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Université Paris-Saclay, Paris, France

Abstract. We propose a matrix model for two- and many-valued logic
using families of observables in Hilbert space, the eigenvalues give the
truth values of logical propositions where the atomic input proposition
cases are represented by the respective eigenvectors. For binary logic
using the truth values {0, 1} logical observables are pairwise commut-
ing projectors. For the truth values {+1, −1} the operator system is
formally equivalent to that of a composite spin 1/2 system, the logical
observables being isometries belonging to the Pauli group. Also in this
approach fuzzy logic arises naturally when considering non-eigenvectors.
The fuzzy membership function is obtained by the quantum mean value
of the logical projector observable and turns out to be a probability mea-
sure in agreement with recent quantum cognition models. The analogy of
many-valued logic with quantum angular momentum is then established.
Logical observables for three-value logic are formulated as functions of
the Lz observable of the orbital angular momentum � = 1. The repre-
sentative 3-valued 2-argument logical observables for the Min and Max
connectives are explicitly obtained.
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1 Introduction

Quantum logic developed by Birkhoff and von Neumann in their seminal article
in 1936 [1] considers logical propositions as subspaces of a quantum state Hilbert
space. As will be shown hereafter and also underlined in [2], these subspaces can
be viewed as eigenspaces of projectors, the projectors corresponding to logical
propositions. A true proposition is then associated to the eigenvalue +1. The
representation of logical propositions in a vector space could be of interest in
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modern semantic theories such as distributional semantics, for example using
the “Hyperspace Analogue to Language” algorithm as was done in [3], or in
connectionist models of cognition [4].

In this work we show that a proposition in a logical system can be represented
by an observable in Hilbert space. When interpreted in the context of quantum
mechanics this model uses finite dimensional projectors and angular momentum
observables. Conversely, a quantum system when considered in its eigenspace is
formally equivalent to a logical propositional system. The view here, which comes
under the name of “Eigenlogic” (for the original motivation and more detailed
discussion see [5]), considers that the eigenvalues of the logical observables are
the truth values of a proposition and the associated eigenvectors correspond to
the different input atomic propositional cases. When considering vectors outside
of the eigensystem this view leads to a “fuzzy” measure of the degree of truth
of a logical proposition.

In our model for binary valued logic, using numbers {0, 1}, the logical observ-
ables are pairwise commuting projectors. The model is extended to the other
binary system using numbers {+1,−1}, differences reside in the symmetry of the
corresponding logical observables. In the latter case the observables are equiva-
lent to quantum spin 1/2 observables, no more idempotent projectors but isomet-
ric self-inverse reflection observables squaring to 1. These are equivalent to the
recently proposed “quantum Boolean functions” [6] developed in the context of
the research topic “Fourier analysis of Boolean functions” having many applica-
tions in theoretical computer science, information theory and also in social deci-
sion and voting theory. We then propose an algebraic generalization, based on
the finite-elements method, that can be applied to whatever m-value n-argument
logical system.

The paper is organized as follows: we start with Boolean two-valued {0, 1}
logic and we demonstrate important expressions for the projector observables
in the 2-argument case indicating also the general method for n-arguments.
The case for binary values {+1,−1} is then presented. Then we consider the
case for fuzzy logical propositions and give the method for calculating fuzzy
membership functions by using the Born rule and show that these functions can
be identified with probabilities. The last section is devoted to the many-valued
systems (m > 2) the case of 3-valued 2-argument logic is discussed with some
examples of applications.

2 Two-Valued Eigenlogic

2.1 Projector Two-Valued Logic

We will consider a two-dimensional rank-1 projector Π acting on a single set.
What are the expected outcomes when applying this projector? If, for example,
vector |a > corresponds to an element of the set, the following matrix equation
will be verified: Π · |a >= 1 · |a >. The value 1 being the eigenvalue of the pro-
jector associated with the eigenvector |a >. Interpretable results [5] considered
in a two-value {0, 1} logical system will correspond to the possible eigenvalues
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0 and 1, where 0 is the result for elements not belonging to the set. So in this
way a question concerning the proposition of belonging or not to a particular
set, will have as an answer one of the two eigenvalues. The “true” value 1 will
correspond to the eigenvector |a >, now named |1 >, and the “false” value 0 will
correspond to the complementary eigenvector |a >, named |0 >. When these
properties are expressed in matrix form: vectors |1 > and |0 > become 2 dimen-
sional orthonormal column vectors and the projection operators 2 × 2 square
matrices. This gives:

|1 > =
(

0
1

)
, |0 > =

(
1
0

)
.

The choice of the position of the value 1 in the column vectors is arbitrary, here
it follows the quantum information convention for a “qubit-1” [7]. As usual in
Quantum Mechanics we can find the set of projectors that completely repre-
sent the quantum system, in particular by lifting the eventual degeneracy of the
eigenvalues. Here eigenvalues are always equal to 0 or 1 and the question about
the multiplicity of eigenvalues is natural. In this contribution we focus on differ-
ent projective structures that completely define the logical system. In the very
simple case where 0 and 1 are both not degenerate eigenvalues, the projectors
relative to the eigenvector basis take the form:

Π1 = Π =
(

0 0
0 1

)
, Π0 = I − Π =

(
1 0
0 0

)
. (1)

We systematically consider all the possible structures of such projectors. When
representing logic with n atomic propositions using projectors various possibili-
ties are intrinsically present in a unique structure with 22

n

different projectors.
Once the eigenbasis is chosen the remaining structure is intrinsic.

For example the two projectors shown in Eq. (1) are complementary and
idempotent. One can give a general expression of a one-argument “logical observ-
able” as an expansion over the commuting projectors Π0 and Π1 spanning the
vector space:

F = f(0)Π0 + f(1)Π1 =
(

f(0) 0
0 f(1)

)
(2)

the coefficients f(0) and f(1) in the expansion are the truth values of the
corresponding {0, 1} Boolean logical connective. Eq. (2) represents the spectral
decomposition of the operator and because the eigenvalues are real the logical
operator is Hermitian and can thus be considered as a quantum observable. In
this way, in Eigenlogic, the truth values of the logical proposition are the eigen-
values of the logical observable. One can then construct the 4 logical observables
corresponding to the 4 one-argument Boolean connectives: A = Π1 is the “log-
ical projector” and A = I − Π1 = Π0 its complement. The “True” operator
corresponds here to the identity operator I. The “False” observable corresponds
to the null operator. These four observables form a complete family of com-
muting projectors. The extension to more arguments is obtained by using the
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Kronecker product ⊗ in the same way as for the composition of quantum systems
(for technical details on this operation see for example [7]).

In the case of n = 2 arguments we will have an expansion over 4 commuting
orthogonal rank-1 projectors. Some properties of the Kronecker product on pro-
jectors have to be specified: (i) The Kronecker product of two projectors is also
a projector; (ii) If projectors are rank-1 projectors (a single eigenvalue is equal
to 1, all the others are 0) then their Kronecker product is also a rank-1 projec-
tor. Using these properties, the 4 commuting orthogonal rank -1 projectors Π00,
Π01, Π10, and Π11, spanning the 4 dimensional vector space are calculated in
a straightforward way:

{
Π00 = (I − Π) ⊗ (I − Π) , Π01 = (I − Π) ⊗ Π ,
Π10 = Π ⊗ (I − Π) , Π11 = Π ⊗ Π .

So one can write the logical observable for n = 2 arguments:

F = f(0, 0) Π00 + f(0, 1) Π01 + f(1, 0) Π10 + f(1, 1) Π11 . (3)

In an explicit way:

F =

⎛
⎜⎜⎝

f(0, 0) 0 0 0
0 f(0, 1) 0 0
0 0 f(1, 0) 0
0 0 0 f(1, 1)

⎞
⎟⎟⎠ .

Equation (3) represents a spectral decomposition with the eigenvalues being the
truth values, in this case we will have a family of 16 possible different observables.
All these observables are pairwise commuting projectors and in general their
product (matrix product) is not equal to zero. This last point is essential in the
model, because not only mutually exclusive projectors are representative for a
logical system, the complete family of projectors must be used. For example the
observables for conjunction, AND, and disjunction, OR, which have in common
the truth value, (1, 1), for the input combination (True ≡ 1, True ≡ 1), have
their matrix product different from zero.

This method can be extended to whatever number of arguments n using the
“seed” projector Π, its complement (I − Π) and by applying the Kronecker
product. So given the number of input arguments n and knowing the truth table
of the logical connective one directly obtains the corresponding binary Eigenlogic
observable.

Now let’s develop the case for n = 2 arguments: one can express the connec-
tives corresponding to a “logical projector” according to the composition rule,
thus obtaining two commuting projector observables:

A = Π ⊗ I , B = I ⊗ Π , A · B = Π ⊗ Π (4)

the conjunction, AND, observable becomes simply the product of these two log-
ical projectors A · B. The disjunction, OR, and exclusive disjunction, XOR,
observables are shown on Table 1, where the algebraic expansions for Boolean
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Table 1. The sixteen two-argument two-valued logical connectives and the respective
Eigenlogic observables for eigenvalues {0, 1} and {+1, −1}.

Connective for Truth table {F, T} : {0, 1} projective {+1, −1} isometric

Boolean A, B {0, 1} ; {+1, −1} logical observable logical observable

False F F F F F 0 +I

NOR ; A ∨ B F F F T I − A − B + A · B 1
2
(+I − U − V − U · V )

A � B F F T F B − A · B 1
2
(+I − U + V +U · V )

A F F T T I − A −U

A � B F T F F A − A · B 1
2
(+I + U − V + U · V )

B F T F T I − B −V

XOR; A ⊕ B F T T F A + B − 2A · B U · V = Z ⊗ Z

NAND; A ∧ B F T T T I − A · B 1
2
(−I − U − V + U · V )

AND; A ∧ B T F F F A · B = Π ⊗ Π 1
2
(+I + U + V − U · V )

A ≡ B T F F T I − A − B + 2A · B −U · V

B T F T F B = I ⊗ Π V = I ⊗ Z

A ⇒ B T F T T I − A + A · B 1
2
(−I − U + V − U · V )

A T T F F A = Π ⊗ I U = Z ⊗ I

A ⇐ B T T F T I − B + A · B 1
2
(−I + U − V − U · V )

OR; A ∨ B T T T F A + B − A · B 1
2
(−I + U + V + U · V )

True T T T T T I −I

connectives explicitly derived in [5] are used. Negation (complementation) is
obtained by subtracting from the identity operator for projective logical observ-
ables and by multiplying by −1 for isometric logical observables (see hereafter).
Useful transformations are obtained by De Morgan’s theorem (for general the-
orems in logic see for example Knuth [8]), for the negative conjunction, NAND
one has the identity A ∧ B = A ∨ B in the same way one can obtain NOR with
the identity A ∨ B = A ∧ B. Implication observables are also shown on Table 1.

2.2 Isometric Reversible Two-Valued Logical Observables

There is a linear bijection (isomorphism) from the projector logical observables
F towards reversible observables G:

G = I − 2F .

The two families of observables commute and have the same system of eigenvec-
tors. Practically to obtain G from F one just has to substitute the eigenvalue 0
with +1 and 1 with −1. The observables G are “isometries”: unitary reflection
operators. From projector Π in Eq. (4) one obtains the observable Z:

Z = I − 2Π =
(

+1 0
0 −1

)
= σz
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which is actually one of the Pauli matrices σz and corresponds in quantum
mechanics, to the z component of a spin 1/2 observable Sz = (�/2)σz where � is
the reduced Planck’s constant. In the field of quantum information this operator
is also named the “Pauli-Z” gate or “phase-π” gate [7]. Here, U = Z designates
the “logical projector” connective and U = −Z its complement (negation), nota
bene in this case the connective “logical projector” is not a projection operator,
in order to avoid ambiguity it is often named [6] “dictator”.

For n = 2 arguments one can then write directly the expression for a logical
isometric observable by using its spectral decomposition. The logical “dictators”
U and V become:

U = Z ⊗ I , V = I ⊗ Z , U · V = Z ⊗ Z .

The exclusive disjunction XOR observable is here simply given by the product
of the dictators: U · V . Negation is obtained by multiplying by the number −1.
From Table 1 one sees that there are more complicated relations, for example
the conjunction, AND, observable is:

1
2
(I + U + V − U · V ) =

⎛
⎜⎜⎝

+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 −1

⎞
⎟⎟⎠ = CZ .

Those familiar with the domain of quantum information can easily recognize the
reversible logical gate “control-Z” or simply named CZ [7].

3 From Deterministic Logic to Fuzzy Logic

Fuzzy logic deals with truth values that may be any number between 0 and 1,
here the truth of a proposition may range between completely true and com-
pletely false. It is generally considered that probability theory and fuzzy logic
are related to different forms of uncertainty, the first is concerned with how
probable it is that a variable belongs to a given set and the second one uses the
concept of fuzzy set membership, intended as the degree of membership. This
was the first motivation of fuzzy logic [9]. But this distinction when considering
the quantum probabilistic Born rule is not so strict from a formal point of view.
We will start the discussion by giving the interpretation of a vector state in
Eigenlogic.

In the preceding sections we considered operations on the eigenspace of a
logical observable family. For example for n = 2 arguments a complete family of
16 commuting logical observables represents all possible logical connectives and
becomes “interpretable” [5] when applied to one of the four possible canonical
eigenvectors of the family. These vectors, corresponding to all the possible atomic
input propositional cases, are represented by the vectors |00 >, |01 >, |10 > and
|11 > forming a complete orthonormal basis. When applying a logical observable
on one of these vectors the resulting eigenvalue will correspond to the truth value
for the considered input.
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Now what happens when the state-vector is not one of the eigenvectors of
the logical system? In quantum mechanics, where vectors operate in Hilbert
space, one can always express a state-vector as a decomposition on a complete
orthonormal basis. In particular we can express it over the canonical eigenbasis
of the logical observable family. For two-arguments this vector can be written as:

|Ψ > = C00 |00 > +C01 |01 > +C10 |10 > +C11 |11 > .

We can interpret this in the following way: when only one of the coefficients
is non-zero (in this case its absolute value must take the value 1) then we are
back in the preceding situation of a determinate input atomic propositional case.
But when more than one coefficient is non-zero we are in a “mixed” or “fuzzy”
propositional case. Such a state could also possibly be interpreted as a quantum
superposition of atomic propositional cases.

We can then calculate the “mean value” of a logical observable. In particular
the logical projector observables F will give a “fuzzy measure” of the logical
proposition in the form of the “fuzzy membership function” μ. Let’s show this
on some examples: in the case of one argument one can express an arbitrary
2-dimensional quantum state as: |ϕ >= sin α |0 > +eiβ cos α |1 > where the
“angles” α and β are real numbers. The quantum mean value of the “logical
projector” observable A = Π can then be calculated using the Born rule:

μ(a) = < ϕ|Π|ϕ > = cos α e−iβ < 1|1 >< 1| cos αeiβ |1 > = cos2 α ;

in the same way one can calculate the complement

μ(a) = < ϕ|I − Π|ϕ > = sin2 α = 1 − μ(a) .

This verifies one of the requirements of fuzzy logic for the complement (negation)
of a fuzzy set.

According to standard notations for spin 1/2 quantum states, or qubits, on the
Bloch sphere [7] we use the transformation α = (π−θ)/2 and β = ϕ. A quantum
compound state can be built by taking the tensor product of two elementary
states: |ψ >= |ϕp > ⊗|ϕq >, where |ϕp >= cos θp

2 |0 > +eiϕp sin θp

2 |1 > (for
|ϕq > we have a similar expression). Now sin2 θp

2 = p and sin2 θq

2 = q represent
the probabilities of being in the “True” state |1 > for spins 1/2 oriented along
two different axes θp and θq.

One can calculate the fuzzy membership function of the corresponding “log-
ical projector” for the two-argument case using Eq. (4).

μ(a) =< ψ|Π ⊗ I|ψ >= p(1 − q) + p · q = p , μ(b) =< ψ|I ⊗ Π|ψ >= q .

This shows that the mean values correspond to the respective probabilities.
Now let’s “measure” for example the conjunction and the disjunction, using the
observables in Table 1, this gives:

{
μ(a∧b) = < ψ|Π ⊗ Π|ψ > = p · q = μ(a) · μ(b) ,
μ(a∨b) = p + q − p · q = μ(a) + μ(b) − μ(a) · μ(b) .
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Similar results for conjunction and disjunction have been outlined recently,
also using projector operators, when considering concept combinations [10] for
quantum-like experiments in the domain of quantum cognition.

What happens when the state-vector cannot be put in the form of a tensor
product, that is when it corresponds to an entangled state? The problem is
outside the scope of this paper but an interesting result can be shown: the mean
value of whatever logical observable of the type F on an arbitrary quantum state
|Ψ > will always verify the inequality:

< Ψ |F |Ψ > = Tr (ρΨ · F ) ≤ 1 , with ρΨ ≡ |Ψ >< Ψ | ,
and can thus be interpreted as a probability measure.

4 From Two-Valued to Multi-Valued Logic

Multi-valued logic requires a different algebraic structure than an ordinary
binary-valued one. Many properties of binary logic do not support set of values
that do not have cardinality 2n. Multi-valued logic is often used for the devel-
opment of logical systems that are more expressive than Boolean systems for
reasoning [11]. Particularly three and four valued systems, have been of interest
with applications to digital circuits and computer science.

The total number of possible logical connectives for an m-valued n-argument
system is the combinatorial number mmn

, so in particular for a binary 2-valued
2-argument system, as shown above, the number of connectives will be 22

2
= 16,

the complete list indicated on Table 1. For a binary three-argument system, the
number increases to 22

3
= 256. For a 3-valued 1-argument system the number of

connectives will be 33
1

= 27 and for a 3-valued 2-argument system: 33
2

= 19683.
So it is clear that by increasing the values from two to three the possibilities
of new connectives becomes intractable for a complete description of a logical
system, but some special connectives play important roles and will be illustrated
hereafter. We will proceed by showing the general algebraic method.

4.1 Interpolation with Finite Elements

The finite element method (see for example [12]) allows one to interpolate a
function, id est to make explicit the values f(x) from the given values of specific
numbers, the (so-called) degrees of freedom.

Let’s consider the following simple example: given the values f(+1), f(0) and
f(−1) of a function f at the particular points x = +1, 0, −1, and using the
appropriate Dirac linear forms, we can write: < δ+1, f >= f(+1), < δ0, f >=
f(0) and < δ−1, f >= f(−1), where Σ ≡ {δ+1, δ0, δ−1} is called the set of
degrees of freedom. This linear structure shows that it is natural to consider a
three-dimensional space. The “basis function” ϕi associated to the set of degrees
of freedom Σ and to the polynomial space solves this problem. The three basis
functions using degrees of freedom and second-degree polynomials are:

ϕ+1(x) =
1
2

x (x + 1) , ϕ0(x) = 1 − x2 , ϕ−1(x) =
1
2

x (x − 1) . (5)
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So in general, an arbitrary function f can be written:

f(x) =
∑

i=+1,0,−1

f(i) ϕi(x) ,
∑

i=+1,0,−1

ϕi(x) ≡ 1 (6)

where the completeness of the basis functions is verified by their sum being 1.

4.2 Formalization of Three-Valued Eigenlogic

We use an operator system which is equivalent to the one of orbital angular
momentum � = 1. In general angular momentum is characterized by two quan-
tum numbers: j the angular momentum number and mj the magnetic momen-
tum number. Both these numbers must be integer or half integer. The rules are:
j ≥ 0, and attached to this value we have the condition: −j ≤ mj ≤ j. The
value j = 0 is possible and gives a single value mj = 0 the next is j = s = 1/2
giving two values ms = ±1/2 corresponding to the two-valued spin system. The
value j = 1 gives three possible values mj = {+1, 0,−1} and so on. We consider
for j = � = 1 the z-component orbital angular momentum observable [13]

Lz = �Λ = �

⎛
⎝+1 0 0

0 0 0
0 0 −1

⎞
⎠ . (7)

In the above matrix the three eigenvalues {+1, 0,−1} will be considered as the
logical values. A convention for these values, extending binary logic, is the fol-
lowing: False : F ≡ +1 , Neutral : N ≡ 0 , True : T ≡ −1 .
We can now express the three-value logical observables as spectral decomposi-
tions over the rank-1 projectors spanning the vector space: Π+1, Π0 and Π−1.
These operators correspond to the pure state density matrices of the three eigen-
states | + 1 >, |0 > and | − 1 > of Lz. The three projectors can be expressed
as a function of the dimensionless observable Λ, using directly the expressions
given above in (5) where the basis functions ϕi become the projectors and the
symbol x the observable Λ given in (7):

Π+1 =
1
2
Λ (Λ + I) Π0 = I − Λ2 Π−1 =

1
2
Λ (Λ − I) (8)

Then every one-argument “local projector” F (Λ) can be obtained using the
relation (6).

4.3 Three-Valued, Two-Argument Examples: Min, Max

When considering a 2-argument 3-valued system we find the expansion by using
the Kronecker product in the same way as for the binary system in Eq. (3):

F =
∑

i, j =+1, 0, −1

fij Πi ⊗ Πj , fij ∈ {+1, 0, −1} . (9)
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these observables are now 9 × 9 matrices. We can define the two argument “dic-
tators”, U and V , simply by the rule of composition, this leads to:

U = Λ ⊗ I V = I ⊗ Λ U · V = Λ ⊗ Λ . (10)

In trivalent logic (see e.g. [11]) popular connectives are Min and Max, defined
in the maps on Table 2.

Table 2. The Min and Max maps for a three-valued two-argument logic.

Min U \\ V F N T
F ≡ +1 +1 +1 +1
N ≡ 0 +1 0 0

T ≡ −1 +1 0 −1

Max U \\ V F N T
F ≡ +1 +1 0 −1
N ≡ 0 0 0 −1

T ≡ −1 − 1 −1 −1

Here the connectives Min and Max are symmetric, they are equivalent for a
complete inversion of signs on inputs and outputs. Using the relations (8), (9)
and (10) in conjunction with reduction rules we obtain the following observables:

⎧⎪⎨
⎪⎩

Min(U ,V ) =
1
2

(
U + V + U2 + V 2 − U · V − U2 · V 2

)
Max(U ,V ) =

1
2

(
U + V − U2 − V 2 + U · V + U2 · V 2

) (11)

The proof of the relations (11) is a direct consequence of relations (5) and (9).
We have on one hand:
Min (U, V ) = ϕ1(U) ⊗ ϕ1(V ) + ϕ1(U) ⊗ ϕ0(V ) + ϕ1(U) ⊗ ϕ−1(V )

+ϕ0(U) ⊗ ϕ1(V ) + ϕ−1(U) ⊗ ϕ1(V ) − ϕ−1(U) ⊗ ϕ−1(V )
= ϕ1(U) + ϕ1(V ) − ϕ1(U) ⊗ ϕ1(V ) − ϕ−1(U) ⊗ ϕ−1(V ) due to (6)
= 1

2 U (U + I) + 1
2 V (V + I) − 1

4 U (U + I)V (V + I) − 1
4 U (U − I)V (V − I)

= 1
2

(
U2 + U + V 2 + V − U2V 2 − UV

)
and the first relation of (11) is proven. On the other hand, we have
Max (U, V ) = ϕ1(U) ⊗ ϕ1(V ) − ϕ1(U) ⊗ ϕ−1(V ) − ϕ0(U) ⊗ ϕ−1(V )

−ϕ−1(U) ⊗ ϕ−1(V ) − ϕ−1(U) ⊗ ϕ1(V ) − ϕ−1(U) ⊗ ϕ0(V )
= ϕ1(U) ⊗ ϕ1(V ) − ϕ−1(U) − ϕ−1(V ) + ϕ−1(U) ⊗ ϕ−1(V ) due to (6)
= 1

4 U (U + I)V (V + I) − 1
2 U (U − I) − 1

2 V (V − I) + 1
4 U (U − I)V (V − I)

= 1
2

(
U2V 2 + UV − U2 − V 2 + U + V

)
and the second relation of (11) is proven. �
The proof presented above exploits the properties of the Kronecker product and
reduction rules due to the completeness of the finite projection space. Reduction
of logical expressions is an important topic in logic. In binary logic it is formalized
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by using Karnaugh maps which represent canonical SOP (Sum Of Products)
disjunctive normal forms [8].

Binary logic is “included” in ternary logic, we want to verify this by elimi-
nating the “neutral” state, N ≡ 0, and considering only the two logical values
{+1,−1}. In this case we have: U2 = V 2 = I and so (11) reduces to:

{
Min (U ,V ) = 1

2

(
I + U + V − U · V

)
,

Max (U ,V ) = 1
2

( − I + U + V + U · V
)

considering that for binary logic the Min connective becomes the conjunction,
AND, and the Max connective the disjunction, OR, we find the previous results
given on Table 1 for binary {+1,−1} observables.

5 Discussion and Conclusion

We have presented an operational formalism named “Eigenlogic” using observ-
ables in Hilbert space. The original feature being that the eigenvalues of a logical
observable represent the truth values of the corresponding logical connective,
the associated eigenvectors corresponding to one of the fixed combination of the
inputs (atomic propositions). This approach differs from other geometric formal-
izations of logic (for references and discussion see [5]). Here the outcome of a
“measurement” or “observation” on a logical observable will give the truth value
of the associated logical proposition, and becomes “interpretable” when applied
to the eigenspace leading to a natural analogy with the measurement postulate
in quantum mechanics. One of the referees proposed the following diagram to
summarize the point of view presented in this contribution:

eigenvectors in Hilbert space −→ atomic propositional cases
projectors −→ logical connectives

eigenvalues −→ truth values.

At first sight this method could be viewed as “classical” because exactly the
same results are obtained in Eigenlogic as in ordinary propositional logic. This
is in itself an important result demonstrating a new method in logic based on
linear algebra, the method being also developed in multivalued logic. But when
considering vector states, id est input propositions, that are not eigenvectors,
the measurement outcomes are governed by the quantum Born rule, and inter-
pretable results are then given by the mean values. This fact led us to apply the
method to Fuzzy logic.

Another important point is the general algebraic method, based on classical
interpolation framework suggested by the finite-element method. Our method
can be employed for whatever m-valued n-argument logical system and in each
case the corresponding logical observables can be defined. Some observables can
be formally compared with angular momentum observables in quantum mechan-
ics. Because of the exponential increase of complexity, an analytical formulation
is only tractable for a low number of logical values and arguments. We treated
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the two-argument binary case completely and the three-valued case using the
logical observables Min and Max. An algorithmic approach for logical connec-
tives with a large number of arguments could be interesting to develop using
Eigenlogic observables in high-dimensional vector spaces. But because the space
grows in dimension very quickly, it may not be particularly useful for practi-
cal implementation without logical reduction. It would be interesting to develop
specific algebraic reduction methods for logical observables inspired from actual
research in the field. For a good synthesis of the state of the art, see e.g. [14].

Eigenlogic could create a new perspective in the field of quantum compu-
tation because several of the observables turn out to be well-known quantum
gates. Here we represent them as diagonal matrices, id est in their eigenbasis,
other “normal” forms being easily recovered by unitary transformations. It would
be interesting to operate quantum gates in our framework. Many-valued logic
is being investigated in quantum computation for example with ternary-logic
quantum gates using “qutrits”. Our formulation of multivalued logical observ-
ables could be used for the design of new quantum gates.

Dynamical evolution of the logical system could be included in the model
by identifying the appropriate Hamiltonian operators. Standard procedures for
expressing interaction Hamiltonians as a function of angular momentum observ-
ables could be used [13].

More generally we think that this view of logic could add some insight on
more fundamental issues. Boolean functions are nowadays considered as a “tool-
box” for resolving many problems in theoretical computer science, information
theory and even fundamental mathematics. In the same way Eigenlogic can be
considered as a new “toolbox” and could be of interest for the “Quantum Inter-
action” community where quantum-like approaches in human and social sciences
need to be founded on a logical basis.

Acknowledgments. The authors thank both referees for their precise and construc-
tive remarks and suggestions. Some of them have been included in the present version
of this contribution.
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