayazit 2012).
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Although the classical temporal trend tests have been useful and can be applied
in the future, they can be criticized because of the following deficiencies:

(1) They search for temporal monotonic trend component mostly in holistic and
monotonic manners without any distinction between “low”, “medium” and
high values. Additionally, one is not able to determine the subsection duration
to compare it with the same length desirable duration at some other part of the
given time series,

(2) The search is in the absolute time domain, which takes into account real-time
sequence of the series, and hence, the serial correlation coefficient becomes
important,

(3) The correlation structure of given time series is either assumed independent so
that the classical trend tests can be applicable or rendered into an independent
serial structure through pre-whitening procedure. However, the pre-whitening
procedure disturbs the original structure of the time series.

The study by Yue et al. (2002) searched for the power of MK and Spearman rho
tests through Monte Carlo simulations and found that the power of these tests
depends on the preassigned significance level, trend magnitude, sample size, and
the serial correlation of a time series. The bigger the absolute magnitude of trend,
the more powerful is these tests at large sample sizes provided that the serial
autocorrelation is negligibly small. Fatichi et al. (2009) mentioned about any
increase in uncertainty when pronounced stochastic behaviors are present in the
data.

The main purpose of this chapter is to present classical methodologies that are
used for identification of temporal trends with applications and interpretations.
Subsequently, pre-whitening and over-whitening procedures are explained for the
satisfaction of the basic assumption of independence in a given time series so as to
be able to apply the MK test.

4.2 Visual Inspection

It is advised in this section that prior to any theoretical methodology application for
trend detection in a time series, one should plot the time series and then try to
explore with necked eyes whether there may be trend embedded into the data
structure. For this purpose, several replicates are presented in Fig. 4.1. The reader
may look at them carefully and try to identify any trend component visually as
much as possible. This will give him/her confidence experience and insight gain
qualitatively for trend identification.

Trend analyst should evaluate his/her data qualitatively by different visual in-
spections as for the graphical presentations of the time series at hand, its internal
(serial) structure as correlation, periodicities, visibility of possible trends and
according to all the inspection then she/he can decide on a single or the two most
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convenient statistical trend analyses methodologies that are suitable for the quali-
tative characteristics of the records. In an efficient time series, the sample size must
be long enough, statistically at least 30 data records and preferably as long as
possible, without gaps or with few gaps, consistent data measurements (without
depreciation or change of the instrument except with calibration). In cases of
monthly data, it is advised to have 10-year of records.
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Fig. 4.1 Trend possibility time series
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Most often trend analysis implies a single, unidirectional, and gradual change of
monotonic component within given time series irrespective of partial or step
changes. Depending on the type of project, environment impacts, and treatment one
can sense possible trend expectation. It is advised that trend analyst should also
consult other experts and even the local people who are concerned or affected by the
trend causal effects. These qualitative knowledge and information, prior to trend
methodology application, are very precious, especially, for the identification of step
and partial trends. For instance, when abrupt changes, as in Fig. 4.1c, are within the
time series then either partial trend identification methodology or step trend
methods can be employed (Chap. 8).

It is not recommended that one should indulge in trend analysis without pre-
liminary visual and exploratory inspection of the circumstances at the time series
record locations, because such searches pave way to preliminary trend indications
and provide strategy for proper and convenient trend analyses. During this
inspection, the necessary conditions of assumption satisfactions must be searched,
and especially, the probability distribution function (pdf) type as normality
(Gaussian), variance constancy (homoscedasticity), and serial independence cases
must be evaluated in an effective manner. If necessary, convenient transformations
(pre-whitening, over-whitening, logarithmic, square root, or cubic root) should be
applied.

4.3 Monotonic Trend Analysis

There are well-established methodologies for identification of monotonic trends
with reliability provided that the basic assumptions are satisfied completely or to a
significant extent. It is known that the statistical trend analysis is equivalent to
hypothesis testing by null and alternative hypotheses. The null hypothesis is valid in
case of no trend existence and it can be checked through different parametric tests
concerning each method. If the null hypothesis is rejected, then one understands
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that there is trend component in the given time series, but it does not yield the type
of trend in increasing or decreasing direction, which needs additional method for its
mathematical determination.

Monotonic trend analysis methodologies are either nonparametric, parametric, or
mixture of the two. Although parametric tests are the most powerful alternatives,
they need satisfaction of the basic assumptions that are rather difficult to encounter
in natural time series. Especially, small sample sizes are the major problems in the
methodological applications. The first gateway for the application of the parametric
methods is that the time series should have normal (Gaussian) pdf. Parametric and
nonparametric tests require that the time series has independent serial structure and
homoscedasticity (constant variance). When the normality, constancy of variance,
and serial independence assumptions are valid then the parametric method of
regression line fitting becomes preferable application for trend identification. On the
other hand, nonparametric methods are preferable in cases that the pdf of time series
is nonnormal, existence of data gaps, and robustness against outliers.

Among the parametric methodologies in addition to the regression analysis are
multiple linear regression, periodic functions, and others. Nonparametric methods
are Mann–Kendall (MK), seasonal Kendall, and others. Among these techniques
classically the most widely applied ones are the linear regression, MK, and seasonal
Kendal procedures (Chap. 3).

Multiple linear regression method accounts for the effects of different variables
on a responsive variable. It includes especially covariates in trend analysis in a
single monotonic unidirectional manner. The simplest form of such a model has the
following mathematical structure:

Y ¼ aþ btþ cXþ e; ð4:1Þ

where Y is the dependent variable, X is the independent variable, t is time, u is the
random variable, and finally a, b, and c are linear trend model parameters. In this
expression, the null hypothesis, H0, for trend analysis is that b = 0 and the
t-statistics test can be used. On the other hand, if c is not significantly different from
zero, then the simple regression technique becomes applicable, because there is no
effect of independent variable, X, on the dependent variable, Y. The best trend line
implies that the residuals (error terms) are serially independent, has constant vari-
ance, and they have normal (Gaussian) pdf.

4.4 Scatter Diagrams and Regression Model

If the question is the search for the type of relationship between two variables, the
practical answer can be given by plotting the corresponding values of two time
series against each other on a Cartesian coordinate system. Consequently, the two
time series data values give rise to scatter points as presented in Fig. 4.2, which
provides visual inspection, preliminary feeling, and consideration of the
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relationship type between two variables. Such coordinate systems with data points
are referred to as the scatter diagram in the statistics terminology.

Comparison of the scatter diagram with the functional relationships either in
Fig. 4.3 or in any mathematics textbook visually provides the first opinion about the
type of deterministic relation form (mathematical function), which shows the
general trend between the two time series values.

The simplest of the possible relationships is the straight-line form, and it is
frequently used in different disciplines.

Y ¼ aþ bX ð4:2Þ

This model is referred to as the simple regression, since X is regressed on Y. In any
actual prediction model, there is more than one predictor, but the ideas for simple
linear regression can be generalized easily to multiple linear regression. The rep-
resentation of Eq. (4.2) on a Cartesian coordinate system yields to a straight line in
the mathematical sense, but scatter of points in the statistical sense, where each one
of these points is associated with the data pairs (Xi, Yi) for n data pairs (i = 1, 2, …,
n). The relative position of the straight line must be determined in such a way that the
summation of squared-deviation of each point from this straight line is the most
possible smallest. Herein, the deviation is synonymously used as the error. As shown
in Fig. 4.2, these deviations from the straight line may be decided as the horizontal,
vertical, or perpendicular distances. However, in practical studies most often sum of
vertical deviation squares are minimized to fix the regression line through the scatter
diagram. The choice of the sum of the squared-error criteria is convenient not only
that it is necessarily for the best model, but also it is mathematically tractable for the
differentiations. The scatter diagrams are very significant for the identification of
functional relationship between the variables. In any functional relationship such as
in Eq. (4.2), there are parameters such as a and b. Herein, the Y variable (predictand)
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Fig. 4.2 Scatter diagram
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is predicted from X predictor variable. After the decision of visual best relationship
form, it is important to determine or estimate the model parameters from the
available time series data values. The principle in the estimation is that the error
(between any predicted, Ŷi and measured, Yi) sum squares value is the minimum.
The parameters are dependent on the time series data, which can be expressed
implicitly as

a ¼ f1 X; Yð Þ ð4:3Þ

and
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b ¼ f2 X; Yð Þ ð4:4Þ

Finally, the whole question is now how to obtain the explicit formulation of the
model parameters. For this purpose, the regression procedure is used which will be
explained in the following sequel.

4.5 Linear Regression Model

In this section, only straight-line model is considered. The regression method is
about the search procedure for the explicit expressions of Eqs. (4.3) and (4.4). In
order to grasp the question conceptually, let Eq. (4.2) be written for the i-th data
pairs as,

Yi ¼ aþ bXi ð4:5Þ

In Fig. 4.4, different straight-line forms are shown for different sets of model
parameters.

In Fig. 4.4a there is quite steep slope. This implies that b parameter in Eq. (4.4)
has a big positive value. In this manner, increase in X causes increase in Y. How-
ever, in Fig. 4.4b the situation is just the opposite and increase in X value gives rise
to decrease in Y. Hence, b parameter expresses the slope of the straight line, and it is
represented geometrically in Fig. 4.4d. For some b distance along the X axis, the
corresponding vertical distance on the Y axis is a, and hence, the slope can be
expressed as

b ¼ a
b

ð4:6Þ

α
β

a
b = α/β

X X X

X

Y Y

Y

Y
(a) (b) (c)

(d)

Fig. 4.4 Straight lines for different parameter sets
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If b = 1, then the a value on the Y axis gives directly the slope of the straight line
which is equal to b. This parameter is called as the regression coefficient. By
definition, it is the change in dependent Y variable corresponding to each unit
increment in X independent variable. In Fig. 4.4c, a corresponds to the ordinate of
intercept point on the Y axis. Up to now, the regression parameters (a and b) are
explained in a mathematical manner completely independent of time series data. It
is already stated that these parameters should be determined such that the sum of
deviations, i.e., error squares is minimum (Chap. 3).

4.5.1 Statistical Procedure

The straight-line parameters are estimated from the best model fitting through the
scatter diagram shown in Fig. 4.5a. This means that the fitted straight line must be
“close as much as possible” to overall scatter points. The statement “as much as
possible” implies that the variance of the points from the straight line must have its
minimum value. In general, in any classical straight-line model fitting, the devia-
tions are adopted as the vertical errors that are parallel to Y axis as shown in
Fig. 4.5a. Hence, the minimization of the total sum of error squares based on n data
points can be expressed mathematically as,

Min
Xn
i¼1

Ŷi � Y
� �2

; ð4:7Þ

where Ŷi shows the predicted Y value on the straight line corresponding to i-th
independent data, Xi. The expression in Eq. (4.7) is known as the least square

Fig. 4.5 Various deviations
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procedure in the regression methodology. The main subject in any regression
procedure is the relationship between the variances of dependent and independent
variables (Yi and Xi). With this information, let us concentrate on various Yi and Xi

points in Fig. 4.5. For better understanding, after the arithmetic averages, X and Y
of the two variables, the contributions, u, v, s, and t deviations of points 1 and 2 to
the overall variances, namely, SX

2 and SY
2 are shown in Fig. 4.5a.

In Fig. 4.5a, the contribution from point 1 to SX
2 and SY

2 are u2 and v2, respec-
tively. In this manner, points 1 and 2 contributes significantly to variances SX

2 and SY
2

because of their comparatively far away locations from the arithmetic averages X
and Y whereas point 3 has very little contribution. In order to commonly account
for these contributions collectively, it is necessary to develop the concept of
covariance. In general, covariance is defined as the average value of products of
deviations from the averages. Hence,

Cov X; Yð Þ ¼ 1
n

Xn
i¼1

Xi � X
� �

Yi � Y
� � ð4:8Þ

For instance, in Fig. 4.5a, the covariance contributions of points 1 and 2 are,

X1 � X
� �

Y1 � Y
� � ¼ uv

X2 � X
� �

Y21 � Y
� � ¼ ts

respectively. For these two points from Eq. (4.8), the covariance can be
expressed as,

Cov X; Yð Þ ¼ 0:5 uvþ tsð Þ

In Fig. 4.5b, c and d, the regression line slope appears as the ratio between this
covariance and the variance, SX

2, of independent variable as,

b ¼ CovðX; YÞ
S2X

ð4:9Þ

It is obvious from Fig. 4.5 that the overall regression line crosses through the
weight point X; Y

� �
of all Xi and Yi data. With this information at hand, the intercept

point ordinate of the straight line on the Y axis, the parameter aYX can be easily
calculated leading to,

Y ¼ aþ bX ð4:10Þ

and

a ¼ Y � bX ð4:11Þ
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The regression parameters must be found on the basis of “the least sum of error
squares”. For this purpose, the basic straight line can be rewritten for the i-th data
point by taking into consideration the error term hi as,

Yi ¼ aþ bXi þ ei ð4:12Þ

Hence, the error for i-th data value becomes as,

ei ¼ Yi � ðaþ bXiÞ ð4:13Þ

Furthermore, the error square is,

e2i ¼ Yi � ðaþ bXiÞ½ �2 ð4:14Þ

Finally, the sum of error squares over all the available data becomes,

HT ¼
Xn
i¼1

e2i ¼
Xn
i¼1

Yi � ðaþ bXiÞ½ �2 ð4:15Þ

In order to minimize this expression, mathematically, it is necessary to take the
partial derivatives with respect to unknowns (herein the unknowns are a and b) and
then equated to zero as follows:

@HT

@aYX
¼

Xn
i¼1

2 Yi � ðaþ bXiÞ½ �ð�1Þ ¼ 0 ð4:16Þ

and

@HT

@bYX
¼

Xn
i¼1

2 Yi � ðaþ bXiÞ½ �ð�XiÞ ¼ 0

and after the simplification,

Xn
i¼1

Yi ¼ naþ b
Xn
i¼1

Xi

and

Xn
i¼1

YiXi ¼ a
Xn
i¼1

Xi þ b
Xn
i¼1

X2
i

Division of these equations by the number of data, n, leads to expressions that
can be written in terms of arithmetic averages as,
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Y ¼ aþ bX ð4:17Þ

and

YX ¼ aXþ bX2 ð4:18Þ

It is obvious that Eq. (4.17) is equivalent to previously obtained Eq. (4.10) and
on the other hand, substitution of a from Eq. (4.17) into Eq. (4.18) leads after the
necessary algebraic manipulations to,

b ¼ YX � XX

X2 � X
2 ð4:19Þ

which should have the similar interpretation with Eq. (4.8).

4.6 Unrestricted Regression Model

It has been suggested by Şen (2001) that since there are two parameters in a linear
regression model, two conditions are sufficient for their estimations from a given set
of data. Without any procedural restrictive assumptions first the average and then
the variance of both sides in Eq. (4.10) lead to

Y ¼ a0 þ b0X ð4:20Þ

and

Var Y
� � ¼ b02Var X

� �
; ð4:21Þ

where a′ and b′ are defined as the intercept and slope parameters of a restricted
regression equation, respectively. Herein, for distinction unrestrictive model
parameters are shown as a′ and b′, respectively. These two equations are the basis
for conservation of the arithmetic mean and variances of dependent and indepen-
dent data. The basic equation remains unchanged whether restrictive or unrestrictive
model is used. Equation (4.20) implies that in both models, the centroid, i.e.,
averages are equally preserved. Furthermore, another implication from this state-
ment is that both models yield close estimations around the centroid. The deviations
between the two model estimations appear at independent and dependent time
series values away from the arithmetic averages. The simultaneous solution of
Eqs. (4.20) and (4.21) yields parameter estimates as

b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Y

� �
Var X

� �
s

ð4:22Þ
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and

a0 ¼ Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Y

� �
Var X

� �
s

Xð Þ ð4:23Þ

Physically, variations in the dependent variable data are always smaller than the
independent variable data, and consequently, Var X

� ��Var Y
� �

. Under the light of
Eq. (4.22) always 0 � b′ � 1. Furthermore, Eq. (4.22) is a special case of
Eq. (4.21) when rhs = 1. The same is valid between Eqs. (4.22) and (4.23). In fact,
from these explanations, it is clear that all the restrictive assumptions bias effects are
represented globally in rhs which does not appear in the unrestrictive model
parameter estimations.

Mathematically, the second term in Eq. (4.23) is always smaller than the first
one and hence a′ is always positive. The following relationships are valid between
the restrictive and unrestrictive model parameters:

b0 ¼ b

rhs
ð4:24Þ

and

a0 ¼ a

rhs
� 1� 1

rhs

� �
Y
� � ð4:25Þ

These theoretical relationships between the parameters of the two models imply
the following points. Since b and b′ are the slopes of the straight lines, the restricted
equation slope is smaller than the unrestricted approach (b < b′) according to
Eq. (4.24) since always rhs > 0 for the dependent and independent data scatter on a
Cartesian coordinate system (see Fig. 7.1). It has already been said above that the
two methods coincide practically around the centroid. This further indicates under
the light of the previous statement that unrestricted model yields overestimates
compared to the restricted estimations for dependent data greater than the average
value but underestimation of dependent (4.25) shows that a′ > a. Furthermore, the
summation of model parameters is

a0 þ b0 ¼ aþ b

rhs
� 1� 1

rhs

� �
Y ð4:26Þ

These last expressions indicate that the two approaches are completely equiva-
lent to each other only for rhs = 1. Otherwise, unrestricted model parameter esti-
mations are greater than the corresponding restricted regression coefficients.
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4.6.1 Application

The determination of the parameters in Eq. (4.20) by means of unrestricted re-
gression approach parameter estimations are represented for three global radiation
estimations for Istanbul and Ankara, Turkey, stations. In the classical regression
methodology as explained in the previous section, the data must abide by normal
pdf, which is not the case for global solar irradiation records, and therefore,
unrestricted regression approach is used for parameter estimations. The frequency
distribution functions are overwhelmingly positively skewed. However, normality
in the frequency distribution function implies validity of the regression coefficient
in the classical least squares technique. In normal or nearly normally distributed
date cases, there are minor differences between the estimates of the classical and
unrestricted regression approaches. The smaller is the scatter around a straight line,
the smaller the difference between the two methods parameter estimations. In
natural events, the smaller the averaging time period (smaller than year as hours,
days, weeks, months, seasons) the more the deviation from normality. Equa-
tion (4.20) parameter estimations by the classical least squares technique remain in
bias. Parameter estimations according to restricted and unrestricted models are
given in Table 4.1.

In Fig. 4.6 the two Angström straight lines obtained separately from the unre-
stricted and classical regression approaches are presented for Ankara station. It is
noticed that both straight lines pass through the centroid X; Y

� �
of the scatter

diagram.

Table 4.1 Regression and
unrestricted method parameter
estimations

Station name Restricted Unrestricted

a b a′ b′

Ankara 0.311 0.323 0.376 0.355

Istanbul 0.295 0.354 0.273 0.393

Fig. 4.6 Straight lines by the classical (restricted) and unrestricted regression methods
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4.7 Partial Regression Method (PRM)

This model is a refinement of classical regression model as has been used by many
researchers. Equation (4.20) is a dimensionless expression where parameters a and
b are the regression line intercept with the Y axis and the slope of the straight line.
Provided that simultaneous data on Y and X are available, a and b model parameters
can be determined by use of the statistical regression approach. However, such an
approach has the following some drawbacks:

(1) Since the whole data are processed the overall Y and X data averages are used
in the parameter estimations.

(2) For both variables global variances are used without considering the variance
variation (homoscedasticity) in the variation domain of Y or X.

(3) Once parameters a and b are estimated from the data, their substituted into
Eq. (4.20) is for prediction of Y value without considering the variation range
of this estimate. At best that can be done is to attach the upper and lower
confidence limits to the prediction but it will again be dependent on the global
variance.

The PRM method overcomes these drawbacks with more flexible and realistic
dependent variable prediction. Although the same amount and type of data are
necessary for the application of PRM approach similar to other regression methods,
the former is more dynamic by taking into account the variation ranges that are
likely to occur in the arithmetic average and variance values. In such a manner, the
constancy of the variance in the classical regression method is avoided and better
predictions with different confidence limits can be obtained according to the value
of predictant. The PRM provides dependent variable predictions on the basis of
partial averages and variances, and in this manner the variabilities in the data
parameters are taken into consideration.

For instance, Fig. 4.7 shows the scatter diagram of an independent variable, X,
versus Y. It is obvious that there are some outliers especially in the lower part of the
scatter diagram, and they are eliminated from further consideration. The scatter
diagram does not have uniform variance (homoscedasticity).

Y= -0.4232X2 + 5.2531X + 4.1387
R2 = 0.222
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Fig. 4.7 Scatter diagram
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Hence, the classical regression technique with its variance constancy assumption
cannot be valid for the modeling of relationship between dependent and indepen-
dent variables. It is, therefore, necessary to search for a new model and this justifies
the suggestion of PRM.

For better explanation of this model, it is necessary to subdivide the variation
domain of the independent variable into nonoverlapping adjacent partial divisions
as shown in Fig. 4.8.

Selection of small number of subinterval, DX, will average the data into coarse
intervals with loss of information, and on the other hand, big interval number will
get the procedure closer to the classical regression case and one should be then
forced to assume that the variance is constant. Provided that the maximum and
minimum data values are XM and Xm, respectively, then with n number of subdi-
visions the subclass length, DX can be expressed as,

DX ¼ XM � Xmð Þ=n ð4:27Þ

Accordingly the limits of each subdivisions are from the lowest subdivision, Xm

to Xm + DX; the second one is from Xm + DX and Xm + 2DX; and, finally the last
subdivision limits is from Xm + (n − 1)DX to XM. It is possible to arrange this in a
table form as in Table 4.2.

In this table, the summation of points in each subdivision is equal to the number
of available data. It is also necessary that the mean of the subdivision means is
equal to the overall mean value of the variable concerned. The representative value
of subdivision is taken as the midpoint of each subdivision. For instance, the third
subinterval has m3 as the average of the subinterval lower and upper limits.

m3 ¼ ðXm þ 2DXþXm þ 3DX Þ=2
¼ Xm þ 2:5DX

ð4:28Þ

Hence, in general the representative of r-th subinterval is

Y = -0.054X3 + 0.052X2 + 4.065X + 5.065
R2 = 0.736
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Fig. 4.8 PRM procedure
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mr ¼ Xm þ r=2ð ÞDX ð4:29Þ

The corresponding dependent variable average for this subinterval Zr (r =
1, …, n) will be the average value of all the data points that fall within this
subdivision as,

Zr ¼ 1=nrð Þ
X

Yi; ð4:30Þ

where nr is the number of data within the r-th subdivision. The calculations for
Figs. 4.7 and 4.8 data are given in Table 4.3.

Table 4.2 Subdivision characteristics

Number Subdivision

Lower limit Upper limit New dependent
variable

Number of data Mean Variance

1 Xm Xm + X Z1 n1 m1 V1

2 Xm + DX Xm + 2DX Z2 n2 m2 V2

3 Xm + 2DX Xm + 3DX Z3 n3 m3 V3

… … … … … … …

… … … … … … …

n − 1 Xm + (n – 2)DX Xm + (n – 1)DX Zn−1 mn−1 mn−1 Vn−1

n Xm + (n – 1)DX Xm X Zn mn mn Vn

Table 4.3 PRM data presentation

No. X Y Relative error
(%)Class

intervals
Interval
mid-points

Average Std.
dev.

Prediction

1 0–0.692 0.35 8 6.53 6.48 17.70

2 0.692–1.38 1.04 8 6.72 9.28 11.83

3 1.384–2.08 1.73 10 7.26 11.98 12.62

4 2.08–2.77 2.42 14 7.69 14.45 0.19

5 2.77–3.46 3.11 17 9.21 16.61 2.27

6 3.46–4.15 3.81 17 11.24 18.33 4.95

7 4.15–4.84 4.50 23 12.35 19.52 16.57

8 4.84–5.54 5.19 18 15.63 20.06 9.47

9 5.54–6.23 5.88 21 10.25 19.85 5.26

10 6.23–6.92 6.57 20 – 18.79 7.23

11 6.92–7.61 7.27 11 – 16.76 36.52

12 7.61–8.30 7.96 17 – 13.65 19.68

Average 12.02
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4.8 Cluster Regression and Markov Chain

In all the previous regression approaches, the dependence between successive data
values are not taken into consideration serially, but an overall trend function is fitted
to the available data at hand. Also the trend line is searched among two variables
such as the time and the variable evolution values along time. Sometimes, there are
trends and/or sudden jumps within the successive values of the variable concerned.
As explained in Chap. 2, the lag-one or multi-lag apart from scatter diagram of the
same variable appears as a straight line, which is already referred to as the corre-
lation coefficient of that lag, but it does not give the internal trend component within
the time series. It is well-known that either serial or cross-correlation coefficient is
valid for stationary time series intact of trend component.

In order to explain the cluster regression approach, monthly water-level fluctu-
ation records in the Van Lake in the eastern province of Turkey are taken into
consideration as shown in Fig. 4.9. Lake Van has been subject to a net water level
rise of about 2 m and consequently the low-lying, inundated areas along the shore
are now giving problems to local administrators, governmental officials, and irri-
gation activities and to people’s property (Kadıoğlu et al. 1997).

Whatever the causes might be, there has been a systematic increase in the water
level of Lake Van. In the following subsection level changes will be modeled by
means of a simple approach based on the combination of regression line and
transition probability methods, which are the two basic components of the cluster
regression methodology. The regression analysis is adopted because it furnishes the
basis of the short-term persistence through an autocorrelation coefficient and
probability, due to its suitability for clustering of points as a result of possible
abrupt shifts.

Fig. 4.9 Lake Van water
level fluctuations
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4.8.1 Cluster Regression Model

Classical regression analysis has several assumptions about the normality and
independence of the residuals. Furthermore, an implied assumption that skips from
the considerations in most regression line applications is that the scatter diagram
should have the points distributed uniformly (homoscedascity) around a line.
Unfortunately, this assumption is often overlooked, especially if the scatter diagram
is not plotted. Uniform scatter of the points along the line is possible if the original
records are homogeneous and stationary with no shifts, trends, or seasonality
(Chaps. 2 and 3). If level shifts exist through time, then the scatter diagram will
include clusters of points along the regression line. Confirmation of such clusters is
obvious in Fig. 4.10, which shows the lake-level lag-one scatter diagram for
monthly records from Lake Van.

The following conclusions are possible from interpretation of the scatter diagram
in this figure

(1) The lag-one scatter diagram indicates an overall straight-line relationship
between the successive lake-level occurrences. Existence of such a straight
line corresponds to the first-order autocorrelation coefficient in the monthly
lake-level time series. Hence, lake-level persistence is preserved by this
straight line,

(2) The scatter of points around the straight line is confined within a narrow band,
which implies that the prediction of immediate future levels cannot be very
different from the current level provided that there are no shifts in the data,

(3) There are different cluster regions along the straight line. Such clusters are not
expected in the classical regression approach but the existence of these clusters

Fig. 4.10 Lag-one water
level fluctuations and cluster
boundaries
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renders the classical regression analysis into a cluster regression analysis, the
basis of which will be presented later in this section. Separate clusters cor-
respond to periods of shifted lake level,

(4) Classical regression analysis provides a basis for predicting water levels rel-
ative to current, but in the cluster regression line approach, reliable predictions
are only possible provided that the probability of cluster occurrences are taken
into consideration. Herein, the questions arise as to which cluster is to be taken
for future predictions? Should the future prediction remain within the same
cluster? Any transition from one cluster to another means a shift in the water
level. We need, therefore, to know the transitional probabilities among various
clusters. The cluster regression depicts not only the autocorrelation coefficient
but also the influence domain of each cluster as shown in Fig. 4.10 along the
horizontal axis as A, B, C, and D. The influence domains help to calculate the
transitional probabilities between the clusters from the original water level
records,

(5) For any current cluster, it is possible to estimate future normal lake levels
using the regression line equation.

For reliable estimations through cluster regression, one should follow these steps
in sequence:

(1) In order to decide initially, which domain of influence (A, B, C, or D) should
be taken into consideration, a uniform distribution function is considered that
assumes random values between 0 and 400 cm,

(2) Generate a uniformly distributed random number and, accordingly, decide
about the next cluster by considering influence domains. For instance, if the
uniformly distributed random number is 272 then from Fig. 4.10 influence
domain, C will be the current cluster,

(3) Generate another uniformly distributed random number and if the level
remains within the same cluster then use the regression equation for estima-
tion. Otherwise, take the average water level value in the new cluster.

The new level will be adopted as the midpoint of the cluster domains in
Fig. 4.10. A better estimation might be based on the random variable generation
again from a uniform distribution confined within the variation domain of each
cluster. Furthermore, the value found in this manner will be added to a random
residual value. This will then give the basis of the future water level estimations
within the same cluster domain.

4.8.2 Application and Discussion

The cluster regression approach has been applied herein to the recorded water level
fluctuations of the Lake Van. For this purpose, various lag scatter points of the
successive levels are first plotted in Figs. 4.11 and 4.12.
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The general appearance of these figures implies the applicability of the cluster
regression equation steps as mentioned in the previous section. In all the figures,
there are straight lines and the transition boundaries between clusters of A, B, C, and
D are given in Table 4.4 in addition to the boundaries of each cluster at different
lags up to 9.

Fig. 4.11 Lag-two water
level fluctuations and cluster
boundaries

Fig. 4.12 Lag-three water
level fluctuations and cluster
boundaries
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Here, A is considered as a low lake-level cluster, where only transitions from low
level to low level are allowed. B and C refer to lower medium and upper medium
level clusters and, finally, D is the cluster that includes highest levels only. It is
obvious from Table 4.4 that the transition limits between A and B, and B and C are
practically constant on average for all lags and equal to 129 and 219, respectively.
However, the upper limit transition between C–D increases with the increase in the
lag value. The difference between the first and ninth lags has a relative error
percentage of (100 � (308)285)/308 = 7.4, which may be regarded as small for
practical purposes.

The scatter diagrams in Figs. 4.11 and 4.12 yield the following specific inter-
pretations for Lake Van level fluctuations:

(1) The scatter diagrams have four clusters with the densest point concentration in
cluster A that represents low water level following low water levels. Extreme
values of water level fluctuations have the least frequency of occurrences in
cluster D.

(2) Irrespective of the lag value, points in the scatter diagram deviate from the
regression line within a narrow band. This indicates that once the water level is
within a certain cluster it will remain within this cluster with comparatively
very high probability as will be argued later in this work. Furthermore, the
transitions between the clusters are expected to take place rather rarely and in
fact between the adjacent clusters only.

(3) In none of the scatter diagrams is transition of water level possible from one
cluster to another nonadjacent one. This may be confirmed from the calculated
transition matrix elements because there are no elements except along the
main and the two off-diagonals.

Herein, only lag-one regression line will be considered to model the lake levels by
considering transitional probabilities between adjacent clusters. Themonthly level time
series data for Lake Van yield lag-one transition probability matrix, [M] as follows:

Table 4.4 Cluster regression
boundaries and coefficients

Lag Transboundary values Regression
coefficients

A–B B–C C–D a b

1 130 220 >285 0.985 1.459

2 125 218 >280 0.960 4.564

3 129 215 >280 0.930 8.239

4 130 219 >281 0.901 11.725

5 128 222 >280 0.878 14.486

6 128 212 >287 0.862 16.292

7 130 221 >296 0.853 17.114

8 132 225 >302 0.852 16.835

9 131 222 >308 0.858 15.532

Average 129 219 0.898 11.805
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½M� ¼
A

B

C

D

A B C D

291 2 0 0

1 233 4 0

0 3 54 2

0 0 1 20

2
6664

3
7775 ð4:31Þ

The diagonal values in this matrix are the numbers of transitions within each
cluster. For instance, there are 291 transitions from low levels to low levels within
cluster A. In the same matrix, intercluster transitions occur rather rarely along the
off-diagonals, such as four transitions from cluster B to C. In classical stochastic
processes, the calculation of transition matrix elements is based on the fundamental
assumption that the process is time reversible. This is equivalent to saying that
transitions as A! B is the same as B! A. Consequently, the resulting matrix must
be symmetrical. However, in the proposed method of cluster regression technique,
only one-way transitions along the time axis toward future is allowed. This means
that the transition along the time axis is irreversible. As a result of this fact the
transition matrix is not symmetrical. Accordingly, the matrix in Eq. (4.31) is not
symmetric; the transition from C to B is not equal to 4 but 3. Zero values next to the
off-diagonals indicate that the water levels can move only to adjacent clusters.
Hence, the possible transitions are ABCD only. For instance, transition to cluster
C is possible 4 times from B, 54 times from previous C and only once from D with
no transition from A, (hence a total of 59 transitions). Columnar values show
transition to the cluster considered from other clusters and the transition proba-
bilities can be calculated after dividing each value in the column by the column
total. Hence, the transition probability matrix [P] becomes from Eq. (4.31) as

½P� ¼
A

B

C

D

A B C D

0:9932 0:0068 0 0

0:0042 0:9790 0:0168 0

0 0:0508 0:9152 0:0339

0 0 0:0476 0:9524

2
6664

3
7775 ð4:32Þ

The linear regression line that relates two successive water levels, namely, Wi

and Wi−1, can be obtained from the cluster scatter diagram in Fig. 4.11 as,

Wi ¼ 0:98598Wi�1 þ 1:45918þ ei ð4:33Þ

in which ei signifies the vertical random deviations from the regression line. The-
oretically, these random deviations should have a Gaussian distribution function for
the validity of the regression line and Fig. 4.13 indicates that they are normally
distributed. In order to adopt Eq. (4.33) estimations with the cluster scatters, it is
essential to take into account the following steps:
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a. Because the most frequently occurring water levels are confined in cluster A, the
initial state W0 is selected randomly from the actual water levels in this cluster,

b. Decision whether there is transition to the next cluster is achieved through the
transition probabilities given in matrix [P] in Eq. (4.32). The transitions occur
according to the following rules,

1. Transition to cluster A is possible only from cluster B or the level remains
within the same cluster. From the transition matrix these have probabilities
as 0.9932 and 0.0042 and their summation is equal to 1.0. In order to decide
which one of these two clusters will be effective in the next time step, it is
necessary to generate a uniform random number, fi, which varies between
zero and one. If fi < 0.9932, then the water level will remain within cluster
A, otherwise for 0.9932 < fi < 1.0 a transition occurs from cluster A to B. In
the former case, after generating a normally distributed random number, ei,
the new water level value is generated by the use of the clusteral regression
model in Eq. (4.33). However, in the latter case, water level will be selected
randomly from the range of water levels for cluster, B.

2. At any instant, transition to cluster B may take place from two adjacent
clusters (A or C). The transitional probabilities from A and C are 0.0068 and
0.0508, respectively, with complementary probability of 0.9790 remaining
within cluster B. Now the decision of transition to B will have three

Fig. 4.13 Regression error
distribution error
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independent regions of the uniform distribution, namely, if 0 < fi < 0.0068
then a transition occurs from A to B or when 0.0068 < fi < 0.9858 water
level remains within cluster B and finally, for 0.9858 < fi < 1.0 a transition
occurs from C to B. If the water level remains within cluster B, a normal
variate is generated as ei and the regression expression in Eq. (4.33) is used
to predict the next water level. In the transition cases, water level is depicted
randomly from the available levels.

c. Transitions to cluster C show a similar mechanism to cluster B with different
transition probabilities but the same generating mechanism,

d. Finally, transition to cluster D is possible only from cluster C, in addition to
remaining in the same cluster. The application of all these procedures and steps
to Lake Van monthly water level variations result in the development of the
synthetic transition matrix [Ms]

½Ms� ¼
A

B

C

D

A B C D

287 2 0 0

1 230 3 0

0 4 56 2

0 0 1 19

2
6664

3
7775 : ð4:34Þ

Comparison of corresponding elements between the two last matrices shows that
they differ by less than 5% relative error. This indicates that the preservation of
transition numbers as probabilities in the predicted lake levels are indistinguishable

Fig. 4.14 Synthetic lag-one
water level fluctuations
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from the actual water level data. The synthetic cluster scatter diagram obtained from
the use of Eqs. (4.32) and (4.33) is shown in Fig. 4.14 where the regression line has
the form as

Wi ¼ 0:978Wi�1 þ 1:47þ ei ð4:35Þ

Again comparison of this expression with Eq. (4.33) shows that the corre-
sponding coefficients vary by less than 5% relative error. In other words, the
autocorrelation coefficient in the prediction of water levels is preserved in spite of
shifts in the original data.

The bases of a new regression equation with clusters are presented with an
application to the water level fluctuations of Lake Van, eastern Turkey. The clus-
teral regression method provides the best regression line in addition to the cluster
occurrences and transition probabilities along this line. Its difference from the
classical regression approach lies in the appearance of nonoverlapping clusters. The
cluster regression approach preserves all the statistical parameters in addition to the
autocorrelation coefficient, which is a measure of short-term persistence in
lake-level records. Any shifts in the data do not lead to spurious and unrealistic
autocorrelation.

4.9 Trend Over-whitening Procedures

Most trend-detection studies using the MK test (Chap. 3) have assumed that sample
data are serially independent, even though certain natural, economic, environ-
mental, social, etc., series have statistically significant serial correlation. Further-
more, von Storch (1995) documented that the existence of positive serial correlation
increases the probability that the MK test detects trend when no trend exists. In
order to convert serially dependent time series into independent structure series Yue
et al. (2002) suggested the pre-whitening procedure. Pre-whitening is a procedure
for reduction of serial correlation within a given time series by adding white noise
(serially independent) series to the original series. It is demonstrated that removal of
positive serial correlation by pre-whitening removes a portion of actual trend.

None of the classical trend tests such as the MK test takes into account classical
parametric and most commonly used serial correlation, and hence, they require
independence structure in the applications. In general, independence test can be
carried out mainly by examining the autocorrelation coefficients of the time series.
If the absolute values of the autocorrelation coefficients for a time series consisting
of n observations are not larger than the typical critical value, i.e., 1.96/√n corre-
sponding to the 5% significance level (Douglas et al. 2000), then the observations in
this time series can be accepted as being independent from each other. The sig-
nificance of the trend is determined using Kendall’s test because it does not assume
an underlying pdf of the data series. There is, however, a problem associated with
the Kendall test in that the result is affected by serial correlation of the series.
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Specifically, a positive autocorrelation, that is likely the case for most natural time
series records in the residual time series, will result in more false detection of a
significant trend than specified by the significance level (von Storch 1995; Zhang
and Zwiers 2004). This would make the trend detection unreliable. Some authors
have tried to alleviate this important drawback by pre-whitening the given time
series data. For instance, von Storch (1995) indicated that the existence of positive
serial correlation increases the probability that the MK test detects trend when the
given time series is trend free. He then proposed removal of the serial correlation
through pre-whitening procedure prior to the application of MK test. However,
Douglas et al. (2000) further explained the reduction in the serial correlation after
pre-whitening but with some loss in trend information. Furthermore, Yue et al.
(2002) explored the influence of pre-whitening and they found that removal of
positive serial correlation by pre-whitening removes a portion of trend.

There is, however, a problem associated with the MK test in that the result is
affected by serial correlation of the series. Specifically, a positive autocorrelation,
that is likely the case for most climatological data in the residual time series, will
result in more false detection of a significant trend than specified by the significance
level (von Storch 1995; Zhang and Zwiers 2004). This would make the trend
detection unreliable. Some authors have tried to alleviate this important drawback
by pre-whitening the given hydro-climatic series. For instance, von Storch (1995)
indicated that the existence of positive serial correlation increases the probability
that the MK test detects trend when the given time series is trend free. He then
proposed removal of the serial correlation through pre-whitening procedure prior to
the application of MK test. However, Douglas et al. (2000) further explained the
reduction in the serial correlation after pre-whitening but with some loss in trend
information. Furthermore, Yue et al. (2002) explored the influence of pre-whitening
and they found that removal of positive serial correlation by pre-whitening remove
a portion of trend.

Different statistical methodologies are employed to identify possible trend
component in any time series. Pre-whitening (PW) procedure has been suggested to
reduce the serial correlation effect on Mann–Kendall (MK) trend analysis. In this
section, instead of PW, over-whitening (OW) procedure is suggested (Şen 2016),
which generates serially independent series with the same trend slope value.
Analytically necessary formulations for OW are presented with a nonparametric but
simple innovative trend assessment procedure, which are supported by extensive
simulation studies.

4.9.1 Over-whitening (OW) Process

The purpose of over-whitening procedure is to reduce the original time series serial
dependence function down to almost independent serial structure without any harm
on the trend component. Let Yt represent the original time series with monotonic
trend component and addition of an independent random (white noise) component,
et, with zero mean gives rise to over-whitened time series, Zt, as,
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Zt ¼ Yt þ et ð4:36Þ

It is possible to rewrite explicitly by considering a monotonic linear trend
component with slope, b, and OW independent time series, ηt, with zero mean and
unit standard deviation as,

Zt ¼ Xt þ btþ cgt; ð4:37Þ

where Xt is a stationary process and c is the OW standard deviation. In order to
facilitate the analytical derivations, it is assumed that Xt is in the form of the
standardized AR(1) process zero mean and unit variance. Time conditional
expectation of both sides in Eq. (4.37) leads to,

E Zt tjð Þ ¼ E Xt tjð ÞþE bt tjð ÞþE cgt tjð Þ

Since E(Xt) = E(ηt) = 0, then

EðZt tj Þ ¼ bt ð4:38Þ

which is the trend component only.
For the variance calculation, square of both sides in Eq. (4.37) and then

expectations result in,

EðZ2
t tj Þ ¼ EðX2

t tj Þ þEðb2t2 tj Þ þEðc2g2t tj Þ þ 2EðXtbt tj Þ þ 2EðXtcgt tj Þ þ 2Eðbtcgt tj Þ

Herein, by definition, E X2
t tj

� �
= 1; E c2g2t tj

� � ¼ c2; E Xtbtð Þ ¼ 0; E Xtcgt tjð Þ ¼ 0
(since ηt is independent from Xt); E btgt tjð Þ ¼ 0. Consideration of the variance
definition as Var Zt tjð Þ ¼ E Z2

t tj� �� E2 Zt tjð Þ after the necessary algebraic calcula-
tions gives,

VarðZt tj Þ ¼ 1þ c2 ð4:39Þ

On the other hand, the k-order conditional covariance of the whole time series
can be obtained as follows:

CovðZt; Zt�k tj Þ ¼ E Xt þ btþ cgt½ � Xt�k þ bðt � kÞþ cgt�k½ �f g
¼ E XtXt�kð ÞþE Xtbðt � kÞ½ � þE Xtcgt�kð ÞþE btXt�kð ÞþE b2t t � kð Þ� �þE btcgt�kð Þ
¼ E cgtXt�kð ÞþE cgtbðt � kÞ½ � þE cgtcgt�kð Þ

By taking into consideration the AR(1) process autocorrelation coefficient
structure and independence of Xt and ηt processes, this expression can be simplified
as,

CovðZt; Zt�k tj Þ ¼ qk þ b2t t � kð Þ
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Here, q is the first-order autocorrelation coefficient of the AR(1) process. The
k-th order dependency coefficient qk of Zt process can be calculated after dividing
this last expression by Eq. (4.39),

qk ¼
qk þ b2tðt � kÞ

1þ c2
ð4:40Þ

At this stage, it is very convenient to remember that Yue et al. (2002, 2003)
stated a modified methodology, where the slope of trend is first estimated and then
the record is de-trended. Subsequently, the lag-k (example lag-one) serial correla-
tion coefficient of the de-trended series is estimated, and then the series is
pre-whitened. They also argued that the removal of the trend as a first step may
allow for more accurate estimate of the population’s lag-one autocorrelation coef-
ficient, and subsequently better estimation of trend. In order to apply these argu-
ments in an analytical manner, let us assume that b = 0, and hence, the trend is
removed from Eq. (4.37), which leads to the autocorrelation coefficient from
Eq. (4.40) as,

qk ¼
qk

1þ c2
¼ aqk; ð4:41Þ

where 0 < a < 1, and herein, it is referred to as the dependence reduction factor.
Hence, the OW k-th order autocorrelation function is a function of the lag-k auto-
correlation coefficient of the original time series, and the OW standard deviation, c.
Equation (4.41) implies that the autocorrelation structure of any given time series
with lag-one autocorrelation can be reduced to the first-order over-whitened serial
correlation coefficient, qo, as,

qo ¼ aq1 ð4:42Þ

The relationship between qo and q through a can be seen from Fig. 4.15.
Depending on the first-order serial correlation of the original series, q1, with trend
component, one can reduce it as small as possible desired, by selecting a convenient
a dependence reduction factor. However, it is not possible to obtain absolutely
independent process unless the time series itself originally has completely inde-
pendent structure, i.e., q1 = 0. This point agrees with the statement by Yue and
Wang (2002) and Bayazıt and Önöz (2007) that by PW, the dependence structure
can be reduced such that the serial correlation coefficients becomes close to zero.
The same statement is valid also for OW procedure.

This figure together with Eq. (4.42) indicate that it is not possible to make the
autocorrelation structure of the time series purely independent even after
over-whitening, because for such a case a should be equal to zero, which is not
possible practically. Yue and Wang (2002) stated that “…pre-whitening is not
suitable for eliminating the effect of serial correlation coefficient on the MK test
when trend exists in a time series”, because “….pre-whitening will remove a
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portion (equal to the lag-one autocorrelation coefficient) of trend, and hence,
reduces the probability of rejecting the null hypothesis when it is false”. The OW
procedure will not be affected from such shortcomings.

Additionally, Yue and Wang (2004a, b) stated that “Pre-whitening a time series
using spurious or contaminated serial correlation coefficient is fundamentally
wrong”, because “…the existence of a trend in a time series will produce a spurious
serial correlation when there is no serial correlation, and the presence of trend will
increase the estimate of positive serial correlation coefficient when the serial cor-
relation exists…”. This last part of the statement is obvious from Eq. (4.40), where
there is an additional term in the numerator and whatever the trend slope (positive
or negative) due to b2 term there will always be an increase in the serial correlation
coefficient. The confirmation of this last sentence has been given by Bayazıt and
Önöz (2007) by saying that “…the trend (upward or downward) always has a
positive contribution to serial correlation”. In order to avoid this effect Yue and
Wang (2004b) proposed that the existing trend component should be removed from
a time series first, and then the lag-one serial correlation coefficient may be com-
puted from the residuals, so that it is no longer affected by the trend”. In the OW
procedure, the trend remains as it is without removal opposite to the case of PW.

The standard deviation of over-whitening component can be calculated from the
last two parts of Eq. (4.41) as,

c ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
ð4:43Þ

Since a is always positive cwill be positive. In practical applications convenient a
value should be chosen from the chart in Fig. 4.15 or calculated from Eq. (4.42) as,
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Fig. 4.15 OW chart
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a ¼ qo
q1

; ð4:44Þ

where qo is desired OW first-order correlation coefficient that should be chosen so
as to make the over-whitened time series to have almost independent correlation
structure and q1 is the first-order serial correlation coefficient of the original time
series, i.e., available hydro-meteorological record. In order to confirm these equa-
tions, in the following subsection simulation results are treated with innovative
trend template approach.

4.9.2 Simulation

Two different simulation studies are presented in this section. The first one indicates
that whatever the first-order serial correlation coefficient and the trend slope are the
innovative trend procedure yields the same template without OW. The second set of
simulation is for over-whitened time series with different OW standard deviations.
These simulation studies indicate that whether OW is applied or not the innovative
methodology yields the same trend pattern.

For this purpose, a series of Monte Carlo computer simulations are performed
with a set of statistical parameters by the use of AR(1) process. The mean and
variance of the stochastic process are assumed as zero and one, respectively. The
simulation procedure takes into consideration the set of autocorrelation coefficients
(q = ±0.1, ±0.3, ±0.5, ±0.7 and ±0.9) and the trend slopes set (s = ±0.001,
±0.003, ±0.005, ±0.007 and ±0.009). The length of the synthetically generated
series is adapted as 1,000. After alternative combinations between a serial corre-
lation coefficient and the slope set, all innovative trend templates have appeared in
the same pattern without any distinction among the simulation results. Herein only

Fig. 4.16 General innovative template for trend slopes irrespective of serial correlation
coefficient
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one innovative trend template is presented in Fig. 4.16 that covers all possible
combination cases.

Another set of simulation is carried out for a high serial correlation coefficient
equal to 0.9 with trend component of 0.0003 and the simulation is carried out along
the following steps.

(1) 1,000 Gaussian independent random variables are generated with zero mean
and unit standard deviation,

(2) These random variables are converted to AR(1) process with serial correlation
coefficient equal to 0.9,

(3) The sequence is embedded with a trend component of slope equal to 0.003.
The resulting time series is shown in Fig. 4.17a,

(4) Innovative trend template is obtained shown in Fig. 4.17b,
(5) In order to over-whiten the sequence according to Eq. (4.37), one needs, first,

to decide about the serial dependence reduction for OW. If is chosen as
a = 0.01 then Eq. (4.43) yields the standard deviation of the over-whitening
sequence as c = 9.95. This factor plays the role of scaling, but does not affect
the embedded trend component,

(6) Addition of the component over the same sequence and then the application of
the innovative trend procedure yields the trend template as in Fig. 4.17c,
which is scaled down version of Fig. 4.17b,

(7) Figure 4.17b, c are overlapped and the final result, in Fig. 4.17d, shows that
whether over-whitened or not the same trend is preserved even in the
over-whitened series.

4.9.3 Application

The applications of aforementioned innovative trend methodology and other pro-
cedures to factual data are presented for three different cases all with annual tem-
perature records. These are New Jersey State, USA, and global annual temperature
anomalies annual temperature records with more than 100 years (116 and
134 years). Florya meteorology station in Istanbul, Turkey, has shorter duration
(56 years). The Office of the New Jersey State Climatologist has gathered and
quality checked New Jersey state-wide annual temperature records going back to
1895, and has made these data available on-line (http://epa.gov/climatechange/
index.html; http://climate.rutgers.edu/stateclim). These data, as summarized and
charted by the Department, show a statistically significant rise in average state-wide
precipitation and temperature over the last 116 years.

Global annual temperature anomalies (oC) are computed using data meteoro-
logical stations from 1981 to 2014. The anomalies are relative to the 1951–1980
base period means of 30-year data. The Internet site for this data set is available at
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt.

4.9 Trend Over-whitening Procedures 165

http://epa.gov/climatechange/index.html
http://epa.gov/climatechange/index.html
http://climate.rutgers.edu/stateclim
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt


100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

6

8

Time

A
R

(1
) s

am
pl

e

AR(1)  synthetic time series

Trend

(a)

(b)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

AR(1) serial correlation coefficient, ρ
1
= 0.5 and the trend
 

S
ec

on
d 

ha
lf 

A
R

(1
)  

(5
01

 - 
10

00
)

First half AR(1)   (1 - 500)

AR(1) synthetic time series

1:1 (45o) no trend line

(c)

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

First half of over-weighted series   (1 - 500)

S
ec

on
d 

ha
lf 

of
 o

ve
r-

w
ei

gh
te

d
 s

er
ie

s 
 (5

01
 - 

10
00

)

Over-whitened serial correlation coefficient, ρ
1
= 0.5, the trend slope,

α = 0.01

Over-whitened time series data

1:1 (45o ) no trend line

slope, s = 0.003

 s = 0.003 and dependence reduction factor, 

Fig. 4.17 a Trend embedded time series, b trend prior to OW, c trend posterior to OW, d prior to
and posterior to OW

166 4 Temporal Trend Analysis



The Florya data are from the Turkish Meteorology Service and it is from 1936 to
2006, inclusive. The basic statistical features of these records are given in
Table 4.5. The dependence reduction factor, a, is chosen as the lowest appearing
value in Fig. 5.22 as 0.1 for each record.

In order to carry out the OW procedure software is written in Matlab programing
language and its logical steps are as follows:

(1) Standardize each record by subtracting the mean value and then dividing this
difference by the standard deviation. As mentioned earlier, the standardization
procedure does not affect the existing trend component in the original time
series and the same is valid for the autocorrelation coefficient,

(2) The standardized series is over-whitened by a white noise (completely inde-
pendent random series) time series with zero mean and OW standard deviation
(the last column in Table 4.5). The probability distribution function (pdf) of
OW process is always a normal (Gaussian) pdf,

(3) OW process renders the dependent serial structure of the standardized time
series into independent case,

(4) The software generates a set of Gaussian independent time series of the same
length with the original time series and records their trend slopes individually
at the memory. Hence, an ensemble of independent time series are generated,

(5) The trend slopes in these independent time series are averaged so as to find the
trend slope after OW procedure.

(6) Generate innovative template for the standardized and over-whitened time
series and show the first half, m1, and second half, m2, arithmetic averages of
the over-whitened time series on the same graph,

(7) Calculate the trend slope, S, value from the over-whitened time series by the
well-known Sen (1968) procedure that is invariably employed in MK trend

(d)
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analysis. Additionally, in this work the innovative trend slope, SI, is calculated
by the subtracting the second half’s arithmetic average from the first half
arithmetic average and then dividing this difference by the half-length, n/2, of
the over-whitened time series as,

SI ¼ 2 m2 � m1ð Þ
n

ð4:45Þ

It has been observed during this study that the difference between this equation
result and the classical within the limits of ±5% relative error, which is well
acceptable for practical purposes,

(8) The software produces the autocorrelation function of the original record with
the over-whitened one as a graph,

(9) Finally, standardized and the over-whitened time series are shown with the
trend on the same graph.

The application of all these steps to New Jersey State annual temperature time
series produces three graphs, which are given in Fig. 4.18.

As for the innovative trend graph in Fig. 4.18a, OW innovative and OW MK
slopes are given as 0.018629 and 0.018463, respectively and they are practically
equal to each other. The scatters of standardized and over-whitened time series are
very close to each other. In this and other similar graphs for other two stations, if the
over-whitened time series is regenerated by the same software then there may be
sampling errors, but the results will always remain within less than ±5% relative
error and even very less than this value. The OW process renders the original
first-order serial correlation coefficient down to 0.028, which is the required result
even from the PW procedure as in the literature (Fig. 4.18b). Both time series
(standardized and OW) are presented in Fig. 4.18c with two trend straight lines
(OW innovative and OW MK) and they fall on each other, which indicate the
validity of the OW approach with the use of Eq. (4.45).

The same arguments are valid for the Florya meteorology station graphs in
Fig. 4.19, where the negligible difference between the two trends is visible.
However, the difference is well less than practically acceptable 5% (Fig. 4.19c).

Finally, Fig. 4.20 is for the global annual temperature anomalies time series,
where one can appreciate similar conclusions as for the two previous examples. The
significantly distinctive point in this time series is that its first-order serial corre-
lation coefficient is very high as 0.909, but OW procedure reduces its effect down to
the very small value equal to 0.096, which is an evident for the effectiveness of the
OW procedure Fig. 4.20.

It is well-documented by now that due to climate change and landscape alter-
ations the hydrological cycle is affected with some increases (decreases) in terms of
trends depending on the location on the world. The tendencies are embedded in
different hydrological records including temperature, precipitation, runoff, soil
moisture, evaporation, etc. It is, therefore, necessary to detect these trends in an
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Fig. 4.18 New Jersey annual temperature O-W procedure applications, a standardized and OW
time series innovative template, b autocorrelation graph, c time series and trend graph
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Fig. 4.19 Florya annual temperature OW procedure applications, a standardized and OW time
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objective manner. In the literature the most frequently used procedure for this
purpose is the Mann–Kendal (MK) trend test statistics, where the most important
element is the trend slope determination. This test statistics is affected by the serial
correlation structure and it is more valid for independent processes. For this pur-
pose, various authors tried to overcome this restriction by trying to pre-whiten
(PW) the given time series. In this paper, another new procedure is suggested as
over-whitening (OW), where the given time series is superimposed by an inde-
pendent Gaussian time series with zero mean and standard deviation according to
derived analytical derived expressions in the text. Additionally, an innovative trend
template concept is used for showing that the dependence or independence serial
structure of any time series does behave in the same manner on the template. All the
necessary stochastic formulation derivations are presented for the application of the
OW procedure. Accordingly, extensive simulation studies have been carried out to
validate formulations and procedures. The innovative template and OW method-
ologies are applied to three annual temperature time series, which are New Jersey
State, USA, Florya meteorology station at Istanbul, Turkey and the global annual
temperature anomalies from the Internet. The application of OW procedure appli-
cation to these records yielded reliable results and this new way of trend application
can be used in the future in many applications.
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5Innovative Trend Analyses

Abstract
Innovative trend analysis is the most modern, simple, easy to interpret, and
effective trend analysis procedure that incorporates first visual inspection for
identification of the trend type whether increasing, decreasing, or no trend cases
and then provide numerical calculation for the trend slope again by a very simple
formulation. All the classical trend determination methodologies try to find
holistic monotonic trend either over the whole record period or on pieces of
subperiods. However, the innovative trend method compares last parts of any
desired duration record length with earlier perions within the time series itself,
hence, one can appreciate the trend variation within the record itself. Another
innovative trend method is based on the number of crossings along the trend
line, which should have the maximum number of crossing. This procedure helps
to identify also the surplus and deficit parts of a given time series with respect to
the trend line.

Keywords
Crossing � Innovative � Over-whitening � Simulation � Slope � Intercept

5.1 General

There are commonly used trend identification techniques such as Mann–Kendall
(MK) and Spearman’s Rho (SR) tests as explained in Chap. 3, but their validity is
possible under a set of restrictive assumptions such as independent structure of the
time series, normality of the distribution and length of data. It is also not possible to
calculate trend magnitude (slope) except through regression approach, which brings
additional assumptions for the theoretical validation in practical applications.
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Recent hydrologic regime changes due to potential climate variability impacts
brought into focus the search for effective trend identification analysis. Numerous
works in different parts of the world showed quasi-periodic natural behavior and
systematic trends of key climate variables due to climate change and/or climate
variability (Chap. 6). It is well known that changing climate is expected to have
notable impacts on the rainfall–runoff processes due to increasing or decreasing
trends in hydro-meteorological time series (floods, droughts, heat waves, etc.).
These impacts can no longer be assumed to be stationary, which means that future
replicates are no more statistically indistinguishable from the historical counter-
parts. If climate change is not taken into account then such changes or variability
can lead to underestimation/overestimation of parameters for the design and
operation of water infrastructures, water shortages, water stresses, and agricultural
failures. Although some test procedures are presented for trend identification, there
are restrictive assumptions with respect to serial structure (ignorance of correlation
coefficient), normal probability distribution function (PDF) of the variables and
rather lengthy datasets.

Two commonly used trend tests are Mann–Kendall (Mann 1945; Kendall 1975)
test and Spearman’s Rho test to the data set (Sen 1978). In many studies, these two
nonparametric rank-based statistical tests are used for detecting monotonic trends in
a given time series. The power of these tests has not been well documented but the
simulation results by Yue et al. (2002a, b, c) indicate that the power depends on the
pre-assigned significance level, magnitude of trend, sample size, and the amount of
variation within a time series. That is, the bigger the absolute magnitude of trend,
the more powerful are the tests; as the sample size increases, the tests become more
powerful; and as the amount of variation increases within a time series, the power of
the tests decrease. When a trend is present, the power is also dependent on the PDF
type and the skewness coefficient. The simulation results also demonstrate that
these two tests have similar power in detecting a monotonic trend, to the point of
being indistinguishable in practice.

In the past, time series were often assumed as stationary or weakly stationary
stochastic processes for simulation purposes. Due to anthropogenic (human dis-
turbance) effects on climate, environment, drainage basin and atmosphere, such an
assumption is not valid anymore. However, this is almost the case with economic
time series. This implies that future predictions cannot be regarded as statistically
indistinguishable from the past records. Current anthropogenic impacts substan-
tially affect natural, environmental and economic variables. For instance, events as
droughts, floods, and streamflow discharges are also influenced by climate impacts.
Monotonic and steadily increasing trends in past records lead to the alteration of
planning, operation and management practices of atmospheric researchers, meteo-
rologists, climatologists, economics, and hydrologists alike. Therefore, prior to any
future predictions, it is necessary to try and identify possible monotonic trend
components in any given time series. Trend identification analyses have been
extensively employed in natural works (Kalra et al. 2008; Miller and Piechota 2008;
McCabe and Wolock 2002; Lins and Slack 1999; Douglas et al. 2000; Lettenmaier
et al. 1994; Groisman et al. 2001).
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This section presents preliminary results and applications of two effective and
potential innovative trend identification methodologies that do not require many of
the restrictive assumptions. The first one is concerned with the plot of a set of
subseries from the original time series on a Cartesian coordinate system, where 45°
straight-line implies no trend but any plot appearance above (below) this line
implies increasing (decreasing) trends. The same methodology is capable to provide
trend magnitude (slope) calculation. The other one, crossing trend analysis, depends
on the crossing number of a given time series at the arithmetic average truncation
level.

5.2 Probability Distribution-Statistical Parameter Trend
Implications

The most important trend or shift component indicator in any time series is the PDF
provided that there is a long series of available data that can be divided into at least
two nonoverlapping equal parts. The frequency distribution function (or histogram)
for each part is than fitted to a theoretical PDF and the comparison of these two
PDFs provide first a visual inspection about the possibility of trend or sudden shift
(jump) component. For the sake of explanation herein the theoretical PDFs are
assumed as a normal PDF. Comparison of the relative position of these two PDFs to
each other leads to seven different cases The first case is shown in Fig. 5.1 where
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Fig. 5.1 No trend PDF
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the two PDFs of the first and next half of the available time series record fall on
each other then there is no trend component within the time series (Fig. 5.1). The
property implies also that the time series is strictly stationary, because all the
statistical parameters are constant along the time series. If one interprets this graph
under the light of recent climate change she/he can state that there is no climate
change and “hot,” “mild,” and “cold” climate states remain almost the same by
time. Notice that for climate change interpretation the horizontal axis is taken as
representative of temperature records.

As in Fig. 5.2 if there is a shift of the first part (past records) PDF toward higher
values then there is the possibility of either an increasing trend or a jump that maybe
sudden or over a very short period of time. One can decide qualitatively by visual
inspection of the time series graph whether it is a trend or a jump. If the increase in
the time series values toward recent values seems as gradual then one can conclude
that there is an increasing trend, otherwise it is a jump. An important point at this
point is that the time difference between the two PDFs in Fig. 5.2 is equal to the
half duration time of the time series record duration. This last statement implies that
in case of a trend there is a gradual increase from the statistical parameters of the
first half toward the second half. This is a very important scrap of information,
which enables one to calculate any parameters change slope by taking the difference
between the two parameters and its division by the half duration.
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In Fig. 5.2 by taking into consideration that the horizontal axis is for temperature
records then one can make climate change implication interpretations as “colder,”
“extremely cold,” “hotter,” and “extremely hot” weather conditions. The reader
may have his/her interpretations.

Decreasing trend or downward jump possibilities are shown in Fig. 5.3 on the
basis of two-halves PDFs. The shift in the first part PDF is toward lower data
values. Similar to the previous case the statistical parameters are decreased and the
slope values can be calculated for each statistical parameter.

The previous graphs collectively imply that although there are changes in the
arithmetic average values, but the standard deviation remains the same, i.e.,
homoscedasticity exists. These three figures are the fundamental assumption in the
classical trend determination, because all the linear trend lines do not take into
consideration possible changes in the standard deviation.

However, there may also be variations in the standard deviations, which can be
identified by the comparison of the two parts’ PDFs. The change in the variance,
which is also valid for the standard deviation, is referred to as the variability in this
book. For instance, the case in Fig. 5.4 an increasing variability is valid, because
although there is no change in the arithmetic average the standard deviation has
increased again during the half duration of the time series record length. Since, as a
general rule, the area under any PDF is equal to one, expansion in this figure
implies reduction in the peak value probability. As in the previous cases, the reader
may emerge with his/her own interpretation by considering that the horizontal axis
is for temperature records.
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Opposite of increasing variability Fig. 5.5 is the representative of the decreasing
variability. The comparison of the two PDFs indicates that the recent half records
had shrinkage in the PDF, which is the reduction in the standard deviation. If after
visual inspection of the time series graph one come out with gradual decrease in the
standard deviation values then there is a standard deviation trend of which the slope
is equal to the difference between the standard deviations divided by the half time
series duration.

Figures 5.4 and 5.5 also imply that the underlying time series are first order
stationary, because the arithmetic averages remain the same. More detailed infor-
mation and methodological explanations are presented about the variability in
Chap. 7.

It is also possible to have trend and also variability in the same time series, which
is the case in some of the natural and environmental time series records. For
instance, if one considers the relative positions of the first and second half PDFs as
in Fig. 5.6, then s/he can conclude that there is changes in the arithmetic average
and in the standard deviation simultaneously.

After all what have been explained about the relative positions of the first and
second half PDFs, the reader must have got used to the interpretation. Anyone can
interpretate that Fig. 5.7 represents

COLD HOTAVERAGE

Hotter 
weather

M
or

e 
re

co
rd

 
ho

t w
ea

th
er

 

M
or

e 
re

co
rd

 
co

ld
 w

ea
th

er
 Colder 

weather 

Temperature

Pr
ob

ab
ili

ty
Second half 
First half 

Fig. 5.4 Increasing variability

180 5 Innovative Trend Analyses

http://dx.doi.org/10.1007/978-3-319-52338-5_7


COLD HOT AVERAGE

Hotter 
weather

M
or

e 
re

co
rd

 
co

ld
 w

ea
th

er
 

M
or

e 
re

co
rd

 
ho

t w
ea

th
er

 

Colder 
weather 

Second part 
First part

Temperature

Pr
ob

ab
ili

ty

Fig. 5.5 Decreasing variability

COLD HOT AVERAGE

Much more  
hot weather

M
or

e 
re

co
rd

 
ho

t w
ea

th
er

 Colder 
weather 

Temperature

Pr
ob

ab
ili

ty

Second part 
First part

Fig. 5.6 Increasing trend and increasing variability

5.2 Probability Distribution-Statistical Parameter Trend Implications 181



5.3 Innovative Trend Identification Methodologies

In the following sequel, the innovative trend identification method presents as a
new approach on the basis of subsection time series plots derived from a given time
series on a Cartesian coordinate system. In such a plot trend-free time series sub-
sections appear along the 1:1 (45°) straight-line. Increasing (decreasing) trends
occupy upper (lower) triangular areas of the square area defined by the variation
domain of the variable concerned. The validity of this new approach is documented
through a set of Monte Carlo simulations by taking into consideration independent
and dependent processes (Sect. 5.3). In this new approach, assumptions for the MK
and Spearman’s rho (SR) tests are avoided and additionally it is possible to cal-
culate trend magnitude from square area plots.

The basis of the approach rests on the fact that if two time series are identical to
each other, their plot against each other shows scatter points along 1:1 (45°)
straight-line on the Cartesian coordinate system as in Fig. 5.8a. In the figure, there
are 25 data points, which come from a nonnormal PDF. Whatever the time series,
whether trend free or with monotonic trends, all points fall on the 1:1 straight-line
when plotted. There is no distinction whether the time series are nonnormally
distributed, having small sample lengths or possess serial correlations. One
important conclusion from Fig. 5.8a is that data values sort themselves in ascending
(or descending) order along the 1:1 straight-line. This idea will also be used later in
this section in the trend identification procedure.
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The same 25 data points are added with increasing and decreasing trends sep-
arately and then they are ordered and plotted against the original (trend-free) time
series, which is also sorted in ascending order. The results are shown in Fig. 5.8b, c
for increasing and decreasing trends, respectively. It is obvious that in the case of
increasing (decreasing) monotonic trend, the scatter points fall above (below) the
1:1 straight-line. For any trial with nonnormal, small sample and serially correlated
time series, similar scatter diagrams are obtained for increasing and decreasing
trends.

The next question is how could one identify the existing trend in a given time
series with respect to the idea of 1:1 straight-line? The answer appears as a plot of
the first half of the same time series against the second half according to the
above-mentioned idea. In Fig. 5.9a, b, the same time series as shown in Fig. 5.8b, c
are used, this time by considering two-halves and the sorting procedure. It becomes
obvious that monotone increasing (decreasing) trend in the given time series fall
above (below) the 1:1 straight-line. This idea can be used for engineering, envi-
ronmental, economic, or hydro-climatic time series trend identifications.

On the other hand, it is also possible to have time series with half plots similar to
Fig. 5.9 as in Fig. 5.10, where there are scatter points on both sides of 1:1
straight-line. In Fig. 5.10a low (high) values are more (less) in the first half than the
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next half, whereas in Fig. 5.10b the opposite situation occurs. These cases corre-
spond to nonmonotonic trends where within the same time series there are
increasing and decreasing trends at different scales even hidden ones (Chap. 6).

In practical applications, a mixture of the all the cases explained in this section
appears accordingly, the necessary interpretations can be done for better under-
standing the composition of the time series structure.

5.3.1 Application

The applications of the innovative trend methodology are presented for different
annual runoff and rainfall series recorded at various locations in Turkey in addition
to annual Danube river flows. Aslantas and Menzelet Dams are the catchment areas
in southern Turkey on Ceyhan River that confluences into the Mediterranean Sea.
Cizre streamflow station is on the Tigris River right at the border between Turkey
and Iraq. Danube annual streamflow records are from Orshava station in Romania.
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Fig. 5.9 Time series halves with monotonic trends, a increasing, b decreasing
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Fig. 5.10 Time series halves with nonmonotonic trends, a increasing, b decreasing
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Figure 5.11a, b are from two hydrological catchments in Turkey, each reflecting
annual flows from 1954 to 2003. For the interpretation of these figures, it is better to
think of the annual flows in three clusters as “low,” “middle,” and “high” flows. In
order to make a detailed interpretation, the scatter diagram on 1:1 straight-line
graphs are divided into three verbal clusters as “Low,” “Medium,” and “High.” In
Fig. 5.11a, “low” flows represent points on the increasing trend upper triangle,
which means that there is an increase in the “low” flows during the second half of
the historic record (1979–2003) with respect to the first half (1954–1978). In the
“medium” cluster, there is almost no trend, and finally, the “high” cluster indicates
decreasing trend. All these explanations imply that the annual flow series have a
composition of various trend patterns.

The annual flow scatter diagram between two-halves of Menzelet station are
shown in Fig. 5.11b, where the “low” flows have slight increasing component
within the “low” flow cluster small and big values. The “medium” flow cluster is

“Low”

“Medium”

“High”

“Low” 

“Medium”

“High”

“Low” 

“Medium” “High”

“Low” 

“Medium”

“High”

(a) (b)

(c) (d)

Fig. 5.11 Various 1:1 plots. a Aslantas Dam. b Menzelet Dam. c Cizre Station. e Danube River
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trend free because the scatter of points concentrate closely around 1:1 straight-line.
In the “high” cluster a decreasing trend component is valid. At this station there is a
decrease in the “high” flow values; and hence, in the future, water stress is more
likely to appear.

In Fig. 5.11c, “low” and “high” clusters indicate decreasing trends, whereas the
“medium” cluster is trend free. Comparatively “high” flow trends have shorter
duration than in the “low” cluster portion. Most of the duration is occupied by
“medium” cluster flows with no significant trend component. Furthermore, the
“low” and “high” flows have decreases in the (1971–2003) duration compared to
(1938–1970). This also gives the warning that at this station droughts and floods are
bound to increase in the future.

Finally, Danube river annual flows do not have any significant trend in the “low”
flow cluster, which includes all the annual flows less than about 5750 m3/s
(Fig. 5.11d). “Medium” flows have some decreasing trend and “high” flow cluster
has slightly significant increasing level.

Based on the above explanations, the following important points can be sum-
marized about the innovative trend methodology.

(1) If scatter points on the first quadrant of the Cartesian coordinate system fall on
another straight-line parallel to 1:1 straight-line, then there is a monotonic
increasing (decreasing) trend depending on the fall of the scatter points onto
the upper (lower) triangular area of the scatter region,

(2) The closer the scatter points are to the 1:1 straight-line, the weaker the trend
magnitude (slope),

(3) In the case of nonmonotonic trends (i.e., composition of various trends in the
time series), the scatter points take their positions on a curve.

This innovative trend method does not require restrictive valid assumptions
whatever the sample size, serial correlation structure of the time series, and non-
normal PDFs.

5.4 Innovative Trend Simulation

Trend analyses occupy a significant role in the climate change studies since almost
four decades. It is significant to try and identify monotonic trends in a given time
series so as to make future predictions about the possible consequences on the
urban environment, economics, water resources, agriculture, environmental, and
many other socioeconomic aspects of the life. Although there are now classically
accepted and frequently used trend tests in the open literature such as MK trend
analysis and SR test, they are based on some restrictive assumptions as normality,
serial independence, and rather long sample sizes. Besides they search for a single
monotonic trend without any specification such as “low,” “medium,” and “high”
values, which may have different trend patterns. Many time series records have
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serial dependence and, therefore, it is very helpful to provide a methodology, which
is not affected from such restriction. It is the main purpose of this section to provide
simulation results and applications of an earlier innovative trend analysis
methodology based on the 1:1 (45°) straight-line comparison of the scatter points
on a Cartesian coordinate system.

Natural and human activities affect different processes in a continuous manner
and their impacts appear in the forms of trends or sudden jumps. Some particular
natural phenomena such as El Niño, as well as all kinds of large scale water
resources development projects, may alter hydrological processes and may lead to
abrupt changes in the hydrological time series (Xiong and Guo 2004). The presence
of deterministic trends in the time series may provide information about the future
evolution of the process or at least on the possible modifications. In practical
applications, the knowledge of the trend for a given variable of interest may help to
forecast future realizations and to design future scenarios. Nowadays, with the
growing importance of climate change assessment, trend detection, and evaluation
are subjects of intensive scientific research (Brunetti et al. 2001; Burn et al. 2002;
Kahya and Kalaycı 2004; Groisman et al. 2004; Cohn and Lins 2005; Barbosa et al.
2008), as also testified in the recent fourth assessment report of the Intergovern-
mental Panel on Climate Change (IPCC 2007). One branch of climate change
science is devoted to analyzing the past climate events and inside this branch trend
detection and statistical significance testing assume an important role (Trenberth
2007).

Natural and man–made effects are defined as the long-term behavior of con-
cerned variables on the average, which provides distinctive features for future
behaviors of the same variable. During the last four decades, the most sought such
behavior is the possibility of monotonic trend existence in a given time series,
because the current day change impacts and causative decisions require gradual
increasing or decreasing trends. Especially, time series records are searched for two
reasons; the first one is trend identification, and then its magnitude determination as
reflection of the “increasing” or “decreasing” quantities. Although there are trend
identification methods, which provide answers for the existence of trends, but the
magnitude is measured either by linear regression approach (Hirsh and Slack 1984;
Lettenmaier et al. 1984) or through the median slope calculation according to Sen
(1978) procedure. This estimator is robust to the effect of outliers in the series. It has
been widely used to compute trends in hydro-meteorological series (Wang and
Zhou 2005; Zhang et al. 2001).

None of the classical trend tests such as the MK test takes into account classical
parametric and most commonly used serial correlation and, hence, they require
independence structure in the applications. In general, independence test can be
carried out mainly by examining the autocorrelation coefficients of the time series.
If the absolute values of the autocorrelation coefficients for a time series consisting
of n observations are not larger than the typical critical value, i.e., 1.96/√n corre-
sponding to the 5% significance level (Douglas et al. 2000), then the observations in
this time series can be accepted as being independent from each other. The
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significance of the trend is determined using Kendall’s test because it does not
assume an underlying probability distribution function (PDF) of the data series.

The main purpose of this section is to present extensive computer simulation for
robust trend identification procedure as already proposed by Şen (2012), which is
not dependent on any restrictive assumption as serial correlation, nonnormality, and
sample number. The procedure is based on the plot of time series two-halves
against each other after sorting in ascending order. This procedure helps to identify
trends distinctively in the low, medium, and high values also. The difference of this
section lies in its extensive independent process and dependent first order Markov
process simulation results, which indicate the relationship between the trend slopes
and first order serial correlation coefficient. Additionally, the comparisons of this
trend procedure with the classical methodologies including MK and SR trend
statistics and Sen’s trend slope are given in table form with necessary
interpretations.

5.4.1 Fundamental Methodology

As mentioned in Sect. 5.3, a new trend analysis methodology by Şen (2012)
depends on the 1:1 (45°) straight-line on a Cartesian coordinate system, where it
corresponds to trend-free case and any deviation from this line indicates trend
existence and the closer is the plots to 1:1 (45°) straight-line, the smaller is the trend
slope.

In the innovative trend identification methodologies as explained in Sect. 5.3
upper and lower triangular areas correspond to trend existence. Figure 5.12 is
prepared as the plot of sorted time series versus two trend-embedded synthetic time
series. Each series is obtained by adding a linear monotonic increasing and
decreasing trend into the original time series in the upper and lower graphs of
Fig. 5.12. In the middle square, plots versus trend-free time series are given after
sorting in ascending order. The final product yields the fact that the upper (lower)
triangular area includes increasing (decreasing) trends, respectively. Additionally,
on the 1:1 straight-line plots, increasing trend time series points can be interpreted
by considering low and high values subjectively in two groups. Hence, since low
values are concentrated near the 1:1 straight-line, the trend existence is weaker than
the group of high values, which significantly deviate from the straight-line 1:1
straight-line. On the other hand, in the lower triangular area, the time series have
low values’ cluster, this time away from the line, whereas high values approach the
1:1 straight-line implying comparatively weaker trend existence in the structure of
the time series considered all based on visualization.

In Fig. 5.13, previous increasing and decreasing trend time series are plotted
within themselves by having the whole series first into two and then sorting them in
ascending order. The result is increasing (decreasing) trend in the time series
according to their complete structure. This point provides a new way of trend
assessment, which takes into account not only the ranks (nonparametrically) but
also the measurements parametrically.
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In the following sections, extensive simulation study is performed for the
validity of the innovative trend methodology by use of independent and dependent
processes.

5.4.1.1 Simulation Methodology
There are different aspects in time series analyses depending on the purpose, which
may take shape according to needs in any planning, design, and operation and
maintenance stages. The prime goal is to deduce some useful and objective
information for future works that support final decisions. Initially, Hazen (1914)
was interested in extending the past records to future predictions and for this
purpose he designed a very simple pre-computer era procedure by writing each one
of the past records on separate paper pieces, mixed them thoroughly in a bag and

Fig. 5.12 Decreasing and increasing trends versus trend-free time series
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then drew one by one for future time series construction. This primitive procedure
had the assumptions of almost trend-free synthetic time series with the same sta-
tistical similarity to past time series. The only difference was in the sequence of past
record values. With the appearance of digital computers in 1950s, stochastic pro-
cesses became in use for the analysis of historical records with the purpose of
constructing their future replicates synthetically in such a way that statistical
properties are indistinguishable from the historical records (Şen 1974). Autore-
gressive (AR) and autoregressive integrated moving average (ARIMA) models in
various degrees of order become in use in many disciplines including hydrology for
water resources planning, operation, and management stages (Box and Jenkins
1970; Montanari et al. 1997).

Figure 5.12 can be used as a template to identify trend existence in a given time
series. For this purpose, the square area template in the first quadrant can be thought
in three portions. These are enumerated below:

(1) The main diagonal, 1:1 (45°) straight-line presents no trend line,
(2) The upper right angle triangular area is for increasing trends,
(3) The lower right angle triangular area is for decreasing trends.

These points will be explained by simulation studies based on dependent and
independent process, trend free and trend-embedded time series in addition to
practical applications. Theoretically, in case of exactly the same two time series,
there is no areal scatter on the coordinate system but the scatter is along the 1:1
straight-line only. This means that each time series is its own reflection on the 1:1
straight-line (see Fig. 5.8a), which corresponds to trend free case, whereas upper
(lower) triangular area is for increasing (decreasing) trends. Figure 5.14a presents
30 points from stochastic processes, where all the points are aligned along the 1:1
straight-line in a random scatter manner similar to Fig. 5.8a. Figure 5.14b presents

Fig. 5.13 Half time series
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time series with regular (deterministic) increments. Such plots have the following
results:

(1) Time series own reflections appear along the main diagonal (1:1 straight-line)
scatter irrespective of trend or trend-free serial structure,

(2) Whatever the PDF of the time series, the end plot also appear along the same
diagonal,

(3) Serial correlation of the time series does not play any role in such plots,
(4) Seasonality component also does not affect the appearance along the main

diagonal scatter,
(5) The number of sample has not role and again the plots appear along the 1:1

(45°) straight-line.

After all these points, the main question is whether such plots may help to
identify trend (or trends) in a given time series?

This question brings to mind similar to plot of a given time series versus itself,
what happens when the first half of the series is plotted against its second half time
series? For this purpose, the same time series maybe fragmented into mutual and
successive half subseries. A very significant clue from Figs. 5.13 and 5.14 is that
along the main diagonal the points are sorted according to ascending order auto-
matically. This point gives the idea of sorting the two-halves into ascending orders
and then to plot the first half versus the next on the Cartesian coordinate system.
This opens the door to compare “low” (“medium,” “high”) values with “low”
(“medium,” “high”) values of the two-halves.

In order to explain some of the main points in the innovative trend methodology,
first of all, trend-free independent (normal or non-normal) processes are generated
with zero mean and unit standard deviation, which is then embedded with a
sequence of monotonic trends by considering a set of trend slopes, d,
(−0.009:0.002:0.009). The length of the generated synthetic sequence is adapted as
10,000, which is then divided into two-halves of 5,000 elements each. Inspiration
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from the above explanations gives rise to the following significant points for the
application of the methodolog:

(1) Generate a set of trend-embedded sequences and divide them into two-halves,
(2) Sort each half in ascending order,
(3) Plot the first half against the second half on the square area (on the Cartesian

coordinate system).

Figure 5.12 is the end product of such a procedure with different time series and
their signatures on the square area, which leads to the following inferences:

(1) Trend-free halves plot appears along the 1:1 (45°) straight-line,
(2) Increasing (decreasing) trends are within the upper (lower) triangle of the

square area,
(3) They are all in the forms of straight-lines parallel to each other with 45° slope,

which implies that the trend slope, d, in the original series does not have any
effect on these straight-lines,

(4) As the trend slope, d, in a time series increases, corresponding straight-line
plot appearances on the square area get away from the trend-free line (main
diagonal, 1:1 or 45° line),

(5) Positive and negative trend slopes have reflective effects with reference to no
trend (1:1 straight-line).

These points indicate that the innovative trend identification methodology does
not give information only about the existence of the trend in the time series but
additionally about its magnitude (slope, d). The significant conclusion is that any
plot of two-halves from a given time series in ascending order is enough to identify
trend existence and its magnitude irrespective of data length. In Fig. 5.15, although
trends are taken from respective 10,000 length time series, just for the sake of
clarity and explanation only 1,000 points are shown. In each one of these time
series increasing and decreasing monotonic trends are shown explicitly with their
corresponding consequences on the square area.

5.4.1.2 Dependent Process Simulation Results
In order to perform the power of the proposed methodology, a set of Monte Carlo
simulations are presented by taking into consideration first order (Markov)
autoregressive (AR) stochastic process with PDFs. The simulation procedure first
generates synthetic time series, Xi, of length 10,000 values according to the fol-
lowing model:

Xi ¼ lþ q Xi�1 � lð Þþ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2

p
ei; ð5:1Þ

where l and r are the mean and standard deviation of the process; q is the first order
serial correlation coefficient and ei is the normal independent process with zero
mean and unit variance, NIP (0, 1). The set of simulations is based on the serial
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correlation coefficients, q = 0.1 (±0.2) ± 0.9. Equation (5.1) generates trend-free
stationary time series, which are converted to nonstationary forms by embedded
with increasing and decreasing trend components of slopes, d = 0.001
(±0.02) ± 0.09. The slope is embedded through the simple linear trend component
addition to the basic stochastic process according to Xi + di, where i = 1, 2, …,
10,000.

Figure 5.16 summarizes the simulation results from above-mentioned AR pro-
cess given a high serial correlation coefficient, q ¼ 0:9; with a set of embedded
trends. Each one of the thick lines includes 5,000 generated normal dependent
values (because 10,000 values were generated for each simulation) as the first half
versus the second half. The fine lines are drawn through these thick simulation
results in each triangular area. It is obvious that as the absolute value of the trend
slope increases the results fall away from the 1:1 straight-line. During the simu-
lation, it is noted that the straight-lines in Fig. 5.16 are a result of normal PDF.

Comparison of Figs. 5.15 and 5.16 indicate that whether the time series is
independent or dependent, there is no difference in the square area procedure and as
long as the basic time series has a monotonic trend, the appearance of the
two-halves sorted magnitude plots will appear along 45° straight-lines without any
distinction. This statement alleviates the drawback of the MK trend test, which
requires independent data. Additional illuminating points can be drawn from the

Fig. 5.15 Independent process trends on square area
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square area plot in Fig. 5.17, where this time the trend slope is kept constant
(d = 0.009) and trend appearances are shown for a set of serial correlation coeffi-
cients (−0.9; −0.7; −0.5; −0.3; 0.0; 0.3; 0.5; 0.7; 0.9).

This figure indicates that the upper (lower) triangle include positive (negative)
correlation coefficient cases, which is another improvement on the MK test, where
the serial correlation cannot be accounted at all in the calculations. The more the
serial correlation coefficient absolute value, at the same trend magnitude (herein,
d = 0.009), the more effective is its occurrence on the square area template.

Fig. 5.16 Trend lines with respect to 1:1 straight-line for a set of slopes

Fig. 5.17 Trend chart of trend (d = 0.009) embedded first order AR processes
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Figure 5.18 provides linear relationship between the trend and square area template
slopes for given serial correlation coefficient. In the same figure corresponding root
mean square (RMS) errors are also presented and they are all very small within
practically acceptable limits.
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It is obvious that there is almost perfect linear relationship between the trend
magnitude (slope, d) and the trend representative line on square area template for
any given serial correlation coefficient. Table 5.1 provides numerical values of the
relationship between q, d, and b.

This table can be used to determine the magnitude of monotonic trend in any
time series provided that the serial correlation coefficient and the slope on the
square area template are determined.

After all what have been explained above, it is possible to state that the new
methodology yields information about the low values of the first half with low
values of the second half leading to the following conclusions:

(1) If low, high, medium, and high value plots of the two-halves are above (be-
low) the 1:1 (45°) straight-line, then there is an increasing or decreasing trend,

(2) In case of increasing (decreasing) trend, if all the low, medium, and high
values fall on almost parallel line to 1:1 (45°) straight-line then there is a single
monotonic trend in the time series,

(3) Otherwise, low, medium, and high values may have different positions on the
plot area, and this implies to the existence of various sub-trends in the time
series structure,

(4) The proposed methodology can provide detailed information about the low,
medium, and high value trends in the time series and their relative effective-
ness to each half.

In Fig. 5.19, a set of trend-embedded (d = 0.009) simulation synthetic sequences
is given, for a set of autocorrelation coefficients.

The corresponding plots of these time series around 1:1 (45°) straight-line are
given in Fig. 5.20 for various serial correlation coefficient. Again straight-lines
parallel to 1:1 (45°) and basic line are plotted based on half time series simulation
result values (5,000 values) according to sorting procedure. Since embedded trends

Table 5.1 Trend slope, serial correlation coefficient and trend line intersection

Trend
slope, d

Independent
process

First order stochastic serial correlation coefficient (q)

0.0 0.1 0.3 0.5 0.7 0.9

−0.09 −45 −50.048 −64.343 −90.080 −150.133 −450

−0.07 −35 −38.934 −50.058 −70.080 −116.800 −350

−0.05 −25 −27.824 −35.772 −50.080 −83.465 −250

−0.03 −15 −16.713 −21.486 −30.078 −50.131 −150

0.00 0.0 0.0 0.0 0.0 0.0 0.0

+0.03 15 16.624 21.372 29.920 49.871 150

+0.05 25 27.736 35.658 49.921 83.205 250

+0.07 35 38.846 49.944 69.922 116.538 350

+0.09 45 49.957 64.223 89.922 149.872 450
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are monotonic, the lines are parallel to 1:1 (45°) straight-line. One can conclude
from this figure that as the absolute value of the serial correlation coefficient
increases the trend representing lines get away from 1:1 (45°) straight-line basic
line. The chart in this figure helps to answer to the following questions:

(1) Is there a linear trend embedded in the given time series?
(2) What is the serial dependence coefficient (q) in the series?
(3) Is it possible to identify the trend in a given series without pre-whitening?

Figure 5.21 represents comparatively weaker (d = 0.009) trend for the same set
of serial correlation coefficients. There is no change in the previous interpretations
and the straight-lines get away from the basic 1:1 line.

Fig. 5.19 Increasing and decreasing trends

Fig. 5.20 Trend lines (0.09) with respect to 1:1 line for a set of correlation coefficient
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All the previous figures had monotonic trends as in Fig. 5.21, but to expand the
applicability of the proposed 1:1 (45°) straight-line methodology. Figure 5.22 is
given as a representative example among numerous simulation results that
increasing but nonmonotonic trends can also be depicted by the same methodology.

In Fig. 5.22a, Gamma PDF simulation results are presented with shape and scale
parameters as 5 and 6, respectively. Four different but successive trends are
embedded onto the basic time series, where the first, second, third, and fourth trend
components appear between 1–1,500; 1,501–5,500; 5,501–8,000; and 8,001–
10,000, and trend slopes are 0.001; 0.003; 0.005; and 0.007, respectively. The same

Fig. 5.21 Trend lines (d = 0.009) with respect to 1:1 (45°) straight-line for a set of correlation
coefficient

Fig. 5.22 Nonmonotonic trends, a Gamma PDF. b Normal independent process

198 5 Innovative Trend Analyses



simulation is repeated for normal independent process, NIP (0, 1), in Fig. 5.7. One
can deduct from Fig. 5.22 the following points:

(1) Even though the PDF is Gaussian the final trend plots in Fig. 5.22b does not
appear along a straight-line parallel to 1:1 (45°) straight-line contrary to
Figs. 5.20, 5.21, 5.22a,b and 5.31 where only monotonic trends exist,

(2) The 1:1 (45°) straight-line methodology is capable of identifying increasing
but nonmonotonic (multiple) trends. This provides a possibility even to
identify hidden (short duration) sub-trends in the whole time series,

(3) In the case of more than one successive trend, the plots according to 1:1 (45°)
straight-line method appear on the upper (piecewise increasing) and lower
(piecewise decreasing) triangular areas as curvature (nonlinear) traces,

(4) Combination of monotonic and piecewise trend embedded time series per-
formances mentioned above, lead to deduction that any nonparallel line
implies a combination of various scale nonmonotonic trends in the same time
series.

There will not be any uncertainty of a trend estimate under few extreme
minimum/maximum values, because the procedure in this section singles them out
on the 1:1 (45°) straight-line plot domain. However, in conventional trend identi-
fications, especially regression line fitting to a given time series will be affected by
the extreme values. In case of small sample size of a time series, again since each
couple of points from two-halves appears without any influence on other points on
the scatter diagram in Fig. 5.22, the possible trend component will show itself.

5.5 Innovative Trend Significance Test

Time series might embed characteristics of past changes concerning climate vari-
ability in terms of shifts, cyclic fluctuations, and more significantly in the form of
trends. Identification of such features from the available records is one of the prime
tasks of hydrologists, climatologists, applied statisticians, or experts in related
topics. Although there are different trend identification and significance tests in the
literature, they require restrictive assumptions, which may not be existent in the
structure of time series. In this section, a method is suggested with statistical
significance test for trend identification in an innovative manner. This method has
nonparametric basis without any restrictive assumption and its application is rather
simple with the concept of subseries comparisons that are extracted from the main
time series. The method provides privilege for selection of sub-temporal half
periods for the comparison, and finally, generates trend on objective and quanti-
tative manners. The necessary statistical equations are derived for innovative trend
identification and statistical significance test application.
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5.5.1 Deterministic Basis

In order to explain the basic idea behind the innovative methodology, first of all a
linear trend function is considered between an independent time variable, t, and
dependent variable, y, as,

y ¼ aþ bt ð5:2Þ

where a and b are the intercept on y axis and slope parameters, respectively. In a
deterministic methodology, there are few alternatives to determine the parameter
values.

(1) The simplest way is applicable provided that the independent, (t1, t2), and
corresponding dependent, (y1, y2), variable pairs are known as two points. The
substitution of these values into Eq. (5.2) helps to calculate the parameters
from resulting two equations by elimination methodology,

(2) Calculation of the slope value, b = (y2 − y1)/(t2 − t1), and its substation into
Eq. (5.2) leaves only one unknown, which can then be calculated by substi-
tution of coordinates either one of the given points leading to a = y1 − bt1 or
a = y2 − bt2,

(3) If a regular sequence of n independent time variable, (t1, t2, …, tn) and cor-
responding dependent variable sequence, (y1, y2,…, yn) are given then one can
calculate the unknown parameters, (a and b), either by considering any two
points and apply the same methodology as in the two previous items or by
consideration of all the given set of coordinates simultaneously through a
linear regression methodology.

The core of the innovative trend test methodology is similar to this last item
parameter calculation. The question is, provided that independent and dependent
variable sequences are available, how to obtain the straight-line trend parameters?
The explanation of this point can be given through the following deterministic
numersimulation results are presented with shapeical example.

Let the parameter values in Eq. (5.2) be as a = 2.5 and b = 0.25 in addition to
the number of data, say, n = 126. It is obvious that the result will appear as a
straight-line given in Fig. 5.23a.

In Fig. 5.23b the innovative trend plot of the same deterministic data is pre-
sented as already explained by Şen (2012, 2014). In brief, the innovative trend plot
requires division of the given time series into two-halves each sorted in ascending
order, and finally, plot of the first half versus the second half as in Fig. 5.23b. In the
preparation of this figure dependent variable sequence values, (y1, y2, …, yn), are
used for data line construction. The following features can be deduced from
Fig. 5.23b.

(1) Deterministic dependent variable half plots fall on a definite straight-line
referred to as “Data line,”
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(2) 1:1 (45°) straight-line indicates neutral trend (notrend) line and any deviation
from this line indicates existence of a trend in the given dependent variable
(Şen 2012). In Fig. 5.23b there is an obvious increasing trend because the data
line is above the 1:1 (45°) straight-line,

(3) The arithmetic averages of the two-halves appear as the “Centroid point” that
falls on the data line,

(4) The vertical difference between the data and 1:1 (45°) straight-lines is related
to the slope of the existing trend in the dependent variable (Şen 2014),

(5) The vertical distance is equal to the difference between the arithmetic means of
the two-halves, which appears as 15.57 in Fig. 5.23.

In the previous studies, there have not been any formulation derivations but
qualitative assessments only. In this chapter, new numerical trend identification
procedure and significance test are presented in the following sequel.

After the completion of above five steps one can calculate the slope, b, of the
trend according to the following expression:

b ¼ 2ðy2 � y1Þ
n

; ð5:3Þ

where y1 and y2 are the arithmetic averages of the first and the second halves of the
dependent variable, y, sequence, and n is the number of data. The substitution of the
numerical values as n = 126, and the arithmetic averages from Fig. 5.23b as y1 ¼
10:50 and y2 ¼ 26:25 into Eq. (5.3) yields b = 0.25, which is exactly the same
value in Fig. 5.1. Hence, the procedure in the preparation of Fig. 5.23b with the use
of Eq. (5.3) helps to find the slope of the trend in a given time series.

On the other hand, the calculation of y axis intercept, a, on the vertical axis in
Fig. 5.23a, can be achieved according to the second item in the abovementioned
parameter value calculations. For this purpose, one needs to know the coordinates
of a single point, which is logically adapted as the arithmetic averages of time
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sequence, t, and, y, of the dependent variables, respectively (Fig. 6.23a). The
substitutions of these coordinate values and the slope from Eq. (5.3) into Eq. (5.2)
gives the trend intercept parameter estimation as

a ¼ y� 2 y2 � y1ð Þ
n

t ¼ y� bt: ð5:4Þ

Finally, the substitution of the relevant quantities into the basic equation
(Eq. 5.2) leads to the most detailed formulation of the innovative trend expression
as

y ¼ y� 2 y2 � y1ð Þ
n

tþ 2 y2 � y1ð Þ
n

t ¼ y� bðt � tÞ: ð5:5Þ

In case of notrend, y1 ¼ y2 and this last expression leads to y ¼ y, which means
that the time series has a constant arithmetic average and, hence, no trend for which
the innovative trend slope is 1:1 (45°) line as in Fig. 5.23b.

5.5.2 Stochastic Basis

In case of stochastic variables most often one has hydro-meteorological time series
that require trend search for different purposes and most often for the climate
change possibilities. In general, any hydro-meteorological time series has deter-
ministic components as possible jumps, periodicities, and trends in addition to the
stochastic residuals that are free of any deterministic parts. Herein, the identification
of trend component is explained similar to the deterministic basis as explained in
the previous subsection. In order to show the effectiveness of the proposed model,
two synthetically generated time series are examined for the establishment of the
stochastic basis of the innovative trend identification. The first example is for a
normal probability distribution (PDF) and the second one is for a skewed Gamma
type PDF.

5.5.2.1 Normally Distributed Stochastic Time Series
A synthetic time series is generated according to a first order Markov process with
the mean, standard deviation and first order correlation coefficient values as l = 10,
r = 5 and q = 0.5, respectively, with normal (Gaussian) PDF random component.
The length of the stochastic time series is considered as n = 1,000 and synthetically
a trend is embedded with slope b = 0.015. The generated synthetic time series with
these specifications is presented in Fig. 5.24a. Generation of synthetic sequences
with different serial correlation coefficients and their innovative trend plots fall on
the same “Data line” within practically acceptable sampling relative errors of less
that ±5%.

All the necessary quantitative values are provided on the innovative trend plot in
Fig. 5.24b. The substitution of these mean values into Eq. (5.3) yields the slope
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value of the embedded trend as s = 2(30.8095 − 23.389)/1000 = 0.0148 ≅ 0.015,
which is the value of the embedded slope in the stochastic process.

The arithmetic averages of the time series independent time, t, and dependent, y,
variables are t ¼ 500 and y ¼ 27:159, respectively. The corresponding intercept
value can be obtained from Eq. (5.4) by substitution of the relevant values as
a = 27.159 − 0.0148 � 500 = 19.76, which is within less than ±5% relative error,
re, from the value in Fig. 5.24a. Herein, re = 100 � (19.845 − 19.760)/19.845 =
0.42% < 5%, and this value is within the acceptable limit of error.

5.5.2.2 Gamma Distributed Stochastic Time Series
In practical applications Gamma PDF is frequently used, because depending on the
parameter values different PDF types appear. In the simulation, again n = 1,000
data set is generated as dependent variable, y, with the trend slope, b = 0.020, shape
parameter, a = 2.3, scale parameter, b = 5.4 and correlation coefficient, q = 0.5.
The final result with trend component is presented in Fig. 5.25a, which is one of the
samples from an ensemble of different 1,000 length synthetic series.

In order to calculate the slope value, all the necessary quantities are given in
Fig. 5.25b. The substitution of the relevant quantities from Fig. 5.25b into Eq. (5.3)
yields the slope value as b = 2 � (40.696 − 29.667)/1000 = 0.021, which is
within ±5% error limits from the slope value in Fig. 5.18a.

On the other hand, the time series time, t, and, y, variable averages are t ¼ 5:4:3
yields a = 35.182 − 0.021 � 500 = 24.682. The relative difference between this
value and the corresponding intercept in Fig. 5.18a is 100 � (24.682 − 24.153)/
24.682 = 2.14%, <10% and, therefore, these results remain within the sampling
error limits.
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5.5.3 Statistical Innovative Trend Test

The trend analysis as presented in this chapter is based on the comparison of
two-half sample means. A test is convenient for the construction of confidence
intervals by taking into consideration the difference between two population means.
For this purpose, the null hypothesis, H0, implies that there is not a significant trend
if the calculated slope value, b, remains below a critical value, bcr. Otherwise, an
alternative hypothesis, Ha, is valid when b > bcr. In order to develop an innovative
significance test, it is necessary to derive the PDF of null hypothesis case. It is not
necessary to search for the significance test of the intercept parameter, because the
trend line is supposed to pass through the arithmetic averages of the independent
and dependent variables. As for the slope parameter Eq. (5.3) shows that the
stochastic property of b is a function of the first and second half time series
arithmetic average values. Since y1 and y2 are also stochastic variables the first
order moment (expectation) of the slope value can be obtained by taking the
expectation of both sides leading to

EðbÞ ¼ 2
n
Eðy2Þ � Eðy1Þ½ �: ð5:6Þ

After all what have been explained in the previous sections in the case of no
trend, the centroid point falls on the 1:1 line, which implies that Eðy1Þ ¼ Eðy2Þ and,
therefore, E(b) = 0.

On the other hand, the variance of the slope can be calculated as r2b ¼
E b2ð Þ�E2 bð Þ or r2b ¼ E b2ð Þ, which is equal to the second order moment of the
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slope variable. This can be obtained by taking the expectation of both sides in
Eq. (5.3) after the square operator resulting in

r2b ¼
4
n2

E y22
� �� 2E y2y1ð ÞþE y21

� �� �
:

Because E y22
� � ¼ E y21

� �
, it is possible to obtain the following expression:

r2b ¼
8
n2

E y22
� �� E y2y1ð Þ� �

: ð5:7Þ

The correlation coefficient between the two mean values is given in the
stochastic processes as follows:

qy2y1¼
E y2y1ð Þ � E y2ð ÞE y1ð Þ

ry2ry1

:
ð5:8Þ

Substitution of the numerator of this expression into Eq. (5.7) and consideration
stochastically that ry2 ¼ ry1 ¼ r=

ffiffiffi
n

p
and, hence, Eq. (5.8) takes its final form as

follows:

r2b ¼
8
n2

r2

n
ð1� qy2y1Þ: ð5:9Þ

In this last expression, qy2y1 implies cross-correlation coefficient between the
ascendingly sorted two-halves’ arithmetic averages. The standard deviation of the
sampling slope value can be obtained from Eq. (5.9) as

rb ¼ 2
ffiffiffi
2

p

n
ffiffiffi
n

p r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qy1y2

q
: ð5:10Þ

Furthermore, the third order moment of the slope variable is also equal to zero
and the same is valid for all the odd order moments. This is the reason why the PDF
of the slope, s, abides with the normal (Gaussian) PDF with zero mean and the
standard deviation given in Eq. (5.10).

The most significant point in the application of this formulation is that the
cross-correlation is between the two-sorted half time series. The statistical signifi-
cance of the innovative trend slope test can be achieved through a normal (Gaus-
sian) PDF with zero mean and standard deviation equal to Eq. (5.10).

5.5.4 Application

The stochastic innovative trend analysis as explained in the previous sections is
applied to time series from different parts of the world. As for the long records
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Southeastern New Jersey annual mean temperature data, Danube River annual
discharge data, and annual mean precipitation data from the Tigris River drainage
basin at Diyarbakir meteorology station are considered for the application to actual
data. The simple statistical quantities of each station are presented in Table 5.2.

In general, most researchers look for the monotonic trend possibility within a
given hydro-meteorological time series along the whole record length. The time
series with trend and the innovative trend plots are given in Figs. 5.26, 5.27 and
5.28 for each data set.

In the application of innovative trend test, the basic criterion is the normal
(Gaussian) PDF with zero mean and standard deviation rb (Eq. 5.10). If at a
percent significance level the confidence limits of a standard normal PDF with zero
mean and standard deviation is bcri then the confidence limits (CL) of the trend
slope can be expressed according to the following expression:

CLð1� aÞ ¼ 0� bcri rb; ð5:11Þ

where rb is the slope standard deviation. All the necessary calculations and addi-
tional information with the operations in the last column are presented in Table 5.3.

One of the important points in this table is high cross-correlation values in row 6,
because they are calculated depending on the ordered sequence in each half series.
Slope value, b, of each station falls outside the lower and upper confidence limits
and, therefore, in row 11 the alternative hypotheses, Ha, are adopted and they
indicate the existence of trends (YES) as decisions. In the last row, the type of trend
is stated depending on the slope sign in row 3.

The trend identification is one of the most significant elements in any climate
change study. The most commonly used methodology for the identification is the
Mann–Kendal (MK) trend test, but it requires few basic assumptions, which may
not be valid in natural hydro-meteorological time series. MK test is misleading in
the presence of data autocorrelation. Although several researchers have suggested
pre-whitening procedure to render the original time series into a serially indepen-
dent structure, but it is noticed that such a procedure cannot yield really embedded
trend in the time series but with some bias. In the classical trend calculations serial
independence, homoscedasticity and normal probability distribution assumptions
must be satisfied. Such assumptions maybe guaranteed to a certain extent after

Table 5.2 Descriptive features of actual data

Name Country Record duration
(year), n

Statistical features

Mean, y St. Dev., ry
New Jersey USA 116 53.04 °F 1.30 °F

Danube River Romania 164 5566.8 m3/s 944.91 m3/s

Tigris River Turkey 49 483.92 mm 124.74 mm
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convenient transformations of the original series, which may not reflect genuine
trend behavior of the series.

The procedure presented in this section does not require assumption, and it is
based on the comparison of the two ascendingly ordered halves from the original
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time series. The necessary formulations for the trend identification are derived
explicitly and then monotonic trend significance test is presented in detail. The
applications of the innovative trend significance statistical test are presented for the
New Jersey temperature, Danube River discharge, and Tigris River meteorology
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station rainfall records at Diyarbakir meteorology station in the Southeastern part of
Turkey. The suggested methodology is easy to apply and all the steps are logically
presented in a rational manner.
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5.6 Crossing Trend Analysis Methodology

Trend analyses are the necessary tools for depicting possible general increase or
decrease in a given hydro-climatologic time series. There are many versions of
trend identification methodologies such as the M–K trend test, S-R, Sen’s slope,
regression line, and Şen’s innovative trend analysis. The literature has many papers
about the use, cons and pros, and comparisons of these methodologies. In this
section, a completely new approach is proposed based on the crossing properties of
a time series. It is suggested that the suitable trend from the centroid of the given
time series should have the maximum number of crossings (total number of
up-crossings or down-crossings). This approach is applicable whether the time
series has dependent or independent structure and also without any dependence on
the type of the probability distribution function. The validity of this method is
presented through extensive Monte Carlo simulation technique and its comparison
with other existing trend identification methodologies.

Trend identification is one of the major topics in data processing concerning
social, medical, industrial, scientific, and engineering studies for betterment of
future predictions. Their physical causes maybe due to the changes in the natural
events such as the climate change or depreciation and improvement in the human
made instruments. Especially, in water sciences increasing and decreasing trend

Table 5.3 Innovative trend test results

No. Name of
stations

New Jersey Danube River Diyarbakir Operations

1 Type of data Annual
temperature (°F)

Annual
discharge (m3/s)

Annual total
rainfall (mm)

2 Number of
data

116 164 49

3 Slope, b 0.021 −0.587 −1.113 Equation (5.3)

4 Intercept, a 51.818 5614.94 511.191 Equation (5.6)

5 Standard dev.,
r

1.3025 944.921 124.738 From the whole series,
y

6 Correlation,
qy1y2

0.9749 0.9767 0.9495 Ordered half series
cross-correlations

7 Slope standard
dev., rb

0.000467 0.1942 0.2386 Equation (5.10)

8 Significance
level

0.05 0.05 0.05 Practically adopted

9 Lower CL −0.000768 −0.3194 −0.3925 Equation (5.11)

10 Upper CL +0.000768 +0.3194 +0.3925 Equation (5.11)

11 Hypothesis Ha Ha Ha Alternative hypothesis

12 Decision Yes Yes Yes According to Ha

13 Type of trend Increasing Decreasing Decreasing According to sign of b
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tendencies bring into consideration the assessments of droughts, water scarcities,
desertifications or floods and flash floods with water inundations. These water
related events are also reflective in the agricultural and food production sectors.
Climate change due to global warming has huge impact on the environment,
weather patterns, and rise in sea level, which can be depicted by temporal trend
analysis.

Although the visual appreciation of trend component in a given
hydro-climatologic time series has been possible since the start of meteorological
records in the second part of the eighteenth century, development of analytical
methodologies came into existence in the first part of the nineteenth century (Mann
1945). His method provides information whether there is a trend within the time
series with its verbal direction as increasing, decreasing, or neutral type. Later, Sen
(1968) provided a quantitative slope calculation method for the trend component
within a given time series. The M–K nonparametric trend test (Mann 1945), is
functionally identical to Kendall’s (tau) test for correlation (Kendall 1975), and the
associated slope estimation by Sen (1968) median procedure.

On the other hand, Spearman’s rho, which is a distribution-free statistic, is useful
for the trend significance test (Spearman 1904). It is less widespread than the
commonly applicable M–K trend test. However, the two tests are equivalent for the
case of serially independent observations. Daniel (1990) has provided further
explanations and improvements in the application of the Spearman’s tau approach.

The regression monotonic line is among the parametric procedures for trend
testing. The two sample t-test can be applied for step type of trends (Iman and
Conover 1983). In these procedures, trend magnitude estimations are the regression
slope and the difference in the means. On the other hand, nonparametric methods
are the Mann–Kendall test and the Rank-Sum test (Bradley 1968), and their trend
estimations are obtained according to Sen (1968), which is equivalent to the median
of all pairwise slopes in the data set. Additionally, the Hodges–Lehmann estimator
is the median of all differences between data in the first data set and data in the
second data set (Hodges and Lehmann 1963).

Nonparametric procedures have significantly higher power than parametric
procedures in cases of substantial departures from normal (Gaussian) probability
distribution function (PDF) and the large sample sizes (Helsel and Hirsch 1988).

In addition to all available trend methodologies, a new one is suggested in this
chapter as the “crossing trend,” which depends on the maximum number of
crossings (up-crossings or down-crossing) within a given hydro-climatological time
series. This method hypothesis a set of different slope trends and the one with the
maximum-crossing point is identified as the valid one.

The main purpose of this chapter is to suggest an innovative crossing trend
analysis methodology with its significance test. The validity of this method is
confirmed by extensive Monte Carlo simulation technique by taking into consid-
eration different sample sizes and probability distribution functions (PDFs). The
results are compared with the Sen’s slope method and it is found that the differences
are within the practically acceptable relative error percentage of ±10%. The
application of the innovative crossing trend analysis is performed for actual

5.6 Crossing Trend Analysis Methodology 211



meteorological records of annual daily extreme (maximum) rainfall from seven
different climatological regions of Turkey.

5.6.1 Rational Concept

The main idea is that at various trend slope truncation levels that passes through the
time series centroid, the number of crossing (up-crossings or down-crossings) is the
maximum (Şen 2017). In order to illustrate this point, a hypothetical time series and
its truncation—at different trend levels are given with the number of crossing points
in Fig. 5.29.

In this figure, a series of increasing and decreasing trends are given and among
them the one with the maximum crossing (up-crossing or down-crossing) number is
the most representative trend-line. In this manner, the trend identification does not
depend on the PDF of the hydro-climatologic variable. Besides, one can also cal-
culate the surplus and deficit quantities on the basis of the trend line, if necessary. In
Fig. 5.30, various quantities along the truncation level are shown. In this figure, SL
(DL) implies surplus (deficit) lengths and there are 5(4) of them.

5.6.2 Theoretical Background

In any hydro-climatologic record series-crossing points at a truncation level provide
not only information on wet and dry spell features, but also about the internal
structure of the series (Şen 1977). For instance, the more is the crossing points at the
median truncation level, the less is the serial dependence. In an independent series
at the median level practically the number of up-crossings is equal to the
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down-crossing number. In Fig. 5.30, up-crossings and down-crossings are indicated
with arrows. Theoretically, in an infinite independent series, irrespective of the
PDF, the number of crossings abide by the Poisson process (Feller 1968). However,
in finite sample lengths, n, the expectation and the variance of the number of
up-crossings, Nu, have been derived by Şen (1991) as

E Nuð Þ ¼ np 1� pð Þ ð5:12Þ

and

V Nuð Þ ¼ E Nuð Þ 1� 3pþ 3p2
� �

; ð5:13Þ

respectively. Herein, p is the probability of surplus numbers over the median
truncation level. The average number of up-crossings increases with the sample
length, n, but decreases as the truncation level increases. The maximum up-crossing
(down-crossing) number occurs at 0.5 truncation level (Fig. 5.31). In general, such
a truncation level corresponds to average = mode = median value in symmetrical
PDFs, but to the median value in unsymmetrical PDFs (Fig. 5.31).

The PDF of up-crossings is shown to be in accord with the normal (Gaussian)
PDF with mean and variance as in Eqs. (5.12) and (5.13), respectively. The stan-
dard deviation of the up-crossing number is shown in Fig. 5.32.

Under the light of the aforementioned information, it is possible to benefit from a
normal (Gaussian) PDF for the significance test of innovative crossing trend either
by the use of Eqs. (5.12) and (5.13) or with their standardization as
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ms ¼ EðNuÞ
n n� 1ð Þ ð5:14Þ

and

ss ¼ VðNuÞ
E Nuð Þð1� 3p� 3p2Þ ð5:15Þ

respectively.
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5.6.3 Monte Carlo Simulations

In order to fix the validity of the crossing trend analysis, a set of Monte Carlo
simulation studies is achieved, where 1,000 synthetic series are generated according
to normal (Gaussian), Gamma and exponential PDF’s. Each synthetic series is
subjected to suggested innovative crossing trend analysis, the Mann–Kendall trend
test, Sen’s slope and Şen (2012, 2014) innovative trend slope and corresponding
trend lines. In the simulations, the set of embedded slopes, sd, are considered as
decreasing (increasing) trends −0.007, −0.005, −0.003, −0.001 (0.1, 0.3, 0.5 and
0.7) with sample sizes as 25, 50, and 100. The simulation results are given as a set
of graphs in Fig. 5.33. In this figure for each PDF three graphs are shown for the
sake of visual inspection each for sample sizes 25, 50, and 100.

The numerical results of extensive simulation study are presented in Table 5.4.
The simulations are carried on for three PDFs, namely standard normal (Gaussian)
PDF with zero mean and unit standard deviation; Gamma PDF with location and
scale parameters as 2 and 1, respectively; finally, the exponential PDF with its
single parameter as 2.

Both Gamma and exponential PDF generations can be achieved with different
parameter sets, but for the sake of brief description in this chapter only the afore-
mentioned parameters are considered.

In this table, n indicates the sample length and R.E. is defined as the absolute
relative error

R:E: ¼ 100
se � scj j
se

; ð5:16Þ

where se and ss are embedded and innovative crossing trend simulation slopes,
respectively. In the first column of Table 5.1 are the embedded slope values, and
simulation trend slopes are shown in the second, fourth, and the sixth columns
under each sample length. It is obvious from this table that the absolute relative
errors are less than practically acceptable 10% level, and the mean R.E. values are
far less that this acceptable percentage level.

After all what have been explained so far as the simulation results are concern, it
is evident that the innovative crossing trend analysis is valid for practical
applications.

5.6.4 Application

For the application of the innovative crossing trend analysis, seven annual daily
extreme rainfall records are considered from seven different climatology regions of
Turkey. Each one has more than 50 years of records and this is a statistically valid
sample size for reliable studies. The meteorology station locations are given in
Fig. 5.34.
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Each station represents different climatological region within Turkey. For
instance, Ankara station is located in a dry, rather arid, and steppic region in the
Central Anatolia, which is far away from the maritime climatic effects. This area
includes the least rainfall receiving region of Turkey with annual average rainfall
amounts less than 250 mm. Antalya is located along the Mediterranean coastal area
of Turkey with typical Mediterranean climate impacts. Toward the northern part of
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this region are the Taurus Mountain chain with elevations more than 3,000 m above
mean sea level, and therefore, it is one of the humid regions in Turkey. Frequent
orographic rainfall types occur, which causes to occasional floods. The geological
composition is of limestone and dolomatic rocks with karstic features, and there-
fore, rainfalls recharge the groundwater in the region. It is regarded as one of the
surface and ground water rich parts of Turkey. Diyarbakir station is in the

Table 5.4 Simulation results with relative error percentages

Gaussian PDF

Embedded slope, se n = 100 R.E. (%) n = 50 R.E. (%) n = 25 R.E. (%)

0.0010 0.0011 9.1000 0.0011 9.0909 0.0011 9.7473

0.0030 0.0033 9.7667 0.0033 9.6386 0.0027 9.4092

0.0050 0.0054 8.5400 0.0051 1.5748 0.0057 12.0338

0.0070 0.0072 2.3000 0.0066 5.3107 0.0078 10.6345

−0.0070 −0.0076 8.8857 −0.0075 6.1788 −0.0073 3.5015

−0.0050 −0.0047 6.2000 −0.0049 2.9442 −0.0057 11.4888

−0.0030 −0.0032 6.8000 −0.0032 6.9479 −0.0033 9.0909

−0.0010 −0.0011 10.3000 −0.0011 9.0082 −0.0010 2.2495

Mean – 7.7365 – 6.3368 – 8.5194

Gamma PDF

0.0010 0.0009 5.4852 0.0010 3.1946 0.0011 5.6604

0.0030 0.0028 8.5384 0.0030 1.4131 0.0031 3.3194

0.0050 0.0050 0.9285 0.0054 7.4417 0.0045 10.6440

0.0070 0.0068 2.3691 0.0073 3.7801 0.0067 4.0583

−0.0070 −0.0073 3.8065 −0.0078 10.4859 −0.0079 10.9641

−0.0050 −0.0051 2.2101 −0.0050 0.1201 −0.0049 1.9992

−0.0030 −0.0031 4.0307 −0.0032 5.2133 −0.0032 7.0344

−0.0010 −0.0009 6.6098 −0.0011 9.5841 −0.0011 9.0909

Mean – 4.2473 – 5.1541 – 6.5963

Exponential PDF

0.0010 0.0010 1.7682 0.0011 9.4203 0.0009 9.2896

0.0030 0.0031 1.9287 0.0033 10.1527 0.0033 9.1460

0.0050 0.0049 2.2077 0.0048 4.3841 0.0050 0.8723

0.0070 0.0077 9.5490 0.0074 4.9946 0.0078 10.1873

−0.0070 −0.0071 1.9471 −0.0076 8.3170 −0.0077 9.2912

−0.0050 −0.0054 6.5246 −0.0048 4.6025 −0.0047 6.8148

−0.0030 −0.0031 3.8770 −0.0028 6.8376 −0.0033 8.2849

−0.0010 −0.0011 7.1495 −0.0011 9.9099 −0.0011 9.4203

Mean – 4.3690 – 7.3273 – 7.9133
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southeastern province of Turkey away from the sea born air mass movements, and
therefore, it has continental climatic features. Due to its unique position at the upper
end of the Mesopotamian valley, the rainfall occurrences are rare and mostly
summer seasons are extremely hot and winter seasons are mild. Erzurum station
represents rugged mountainous region of eastern Turkey with severe winter con-
ditions and rather cool summer months. Izmir location is the representative of the
Aegean Sea at the western coastal area of Turkey. It has hot summer months and
mild winter season with moderate rainfall events throughout the year. Finally,
Trabzon meteorology station is chosen for the representation of the Black Sea
rainfall regime, which is rainy almost throughout the year. This is due to the fact
that North Atlantic born air masses that descend southwesterly over the Europe and
then over the Black Sea with moisture and the coastal parallel mountain chains
cause to frequent orographic and cyclonic rainfall occurrences.

Seven meteorology station records are treated by the innovative crossing trend
analysis and also classical Sen’s slope regressions. Figure 5.35 indicates the
innovative crossing trends in each record and also the test results are presented in
Table 5.6 for each station by considering the Sen slope and the suggested
methodology features as explained in Sects. 5.6.1 and 5.6.2.

Visual inspection of each graph provides reflections that the innovative crossing
trend analysis well identifies the trend component in each location. For the sake of
comparison trend calculated on the basis of Sen’s slope is also given on the same
graphs.

However, for quantitative analyses Table 5.6 is prepared, where both Mann–
Kendall trend test and the innovative crossing trend analysis quantities are pre-
sented. In this table LL and UL are for the lower and upper significance levels. It is

Fig. 5.34 Meteorology station locations
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Fig. 5.35 Innovative crossing trend components
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Fig. 5.35 (continued)
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to be noticed that the confidence limits in the case of Mann–Kendall trend test
remain the same without depending on the sample size. However, as obvious from
Eqs. (5.14) and (5.15) the confidence limits are functions of the sample size for the
innovative crossing trend analysis. Z is the statistics value of the Mann–Kendall
trend test, and C is the number of up-crossing for the innovative crossing trend
calculations. In the table, trend tests are probed for two levels, 90 and 95%.

Trend component identification in the climatological time series constitutes very
important aspect, especially for the climate change description and, therefore, such
studies have increased unprecedentedly since the last three decades. There are
different methodologies for this purpose, but each one with restrictive assumptions.
In this chapter, entirely new concept of trend identification is proposed by taking
into consideration the number of crossings on the possible trend line. It is stated that
the trend component should have the maximum number of crossings among many
different trend alternatives. In order to select the most valid one, the given clima-
tological time series is probed with a set of trend representatives that passes through
the centroid point of the data. The centroid is defined as the point in the time series
with abcissa as the half of the sample size and the ordinate equal to the median of
the recorded values. The formulations are given at the median level as for the
number and the variance of the crossing points with no trend within a serially
independent time series. They do not dependent on the type of probability distri-
bution function. The validity of innovative crossing approach is shown by extensive
Monte Carlo simulation studies based on different sample sizes and probability
distribution functions. The application of the innovative up-crossing trend analysis
is presented for seven distinctive climatological regions of Turkey for annual daily
extreme (maximum) rainfall records, which have physically independent serial
structure so as to abide with the theoretical requirement of the suggested
methodology.
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Fig. 5.35 (continued)
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6Spatial Trend Analysis

Abstract
Spatial trend concept is very useful in order to depict the systematic variations of
the phenomenon concerned over a region based on geographical locations or as
in this book based on two independent variables that may be any other two event
records. Different types of spatial trend alternatives are presented visually and
then their mathematical solutions under the title of trend surface analysis is
presented with derivation of the necessary spatial regression analysis approach.
Although there are different mapping procedures in this chapter, the most
advanced one, namely, Kriging geostatistically developed methodology is
explained for the purpose of 3D surface construction. Based on this approach
parallel and serial triple diagram models are explained for better interpretations
amount three different time series or three time series generated from the same
time series at two different lag times.

Keywords
Homogeniety � Isotropy � Kriging �Mass curve � Spatial � 3D � Trend surface �
Triple

6.1 General

Any natural phenomenon or its similitude occurs extensively over a region, and
therefore, its recordings or observations at different locations pose some questions
as, for instance, are there relationships in the form of trends between phenomena in
various locations? In such a question, the time is as if it is frozen and the phe-
nomenon concerned is investigated over the area and its behavioral occurrence
between the locations. Answer to this question may be provided descriptively in
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linguistic, subjective and vague terms, which may be understood even by non-
specialists in the discipline. However, their quantification necessitates objective
methodologies, which are one of the purposes of the context in this book. Another
question that may be stated right at the beginning of the research in the earth,
environment, and atmospheric sciences is that are places different in terms of the
phenomena present there? Such questions are the source of many people’s interest
in the subject.

Three-dimensional statistical techniques help to obtain maps of variable con-
cerned provided that the two geographic coordinates are given at the measurement
points. This procedure is referred to as the trend surface analysis in the statistics
literature. It is also referred to as the multivariate statistical analysis. Its basis is to
match a surface similar to ordinary regression analysis but in three-dimensional
space. The same restrictive assumptions as in the ordinary regression analysis are
also valid in the trend surface fitting. There are further difficulties in the spatial trend
surface search such as the paucity of spatial data and extensive computation
requirements. For the success of trend surface fitting uniform data distribution is
necessary.

The significance of trend surface analysis is to separate the spatial behavior of
the phenomenon into two components as the deterministic component in terms of
trend surface and the residuals, which are deviations of the measurements from the
fitted trend surface and they are the uncertain (random, stochastic) component. The
uncertain components are representatives of local sites, whereas the trend surface is
the regional behavior of the phenomenon concerned.

Trend analysis separates the ReV into two complementary components, namely
regional nature of deterministic variations and local fluctuations around the regional
component. The regional and local components are dependent on the scale of the
ReV. In any trend analysis there are three variables. In any spatial analysis there are
three general components for the application of a convenient methodology.

(1) The basis of any spatial analysis is two basic deterministic variables such as
easting and northing or longitude and latitude variables that provide locations
of measurement variable at a set of locations,

(2) Decomposition of the spatial variable first to a general regional deterministic
part, which can be expressed by any mathematical function,

(3) The stochastic (uncertain) part, which constitutes a set of deviations of the
measurements from the corresponding trend surface value.

In general spatially variable event may include gradual monotonic trends or even
abrupt changes (jumps) due to externally effective phenomenon. It is by now well
understood that the global warming leading to climate change imprints an
increasing trend into global temperature data. Abrupt changes may also take place
as a result of sudden or short duration exogenous impacts, such as volcanic erup-
tions, earthquakes, sudden changes in monitory rates (devaluation) and alike.
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The main purpose of spatial trend analysis is to decompose regional variable into
subcomponents such as trends, abrupt changes, stochastic, and entirely independent
error terms so that the construction of a suitable model by the synthesis of these
components provides opportunity to predict the variable concerned at
non-measurement sites.

Scientific treatment and interpretation of even error laden data lead to significant
practical knowledge concerning the oceans and atmosphere. It is the prime duty of
the scientist to filter out the meaningful portions of the data and to model randomly
the error part.

It is possible to obtain regular grid points from irregular measurement sites by
fitting a surface to available data, which can be achieved either globally or locally
over the study area. In the former case there is a single functional form of the trend
surface in addition to the stochastic nature of the residuals and the latter case is just
the repetition of global procedure on pieces of subareas within the study area.
Another version of the local surface fitting is to consider the neighbor points to
reach to locally representative trends. However, the most widely used procedure is
the global trend surface search, for this purpose the spatial variable is approached
by a polynomial expansion of the geographic coordinates, and the coefficients of the
polynomial function are estimated from available measurements by means of the
least squares method, which relies on the sum of the squared deviations mini-
mization from the trend surface. After the identification of the trend surface the sum
of the trend surface value at a site and the residual is equal to the measurement
value. The residuals are random variables either with independent structure, in
which case the probability distribution (PDF) is the representative of the spatial
randomness or in the case of dependent spatial residuals one of the most convenient
stochastic processes or the regionalized variable approach through the Kriging
methodology is the most representative approach (Matheron, 1969).

In general, the polynomial functions can be of any desired degree, the higher is
the degree the more is the computation rounding error. Therefore, in practice the
highest degree is adapted as 5 or 7. The unknown parameter coefficients of the
polynomials can be estimated from the simultaneous solution of a set of convenient
number of equations as explained in Sect. 6. Each one of these equations include
the sums of powers and cross products of the geographic (X, Y), and spatial variable
Z values. After the estimation of the coefficients the polynomial function provides
opportunity to calculate spatial variable value at any site (point) within the study
area. In general, in order to map the spatial variable one can calculate the spatial
variable values at regular mesh nodes and subsequently obtain the 2D contour or
3D map for the spatial variable.

Fixation of a trend surface to given set of spatial variable measurements at
irregular sites separates the whole measurements into two components, namely
trend and residual values. Trend values are collection of deterministic quantities,
but the residuals are uncertainty parts.
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6.2 Numerical Solution

It is well established that the analytical solutions of many practically applicable
differential equations is possible only through numerical analysis, where the vari-
able concerned is searched for the suitable value at the nodes of regularly located
mesh over the problem solution domain. This is tantamount to mathematical ver-
sion of the spatial analysis, where the generation mechanism of the phenomenon is
in the form of differential equations. For instance, in many engineering applications
including space research most often a first-order partial differential expression is
valid as follows.

@zðx; yÞ
@x

þ @zðx; yÞ
@y

¼ 0 ð6:1Þ

This is the steady state continuity (mass balance) form of any spatial variable
(quantity) independent of time domain. This expression represents in space
infinitesimally small prism that is shown in Fig. 6.1.

Figure 6.2 is the corresponding model with finite difference definition of each
infinitesimally small variation. In these figures the small trend surface is also
shown. The location of this finite trend surface n apart from the location (x, y) co-
ordinates the slopes along two coordinate directions in case of infinitesimally small
model (Fig. 7.1) as @zðx; yÞ=@x and @zðx; yÞ=@y. The corresponding slopes of the
finite trend surface in Fig. 6.2 can be written correspondingly as
zðxþDx; yÞ � zðx; yÞ½ �=Dx and zðx; yþDyÞ � zðx; yÞ½ �=Dx, respectively.
One can understand from the aforementioned figures and discussions than in the

case of any spatial variable consideration of finite element model the trend surface
needs three point measurements. In practical application, for numerical solution the
infinitesimally small and finite element model slopes are taken as equal to each
other, which allows to write the following two equations as,

Trend surface

z(
x,

y)

(x, y)

Fig. 6.1 Infinitesimally
small models
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@z x;yð Þ
@x ¼ zi;j�zi�1;j

Dx
and
@z x;yð Þ
@y ¼ zi;j�zi;j�1

Dy

9=
; ð6:2Þ

The substitution of these expressions into Eq. (6.1) leads after the necessary
calculation to the following explicit expression.

zi;j ¼ zi�1;j þ azi;j�1

1þ a
; ð6:3Þ

where a is the distance ratio defined as,

a ¼ Dx
Dy

ð6:4Þ

In case of completely uniform spatial variable variation base domain, i.e.,
Dx = Dy, (a = 1), Eq. (6.3) takes its simplest form.

zi;j ¼ zi�1;j þ zi;j�1

2
ð6:5Þ

The numerical solution continues from node (i, j) to the next ones systematically,
and hence, the whole spatial variation domain is scanned with new spatial variable
values, zi,j (i, j = 1, 2, …, n) with n being the number of nodes in one direction,
which is shown in Fig. 6.3.

So far explained numerical solution of spatial variable through the differential
expression rule for evolution of the spatial variable, it is noted that regular and
uniform distributions of the coordinate variables are necessary.

Fig. 6.2 Finite element small
models
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6.3 Spatial Data Analysis

Apart from the temporal tendencies there are also spatial trends over a region on the
basis of easting (longitude) and northing (latitude), which provides information
about regional variability of the phenomenon concerned. For this purpose, it is
necessary to have measurements at a set of different locations. Even a single record
at each measurement station is enough for spatial trend and variation appreciation.
Again visual inspection and assessment of spatial data is recommended prior to the
application of any detailed scientific procedure. The initial visual helps to set the
foundations of a convenient methodology for the spatial evaluation of data. Prior to
any quantitative evaluation of the spatial data at the hand the following points
provide assistance.

(1) The sampling locations are characterized by coordinates, X and Y, preferably
on a scaled map. The spatial variable can be shown by Z. In general, the data
locations are irregularly distributed, but in any new study, if possible, data
positions are selected better at the nodes of regular nets. The measurement
locations may already been such as the existing well locations (water or oil),
meteorology stations, urban areas, etc. In Table 6.1 there is a sample of spatial
data with location coordinates (X, Y) and Z values.

Figure 6.4 indicates the spatial distribution of the measurement locations and
their values, which reflects that the measurement sites are irregularly distributed
within the study area.

The following points are the visual reflections from Fig. 6.4, but they are pre-
liminary information for formal scientific methodologies.

(1) The majority of small measurements are clustered at high easting but low
northing regions,

(i,j)

j

i

Fig. 6.3 Regular mesh and
nodes
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(2) There are comparatively high differences between any two closest points,
which is a good indication that the variability does not abide with homo-
geneity principle,

(3) Extremely high values appear within the medium range of easting domain, but
within the high range of the northing domain,

(4) N.

A first glance to this figure indicates that there is an increasing trend along the
northing direction which can be documented if the projection on the vertical axis as
in Fig. 6.5. After the projections along the easting and northing directions the
following visual interpretations can be deducted.

Table 6.1 Spatial data records

Data number Location Measurement, Z Projection

X Y X Y

1 40.78 30.42 31 20 3

2 40.52 30.3 100 1578 130

3 39.72 40.05 1631 120 58

4 37.00 35.33 20 1631 130

5 41.17 29.04 130 3 100

6 40.73 31.60 742 539 539

7 39.62 27.92 120 58 100

8 40.18 29.07 100 100 31

9 40.32 27.97 58 100 742

10 40.15 29.98 539 742 20

11 38.40 42.12 1578 31 1631

12 40.13 26.40 3 41.17 1578
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Fig. 6.4 Spatial distributions of data measurement sites
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(1) Along both directions now distance series are available not like time series,
where spacing between two successive measurements are equal. The distance
series has unequal spacing between two measurements,

(2) Along the easting direction there is a significant decreasing trend with distance
as in the figure,

(3) Along the northing direction there is a significant increasing trend based on
irregularly distributed distance measurements,

(4) The variability, which is the average deviations from the mean value, shows
decreasing variability along the easting direction because at small distances the
deviations are bigger than big distances,

(5) Along the northing direction the variability has an increasing trend, because at
small distances the deviations from the mean value are smaller than the
deviations at large distances,

(6) The statistical parameters (mean, standard deviation, skewness, kurtosis, etc.)
and histogram of the data are the same along each direction. Projection on any
direction does not change the probabilistic and statistical behaviors of the
spatial data,

(7) It is possible to have projection of the same data along any direction and
accordingly trend interpretations can be made.
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6.4 Homogeneity and Isotropy

The statistical spatial analysis is entirely different from the numerical solution
coordinate system. The following points are very specific for statistical spatial
analysis and distinct from the mathematical numerical solutions.

(1) The measurement locations are irregularly (unevenly) scattered over the study
area. For instance if the city centers are thought of a country, their coordinates
are not regularly located, and therefore, for mapping purposes it is necessary to
reduce the irregularity to a regular mesh, which is the first step in any mapping
procedure in software,

(2) There is not mathematically known spatial regularity in the spatial records on
any natural, environmental, economic and social studies,

(3) There may be statistically identifiable spatial regularity within the spatial
event, and it is the main purpose to identify linear or nonlinear surface trends,

(4) The subtraction of each spatial data value from the corresponding spatial trend
value provides a set of shifted values with zero arithmetic average. These are
referred to as the residuals or stochastic part.

For many years now there have been continuous progresses to deal with the
adaptation of the statistical techniques to unevenly sampled data (North et al. 1982).
Regular scatter of sites might not provide enough regional information as irregular
sites since earth sciences agents and surface features are almost always heteroge-
neous and anisotropic. Some of the significant questions concerning the spatial
variability are the followings.

(1) How could one assess the regional distribution homogeneity, continuity,
dependence on the basis of unevenly distributed location measurements?

(2) What are the possible models for heterogeneity so as to represent continuous
variability within the study area?

(3) What is the ways of map construction from the available spatial data so as to
preserve its regional variability?

In the spatial assessment of available data by scientific methodologies it is
necessary to make simplifying assumptions and idealizations so as to be able to
suggest a valid model for the spatial variation representation. The basic assumptions
are homogeneity and isotropy, which can be decided on by comparison of the
numerical quantities in a set of spatial measurement sites. The representative visual
interpretations of these concepts are given in Fig. 6.6.

In any spatial modeling the first principle to decide about the type of coupled
characteristics as one of the following alternatives.
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(1) Homogeneous–isotropic,
(2) Homogeneous–anisotropic,
(3) Heterogeneous–isotropic,
(4) Heterogeneous–anisotropic.

In Fig. 6.6 isotropy is represented by a circle and anisotropy by an ellipse. This
gives the idea that the ratio of minor ellipse axis to the major one is always smaller
than one in cases of anisotropy, but it is equal to 1 for isotropic situations. As for the
main content of the importance is how each one of these alternatives implies trend
features spatially? The homogeneous–isotropic characteristic means that the prop-
erty of the spatial variable changes neither from point to point nor from direction to
direction, which corresponds spatially to no trend existence. This theoretical con-
sideration finds its practical counterpart as the maximum relative error between any
two points is less than ±5%. This error limit is valid in all the calculations after this
point for practically significant trend identification. In some application this error
limits can be adopted at the maximum as ±10%. For example, is the arithmetic
average of the spatial variable at each measurement site does not have more
than ±5% among all the sites, then the spatial variable is considered as trendless
pointwise and directionwise. Similar conclusions can be reached for other statistical
parameters.

N

A

B

B

A

N

B

A

N
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B

N

(b)(a)

(d)(c)

Fig. 6.6 a Homogeneity, b isotropy, c heterogeneity, d anisotropy

236 6 Spatial Trend Analysis



The statistical homogeneity and isotropy properties of spatial variables can be
defined in reference to statistical parameters such as the mean, variance, skewness,
kurtosis, and even the probability distribution function (PDF). For instance, a spatial
variable is homogeneous and first-order stationary, if the mean is independent of a
translation of the two positions. This means that the mean depends only on distance.

A spatial variable is isotropic in reference to the mean, if it is independent of a
rotation in the field around the center point on the line between two positions.

In general, natural phenomena physical processes have preferred orientations. It
is necessary to identify and separate spatial trend component for spatial stochastic
modeling of any natural, social, economic and engineering phenomenon, so that the
spatial correlation coefficient can be obtained for better representation of the spatial
uncertainty. This is similar to pre-whitening procedure as explained earlier in
Chap. 5. For arriving at the simple construction of the spatial correlation function it
a prerequisite to decide on the homogeneity and isotropy properties. The
assumption of homogeneity and isotropy make the phenomenon concerned
dependent only on distance (Thiebaux and Pedder 1987; Daley 1991; Şen 2008).
For instance, the real atmosphere is homogeneous and isotropic, furthermore
homogeneity and isotropy assumptions in meteorological modelling are assumed by
Gandin (1963), Eddy (1967) and Kruger (1964, 1969).

For example, at the mouth of a river the coarse material settles out fastest, while
the finer material takes longer to settle. Thus, the closer one is to the shoreline the
coarser the sediments while the further from the shoreline the finer the sediments.
When interpolating at a point, an observation 100 m away but in a direction parallel
to the shoreline is more likely to be similar to the value at the interpolation point
than is an equidistant observation in a direction perpendicular to the shoreline.
Anisotropy takes these trends in the data into account during the gridding process
(Şen 2008). For instance sea surface heights from the bottom vary by space and
time anisotropic ally.

All the equal value line sets (contour lines) in the form of a map as in Fig. 6.5
are reflection of anisotropy, where the spatial variable is temperature (Fig. 6.7).

Easting and Northing are measured in the same units, but temperature is in
centigrade degree (°C).

TURKEY

Fig. 6.7 Temperature contour maps

6.4 Homogeneity and Isotropy 237

http://dx.doi.org/10.1007/978-3-319-52338-5_5


6.5 Spatial Trend Surfaces

The main purpose is to model the spatial behavior of natural, environmental, and
economic phenomena. The trend surface passes through rather uncertain and
complex spatial data scatter over a region. Its application can be achieved as
geographic information for continuous events in space and the measurements must
be at cardinal levels.

The basic principle in trend surface analyses is matching a continuous surface to
the available spatial data through a regression function.

In order to facilitate the spatial trend concept the best example is a topographic
map where the independent variables are longitudes and latitudes with spatial
variable as altitude (elevation from the mean sea level). For this purpose, the spatial
topographic variability must be sampled at n � n sites that are irregularly dis-
tributed in the study area. To reach to the final trend surface there are following
three steps that should be completed in sequence.

(1) Model selection and parameter estimation: If possible, with an expert view,
one can guess the most convenient linear or polynomial mathematical form for
the spatial trend component of the spatial variable measurements. In doing so
one should keep in mind that the trend surface should explain as much as the
regional variability in terms of spatial variance. In practical application, it is
recommended that polynomial degree must not be preferably more than 5 or 7.
In case of 5th degree of polynomial there will be 21 coefficients for the model
parameter estimations (see Sects. 6.5.5 and 6.8.1). In a 7th order spatial trend
surface mathematical expression there are 28 coefficients.

(2) Model validation: After the model parameter estimations the model (regres-
sion) function should be then applied to an independent set of sample points
for validation purpose by taking into consideration cross-validation,

(3) Model estimations of spatial variable: The developed model after the execu-
tion of the two previous steps, the model now can be used for spatial variable
estimations at any desired point within the study area. One should be cautious
at this stage to extend (extrapolate) model estimations outside the study area.

Prior to the spatial trend identification methodologies introduction, it has utmost
importance to visualize what might be the alternatives of spatial trend types? For
this purpose in this section different possibilities are presented with their general
mathematical expressions. One should keep in mind that spatial trend mathematical
expression can be represented in its implicit form as,

z x; yð Þ ¼ f x; yð Þ; ð6:6Þ

where z is the spatial variable; x and y are the spatial reference variables (coordi-
nates). In this expression x and y are independent variables, whereas z is the
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dependent variable, which is for modeling. This expression implies that the spatial
data are always in the form of triplet, which describes a surface over the basic
variables x and y. One can suggest various geometrical shapes in three-dimensional
(3D) space for possible spatial trend components.

The general explicit form of Eq. (6.6) may be in the form of either in linear
regression function of may be either a flat or oriented plane or a curved surface with
an increasing number of curvatures as explained in Sect. 6.5.5.

The spatial trend surface fit to a set of spatial variable measurements can be
achieved by the least squares technique. The surface must be such that it minimizes
the variance of the surface with respect to the input values. The fitted surface rarely
coincides with some of the measurement points, but it is susceptible to outliers in
the data. Trend surface analysis is used to find general tendencies of the sample
data, rather than to model a surface precisely and completely.

One can obtain regular grid points from irregular measurement sites by fitting a
surface to available data. It can be achieved either globally or locally over the study
area. In the former case there is a single functional form of the trend surface in
addition to the stochastic nature of the residuals and the latter case is just the
repetition of global procedure on pieces of subareas within the study area. Another
version of the local surface fitting is to consider the neighbor points to reach to
locally representative trends. However, the most widely used procedure is the
global trend surface search for this purpose the spatial variable is approached by a
polynomial expansion of the geographic coordinates, and the coefficients of the
polynomial function are estimated from available measurements by means of the
least squares method, which relies on the sum of the squared deviations mini-
mization from the trend surface. After the identification of the trend surface the sum
of the trend surface value at a site and the residual is equal to the measurement
value. The residuals are random variables either with independent structure in
which case the probability distribution (PDF) is the representative of the spatial
randomness or in the case of dependent spatial residuals one of the most convenient
stochastic processes or the regionalized variable approach through the Kriging
methodology is the most representative approach (Sect. 6.3).

In general, the polynomial functions can be of any desired degree, the higher is
the degree the more is the computation rounding error. Therefore, in practice the
highest degree is adapted as 5 or 7. The unknown parameter coefficients of the
polynomials can be estimated from the simultaneous solution of a set of convenient
number of equations as explained in Sect. 6. Each one of these equations include
the sums of powers and cross products of the geographic (X, Y), and spatial variable
Z values. After the estimation of the coefficients the polynomial function provides
opportunity to calculate spatial variable value at any site (point) within the study
area. In general, in order to map the spatial variable one can calculate the spatial
variable values at regular mesh nodes and subsequently obtain the 2D contour or
3D map for the spatial variable.
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Fixation of a trend surface to given set of spatial variable measurements at
irregular sites separates the whole measurements into two components, namely
trend and residual values. Trend values are collection of deterministic quantities,
but the residuals are uncertainty parts.

Two significant points that are valid in the parameter estimations of any trend
surface are the following:

(1) Zero average: The trend surface must be in such a location that the summation
of the deviations between the spatial variable measurements and their corre-
sponding points on the trend surface must be equal to zero, or at least
within ±10 or better ±5 error limits,

(2) Minimum variance: The summation of the square deviations should be as
small as possible. This provides opportunity for selection among trend sur-
faces the best one, such that if the researcher tries to fit a set of trend surfaces
the one with the minimum variance is the best.

6.5.1 Horizontal Plane

This corresponds to the case when all the trend surface points have the same
(constant) spatial value as in Fig. 6.8. Such a surface in the form of a plane provides
homogeneity and isotropy of the spatial variable as for its spatial trend component
is concerned.

The simplest and most common form of ReV is a triplet and therefore it is
illuminating first to consider the surface in 3D and then according to the SV
definition it is possible to infer its shape intuitively by mental experiment.

The mathematical expression of this simplest trend case, in fact, no trend situ-
ation can be expressed as,

z x; yð Þ ¼ c; ð6:7Þ

where c is a constant value as shown in Fig. 6.8. Its statistical counterpart is the
spatial arithmetic average, z, of the spatial variable.

z(x,y)

x

y

0

Spatial trend surface

c

Fig. 6.8 Spatial trend
components with
homogeneity and isotropy
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6.5.2 Horizontal Planes

Within the spatial variable there may not be any trend component but a sudden
(abrupt) jump as in Fig. 6.9. In such a case, there are two no spatial trend regions
with sudden change (upwards or downwards) in between. The horizontal continuity
in Fig. 6.9 is disrupted by a discontinuous feature (cliff, fault, facies change,
boundary, etc.).

The mathematical expressions of these spatial trend surfaces are expressible
similar to Eq. (6.7) in two parts as,

zL x; yð Þ ¼ cL ð6:8Þ

and

zU x; yð Þ ¼ cU ð6:9Þ

or

zU x; yð Þ ¼ cLU þ zL x; yð Þ; ð6:10Þ

where cL, cU and cLU are the constants that should be calculated from the available
spatial data. Simply, cL and cU are the arithmetic averages of the lower and upper
trend plane dominant areas. Furthermore cLU = cL – cU is the difference between the
two arithmetic averages.

6.5.3 Inclined Trend Plane

This is the most commonly thought and in practical applications frequently
employed spatial trend form, which is in the form of an inclined plate as in
Fig. 6.10.

Lower trend surface

z(x, y)

x

y

zL(x, y)

zH(x, y)

cLU

0 Sudden change

Upper trend surface

Fig. 6.9 Horizontal planes
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The mathematical form of this spatial trend surface will include only linear
contributions from the coordinate variables as follows.

z x; yð Þ ¼ a0 þ a1xþ a2y; ð6:11Þ

where a0, a1 and a2 are the intercept, x direction and y-direction slopes,
respectively.

6.5.4 Inclined Trend Planes

It is also possible to have abrupt change with inclined spatial trend surface together
in a spatial data structure. This is exemplified in Fig. 6.11.

z(x,y)

x

y

0

a0 

Fig. 6.10 Continuous linear trends

z(x,y)

x

y

0

Abrupt change

cLU

Fig. 6.11 Inclined trend plates

242 6 Spatial Trend Analysis



The mathematical function for the description of inclined trend plates is similar
to the previous expressions. They can be written for the lower and upper trend
surfaces as follows:

zL x; yð Þ ¼ a0 þ a1Lxþ a2Ly ð6:12Þ

and

zU x; yð Þ ¼ a0 þ a1Uxþ a2Uy: ð6:13Þ

6.5.5 Curved Trend Surface

There are several alternatives that can be employed in the spatial trend surface
depending on the curvature tendencies. The following mathematical set of equa-
tions is representative of such spatial surfaces. They represent the first order
bilateral, second order, and third order trend surfaces, respectively.

z x; yð Þ ¼ a0 þ a1xþ a2yþ a3xy ð6:14Þ

z x; yð Þ ¼ a0 þ a1xþ a2yþ a3xyþ a4x
2 þ ary

2 ð6:15Þ

and

z x; yð Þ ¼ a0 þ a1xþ a2yþ a3xyþ a4x
2 þ a5y

2 þ a6x
3 þ a7y

3 þ a8xy
2 þ a9x

2y:

ð6:16Þ

The geometric forms of these expressions are Fig. 6.12a–c corresponding to
each one of them, respectively.

All the trend surfaces in Fig. 6.12 are smooth surfaces, which are generated
artificially according to aforementioned mathematical expressions. However, nat-
ural surfaces are not in this form, but perhaps it is a mixture of such smooth surfaces
piece by piece as in Fig. 6.13.

6.5.6 Random Surface

In some cases of the natural, environmental, economic or social spatial data, there
may not be any spatial dependence among the measurement values and in this case
the surface is in the form or random variations. For instance, rough sea surface is a
valid example for such a spatial surface. Figure 6.14 is a representative form for
such a situation.

In the completely random spatial distribution there is no spatial correlation as in
Fig. 6.14 then the arithmetic average, µ, and the variance, r2, are the two
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fundamental parameters for their representation in addition to the PDF. In order to
decide about the spatial correlation existence or not either spatial dependence
function or the spatial autocorrelation functions are of great help.
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Fig. 6.12 Spatial trend surfaces a first order, b second order, c third order trend surfaces
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Fig. 6.13 Natural
phenomenon surfaces

244 6 Spatial Trend Analysis



6.6 Spatial Dependence Function (SDF)

Each individual measurement site represents a very considerable area around it.
Logically, measurement at any individual site will have an area of influence or in
isotropy case a radius of influence around it, but there is no physically or data based
objective criterion for the definition of such an area, but one can find the quanti-
tatively its magnitude from SDF, which is an indicator of spatial variable uncer-
tainty (probabilistic, statistical, stochastic) dependence that provides visual and
quantitative information about the dependence between any two locations. The
dependence can be measured by covariance provided that the uncertainties are
distributed according to the Gaussian (normal) PDF, otherwise semivariogram,
cumulative semivariogram or point cumulative semivariogram functions should be
used (Şen 2008). After all what have been explained in the previous sections of this
chapter the reader can look at the spatial variable surface by using one of the
software roughly and examine the three-dimensional cases. For instance, in
Fig. 6.15 three different such rough maps are presented. Through a visual inspec-
tion of such rough maps one can then decide approximately what might be the
degree of polynomial for the surface? The inspector may describe the mat ah his/her
focus verbally whether the pattern has homogeneity and dependence.

A first glance on these two representative maps gives visual inspection about
possible surface fitting to each one of them For instance, in Fig. 6.15a, the rough
surface has n inclined plane feature as already theoretically explained in Sect. 6.5.3
with the mathematical expression in Eq. (6.7). The 3D map in Fig. 6.15b is rougher
than the previous one and a mixture of surfaces explained in Sect. 6.5.5 can be used
for the smooth surface representation. For this purpose, one can start with third
order polynomial function and continue to increase the degree of the polynomial up
to 7 and select among them the one with the least sum of square residuals squares.
The reader should keep in mind that the higher the degree of the polynomial the
rougher gets the surface.

z(x,y)

x

y

0

Fig. 6.14 Independent
spatial data
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Logically, closer measurements are more dependent on each other than the
farther ones. The further apart the measurement sites, i.e., as the distance increases
between the two points of a spatial variable the dependence becomes close to zero.
These sentences picture the form of spatial dependence function (SDF) as a set of
alternatives in Fig. 6.16.

It is to be noticed that at zero distance the spatial variable is 100% dependent on
itself and hence, one can regard the quantitative value of the correlation at zero
distance as 1, and then onwards as the distance increases the correlation decreases

xy

z(x,y)

xy

z(x,y)

(a)

(b)

Fig. 6.15 Sample maps

RA

RB

RC

Fig. 6.16 Spatial dependence functions
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steadily until reaches the horizontal axis where the correlation value is equal to
zero. Among the SDFs in the figure A and B reflect homogeneous and isotropic
spatial behaviors without any trend ingredients. Type A has a short spatial
dependence compared to the B SDF, which has longer spatial (distance) effec-
tiveness. The third one, C, is comparatively different than the two and it has some
internal structure that cannot be considered as homogeneous and isotropic, because
its SDF does not drop smooth to zero. Furthermore, after a certain distance the
spatial variable is completely independent, which mean that points that are apart
from each other more than this distance do not affect each other? In Fig. 6.16 the
dependence distances are referred to as the radii of influence and they are
RA < RB < RC.

The measurements of the spatial variable at a set of sites provide numerical
information about the spatial behavior interpretation of the variable as in Fig. 6.1.
In general, the larges is the variability as explained in Sect. 6.3; the more is the
heterogeneity and this point out that the number of data to represent the spatial
variability is more than the homogeneous case. Additionally, the larger is the
variability the smaller is the spatial dependence even between the points that are
close to each other.

In order to quantify the degree of variability within spatial data, variance tech-
niques can be used in addition to classical autocorrelation methods (Box and
Jenkins 1970). However, these methods are not helpful directly to account for the
spatial dependence or for the variability in terms of sample positions. The draw-
backs are due to either non-normal (asymmetric) distribution of data and/or irreg-
ularity of sampling positions. However, the semivariogram (SV) technique,
developed by Matheron (1963, 1965) and used by many researchers (Clark 1979;
Cooley 1979; David 1977; Myers et al. 1982; Journel 1985; Aboufirassi and Marino
1984; Hoeksema and Kitanidis 1984; Carr et al. 1985) in diverse fields such as
geology, mining, hydrology, earthquake prediction, groundwater, etc., can be used
to characterize spatial variability and hence the SDF. The SV is a prerequisite for
best linear unbiased prediction of ReVs through the use of Kriging techniques
(Krige 1982; Journel and Huijbregts 1978; David 1977).

6.6.1 Spatial Correlation Parameter Calculation

Its definition is very similar to timewise correlation definition, which has been given
notationally in Chap. 2. The spatial correlation coefficient, qi,j between points I and
j can be written as,

qij ¼
ðZm

i � ZiÞðZm
j � ZjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZm
i � ZiÞ2ðZm

j � ZjÞ2
q ð6:17Þ
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where over bars indicate time averages over a long sequence of past observations,
Zm
i and Zm

j represent measurement values at these stations, and finally, Zi and Zj are
the areal mean of the spatial variable. It is obvious that –1 < qi,j < +1, with
a < completely dependent case in between the two limits corresponds to qi,j = 0. In
case of n measurement sites, then there will be m = n(n − 1)/2 pairs of distances
and corresponding correlation coefficients. Their plot results in a scatter diagram
similar to one of the SDFs in Fig. 6.16. Equation (6.17) is useable in the cases,
when there are a series of measurements at each site in the form of a time or spatial
series.

Especially in earth systems and environment domain measurements there are
single measurements at each site. In such a case Eq. (6.17) cannot be used, and
therefore, it is necessary to propose a suitable SDF. Such a SDF derivation is
suggested by Şen (2008) with the following steps.

(1) Find the set of actual distances among each pair of sites, hence, if there are
n sites there will be n(n − 1)/2 different distances,

(2) Find the squared differences among each pair of the spatial variable. The same
number of squared differences will be obtained,

(3) Plot distances versus squared differences of the spatial variable, and hence an
irregular graph of the squared differences variation will be reached,

(4) Plot the successive cumulative sums of the square distances along the distance
sequence. The result will be another graph that shows the change of squared
difference accumulation by distance,

(5) The last value in this graph is the maximum squared distance summation, and
it is very significant for RDF calculation,

(6) Divide each cumulative squared difference values in the last graph by this
maximum value. The result will be the change of scaled cumulative squared
difference values by distance, where the values on the vertical axis changes
between zero and one,

(7) Finally, subtract scaled cumulative squared differences from one and the
resulting graph will appear in the form of decreasing trace similar to the cases
in Fig. 6.16.

Example 6.1 The earthquake magnitude measurements at 5 stations are presented
in Table 6.2. Construct the RDF for these spatially varying values.

Solution 2: First of all the irregular locations of each site are given in Fig. 6.17,
which shows that the scatter points are heterogeneously and unevenly distributed.

Table 6.2 Spatial data Spatial
variable

Easting
(km)

Northing
(km)

Magnitude

Z1 24.47950 40.40017 1.87

Z2 24.48400 39.86550 1.92

Z3 24.68783 40.12017 2.2

Z4 24.63183 39.75367 2.15

Z5 24.54383 40.87950 2.07
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As for the calculations, the first step is to calculate the distances between each
pair of sites, and this can be best achieved in the of distance matrix form as follows,
where there are 5(5 − 1)/2 = 10 distinctive distance values.

Z1 Z2 Z3 Z4 Z5
Z1 0

Z2 0.535 0

Z3 0.349 0.326 0

Z4 0.664 0.185 0.371 0

Z5 0.484 1.016 0.773 1.129 0

Likewise, this time the same size of matrix is filled in with the squared differ-
ences among each pair of spatial variable measurements as follows.

Z1 Z2 Z3 Z4 Z5
Z1 0

Z2 3.4969 0

Z3 3.4969 3.6864 0

Z4 3.4969 3.6864 4.84 0

Z5 3.4969 3.6864 4.84 4.6225 0

The plot of values in the distance matrix against the squared-difference values
yields to a nondecreasing curve as in Fig. 6.18.
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Fig. 6.17 Spatial variable scatter with distance
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In this figure the maximum value of the cumulative sum of squared differences is
equal to 39.3493, and the division of all the values in this figure by the value leads
to similar curve that has standard cumulative sum of squared differences as in
Fig. 6.19.

It is to be noticed that the values on the vertical axis vary between zero and one,
and furthermore, the vertical axis has no dimension because of the division pro-
cedure. The final step in the regional dependence function development procedure
is to subtract vertical values in this figure from one, and the resulting function is the
RDF as in Fig. 6.20.

The RDF is a line that decreases with the distance; it has a value equal to one at
zero distance, which implies that the measurement at any site is 100% is correlated
with itself, whereas the zero value of the RDF is equivalent with the influence of
distance, which appears in Fig. 6.20 as and at.

6.7 Double Mass Curve Test

During a long time period in a region many stations may monitor the same spatial
variable such as the population, economic indices, rainfall, soil moisture, ground-
water level fluctuation, etc. It is not reasonable to expect that at all the points the
records will be kept without any external effect that leads to bias. Consider a rain
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Fig. 6.18 Spatial variable cumulative sum squared differences scatter with distance
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gauge and if it is damaged, or there is urban development nearby, or growing tree
will affect the recorded rainfall amounts. It may be necessary to replace the station
location due to some activities or at the same station modern measurement stations
may be located. All of such changes will affect the heterogeneity of the records.
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Fig. 6.19 Spatial variable scaled cumulative sum squared differences scatter with distance
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Hence, the question is whether a sequence of record at a site has its homogeneity
throughout the measuring duration? Let us consider that in a region there are five
(A, B, C, D and E) stations for some hydrologic measurement as in Fig. 6.21.

It may be necessary to check whether the records at C have any significant
change at some time during the record period. In Table 6.3 up to 1995 the
hydrologic records are given annually. It is possible that all the stations might have
not started in the same year. In this table there are 5 SFs with 20 year records. In
order to control the homogeneity of records at station C the following steps must be
executed.

A 

E 

B 
C 

D 

Fig. 6.21 Five hydrology
stations

Table 6.3 Annual average rainfalls

Year Stations

A B C D E

1995 YA,1 YB,1 YC,1 YD,1 YE,1
1994 YA,2 YB,2 YC,2 YD,2 YE,2
1993 YA,3 YB,3 YC,3 YD,3 YE,3
… … … … … …

… … … … … …

1970 YA,20 YB,20 YC,20 YD,20 YE,20
1969 YB,21 YC,21 YD,21 YE,21
… … … … … …

… … … … … …

1955 YB,30 YC,30 YD,30 YE,30
1954 YB,31 YC,31 YD,31 YE,31
… … … … …

… … … … …

1950 YB,46 YD,46
1949 YB,47 YD,47
… … …

… … …

1940 YB,55
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1. On the vertical axis the cumulative rainfall amounts, YYE at stations A, B, D, and
E are shown whereas on the horizontal axis the cumulative rainfall amounts, YCE,
in station C are shown (see Fig. 6.21). For instance, for year 1993 on the ver-
tical axis YCE = YC,1 + YC,2 + YC,3 + YC,4 and on the horizontal axis
YYE = (YA,1 + YA,2 + YA,3 + YA,4) + (YB,1 + YB,2 + YB,3 + YB,4) + (YD,1 + YD,2 +
YD,3 + YD,4) + (YE,1 + YE,2 + YE,3 + YE,4) are shown. Hence, the point is labelled
by 1993. The cumulative rainfall amounts are started from 1995 downward.

2. Plotting of cumulative rainfall amounts in this manner for each year leads to a
scatter diagram.

3. If all the scatter points appear along a single line, then the records at C are
homogeneous and do not need any adjustment. This test is a visual assessment
without any numerical calculation.

4. If as in Fig. 6.22 there are two straight lines, then the records at C are not
homogeneous and must be adjusted. In this figure the break point appears in
1992. This is the year that the homogeneity of the records has started to deviate
from the general trend. tedir. İşte bu yılda yapılan ölçümlerin tektürlülüklerinin
bozulmaya başladığı anlaşılır.

5. In order to make the adjustment, the broken line must be completed to a single
straight line by extending prior to 1992 straight line toward the recent years.

6. If the slopes of straight lines before and after the break point are Sb and Sa the
adjusted rainfall amounts at station C can be calculated as follows.

YCið ÞA¼
tan Sp
tan Sa

YCið ÞO; ð6:18Þ

where YCið ÞA and YCið ÞO are the adjusted and observed rainfall amounts at station
C and at year, i. The same procedure can be repeated for any other station in
suspicion.
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1995

YYE

YYC

Fig. 6.22 Double mass curve tests
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6.8 Trend Surface Analysis

This is three-dimensional trend surface regression methodology that can be either
linear (planar) or nonlinear (spatial curvature). Apart from these two approaches
one can also make directional trend analysis along different directions by projec-
tions on the preferable direction. It is not possible to visualize these three dimen-
sions with necked eye.

6.8.1 Planer Trend Regression Analysis

So far explanations of spatial trend component were all qualitative and visually
quantitative as in Figs. 6.1 and 6.2. In majority of cases a spatial trend is a planer
surface and rarely is it in the form of curvature surface of the second order degree
usually over geographical (longitude and latitude) directions as in Fig. 6.23.

In this figure X and Y are most of the time longitude (easting) and latitude
(northing) directions, whereas the Z direction is for the spatial date values. Linear
trend surface analysis is also called as “spatial interpolation” method. The trend
surface provides a means of spatial interpolation possibility.

The classical trend surface methodology is a way of fitting the entire surface with
a linear or polynomial equation with parameters, which are estimatable from the
given data set by means of the least squares technique. For this purpose, in many
works trend surfaces are the only basic tool as maps for communication in any
scientific domain spatial variable concerned. After the analysis the trend model
statistical model coefficients are estimated and the final product is presented as a
contour map, which is the same as the preparation of topographic maps. In the
spatial trend analysis methods as presented in this section RDF is not taken into
consideration explicitly.
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*

*

*

*

*

*
* Spatial data

Fig. 6.23 Linear trend
surfaces
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The mathematical form of planar trend surface has the linear contributions of the
geographical coordinates, i.e., data measurement point longitude and latitude or
easting and northing direction values as x and y. If the spatial variable values are
shown by z, then the planar model can be expressed as follows.

z ¼ a0 þ a1xþ a2y; ð6:19Þ

where a0, a1 and a2 are the model parameters. This expression represents deter-
ministic trend surface without any measurement error. However, addition of the
error (uncertainty) component, e, to this equation gives the representative positions
of the data values with uncertainty. The uncertain expression can be written from
Eq. (6.19) as,

z ¼ a0 þ a1xþ a2yþ e ð6:20Þ

The least squares technique implies that the sum of the error squares must be
“minimum”. For this purpose, first the error square is expressed from Eq. (6.20) as,

e2 ¼ z� a0 þ a1xþ a2yð Þ2 ð6:21Þ

The sum of error squares, SS, from each data, i, can be written for i = 1, 2, …,
n spatial data values as,

SS ¼
Xn
i¼1

e2i ¼
Xn
i¼1

zi � a0 þ a1xi þ a2yið Þ2 ð6:22Þ

The request is that this SS must be the minimum, where the word “minimum”
means in the calculus that the partial derivative with respect to each parameter must
be simultaneously be equal to zero. Hence, one needs to take the derivatives as
follows.

@SS

@a0
¼ 2

Xn
i¼1

zi � a0 � a1xi � a2yið Þ �1ð Þ ¼ 0 ð6:23Þ

@SS

@a1
¼ 2

Xn
i¼1

zi � a0 � a1xi � a2yið Þ �xið Þ ¼ 0 ð6:24Þ

and

@SS

@a2
¼ 2

Xn
i¼1

zi � a0 � a1xi � a2yið Þ �yið Þ ¼ 0: ð6:25Þ

6.8 Trend Surface Analysis 255



A close inspection to these expressions reveals simplification after expansion of
each parenthesis and division of both sides of each equation by the number of data,
n. The completion of these points leads to the following set of equations.

z ¼ a0 þ a1xþ a2y ð6:26Þ

zx ¼ a0xþ a1x2 þ a2yx ð6:27Þ

and

zy ¼ a0yþ a1xyþ a2y2 ð6:28Þ

The overbars in these expressions indicate the arithmetic averages of the terms
under the overbar sign. For instance, zx indicates that the z data series must mul-
tiplied by the corresponding x series and then the new values of the multiplication
series arithmetic average is equal to the zx value. If the arithmetic averages are
calculated according to the given spatial data, then the unknowns are the three
model parameters, and since there are three equations they can be solved easily.
A close inspection to Eqs. (6.26)–(6.27) provide a very practical way of obtaining
the basic equations without derivation manipulations. For the practical derivation of
the final three expressions the main model formulation in Eq. (6.19) must be
considered. The simple and practical rule has three steps as follows.

(1) For Eq. (6.26) take the arithmetic average of Eq. (6.19),
(2) For Eq. (6.27) first multiply both sides of the main expression by the first

independent variable, x, and then take the arithmetic average of both sides. The
important point to be noticed at this stage is that zx 6¼ zx,

(3) For Eq. (6.28) first multiply both sides of the main expression by the second
independent variable, y, and then take the arithmetic average of both sides.

Another procedure that helps in practical calculations of the planar trend
parameters is to prepare a similar table to Table 6.4.

The first three columns in this table are for the spatial data values and the
remaining each column corresponds to needed regression terms. The last column
includes the arithmetic averages in Eqs. (6.26)–(6.27).

Example 6.1 A set of earthquake records are given for some part of Turkey and the
magnitude is required to be related to easting (x) and northing (y) coordinates for
the prediction of Richter magnitude. The first three columns of Table 3.5 give the
easting, northing and earthquake magnitude values, respectively. For the sake of
argument simple linear trend surface equation is adopted as in Eq. (6.19).
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According to the steps given above the rest of the table is prepared accordingly
(Table 6.5).

There are three unknowns and it is necessary to obtain three equations in the
light of practical trend surface calculations. By considering the last row of averages
from Table 3.8 one can write the necessary equations simply as

6:38 ¼ a0 þ 39:12a1 þ 33:30a2
249:64 ¼ 39:12a0 þ 1533:62a1 þ 1306:02a2
211:97 ¼ 33:30a0 þ 1306:02a1 þ 1150:11a2

The simultaneous solution of these equations yields a0 = 5.63, a1 = 0.0314 and
a2 = −0.0143, and hence the final linear trend surface expression is given as,

z ¼ 5:56þ 0:0314x� 0:0143y

6.8.2 Polynomial Trend Regression Analysis

The polynomial trend surface mathematical formulation relates the geographic
variables x and y to the spatial variable value, z as,

z ¼ a0 þ a1xþ a2yþ a3x
2 þ a4xyþ a5y

2; ð6:29Þ

where ai’s (i = 1, 2, 3, 4, 5) are the model parameters that must be estimated from
given spatial data measurements based on the geographic location coordinates.
Depending on the parameter signs this model provides concave or convex smooth

Table 6.4 Planar trend calculations

1 2 3 4 5 6 7 8

Coordinates Data Regression coefficient calculation columns

Easting, x Northing, y z zx x2 yx zy y2

x1 y1 z1 z1x1 x1
2 y1x1 z1y1 y1

2

x2 y2 z2 z2x2 x2
2 y2x2 z2y2 y2

2

x3 y3 z3 z3x3 x3
2 y3x3 z3y3 y3

2

… … … … … … … …

… … … … … … … …

… … … … … … … …

xn−1 yn−1 zn−1 zn−1xn−1 xn−1
2 yn−1xn−1 zn−1yn−1 yn−1

2

xn yn zn znxn xn
2 ynxn znyn yn

2

x y z zx x2 yx zx y2
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trend surfaces suitable for the data values at hand. After the determination of model
parameters the positions of local or global maxima and minima points can be
obtained after simple algebraic calculations. The locations of local maximum and
minimum can be obtained from Eq. (6.29) by taking partial derivative with respect
to x and y, as,

@z

@x
¼ a1 þ 2a3xþ a4y ¼ 0 ð6:30Þ

and

@z

@y
¼ a2 þ a4yþ 2a5y ¼ 0 ð6:31Þ

The simultaneous solution of these last two expressions provides the location of
the maximum (minimum) point within the polynomial trend surface.

xe ¼ a2a4 � 2a1a5
4a3a5 � a24

ð6:32Þ

and

ye ¼ a1a4 � 2a2a3
4a3a5 � a24

ð6:33Þ

This point may show trend surface highest, lowest or inflection point depending
on the data features. The point to be cared for in any trend surface analysis is that
there must not be model parameter numbers more than the data number. A good
practical rule is that there must not be more than one third of data number model
parameter.

The uncertain with error component Eq. (6.29) takes the following shape with
full model parameters.

z ¼ a0 þ a1xþ a2yþ a3x
2 þ a4xyþ a5y

2 þ e ð6:34Þ

Similar to the case of planer trend regression analysis, it is possible to take
partial derivatives with respect to each model parameter and then equate then to
zero and solve simultaneously. This procedure leads to a set of equations similar to
Eqs. (6.26)–(6.27).

Herein, instead of regression partial derivative procedure, the practical rule steps
are applied for arriving at six equations for the estimation of six parameters in the
main polynomial trend surface expression in Eq. (6.29). In the following the nec-
essary steps are given.

(1) The main polygon trend surface expression in Eq. (6.29) leads to the first
expression after taking the arithmetic average of both sides as,
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z ¼ a0 þ a1xþ a2yþ a3x2 þ a4xyþ a5y2 ð6:35Þ

(2) Multiplication of both sides of the main model by the first independent vari-
able, x, gives the second expression for the model parameter estimation as,

zx ¼ a0xþ a1x2 þ a2yxþ a3x3 þ a4x2yþ a5xy2 ð6:36Þ

(3) Multiply both sides of the main equation by the second independent variable,
y, and take the arithmetic averages of both sides and hence obtain,

zy ¼ a0yþ a1xyþ a2y2xþ a3yx2 þ a4xy2 þ a5y3 ð6:37Þ

(4) The multiplication of both sides in the main model by x2 and then the arith-
metic averages of both sides give to,

zx2 ¼ a0x2 þ a1x3 þ a2x2yþ a3x4 þ a4x3yþ a5x2y2 ð6:38Þ

(5) The main equation both sides are multiplied by xy term and then the arithmetic
average procedure results in,

xyz ¼ a0xyþ a1x2yþ a2xy2 þ a3x3yþ a4x2y2 þ a5xy3 ð6:39Þ

(6) Finally, similar multiplication and arithmetic Average procedures with con-
sideration of the term y2 yields,

y2z ¼ a0y2 þ a1y2xþ a2y3 þ a3y2x2 þ a4xy3 þ a5y4 ð6:40Þ

The collection of six simultaneous equations (Eqs. 6.35–6.40) can be shown in
the form of the following matrix form.

a0
a1
a2
a3
a4
a5

2
6666664

3
7777775
¼

1 x y x2 xy y2

x x2 xy x3 x2y xy2

y xy y2 x2y xy2 y3

x2 x3 x2y x4 x3y x2y2

xy x2y xy2 x3y x2y2 xy3

y2 xy2 y3 x2y2 xy3 y4

2
6666664

3
7777775

�1
z
xz
yz
x2z
xyz
y2z

2
6666664

3
7777775

ð6:41Þ

The solution for the model parameters can be obtained by finding the inverse of
the coefficients matrix, which is the first term on the right hand side of this last
expression. One should notice that the coefficients matrix is symmetrical around the
main diagonal. It is also possible to construct the titles of calculation table
(Table 6.6) similar to Table 6.4.

6.8 Trend Surface Analysis 261



The arithmetic average of each column gives the elements of each matrix on the
right hand side of Eqs. (6.35)–(6.41).

6.8.3 Kriging Methodology

Kriging is a mapping methodology and it can be used to get 3D representation of any
spatial variable leading to surfaces as in Fig. 6.15. The 3D version of statistics is
referred to geostatistics, and it treats “Regionalized Variables” (ReV), statistically
through a methodology first proposed by Matheron (1963). The very first step in
geostatistics is to determine the spatial dependence structure from measurements. The
spatial structure also can be established by semivariogram (SV). After the spatial
structure determination, it is possible to control the spatial variability and make esti-
mations at unmeasured locations. Most of the earth sciences and environmental phe-
nomena have temporal and spatial characteristics simultaneously. The spatiotemporal
variations of the natural phenomena imply a significant amount of uncertainty, and
furthermore, these variations have space heterogeneity and nonstationary.

A special variable, which includes also the regionalized variable (ReV) has
characteristics of a certain phenomenon such as ore grade, rainfall, seismicity, and
water level data are regionalized variables. The procedure of the theory of region-
alized variables (Kriging method) follows two main steps as the establishment of the
theoretical ground for expressing the structural properties of the phenomenon
through the experimental semivariogram (SV) and also providence of a model that
uses a combination of functions, which guarantee a solution for the estimation
problem (Kriging), by using the probabilistic theory of random function (RF).

The ReV is denoted by z(x, y) similar to the spatial variable like in the previous
sections and in practical applications only a single of realization is available as
random process. The problem is to find the characteristics of RF, Z(x) to make
estimations at unmeasured sites possible. IN such an approach statistical inference
requires further hypothesis of stationarity (David 1977; Journel and Huijbregts
1978; Isaaks and Srivastava 1989).

If two points namely (x1, y1) and (x2, y2) are separated by a distance, d, with a
given relative orientation, the distribution of ReV (spatial variable) differences
depends on d, which is also valid for the mean and variance. Hence, if in case of the
mean of difference values from the sample is (m), and the expectation for the whole
phenomenon is regarded as a constant independent of the site location. The random
function is said to be second-order stationary when the first two statistical moments
exist and do not depend on x,

E Z xð Þf g ¼ m xð Þ ¼ m ð6:42Þ

C 0ð Þ ¼ Var Z xð Þf g ¼ E Z xð Þ � m xð Þ½ �2
n o

ð6:43Þ

C dð Þ ¼ E Z x1ð Þ � m x1ð Þ½ � Z x2ð Þ � m x2ð Þ½ �f g; ð6:44Þ
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where C(0) is the variance at zero distance (d = 0) and independent of x; C(d) is the
covariance which is a function of two locations x1 and x2 and depends only upon
their difference (x1 − x2). If RF Z(x) is ergodic meaning that one field observation
sequence is enough for calculations, then the future inference about parameters of
Z(x) depends upon the first stage. Hypothetically, for any distance, d, the increment
Z(x + d) − Z(x) has zero expectation and the variance is independent of position.
These are expressed as,

E Z xþ dð Þ � Z xð Þf g ¼ 0 ð6:45Þ

and

Var Z xþ dð Þ � Z xð Þf g ¼ 2g dð Þ: ð6:46Þ

This is the intrinsic hypothesis or quasi-stationary, where the function of 2g(h),
is used in geostatistics to describe and summarize underlying spatial dependence
structure, and it is named as the variogram. Consider Eq. (6.44) and the last
expression can be rewritten as,

g dð Þ ¼ 1
2
Var Z xþ dð Þ � Z xð Þf g; ð6:47Þ

where now g(d) is called the semivariogram (SV).
Under the hypothesis of second order stationarity, the statistical covariance and

variogram are two equivalent tools for the autocorrelation between two variables
Z(x + d) and Z(x) separated by d as,

g dð Þ ¼ C 0ð Þ � C dð Þ: ð6:48Þ

The SV estimation is preferable to estimation of the covariance, because the
experimental SV does not require a prior estimate of the population mean. Under
the same condition the relationship between the model covariance, variogram and
correlogram c dð Þ is,

c dð Þ ¼ C dð Þ
C 0ð Þ ¼ 1� g dð Þ

C dð Þ ð6:49Þ

The semivariogram (SV) is a graph or formula describing the expected differ-
ence in values between pairs of samples with given relative orientation. The SV is a
procedure for characterizing the structures of spatial continuity of the geological
phenomena. The difference in values should be consistent. The consistency is
referred to as quasi-stationarity or intrinsic hypothesis. The practical form of SV is
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c dð Þ ¼ 1
2n dð Þ

Xn dð Þ

i¼1

Z xþ dð Þ � Z dð Þ½ �2; ð6:50Þ

where n(d) is a number of pairs having distance, d.
A detailed explanation of various versions of the Kriging methodologies are

explained by Şen (2008), but here only the simplest methodology is presented.

6.8.3.1 Simple Kriging (SK)
In general, the basic assumptions in this type of Kriging procedure are as follows,
and in the formulation development each one must be taken into consideration
carefully. The spatial sampling points are representatives of the ReV at a set of
given locations with measurement values,

(1) The measurements at each site are representatives of the spatial variable,
which is known in the Kriging terminology as ReV,

(2) The spatial variability is assumed to have three necessary quantitative values,
which are the spatial arithmetic average, variance and the semivariogram, SV
graph, which is the scatter of distance values against the squared- differences
as in Fig. 6.17,

(3) The arithmetic average of the spatial variable (ReV) is known, which limits the
application of this Kriging modeling alternative severely.

There are many cases in the practical applications, where the areal mean of the
ReV is known and in such a case the application of the Kriging methodology is
simple and attractive (Şen 2008). In case of arithmetic average and variance con-
stancy the spatial variable has second-order stationarity property, and hence, the
measurements can be standardized according to classical statistical standardization
formulation (see Chap. 2, Eq. 2.26) leading to standardized ReV with zero regional
mean and unit variance. Figure 6.24 shows a set of irregularly distributed mea-
surement locations, where there are n measurement and one estimation sites.

In this figure, the set of measurements are (Z1, Z2, …, Zn) and ZE is the site,
where the spatial variable estimation is sought. In the Kriging methodology, the
spatial variability is quantified by a suitable regional dependence function, which is
classically the semivariogram, SV, function (similar to the covariance function in
the classical time series analysis), which presents the relationship among each pair
of measurements by taking into consideration the squared differences as in
Sect. 6.6.1.

Methodology
In general, the Kriging estimation is equivalent to the weighted average of the
measurements with distant dependent weighting values, ki. In order to obtain the
Kriging estimation, ZE, a linear weighted average can be writes based on Zi (i = 1,
2, …, n) measurements as follows.
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ZE ¼ Z þ
Xn
i¼1

ki Zi � Z
� �

: ð6:51Þ

Herein, Z is the regional mean value of the ReV. If there are n neighboring sites
then in the covariance matrix there will be b(n − 1)/2 symmetrical off diagonal
correlation implication values with n variances on the main diagonal.

C ¼

varðz1Þ covðz1; z2Þ � � � covðz1; znÞ
covðz2; z1Þ varðz2Þ � � � covðz2; znÞ

� � � � � �
� � � � � �
� � � � � �

covðzn; z1Þ covðzn; z2Þ � � � var znð Þ

2
6666664

3
7777775
: ð6:52Þ

In this matrix cov(zi, zj) = cov(zj, zi) and along the main diagonal var(zi) = r2i
which is the variance at site i. Each element in the matrix is dependent on the
distances (relative distance) among each two sites. Since, the spatial variance is
assumed as constant, the division of each element in Eq. (6.52) leads to unit values
along the main diagonal with autocorrelation values, q(zi, zj) = cov(zi, zj), at off
diagonal locations between each pair of sites, i, j = 1, 2, …, n, as,

q ¼

1 qðz1; z2Þ � � � qðz1; znÞ
qðz2; z1Þ 1 � � � qðz2; znÞ

� � � � � �
� � � � � �
� � � � � 1 �

qðzn; z1Þ qðzn; z2Þ � � � 1

2
6666664

3
7777775
: ð6:53Þ

In statistics this corresponds to the spatial correlation matrix for the spatial vari-
able. Parallel to the correlation matrix another one can be defined as distance matrix,
D, between the same sites with zero distances along the main diagonal as follows.

•
• Zi

•

•

•

•

•

•

•

•

•

•

• Z1 •

•

• Zn

º ZE

0 5 10 km

• measurement 

º es ma on site  

Fig. 6.24 Spatial variable sample sites and estimation site
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D ¼

0 disðz1; z2Þ � � � disðz1; znÞ
disðz2; z1Þ 0 � � � disðz2; znÞ

� � � � � �
� � � � � �
� � 0 �

disðzn; z1Þ disðzn; z2Þ � � � 0

2
6666664

3
7777775
: ð6:54Þ

The plot of distance matrix values, d, on the horizontal axis versus corre-
sponding autocorrelation coefficients, q(d), from the correlation matrix leads to one
of the curves as in Fig. 6.25, which is very similar to the RDF as already shown in
Fig. 6.16. Again, as the distance increases the correlation coefficient function
decreases, and therefore, Fig. 5.15 has a decreasing trend with distance and theo-
retically this function should be asymptotic to the horizontal axis. Consideration of
Eq. (5.31) with unit variance yields the corresponding SVs in the same figure.

It is possible to rewrite Eq. (6.51) for the simple Kriging with consideration of
standardization as,

zE ¼
Xn
i¼1

kizi: ð6:55Þ

In this expression, there are n unknowns and their solutions require the same
number of simultaneous equation solutions. If both sides of Eq. (6.55) are multi-
plied by each measurement then by taking the averages (expectations) as a set of
equations can be obtained as follows.

Xn
i¼1

kiqðzi; z1Þ ¼ qðzE; z1Þ

Xn
i¼1

kiqðzi; z2Þ ¼ qðzE; z2Þ

. . .Xn
i¼1

kiqðzi; zkÞ ¼ qðzE; zkÞ:

ð6:56Þ

1.0

0.0 Distance, d

(d), 

(d) 

ρ(d)

ρ(d)

Fig. 6.25 Covariance–distance graphs

6.8 Trend Surface Analysis 267

http://dx.doi.org/10.1007/978-3-319-52338-5_5
http://dx.doi.org/10.1007/978-3-319-52338-5_5


For the solution of this set of equations it is convenient to write it down in the
form of matrices and vector forms. Hence the unknown column vector is,

K ¼

k1
k2
:

:

kn

2
6666664

3
7777775

ð6:57Þ

The right hand side of Eq. (6.56) represents the known part, say, column vector,
B, which has the following elements

B ¼

qðzE; z1Þ
qðzE; z2Þ

:

:

qðzE; znÞ

2
6666664

3
7777775

ð6:58Þ

Consideration of these two vectors with the set of simultaneous expressions in
Eq. (6.56) provides succinctly that,

CK ¼ B

or after the inversion operation its implicit form becomes as,

K ¼ C�1B ð6:59Þ

This last expression is the implicit solution of the weighting factors, ki, the
estimation of the standard ReV can be converted to actual (nonstandardized) ReV
as,

ZE ¼ Zþ r2EzE ð6:60Þ

where zE is an (n � 1) matrix of the measurements with zero mean and unit
variance.

All of the aforementioned derivations are based on the covariance function, q(d),
which is thought as the representative of the RDF. Şen (2008) has explained that
there is a relationship between the covariance and SV functions, c(d), in the case of
standardized ReV as,

q dð Þ ¼ 1� c dð Þ ð6:61Þ
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The SV functions are shown in Fig. 6.25 as complementary to the autocorre-
lation function and it is in ascending order with the distance. The estimation
variance of covariance can be expressed as,

r2E ¼ 1� B0K ð6:62Þ

In Case of SV use for the spatial modeling, the same estimation variance
becomes,

r2E ¼ B0K ð6:63Þ

The simple Kriging depends on the statistical property of the covariance (or SV)
function and the spatial estimation is achieved in such a way that the RDF of the
ReV is preserved throughout the procedure. Unfortunately, neither the
cross-validation nor the unbiasedness procedures are applicable explicitly in the
simple Kriging procedure.

Example 6.2 If the same earthquake data in Table 6.2 is plotted in Fig. 6.26 with
the spatial variable estimation location as, ZE. How can one make spatial estimation
by means of the simple Kriging methodology?

The distance matrix, D, between each pair of data has already been given in the
matrix form in Sect. 6.6.1 with the squared differences matrix. In the following the
distances between each measurement site and the estimation location, ZE, spatial
variable is calculated.
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Fig. 6.26 Spatial scatter of data locations
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1 2 3 4 5

E 0.297151 0.284038 0.092392 0.374746 0.754616

After the standardization of the spatial variable the corresponding half-squared
differences (i.e., SV) matrix can be obtained by substituting Eq. (6.61) with r2Z ¼ 1
into Eq. (5.48), which leads to,

C ¼

0 1� cðz1; z2Þ � � � 1� cðz1; znÞ
1� cðz2; z1Þ 0 � � � 1� cðz2; znÞ

� � � � � �
� � � � � �
� � 0 �

1� cðzn; z1Þ 1� cðzn; z2Þ � � � 0

2
6666664

3
7777775
: ð6:64Þ

In practical works, there are two different SV calculation ways as either from a
given small sample as in Table 6.2 without knowing the basic structure of the
sample SV or after defining the structural form of the sample SV from a large
number of data, which is preferred to be more than 30 data values. The former
approach yields to a matrix that represents half-squared differences subtraction from
1 according to Eq. (6.64) between the earthquake magnitudes.

C ¼

0
1� 0:00125 0
1� 0:05445 1� 0:03920 0
1� 0:03920 1� 0:02645 1� 0:00125 0
1� 0:02000 1� 0:01125 1� 0:00845 1� 0:00320

2
66664

3
77775:

Likewise, Eq. (6.58) can be written by considering Eq. (6.61) as,

B ¼

1� cðzE; z1Þ
1� cðzE; z2Þ

:
:

1� cðzE; znÞ

2
66664

3
77775: ð6:65Þ

Since the spatial variable value at the estimation site is not known, it is not
possible to estimate the SV values in this vector. However, instead one can use the
global SV that would depend on many location records and it is assumed herein that
from a priory structural analysis the sample SV as a linear model,

c dð Þ ¼ 0:015þ 0:1d ð6:66Þ

It is now possible to calculate the SV value from the distances between the
estimation point and other surrounding points in Fig. 6.26 leading to,
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B ¼

1� 0:0447151
1� 0:0434038
1� 0:0242392
1� 0:0524746
1� 0:0904616

2
66664

3
77775

With this information at hand, one can calculate the matrix in Eq. (6.64)
according to the distance matrix by using the SV expression in Eq. (6.66), which
leads to

C ¼

0
1� 0:0684689 0
1� 0:0499005 1� 0:0476195 0
1� 0:0814208 1� 0:0335368 1� 0:0520756 0
1� 0:0633628 1� 0:1165764 1� 0:0922863 1� 0:279264

2
66664

3
77775:

The final solution can be found by taking inverse of C, which appears as follows.

C�1 ��

�0:7747 0:3017 0:2867 0:2763 0:2058
0:3017 �0:7773 0:2822 0:2041 0:2866
0:2867 0:2822 �0:7600 0:2391 0:2558
0:2763 0:2041 0:2391 �0:9102 0:4471
0:2058 0:2866 0:2558 0:4471 �0:9829

2
66664

3
77775:

Hence, the application of Eq. (6.59) leads to the final weights as,

K ¼

0:2801
0:2668
0:2641
0:2387
0:2526

2
66664

3
77775

It is now possible to calculate the prediction value from Eq. (6.60), which gives
ZE = 2.65.

6.9 Triple Diagram Model (TDM)

Human beings can visualize three-dimensional variations at the maximum and the
best configuration of such variations can be achieved in three-dimensional Cartesian
coordinate system. In the previous sections spatial trend components are searched
inside the geographically coordinated sample points and their spatial variability
measurements. The same methodologies can be employed provided there are
simultaneous measurements of three spatial variables. It is possible to look for the
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spatial trend and variation characteristics of each spatial variable based on the
measurements’ geographic locations. In this section instead of the geographic
locations the values of the two spatial variable measurements are adapted as the
geographical location values (x and y) and the third one is the spatial variability,
z. In this manner, it is possible to look for the special variation of one of the
variables based on the other two. Provided that there are three simultaneously
measured variables there will be three different types of maps each of which is
referred to as the triple diagram model by Şen (2008). TDM is equivalent with the
contour line map and it can be obtained by one of the spatial trend methodology. In
geological sciences, Davis (1986) suggested the application of various simple
regional techniques such as inverse distance, inverse distance square, etc. for
mapping, herein, preparation of the TDM is based on classical Kriging technique.
In this section Kriging methodology is used for three-dimensional representation of
the spatial variable. In the construction of TDM three variables are necessary two of
which are referred to as independent variables and they constitute the basic scatter
similar to Fig. 6.17. The third is the dependent variable, which has its measured
value at each scatter point. The equal value lines are constructed by the Kriging
methodology concept as suggested by Matheron (1965), Kriging methodology is
also referred to as geostatistics. Details of this methodology are explained for earth
sciences applications by Journal and Huijbregts (1978).

The construction of a TDM requires three variables two of which are referred to
as independent variables (predictors) and they constitute the basic scatter diagram.
The third is the dependent variable, which has its measured values attached to each
scatter point. The equal value lines are constructed by the Kriging methodology
concepts explained in earlier sections of this chapter.

6.9.1 Parallel-Triple Model

The geostatistical methods take into consideration the effective role of the measured
values of a regional variable at a set of irregular sites (or scatter points) the
advantages and disadvantages of these methods are discussed by various authors
(Matheron 1963; Journel and Huijbregts 1978). The dependent variable in the triple
diagram can be considered as regionalized variable and as a random field with data
values recorded at scatter points of dependent variable.

The water hydrochemistry records are used for the implementation of the
Kriging methodology so as to obtain triple diagrams that give the common behavior
of three variables. Herein, three distinctive but complementary investigations are
considered. These are,

(1) Triple diagrams are constructed directly from major anions and cations, so as
to consider three major anions and/or cations common behaviors within the
study area. For instance, the triple diagram of the equal NO3 concentrations
based on Cl and HCO3 values is presented in Fig. 6.27.
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It is also helpful to look at the three-dimensional (3D) surface relationship
between these chemical constituents as in Fig. 6.28.
The interpretation of the triple diagram map and 3D surface leads to the fol-
lowing logical inferences concerning high NO3 concentration rates based on Cl
and HCO3
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Fig. 6.27 Equal NO3 lines based on Cl and HCO3
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Fig. 6.28 Three-dimensional NO3 change with Cl and HCO3
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IF Cl ismedium ANDHCO3 is low THENNO3 ishigh OR
IFCl ismedium ANDHCO3 ismedium THEN NO3 is very high OR
IFCl ishigh ANDHCO3 is low THENNO3 ishigh:

These logical statements lead hydrochemist to think about the possibilities of
each IF-THEN rule on the basis of geological subsurface composition of the
study area, in addition to the hydrological and hydrogeological features inter-
actions. In this manner, it is possible to obtain clues for reasons of groundwater
quality variations. On the other hand, these logical statements provide a common
basis for the general variability description of ions within the study area. Such
rule bases are prerequisites for fuzzy logic modeling as suggested by Zadeh
(1965).

(2) Similar triple diagrams can also be obtained among the milliequivalent per-
centages of the anions and cations as they are used in the construction of the
classical trilinear diagrams. This approach brings a restriction as the summation
of the percentages is equal to 100%, which is the basis of the classical trilinear
diagrams, (Piper 1953). If, for instance, the percentages of (SO4 + HCO3), Cl
and NO3 [or Ca, Mg and (Na + K)] are a, b and c, respectively, then by
definition a + b + c = 1.0, which implies that 0 < a, b, c < 1. It is obvious that
this expression gives points on the equilateral inclined triangular surface that is
shown in Fig. 6.29. In fact, this triangle is identical with the Piper diagram
basic ionic triangles.

(3) However, in this paper, the conventional equilateral triangle representation of
ions is considered similar to diagram in the first step, but with percentages.
Figures 6.30 and 6.31 show the percentage change of NO3 with of Cl and
HCO3 percentages in two and 3D maps, respectively.

As already mentioned right in Chap. 1 that visual inspections are very important
preliminary advices to deduce possible trend components in a given series and
herein in 3D map one can identify two triangular shaped plains.
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0 

Fig. 6.29 Equilateral
inclined triangular surface
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(3) It is also helpful to construct triple diagrams and 3D surfaces in terms of any
ion representing dependent variable with two independent composite variables
electric conductivity (EC), total dissolved solids (TDS) or ph.

The application of these three steps yields to a bundle of triple diagrams that can
be interpreted leading to common logical and scientific statements about the NO3

changes with respect to two other ions.
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Fig. 6.30 Equal percentage NO3 lines based on percentages of Cl and HCO3
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Fig. 6.31 Three-dimensional percentage NO3 change with Cl and HCO3
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Figures 6.32 and 6.33 indicate NO3 concentration changes with Cl and TD as
triple diagrams and 3D map, respectively.

Again in this figure visual inspection helps to identify approximately three trend
plains in sequence and each one can be quantified by the application of the trend
surface methodology explained in Sect. 6.8.

6.9.2 Serial-Triple Model

In this case three series are generated from a given time series at different lags. The
first one is the series itself as dependent variable, but the other two may be at
different lags. The simplest one is lag-one apart two others as independent variables.
If the given time series is X(i) = {X1, X2, …, Xi} (i = 1, 2, …, n), where n is the
sample length the two other serial time series are defined as X(i−1) = {X2, X3,…, Xi}
(i = 2, …, n) and X(i−2) = {X3, X4, …, Xi} (i = 3, …, n). Hence, three serial time
series are X(i), X(i−1) and X(i−2), which again similar to the parallel-triple model
provides a basis for 3D and 2D maps. The first two variables represent the two past
lake levels and third one indicates the present lake levels. Hence, the model has
three parts, namely, observations (recorded time series) as input, triple diagram as
response, and the output as prediction.

Herein, an example given by Şen (2009) is explained for the serial-triple model,
where the Lake Van water level measurements time series are taken into
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Fig. 6.32 Equal NO3 lines based on Cl and TDS
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consideration. This lake’s level modelling has already been presented in Chap. 4 in
the Sect. 4.8.2 Cluster regression model. Herein, the model is thought such that to
be able to predict the lake level from two previous record lengths, which means
implicitly that X(i) = f[X(i−1), X(i−2)]. This expression implies to a surface and
therefore its first and simplest consideration may be in the form of a regression
expression as,

X ið Þ ¼ aX i�1ð Þ þ bXði�2Þ þ ei ð6:67Þ

where ei indicates the spatial error terms, which are deviations from the plane
surface between the three serial-triple time series; a and b are model parameters. It
is also possible to search for curvature surfaces by taking into consideration any one
of the nonlinear models between the three variables as already explained in
Sect. 6.5.5. The parameter estimations can be obtained according to the procedure
in Sect. 6.8 under the light of assumptions that linearity, normality (Gaussian
distribution of the residuals, i.e., ei’s), variance constancy (homoscedasticity),
ergodicity and independence of residuals. The triple diagram replaces Eq. (6.67)
without any restriction in the form of map. Such a map presents the appearance of
natural relationship between three consecutive time values of the same variable.
The first three columns in Table 6.7 present the serial-triple time series for the lake

Chloride (ppm)

TDS (ppm)

Nitrate (ppm)

Fig. 6.33 Three-dimensional NO3 change with Cl and TDS
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level elevations in m. The fourth column provides the predicted lake level eleva-
tions with relative error in the last column. Although individual errors are slightly
greater than 10%, but the overall prediction relative error percentage is about
4.83%, which is less than practically acceptable limit of 5%.

The 3D map of the lake level variation based on the two previous year records is
presented in Fig. 6.34.

Figure 6.35 indicates the observed and predicted Hi values. It is obvious that
they follow each other very closely and on the average observed and predicted lake
level series have almost the same statistical parameters.

The serial-triple model map depicts the increasing trend and during the pre-
diction procedure there is no special treatment of trend, but even so it is modeled
successfully. However, in any stochastic or statistical modeling, it is first necessary
to make trend analysis and separate it from the original data. In order to further

Table 6.7 Lag-one lake level prediction (cm)

Lake level elevations (m) Prediction (m) Relative error (%)

X(i−2) X(i−1) X(i)

119 112 110 109.32 0.62

107 111 114 118.40 3.72

125 130 125 134.87 7.32

130 125 118 128.43 8.12

125 118 105 118.60 11.47

120 138 142 145.50 2.41

138 142 138 139.53 1.10

142 138 131 134.16 2.35

138 131 117 131.64 11.12

127 141 151 144.08 4.58

141 151 151 146.85 2.75

151 151 144 144.46 0.32

137 140 144 138.76 3.64

140 144 159 140.22 11.81

144 159 182 157.03 13.72

199 202 195 203.62 4.23

202 195 185 191.33 3.31

195 185 177 182.29 2.90

189 193 202 202.01 0.00

193 202 221 209.94 5.00

202 221 245 229.48 6.34

262 254 244 252.90 3.52

254 244 239 243.16 1.71

244 239 241 231.89 3.78

Average 4.83
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show the verification of the serial-triple diagram approach for lake level predictions,
in Fig. 6.35 the test data are plotted versus the predictions. It is obvious that almost
all the points are around 45° lines and hence the model is not biased. Predictions are
more successful at low or high values.
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Fig. 6.34 Lake level serial-triple map
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7Trend Variability Detection

Abstract
Variability is the most important feature that has been ignored in almost all the
trend determination studies, because the researchers are interested on the
average, whether there trend existence. However, in many natural and artificial
time series there are variations along the time axis in the variance or better in the
standard deviation. Unfortunately, in many application even unconsciously the
time series is assumed as having constant standard deviation (homoscadasdicity)
property. This chapter presents the available and simple variation measures and
then presents a systematic methodology in an innovative manner how to
determine the variability in the standard deviation.

Keywords
Homoscadasdicity � Interquartile range � Range � Simulation � Standard
deviation � Variability

7.1 General

In natural, economic, social, and astronomical events there are temporal and spatial
systematic variations and variabilities. Variations may be systematic or random as
have been explained in the previous chapters in terms of averages such as trends,
steps (jumps), and trends of linear or non-linear types. Variability is a specification
of a given data sequence, especially, in terms of a time series in which there are
changes not on the usual linear averages but in the standard deviations that are
related to the average of the square deviations from the arithmetic average, i.e.,
non-linear changes. The simplest form of variation is defined as the
homoscedascity, which implies variance, and hence, standard deviation change
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within a given time series. The patterns caused by the temporal and spatial vari-
ability of a phenomenon occur at many different forms depending on the causative
factors. For example, as the instrument or a machine gets older it starts to give not
only systematically increasing or decreasing tendency in its quantitative response,
but also unusual deviations from the general performance. In order to understand
the mechanism(s) that may cause to such unusual performances it is necessary to
deal with such situations through well-established scientific methodologies.

In general, spatial variability came across in many practical works than the
temporal type. Such variabilities reflect the regional behavior of the spatial phe-
nomenon concerned and the predictability of the event can be achieved on the basis
of meaningful and deductive pre-modelling interpretations of the data and reliable
predictions after the construction and use of a suitable model. Earth systems have
considerable temporal and spatial tendencies and variabilities. The variation is
brought about by differences in the type and scale of development in event pro-
ducing processes and also influenced strongly by local or regional factors such as
topographic elevations and atmospheric conditions (Wilson and Atwater 1972).

Variability reflects differences within the internal structure of an event into the
measurements and it gives rise to various algorithms that are currently in use in
many disciplines. Variability is a general term that is used for the comparison of
multitude of points but the difference can be quantified between two points only.
For instance, the global numerical values cannot explain the internal or external
features of the concerned event except its scale, but the comparison of any two
leads to additional and detailed information such as the difference (with dimension
of the numerical values) and unit difference (slope). There are many categories of
variability such as geometric, kinematics, and dynamic types, all of which are
embedded into the measurement sequence and must be identified from a set of
records.

On the other hand, similarity is another word that is useful in distinguishing any
variability between two cases of the same phenomenon. Similarity is a type of
difference and consequent variability measure between two events. The conse-
quence of variability may be interpreted on the basis of statistical calculations as
two events are different or similar within practically acceptable error limits as ±5 or
±10%.

Variability may appear in forms of regular shapes or functions that can be
described deterministically by mathematical and classical physical rules but irreg-
ular variabilities with their uncertainty components need to probability, statistics,
and stochastic techniques. Uncertain variations are random variables in temporal
sequences but regionalized variables in spatial events. Whatever the degree of
uncertainty, random or regionalized variables may include regular variations and
tendencies (trends, steps, seasonality). Quantitative variability is possible by
pair-wise comparison of two events and the subtraction operation is the only one
among four arithmetical operations that represents the variability.

This chapter concentrates on the possible variability patterns in the structure of a
time series, and hence, to explore further characteristics so that better modelling and
consequent predictions can be achieved in practical applications. Also among the
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main purpose of this chapter is to present two simple but innovative methods for the
trend slope and the variability change measurement, slope formulations and their
statistical explanations. Extensive simulation studies have shown the validity of the
proposed formulations. Especially, innovative trend slope expression results in a
complete numerical agreement with the classical MK Trend slope values. Sepa-
rately, a slope measurement for the variability quantification has been developed
and its validity is also confirmed with extensive simulation studies. The method-
ology is applied to six Turkish rainfall records from the northeastern part of Turkey.
In the last section a simple procedure is presented for variability identification
through the innovative trend template procedure. Additionally, a new significance
test is provided for the innovative trend analysis leading to levels that are parallel to
1:1, no trend line at 10 and 20% significance levels. The application of the
methodology is presented for seven climatology regions of Turkey with annual
daily extreme (maximum) rainfall records. In general, variability is defined in the
statistical sense as the extent to which time series fluctuates on the average around
the mean value (Chap. 5, Fig. 5.2). It also refers to the differences among data
points within a time series as related to each other or to the mean. This can be
expressed through the range, variance, or standard deviation of a dataset.

In all the previous sections, nonstationary time series exhibition of monotonic
linear trend detection methodologies are presented in the mean (arithmetic average)
level. However, time series may have nonstationarity also in the standard deviation
along the time evolution of the natural, environmental, or economic events. The
nonstationarity in the variance and hence, in the standard deviation is referred to as
the variability in this chapter.

7.2 Variability Measures

In practical applications averages are considered in almost all the studies, but the
variation measurements are ignored, which gives the impression or assumption that
the phenomenon concerned is uniform or steady-state. However, one may track the
general tendency on the average but in industrial processes, economic transactions,
and natural event assessments variabilities around the averages are more important
for quality and extreme value inspection, prediction, and control.

7.2.1 Range

The simplest measure of variability is the range, and it is the difference between the
highest and lowest data values in a time series. In the mathematical context it is the
domain of variation. It has two limits as lower and upper extreme values depending
on the phenomenon considered. In general, depending on the type of the limits there
are four different ranges.
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(1) Close upper and lower limits: These are either physically or definitionally
restrictive rages, which confine all the possibilities between upper and lower
limits. For instance, physically the Sun has a source of ultraviolet light with
wavelengths of 10–310 nm. The visible light covers the range of wavelengths
from 400–700 nm. On the other hand there are many definitional ranges such
as the probability variability domain is between 0 and 1, correlation coefficient
varies between −1 and +1, and porosity percentage has possible variability
between 0 and 100.

(2) Close upper end but open lower limit.
(3) Open upper end but close upper limit.
(4) Open upper and lower limits:

The variation analysis is depending not only on the internal variability at a fixed
site of the variable but more significantly on the regional scatter of sampling points.
In quantifying the variability the simplest approach is to find the range of variation
by comparison of the maximum and minimum values within the record. If the
relative error as given by Eq. (3.60) between the maximum and minimum record
values is less than ±5%, there is no significant variation in the records. In this case
one can depend on either the arithmetic average or more specifically on the mode
(the most frequently appearing data value) as the sole representative for whole
region. If the maximum and the minimum values are Zmax and Zmin, respectively,
then the range of data variability is defined as,

RZ ¼ ZM � Zm ð7:1Þ

The maximum percentage error can be defined as follows,

em ¼ 100
RZ

ZM
ð7:2Þ

If em � 5, the overall representative value can be taken as the arithmetic
average without any need for detailed modelling because the basic phenomenon is
not complex and its behavior is more or less homogeneous.

7.2.2 Standard Deviation

The mean or arithmetic average of a time series represents almost a mid-point of the
data fluctuations. It is different than the median, which refers to the exact value of
the time series value that falls at the center of the data points provided that the time
series data are sorted in ascending or descending order. While the median must be
represented by the precise mid-value, the mean may or may not be actually falls on
the same value.

The measure of variation around the arithmetic average (mean) value in statistics
is the variance or its square root standard deviation. In practical application standard
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deviation is preferred, because it has the same dimension as the original time series
and hence, it can also be represented on the same figure, if necessary. The vari-
ability is also synonymous to terminologies of dispersion, scatter, or spread, which
represents how stretched or squeeze a PDF is around the mean value. Among the
common measures of variability are the variance, standard deviation, and as
explained above the interquartile range.

If one would like to quantify the variability in more detail, then she/he should
look for deviations from the arithmetic average value. In order to represent the
overall variability rather than individual deviations, one should search for the
summation of these deviations, which does not provide any additional information,
because its value is equal to zero by definition. It is better to look for the sum of
square deviations (SSD), which is never equal to one and the smaller its value the
smaller is the overall variation. The minimization of the SSD is the main key in all
the modelling works, and therefore, it is referred to as the least squares approach. If
the sequence of data values is Zi (i = 1, 2,…, n), where n is the sample length then
the mathematical expression of the SSD is,

SSD ¼
Xn
i¼1

Zi � Z
� �2 ð7:3Þ

Its expansion leads to,

SSD ¼
Xn
i¼1

Z2
i � 2Z

Xn
i¼1

Zi þ nZ
2 ð7:4Þ

For the minimization procedure it is well-known from algebra that the derivation
of this expression with respect to the arithmetic average must be equal to zero.

@ðSSDÞ
@Z

¼ �2
Xn
i¼1

Zi þ 2nZ ¼ 0 ð7:5Þ

Finally,

Z ¼ 1
n

Xn
i¼1

Zi ð7:6Þ

which is well-known arithmetic average expression. More explicit writing of
Eq. (7.6) provides additional interpretations for further developments.

Z ¼ 1
n
Z1 þ 1

n
Z2 þ 1

n
Z3 þ . . .þ 1

n
Zn ð7:7Þ

The arithmetic average is a special case of weighted average where the
weighting factor is 1/n for each measurement value. Furthermore, it shows that the
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arithmetic average does not take into calculations the internal variability of the data
sequence, because equal weight is attached to each measurement.

It is possible to generalize Eq. (7.7) into a more variability reflective form by
giving different weighting factors, ai, to each data value, Zi, as,

Zw ¼
Xn
i¼1

aiZi ð7:8Þ

where Zw is referred to as weighted average. It is obvious from Eq. (7.7) that the
summation of the weights is equal to 1, and likewise,

a1 þ a2 þ . . .þ an ¼ 1 ð7:9Þ

Each of the weighting factors indicates the variability within the event con-
cerned. The bigger is the weighting factor the more is the variability contribution
from the concerned data value.

It is a measure of dispersion around a general tendency, which is the arithmetic
average. It is measured statistically by different parameters such as the interquartile
range (IQR), variance, and standard deviation. It also refers to the extent to which
values differ from one another, i.e., how much they vary. As for the probability
distribution function (pdf) is concerned the variability implies to how spread out a
distribution is.

7.2.3 The Interquartile Range (IQR)

Another important measure of variability is the interquartile range (IQR), which is
based on dividing a data set into quartiles. In general, quartiles divide a
rank-ordered data set into four equal parts. The values that divide each part are
called the first, second, and third quartiles; and they are denoted by Q1, Q2, and Q3,
respectively.

• Q1 is the “middle” value in the first half of the rank-ordered data set.
• Q2 is the median value in the set.
• Q3 is the “middle” value in the second half of the rank-ordered data set.

In other words, the IQR is the 1st quartile subtracted from the 3rd quartile, which
are also seen clearly on a box plot on the data (McGill et al. 1978). The IQR is a
measure of variability, based on dividing a data set into quartiles. Quartiles divide a
rank-ordered data set into four equal parts. The values that divide each part are
called the first, second, and third quartiles; and they are denoted by Q1, Q2, and Q3,
respectively.
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As descriptive statistics, the IQR, which is also called as the mid-spread or
middle fifty, or technically H-spread, is a measure of statistical dispersion (vari-
ability) equal to the difference between the upper and lower quartiles.

IQR ¼ Q3 � Q1

IQR of a continuous PDF can be calculated by integrating the PDF leading to the
CDF. The lower quartile, Q1, is a number such that integral of the PDF from −∞ to
Q1 equals 0.25, while the upper quartile, Q3, is such a number that the integral from
−∞ to Q3 equals 0.75; in terms of the CDF, the quartiles can be defined as follows:
where CDF−1 is the quantile function Fig. 7.1.

As a simple example let us consider the simplest time series as 1, 3, 4, 5, 5, 6, 7,
and 11. The middle value, Q1, is in the first half of this time series. Since there are
an even number of data points in the first half of the data set, the middle value is the
average of the two middle values; that is, Q1 = (3 + 4)/2 = 3.5. On the other hand,
Q3 is the middle value in the second half of the data set. Again, since the second
half of the data set has an even number of observations, the middle value is the
average of the two middle values; that is, Q3 = (6 + 7)/2 = 6.5. The interquartile
range, IQR = 6.5 − 3.5 = 3.

7.2.4 Investment Variability

Variability is used also to standardize the returns from an investment and it provides
a comparison basis for additional analysis. The excess return or risk premium per
unit of risk for an asset can be measured by the reward-to-variability, which is the

Q1 

A
re

a 
= 

0.
25

Q3 

A
re

a 
= 

0.
75

Fig. 7.1 Lower and upper quartiles

7.2 Variability Measures 287



Sharpe ratio. The significance of the Sharpe ratio is that it is a metric to compare the
amount of compensation an investor receives with regard to the overall risk taken
by holding investment. The excess return is based on the amount of usual return
beyond investments that are considered free of risk. Provided that all else are equal,
the asset with the higher Sharpe ratio delivers more return for the same amount of
risk.

The risk perception of an asset class is directly proportional to the variability of
its returns. As a result, the risk premium that investors demand to invest in assets,
such as stocks and commodities, is higher than the risk premium for assets such as
Treasury bills, which have a much lower return variability.

7.3 Trend and Variability Detection by Innovative
Methodology

Since the climate change effect appearance in different parts of the world at variable
scales on the social, natural, economic, and engineering aspects, researchers
become interested whether there are temporal and spatial increasing or decreasing
trend components in the recorded time series. For instance, climate change and
variability reflections appear in the hydrological records, and in the future any
successful engineering project design, operation, management, and maintenance of
water resources will depend on objective trend and variability features of the
records, their detection and interpretation. Different researchers have touched on
these significant points (Hannaford and Marsh 2006; Gupta 2007; Lorenzo–Lacruz
et al. 2012; Sharif et al. 2012; Larsen et. al. 2013; Haktanır and Citakoglu 2014).
Furthermore, the impact of climate change on different elements of the hydrological
cycle has been investigated by many researchers in different disciplines (Bao et al.
2012; Douglas and Fairbank 2011; Ehsanzadeh et al. 2011; Garbrecht et al. 2004;
Novotny and Stefan 2007; Wagesho et al. 2012). Recently, Han et al. (2014) have
performed simultaneously a comprehensive analysis of trends in precipitation and
stream flow records at the Xiangxi River Watershed through multiple classical tests
to detect the trend and their magnitudes.

Discontinuous meteorological variable predictions and variability such as pre-
cipitation under the prevalence of greenhouse warming are more speculative than
continuous meteorological variable, say, temperature projections, especially at the
regional and local geographic scales of interest to water planners. The most recent
IPCC (2007, 2012) reports analyses suggest that a greenhouse warming will have
continuous trend and variability effects on water supplies. Of course additionally
landscape and geomorphological changes show unprecedented impacts on the
runoff apart from the climate change through the precipitation and consequent
runoff phenomenon. Trend existence and variability features may result from var-
ious effects and lead to different consequences. For instance, the timing and regional
patterns of precipitation may change, and more intense (weak) precipitation days
are likely, and hence, increasing (decreasing) trend effects take place in the recorded
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time series. General circulation models (GCMs) provide climate change predictions
as 1.5–4.5 °C rise in global mean temperature, which may increase global mean
precipitation about 3–15%. Such an increase is expected to affect the hydrological
elements such as runoff in terms of trends and also variabilities. Although the
regional distribution is uncertain, precipitation is expected to increase in higher
latitudes, particularly in winter. Potential Evapotranspiration (ET) as water evap-
orate from the surface and transpiration from plants rises with air temperature.
Consequently, even in areas with precipitation increments, higher ET rates may
lead to runoff reduction, which imply a possible reduction in renewable water
supplies coupled with trend and variability features. As a result of precipitation
increase consequently more annual runoff occurrences are likely in the high lati-
tudes. In contrast, some lower latitude basins may experience large reductions in
runoff and increase in water shortages as a result of evaporation increment coupled
with precipitation decrement combination. Flood frequencies are likely to increase
in many areas, although the amount of increase for any given climate scenario is
uncertain and impacts may vary among basins, and floods may become less fre-
quent in some areas. On the other hand, the frequency and severity of droughts
could increase in some areas as a result of a decrease in total rainfall, more frequent
dry spells, and higher ET. The hydrology of arid and semi-arid areas is particularly
sensitive to climate variations. Relatively small changes in temperature and pre-
cipitation in these areas could result in large percentage changes in runoff,
increasing the likelihood and severity of droughts and/or floods (Şen 2008). Sea-
sonal disruptions might occur in the water supplies of mountainous areas, if more
precipitation falls as rain than snow and if the length of the snow storage season
reduces. Water quality problems may increase where there is less flow to dilute
contaminants’ contribution from natural and human sources.

7.3.1 Methodology

There are several methodological trend detection approaches in the statistics and
hydrology literature, where most of the time in hydrological applications Mann–
Kendal (MK) trend analysis approach is employed (Mann 1945; Kendall 1970).
Additionally, trend slope determination by median slope calculation has also been
in use parallel to trend detection as suggested by Sen. Theoretically, it is developed
for infinite length of time series, and hence, finite sample lengths cause bias effects.
In order to assess the influence of the dependent serial correlation structure, various
authors have performed Monte Carlo simulation studies (Yue et al. 2002; Hamed
and Rao 1998; Matalas and Sankarasubramanian 2003). Trend analysis evaluation
is also needed for long term infra-structure design and risk analysis in
hydro-meteorological time series. As stated by Fatichi et al (2013) due to climate
change assessment, trend identification, detection, and evaluation are important
issues in different disciplines. Growing importance of trend analysis is triggered
also by the Intergovernmental Panel on Climate Change (IPCC 2007) Climate
change.
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In any climate fundamental text book, the climate change is explained on the
basis of a simple probability distribution function (pdf) shift as in Fig. 7.2.
Although in this figure normal (Gaussian) pdf is demonstrated for simplicity, it is
possible to replace it with any suitable pdf to the records at hand.

Close inspection of this figure leads to the deduction of the following major
points that are very important for the methodology development.

(1) In order to decide whether there is a climate change two different pdf’s must
be considered, which implies that two different time series (Şen 2012, 2014)
and consequent trend and variability searches,

(2) The shapes of the pdf’s remain the same and this point implies the stationarity
of the respective time series,

(3) For trend detection instead of the whole pdf, it is enough to consider the
arithmetic average of each time series and compare them. In case of significant
difference one can conclude that there is a trend in the time series,

(4) The trend existence is coupled with the difference in the arithmetic average,
Dl, which implies the traditional trend component as in the Mann–Kendall
trend test,

(5) It is also important to know the time difference between the two pdf’s or
average calculation time periods. If this time difference period is denoted by
Dt, then the rate of change, i.e., slope, S of increasing trend can be expressed
as follows,

Sþ
l ¼ ðlþDlÞ � l

Dt
¼ þ Dl

Dt
ð7:10Þ

On the other hand, if there is a decreasing trend with the same argument, the
slope of the trend becomes similar to the previous expression as,

S�l ¼ l� ðlþDlÞ
Dt

¼ �Dl
Dt

ð7:11Þ

μ+Δμ

Increasing
trend

Decreasing
trend

C A B

μ-Δ μ

Fig. 7.2 Trend without
variation
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Hence, by consideration of innovative trend methodology developed by Şen
(2012, 2014) with the two halves of the same time series, one can calculate the
arithmetic average of the first half, m1, and then of the second half, m2, and
consequently, the slope formulation can be generalized as,

Sm ¼ m2 � m1
n
2

� � ð7:12Þ

where n is the number of data in the time series. Herein, half of the time series
length, n/2, is adapted, because this is the time period difference between the two
halves. Depending on the sign in Eq. (7.12) one can decide whether the trend has
increasing (positive) or decreasing (negative) tendency. All these explanations are
valid for homoscedasticity (standard deviation constancy), however, in nature the
time series may behave in a nonstationary manner.

Another parameter is the standard deviation that shows itself with the pdf’s
terms as in Fig. 7.3. Since, the standard deviation is the square root of the variance,
it is a variability measure.

Hence, by considering the arithmetic mean and the standard deviation relative
positions between two pdf’s similar to Fig. 7.12, one can again distinguish three
cases (A, B, and C). In general, the standard deviations may be different from each
other as rA 6¼ rB 6¼ rC.

It is possible that the time series may be the first order stationary, which implies
that there is variation in the variance (standard deviation) by time. In other words
the time series is not homoscedastic. In Fig. 7.3 there are variations without any
trend existence and again two time series are comparable on the basis of the
standard deviation. The change in the standard deviation per time duration is the
definition of the variation measure. Hence, similar to Eq. (7.10) one can deduce
simply that the variation slope can be expressed as,

S�r ¼ ðrþDrÞ � l
Dt

¼ �Dr
Dt

ð7:13Þ

+
A

B

C

σ+Δσ

σ-Δσ

σ

Fig. 7.3 Variation without
trend
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With the practically useable notations by taking into consideration the two s-
tandard deviations as s1 and s2 for the first and the second halves of time series one
can write the variability slope, Sv as,

Sv ¼ s2 � s1
n
2

� � ð7:14Þ

The arithmetic mean and the standard deviation are two basic statistical
parameters that are completely independent from each other, and therefore,
Eqs. (7.12) and (7.14) can be applied to any time series independently from each
other.

7.3.2 Simulation Study

In order to confirm the validity of the formulations in the previous section,
extensive Monte Carlo simulation study is carried out with dependent and inde-
pendent time series generation. Herein, as an alternative, the classical Sen (1968)
slope calculation procedure, is taken into consideration for comparison purposes
and it expresses the trend slope as,

S ¼ median
Xi � Xj

i� j

� �
for i[ jð Þ ð7:15Þ

where Xi (Xj) is the i-th (j-th) time-series value. Hence, there is a big difference
between this and the alternative slope formulation (Eq. 7.12) in this chapter. The
most important point in any Mann–Kendal trend test is the calculation of this slope
value.

The longest hydro-meteorological historical records rarely have durations close
to 100 years or slightly more. This is the main reason why in the simulation studies
100-year length synthetic series are considered. In the simulation works, stan-
dardized synthetic series (l = 0, r = 1) are generated, because of the independence
of the arithmetic mean from the standard deviation. Furthermore, a set of ensembles
of the same length are considered with the applications of Eqs. (7.12), (7.14), and
(7.15) to each ensemble member, and finally, their arithmetic averages are con-
sidered as the final results. For different arbitrary sets of first order serial correlation
coefficient, q, and trend slope values, the simulation results are presented in
Table 7.1.

The first striking conclusion is the validity of Eq. (7.12) as the trend slope
formulation, because it yields almost the same numerical values with the
well-established Sen trend slope results within the sampling error limits less than
5%. It is possible that another set of different first order correlation coefficient and
trend slope values may be adapted and the same simulation study leads to another
set of numerical results. The combination of all such results appears along the 1:1
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(45°) line as in Fig. 7.4. This is the line that confirms the validity of herein sug-
gested formulation for trend slope as in Eq. (7.12).

Another set of simulation study is performed for the variability formulation
(Eq. 7.13) validated again with the standardized synthetic independent and
dependent processes and the results are presented in Table 7.2. In the literature,
there is no alternative for variability slope formulation (Eq. 7.13), and therefore, in
the last column the results from this equation only are given.

In order to check the validity of the suggested formulation in Eq. (7.13) two
types of plots are considered. Since the formulation is for the estimation of the
simulation variability, first preselected set of simulation variability values are
plotted against the same values so as to get a reference line of 1:1 (45°) line. On the
same graph this time fixed set of simulation variability results are plotted against the
simulation result values from the last column of Table 7.1 (Eq. 7.13 results) as in
Fig. 7.5.

It is obvious from this figure that the simulation line is slightly below the
reference line and at the maximum the difference is 0.11, which corresponds to
100 � 0.11/3.0 = 3.36% relative error and this is well below the acceptable level,
because it is within the practically acceptable error limits of ±5%.

7.3.3 Applications

As the application area, six meteorology station annual rainfall records around the
Istanbul City are selected as shown in Fig. 7.6. These are scattered on the European
and Asian parts of the city.
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After the division of the basic record time series into two nonoverlapping equal
duration sections as half time series, the computer software written on Matlab
program is used for various calculations, and the results are given in Table 7.3.

In Fig. 7.7 each station time series is presented with three straight-line trends on
each, namely trend lines according to Eqs. (7.12) and (7.15), which represent the
trend line in this chapter and the MK trend line, respectively. It is obvious that these
trend lines are very close to each other in all the stations. Additionally, variability
line is also shown, which is rather different than the two previous lines.

One can realize that the most increasing variability effect appears at Sarıyer
meteorology station, which is open to northwesterly air movements from the North
Atlantic Ocean and through the European continent and Balkan Peninsula. At the
same station there is also increasing trend on the arithmetic average value. Similar
pattern appears at the Kumköy station. Just the opposite trend patterns are valid at
the Kartal station, where there are significant decreases in the trend and variability
features. The least variability is at the Göztepe station, because it lies in the inland
of the Asian side of Istanbul City, where the air movements reach to a more or less
stable situation. Florya station is also stable on the European side and its location is
protected from general air movement, where there is neither significant trend nor
variability. The Bahçeşehir is exposed to landscape change, because many vege-
tative areas are turned to local settlements and this is the main reason why there is a
decreasing trend, however the variability is more or less remained on the same
level.

7.4 Trend Significance Limits

In order to base the deviations of each scatter point from the 1:1 straight line, herein
a quantitative significance test is suggested. Figure 7.8 represents the 1:1 (45°)
straight-line scatter plots as explained briefly in the Introduction section (Şen 2012,
2014).

In case of no trend and no variability, the scatter points lie on or very close
around the 1:1 line, which implies that the corresponding values in the first and
second half series are the same without any significant trend or variability. In other
words, the mean and the standard deviation of the first and the second halves are
significantly close to each other, i.e., the differences are practically equal to zero.
However, for randomly distributed time series, this statement implies that the
expected value or the arithmetic average of the differences is equal to zero, E
(m2 − m1) = 0. In any given natural hydro-meteorological time series such a perfect
case is not valid, and therefore, there will be deviations from 1:1 line. The smaller
the square root of square deviation summation (SRSDS) from the 1:1 (45°)
straight-line, the closer are the scatter points to 1:1 straight line, and accordingly,
there is not a significant trend or variability component. One can calculate the
SRSDS, sd, between the two half series scatter points from the 1:1 line as,
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sd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn=2
i¼1

Xi � Xðn=2Þþ 1

� �2
vuut ð7:16Þ

The smaller is the value of sd, the closer are the scatter points from 1:1 (45°)
straight line, which implies verbally insignificant trend or variability existence. In
order to convert this information into an objective form the division of the mean
difference, (m2 − m1), by the SRSDS in Eq. (7.16) leads to the definition of trend
test statistic, ts, as,

ts ¼ m2 � m1ð Þ
sd

ð7:17Þ

The small values of this test statistics, ts, imply that there is trend and variability,
which is regarded as the null hypothesis, Ho. On the contrary, the big values
corresponds to the alternative hypothesis, Ha, where there is no trend or variability.
Theoretically, ts has zero mean and unit variance, and hence, the standard normal
pdf can be used for the significance test. The summary of the necessary calculations
is presented in Table 7.4 with the trend test statistic, ts, values in the last column.

The positive (negative) sign of the ts value implies increasing (decreasing) trend
component in the given time series, which are in complete agreement with
respective graphs in Fig. 7.6 for each station.

In a two-tail significance level based on the standard normal pdf with zero mean
and unit variance at 5% significance, the lower (upper) confidence limit is −1.96
(+1.96). Hence, all the trend test statistic in the last column falls between these
confidence limits, and therefore, in all the time series there are significant trend and
variability components, which are presented quantitatively in the previous section.

Last but not the least, each graph in Fig. 7.8 provides additional information to
corresponding trend and variability graphs in Fig. 7.7. For instance, Bahçeköy
meteorology station graph in Fig. 7.8 exposes that all the scatter points are below
the 1:1 (45°) straight line and this implies that there is a decreasing trend in the time
series, which is also confirmed by the corresponding graph in Fig. 7.7. For the last
two stations, Kumköy and Sarıyer, Fig. 7.8 graphs scatter points are over the 1:1

Table 7.4 Significance test values

Station First half
mean, m1

Second half
mean, m2

Mean difference
(m2 − m1)

sd ts-statistics

Bahçeköy 162.5 141.1 −21.40 37.71 −0.5674

Florya 104.5 99.6 −4.90 14.98 −0.3271

Göztepe 670.15 690.19 20.04 30.56 0.6557

Kartal 92.11 78.63 −13.49 19.14 −0.7042

Kumköy 722.75 821.98 99.22 123.36 0.8043

Sarıyer 751.7 825.9 74.20 90.59 0.8190
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(45°) straight line and such scatters imply the existence of strongly increasing trend,
which is also confirmed by the last two graphs in Fig. 7.7.

It can be concluded that in hydrology studies for the last two to three decades,
trend analysis oriented publication rate increased because of the climate and
landscape changes that affect directly the hydrological cycle to certain extend in
different parts of the world at different rates. In general, the trend studies are based
on the classical Mann–Kendal (MK) statistical test analysis and in the detection of
trends the key variable is its slope. In this chapter, simple and effective slope
formulation is suggested and its validity is proved by extensive simulation studies.
Additionally, the comparison of this slope formulation results with the one that
exists in the literature shows a 1:1 (45°) straight line as another evidence of its
validity. Another concept that is frequently used in the hydrology literature is the
variability in addition to trend analysis, but it has not been quantified in the liter-
ature by objective formulations. Hence, additional innovative point in this chapter is
the suggestion of a valid variability formulation, which has been also confirmed
with the simulation studies.

The application of the trend and variability formulations are achieved for six
meteorology stations and the new trend in addition to the MK trend lines are shown
on the same graph and they almost follow each other within practically acceptable
error limits. Additionally, on the same graphs, the variability lines are also indicated
and the interpretations of all these straight lines are given for the study area, which
are the European and Asian side meteorology station records.

7.5 Trend and Variability Analyses by Innovative
and Classical Methodologies

Temperature and precipitation time series records are the two major data sources for
the assessment of climate change impact on social, economic, and water resources
engineering planning, management, and operation (IPCC 2007, 2013, 2014). The
most significant component in any climate change study is the search for trend
component, because it indicates on the average temporally increasing or decreasing
tendencies that are important for future planning and management studies. In the
past, many researches depended on the assumption that the past is the reflection of
the future, which meant that the hydro-meteorological time series have a stationary
structure (Maass et al. 1962; Milly et al. 2008). However, the climate change impact
overturned this assumption in the sense that as for the statistical features of
hydro-meteorological records, including trends, are concerned, the past is not
reflection of the future (Milly et al. 2008). Fatichi et al. (2013) stated that due to
climate change assessment, trend identification, detection, and evaluation became
important issues in different disciplines.

Trends in the precipitation records are not homogeneous monotonically, but
many trend analyses do not provide detailed information on this point. Most trend
analyses treat the available hydro-meteorological time series monotonically as a
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single trend over the whole record duration, without any distinction either time wise
or record value wise as “low” (drought), “medium,” and “high” (flood) classes.

Preliminary trend test is given by Mann (1945) and Kendall (1970), which
provides information about possible trend (increasing, decreasing, or no trend). This
approach requires that the hydro-meteorological records must have independent
serial correlation structure. von Storch (1995) noticed that the Mann–Kendal
(MK) statistical trend test cannot yield significant trend in hydro-meteorological
series with statistically significant serial correlations. In order to alleviate this point,
he suggested pre-whitening procedure so as to render the serial dependence into
independence status and then apply MK trend test. The pre-whitening procedure is
incapable to transform the original series into a completely independent series with
zero correlation coefficient. Yue and Wang (2002) and Bayazıt and Önöz (2007)
stated that by pre-whitening, the dependence structure can be reduced such that the
serial correlation coefficients becomes close to zero. Douglas et al. (2000) indicated
that after the pre-whitening application to some flows in the United States, trend
appeared less than prior to pre-whitening. The pre-whitening procedure has been
applied for trend analyses prior to MK trend test without any proof of its ability to
fulfil independence structure (Zhang et al. 2001; Hamilton et al. 2001; Burn and
Hag Elnur 2002).

The MK procedure is supported by the trend slope calculation as the median of
all the possible slopes between the two record values within the time series (Sen
1968). Other trend procedures are the Spearman’s tau (Spearman 1904) and tra-
ditional regression analysis.

The MK trend test has been applied in a number of hydrological, atmospheric,
and environmental researchers on hydro-meteorological and climatological time
series records by many authors (Hirsh et al. 1982; Hirsh and Slack 1984; Hipel et al.
1988; Demaree and Nicolis 1990; Yue et al. 1993; Gan 1998; Taylor and Lotfis
1989; Douglas et al. 2000; Hamilton et al. 2001; Kalra et al. 2008; Hamed 2008).

Recently, Şen (2012, 2014) has suggested an innovative trend analysis
methodology, which can penetrate into the hydro-meteorological record value
classifications as “low”, “medium,” and “high” values and makes assessment of
trends categorically. This is a nonparametric approach, because the record is
divided into two halves and after sorting them individually in ascending order, the
first half is plotted against the other so as to identify possible trends categorically.

7.5.1 Şen Innovative Trend Analysis

Trend methodologies can be classified as nonparametric and parametric procedures
and each one with a specific set of assumptions. In the following sequel Şen (2012,
2014) method is employed, which divides the given record series into two equal
parts, each part is sorted in ascending order and then plotted against each other
leading to scatter points as in Fig. 7.9. The 45° (1:1) straight line is a divisor of the
square domain of the scatter diagram into two halves as the upper and lower
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triangular parts. The upper (lower) part represents increasing (decreasing) trend
domain. If the scatter of points are on the 1:1 line or significantly close to this line
then there is no significant trend component in the original time series.

This procedure provides trend information about the “low”, “medium,” and
“high” data values categorically.

7.6 Application and Interpretations

For the application of aforementioned trend methodologies seven meteorology
station annual daily extreme rainfall data are taken into consideration. Each station
location represents different geographic and climatological region of Turkey. The
station locations and the geographical regions are shown in Fig. 7.10.

The length of each record is more than 50 years, which is statistically acceptable
for reliable applications. Although each record starts at different years but ends in
year 2010, inclusive.

In general, Turkey is in the sub-tropical climate belt of the world, but within the
country there are seven different sub-climatological regions.

(1) Black Sea region: This is in the northern Anatolia, where the penetration of the
North Atlantic air masses reaches the Black Sea and then confronts with the
mountain chain that is parallel to sea coast. Consequently, during the winter
seasons frontal type of precipitation occurrences are predominantly frequent,
whereas in the summer months orographic type of rainfall takes place.
Trabzon is the representative station for this region.
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(2) Marmara region: This region is under the effect of the air masses that come
from the Balkan Peninsula and also especially in the summer seasons
Mediterranean type of climate belt extends toward the north covering this
region. Summer seasons are warm but winter seasons are very severe in the
European part of Turkey. The location of Istanbul City including Goztepe
meteorology station has rather mild climatic features due to the Dardanelles
and Bosphorus straights.

(3) Agean region: This region is under the effect of maritime climatic effects that
penetrate from the Mediterranean Sea with very hot summer months and mild
winter conditions.

(4) Mediterranean region: Again maritime climatic conditions prevail, and
according to the IPCC (2007, 2012, 2013) reports, especially eastern
Mediterranean area will be under the effect of climate impact with decreasing
rainfall amounts and frequencies. The region has humid climate with very hot
summers and mild winter months.

(5) Central Anatolia region: This is the most steppic, semi-arid and the least
rainfall receiving region in Turkey. The annual rainfall averages are around
250 mm with dry conditions, especially in spring and winter seasons, with
rather frequent and elongated drought periods. It is in the form of a close
drainage basin.

(6) Southeastern Anatolia region: This area lies in the most southeastern part of
Turkey at the head of the Mesapotamian valley. It has very dry summer
seasons and mild continental climatic conditions.

(7) Eastern Anatolia region: Rugged mountains with elevations reaching to
5,000 m are dominant in this region and they cause very severe winter con-
ditions under the effect of continental climate. The upstream of Euphrates and
Tigris rivers are in this region, where these two rivers get their waters espe-
cially in spring seasons, due to late snow melt phenomenon.

Fig. 7.10 Meteorology and geographic region locations
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7.6.1 Probability Distribution Functions (pdf)

The first step is to identify the pdf of each meteorology station for interpretations of
convenient distribution that is meaningful for future predictions. The pdf’s do not
provide any clue about either the trend component or the variability behavior.
Figure 7.11 presents the valid pdf’s for each meteorology station annual daily
extreme rainfall values. Each graph indicates almost perfect match between the
empirical data scatter and the theoretical pdf’s. The presentation is in the form of
exceedence probability variation against the data values. It is possible to see the
annual daily extreme rainfall amounts for a set of return periods as 2-year, 5-year,
10-year, 25-year, 50-year, and 100-year. These extreme values are the basic deci-
sion quantities in any water resources engineering structure design provided that the
return period is given.
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All the trend analyses methods mentioned in the previous section can be applied
without any restriction to each one of the pdf’s.

7.6.2 Different Trends

Since the annual daily extreme rainfall values have independent structure,
pre-whitening procedure application is not necessary for the MK methodology. The
independent serial structure provides a common base for each trend analysis to
yield very close results to each other. In Fig. 7.12 two classical trend methods (Sen
and regression) are shown in addition to the innovative trend analysis result. The
slope, SI of the innovative trend slope is obtained through the following simple
formulation.
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Fig. 7.11 (continued)
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SI ¼ mS � mF

n=2
; ð7:18Þ

where mS and mF are the arithmetic averages of the second and first halves of the
time series. Visually one can inspect that each method yields almost the same trend
within acceptable sampling errors. In all the remaining figures in this chapter
ADMR acronym implies annual daily maximum (extreme) rainfall.

Antalya, Diyarbakır, Izmir, and Trabzon stations have significant decreasing
trends, whereas Ankara, Erzurum, and Istanbul stations have comparatively weak
significant trend components.
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Fig. 7.12 Various trend methodology results
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7.7 Trend and Variability

In the previous section, different trend methodological lines are presented with
comparisons. In this sub-section, another very important feature of the
hydro-meteorological and climatological time series is identified, which is the
variability. Especially, extreme values with the climate change effects are related to
droughts and floods, which may cause variations in the standard deviation. The
linear trends are concerned with the average temporal tendencies in a time series,
whereas the standard deviation changes are referred to as temporal variability. In
general, prior to the climate change impact hydro-meteorological time series were
assumed to be first order stationary or second order stationary, which meant that the
mean and the variance are constants and do not vary by time. For the variance, this
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Fig. 7.12 (continued)
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property of constancy is referred to as the homoscadasdicity in the statistics liter-
ature (Benjamin and Cornell 1970). In order to search for the standard deviation
variation within the given series, one can think about its division into two equal
parts and then compare the standard deviations of each half. If the second half
standard deviation is bigger (smaller) than the first one then there is an increasing
(decreasing) variation in the time series. Simply, the variability can be measured as
the standard deviation change per time (year in this case). If the first and second half
standard deviations are SF and SS, respectively, then simple expression of the
innovative methodology variability, VI, can be written as,

VI ¼ SS � SF
n=2

ð7:19Þ

If VI > 0 (VI < 0) then there is an increasing (decreasing) variability. In case of
increasing (decreasing) variability there is high expectation in the magnitude and
frequency of floods (droughts). Innovative trend and variability tendencies are
presented in Fig. 7.13 for each station.
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Fig. 7.13 Trend and variability lines
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Ankara meteorology station ADMR records do not have significant trend (no
decrease in the rainfall amounts), but there is a decrease in the variability with time,
which implies that in the future more dry and drought periods are expectable in this
region. Antalya and Diyarbakır stations have almost the same decreasing trends and
variability. Such a situation indicates not only decrease in the rainfall amounts, but
additionally expectation of more severe and frequent dry spell possibilities in
future. This is in accord with the IPCC reports conclusion that the Eastern
Mediterranean area will experience decreases in the rainfall amounts (IPCC 2007,
2013). Erzurum meteorology station ADMR records have increase both in the
rainfall amounts and in the variability, which imply expectation of more frequent
and severe flood occurrences in this region. Izmir and Trabzon stations are expected
to experience significant decreases in the rainfall amounts and to become drier in
future. However, in Istanbul (Goztepe meteorology station) water balance is
expected to remain steady with time.
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7.8 Innovative Trend Template and Significance Limits

These templates provide a rich information about the internal trend structure of a
given time series, because they classify “low,” “medium,” and “high” record values
in the first half with comparison to the second half. Such a plot indicates how the
trend takes place in the “low,” “medium,” and “high” record ranges. It is possible to
divide objectively the range of variation into three equal parts and then interpret
trends in each domain. However, subjectively one can observe these three cate-
gories by looking at the innovative trend template.

In Fig. 7.14, the innovative trend template for each meteorology station is given
with mean and standard deviation centroids for the first and the second halves.

Innovative trend templates in Fig. 7.14 provide detailed interpretations about the
trend components within the ADMR records, where three categories are taken into
consideration as “low,” “medium,” and “high”. In these templates, four centroid
points are shown for the mean (trend), St. Dev. (variability), first and second half
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Fig. 7.14 Innovative trend templates
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series. If the mean centroid is above (below) the 45° (1:1) straight line then there is
increasing (decreasing) trend within the whole hydro-meteorologic time series.
Similarly, the location of the St. Dev. centroid implies increasing or decreasing
variability component. First and second half centroids are for the first and the
second half time series trend cases. By taking these four centroid points into
consideration, the following interpretations can be deduced from the innovative
trend templates.

In general, Antalya, Diyarbakır, Izmir, and Trabzon meteorology station records
indicate significant monotonic decreasing trends as obvious from Fig. 7.13, which
are confirmed by the corresponding innovative templates also in Fig. 7.14, because
the mean centroid for each station is far below the 1:1 (45°) straight line.

In order to base the deviations of each scatter point as well as centroids from the
1:1 straight-line, herein a quantitative significance test is suggested. In case of no
trend the scatter points must lie on the 1:1 line, which implies that the
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Fig. 7.14 (continued)

7.8 Innovative Trend Template and Significance Limits 315



corresponding values in the first and second half series are the same, in other words,
their differences is equal to zero. This further implies that the expected value or the
arithmetic average of the differences is equal to zero. However, in any given natural
hydro-meteorological time series such a perfect case is not valid, and therefore,
there will be deviations from 1:1 line. The smaller the standard deviation of these
deviations, the closer are the scatter points, and accordingly, the mean centroid
points are close to the 1:1 line. Hence, one can calculate the standard deviation, sd,
of the scatter points from the 1:1 line as follows,

sd ¼ 1
n

Xn=2
i¼1

Xiþ n=2 � Xi

� �2 ð7:20Þ

The significance test for the innovative trend can then be accomplished by
considering the normal pdf with zero mean and standard deviation equal to sd at a
given confidence level. The peak point of such a normal pdf lies on the 1:1 line, and
hence, the significance levels must be measured from the peak point as shown in
Fig. 7.15. In the same figure, ±10 and ±20% significance levels are also shown
explicitly.

In Fig. 7.14, the significance levels, according to this way of calculation, are
shown as parallel lines to the 1:1 (45°) no trend straight line. On the same templates
in Fig. 7.14, there are also upper and lower confidence limits around the 1:1 (45°)
no trend line. Unfortunately, in some applications these confidence lines are taken
arbitrarily as nonparallel lines, which is wrong. After all, the important point is to
assess the overall deviations of the scatter points from the 1:1 no trend line. For this
purpose, the deviations from the 1:1 line are calculated with their mean, md, and
standard deviation, sd, values. In general, in the case of no trend, the mean of the
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Fig. 7.15 Innovative trend analysis confidence level normal pdf with zero mean and sd standard
deviation
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deviations should be equal to zero. The resulting numerical calculations are pre-
sented in Table 7.5.

With the confidence limits, the innovative trend templates provide refined
interpretations. For instance, at Antalya station scatter points mostly fall within the
confidence limits at “low” and “high” ADMR values, but in between all points are
outside the limits in the lower triangular part, which implies that the decreasing
monotonic trend component comes from the “medium” ADMR data.

At Diyarbakır station, monotonic decreasing trend in Fig. 7.13 is more severe
compared to Antalya, but the contributions are from “medium” and “high” ADMR
values as obvious on the innovative trend template in Fig. 7.14. Izmir station
innovative trend template data scatters imply that all ADMR amounts are in
decrease with more dominant influence from “high” values as one can see from the
corresponding innovative trend template. Finally, Trabzon station monotonic
decreasing trend is under the influence of the “low” and “high” ADMR values.
Erzurum station has increasing monotonic trend in Fig. 7.13 and it is obvious that
this increase is due to the “medium” and “high” ADMR values, which fall above
the 1:1 straight line and outside of the confidence limits in the innovative trend
template in Fig. 7.15. At Ankara and Istanbul stations innovative trend templates
include almost all the scatter points within the confidence lines parallel to 1:1 (45°)
no trend line implying insignificant trend component, which is also in agreement
with the monotonic trend components in Fig. 7.13 for each station.
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8Partial Trend Detection

Abstract
One of the very important issues in trend search is whether there are partial
trends at different positions within a given time series? This point is also not
considered frequently in trend analysis studies, because most of the time a
monotonic and holistic trend is searched initially in the given time series.
However, within the same time series apart from the monotonic trend there may
be local trends that may indicate significant changes that may be needed for
natural of artificial explanations. For the search of partial trend possibilities
within a time series innovative trend approaches explained in the previous
chapters are applied with a slight modification for partial trend search.

Keywords
Innovative � Group � Partial � Piecewise � Qualitative � Simulation

8.1 General

In the previous chapters, trend and variability features are identified and determined
by taking into consideration the whole record length irrespective of what might
possible be subtrend or sequences of subtrends. In practical application, from the
increasing or decreasing holistic monotonic single trend along the whole record
length, there may be some subtrend durations at the record site or areas within the
study areas. Some time series may have a series of subtrends in increasing or
decreasing manner.

As already mentioned in the previous chapters, there are different quantitative
trend identification methodologies for monotonic, consistent, and unidirectional
tendencies in a given time series. Among these methods are parametric linear
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regression approaches, rank-based nonparametric procedures and their mixtures.
Parametric methodology includes a set of assumptions as normal (Gaussian)
probability distribution function (pdf) of given time series or residuals, and non-
parametric tests require serially independent time series, which are rarely available
in climatological records. Mann–Kendall (MK) trend (Mann 1945; Kendall 1975)
test is in frequent use for identifying significant trend by numerous researchers (Gan
1998; Hamed 2008; Hamed and Rao 1998; Douglas et al. 2000; Ventura et al. 2002;
Burn and Hag Elnur 2002; Yue and Wang 2004; Yue et al. 2003; Mossmann et al.
2004; Modarras and de Silva 2007; Luo et al. 2007; Karpouzos et al. 2008; Chen
and Xie 2005). The presence of serial correlation in a time series affects the validity
of the MK test. The positive autocorrelation increases trend detection probability
when actually there is no trend, and vice versa (Yue et al. 2002, 2003). Although it
is a well-known point, few studies have addressed this issue, and autocorrelation in
the data is either ignored or eliminated by pre-whitening procedure (Bayazıt and
Önöz 2007).

On the other hand, Wayne et al. (1995) considered the problem of determining
the upward (increasing) trending behavior in the global temperature anomaly series.
To address this issue a unit-root test is also examined. Another serial-correlation–
robust trend test is suggested by Alexandersson and Moberg (1997), which controls
for the possibility of spurious evidence due to strong serial correlation and it is valid
whether the errors are stationary or have a unit-root (strong serial correlation).
Another attractive point in the same test is that it does not require estimates of
serial-correlation nuisance parameters. According to work by Thomas and Timothy
(2002) strong serial correlation (or a unit-root) in global temperature data could, in
theory, generate spurious evidence of a significant positive trend. Coggin (2012)
used the concept of unit-root trend analysis in the climatology literature for testing
trends in the HadCRUT3 global and hemispheric data. It is illustrated that recently
developed econometric trend tests using the HadCRUT3 global and hemispheric
surface temperature data updated through 2009, specifically allow statistical com-
plications of structural change, serial correlation, and unit-roots. The use of
unit-root trend analysis is not yet commonly used in the climatological studies.

There are already suitable parametric statistical techniques for trend analysis. For
instance, regression quantile plots can be used for this purpose (Koenker 2004).
Nalley et al. (2013) tried to detect trends in the mean surface air temperature over
southern parts of Ontario and Québec, Canada, for the period of 1967–2006 using
the discrete wavelet transform technique. They showed that the positive trends
observed for the annual data are thought to be mostly attributable to warming
during winter and summer seasons, which are manifested in the form of multiyear
to decadal events (mostly between 8 and 16 years).

In general, a linear trend is fitted without any distinction among “low”, “med-
ium”, and “high” climatological values. Although, the theoretical basis of the partial
trend methodology is given by Şen (2012, 2014) for such distinctive trend identi-
fications, but objective identification and determination of the partial trend lines is
not available in these works, which is the subject of this chapter. The methodology
presented is a nonparametric approach and provides visual inspection of simply
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scattered points on the innovative trend template. Simple formulations are provided
for arithmetic average and standard deviation (variability) trend slope calculations.
The proposed methodology is applied to state-wise annual precipitation and tem-
perature records from New Jersey, USA.

Trend determination and de-trending implementation procedures are important
steps in any time series analysis. Most research articles in the literature are attached
with stationary time series embedded with monotonic linear trend within data time
span. However, in this chapter, logical rules are presented for trend determination
over a certain span of data with a simple mathematical procedure for any nonlinear
and nonstationary types. With this definition of trend, the variability of the data on
various time scales also can be derived naturally. After the determination of the
trend then de-trending procedure can be initiated with remaining residuals that have
zero arithmetic average.

Trending and de-trending procedures are frequently used in many applications
but most often trending is mentioned with offset of de-trending. In many natural,
environmental, economic, social and especially climate change impacts the search
for trend constitutes the most critical quantity. In any statistical analysis, the cor-
relation coefficient calculation and spectral analysis can yield meaningful and
unbiased results for time series that are free of trends, and therefore, de-trending
procedure is of prime importance.

The application of statistical analyses in numerous scientific, social, economic,
medical, and engineering disciplines, the trend is the tendency over the whole time
series domain that cautiously con be extended to future time spans. The trending
leads to residual series with zero arithmetic average, which can be modeled by a
convenient stochastic process. In the literature, there is lack of trend search in
nonlinear and nonstationary time series, and consequently, also the suitable
application the corresponding de-trending operation. The application of the usual
trend analysis leads to the awkward conclusions and trend determination and
de-trending procedures remain often as ad hoc operations. These unwanted situa-
tions arise greatly because of the difficulties concerning trend stem from the lack of
a proper definition for the trend in nonlinear nonstationary time series. It is,
therefore, a definitive and quantitative necessity to develop methodologies for trend
and de-trending procedures in such time series. It is the main purpose of this
chapter.

Herein, a definition of trend variability is introduced concerning not only on the
change usually mentioned in all the previous trend determination approaches, but
also on the changes in the variance (or standard deviation) distinctively from the
classical definition of the sole variability, which is expressed in terms of range,
interquarters, and standard deviations only. Because the classical definition of the
statistical variability is concerned with standard deviation changes over the time
series record span. The procedures presented in this chapter are quite general and
can be applied to any time series from nonstationary and nonlinear processes.
Volatility is the term used instead of variability in financial communities. Engle and
Granger emphasized that models for market prediction provide a daunting challenge
for a patently nonstationary process. Furthermore as a justification they regard the
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financial market as a special Auto-Regressive Integrated Moving Average
(ARIMA) process, controlled by a series of shocks and relaxations. They clearly
pointed out the limitation of their works, that not all nonstationary data satisfy their
special assumptions. Indeed, the vast majority of real-world data are of a nonsta-
tionary and nonlinear nature and do not fit the ARIMA prediction models at all.

In practical applications without any background considerations, provided that
there is a time series, the researcher applies the most usual trend analysis with the
simplest mathematical formulation as a best-fit linear trend over the whole time
series span. Of course, the best fit according to the least squares analysis supported
by regression methodology yields trend such that the residuals have zero arithmetic
average. It must be kept in mind that such a trend is valid only in cases of a purely
linear and stationary time series. This approach may not be suitable or leads to
illogical and physically meaningless applications, which is the case especially in
climate change time series analysis. If the underlying generation mechanism has
nonlinearity and nonstationary features then monotonic linear trend fits makes little
sense.

In many preliminary time series applications, the trend emergence is sought after
the application of moving-average procedure with a certain span of application
starting from the beginning of the given time series. The moving average procedure
smoothens the ruggednesses along the time series, and therefore, may catch trend
visualization without providing any mathematical trend function. The main problem
in the moving-average procedure is the predomination of the applicable time span.
Determination such a time span does not have any logical or rational base, and
especially, for in nonstationary processes the local time scale is unknown a priori.

On the other hand, other complicated trend identification methods including the
classical regression analysis or Fourier-based filtering procedures are based on
stationarity and linearity assumptions. These assumptions remain as hindrances in
their applications. Even though the trend calculations from a nonlinear regression
happens to fit the time series data satisfactorily, there still is no justification to select
a time-independent regression formula and apply it to globally for nonstationary
processes.

8.2 Qualitative Partial Trend Methodology

The frequency, duration, extent, and intensity of extreme events are related to input
variable characteristics of the study. Extreme event frequencies are bound to
increase in different sectors. For instance, a key meteorology variable to start for the
possible effects of such consequences on the society at large is the precipitation
occurrences and amounts along the time axis, whereas knowing the point temporal
features one is capable to make spatial variation features through convenient
software by mapping. The features of climate, droughts, floods, and normal values
are all hidden in a given time series of precipitation, which should be identified
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according to the main purpose through scientific methodologies. For the last three
decades, the global warming and climate change impacts are almost everywhere,
scientific, political, or social media, which should be dealt with proper and rational
methodologies so as to extract useful information from the past records and make
sensible and useful projections for future in order to achieve more efficient and
sustainable water resources management. Climate change impacts first will appear
on water resources and subsequently agriculture and food security. These are the
vital and undeniable activities for the survival of the living creatures on the earth.
The basic equation for proper management of these activities necessitates consid-
eration of water balance equation where the precipitation is the main input. Climate
change will also affect the water balance equation (water budget) to a negative
extent at places where decrease of precipitation and subsequent runoff reductions
are expected. Although there are many studies in the literature that deal with a
particular component of water balance such as precipitation, streamflow, ground-
water, evapotranspiration low and peak flows, unfortunately long-term water bal-
ance situation is not well examined under the light of expected climate change
effect.

In any climate change study trend determination in the meteorology time series
gains utmost importance so as to decide objectively whether the trend is neutral,
increasing, or decreasing. In many parts of the world, decreasing trends are felt even
without any methodology subjectively by local people, because during at least
30 years of age each one gains experience especially about the climate and to a
certain extent meteorological features of his region. Likewise, historical records
hide the general climatic features in terms of serial dependence, probability dis-
tribution functions (pdf), seasonality, and trends. It is, therefore, necessary to bring
out objectively each one of these features depending on the aim of the study. Since,
in this paper the main purpose is the low and high precipitation identification in
search for climate change effect, the only component for focus is the trend. Classical
methodologies search for the existence of trend through rank-based Mann–Kendal
(MK) (Mann 1945) approach or according to Spearman’s rho in addition to Sen
(1968) trend slope method. These objective approaches necessitate a set of
assumption validity in the historical records, which are almost impossible to have
naturally. In this case artificially, the original time series is subjected to various
transformations so as to satisfy the basic assumptions. For instance, one of the
assumptions is the independent serial-correlation structure of the historical time
series. In order to achieve independent structure, pre-whitening procedure is sug-
gested and applied by different researchers (Yue and Wang 2004; Bayazıt and Önöz
2007). The MK test power has been investigated by Yue et al. (2002) on the bases
of sample size, trend slope, and type of probability distribution function (pdf). They
have shown that the MK test has the same power as other methods used for the
same purpose, for instance Spearman’s rho test. After the identification of trend
component in a given time series then its mathematical expression is obtained in a
straight-line form covering the whole record duration using the linear regression
methodology, which also brings additional restrictive assumptions into the study.
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The general approach in the literature is the application of the classical trend
analysis techniques with trend identification for complete record duration as a linear
function. Such an approach provides a holistic trend analysis, whereby one cannot
compare possible partial trends that exist within the same time series. For this
purpose, in this report a new approach presented by Şen (2012) is applied, which
powers one to identify trends attached with low and high precipitation values. The
application of the methodology is effected for almost 30 meteorology station pre-
cipitation historic records from seven different climate regions of Turkey. This
application provides an example for future similar works at any part of the world.
Necessary graphs each with low and high precipitation trends are presented with
neutral components including the medium values also. It is observed that although
there are high precipitation trends at the same location, low precipitation trends are
more severe, extensive, longer, and persistent than high precipitation occurrences
and amounts. This provides also a means to make regional high and low flow maps
for the whole region, which provides a basis for better management of water
resources.

8.3 Previous Works

The most rational way to better understand climate change and variability is
through trend analysis. The most commonly used estimation method for simple
linear trends is the simple regression analysis, which helps to detect the most
straightforward assessment of the long-term behavior of a time series in climate
change studies. However, in real-world time series a single monotonic linear trend
component may not reflect the reality. Since, the simple monotonic linear regres-
sion over the record time span does describe the inner structure of change in the
time series, its results may be misleading, because it ignores the existence of
significant changes (turning points) in the slope of the linear fit, called breakpoints.
Especially, for climatic data analyses such simple linear trends may be illogical and
physically meaningless, with little sense. The real variability for the underlying
mechanisms of global climate change are likely to be nonlinear and nonstationary,
so other methods of time series analysis might be advisable. In particular, linear
trend does not adequately describe low-frequency behavior of temperature time
series. Piecewise regression model fits a nonlinear function with a nonconstant rate
of change, and has been applied to analyze time series of different climatic variables
to detect breakpoints in linear trends. Karl et al. identified the timing of change
points in global temperature time series by minimizing the residual sum of squares
of all possible combinations of four line segments representing time intervals of
15 years or more. Tome and Miranda adapted that fitting method to develope an
algorithm for fitting a continuous regression model with several breakpoints to data
and then it was applied local changes in temperature, precipitations and the NAO
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index in Portugal. Liu et al. used the same method to find partial trends of wind
variability in the mesosphere and the lower thermosphere over a local observatory
at Collm, Germany. Piecewise regression is a method of regression analysis where
the response variable is split in two or more intervals, and a line segment is fitted to
each interval, with the constraint that the regression function will be continuous.
Each line is connected at an unknown value called breakpoint. Piecewise regression
is suitable for situations where the response variable shows abrupt changes within a
few values of the explanatory variable. This flexible regression method is scarcely
used in the analysis of long-term trends of climatic variables, though in many cases
it offers a better fit to the records, and shows better compliment with the as-
sumptions of regression analysis.

In scientific and technological studies of time series variability search linear
monotonic trend identification is a very common approach. However, in case of
long climate time series such a single monotonic trend determination has little
relevant significance. In this chapter another innovative piecewise trend method-
ology is presented.

In the literature there are piecewise linear trend fitting procedures for finding
overall trends, and, simultaneously, for computing a new set of climate parameters:
the breakpoints between periods with significantly different trends as by Toma and
Mirande on the basis of a least squares approach to compute the best continuous set
of straight lines that fit a given time series, subject to a number of constraints on the
minimum distance between breakpoints and on the minimum trend change at each
breakpoint.

During the last three decades a number of researchers have sought and discussed
long-term linear tendencies of climate parameters including precipitation, temper-
ature and the NAO index. Prior to analytical mathematical solutions for trend in a
time series it is recommended in this book that even an eye inspection may reveal to
a certain extent the possibility of a trend, which may be determined later on by a
straight-line fitting, and furthermore one can identify also the possibility of a set of
trends over different span ranges in the same time series. Karl et al. suggested
different approaches, the first one, based on Haar Wavelets, which was able to
identify discontinuities in the time series, and also the minimization of the residual
sum of squares of all possible combinations led to segments with different trend
components in sequence. Another methodology was devised instead of arbitrarily
fixing the number of line segments, after an eye inspection of the time series, the
number and location of the breakpoints are simultaneously optimized. Such a
methodology computes the best combination of continuous line segments that
minimize the residual sum of squares subjected to a pair of conditions.

(1) The interval between breakpoints must equal or exceed a given value,
(2) Two consecutive trends must obey one or more imposed conditions.
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In the methodology suggested by Toma and Mirande, a continuous embedded
curve made in the time series is considered as four straight-line segments. The time
series, Yi (i = 1, 2, …, n) with n number of values is considered piecewise as four
epochs.

Y1; . . .; Ysb; . . .; Ytb; . . .; Yfb; . . .; Yn

where Ysb, Ytb, and Yfb are the beginning time series values for the first, second, and
third epoch, respectively. These end values are at the locations of breakpoints in the
time series. The procedure is then to fit a linear regression straight line to each
epoch values as follows:

Yi¼a1tþ c1 for i ¼ 1; . . .; Ysb ð8:1Þ

Yi¼a2tþ c2 for i ¼ Ytb þ 1; . . .; Ytb ð8:2Þ

Yi¼a3tþ c3 for i ¼ Ytb þ 1; . . .; Yfb ð8:3Þ

and

Yi¼a4tþ c4 for i ¼ Yfb; . . .; n ð8:4Þ

The sequence of linear trends must have continuity with each other, and for this
purpose the following conditions are taken into consideration in the piecewise
regression analyses.

c2 ¼ c1 þ a1 � a2ð Þtsb ð8:5Þ

c3 ¼ c1 þ a1 � a2ð Þtsb þ a2 � a3ð Þttb ð8:6Þ

c3 ¼ c1 þ a1 � a2ð Þtsb þ a2 � a3ð Þttb þ a3 � a4ð Þtfb ð8:7Þ

Provided that the breakpoints are inspected or suggested then five unknown
parameters c1, c2, c3, c4, and c5 can be solved from a system of five equations. For
this purpose, the partial derivatives of the sum of square differences between the fit
and the measurements. The solution of the system is given by Tomé and Mirande
(2004), who have applied the methodology to Azores December minimum maxi-
mum temperature and NOI index records. The results are shown as example in
Fig. 8.1 for the two cases.

328 8 Partial Trend Detection



Fig. 8.1 a Maximum December temperature at Angra do Heroismo (Azores), breakpoints (1935
and 1960), partial tendencies, in _C/decade, and the linear trend (dashed line), b Piecewise linear
fitting of the NAO index for a minimum period between two breakpoints of 20 years (dashed line)
and 25 years (full line), for the condition of signal change between consecutive trends

8.3 Previous Works 329



8.4 Innovative Piecewise Trend Analysis

Most of the trend identification algorithms provide monotonic and holistic trends in
the sense that the whole record period is taken into account. However, there may be
partial trends over certain subperiods of a given time series. For instance, in Fig. 8.2
successive and nonoverlapping 30-year period trends are shown for the global
annual temperature records. Starting from 1880, the trends are given for 1880–
1910, 1911–1940, 1941–1970, and finally from 1971 to the end of the available
record. Such partial trend graphs are very useful for appreciation of what have
happened along 30-year base periods throughout the record. In Fig. 8.2 there have
been a cold base period during 1880–1910 and then onwards there is continuously
increasing temperatures, which had comparatively very small increments during the
third 30-year base period, but after 1970 the rate of temperature increase is steadily
continuous.

Another example is given in Fig. 8.3 for longer record duration concerning
Danube River annual discharge values starting from 1840 up to 2005. In this figure
there are five different partial trends each for 30-year duration except the last one.
A visual inspection for monotonic and holistic trend over the whole record length
may give the impression that there is a very slightly decreasing trend. However,
30-year base period results provide more detailed information about what have
happened in the history of the Danube River discharge adventure. In the same
figure, the intercept and slope values for each partial trend are also given.
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Another example is given this time based on the precipitation records in
Southern New Jersey with records from 1895 to 2006. Figure 8.4 indicates
monotonic and holistic trends on the average and also on the standard deviation
level. Both parameters, i.e., arithmetic average and standard deviation have
increasing trends. Hence, the underlying time series is not stationary as for these
two parameters are concerned. Unfortunately, in many conventional studies trend
analysis is for the averages only without any consideration of trend possibilities in
the standard deviation.
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In order to appreciate the possible trend possibility on the average and standard
deviation levels innovative trend template is prepared and presented in Fig. 8.5.

A close inspection of this figure indicates that the second half of the record’s
centroid position stays over the 1.1 (45°) straight line and therefore there is an
increasing trend as indicated in Fig. 8.4. On the other hand, the standard deviation
centroid also is above the 1:1 (45°) straight line, and hence, there is also increasing
trend in the standard deviation level. Trends in the standard deviation levels imply
variations in the deviations from the arithmetic average level.

In Fig. 8.6 10-year partial trend sequences is given, which shows different
periods of increasing and decreasing trend cases in the past. Decreasing trends show
dry spell and drought periods during which there may have been water shortages or
scarcity. However in the last two decades there are increasing trends.

In order to appreciate, evaluate, and interpret partial trend elements one can look
for a set of different durations such as 10-year, 10-year, 30-year, 50-year, etc., trend
behavior on the innovative trend template. Figures 8.7 and 8.10 are given for these
durations respectively.

Figure 8.7 indicates that in the middle range of precipitation data 1971–1980
duration has been with the biggest increasing trend, and in the same duration mostly
1961–1970 period had decreasing the biggest trend.
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According to Fig. 8.8 1941–1960 duration did not have any significant trend
because all the points are very close to 1:1 (45°) straight line. As for the low and
medium precipitation variations are concerned, they are comparatively smaller than
high values. The most extreme wet (dry) spell event has occurred more (less) than
the usual during 1981–200 (1921–1940) periods.
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Twenty-five-year trends in Fig. 8.9 indicate that extreme precipitation occur-
rences were in periods of 1951–1975 and 1976–2000. Also, the least occurrences
were in these periods.

In Fig. 8.10 medium range precipitation values did not show and significant
trend, but especially high precipitation events are along the increasing direction.
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8.5 Innovative Trend Template

The main idea is to divide any given time series, X1, X2,…, Xn with n elements, into
two mutually exclusive subseries of equal lengths as X1, X2, …, Xn/2 and X(n/2+1),
X(n/2+2), …, Xn with n/2 elements in each. Subsequently, each subseries is sorted in
ascending order and then plotted against each other leading to a scatter diagram on
the Cartesian coordinate system as in Fig. 8.11.

In general, with respect to 1:1 (45°) line this template has three parts (Şen 2012).
The main diagonal, 1:1 (45°) straight line presents no-trend line case; the upper
(lower) triangular area is for increasing (decreasing) trends.
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Furthermore, the same template can be visualized as 9-square subareas in
accordance with three classifications as “low”, “medium”, and “high” values and
these subarea templates are “low”-“low”, “low”-“medium”, “low”-“high”, “med-
ium”-“low”, “medium”-“medium”, “medium”-“high”, “high”-“low”, “high”-
“medium”, and “high”-“high”. It is possible to state that the partial trend identifi-
cation methodology yields information about the “low”, “medium”, and “high”
categories of the first half subseries coupled with “low”, “medium”, and “high”
categories of the other half leading to the following conclusions.

(1) If the scatter points are completely above (below) the 1:1 line, then there is an
increasing (decreasing) trend,

(2) In case of a single increasing (decreasing) trend, the scatter points fall on a
parallel straight line to 1:1 line,

(3) If the scatter points have different positions within “low”, “medium”, and
“high” subareas then there are different partial trends in the time series,

(4) The proposed methodology provides interpretive information about the “low”,
“medium”, and “high” subarea trends and their relative positional inferences,

Figure 8.12 provides a set of trends that one may encounter during the appli-
cation of the innovative partial trend methodology.

In Fig. 8.12, the circle on each line indicates the arithmetic average point
(centroid) of the two halves. This figure provides qualitative trend interpretation
possibilities, some of which are summarized as follows:

(1) Extensive straight line (B or C) parallel to the 1:1 (45°) line implies a
monotonic trend (increasing or decreasing); line A indicates no-trend case.
Other shorter straight lines (D, E, I or L), parallel to the 1:1 (45°) line, are for
partial trends that cover different classifications (“low”, “medium” or “high”).
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If the centroid point in Fig. 8.2 falls on the 1:1 (45°) straight line then the
climatological time series does not have any monotonic trend on the average,

(2) Nonparallel line (F, G, H, J, K, or M) to 1:1 (45°) straight line implies standard
deviation change with time (homoscedasticity in the statistical sense). These
straight lines indicate trends in the standard deviation,

(3) Straight lines F and G have trends in the standard deviation, but not in the
arithmetic mean,

(4) Furthermore, H(K) and J(M) imply increasing (decreasing) standard deviation
trends.

In the following section, the existence of each trend is proved through an
extensive Monte Carlo simulation method.

8.6 Stochastic Simulation Approach

In order to support the cases in Fig. 8.12, an extensive Monte Carlo stochastic
simulation study is carried out leading to the confirmation of trend existences in the
arithmetic average (mean) and the standard deviation. For this purpose, normally
(Gaussian) distributed 10,000 synthetic data are generated with zero mean and unit
variance. In the first part of the simulation studies, the synthetic series do not have
trend in the standard deviation and the simulation results are given in the innovative
templates in Fig. 8.13.

Three cases present no trend (A), increasing trend (B) and decreasing trend
(C) time series similar to the conceptual cases in Fig. 8.2. Since, they are all parallel
to the 1:1 (45°) straight line, they do not include trend in the standard deviation. The
slope, Sl, of the possible trend can be calculated by considering the difference
between the arithmetic mean, l1 of the first half time series and the arithmetic mean,
l2, of the second half as,

Sl ¼ 2 l2 � l1ð Þ
n

; ð8:8Þ

where n is the number of the data in the climatological time series. This expression
is an alternative to the slope formulation by Sen (1968).

There are six simulation innovative trend templates in Fig. 8.14 each one cor-
responding to the conceptual counterparts in Fig. 8.12 and their comparisons pro-
vide self-explanatory results.

In Fig. 8.14, centroid point deviations from the 1:1 straight-line imply trend
existence, and since none of them is parallel to the 1:1 (45°) straight line, there is a
trend in the standard deviation. The slope, Sr, of such a trend can be calculated
based on the difference of the two halves’ standard deviations as,
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Sl ¼ 2 r2 � r1ð Þ
n

; ð8:9Þ

where r1 and r2 are the standard deviations of the first- and the second half time
series, respectively. According to the positive (negative) sign of Eqs. (8.1) and
(8.2), there is increasing (decreasing) trend. These two equations provide oppor-
tunity for identifying arithmetic average and standard deviation trends.
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Fig. 8.13 Different arithmetic average trend types
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As explained above, the variation domain of each half series can be divided
roughly into three groups as “low”, “medium”, and “high” portions and in each one
of these portions one can identify one of the trend types given in Fig. 8.12.
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Fig. 8.14 Different standard deviation trend types
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8.7 Data and the Study Area

The Office of the New Jersey State Climatologist has gathered and quality checked
New Jersey state-wide annual temperature and precipitation records going back to
1895, and has made these data available on-line (http://epa.gov/climatechange/
index.html; http://climate.rutgers.edu/stateclim). The data show a statistically sig-
nificant rise in average state-wide temperature and precipitation over the last
110 years. Although there is much variation from year to year, overall the normally
cooler (November through March) and warmer (May through September) seasons
are warmer now than before. The rise in temperature appears to be especially
pronounced during the November–March period.

With the proposed trend identification procedure one can identify three cluster
groups as “low”, “medium”, and “high” record values for the state-wise annual
temperature and precipitation records in the New Jersey state, USA. The temper-
ature boundaries for “low”, “medium”, and “high” classes are less than 51 °F,
between 51 and 53 °F and more than 53 °F, respectively. Similarly, corresponding
class limits for the precipitation records are less than 40 mm, between 40–50 mm
and more than 50 mm, respectively. Furthermore, in practical applications each
boundary value must be considered as a rather vague value than crisp numerical
separation between the groups, and this gives the researcher a flexible incentive. If
the researcher is inclined to make clusters deterministically then s/he can stick to
crisp boundaries and the clusters will appear in mutually exclusive manner. The
view taken in this paper is that the boundaries could have some elasticity in the
sense that the transition between the subsequent clusters includes some overlapping
parts similar to fuzzy sets.

8.7.1 Partial Trend Groups

The application of the partial trend group methodology is presented for temperature
and precipitation records in Figs. 8.15 and 8.16 for two 50-year subseries,
respectively. In these figures, the scatters of each data group (“low”, “medium”, and
“high”) are indicated by three partially overlapping ellipsoids.

Herein, the “low” precipitation values have increasing trend in the arithmetic
average and also slightly increasing trend in the standard deviation. In the “med-
ium”, and “high” precipitation ranges there are almost the same trend slopes, but
not in the standard deviation. Since the centroid points of both categories are above
the 1:1 (45°) straight line, there are increasing trends. The centroid of the scatter
points at “high” portion is comparatively far away from the centroid of the
“medium” portion, and therefore, the increasing trend slope in this portion is
slightly bigger than the “medium” case.

In Fig. 8.16, state-wise annual precipitation records are available for the same
record duration as for the temperature trend template.
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Comparisons of this figure with Figs. 8.1 and 8.2 lead to the conclusions that
“low” values do not have homoscedasticity, “medium” and “high” values have
homoscedasticity, and the mean centroids in both cases do not lie on the 1:1 (45°)
straight line but above it, and therefore, both categories have increasing trends in
the arithmetic average levels due to their parallel positions to 1:1 (45°) straight line.
Comparatively “high” values have slightly more increasing precipitation trend than
the “medium” classification. Non-homoscedasticity in “low” values implies that
there is more variability in the “low” values than “medium” and “high” cases.

8.7.2 Partial Trend Lines

It is possible to separate the whole annual records into three partial time series.
The MK trend analysis fits a monotonic linear straight line for the whole series
according to a set of assumptions as independent serial structure of the time series
and the normal (Gaussian) pdf of the climatological records. In general, the first
assumption is not valid and the fitted trend cannot be treated as completely reliable.

Figure 8.17 indicates the entire trend types collectively, where the monotonic
linear trend line is fitted to the whole data in groups.
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Fig. 8.15 Innovative trend templates for 50-yearly annual temperature trends
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Fig. 8.16 Innovative trend templates for 50-yearly annual precipitation trends
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Fig. 8.17 Partial trend lines for annual precipitation records
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The same figure gives separate trends for each “low”, “medium”, and “high”
annual precipitation values instead of a single holistic approach according to the
classical MK trend test. In Fig. 8.7, the holistic trend (MK) is also presented for
comparison purposes. In detail, “low” annual precipitation values have slightly
decreasing trend whereas the “medium” and “high” values have slightly increasing
trends. The partial trend lines provide detailed reflection of the annual precipitation
behavior in the study area. Likewise, partially descriptive annual trend lines are
given for annual temperature records in Fig. 8.18.

It is possible to calculate the slopes of each trend lines in Figs. 8.17 and 8.18 and
according to Eqs. (8.1) and (8.2) the results are shown in Table 8.1.
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Fig. 8.18 Partial trend lines for annual temperature records

Table 8.1 Trend line slopes for precipitation and temperature

Trend type Class Trend slopes

Precipitation
(mm/decade)

Temperature (°
F/decade)

Partial trends “high” 0.00375 0.00625

“medium” 0.00250 0.00000

“low” 0.00125 0.00725

Monotonic
trend

Partial trend
methodology

0.03325 0.01900

Mann–Kendall (Sen’s
tau)

0.03600 0.01720
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The last two rows in this table indicate the time series monotonic and holistic
trend slopes according to the method presented in this paper (Eq. 8.1) and also from
the classical MK Sen (1968) trend slope analysis. It is obvious that the two
approaches provide almost the same level of numerical magnitudes for the classical
monotonic trend slopes.

In practice, it is convenient to give the slopes for 100-year period, and
accordingly, multiplication of each slope in this table indicates that during the last
100-year period the precipitation and temperature increments have appeared as
3.125 mm and 2.1 °F, respectively. Another significant point that one can deduct
from the numbers in this table is that the increments in partial trend lines are smaller
than the whole trend case.

The main purpose of this section was to present application of an innovative
graphical technique for trend identification in different parts of a climatological time
series as “high”, “low”, and “medium” record values. For this purpose, the available
time series is divided into two halves and each half, after arrangement in ascending
order, is plotted against each other. The scatter area template on the first quadrangle
in the Cartesian coordinate system is defined as a square with its main diagonal, 1:1
(45°) straight line, which corresponds to no-trend case. The upper (lower) right
angle triangle corresponds to increasing (decreasing) trend cases. The methodology
is applicable even in cases of serial-correlation existence in the climatological time
series. Such plots give rise to many interpretation possibilities concerning trend
existences. One is able to identify partial trends in groups of “low”, “medium”, and
“high” record values and also along the whole climatological time series monotonic
trend lines for similar classifications. The confirmation of the methodology is
shown by extensive Monte Carlo simulation studies. The applications of the pro-
posed methodology are presented for state-wise annual precipitation and tempera-
ture records for more than 100-year length from New Jersey, USA.
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