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Preface

QI 2016, the 10th International Conference on Quantum Interactions, was part of a
series of international conferences on applications of the quantum formalism outside of
physics. This now traditional conference started in 2007 as part of the Association for
the Advancement of Artificial Intelligence, AAAI, Spring Symposia, and has taken
place annually ever since, mostly in Europe. The tenth conference was held on the
Downtown Campus of San Francisco State University (SFSU), in San Francisco,
California, during July 20–22, 2016. It was hosted by the School of Humanities and
Liberal Studies, an interdisciplinary unit within the College of Liberal and Creative
Arts at SFSU.

The title of the conference, “Quantum Interactions,” was concocted by Peter Bruza
and William Lawless, who co-organized, together with C.J. van Rijsbergen and Don
Sofge, the 2007 symposium at the AAAI at Stanford University. In their original
proposal to the AAAI symposium, they were referring to social interactions. Social
interactions, so was their argument, were prone to context-dependent effects the same
as quantum observables. Therefore, it was reasonable to assume that the conceptual
structure of quantum mechanics could shed light on them. Currently, quantum inter-
actions refers more broadly to the use of the quantum mathematical, conceptual, or
probabilistic structures outside of physics, often in social and computer sciences. Social
sciences, in particular psychology, have many examples where observable quantities
are contextual, and as such do not fit well within a classic probability theory. Since
quantum mechanics was a theory developed to deal with quantum contextuality, as
happens, for example, in the case of the double-slit experiment, researchers started
asking whether the extended probabilistic apparatus developed could be used to
describe contextual systems outside of physics. As such, we should not think of
quantum interactions as the use of quantum mechanics outside of physics, but instead
as the use of the mathematics of quantum mechanics to non-quantum systems.

In this year’s conference we had many distinguished speakers, and we are happy to
have contributions to this volume from Professors Bas van Fraassen and Ehtibar
Dzhafarov. Professor van Fraassen’s paper takes the idea of the quantum formalism as
a way to describe contextual systems, and then tries to create a formal theory of
epistemology based on it. Professor Dzhafarov, in collaboration with Janne Kujala,
developed in detail his theory of contextuality based on classic probability theory and
random variables. These papers were grouped in the fundamentals session, along with a
paper by Hou Yau. Hou Yau presented a modified theory of the Klein–Gordon
equation where time is itself a dynamical variable, with the hopes that such an approach
might have some applications outside of physics.

Papers for the conference were naturally grouped into applications of quantum
formalism to psychology (quantum cognition), language and applications, and quan-
tum-like measurements outside physics. In the quantum cognition group, Irina Basieva
and Andrei Khrennikov discussed the two- and three-slit experiments as metaphors to



the modeling of cognitive processes, especially the difficulties associated with pushing
this metaphor to experiments in psychology. J. Acacio de Barros, Carlos Montemayor,
and Leonardo De Assis used the results of quantum cognition, in particular of con-
textuality in quantum cognition, to argue that some empirical theories of consciousness
are inadequate and need revision. J. Acacio de Barros, Leonardo de Assis, and Petr Bob
used data from experiments in stress research to argue that stress may show order
effects in a way that is consistent with the collapse model used by Busemeyer in
psychology. Diederik Aerts, Lyneth Beltran, Massimiliano Sassoli de Bianchi, Sandro
Sozzo, and Tomas Veloz provided a modified hidden-variable model of quantum
mechanics that could describe order effects in a way consistent with experimental
findings. Finally, Peter beim Graben and Reinhard Blutner discussed the use of the
quantum formalism in music theory.

For language and applications, the paper by David Windridge and Raja Nagarajan
discussed bootstrap aggregation in quantum machine learning. Yaared Al-Mehairi, Bob
Coecke, and Martha Lewis created a model of categorical compositional cognition by
fitting the integrated connectionist/symbolic architecture within categorical composi-
tional semantics. Trevor Cohen, Dominic Widdows, Jason A. Vander Heiden, Namita
T. Gupta, and Steven H. Kleinstein extended their previous vector model based on a
quantum description to represent protein sequences with graded vectors. Aditya Joshi,
Johan Halseth, and Pentti Kanerva used random indexing to identify the language of
text samples.

In the quantum-like measurement session, Jacob Denolf attempted to broaden the
theory of measurement with operators in a Hilbert space to account for ordinal mea-
surements common in social sciences. François Dubois and Zeno Toffano extended the
measurements from a Boolean logic to a fuzzy logic. Kevin Dunne tries to connect two
different approaches to quantum theory: topos and monoidal.

This year we also had a very successful special session on “Contextuality and the
Foundations of Probability.” Contextuality, in line with the meaning put forth in
Dzhafarov and Kujala’s contribution to this volume, is an essential feature of the
quantum formalism used in the applications outside of physics. In this session, the
papers by Victor Cervantes and Ehtibar Dzhafarov and by Ru Zhang and Ehtibar
Dzhafarov presented a series of experiments to test the existence of contextuality in
psychology. Contextuality in database theory was also discussed by Peter Bruza and
Samson Abramsky. Finally, some papers addressed modified theories of probability to
model contextual phenomena, as, for example, Federico Holik et al.’s contribution on
non-monotonic subadditive probabilities, and Mark Burgin’s symmetric inflated
(signed) probabilities, which may take values outside of the [0, 1] interval of standard
probability theory.

From the 39 papers submitted to the conference, 21 were accepted, and are included
in this volume. These 21 papers are based on the conference presentations, and
incorporate feedback received not only by the peer-review process, but also during the
talks. With the exception of the invited presentations and associated papers of Pro-
fessors Bas van Fraassen and Pawel Kurzinsky, which were reviewed by the editors
after the conference, each paper was single-blind peer-reviewed prior to the conference
by at least two reviewers, and the conference presentations were based on the revised
papers. We thank the Program Committee members for their timely and dedicated work
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on reviewing the papers, a particularly daunting task, given the interdisciplinarity of the
QI 2016 contributions.

This year we received many submissions of papers whose main authors were stu-
dents or junior researchers. Owing to their high quality, the conference organizers
created for the first time at the QI conference a best paper award by a student or young
researcher. This year’s recipients were Ru Zhang for Best Post-Doctoral/Young
Researchers Paper Award, and Aditya Joshi for Best Undergraduate/Graduate Paper
Award. We wish to congratulate both recipients, as well as the many other finalists, for
submitting excellent papers to the conference.

We would like to thank the Downtown Campus staff of San Francisco State
University, in particular Kasey Wood and Dania Russel, for their hospitality and help,
which ensured the success of the conference. Alfred Hofmann and Anna Kramer at
Springer provided support for the speedy publication of the proceedings in the Springer
series Lecture Notes in Computer Science. We also thank the local Organizing Com-
mittee, Leonardo Paulo Guimarães De Assis (Stanford University) and Margarida
Duque de Castela (SFSU), without whom the conference would not have worked
smoothly. Finally, we thank the support of the School of Humanities and Liberal
Studies, through its director, Professor Cristina Ruotolo, and of the College of Liberal
and Creative Arts, San Francisco State University.

November 2016 J. Acacio de Barros
Emmanuel Pothos

Bob Coecke
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Interpretations of QM with Applications
for Formal Epistemology

Bas C. van Fraassen(&)

Department of Philosophy, San Francisco State University,
San Francisco, CA 94132, USA
fraassen@princeton.edu

Abstract. Associated with the Copenhagen school, the External Observation
View of quantum mechanics depicted a quantum state as evolving determinis-
tically, but with interruptions when ‘collapsed’ by measurement interactions.
I will point to an analogy with the doxastic state studied in epistemology, and
show that this analogy suggests an application of the quantum mechanical
formalism that leads to a proof of one solution of a central problem in formal
epistemology. I will end with some critical remarks.

1 The External Observation View Versus the Closed
Universe View

Until the 1950s their were two main views of how we are to understand QM, separated
by the Iron Curtain. One view, dominant among scientists in the West, traced its origin
to Bohr and the Copenhagen scientists. John Wheeler described it: “The ‘external
observation’ formulation of quantum mechanics …associates a state function with the
system under study—as for example a particle—but not with the ultimate observing
equipment. The system under study can be enlarged to include the original object as a
subsystem and also a piece of observing equipment [….]. However, the ultimate
observing equipment still lies outside the system that is treated by a wave equation.” [1].

As Wheeler points out, within this view it would not make sense to think of the
Universe as a whole as a quantum system. Yet quantum mechanics represents that as a
deterministic evolution of a wave function subject to Schroedinger’s equation.

This view was characterized as positivist and idealist in the Soviet Union, where
Academician D.I. Blokhintsev was intent on developing a view of QM as mechanics,
properly speaking, in line with dialectical materialism [2, 3]. On that view a quantum
state is not essentially what the scientist attributes on the basis of measurements, but a
mechanical state in the same way that states were in classical physics.

Remarkably, beginning in the 1950s, the latter view seemed to become whole-
heartedly adopted among philosophers in the West. The popular term there was not
“materialist” but “realist”. This began, arguably, with Wheeler’s commentary of Hugh
Everett’s dissertation [1, 4]. Wheeler, a cosmologist, welcomed this development since
it allowed for the conceptual possibility of representing the cosmos as a quantum
system. But in this ‘turn to objectivity’ Everett’s interpretation, or the subsequent
Many-Worlds interpretations that drew on his work, was not alone: interpretations

© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-52289-0_1



developed in the 70s and 80s generally regarded the state and the values of observables
as physical, measurement-independent characteristics of physical systems.

2 Information-Theory Approach from 1950s to the Present

Since then the focus on information led to new interpretations that we can think of as
continuing, whether explicitly or surreptitiously, the Copenhagen external observer
view, without any implication of a role for consciousness. Examples include e.g. Carlo
Rovelli, Christopher Fuchs, and Jeffrey Bub.

Conceptual changes usually have their harbingers and predecessors. In the 1950s
the Dutch physicist H.J. Groenewold advocated that we should regard quantum states
as just summaries of information obtained through measurement [5–7]. He proposed a
formulation of the theory centering on the effect of a series of measurements, repre-
sented by a series of observables (the ones being measured) interspersed with evolution
operators (governing evolution between measurements). The sole real problem to be
addressed is then: given the outcomes of preceding measurements, what are the
probabilities for outcomes of later measurements in the series?

Imagine that each measurement apparatus in the series records its outcome. After
the entire series has been concluded, a physicist O inspects those recorded results, and
assigns states to the system measured for the times of those outcomes using von
Neumann’s Projection Postulate recipe (which everyone agrees is fine for such nar-
rowly focused predictive tasks). To begin, O assumes some initial state. (When there is
no prior substantive information, that will be the entirely uninformative mixture rep-
resented by the identity operator on the space.) Suppose now that successive mea-
surements are made on the same system at times t1, t2, t3, … of various observables O1,
O2, O3, … yielding eigenvalues of those observables k1, k2, k3, … This process can be
represented theoretically as the evolution of a state, interrupted at those times by
projections into the relevant eigenspaces, and between those times governed by the
Schroedinger equation – more precisely by a group of unitary operators, the ‘evolution
operators, indexed by the time intervals between those times. However that would be a
representation ‘after the fact’ when the outcomes are known. Before they are known the
state is represented as a mixture corresponding to the possible outcomes, with ‘weights’
reflecting the probabilities of those outcomes. What can be read off this representation,
and can be empirically tested, are the transition probabilities: the probability that if the
sequence of outcomes so far is k1, k2,…, kn, the next outcome at time tn+1 will be kn+1.

The contentious part is Groenewold’s insistence that no other significance is to be
accorded to the assignment of states. The states are nothing more than compendia of
information assumed, known, or gathered through measurements, and thus determined
entirely by a specific history, the ‘observer’s’ history.

The conditionality or relativity of the quantum states is just as much a matter of choice of
reference as e.g. the relativity in special relativity theory with respect to the choice of inertial
systems [5].

Later interpretations which apply information theory, such as Carlo Rovelli’s
Relational Quantum Mechanics echo this analogy to what is meant by states relative to
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an observer in relativity theory, and emphasizes that similarly any system can serve in
the role of ‘anchoring’ relative states of information:

The quantum system represents something real and independent of us; the quantum state rep-
resents a collection of subjective degrees of belief about something to do with that system [8].

A quantum theory is best understood as a theory about the possibilities and impossibilities of
information transfer, as opposed to a theory about the mechanics of nonclassical waves or
particles [9].

“Information” is here understood as Groenewold specified, in the technical sense of
information theory, as measured classically by the Shannon entropy or by the von
Neumann entropy for quantum states.

3 The Analogy: Information States Evolving with Interruptions

The External Observation View and the later information theory oriented interpreta-
tions view the quantum state as subject to a deterministic evolution constantly inter-
rupted by measurements, with the measurement outcome characterizing an abrupt
change in the state. This provides the basis for an analogy that can be explored for
suggestions to solve problems in formal epistemology.

Independently of the differences between sorts of interpretations, what has to be
interpreted includes:

• representation of pure states by vectors, of mixed states by statistical operators, and
of physical quantities by self-adjoint linear operators,

• representation of measurement as physical interactions that establish correlations
between measured system and measurement apparatus

• representation of the evolution in time of an isolated system as governed by the
Schroedinger equation (more abstractly, by a one-parameter group of unitary
operators).

On the information theory approach the measurement operations are affecting
changes in the information state of the ‘observer’, the ‘measurer’, however conceived.
And crucially, the information state is mathematically representable in the way that
quantum states were represented all along.

The information state may be called “subjective” to the extent that, and in the sense
that, it is relative to the observer, but the changes in information are induced (in some
way) by the input from physical measurement operations. Within this approach, the
classical theory of information understood in terms of subjective probability, the
changes of state as subjective probability updating.

A state of information, in which the information consists in a combination of
probabilities and certainties, is precisely how in epistemology one regards a subject’s
epistemic (or etymologically more accurately, doxastic) state. The analogy is therefore
to the External Observation View, where the steady evolution of the state is depicted as
interrupted by measurement, with its unforeseen outcome used to adjust that state.
In the epistemic case, the steady evolution of one’s subjective probabilities is depicted

Interpretations of QM with Applications for Formal Epistemology 5



as interrupted by the ‘deliverances of experience’, with their unforeseen content
evoking an adjustment of that doxastic state. So we can begin to set up a possibly
illuminating analogy for conceptual exploitation:

• target: state of opinion over time
– represented as an evolving probability function, interrupted by external input

• base: quantum state over time
– deterministic process between interruptions (data input)
– states are elements of a vector space,
– the deterministic process is transformation by a dynamic group (unitary

operators).

4 Representing Opinion: Possibilities, Probabilities,
and Quantities

We begin with a space of possibilities. There will be many; for example, for a large set
of real numbers N there will be many possibilities that include that the mass of the
moon in kg is N. In some of these, my average daily wage in dollars is K, in some it is
K + 1, and so forth. For each N, the proposition that the mass of the moon is N kg
singles out a region of possibilities in which that is so. We call these regions cells of the
partition we have thus imposed on this possibility space.

The single requirement on our probability assignment is that the probabilities of the
cells of any given partition are never less than 0, and together sum to one. The mass of
the moon and average daily wage define relevant partitions in a natural way, namely in
terms of the values that a quantity may have. Such a quantity is called, in statistics
jargon, a random variable. It is (represented by) a function that assigns to each point in
the possibility space a real number as its value. But usually, perhaps always, the
quantity will have the same value in a variety of possible circumstances. So by listing
its values, we are specifying a corresponding partition: for example, the one in which
the Nth cell is the region of those possibilities in which my average daily wage is K.

While I will be talking about results that may actually be significant, non-trivial,
only for cases involving infinity, this discussion will be limited to quantities and
probabilities assigned to cells of a finite partition.

Probability assignments are just a special case of random variables: their values are
non-negative and sum to 1. But that is the only difference from the general case.

Keeping things simple suppose that the partition is finite, say it has N cells, and
let’s think of them as ordered sequentially for convenience. Then each random variable,
and so automatically also each probability assignment, is in effect being represented by
a vector, with N components. For example <1/6, 2/6, 3/6> represents probability
assignment to a three-cell partition, which might have been defined by a quantity which
takes values 1, 2, and 3 in the first, second and third cell respectively.

The expectation value, for that quantity, in this state of opinion, is defined to be

6 B.C. van Fraassen



1=6ð Þ � 1þ 2=6ð Þ � 2þ 3=6ð Þ � 3 ¼ 14=6

which is 14/6. It is generally most useful to think about expectation values rather than
specific probabilities. When p is a probability function and x is a random variable, let
us designate the expectation value for that case as EX(p, x).

Thinking about the random variables as vectors brings us now into familiar terri-
tory. The inner product (also called dot product, scalar product) of two vectors is
defined to be:

\x1; . . .; xN [ �\y1; . . .; yN [ ¼ x1y1 þ . . .þ xNyN

Using the boldface notation x for <x1, …, xN>, and so forth, we put this succinctly:

x � y ¼ R xkyk

So the expectation value is the inner product of the two vectors that represent the
probability (the state of opinion) and the quantity. From this it follows at once, e.g. that
expectation is linear.

5 Representing Opinion Change

Considering the input that may require a change of opinion, we typically think of
something concrete, like a witness report or the outcome of a measurement. But
whatever that is, it functions as input only if the person in question takes it to place a
constraint on his or her future (posterior) opinion.

What can these constraints be? The simplest example is the case where a measure-
ment outcome is accepted as definitive, and a certain proposition is then taken to be
definitely true, and assigned probability 1. But there a number of different constraints on
one’s posterior opinion that may be accepted in response to ‘experience’ (which can
include reports from trusted sources, not just observer perceptions). So these may include:

! change your probability for rain to 1 !
! change your probability for rain to 0.7 !
! let your probabilities for rain and for snow be equal !
! change your odds for rain vs. snow to 7: 3 !
! change your conditional probability of rain given snow to 2/3 !
! change your expectation value for precipitation in inches to 3 !

How is the agent to satisfy such a constraint? For the first and second example we
have theorems to answer this question. For the remainder, answers remain contro-
versial, and we will see how an analogy to quantum mechanics might help.

The simplest constraint on the posterior opinion is that it should assign probability
1 to a particular proposition (region in the possibility space) E (then called the evi-
dence). Bayes’ famous idea was that the only other relevant consideration is the prior,
which is to be modified, and that the posterior is function of just the prior and the
proposition E.
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That there must be a function, with only certain specific factors admitted as rele-
vant, is the very stuff of symmetry arguments. When that idea is assumed for the case
of opinion change, there is a beautiful symmetry argument [10] that demonstrates that
there is only one probability function that fits, the very one that Bayes displayed.

Simple Conditionalization. Given prior probability function p, and the constraint on posterior
probability function p* that it must assign 1 to E, and that p* is a function of only p and E,

p* must be:

p� ¼ p Ejð Þ;

which is defined by

p Ejð Þ : p A Ejð Þ ¼ p A\Eð Þ =p Eð Þ; for A in the domain of p

(and thus undefined if p(E) = 0).
If we represent p as a vector <p1, …, pN> with reference to a partition with cells

A1,…, AN then E must be the union of some of those cells. The recipe in question then
has two steps: (1) If Aj is a cell disjoint from E, change pj to 0; for j = 1, …, N.
(2) Multiply the resulting components by a number so that their sum is 1. Only the first
step is really important, for the odds between the components is what matters. That the
numbers should add up to 1 is just a convention.

Richard Jeffrey created the new subject of probability kinematics [11] and intro-
duced a new rule, Jeffrey Conditionalization, that generalized Simple Conditionaliza-
tion, for the constraint

! change your probability for E to r !

To see how Jeffrey’s prescription works, consider first the choice of conditional-
izing on E or alternatively on the negation *E. That is a choice between two possible
posteriors, produced by Simple Conditionalization. Instead of choosing between them,
you assign them relative ‘weights’, namely r and (1 − r). Thus you arrive at the mixture
(convex combination)

p� ¼ rpð. . . Ej Þ þ 1� rð Þp . . .j �Eð Þ

Again there is a beautiful symmetry argument that shows there is just one way to do
that, namely, the one prescribed by Jeffrey [10].

For each such Jeffrey shift, as I will call the operation, there is of course a corre-
sponding effect on the expectation values. In fact we form the posterior expectation
value function by inserting the multipliers [qi/p(Ai)], which depend solely on the prior
and the constraints that the shift is meant to satisfy.

This change in the coefficients in the sum that constitutes the expectation value is a
simple operation, and in fact, it is the effect of a linear operator on the vectors that
represent random variables such as quantity x [12].
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6 Representing Opinion Change: Generalizing Probability
Kinematics

What about all the other forms of constraint? The solution of the general problem
consists in defining a function U, which takes the given constraint as input, and which
will turn an arbitrary given prior p into an appropriate posterior p′ = Up (provided U is
applicable). Unless we have further desiderata for U, the problem does not make sense.

Before exploring or exploiting quantum mechanical analogies, I want to mention
the best known candidate that has been proposed for the role of U.

6.1 The Best Known Candidate, Jaynes’ MAXENT: a. k. a. Minimize
Relative Information

An often introduced intuition is that the change in the information state should be
conservative, that is, that by some measure, the posterior should be ‘as close to’ the
prior as possible. The best known candidate for that measure is relative information.
Minimizing the relative information is equivalent to maximizing the relative entropy, as
first proposed by the physicist E.T. Jaynes [13].

How much the posterior p* differs from the prior p can be described in various
ways. One good way in or present context would seem to be to list the ratios
p�i
�
pi; i ¼ 1; . . .; n. In order to satisfy various desiderata for what a relative infor-

mation function should look like, these ratios are found enmeshed in a somewhat
complicated function:

INF p�; pð Þ ¼ Rp�i ln p�i
�
pi

� �

So the recipe variously titled INFOMIN or MAXENT says that the posterior should
be chosen in such a way that the given constraints are satisfied while minimizing this
relative information (Note: the function is not well-defined when either the posterior or
prior has a 0 component).

Notice that INF is the posterior expectation value of a quantity, whose value on the

ith cell of the partition is lnðp�
i

.
piÞ So what it represents is the information in the

posterior relative to the prior, as evaluated posteriorly. The logarithmic function is
introduced to have a formula with nice mathematical properties; the genuinely crucial

part is the set of ratios ðp�
i

.
piÞ. These are what ‘conceptualize’ the ‘distance’ between

prior and posterior, as answer to ‘how close the one is to the other’.
The arguments supporting Jaynes’ proposal spell out desiderata of various sorts,

both conceptual and mathematical. There are disagreements about their force; more-
over, Jaynes’ proposal has been roundly rejected in a number of articles in which it was
discussed [14, 15].

Without purporting to settle those disputes here, I want to explore our analogy to
quantum mechanics for the possibility of a symmetry theorem for this proposal.
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7 Steps Toward a Symmetry Theorem

The set of probability vectors is a convex region in the vector space, but not a subspace.
To apply familiar results concerning vector spaces, it is therefore more convenient to
switch attention to odds rather than probabilities.

Since we know that p(A1) + . . . + p(An) = 1, we would also have speci-
fied p completely if we were just given certain ratios, such as p1/p2, p1/p3, . . ., p1/pn.

To give an example, suppose the probabilities that the television or radio, or
neither, is on (when at most one can play at any given time) initially (at t = 0) equal
0.5, 0.3, 0.2. That information is conveyed equally well by saying that the odds are 5 :
3 : 2. So this probability function can be represented by the probability vector <0.5,
0.3, 0.2> or by the odds vector <5, 3, 2> , or the odds vector <10, 6, 4> . While it
would be unusual to see it at a horse race, negative numbers would do as well: these
odds are equally represented by <−5, −3, −2> for the ratios are the same. The odds
vectors comprise the entire vector space except for the null vector.

A odds vector is a scalar multiple of a probability vector. And we call odds
vectors x and y equivalent iff there is a positive real number k such that x = ky (i.e.
x i = ky i for i = 1, . . ., n).

We must also give proper regard to partial comparisons, such as that the odds of
E1 : E2 according to p1 are 17 times the odds of E1 : E2 according to p2. Indeed, if
those probability functions are the prior and posterior opinion, that is just the sort of
item that would go into a description of how much the posterior differs from the prior.

Definition. The quotient (x/y) is the vector <x1/y1, …, xn/yn>.

This does not qualify as well-defined measure of the ‘distance’ between the vectors,
but will serve us as an intuitive guide (Just as we noted with respect to the MAXENT
formalism, there is a problem about division by zero; the quotient is undefined then).

When I present the conditions leading to the main theorem I will show how they are
related to the idea that the ‘distance’ reflected in the quotient between prior and pos-
terior is to be kept as small as possible.

The symmetries of the set of odds vectors are the transformations that leave that
structure intact.. They are isomorphisms, and for a finite real vector space they are thus
the one-to one linear transformations. These are the transformations representable by a
diagonal matrix and are therefore the following transformations:

Transformation U of the set of odds vectors is a uniform transformation if and only if there are
constants u1, …, uN, not all of them 0, such that for all vectors x.

Ux ¼ \u1x1; :::; unxn [

In quantum mechanics, during the time between disturbances from outside (such as
measurements) the state of a system evolves in accordance with Schroedingers’s
equation. Put in a more abstract fashion: this evolution, the ‘motion’, is governed by a
one-parameter group of unitary operators. The parameter in question is time, and the
unitary operators are precisely the symmetries of the space of possible states:
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the state w at t evolves to become the state Uzw at time t + z.

On the analogy that I proposed, what happens ‘between’ prior and posterior is
something that looks very much like what we see in QM, at least in an abstract sort of
way.

Now we have just seen what the relevant symmetries are, namely the uniform
transformations. In geometry or physical kinematics, we denote as “rigid motion” any
continuous transformation which remains isometric, i.e., preserves distances. Let us here
define the analogous notion of a uniform motion. Take the prior x as the state of opinion
at time t = 0, and write x = x(0). We may imagine this state developing in time as the
vector x(t), and require that x(t + d) results from x(t) by a uniform transformation Ud.

These operators {Ud} include U0 which is the identity, and form a semi-group with
Ud+e = UdUe, because UdUe (x(t)) = x(t + d + e) = Ud+e x(t). Note also that these
operators commute, by similar argument.

Let us denote as a uniform motion any such one-parameter semigroup of uniform
transformations.

For readability of the superscripts, I will describe a quantity k as having values
denoted interchangeably as either “ki” or “k(i)”.

Theorem. If {Uz: z � 0} is a uniform motion then there are numbers k1, …, kn such
that Uzx = <e k(i)zx1, …, e k(n)zxn>.

This equation has many familiar models, such as Lambert’s Law of light absorp-
tion, radio-active decay, and continuously compounded interest in economics.

Proof. To prove this theorem, recall the preceding one and let

Uz xð Þ ¼ \u1 zð Þx1; . . .; un zð ÞxnÞ:

Because Uz+w = UzUw, we also have for each index i:

ui zþwð Þ ¼ ui zð Þui wð Þ

Switching now to the natural logarithm, it follows that the function ln(ui) is additive
(on the same domain, the non-negative real numbers). By a theorem of analysis it then
follows that

ln uið Þ zð Þ ¼ ki þ z; for some real number ki

Hence, switching back from the logarithm and using our notation, ui(z) = eb . e k(i)z

for some number b. For the case z = 0, U0 is the identity, so eb = 1. This ends the
proof.

8 A Symmetry Theorem for Jaynes’ MAXENT

What is it like, for a prior opinion, in response to a new constraint, to change into a
posterior opinion by a uniform motion?
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As I mentioned, a uniform motion has familiar instances in the scientific literature,
and also in economics, where it is used to represent continuously compounded interest.
That is such a down to earth example, that it will help our imagination:

a capital V invested at interest rate k, continually compounded, grows to ektV over time t.

In a typical situation a capital can consist of parts for which the investor has
different aims; for example it might be prudent keep several savings accounts in
different banks. That would be a constraint on the desired growth, in addition perhaps
to the main aim of achieving a certain capital, apportioned selectively, by the age of
retirement. At this point the investor faces an optimality problem. We can imagine that
accounts with higher interest require longer term commitments (penalties for with-
drawal before certain lengths of time) hence offer less liquidity. If liquidity is important
to the investor, he will ask how his main aim can be achieved while maximizing
expected liquidity, which in this case means minimizing expected interest rates.

At this point the example may not look like a great candidate for modeling rational
change of opinion, but let me state it first. Then I will offer the proper motivation and
go on to show that if we do take it as our guide, we will have a truly gratifying result.

Optimality Postulate. The transformation of prior odds <xl, …, xn> to posterior odds <yl, …,
yn> subject to the constraint F(yl, …, yn) = m is by a uniform motion {Uz: z � 0}, such that
there are constants ki with ui(z) = e k(i)z, for i = 1, …, n, for which the posterior expectation
value of the quantity k is minimal (equivalently, such that R{yiki: i = 1, …, n} is minimal).

As motivation, we can take a look at the quotient between a prior and a thus
produced posterior. The quotient Ux/x = <(e k(i1)zx1)/x1,…, (e k(n)zxn)/xn> = <(e k(i1)z),
…, (e k(n)z)> . Thus minimizing the expectation value (whether prior or posterior) of
the quotient terms is equivalent to minimizing that quantity k.

Theorem. For the simultaneous constraints R{yi : I = 1, …, n} = 1 and R{yiqi: i = 1,
…, n} = r (the posterior expectation value of quantity q), there exists a constant w such
that the transformation of prior odds <xl, …, xn> to posterior odds <yl, …, yn> is by a
uniform motion {Uz: z � 0}, with ui(z) = ewq(i)z, for i = 1, …, n.

The importance of this theorem is that it gives exactly the same answer, to the
question of how we are to update to a new expectation value for a given quantity, as
Jaynes’ MAXENT. I’ll comment more on this below, but first let’s look at the proof of
the theorem.

Proof. We have here a dual constraint: R{yi : I = 1, …, n} = 1 and R{yiqi: i = 1, …,
n} = r. The Optimality Postulate says that these constraints will be satisfied by a
transformation of prior x into posterior y, by a uniform motion of a certain form:

\y1; . . .; yn [ ¼ Ut \x1; . . .; xn [ ¼ \ ek 1ð Þtx1; . . .; ek nð Þtxn [

for a certain time period t (however long it takes for the mind to change opinion in
this way). For convenience we can choose the units of time such that this period has
duration 1, that is, t = 1. So
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\y1; . . .; yn [ ¼ U1\x1; . . .; xn [ ¼ \ ekð1Þx1; . . .; ekðnÞxn [

such that the expectation value of quantity k is minimized. What can we deduce about
what k is like?

This sort of problem can be solved with the Lagrange multiplier method. To use
this method we introduce special variables, say w and u, and assert that the minimum is
found where all the partial derivatives (with respect to w, u, y1, …, yn) of the following
function are zero:

yiki þwðr � yiqiÞ þ uð1� RyiÞ:

That point is thus characterized by:

r � Ryiqi ¼ 0
1� Ryi ¼ 0
k1 � wq1 � u ¼ 0

..

.

kn � wqn � u ¼ 0

First then, we see how k is a function of q and the two unknowns w and u:

ki ¼ wqi þ u

which means that

yi ¼ xiewqðiþ uÞ ¼ xiewqðiÞ: eu

Given the second constraint (in effect that the posterior is a probability vector) it is
clear that the multiplication by eu serves to normalize the vector, that is, that eu ¼ 1=
RxiewqðiÞ. So now the only unknown remaining is w.

Hence the posterior y is a function just of the prior x and that number w. However,
the first constraint can then be brought into play: the expectation value of q equals r –
this will determine a unique value for w, when we are told what q is. And we are done.

9 Applying the Theorem, an Example

To show how the value of w appears in an application, let us consider as example the
simple constraint:

! set the odds even for A1versus A2!

where we envisage a partition AI, A2, A3.
Suppose the initial odds vector is, <xl, x2, x3> = <1/6, 1/3, 1/2>.
The calculation, applying the above theorem, goes as follows. The way to state the

constraint in terms of expectation value is this:
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the posterior expectation of q equals 0,
where q is the quantity that has:
value 1 on A1,
value −1 on A2,
and value 0 on A3.

That will clearly be so iff the posterior odds on AI, A2 are the same.
The prior expectation of q equals -1/6; we let the odds grow over unit time by

“interest rates” proportional to q’s proper values:
There is a constant w such that the posterior odds vector (ignoring normalization) is

\yl; y2; y3 [ ; with yi ¼ xiewqðiÞ; in other words;

\yl; y2; y3 [ ¼ \ 1=6ð Þew:1; 1=3ð Þvw:�1; 1=2ð Þew:0 [
¼ \ 1=6ð Þew; 1=3ð Þe�w; 1=2ð Þ[

At the same time, the posterior expectation value of q equals 0, hence

1:yl þ � 1: y2 þ 0:y3 ¼ 0

so ew=6ð Þ ¼ 1=3ewð Þ
hence ew ¼ p

2

which means that the posterior odds are <(√2)/6, √2)/6,1/2> approximately equal to the
probability vector <0.24, 0.24, 0.52>.

That is, as the (essentially same) calculations make clear, the same answer as that
obtained by Jaynes’ MAXENT method. Notice that the third probability has grown a
little. although the constraint was just on the first two. That is reminiscent of the Judy
Benjamin example, and should of course raise the same eyebrows.

10 Conclusion

What can we figure out, about rational change of subjective probability, the transfor-
mation of prior into posterior opinion, through analogies with quantum mechanics? In
the approach I presented

the most general pictures of the relevant ‘motions’ coincide:

• In quantum mechanics, the way in which a state changes over time is depicted as a
frequently interrupted deterministic evolution. The interruptions are the measure-
ments, interferences ‘from outside’, easy to think of as coming from the free
decisions of experimentalists. The normal evolution between those interruptions are
governed by Schroedinger’s equation.

• In rational management of opinion, the way in which a state changes over time is
also depicted as a frequently interrupted deterministic evolution. The interruptions
are the acceptances of new constraints on one’s opinion, prompted in response to
experience – easy to think of as the exercise of free decisions by the agent. The
normal evolution that leads from prior to posterior, in a way that satisfies the
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accepted constraints, is by a process that has the same abstract form as
Schroedinger’s equation.

But now I want to enter a demurral, on my own behalf. In the three symmetry
arguments noted or presented above, the main assumption was in each case that the
posterior opinion would be literally a function of the prior and the constraint that was
accepted in response to the ‘input’ or ‘experience’. That is in effect an assumption of
determinism, of a single unique ‘way to go’, which is in the case of rational man-
agement of opinion the idea that rationality requires rule-following, with no leeway for
free choice.

In my view, a liberal probabilism, that assumption is not warranted and episte-
mology ought to have a greater respect for freedom of choice, within the bounds of
reason [10, 15].

References

1. Wheeler, J.: Assessment of everett’s ‘Relative State’ formulation of quantum theory. Rev.
Mod. Phys. 29, 463–465 (1957)

2. Blokhintsev, D.I.: My way in the science. In: Barbashov, B.M., Sissakian, A.N. (eds.)
Self-review of Works. JINR Publishing, Dubna (2007)

3. Cross, A.: The crisis in physics: dialectical materialism and quantum theory. Soc. Stud. Sci.
21, 735–759 (1991)

4. Everett, H.: ‘Relative state’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–
462 (1957)

5. Groenewold, H.J.: Information in quantum measurement. Koninklijke Nederlandse
Akademie van Wetenschappen B55, 21–27 (1952)

6. Groenewold, H.J.: Objective and subjective aspects of statistics in quantum description. In:
Körner, S. (ed.) Observation and Interpretation in the Philosophy of Physics Proceedings of
the Ninth Symposium of the Colston Research Society, pp. 197–203 (1957)

7. Groenewold, H.J.: Quantal Observation in Statistical Interpretation. In: Bastin, T. (ed.)
Quantum Theory and Beyond: Essays and Discussions Arising from a Colloquium, pp. 43–
54. Cambridge University Press, Cambridge (1971)

8. Fuchs, C.A.: Quantum mechanics as quantum information (And only a little more).
quant-ph/0205039

9. Bub, J.: Why the quantum? Stud. Hist. Phil. Mod. Phys 35, 241–266 (2004)
10. van Fraassen, B.C.: Laws and Symmetry. Oxford University Press, Oxford (1989)
11. Jeffrey, R.C.: Probable knowledge. In: Lakatos, I. (ed.) The Problem of Inductive Logic.

Elsevier, Amsterdam (1968)
12. van Fraassen, B.C.: The geometry of opinion: Jeffrey shifts and linear operators. Philo. Sci.

59, 163–175 (1992)
13. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1956)
14. van Fraassen, B.C.: A problem for relative information minimizers in probability kinematics.

Br. J. Philos. Sci. 32, 375–379 (1981)
15. van Fraassen, B.C., Halpern, J.Y.: Updating probability: tracking statistics as criterion. Br.

J. Philos. Sci. February 2016. doi:10.1093/bjps/axv027

Interpretations of QM with Applications for Formal Epistemology 15

http://dx.doi.org/10.1093/bjps/axv027


Contextuality-by-Default 2.0:
Systems with Binary Random Variables

Ehtibar N. Dzhafarov1(B) and Janne V. Kujala2

1 Purdue University, West Lafayette, USA
ehtibar@purdue.edu
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Abstract. The paper outlines a new development in the Contextuality-
by-Default theory as applied to finite systems of binary random variables.
The logic and principles of the original theory remain unchanged, but the
definition of contextuality of a system of random variables is now based
on multimaximal rather than maximal couplings of the variables that
measure the same property in different contexts: a system is considered
noncontextual if these multimaximal couplings are compatible with the
distributions of the random variables sharing contexts. A multimaximal
coupling is one that is a maximal coupling of any subset (equivalently,
of any pair) of the random variables being coupled. Arguments are pre-
sented for why this modified theory is a superior generalization of the
traditional understanding of contextuality in quantum mechanics. The
modified theory coincides with the previous version in the important case
of cyclic systems, which include the systems whose contextuality was
most intensively studied in quantum physics and behavioral sciences.

Keywords: Contextuality · Connection · Consistent connectedness ·
Cyclic system · Inconsistent connectedness · Maximal coupling · Multi-
maximal coupling

1 Introduction: From Maximality to Multimaximality

The Contextuality-by-Default (CbD) theory [7–12,14,16,23–25] was proposed
as a generalization of the traditional contextuality analysis in quantum physics
[2,3,5,18,19,21,26,32]. The latter has been largely confined to consistently con-
nected systems of random variables, those adhering to the “no-disturbance”
principle [27,31]: the distributions of measurement outcomes remain unchanged
under different measurement conditions (contexts). CbD allows for inconsistently
connected systems, those in which context may influence the distribution of mea-
surement outcomes for one and the same property [11,14–17,23,25]. In accor-
dance with the CbD interpretation of the traditional contextuality analysis, this
generalization is achieved by replacing the identity couplings used in dealing
with consistently connected systems by maximal couplings.
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J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 16–32, 2017.
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Recall that, given a set of random variables X,Y, . . . , Z, a coupling of this
set is any set of jointly distributed random variables, (X ′, Y ′, . . . , Z ′), with

X ∼ X ′, Y ∼ Y ′, . . . , Z ∼ Z ′,

where ∼ stands for “has the same distribution as.” The coupling (X ′, Y ′, . . . , Z ′)
is maximal if (using Pr as a symbol for probability) the value of

peq = Pr [X ′ = Y ′ = . . . = Z ′]

is maximal possible among all possible couplings of X,Y, . . . , Z. The identity
coupling is a special case of a maximal coupling, when peq = 1. The latter is
possible if and only if all random variables X,Y, . . . , Z (hence also X ′, Y ′, . . . , Z ′)
are identically distributed:

X ∼ Y ∼ . . . ∼ Z.

The notion of a maximal coupling, however, is not the only possible gener-
alization of the identity couplings. And it has recently become apparent that
it is not the best possible generalization either. The maximal-couplings-based
definition of (non)contextual systems adopted in CbD does not have a certain
intuitively plausible property that is enjoyed by the identity-couplings-based def-
inition of consistently connected (non)contextual systems. This property is that
any subsystem of a consistently connected noncontextual system is noncontex-
tual. A subsystem is obtained by dropping from a system some of the random
variables. An inconsistently connected noncontextual system in the previously
published version of CbD (“CbD 1.0”) does not generally have this property: by
dropping some of its components one may be able to make it contextual.

In the new version, “CbD 2.0,” preservation of noncontextuality for subsys-
tems is achieved by replacing the notion of a maximal coupling in the definition
of (non)contextual systems by the notion of a multimaximal coupling. This term
designates a coupling every subcoupling whereof is a maximal coupling for the
corresponding subset of the random variables being coupled (see Definition 1
below).

The remainder of the paper is a systematic presentation of this idea and of
how it works in the analysis of contextuality. CbD 1.0 and CbD 2.0 coincide when
dealing with consistently connected systems (as they must, because they both
generalize this special case). They also coincide when dealing with the important
class of cyclic systems [16,24,25] (see Sect. 4). None of the principles upon which
CbD is based changes in version 2.0 (Sect. 2). The recently proposed logic of
constructing a universal measure of contextuality [12] also transfers to version
2.0 without changes (Sect. 5).

2 Contextuality-by-Default Theory: Basics

We briefly recapitulate here the main aspects of the Contextuality-by-Default
theory. We recommend, however, that the reader look through some of the recent
accounts of CbD 1.0, e.g., Refs. [11,14], or (especially) Ref. [12].
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Each random variable in CbD is double-indexed, Rc
q, where q is referred to

as the content of the random variables, that which Rc
q measures or responds to,

and c is referred to as its context, the conditions under which Rc
q measures or

responds to q.

Remark 1. Following Ref. [12] we will write “conteXt” and “conteNt” to pre-
vent their confusion in reading. The conteXt and conteNt of a random variable
uniquely identify it within a given system of random variables.

Two random variables Rc
q and Rc′

q′ are jointly distributed if and only if they
share a conteXt: c = c′. Otherwise they are stochastically unrelated. All random
variables sharing a conteXt form a jointly distributed bunch of random variables.
All random variables sharing a conteNt form a connection, the elements of which
are pairwise stochastically unrelated. It is necessary that all random variables
in a connection have the same set of possible values (more generally, the same
set and sigma-algebra).

The present paper is primarily about systems in which all random variables
are binary. It is immaterial for contextuality analysis how these values are named,
insofar as they are identically named and identically interpreted within each
connection. For instance, if Rc

q = 1 means “spin-up along axis z in particle 1”
and Rc

q = 2 means “spin-down along axis z in particle 1,” then all random
variables Rc′

q (c′ �= c) should have the same possible values, 1 and 2, with the
same meanings. Note that for another conteNt q′, the values of Rc

q′ need not
be denoted in the same way even if they have analogous interpretations: e.g.,
we may have Rc

q′ = 3 = “spin-up along axis z in particle 2” and Rc
q′ = 4 =

“spin-down along axis z in particle 2”.
The matrix below provides an example of a conteXt-conteNt system (c-c

system) of random variables:

R1
1 R1

2 · R1
4 c1

R2
1 · R2

3 · c2

R3
1 R3

2 R3
3 R3

4 c3

q1 q2 q3 q4 Rex

.

Each row here is a bunch of jointly distributed random variables, each column
is a connection (“between bunches”). Note that not every conteNt should be
measured in a given conteXt.

The system Rex can be conveniently used to illustrate the logic of contextu-
ality analysis. We first consider the connections separately, and for each of them
find all couplings that satisfy a certain property C. Let’s call them C-couplings.
Then we determine if these C-couplings are compatible with a coupling of the
bunches of the c-c system (equivalently put, with a coupling of the entire c-c
system).
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The compatibility in question means the following. A coupling of (the bunches
of) the c-c system is a set of jointly distributed random variables

S1
1 S1

2 S1
4 c1

S2
1 · S2

3 · c2

S3
1 S3

2 S3
3 S3

4 c3

q1 q2 q3 q4 Sex

,

such that
(
S1
1 , S1

2 , S1
4

) ∼ (
R1

1, R
1
2, R

1
4

)
,

(
S2
1 , S2

3

) ∼ (
R2

1, R
2
3

)
,

(
S3
1 , S3

2 , S3
3 , S3

4

) ∼ (
R3

1, R
3
2, R

3
3, R

3
4

)
.

Since the elements of Sex are jointly distributed, the marginal distributions
of the columns corresponding to the connections of Rex are well-defined:

(
S1
1 , S2

1 , , S3
1

)
is a coupling of connection R1

1, R
2
1, R

3
1,

(
S1
2 , S3

2

)
is a coupling of connection R1

2, R
3
2,

(
S2
3 , S3

3

)
is a coupling of connection R2

3, R
3
3,

(
S1
4 , S3

4

)
is a coupling of connection R1

4, R
3
4.

In CbD we pose the following question: is there a coupling Sex such that the
subcouplings corresponding to the connections are C-couplings? If the answer
is affirmative, then we say that the bunches of Rex are compatible with at
least some of the combinations of the C-couplings for its connections — and
the c-c system is considered partially C-noncontextual. Otherwise, if no such
a coupling Sex exists, we say that the bunches of Rex are incompatible with
any of the C-couplings for its connections — and the c-c system is considered
completely C-contextual. The intuition is that in a completely C-contextual c-c
system the conteXts “interfere” with one’s ability to couple the measurements of
each conteNt in a specified (by C) way — while the connections can be coupled
in this way if they are considered separately, ignoring the conteXts.

The adjectives “partially” and “completely” do not belong to the original
theory. They are added here because one can also consider a stronger (more
restrictive) notion of noncontextual c-c systems and, correspondingly, a weaker
(less restrictive) notion of contextual c-c systems. We say that a c-c system is
completely C-noncontextual if the bunches of Rex are compatible with any com-
binations of the C-couplings for its connections; and it is partially C-contextual
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if the bunches of Rex are incompatible with at least some of these combinations.
The intuition is that in a completely C-noncontextual c-c system the conteXts
“do not interfere” in any way with C-couplings of the measurements of any given
conteNt (as if the connections were taken separately, ignoring conteXts).

In CbD 1.0 the C-couplings are maximal couplings, as defined in the opening
paragraph of the paper. In CbD 2.0 C-couplings are multimaximal couplings, as
defined below. We will see that if all random variables in a system are binary and
C is multimaximality, then every connection has a unique C-coupling (Theorem 1-
Corollary 1). In this case the notions of partial and complete (non)contextuality
coincide, allowing us to drop these adjectives when speaking of (non)contextual
c-c systems.

Remark 2. It is important to accept that noncontextuality of a c-c system (even
if complete) does not mean that the conteXts are irrelevant and can be ignored.
On the contrary, they are relevant “by defaults because, e.g., R1

2 and R3
2 in the

second connection of Rex are distinct and stochastically unrelated random vari-
ables. Moreover, the distributions of R1

2 and R3
2 may very well be different (i.e., the

c-c system may be inconsistently connected), and this does not necessarily mean
that the system is contextual (even if only partially) in the sense of our definitions.
The measurements of the conteNt q2 in conteXt c3 can be “directly” influenced
by the jointly-made measurements of q3 (in which case we can speak of “signal-
ing” or “disturbance”), while in context c1 this influence is absent [1,22]. It is also
possible that the experimental set-up in context c3 is different from that in con-
text c1, in which case we can speak of conteXt-dependent biases [28,29]. All of
this may account for the different distributions of R1

2 and R3
2, and none of this by

itself makes the system contextual. See Refs. [11,12,17] for argumentation against
confusing signaling and contextual biases with contextuality. (Of course, if one so
wishes, they can be called forms of contextuality, but in a different sense from how
contextulaity is understood in quantum physics and in CbD.)

3 Multimaximal Couplings for Binary Variables

Definition 1. LetR1
q , . . . , R

k
q (k > 1) be a connection of a system. A coupling(

T 1
q , . . . , T k

q

)
of R1

q , . . . , R
k
q is a multimaximal coupling if, for any m > 1 and any

subset
(
T i1
q , . . . , T im

q

)
of

(
T 1
q , . . . , T k

q

)
, the value of

Pr
[
T i1
q = . . . = T im

q

]

is largest possible among all couplings of Ri1
q , . . . , Rim

q .

The multimaximality plays the role of the constraint C in the definition of
C-couplings given in the previous section. One finds multimaximal couplings for
each of the connections and then investigates their compatibility with the c-c
system’s bunches.

It is known that a maximal coupling exists for any connection [33]. This is not
true for multimaximal couplings in general: such a coupling need not exist if the
number of possible values for the random variables in a connection exceeds 2.
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Example 1. Consider a connection consisting of random variables R1
q , R

2
q , R

3
q

each having values 1, 2, 3 with the following probabilities

1 2 3

R1
q 0 1/2 1/2

R2
q

1/2 0 1/2

R3
q

1/2 1/2 0

.

If a multimaximal coupling
(
T 1
q , T 2

q , T 3
q

)
exists, we should have (see Ref. [33],

or Theorem 3.3 in Ref. [12])

Pr[T 1
q = T 2

q = 1] = 0 Pr[T 1
q = T 2

q = 2] = 0 Pr[T 1
q = T 2

q = 3] = 0.5

Pr[T 2
q = T 3

q = 1] = 0.5 Pr[T 2
q = T 3

q = 2] = 0 Pr[T 2
q = T 3

q = 3] = 0

Pr[T 1
q = T 3

q = 1] = 0 Pr[T 1
q = T 3

q = 2] = 0.5 Pr[T 1
q = T 3

q = 3] = 0

from which we have in particular

Pr[T 1
q = T 2

q = 3] = Pr[T 1
q = T 3

q = 2] = Pr[T 2
q = T 3

q = 1] = 0.5.

But these three events are pairwise mutually exclusive, so the sum of their prob-
abilities cannot exceed 1. �

It can also be shown that, in the case of random variables with more than
two possible values, a multimaximal coupling, if it exists, is not generally unique.

Example 2. Consider a connection consisting of random variables R1
q , R

2
q , R

3
q

each having one of six values (denoted 1, 1′, 2, 2′, 3, 3′) with the following prob-
abilities

1 1′ 2 2′ 3 3′

R1
q 0 0 0 1/2 0 1/2

R2
q 0 1/2 0 0 1/2 0

R3
q

1/2 0 1/2 0 0 0

.

Then the distinct couplings whose distributions are shown below,
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(
Ṫ 1
q , Ṫ 2

q , Ṫ 3
q

)
= (2′, 1′, 1) (3′, 3, 2) otherwise

prob. mass 1/2 1/2 0

and

(
T̈ 1
q , T̈ 2

q , T̈ 3
q

)
= (2′, 3, 2) (3′, 1′, 1) otherwise

prob. mass 1/2 1/2 0
,

are both multumaximal couplings. �
However, the situation is different if the random variables in a connection

are all binary: multimaximal couplings in this case always exist and are unique.
In the theorem to follow we denote the values of all variables Ri

q by 1, 2, and we
will write values of

(
T 1
q , . . . , T k

q

)
as strings of 1’s and 2’s, without commas.

Theorem 1. Let R1
q , . . . , R

k
q be a connection with binary random variables

arranged so that the values of pi = Pr
[
Ri

q = 1
]

are sorted p1 ≤ . . . ≤ pk. Then(
T 1
q , . . . , T k

q

)
is a multimaximal coupling of R1

q , . . . , R
k
q if and only if all values

of
(
T 1
q , . . . , T k

q

)
are assigned zero probability mass, except for
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

value of
(
T 1
q , . . . , T k

q

) | probability mass
11 . . . 1 | p1
21 . . . 1 | p2 − p1
22 . . . 1 | p3 − p2

... | ...
l

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−l

| pl+1 − pl

... | ...
22 . . . 2 | 1 − pk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (†)

Proof. Note that the distribution of
(
T 1
q , . . . , T k

q

)
in the theorem’s statement is

well-defined, and that
(
T 1
q , . . . , T k

q

)
is indeed a coupling of R1

q , . . . , R
k
q : for any

1 ≤ l ≤ k,

Pr
[
T l
q = 1

]
=

l−1∑

m=0

Pr

⎡

⎣
m

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−m

⎤

⎦ =
l−1∑

m=0

(pm+1 − pm) = pl = Pr
[
Rl

q = 1
]
.

Sufficiency. The “if” part is checked directly: for any 1 ≤ i1 < . . . < im ≤ k,

Pr
[
T i1
q = . . . = T im = 1

]
=

∑i1−1
m=0 Pr

⎡

⎣
m

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−m

⎤

⎦

=
∑i1−1

m=0 (pm+1 − pm) = pi1 = Pr
[
T i1
q = 1

]
,
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which is the maximal possible value for the leftmost probability. Analogously,

Pr
[
T i1
q = . . . = T im = 2

]
=

∑k
m=im

Pr

⎡

⎣
m

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−m

⎤

⎦

=
∑k

m=im
(pm+1 − pm) = 1 − pim = Pr

[
T im
q = 2

]
,

which is also the maximal possible probability. This establishes that(
T i1
q , . . . , T im

)
is a maximal coupling for

(
Ri1

q , . . . , Rim
)
.

Necessity. The “only if” part of the statement is proved by (i) observing that
Pr [22 . . . 2] = 1 − pk, and (ii) proving that if l is the ordinal position of the first
1 in the value of

(
T 1
q , . . . , T k

q

)
, then

Pr

⎡

⎣
l−1

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−l+1

⎤

⎦ = pl − pl−1,

and for all other strings with the first 1 in the lth position the probabilities are
zero. We prove (ii) by induction on l. For l = 1, we have

p1 = Pr [11 . . . 1] .

Since

p1 = Pr
[
T 1
q = 1

]
= Pr [11 . . . 1] +

∑
Pr

⎡

⎣1 . . .︸︷︷︸
not all 1’s

⎤

⎦ ,

all the summands under the summation operator must be zero. Let the statement
be proved up to and including l < k. We have

pl+1 = Pr
[
T l+1
q = . . . = T k

q = 1
]

= Pr

⎡
⎣

l︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−l

⎤
⎦+
∑

Pr

⎡
⎣not all 2’s︷︸︸︷. . . 1 . . . 1︸ ︷︷ ︸

k−l

⎤
⎦ .

By the induction hypothesis, all summands under the summation operator are
zero, except for

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

value of
(
T 1
q , . . . , T k

q

) | probability mass
11 . . . 1 | p1
21 . . . 1 | p2 − p1
22 . . . 1 | p3 − p2

... | ...
l−1

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−l+1

| pl − pl−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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These values sum to pl. Hence

Pr

⎡

⎣
l

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−l

⎤

⎦ = pl+1 − pl.

We also have

pl+1 = Pr
[
T l+1
q = 1

]
= Pr

⎡

⎣
l

︷ ︸︸ ︷
2 . . . 21 . . . 1︸ ︷︷ ︸

k−l

⎤

⎦ +
∑

Pr

⎡

⎣
not all 2’s

︷︸︸︷. . . 1 . . . 1︸ ︷︷ ︸
k−l

⎤

⎦

+
∑

Pr

⎡

⎣
l+1
︷︸︸︷
. . . 1 . . .︸︷︷︸

not all 1’s

⎤

⎦

= (pl+1 − pl) + pl +
∑

Pr

⎡

⎣
l+1
︷︸︸︷
. . . 1 . . .︸︷︷︸

not all 1’s

⎤

⎦

whence the summands under the last summation operator must all be zero. �

Corollary 1. A multimaximal coupling
(
T 1
q , . . . , T k

q

)
exists and is unique for

any connection R1
q , . . . , R

k
q with binary random variables.

The significance of this result is that insofar as we confine our analysis to
c-c systems of binary random variables, every bunch (a row in a c-c matrix)
has a known distribution and every connection (a column in the c-c matrix)
has a uniquely imposed on it distribution. The only question is whether the
distributions along the rows and along the columns of a c-c matrix are mutually
compatible, i.e., can be viewed as marginals of an overall coupling of the entire
c-c system.

We can now formulate the CbD 2.0 definition of (non)contextuality in systems
with binary random variables.

Definition 2. A coupling of a c-c system is called multimaximally connected if
every subcoupling of this coupling corresponding to a connection of the system
is a multimaximal coupling of this connection.

Definition 3. A c-c system of binary random variables is noncontextual if it
has a multimaximally connected coupling. Otherwise it is contextual.

Remark 3. As explained in the next section, any (non)contextual system of
binary random variables is completely (non)contextual. Because of this it is
unnecessary to use the qualification “completely” in the definition above. Note
that this definition applies only to systems of binary random variables. The
extension of this definition to arbitrary random variables is not unique, and we
leave this topic outside the scope of this paper (but will discuss it briefly in
Sect. 6).
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4 Properties of Contextuality

Contextuality analysis of the systems of binary random variables is simplified
by the following theorem, proved in Ref. [13].

Theorem 2. Let R1
q , . . . , R

k
q be a connection with binary random variables

arranged so that the values of pi = Pr
[
Ri

q = 1
]

are sorted p1 ≤ . . . ≤ pk. Then(
T 1
q , . . . , T k

q

)
is a multimaximal coupling of R1

q , . . . , R
k
q if and only if

(
T i
q , T

i+1
q

)

is a maximal coupling of
{
Ri

q, R
i+1
q

}
for i = 1, . . . , k − 1.

In other words, in the case of binary random variables, multimaximality can
be defined in terms of certain pairs of random variables rather than all possible
subsets thereof, as it was done in Definition 1. As shown in Sect. 6 below, a
pairwise formulation can also be used in the general case, for arbitrary random
variables.

The main motivation for switching from the maximal couplings of CbD 1.0
to multimaximal couplings is to be able to prove the following theorem.

Theorem 3. In a noncontextual c-c system of binary random variables every
subsystem (obtained from the system by removing from it some of the random
variables) is noncontextual.

Proof. Let S be a multimaximally connected coupling of a system R. Let R′

be a system obtained by deleting a random variable Rc
q from R; and let S′

be the set of random variables obtained by deleting from S the corresponding
random variable Sc

q . Then S′ is a multimaximally connected coupling of R′.
Indeed, S′ is jointly distributed, its subcouplings corresponding to the system’s
bunches have the same distributions as these bunches (including the bunch for
conteXt c), and its subcouplings corresponding to the system’s connections are
multimaximal couplings (including the connection for context q, by the definition
of a multimaximal coupling). �

There are other desirable properties of the revised definition of contextuality.
First of all we should mention a property shared by CbD 1.0 and 2.0, one that

should hold for any reasonable definition of contextuality. If a c-c system is con-
sistently connected (i.e., Rc

q ∼ Rc′
q for all q, c, c′ such that q is measured in both

c and c′), then the system is (non)contextual if and only if it is (non)contextual
in the traditional sense (as interpreted in CbD): the multimaximal couplings for
connections consisting of identically distributed random variables are identity
couplings.

Another property worth mentioning is that, using the terminology intro-
duced at the end of Sect. 2, whether a c-c system of binary random variables
is contextual or noncontextual, it is always completely contextual (respectively,
completely noncontextual). This follows from the fact that multimaximal cou-
plings for connections consisting of binary random variables are unique, whence
if the combination of these unique couplings is (in)compatible with the system’s
bunches then it is all combinations of the couplings that are (in)compatible with
the system’s bunches.
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A third property we find important follows from the fact that if a connection
contains just two random variables, then their maximal coupling is their multi-
maximal coupling. As a result, the theory of contextuality for cyclic c-c systems
[16,17,20,25] remains unchanged. Recall that a cyclic c-c system of binary ran-
dom variables is one in which (1) any bunch consists of two random variables,
and (2) any connection consists of two random variables (and, without loss of
generality, the c-c system cannot be decomposed into two disjoint cyclic c-c sys-
tems). The conteXt-conteNt matrix below shows a cyclic system with 3 conteNts
and 3 conteXts (their numbers in a cyclic system are always the same, and called
the rank of the c-c system):

R1
1 R1

2 · c1

· R2
2 R2

3 c2

R3
1 · R3

3 c3

q1 q2 q3 CYC3

.

A prominent example of a noncyclic c-c system each of whose connec-
tions consist of two binary random variables is one derived from the Cabello-
Estebaranz-Alcaine proof [4] of the Kochen-Specker theorem in 4D space: the sys-
tem there consists of 36 random variables arranged into 9 bunches (shown below
by columns) containing 4 random variables each, and 18 connections (shown by
rows) containing two random variables each:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 c2 c3 c4 c5 c6 c7 c8 c9
q0001 � �
q0010 � �
q1100 � �
q1200 � �
q0100 � �
q1010 � �
q1020 � �
q1212 � �
q1221 � �
q0011 � �
q1111 � �
q0102 � �
q1001 � �
q1002 � �
q0120 � �
q1121 � �
q1112 � �
q2111 � �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Here, the star symbol in the cell defined by conteXt ci and conteNt qj desig-
nates a binary random variable Ri

j (the quadruple index at q represents a ray in
a 4D real Hilbert space, as labeled in Ref. [4]). The contextual analysis of such
systems generalizes the 4D version of the Kochen-Specker theorem in the same
way (although computationally more demanding) in which cyclic c-c systems of
rank 3,4,5 generalize the treatment of, respectively, the Suppes-Zanotti-Leggett-
Garg [19,32], EPR-Bohm-Bell [2,5,18], and Klyachko-Can-Binicoglu-Shumovsky
systems [20]. More general proofs of the Kochen-Specker theorem (e.g., by Peres
[30]) translate into systems with more than two binary random variables per
connection. The multimaximal-couplings-based analysis here will yield different
results from the maximal-couplings-based one.

5 A Measure of Contextuality

In accordance with the linear consistency theorem proved in Ref. [12], a c-c
system of random variables always has a quasi-coupling that agrees with a given
set of couplings imposed on its connections. Let us clarify this.

A quasi-random variable X is defined by assigning to its possible values real
numbers (not necessarily nonnegative) that sum to 1. These numbers are called
quasi-probability masses, or simply quasi-probabilities. For instance, a variable
X with values 1 and 2 to which we assign quasi-probabilities qPr [X = 1] = −5,
qPr [X = 2] = 6 is a quasi-random variable. A quasi-random variable is a proper
random variable if and only if the quasi-probabilities assigned to its values are
nonnegative. If a quasi-random variable X is a vector, (X1, . . . , Xn), it can be
referred to as a vector of jointly distributed quasi-random variables, even if each
Xi is a proper random variable. A vector of jointly distributed quasi-random
variables may very well have marginals (subvectors) that are proper random
vectors.

A quasi-coupling of a c-c system R is a vector S of jointly distributed quasi-
random variables in a one-to-one correspondence with the elements of R, such
that every subcoupling of S that corresponds to a bunch of the system has a
(proper) distribution that coincides with that of the bunch. Finally, the quasi-
coupling S agrees with a set of multimaximal couplings of the system’s connec-
tions if any subcoupling of S that corresponds to a connection has the same
(proper) distribution as this connection’s multimaximal coupling.

As an example, consider again our c-c system Rex:

R1
1 R1

2 · R1
4 c1

R2
1 · R2

3 · c2

R3
1 R3

2 R3
3 R3

4 c3

q1 q2 q3 q4 Rex

.
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Let all random variables be binary. Then, as we know, each connection has
a unique multimaximal coupling. Let us denote these couplings (going from the
leftmost column to the rightmost one in the matrix)

(
T 1
1 , T 2

1 , T 3
1

)
,
(
T 1
2 , T 3

2

)
,
(
T 2
3 , T 3

3

)
,
(
T 1
4 , T 3

4

)
.

The theorem mentioned in the opening line of this section says that one can
always find a quasi-coupling S for Rex,

S1
1 S1

2 S1
4 c1

S2
1 · S2

3 · c2

S3
1 S3

2 S3
3 S3

4 c3

q1 q2 q3 q4 Sex

,

such that
(
S1
1 , S2

1 , S3
1

) ∼ (
T 1
1 , T 2

1 , T 3
1

)
,

(
S1
2 , S3

2

) ∼ (
T 1
2 , T 3

2

)
,

(
S2
3 , S3

3

) ∼ (
T 2
3 , T 3

3

)
,

(
S1
4 , S3

4

) ∼ (
T 1
4 , T 3

4

)
.

Clearly, the system Rex is noncontextual if and only if among all such quasi-
couplings Sex there is at least one proper coupling.

It is convenient for our purposes to look at this in the following way (intro-
duced in Ref. [12] but derived from an idea proposed in Ref. [6]). For each
quasi-coupling Sex one can compute its total variation. The latter is defined as
the sum of the absolute values of all quasi-probabilities assigned to the values
of Sex (i.e., to all 29 combinations of values of S1

1 , S1
2 , . . . , S3

4). If Sex is a proper
coupling, this total variation equals 1, otherwise it is greater than 1. Therefore,
if the system Rex is contextual, then the total variation of its quasi-couplings is
always greater than 1. As shown in Ref. [12], one can always find a quasi-coupling
S∗
ex of Rex that has the smallest possible value of the total variation. This value

(perhaps, less 1, if one wants zero rather than 1 to be the smallest value) can be
taken to be a measure of contextuality.

Generalizing, we have the following statement.

Theorem 4. Any c-c system of binary random variables has a quasi-coupling
whose subcouplings corresponding to the system’s connections are their multi-
maximal couplings. Among all such quasi-couplings there is at least one with
the smallest possible value of total variation (which value is then considered a
measure of contextuality for the system).
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6 Conclusion: How to Generalize

For c-c systems with binary random variables multimaximal couplings are defi-
nitely a better way of generalizing identity couplings of the traditional contextu-
ality analysis than maximal couplings. A system that is deemed noncontextual in
terms of multimaximal couplings has noncontextual subsystems. The contextu-
ality of a contextual system and noncontextuality of a noncontextual system are
both complete if one uses multimaximal couplings to define them. And the the-
ory specializes to the previous version (CbD 1.0) when applied to cyclic systems
and to other systems whose connections consist of pairs of random variables.

The question to pose now is what one should do with non-binary random vari-
ables. The most straightforward way to construct a general theory is to simply
drop the qualification “binary” in Definition 3. There are, however, some com-
plications associated with this approach. Connections involving non-binary vari-
ables may not have multimaximal couplings (Sect. 3) One has to decide whether
such systems are contextual, and how to measure the degree of contextuality in
them if they are. Another complication, shared with the CbD 1.0, is that mul-
timaximal couplings are not unique if the random variables are not all binary,
because of which one no longer can ignore the difference between complete and
partial forms of (non)contextuality. Conceptual and computational adjustments
have to be made.

At the same time, some of the properties mentioned in Sect. 4 hold for arbi-
trary random variables, at least for categorical ones (those with finite number
of values). Theorem 3 obviously holds for arbitrary random variables if noncon-
textuality is taken to be partial. The definition of the (non)contextuality of a
system of random variables reduces to the traditional one when a system is con-
sistently connected. Theorem 2 also generalizes to arbitrary random variables,
although in a somewhat weaker form due to the loss of the linear ordering of the
distributions within a connection.

Theorem 5. Let R1
q , . . . , R

k
q be a connection. Then

(
T 1
q , . . . , T k

q

)
is a multi-

maximal coupling of R1
q , . . . , R

k
q if and only if

(
T c
q , T c′

q

)
is a maximal coupling

of
{

Rc
q, R

c′
q

}
for all c < c′ in {1, . . . , k}.

Proof. The “only if” part is true because pairs are subsets. To prove the “if”
part, assume the contrary: there is a subset of the connection (without loss of
generality, the connection itself, R1

q , . . . , R
k
q ) such that its coupling

(
T 1
q , . . . , T k

q

)

is not maximal while Pr
[
T c
q = T c′

q

]
is maximal possible for all c, c′. Then, by the

theorem on maximal couplings (see Ref. [33] or Ref. [12], Theorem 3.3) there is
a value v in the common set of values for all random variables T c

q such that

Pr
[
T 1
q = T 2

q = . . . = T k
q = v

]
< min

c∈{1,...,n}
(
Pr

[
T c
q = v

])
,

while, for any c, c′ ∈ {1, . . . , k},

Pr
[
T c
q = T c′

q = v
]

= min
(
Pr

[
T c
q = v

]
,Pr

[
T c′
q = v

])
.
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Then, by replacing each T c
q with

T̃ c
q =

{
1 if T c

q = v
2 if otherwise

,

and considering
(
T̃ 1
q , . . . , T̃ k

q

)
a coupling for some connection consisting of binary

random variables, we come to a contradiction with Theorem 2. �

There is a complication, however, that seems especially serious for sim-
ply dropping the qualification “binary” in Definition 3: this approach allows
a noncontextual system of random variables to become contextual under coarse-
graining. The latter means lumping together some of the values of the variables
constituting some of the connections. Thus, if Rc

q has values 1, 2, 3, 4, one could
lump together 1 and 2 and obtain a random variables with three values (and do
the same for all other random variables in the connection for conteNt q). It is
natural to expect that a system should preserve its noncontextuality under such
course-graining, but this is not the case generally.

Example 3. The system consisting of the single connection with six values
(1, 1′, 2, 2′, 3, 3′) in Example 2 is noncontextual, because it does have multimax-
imal couplings. However, if one lumps together i and i′ and denotes the lumped
value i (= 1, 2, 3), one obtains the system considered in Example 1, which is
contextual because it does not have a multimaximal coupling. �

A radical solution for all the problems mentioned is to deal with binary
random variables only. This can be achieved by replacing each non-binary ran-
dom variable Rc

q in a system with a bunch of jointly distributed dichotomiza-
tions thereof (that thereby becomes a sub-bunch of the bunch representing con-
teXt c). For instance, if Rc

q has values 1, 2, 3, 4, then it could be represented by
24−1−1 = 7 jointly distributed binary random variables. The joint distribution is
very simple: of the 27 values of this bunch all but 4 have zero probability masses.
Of course, every other random variable with conteNt q should be dichotomized
in the same way, replacing thereby the corresponding connection with 7 new
connections. Coarse-graining in this approach becomes a special case of extract-
ing from a system a subsystem. The price one pays for the conceptual simplicity
thus achieved is a great increase of the numbers of random variables in each
bunch (becoming infinite if the original system involves non-categorical ran-
dom variables), although the cardinality of the supports of the bunches remains
unchanged. It is to be seen if this dichotomization approach proves feasible.
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Probabilistic Nature of a Field with
Time as a Dynamical Variable
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Abstract. Taking time as a dynamical variable, we study a wave with
4-vector amplitude that has vibrations of matter in space and time.
By analyzing its Hamiltonian density equation, we find that the sys-
tem is quantized. It obeys the Klein-Gordon equation and thus also
the Schrödinger equation. Only a probability can be assigned for the
detection of a particle. This quantized field has physical structures that
resemble a zero-spin quantum field. The possibility to apply our formal-
ism outside quantum physics is briefly discussed.

Keywords: Quantum field · Klein Gordon equation · Schrödinger equa-
tion · Vibrations in space and time · Quantization · Probability density

1 Introduction

In the formulation of classical and quantum theories, time is principally treated
as a parameter in the equation of motion. The theories postulate a time para-
meter with respect to which the dynamics unfold. Time and space are treated
separately. On the other hand, space-time in general relativity is dynamical
interacting with matter and radiation. There is no globally defined time in the
theory. Space-time is weaved as unity. Thus, the treatment of time in quantum
theory and general relativity is rather different. The problems created by these
differences in approach are striking especially when one tries to reconcile the two
basic theories from a single framework [1,2].

Apart from the relativistic dynamics that require time to be treated on the
same footing as space, there are many cases where time is expected to be asso-
ciated with an operator in quantum theory, e.g. dwell time of a particle in a
region of space [3,4], tunneling time [5,6], or decay time of an unstable particle
[7]. In these cases, time seems to play a dynamical role. Although it has been
known since Pauli’s era about the difficulties of assigning time as a selfadjoint
operator [8,9], extensive efforts have been dedicated to resolve the dynamical
nature of time in quantum theory [10–19]. In addition to these efforts, various
classical and quantum models have also been proposed by T.D. Lee that suggest
time can be considered as a fundamentally discrete dynamical variable [20,21].

As there are many suggested reasons why time shall play a more dynamical
role, we ask a few fundamental questions: in classical theory, the amplitude, X,
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 33–45, 2017.
DOI: 10.1007/978-3-319-52289-0 3
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of a wave with vibrations in space can be defined as the maximum displacement
of matter in the wave from its equilibrium coordinate. Since matter can have
vibrations in the x coordinates, can it also has vibrations in the time coordinate
t? In fact, if space and time are to be treated on same footing, it is theoretically
possible to define an amplitude T for vibration in time [22]. Although it is feasible
to construct a wave that has vibrations in both space and time, can its properties
have something to do with our real physical world?

Here, we investigate the quantum properties of a plane wave with a 4-vector
amplitude (T,X) that has vibrations in space and time. We define the amplitude
in time of a plane wave as the maximum difference between the ‘internal time’ of
matter within the wave and the ‘external time’ measured by a stationary inertial
observer outside the wave; its meaning will be further elaborated in Sect. 2. By
studying the Hamiltonian density equation of this planes wave in Sect. 3, we find
that a harmonic oscillating system with vibration of matter in proper time can
be the generator for the energy of mass. In Sect. 4, we show that an oscillator
with vibration in proper time can only have one unique amplitude. This leads
to our subsequent reasoning that a real scalar field describing the vibrations
of matter in space and time shall be quantized; it has no classical description.
Furthermore, this quantized real scalar field obeys the Klein-Gordon equation
and has properties that resemble a zero-spin quantum field as will be shown in
Sect. 5. Probabilistic nature of the system in the non-relativistic limit will be
further demonstrated in Sect. 6. The possibility to apply our formalism outside
quantum physics is briefly discussed in the last section reserved for conclusions
and discussions.

2 Plane Wave with Vibrations in Space and Time

Consider the background coordinates (t,x) for the flat space-time as observed in
an inertial frame O. Time in this background is the ‘external time’ as measured
by clocks that are not coupled to the system under investigation [23–25]. We
will first study a plane wave with matter that has vibrations in space and time
relative to this background coordinate system.

The amplitude for vibration in space, X, of a classical plane wave is well
defined; it is the maximum displacement of matter in the wave from its equilib-
rium coordinate such as in the case for a flexible string under tension. Similarly,
let us define a plane wave’s amplitude for vibration in time, T , as the maxi-
mum difference between the time of matter inside the wave, tf , and the external
time, t. Therefore, if matter inside the plane wave carries a clock measuring its
internal time, an inertial observer outside will see the matter’s clock vibrates
with time, tf , as related to his own clock measuring time, t. In other words, we
have assumed the matter’s internal clock is running at a varying rate relative
to the inertial observer’s clock. The ‘internal time’ tf is an intrinsic property of
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matter1. The amplitude (T,X) is a 4-vector such that T 2 = T 2
0 + |X|2, where

T0 is an amplitude with vibration in proper time.
The vibrations in space and time can be written as

tf = t + T sin(k · x − ωt) = t + Re(ζ+t ), (1)

xf = x + X sin(k · x − ωt) = x + Re(ζ+
x ), (2)

where
ζ+t = −iTei(k·x−ωt), (3)

ζ+
x = −iXei(k·x−ωt), (4)

and
ω2 = ω2

0 + |k|2. (5)

Thus, time of matter inside the plane wave has this temporal vibration when
observed with respect to the external time. This internal time, tf , is a function
of the external time, t, and a dynamical variable for the system. The external
time is used as reference for measuring the temporal vibrations inside the wave..

For a plane wave with proper time vibrations only, matter has no vibration
in space. In this case, ω = ω0, |k| = 0, T = T0, and |X| = 0 with

ζ+0t = −iT0e
−iω0t, (6)

and
tf = t − T0 sin(ω0t), (7)

xf = x. (8)

The internal time passes at the rate 1−ω0T0 cos(ω0t) with respect to the external
time and has an average value of 1. Matter in this plane wave is stationary in
space and will still appear to travel along a time-like geodesic when averaged
over many cycles. The nature of this internal time will be further elaborated in
Sect. 4.

We can further define a plane wave,

ζ+ =
T0

ω0
ei(k·x−ωt), (9)

such that ζ+t and ζ+
x in Eqs. (3) and (4) can be obtained from ζ+ as:

ζ+t =
∂ζ+

∂t
, (10)

ζ+
x = −∇ζ+. (11)

Therefore, the vibrations of matter in space and time for a plane wave can be
described by ζ+.
1 Unlike the ‘intrinsic time’ [23,24] suggested as a dynamical variable of the studied

system (e.g. position of a clock’s dial or position of a classical free particle [26]) that
can function to measure time, the ‘internal time’ defined here is an intrinsic property
of matter that has vibration in time.
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3 Hamiltonian Densities

Let us investigate the properties of a system in a cube with volume V that
can have multiple particles with mass m vibrating in space and time. We will
impose periodic boundary conditions at the box walls. Instead of carrying out
our analysis in terms of the plane wave ζ+ and its complex conjugate ζ−, we
make the following ansätz

ϕ+ = ω0

√
m

2V
ζ+ = T0

√
m

2V
ei(k·x−ωt), (12)

ϕ− = ω0

√
m

2V
ζ− = T ∗

0

√
m

2V
e−i(k·x−ωt), (13)

where T0 here is taken as a complex time amplitude and periodic boundary
conditions are imposed on the wave vector k.

The plane wave ϕ± satisfies the equation of motion:

∂u∂uϕ± + ω2
0ϕ

± = 0. (14)

Equation (14) is similar to the Klein-Gordon equation, except that we have
yet to understand how ϕ± can be related to a quantized field. (Note that the
formulations described so far can also apply to a classical field.) The Hamiltonian
density corresponding to the equation of motion is,

H± = (∂0ϕ
±)∗(∂0ϕ

±) + (∇ϕ±)∗ · (∇ϕ±) + ω2
0ϕ

±∗ϕ±. (15)

In our analysis, we will work in natural units whereby c = � = 1.
Let us look at each term on the right hand side (RHS) of this Hamiltonian

density equation. From Eqs. (12) and (13), the first term of Eq.(15)

H±
1 = (∂0ϕ

±)∗(∂0ϕ
±) =

mω2
0

2V
T ∗T, (16)

is a Hamiltonian density for vibrations of matter in time. Indeed, mω2
0/2 is an

usual term that appears in the Hamiltonian of a harmonic oscillator with mass
m except the vibration is in time and not in space. (Note that we have not taken
into account the order of multiplication between complex conjugates here but
shall be considered when the field is quantized.) Similarly, the second term

H±
2 = (∇ϕ±)∗ · (∇ϕ±) =

mω2
0

2V
X∗ · X, (17)

has the familiar form of a Hamiltonian density with harmonic oscillation in space.
The plane wave ϕ± is a function of T0 as shown in Eqs. (12) and (13). The

third term on RHS of Eq.(15) is a Hamiltonian density related to vibrations of
matter in proper time,

H±
3 = ω2

0ϕ
±∗ϕ± =

mω2
0

2V
T ∗
0 T0. (18)
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After combining the three terms from Eqs. (16), (17) and (18), the total Hamil-
tonian density is

H± =
mω2

0

V
T ∗T. (19)

The energy corresponding to the vibration of matter in proper time is of
special importance in our study. To better understand its properties, we consider
the simple plane waves

ϕ+
0 = T0

√
m

2V
e−iω0t, (20)

ϕ−
0 = T ∗

0

√
m

2V
eiω0t. (21)

Matter inside this plane wave ϕ±
0 has vibrations in proper time only, i.e. |k| = 0

and xf = x. Substitute Eqs. (20) and (21) into Eq.(15), the Hamiltonian
density is

H±
0 =

mω2
0T

∗
0 T0

V
. (22)

The energy contained inside volume V is E = mω2
0T

∗
0 T0 of a simple harmonic

oscillating system in proper time. As discussed in the previous section, the vibra-
tion in proper time is an intrinsic property of matter. Energy E shall therefore
correspond to some energy related to matter. However, we have only consider
matter with mass m in this simple harmonic oscillating system without involv-
ing any of the various charges or force fields. No other energy is present in this
system except the energy of mass m. Here, we will consider this energy as the
internal energy of mass.

4 Proper Time Oscillator

The energy E for the vibration of matter in proper time is necessary on shell if
it is the internal energy of mass. For a single particle system, we have

E = mω2
0T

∗
0 T0 = m, (23)

or simply
ω2
0T

∗
0 T0 = 1. (24)

In addition to the classical concepts of mass [27], we suggest here a possibility
that a point mass m can have oscillation in proper time with amplitude |T̃0| =
1/ω0. Only an oscillator with such amplitude is observable in this single particle
system.

Let us first consider the point mass in the plane wave ϕ+
0 . A point mass m

at rest in space with angular frequency ω0 and amplitude T̃0 = 1/ω0 will have
vibration in proper time relative to the external time. The internal time t̃+f of
the point mass’s internal clock observed in frame O is:

t̃+f (t) = t − sin(ω0t)
ω0

. (25)
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We will assume the point mass observed is located at the origin of coordinate
x0,

x̃+
f (t) = x0. (26)

The internal time of the oscillator is running at a different rate relative to an
observer at spatial infinity. However, the temporal oscillator has no movement
in the spatial direction. Unlike time dilation in relativity, the vibration of matter
in time from Eq. (25) is not the result of relative movement or gravity. It is an
additional degree of freedom introduced to restore the symmetry between space
and time in a matter field.

From Eq. (25), the internal time rate relative to the external time for this
oscillator is

∂t̃+f
∂t

= 1 − cos(ω0t). (27)

The average of this time rate is 1. Its value is bounded between 0 and 2 which
is positive. Thus, the internal time of a point mass moves only in the forward
direction. It cannot move back to its past. If we assume this point mass is
a typical particle that has high vibration frequency, e.g. ω0 = 7.6 × 1020 s−1

and |T̃0| = 1.32 × 10−21 s for an electron, the particle will appear to travel
along a smooth time-like geodesic if the inertial observer’s clock is not sensitive
enough to detect the high frequency and small amplitude of the vibration. In
fact, as the angular frequency increases and approaches infinity (ω0 → ∞), the
amplitude of oscillation becomes negligible (T0 → 0). Such particle will travel
along a near time-like geodesic with no vibration observed. On the other hand,
if the oscillation of a particle is slow enough, we can observe its properties under
different time rate within a cycle. For example, an unstable particle will have
different decay rate observed at different phase of the oscillation.

The internal clock of the particle with angular frequency ω0 → ∞ is a clock
suitable for the observer at spatial infinity. Its near time-like geodesic nature
is sensitive enough to detect the varying internal time rate of another particle
with lower frequency. However, this clock’s mass is infinite (m = ω0 → ∞). As
pointed out by Salecker and Wigner [28], to obtain infinite accuracy in measuring
a clock’s time means infinite uncertainty in the clock’s mass, and thus the clock’s
mass needs to reach infinity. Some of the studies regarding quantum clocks in the
context of time-energy uncertainty relation can be found in references [25,29–33].

Equations (25) and (26) can be Lorentz transformed to another frame of
reference O′ with background coordinates (t′,x′) where the the particle will
have vibrations in time and space with amplitudes T̃ = ω/ω2

0 and X̃ = k/ω2
0

respectively. (We have assumed frame O is traveling with velocity v = k/ω
relative to frame O′ and the particle begins at origin of the x′ coordinates at
t′ = 0). The vibrations in time and space are

t̃
′+
f (t′) = t′ − ω

ω2
0

sin(
ω2
0t

′

ω
), (28)

x̃
′+
f (t′) = vt′ − k

ω2
0

sin(
ω2
0t

′

ω
). (29)
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The internal time t̃
′+
f is measured with respect to the external time in frame O′

and is not the internal proper time of the particle’s internal clock. In frame O′,
the particle is traveling with a velocity. The internal proper time measured by the
particle’s clock is t̃+f =

√
(t̃

′+
f )2 − (x̃

′+
f )2 = t− sin(ω0t)/ω0 as shown in Eq. (25).

Equation (29) is the trajectory of the particle observed in frame O′. The
particle travels with a velocity

ṽ+
f =

∂x̃
′+
f

∂t′
= v[1 − cos(

ω2
0t

′

ω
)]. (30)

Apart from this variation in velocity, the internal time rate also varies. From
Eq. (28), the internal time rate relative to the clock of the inertial observer is

∂t̃
′+
f

∂t′
= 1 − cos(

ω2
0t

′

ω
). (31)

We can calculate the amplitudes of vibration for a particle. For example, we
can estimate the amplitude of spatial vibration for an electron:

|v| = 0.99999 ⇒ |X̃| = 8.6 × 10−9 cm, (32)

|v| = 0.001 ⇒ |X̃| = 3.9 × 10−14 cm. (33)

In the second, non-relativistic example, the amplitude of the spatial vibration is
approximately equal to the diameter of a nucleus which is tremendously larger
than the Planck length. However, this vibration also has a very short time scale
(≈ 10−21s for electron). A particle will therefore appear to travel along a smooth
trajectory if the measurements are not sensitive enough to detect the small
vibrations. On the other hand, the amplitude of the spatial oscillation becomes
larger when its velocity increases as shown in Eqs. (32) and (33). If the oscillation
is slow and the particle is traveling fast enough, we may observe the deviations
of its position from the smooth trajectory at different phase of the oscillation.

Comparing Eqs. (20) and (21), the plane wave ϕ+
0 with a particle travel-

ing forward in time is mathematically equivalent to the plane wave ϕ−
0 with a

particle traveling backward in time – time reversal symmetry, a property of an
antiparticle [34]. The internal clock of this antiparticle shall read

t̃−f (t) = −t +
sin(ω0t)

ω0
. (34)

Thus, the internal time rate relative to the external time for the oscillator with
amplitude T̃ ∗

0 = 1/ω0 is
∂t̃−f
∂t

= −1 + cos(ω0t). (35)

The average of this time rate is −1. Its value is bounded between 0 and −2
which is negative. Thus, the internal time of this antiparticle moves only in the
backward direction.
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5 Field Quantization

The amplitude of a classical harmonic oscillator with a point mass vibrating
in space can take on different values. This is unlike the case for a simple har-
monic oscillator with vibration in proper time. The condition that mass is on
shell imposes a constraint allowing only an oscillator with proper time ampli-
tude |T̃0| = 1/ω0 to be observed. The classical harmonic oscillator has no such
constraint.

As shown in Eq. (22), the amplitude T0 of the plane wave ϕ±
0 determines the

amount of energy in a volume V . On the other hand, amplitude T0 is constrained
by condition (24) which limits the energy observable in the system to the energy
of one particle. We can extend this concept to a many particle system that has
n integer number of oscillators. A plane wave with proper time vibrations has
energy for n = H0V/m oscillators to be observed in a volume V . Condition (24)
can be generalized as

ω2
0T

∗
0 T0 = n, (36)

which is a Lorentz invariant. The number of particles observed in the system
shall remain the same under Lorentz transformations. Taking the point mass as
a particle (antiparticle) with de Broglie’s mass/energy (m = ω0) in Eq.(22),

H±
0 =

nω0

V
. (37)

The energy in this plane wave ϕ±
0 with vibrations in proper time is quantized

with n = 0, 1, 2, ... Only the energy corresponding to integer number of oscillators
can be observed in this system.

Under a Lorentz transformation, ϕ±
0 → ϕ±. Instead, let us consider a plane

wave ϕ±
n which is normalized in volume V when n = 1,

ϕ±
n = γ−1/2ϕ±, (38)

where γ = (1 − |v|2)−1/2. Replace ϕ± with ϕ±
n in Eq. (15), the Hamiltonian

density for plane wave ϕ±
n is

H±
n = γH±

0 =
nω

V
. (39)

The energy in this plane wave ϕ±
n is quantized with n particles (antiparticles)

of angular frequency ω in a volume V .
We can obtain a real scalar field by superposition of plane waves,

ϕ(x) =
∑

k

ϕ+
nk(x) + ϕ−

nk(x)

=
∑

k

(2V ω)−1/2(ω0T0ke−ikx + ω0T
∗
0keikx),

which satisfies the Klein-Gordon equation. This field is an infinite array of quan-
tized oscillators. Its Hamiltonian density equation is,

H = 1/2[(∂0ϕ)2 + (∇ϕ)2 + ω2
0ϕ

2], (40)
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corresponding to the infinite sum of normal mode oscillator excitation, each one
of which is quantized. The energy observable in this real scalar field is necessarily
quantized. Therefore, ϕ has no classical analogue. It is strictly a quantized field.

In quantum field theory, the transition to a quantum field can be done via
canonical quantization. Similarly, we can quantize our system following the same
procedures. However, we will not go over this in detail since most of the formu-
lations can be found in quantum theory. Instead, only the key points will be
highlighted here. For example, ϕ(x) and its field conjugate π(x) = ϕ̇(x) shall be
treated as operators on quantization, satisfying the equal-time canonical commu-
tation relations. Other physical observables shall also be promoted to operators.
Condition (36) can be extended to the quantized field with

Nk = ω2
0T

†
0kT0k, (41)

as the particle number operator after taking into account the ordering between
T0k and T †

0k. We can also define the annihilation operator ak and creation oper-
ator a†

k as,
ak = ω0T0k, (42)

and
a†
k = ω0T

†
0k, (43)

such that Nk = a†
kak. Substitute ak and a†

k into ϕ, and taking the normal
ordering of operators, Eq. (40) becomes

H =
1
V

∑

k

ωka†
kak, (44)

which reminds one of the Hamiltonian density for a bosonic field. The real scalar
field with vibrations in space and time has physical structures that resemble a
zero-spin bosonic field.

6 Probability Density

To study the case in the non-relativistic limit, we will define a function:

ψk =
ω0T0k√

V
ei(k·x−ωct+χ) ≈

[
ω2
0√
V

ei(ω0t+χ)

]
ζ+k , (45)

where
ωc =

k · k

2m
≈ ω − ω0, (46)

and eiχ is an arbitrary phase factor. Periodic boundary conditions for a cube with
volume V are imposed on the wave vector k. Here, T0k is considered as a function
and not an operator. As we can see, ψk is a solution for the Schrödinger equation
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of a free particle, −i∂ψk/∂t = (2m)−1∇2ψk. The superposition principle holds
such that

ψ = eiχ
∑

k

ω0T0k√
V

ei(k·x−ωct), (47)

is also a solution for the linear and homogeneous Schrödinger equation.
From Eq. (36), the product of ψk and its complex conjugate ψ∗

k,

ψ∗
kψk =

ω2
0T

∗
0kT0k

V
=

nk

V
, (48)

is a particle number density. In a quantum wave, the location where a particle
can be observed is indeterminate. Only a probability can be assigned. For a
plane wave, the probability density has an uniform distribution which is also
the particle number density from Eq. (48). The amplitude αk = ω0T0k/

√
V in

Eq. (45) is a probability amplitude. Function ψ has the basic properties of a
wave function in quantum mechanics.

It is commonly believed that a matter wave can only have a probabilistic
interpretation because the overall phase of a wave function is unobservable. As
we have shown, the introduction of the arbitrary phase factor eiχ in Eqs. (45) and
(47) does not change the the probability density ψ∗ψ or the result that ψ satisfies
the Schrödinger equation. In fact, the theory developed with wave functions ψ
shall be invariant under global phase transformation χ but the relative phase
factors are physical. Thus, the overall phase of ψ is unobservable. Function ψ is
not required to have the same phase as ζ that describes the physical vibrations
in space and time.

7 Conclusions and Discussions

In this paper, we treat time as a dynamical variable. Instead of considering
proper time as an operator, for example in references [30,33], we study the
possibility that matter can have vibrations in both space and time. We show
that if the energy of a proper time harmonic oscillator is taken as the energy of
mass, this energy is necessary on shell meaning only one unique amplitude for
the harmonic oscillator can be observed, |T̃0| = 1/ω0. This is unlike a classical
harmonic oscillator with vibration in space that can take on different values as
its amplitude. (There is no condition analogous to mass on shell that restrict
amplitude of vibration in space to an unique value.) The Hamiltonian of the
system is quantized. The real scalar field ϕ does not have a classical description
but rather shall be treated as a quantized field. In addition, this real scalar field
satisfies the Klein Gordon equation and Schrödinger equation. It has properties
that resemble those for a zero spin quantum field.

Our mathematical formalism for the field with vibrations in space and time
may have possible application outside quantum physics. Recent researches (see
references cited in [35]) have shown that the mathematical formalism of quantum
mechanics can be adapted to models in quantum cognition. This has proved to



Probabilistic Nature of a Field with Time as a Dynamical Variable 43

be successful in accounting for many human behavioral phenomena. The theory
uses a probabilistic formalism borrowed from quantum mechanics. However, the
underlying processes that govern it can be classical.

Brains are macroscopic objects where classical fields naturally exist. On the
other hand, an important part of cognition is the extraction of selected informa-
tion from the huge amount of information flowing into the brain. An observer
might choose to retain partial incomplete information not because it is impos-
sible to obtain complete information. Instead, it is profitable for an observer to
ignore a part of information to increase the speed of computations. It is, there-
fore, possible that an observer can develop the ability to operate with incomplete
information in a quantum like way.

As we shall recall, the main difference between the quantum and classical
ways of information processing is that the former can consistently ignore a part of
information. It is this information loss in the mathematical formalism of quantum
theory that can be applied to the partial selection of information in a cognitive
system. However, there is no easy way to adapt quantum formalism in cognition
to extend quantum probabilities beginning from a classical theory. As such, it
is important to understand how a classical field can be turned into a quantum
field description. Several classical models have been proposed for this application
[36–38]. Although the quantum mathematical formalism is adapted, the theory
developed is not the result that the brain is some type of quantum computer.

In our mathematical formalism of the field with vibrations in space and time,
we begin without specifying whether the matter field is quantized or classical.
In fact, if we examine the mathematics describing the temporal and spatial
vibrations in Sect. 2, the formalism can equally apply to a classical field. This
part of our formalism, therefore, can be adapted to describe the classical fields
in the brain. Here, we will assume the information carries initially in the brain
can be mathematically represented in terms of waves with vibrations in space
and time. At this initial stage without information loss, the field ϕ from Eq. (12)
can be hypothetically treated as a classical field.

Next, we will impose a constraint |T̃0| = 1/ω0 adapt from Eq. (24) leading to
quantization of the field. As shown in Sects. 5 and 6, ϕ is found to be quantized
after we consider the constraint that mass is on shell. Similarly, we can adapt
this mathematical formalism in a cognitive system signaling information loss.
A part of the information in the original classical field is ignored leading to a
quantum like description for the field ϕ after imposing the constraint. Although
it is not clear at this point how information in the brain can be mathematically
represented by the waves with vibrations in space and time, our mathematical
formalism can relate the transition of an original classical field to a quantum
one which is a necessary step in quantum cognition. In this regard, it may worth
explore further whether the formalism adapted from the field with vibrations in
space and time can benefit the study of a cognitive system.
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Abstract. Analogy between the two slit experiment in quantum
mechanics (QM) and the disjunction effect in psychology led to fruit-
ful applications of the mathematical formalism of quantum probabil-
ity to cognitive psychology. These quantum-like studies demonstrated
that quantum probability (QP) matches better with the experimental
statistical data than classical probability (CP). Similar conclusion can
be derived from comparing QP and CP models for a variety of other
cognitive-psychological effects, e.g., the order effect. However, one may
wonder whether QP covers completely cognitive-psychological phenom-
ena or cognition exhibits even more exotic probabilistic features and we
have to use probabilistic models with even higher degree of nonclassical-
ity than quantum probability. It is surprising that already a cognitive
analog of the triple slit experiment in QM can be used to check this
problem.

Keywords: Two and three slit experiments · Sorkin equality ·
Probabilistic structure of cognition

1 Introduction

Recently quantum probability (QP) started to be actively applied to a variety
of problems in cognition, psychology, economics, finances, molecular biology,
genetics and epigenetics, see, e.g., the monographs [1–4]. Researchers explore the
possibility to relax some Boolean constraints assigned by the classical probability
(CP) model (Kolmogorov, 1933). One of such constraints is given by the formula
of total probability (FTP). In quantum mechanics (QM) this formula is violated
[5] as can be demonstrated by statistical data collected in the famous two slit
experiment. Thus QP violates the FTP-constraint. Such features were explored
in modeling of probabilistic aspects of cognition and psychological behavior; in
particular, in modeling of the disjunction effect [6].
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However, QP also has its special laws and they can be considered as con-
straints on its applicability. The natural question arises:

Do all cognitive-psychological phenomena satisfy all constraints posed by QP?
This question was studied by a few authors [1,7–9]. For a moment, we can-

not say that the answer is known. It became clear that one has to be careful in
exploring the QM outside of physics. Simple cognitive effects cannot be mod-
eled by using the projection type measurements of the Lüders type; we have
to proceed by using theory of quantum instruments; in particular to represent
the observables by positive operator valued measures (POVMs) [7]. However, we
still do not know whether the use of quantum instruments can solve all problems
discussed, e.g., in [7]; see [10] for the last update.

It is interesting that nowadays the same problem started to attract a lot of
interest in QM; a few groups of experimental physicists work hard to test the
boundaries of applicability of QP. Surprisingly this can be done by exploring
the “one-step generalization of the two slit experiment”, namely, the triple slit
experiment. As was discovered by R. Sorkin [11], QP (based on Born’s rule for
calculation of probabilities from the complex amplitudes) leads to some equal-
ity which can be checked experimentally. Its violation would demonstrate that
probabilistic behavior of micro-systems is even more exotic than described by
QP. Sorkin’s equality has been under experimental study by one of world’s lead-
ing groups in quantum foundations [12,13]. However, technicalities related to
functioning of quantum detectors led to difficulties in successful testing Sorkin’s
equality; so this problem is still under experimental study.

We propose to use the same Sorkin’s equality as a QP constraint on prob-
abilistic data collected for cognitive/psychological phenomena. This note is of
merely conceptual nature and the experiment proposed here has to be considered
as just an illustration.1

In Sect. 2 of this note we present Sorkin’s equality as the probabilistic con-
straint in CP and QP; in Sect. 3 we present a possible experimental test.

2 Derivation of Sorkin’s Equality of the Third Order

2.1 Classical Probability

In classical measure-theoretic framework, for two disjoint events A1 and A2 and
an event B we have

p(B ∧ (A1 ∨ A2)) = p(B ∧ A1) + p(B ∧ A2), (1)
1 When the first version of this note was prepared [14]; the authors contacted E.

Pothos (City University, London) with the proposal to perform this experiment. He
informed us that his group has been already working on the triple slit experiment,
but problems of the organizational character postponed its completion. Now the
research group of E. Guerci (University of Cote d’ Azur; Nice) also works on prepa-
ration of this experiment; unfortunately, it also confronts some problems (to finance
completion of the experimental study). So, now we are in the state of exciting expec-
tation of the outputs of these experiments. In principle, we cannot exclude that they
would be opposite...
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where the symbols ∧ and ∨ are used for the set-theoretical representations of
the logical operations of conjunction and disjunction - as the intersection and
the union of sets representing events.

This is the basic feature of classical probability - its additivity. As was pointed
out by Feynman, quantum probability is not additive [15]. Formally, this is cor-
rect. However, one has to be careful in defining the probability of conjunction of
“quantum events”, because they can be incompatible. It seems that the only way
to define rigorously such probability is to use quantum conditional probability
which is well defined. Thus we want to explore a quantum analog of the classical
equality:

p(B ∧ A) = p(A)p(B|A). (2)

This equality is a consequence of Bayes’ formula

p(B|A) = p(B ∧ A)/p(A). (3)

The latter is the definition of conditional probability in the Kolmogorov model.
Thus in classical probability we start with well defined probability of conjunction
of events, the joint probability, and then define conditional probability. In quan-
tum probability we proceed another way around. We shall start with conditional
probability and the define joint probability. Taking into account the fundamental
role which is played by conditional probability in our further considerations, it is
useful to rewrite equality (1), additivity law, in terms of conditional probabilities:

p(B|A1 ∨ A2) =
1

p(A1 ∨ A2)
[p(A1)p(B|A1) + p(A2)p(B|A2)]. (4)

This is one of the basic elements of classical statistical inference, the formula of
total probability. In particular, if p(A1 ∨ A2) = 1, we get the standard formula
of total probability

p(B) = p(A1)p(B|A1) + p(A2)p(B|A2). (5)

Preparing to quantum considerations, let us introduce the “interference term”:

I12 = p(A1 ∨ A2)p(B|A1 ∨ A2) − p(A1)p(B|A1) − p(A2)p(B|A2)
= p(B ∧ (A1 ∨ A2)) − p(B ∧ A1) − p(B ∧ A2). (6)

In classical probability theory I12 = 0 (but in quantum theory I12 �= 0, see
Sect. 3, Eq. (16)).

Now consider three events Ai, i = 1, 2, 3. Let p(A1 ∨ A2 ∨ A3) = 1. Here the
additivity law gives us

p(B) = p(B ∧ (A1 ∨ A2 ∨ A2)) = p(B ∧ A1) + p(B ∧ A2) + p(B ∧ A3). (7)

And the formula of total probability has the form:

p(B) = p(A1)p(B|A1) + p(A2)p(B|A2) + p(A3)p(B|A3). (8)
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We introduce the corresponding “interference coefficient”:

I123 = p(B) − p(A1)p(B|A1) + p(A2)p(B|A2) + p(A3)p(B|A3)
= p(B) − p(B ∧ A1) − p(B ∧ A2) + p(B ∧ A3). (9)

In classical probability theory I123 = 0.
Since I12 = I13 = I23 = 0, we can write this term as

I123 = p(B) − p(A1)p(B|A1) − p(A2)p(B|A2) − p(A3)p(B|A3) (10)

−I12 − I13 − I23.

Thus

I123 =p(B) − p(A1)p(B|A1) − p(A2)p(B|A2) − p(A3)p(B|A3)
− p(A1 ∨ A2)p(B|A1 ∨ A2) + p(A1)p(B|A1) + p(A2)p(B|A2) + ... (11)

Finally, we obtain the triple-interference coefficient in the following form:

I123 =p(B) − p(A1 ∨ A2)p(B|A1 ∨ A2) − p(A1 ∨ A3)p(B|A1 ∨ A3)

− p(A2 ∨ A3)p(B|A2 ∨ A3) + p(A1)p(B|A1) + p(A2)p(B|A2) + p(A3)p(B|A3). (12)

By using the joint probability distribution and by shortening notation, pij =
p(B ∧ (Ai ∨ Aj), pi = p(B ∧ Ai), we write this coefficient as

I123 = p123 − p12 − p13 − p23 + p1 + p2 + p3. (13)

Of course, in classical probability the expression in the left-hand side also equals
to zero. Surprisingly the coefficient defined by the left-hand side of (13) also
equals to zero, in spite non-vanishing (in general) of Iij . And this was an inter-
esting discovery of R. Sorkin [11]. We shall prove this in Sect. 3 by proceeding in
the rigorous framework of quantum conditional probabilities, see equality (17).
(In principle, we can proceed with only conditional probabilities, i.e., without
joint probabilities at all. However, Sorkin formulated his equalities in terms of
joint probabilities and we wanted two have similar expressions.)

Now we can forget about quantum probabilities and just to check whether
some statistical data satisfies Sorkin’s equality

I123 = p123 − p12 − p13 − p23 + p1 + p2 + p3 = 0 (14)

or not. If Sorkin’s equality were violated, both classical and quantum models
should be rejected; in the opposite case, we would get another (nontrivial) con-
firmation of validity of the quantum model.

In coming experiments, instead of one event B, we shall consider a few disjoint
events Bj . We shall use this j as the upper index for wprobabilities, e.g., p

(j)
i .
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3 Quantum Probability

We restrict our consideration by standard quantum observables given by
Hermitian operators a and b. We consider the finite-dimensional case. Unfortu-
nately, we have to assume that their eigenvalues can be degenerate, because as
was found in [1] (see also [8,9] for detailed analysis), it is impossible to represent
some cognitive entities by operators with nondegenerate spectra. Such operators
have to generate double-stochastic matrices of transition probabilities. However,
the real data from cognitive psychology do not satisfy to this constraint. One
of the possible interpretations of violation of double-stochasticity is that the
dimension of the complete state space is higher than just the number of possible
results of observables, e.g., possible answers to questions. Therefore we have to
represent observables by operators with degenerate spectra. Another possibility
is to work not with Hermitian operators, but with generalized observables given
by positive operator valued measures (POVMs), see [7]. However, in this paper
we shall not explore the latter possibility.

For reader’s convenience, we recall that a matrix P = (pij) with nonnegative
elements is called doubly-stochastic, if it satisfies to the system of equations:

∑

i

pij = 1,
∑

j

pij = 1.

Let ai, i = 1, 2, 3, and bj , j = 1, 2, ...,m, be the eigenvalues of a and b. Denote
the corresponding projectors by P a

i and P b
j respectively. We shall also introduce

projector P a
ik, i �= k, on subspaces consisting of eigenvectors of a corresponding

to eigenvalues ai and ak. Thus P a
ik = P a

i + P a
k .

Let ρ be a quantum state. Then we have: p(a = ai) = TrP a
i ρP a

i , p(a =
ak ∨a = am) = TrP a

kmρP a
km. By definition of conditional probability in quantum

probability theory

p(b = bj |a = ai) =
TrP b

j P a
i ρP a

i

TrP a
i ρP a

i

.

We consider also “ordered joint probability distribution”2 pi ≡ p(a = ai)p(b =
bj |a = ai), the index j is fixed and we omit it.

For k �= m, we consider the two-slit interference:

p(b = bj |a = ak ∨ a = am) =
TrP b

j P a
kmρP a

km

TrP a
kmρP a

km

=
1

TrP a
kmρP a

km

(
TrP a

k ρP a
k

TrP b
j P a

k ρP a
k

TrP a
k ρP a

k

+ TrP a
mρP a

m

TrP b
j P a

mρP a
m

TrP a
mρP a

m

+ +Ikm

)
.

2 Incompatible observables represented by non-commutative Hermitian operators can-
not be measured jointly. Therefore the straightforward definition of the joint proba-
bility distribution is inapplicable. However, it is possible to explore the definition
generalizing representation of the classical joint probability distribution through
conditional probability. However, the order structure of observations has to be
taken into account, because in general p(a = ai)p(b = bj |a = ai) is not equal to
p(b = bj)p(a = ai|b = bj).
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where Ikm = TrP b
j P a

k ρP a
m + TrP b

j P a
mρP a

k . We consider also “ordered joint prob-
ability distribution” pkm ≡ p(a = ak ∨ a = am)p(b = bj |a = ak ∨ a = am).
Thus

pkm = pk + pm + Ikm. (15)

This is the quantum modification of the additivity law; in fact, this is the quan-
tum analog of FTP, since joint probabilities are defined via conditional proba-
bilities. R. Feynman emphasized [15] non-additivity of quantum probability; by
using the language of conditional quantum probabilities one of the authors of
this paper reformulated this violation as disturbance of FTP [1,16,17]. Thus in
quantum theory we have that in general

Ikm = pkm − pk − pm �= 0. (16)

Now we consider the triple-slit interference. We shall use the equality I =∑
i P

a
i . We have:

p123 ≡ p(b = bj) = p(b = bj |a = a1 ∨ a = a2 ∨ a = a3) = TrP b
j ρ

=
∑

i

TrP a
i ρP a

i

TrP b
j P a

i ρP a
i

TrP a
i ρP a

i

(TrP b
j Pa

1 ρPa
2 +TrP b

j Pa
2 ρPa

1 ) + (TrP b
j Pa

1 ρPa
3 +TrP b

j Pa
3 ρPa

1 ) + (TrP b
j Pa

2 ρPa
3 +TrP b

j Pa
3 ρPa

2 ).

= p1 + p2 + p3 + I12 + I13 + I23 =

= p1 + p2 + p3 + (p12 − p1 − p2) + (p13 − p1 − p3) + (p23 − p2 − p3)

Hence, as well as in classical probability theory, see Sect. 2,

I123 = p123 − p12 − p13 − p23 + p1 + p2 + p3 = 0. (17)

4 Experimental Illustration

We present a toy model of the cognitive analog of the triple-slit experiment.
There is a homogeneous group of people recruited for the experiment.3 They are
informed that during the experiment they will answer to a few questions related
to their possible emigration to other countries; for this experiment, three fixed
countries; for example, we can select Brazil, Canada, Australia, a = ai = 1, 2, 3.

We tell them the story: “Suppose you plan to emigrate to one of these coun-
tries.” Thus in mathematical terms it is supposed that

p(a1 ∨ a2 ∨ a3) = 1 (18)

3 Its homogeneity is important, because it will be divide into a few subgroups which
will be used to collect different blocks of statistical data. And it is important that
we can assume that the members of all subgroups have “the same mental state”.
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Then this group is divided into three subgroups G,G′ and G′′. People from
the first two groups will participate in experiments with conditional questioning
and in the last group in unconditional experiment.

Those from G first are asked the a-question: To which of these three coun-
tries would you like to emigrate? Those with the answers a = i form the new
groups Gi. We find the probabilities p(a = i) ≈ nGi

nG
, where nQ denotes the

number of elements in the set Q.
Then we have to ask those in groups Gi another question, say b, which has

to be “complementary” to the a-question. Selection of b is the delicate issue.
For example, let us proceed with the question b: Are you ready to change your
profession? (in the case of emigration to this country)4 This is the dichotomous
observable b = 0, 1 corresponding to the answers ‘no’, ‘yes’. (In principle, we can
consider b having any finite number of values, but it is enough to find violation
of Sorkin’s equality for a dichotomous b-observable.) Those in Gi who answered
b = j form the group denoted by Gj|i. Now we can find conditional probabilities,
p(b = j|a = i) ≈ nGj|i

nGi
and the “ordered joint probabilities” p

(j)
i = p(a = i)p(b =

j|a = i) ≈ nGj|i
nG

.
People from the group G′ are asked about pairs of countries: Which pair of

these three countries would you select to emigrate? The answers are pairs (k,m).
The groups corresponding to concrete pairs are denoted as G′

km. And we can find
the probabilities p(a = k∨a = m) ≈ nG′

km

nG′ . Then we ask those in each group the
b-question; depending on the answer b = j, we form the groups G′

j|km and find

the conditional probabilities p(b = j|a = k ∨ a = m) ≈
nG′

j|km

nG′
km

. They determine

the joint probabilities p
(j)
km = p(a = k ∨ a = m)p(b = j|a = k ∨ a = m) ≈

nG′
j|km

nG′ .
Now those in G′′ are asked just the b-question; depending to the answers we

find the probabilities p(b = j) = p
(j)
123.

Finally, we put collected probabilities into Sorkin’s equality, to check whether
the interference term I

(j)
123 = 0.

Of course, it is useful before to start this “triple-slit experiment”, to check
whether the questions are really complementary, i.e., one has to start with the
corresponding two slit versions of this experiment to see whether I

(j)
km �= 0. (But

for this experiment a new group of people has to be used.)

Acknowledgments. One of the authors (AKH) would like to thank G. Weihs for
numerous discussions on the possibility to violate Born’s rule, in particular on the
triple-slit experiment, and the possibility to see the lab and performance of this test
during the visit to Innsbruck in May 2013 and hospitality during this visit.

This work was supported (A. Khrennikov) by the EU-project “Quantum Informa-
tion Access and Retrieval Theory” (QUARTZ), Grant No. 721321. It was also sup-
ported (I. Basieva) by a Marie Sklodowska-Curie Individual Fellowship, grant agree-
ment 696331.

4 Another proposal: Do you think that your application for emigration (to this country)
will be successful?



56 I. Basieva and A. Khrennikov

References

1. Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finances.
Springer, Heidelberg (2010)

2. Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision.
Cambridge University Press, Cambridge (2012)

3. Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge University Press,
Cambridge (2013)

4. Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum Adaptiv-
ity in Biology: From Genetics to Cognition. Springer, Heidelberg (2015)

5. Khrennikov, A.: Interpretations of Probability. VSP Int. Sc. Publishers,
Utrecht/Tokyo (1999)

6. Pothos, E.M., Busemeyer, J.R.: A quantum probability explanation for violation
of rational decision theory. Proc. Royal. Soc. B 276, 2171–2178 (2009)

7. Khrennikov, A., Basieva, I., Dzhafarov, E.N., Busemeyer, J.R.: Quantum models
for psychological measurements: an unsolved problem. PLoS ONE. 9. Article ID:
e110909 (2014)

8. Boyer-Kassem, T., Duchene, S., Guerci, E.: Quantum-like models cannot account
for the conjunction fallacy. GREDEG Working Papers 2015–41, Groupe de
REcherche en Droit, Economie, Gestion (GREDEG CNRS), University of Nice
Sophia Antipolis (2015)

9. Boyer-Kassem, T., Duchene, S., Guerci, E.: Testing quantum-like models of judg-
ment for question order effects. GREDEG Working Papers 2015–06, Groupe de
REcherche en Droit, Economie, Gestion (GREDEG CNRS), University of Nice
Sophia Antipolis (2015)

10. Basieva, I., Khrennikov, A.: On a possibility to combine the order effect with
sequential reproducibility for quantum measurements. Found. Phys. 45, 1379–1393
(2015)

11. Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett.
A 9, 31119 (1994)

12. Sinha, U., Couteau, C., Medendorp, Z., Sillner, I., Laflamme, R., Sorkin, R., Weihs,
G.: Testing Born’s rule in quantum mechanics with a triple slit experiment. In:
Accardi, L., Adenier, G., Fuchs, C., Jaeger, G., Khrennikov, A., Larsson, J.-A., and
Stenholm, S. (eds). Foundations of Probability and Physics-5, vol. 1101, pp. 200–
207. American Institute of Physics, Ser. Conference Proceedings, Melville (2009)

13. Sinha, U., Couteau, C., Jenewein, T., Laflamme, R.D., Weihs, G.: Ruling out
multi-order interference in quantum mechanics. Science 329, 418–421 (2010)

14. Khrennikov, A., Basieva, I.: Testing boundaries of applicability of quantum prob-
abilistic formalism to modeling of cognition. arXiv:1603.03079 [q-bio.NC]

15. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw-Hill,
New York (1965)

16. Khrennikov, A.: Linear representations of probabilistic transformations induced by
context transitions. J. Phys. A Math. Gen. 34, 9965–9981 (2001)

17. Khrennikov, A.: Contextual viewpoint to quantum stochastics. J. Math. Phys.
44(6), 2471–2478 (2003)

http://arxiv.org/abs/1603.03079


Contextuality in the Integrated
Information Theory

J. Acacio de Barros1,3(B), Carlos Montemayor2, and Leonardo P. G. De Assis3

1 School of Humanities and Liberal Studies,
San Francisco State University, San Francisco, CA, USA

barros@sfsu.edu
2 Department of Philosophy,

San Francisco State University, San Francisco, CA, USA
cmontema@sfsu.edu

3 Suppes Brain Lab, Center for the Study of Language and Information,
Stanford University, Stanford, CA, USA

lpgassis@stanford.edu

Abstract. Integrated Information Theory (IIT) is one of the most influ-
ential theories of consciousness, mainly due to its claim of mathematically
formalizing consciousness in a measurable way. However, the theory, as it
is formulated, does not account for contextual observations that are crucial
for understanding consciousness. Here we put forth three possible difficul-
ties for its current version, which could be interpreted as a trilemma. Either
consciousness is contextual or not. If contextual, either IIT needs revisions
to its axioms to include contextuality, or it is inconsistent. If conscious-
ness is not contextual, then IIT faces an empirical challenge. Therefore,
we argue that IIT in its current version is inadequate.

Keywords: Consciousness · Contextuality · Integrated information
theory

1 Introduction

The Integrated Information Theory (IIT), developed by Giulio Tononi in a series
of influential papers, promises to deliver not only an account of consciousness
but also a concrete way to measure it [20,25]. In this paper, we focus on the
second aspect of IIT. We shall argue that there are potential problems that
require clarification concerning a tension between IIT’s mathematical model of
consciousness and contemporary models of contextuality.

Contextuality is important to measure consciousness for several reasons. Here
we mention three salient ones. As IIT makes clear, the integration of semantic
content is fundamental for understanding consciousness. IIT is so explicit about
this semantic integration that it provides a set of definitions regarding not only
conceptual content, but also how conceptual content is integrated into maxi-
mally specific experiences. But conscious content is always determined at a con-
text of informational background, which is cognitive and perceptual, with many
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 57–70, 2017.
DOI: 10.1007/978-3-319-52289-0 5
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variables that need to be determined at any moment in time. This is one of the
main reasons why contextuality is central in linguistics and pragmatics—content
depends on context and background assumptions.

A second reason to assume contextuality as a constraint on theories (and
more pressingly measurements) of consciousness concerns attention. Attention,
like conversational content, depends on background conditions and relevance.
It also depends on conceptual content and is guided by many neural processes
associated with voluntary and involuntary attention [19]. Context, therefore, is
not only environmentally driven, but also motivationally determined.

Finally, a very important reason to take contextuality seriously into account
in a theory of consciousness is the very nature of measurements. Measurements
are notoriously contextual, a fact made quite vivid not only by quantum mechan-
ics, but also by psychology and linguistics, disciplines who occupy a central role
in studies about consciousness [3,6,17]. Thus, the contextuality of measurements
is central to one of the main goals of IIT: to provide a measure for consciousness.

Our main argument is that IIT is empirically problematic, based on formal
considerations concerning contextuality. One possibility is that IIT is problem-
atic because, in its current formulation, it is incompatible with our current under-
standings of how to accommodate mathematically content that is contextual due
to limited access to all processes. This would mean that IIT is in principle plau-
sible, but in practice impossible to test. Alternatively, it could be that IIT is
incomplete and needs critical amendments. This would mean that the theory
could be compatible with our current understanding of contextuality but that it
is unclear how it could be compatible with it. In either case, we believe that IIT
is empirically problematic as it stands now, and that clarification is needed.

A more troublesome possibility, for which we will not argue as decisively
as the previous empirical one, is that, in its current version, IIT is in prin-
ciple incompatible with mathematical approaches to contextuality. Given the
centrality of contextuality in understanding consciousness, this would make IIT
internally inconsistent. This would mean that IIT needs to be abandoned. We
will not develop this criticism and will only focus on the empirical one, but we
mention this problem because we believe this is also an issue that demands fur-
ther clarity, namely, it needs to be demonstrated that if IIT turns out to be
incomplete, that it is at least in principle compatible with contextual data.

Before proceeding, two crucial clarifications are needed. First, our criticism
is based on considerations concerning a notion of contextuality susceptible to
mathematical analysis. IIT explicitly demands a mathematical treatment of the
Φ measure and, as we will explain, this demand entails a mathematical treatment
of contextuality. Our criticism only targets this formal, but still crucial, aspect
of IIT. Because of our focus, whatever metaphysical commitments IIT has, for
instance regarding panpsychism (or dualistic and monistic interpretations), are
beyond the scope of this paper. Second, the notion of contextuality we work with
here is relevant to linguistics, but we are not appealing to all cases of context
sensitivity in linguistics. Rather, we use only a restricted sense of contextuality
that can be formalized in terms of violations to sums of probabilities. Thus, we do
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not address forms of context dependence in pragmatics and forms of implicature
in general.

To put forth our argument, we organize this paper in the following way. First,
in Sect. 2 we discuss the current understanding of the mathematical theory of
contextuality. Then, in Sect. 3, we present discussions of contextuality in IIT,
and put forth our main argument. We end with some comments and discussions
in Sect. 4.

2 Contextuality

Contextuality is an important concept in many different fields, such as in linguis-
tics, physics and psychology. For that reason, there are many different definitions
of contextuality, but here we focus on a mathematically precise definition that
is relevant to IIT, as it directly relates to theories of measurement. Intuitively,
contextuality is the idea that a quantity (say, the truth value of a proposition)
depends on the overall environment in which it is present. To formalize such
idea, the concept of random variables is used.

First, let us start with probabilities. The most straightforward way to define
probabilities is axiomatic [18]. Accordingly, a probability space (Ω,F , p), where
Ω is a set of possible elementary events (the sample space), F an algebra (of
events) over Ω, and p a function p : F → [0, 1], is a triple satisfying:

1. p(Ω) = 1
2. p(

⋃
i Ai) =

∑
i Ai, for i �= j and Ai ∩ Aj = ∅.

In this definition, p (A) is the probability of event A happening.
A random variable R is a (measurable) function R : F → E, where E is a set

of real numbers. The idea of a random variable is to model the stochastic proper-
ties of the outcomes of a given experiment, where e ∈ E corresponds to possible
values of such outcomes. For example, imagine a hypothetical experiment mea-
suring participants heights, with the minimum measurable height being 110 cm
and the maximum 210 cm, with a resolution of 1 cm, the set of possible outcomes
of measurements is E = {110, 111, 112, . . . , 209, 210}. If we randomly select par-
ticipants, the outcomes of their height measurement will follow some distribution
(perhaps two superposed and truncated Gaussians, corresponding to female and
male participants). A random variable modeling the height-measuring experi-
ment should have all the same stochastic characteristics of it, and the random
sampling of elements of Ω corresponds, intuitively, to the random sampling of
participants and their respective heights.

The range of values of a random variable can be set to match that of any type
of measurement, but the simplest ones are yes-no questions (e.g., “is this person
taller than 170 cm?”). For such cases, two-valued random variables may be used
to correspond to answers to the question “does the object/system have property
P?”. For example, E may be chosen as being either −1 (for “no”) or 1 (for “yes”).
If the property P is measured, then we record 1, and if it does not, we record −1.
Since this is modeled with the random variable R : F → {−1, 1} on a probability
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space (Ω,F , p), we can think about the two-valued random variables as truth-
values for propositions about the system, and the algebra F as corresponding
to logical statements about such propositions (e.g. for two distinct elements
A1, A2 ∈ F , A1 ∪ A2 and A1 ∩ A2 are also in F , and correspond to the logical
connectives “or” and “and,” respectively). In other words, random variables (and
their corresponding probabilistic measures) correspond to a natural (stochastic)
extension of logical statements about the nature of experimental outcomes. The
logical structure of the statements come from the underlying Boolean algebraic
structure that is derived from the ordering provided by the probability function
p over the algebra F .

So, how does contextuality come about in the language of random variables?
As mentioned above, a system is contextual if it varies from one context to
another. But what do we mean by “vary,” and what do we mean by “context?”
Let us start with an example, which will be useful below. Imagine we have a
set of N properties (or concepts), denoted by Pi, i = 1, . . . , N . The simplest
contextual example could be though of as coming from N = 2, as in what
happens with order effects. For example, consider the following two questions
reflecting participants beliefs, discussed by [26,27]: P1 = “Do you generally think
Bill Clinton is honest and trustworthy?”; P2 = “Do you generally think Al Gore
is honest and trustworthy?” Since those are two separate questions, they must
be asked sequentially. We have only two possible ways to ask those questions:
first P1 and then P2 or first P2 and then P1. It so happens that when doing
so, the probabilities for Pi change. For instance, in a 1997 Gallup pool [26,27],
respondents answered yes to P1 at a rate of 50% when P1 was first, and 57%
when P1 was asked after P2. Similarly, P2 got a rate of 68% when first, and 60%
when after P1. This clearly shows an order effect, but more importantly, in a
certain sense Clinton was considered by respondents as more trustworthy in the
context of his relation with Al Gore than not, whereas Gore lost some of his
trustworthiness when associated to Clinton.

In terms of random variables, if we think of P1 and P2 as representing those
questions, then we have changes in the expectations of those random variables
according to their order (or context). This is a situation where we have direct
influences of one variable (which may also establish context) onto another. For
example, in our Clinton/Gore example, we can think of the question P1 (or P2)
directly influencing the respondent’s belief about the following question: Gore
gives Clinton a honesty bump. We call this explicit contextuality1.

A more subtle case occurs when the random variables are not inconsis-
tently connected. To see this, let us examine N = 3, and also that the prop-
erties are “yes” or “no.” This is described by ±1-valued random variables, P1,
P2, and P3, whose expectations are all equal to zero, meaning that we have
equally random chances to either get +1 or −1 as outcomes of measurements
of those variables. This case is more interesting because, as constructed, we
do not allow for the type of explicit contextuality discussed in the paragraph

1 This term was introduced by Pawel Kurzynski. See his contribution to this
conference.
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above. Variables P1, P2, and P3 may be correlated: their pairwise joint expec-
tations (e.g. E (P1P2)) can take values between −1 and 1, corresponding to
anti-correlated and perfectly correlated (with 0 meaning that they have no cor-
relation)2. Imagine furthermore that experimental conditions are such that we
can never observe all three random variables together, but only in pairs. It is pos-
sible to imagine an experimental setup that the measured correlations, given the
impossibility of simultaneous observations of all three variables, be, for example,
E (P1P2) = E (P1P3) = E (P3P2) = −1 (for a concrete example, see [5]). It
is easy to see that there is a problem with the −1 correlations. For example,
if P1 = 1, the first correlation implies P2 = −1, and the third implies that
P3 = 1, which in turn, from the second correlation, implies P1 = −1, a clear
contradiction. What is leading to the contradiction is the assumption that the
variable P1 in the context of the experiment measuring (P1,P2) is the same as
the P1 in the context (P1,P2)3. If we were to, for example, index the variables
(as proposed by Dzhafarov and Kujala [9,10]4) according to their context, such
contradictions would not appear.5

The above example shows how contextuality might be manifest as the impos-
sibility of assigning the same values to a quantity in a way that is independent
of the context. However, as it is presented, it comes from a logical contradiction.
So, the question remains as to how one can extend the criteria for stochastic
systems. A way to see this comes from the work of Abramsky and Hardy, where
they showed that violations of logical consistency such as the one above are
necessary and sufficient conditions the non-existence of a joint probability dis-
tribution (jpd) [1]. In other words, even when we have probabilistic outcomes,
the existence of a single probability space (Ω,F , p) is a necessary and suffi-
cient condition for no logical inconsistencies, and therefore no contextuality. As
a consequence, for the example of three variables, it can be shown [24] that the
variables are not contextual iff

− 1 ≤ E (P1P2) + E (P1P3) + E (P2P3) (1)
≤ 1 + 2min {E (P1P2) , E (P1P3) , E (P2P3)} .

The logical violation is a more subtle example of contextuality than the first
one examined, where the statistical properties of a quantity changed with con-
text. To distinguish the two types of contextuality above, one that is manifest
2 Because of our choice of ±1-valued random variables with zero expectation, their

joint expectations coincide with their correlations.
3 This example is examined in detail in Specker’s Parable of the Over-Zealous Seer

[cite], but was also discussed much earlier on by Boole [cite].
4 The indexing idea is also related to Stalnaker’s two-dimensional semantics; see [23].
5 In the works of Dzhafarov and Kujala, when we can assign contextuality because of

direct influences between the measuring conditions of random variables, such vari-
ables are said to be inconsistently connected [8,10–12,14]. To those author’s, a sys-
tem is contextual only if all context effects are not explainable by direct influences.
So, for them the P1, P2, and P3 perfectly anti-correlated example is contextual,
whereas the Clinton/Gore one is not. However, we emphasize that this is a nomen-
clature issue.
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in the changed expectations from one context to another, and the other that is
a consequence of the impossibility of attaching a consistent underlying logical
structure via a jpd, we refer to systems that exhibit the former as exhibiting
explicit contextuality or being explicitly contextual (or, according to [13], incon-
sistently connected systems) and the latter as exhibiting hidden contextuality or
being implicitly contextual.

The example above can be generalized to more than three random variables,
as well as to random variables that take multiple values. To represent this in
terms of random variables in a way that makes the context explicit, we can use
a contextual index in the following way. We start with the assumption that each
experiment and its corresponding variables correspond to a context. We think of
the random variables as contextual when we cannot associated to a variable Pi

in one context the same probability space as the Pi in another context (i.e., there
is no single jpd that describe Pi in all contexts). For our three random variable
example above, only pairs are observable, namely (P1, P2), (P1, P3), or (P2, P3),
but never triples, e.g. (P1, P2, P3). Let us call C1 the experimental condition (or
context) (P1, P2), C2 condition (P1, P3), and C3 condition (P2, P3). To represent
this explicitly in our notation, we add an index for context. For example, P1,1 is
P1 in context C1, whereas P1,2 is P1 in context C2, and so on.

With this notation in mind, inconsistently connected systems are those in
which it is not true that P1,1 ∼ P1,2, where this notation means “the random
variable P1,1 has the same distribution as P1,2.” As an example, let us revisit
the Cliton-Gore order-effect survey, where two questions are asked in sequence
in two different orders, C1 and C2:

C1: P1,1 = “Is Bill Clinton trustworthy?”; P2,1 = “Is Al Gore trustworthy?”;
C2: P2,2 = “Is Al Gore trustworthy?”; P1,2 = “Is Bill Clinton trustworthy?”.

It may be somewhat surprising that the expected answer to P1,1, denoted by
E(P1,1) and given by

E(P1,1) =
∑

ωi∈Ω

p (ωi)P1,1 (ωi)

= p (P1,1 = 1) − p (P1,1 = −1) ,

is more positive toward Bill Clinton than P1,2, but that is what was shown
empirically [22] (i.e., E(P1,1) > E(P1,2)). However, we should point out that
mathematically, because we are using contextual indexing, it is not problematic
to have different expectations for each context, whereas in the example with no
contextual indexing, we would have a seemingly direct contradiction (P1 � P1).

In the hidden contextuality case with three random variables, the indexed
notation can also be extended. As before, imagine the extreme case where
E(P1,1P2,1) = E(P1,2P3,2) = E(P2,3P3,3) = −1. If we do not assume that
the observed property is independent of context, we run into no problems. How-
ever, if we set Pi,j = Pi,j′ , we run into the same type of problems as before, and
reach a contradiction.
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At this point it is worthwhile to discuss some aspects of contextuality that
are directly relevant to our argument. Contextuality only exists when we can-
not observe all quantities of interest simultaneously: measuring all random vari-
ables at the same time implies the existence of a jpd by simply creating a data
table that can be used to compute the jpd and the relative frequencies for each
marginal distribution. However, it is often the case that the random variables
cannot be all measured simultaneously. This lack of simultaneous measurement
may have two different origins: (i) it may be impossible in principle to measure
P1,P2, . . . ,PN simultaneously, or (ii) it may be empirically difficult, perhaps
even impossible in practice.

For (i), there can be situations, particularly when the system is contextual
by direct influences, where the observation of P1 precedes temporally and affects
directly P2; this seems to be the case for the example of the Gore/Clinton ques-
tionnaire discussed above. One cannot ask a question about Al Gore’s trust-
worthiness simultaneously with a question about Clinton; they must be asked
in order. The same is the case for contextual examples in quantum mechanics,
where there is no jpd. In entangled quantum systems, there are no direct influ-
ences, but we cannot measure non-commuting observables simultaneously, and
depending on the choice of observables, no jpd exists [15].

For (ii), the situation is slightly different. There may not be a principled
reason for not observing all three random variables simultaneously, but experi-
mental design or measurement constraints may create a de facto impossibility of
observing them. This was, for instance, the case of the contextual firefly intro-
duced by Foulis (see [5] for an explicit contextual model). Because experimental
constraints or technical limitations prevent us from observing all variables at the
same time, the correlations between them may be enhanced, such that by this
process the observations cannot fit a jpd. In other words, the marginal expecta-
tions of correlations change from context to context, in a way similar to explicit
contextuality. Furthermore, it might be possible that when we observe a system,
we may be unaware of the random variables being contextual, which is some-
thing that we only verify empirically. For instance, there is nothing strange about
observing correlations E (P1P2) = E (P1P3) = E (P3P2) = −1. It is not until
we put all three together, in an attempt to obtain a jpd, that we realize their
inconsistency. That no jpd exists in certain circumstances is nontrivial for the
three-random-variable example, and it becomes even more difficult to establish
for more variables (consistency is checked with the satisfaction of inequalities
whose complexities increase rapidly with the number of involved variables).

Contextuality shows up in many situations, from quantum mechanics to social
sciences (see [6,16,17] and references therein). In particular, well-known exam-
ples exist in cognitive sciences, where human decision making has been shown to
not follow classical probability theory, being therefore either explicitly or implic-
itly contextual (though recent work suggests that in psychology all examples
are explicitly contextual [7]). Furthermore, the connection between speech and
thought is well know to be contextual, with many examples discussed in the lit-
erature. Thus, a discussion of contextuality as it refers to proposed theories of
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consciousness is not only relevant, but essential. In the next section, we will turn
our attention to one such theory, the Integrated Information Theory (IIT) [20].

3 Contextuality in IIT

It is unclear whether the measurable human mind (thought here to be equivalent
to the brain and its physical states) is contextual in principle. It is not unimag-
inable (in fact, many theories do so) that, for example, quantum processes are
important in the brain. If this is the case, it is possible (though we believe
improbable, mainly due to decoherence) that entanglement of relevant neuronal
processes exist. Such entanglement may produce contextual random variables,
and would preclude the existence of a jpd.

Though the previous argument could be made that the brain is contextual,
at the microlevel, we want to focus on the difficulties mentioned in Sect. 2. First,
why should we bother with contextuality, at least from an empirical point of
view, when thinking about the brain. The main reason is that contextuality
shows up in many situations in the social sciences (see [6] and references therein).
In particular, well-known examples exist on cognitive sciences, where human
decision making has been show to not follow classical probability theory, in the
sense of being incompatible with a jpd, therefore being contextual. Furthermore,
as mentioned above, the connection between speech and thought is contextual.
In other words, behavioral outcomes are contextual, and ultimately what we
observe is tied, in one way or another, with behavioral outcomes.

It is possible that such contextuality comes from factors unknown to or
uncontrollable by the experimenter. For example, in a real-world situation, where
most learning happens, the brain is bombarded with huge amounts of disparate
stimuli, some of them perhaps even seemingly contradictory to each other (e.g.,
simultaneous exposure to stimuli that represent pain and pleasure). Such stim-
uli are not forgotten, insofar as learned unconscious decision processes are con-
cerned, by moving to a new environment in the protected conditions of controlled
experiments. If we now think in terms of brain mechanisms, the presentation of
a stimulus may activate not only neurons associated with this stimulus, but also
other context-relevant neurons that were activated in the learned real-world sit-
uations. Furthermore, because we should expect neural activation to be stronger
to the original stimulus, the detection of such neural patterns would be very dif-
ficult (particularly because we would not know what we should be looking for).
If we could, perhaps, be able to measure all neurons in the brain, we would not
have any implicit contextuality showing up (at least not in the measured firing
patterns), though we could have explicit contextuality; however, as we will see
below, this is very difficult empirically.

To see this, let us examine the well-known case of the “guppy” effect [2,21] in
concept combination. The guppy effect refers to the established fact that when
participants are asked to name objects that belong to the concept “pet” and
objects that belong to “fish,” guppies appear with very low frequency. However,
when asked to name objects that belong to “pet-fish,” guppies are high up on
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the list. What makes this example interesting is not that concept combination
changes the frequency of “guppies,” but instead that it changes such frequencies
in a way that is incompatible with classical probability theory (i.e., with a jpd)
[2]. In other words, concept combination as an internal process in the brain is
contextual.

Now, let us say we try to approach the problem mentioned above, of mea-
suring all the neurons associated to some cognitive process. How would we know
which of the neurons are relevant. For instance, we know that once a concept
(say, “fish”) is presented, there is a spreading activation of neurons that are
related to other concepts (e.g., “flounder,” “cod,” “tuna,” “sushi,” “Easter,”
etc.). Such web of activated neurons is strongly present in one context, but is
not in another (such as “guppy”). That means that one would have to know
what to look for, at the level of neurons, even when what we are looking for is
not currently active. In other words, to be able to construct a jpd, if it exists,
one would have to measure everything (including external conditions that might
seem irrelevant to the experimenters under the situation, such as temperature,
barometric pressure, amount of saliva in subject’s mouth, heart beat, etc.), since
any such variables could present contextual cues that are necessary for the con-
struction of a jpd. However, as one could imagine, this would not only pose a
huge measurement problem, from a practical point of view, but would also have
so many variables that would make it impossible to obtain any type of statistical
information about the system of interest, as every experiment would be, in a cer-
tain way, unique in terms of control variables. Of course, even if we maximally
specify all those variables, it is still possible that the system displays explicit
contextuality, and no jpd exists.

To summarize, we have the following empirical difficulty brought about by
contextuality. Since contextuality exists in practice (numerous experiments cor-
roborate this), we do not have a joint probability distribution. The only way to
overcome the problem of contextuality would be to observe everything, clearly a
daunting task. But even in such cases, however, no jpd exists, as we would move
from implicit to explicit contextuality. As we will see below, those issues are a
direct challenge for the current version of Tononi’s IIT.

We now turn to IIT. As discussed above, Tononi’s IIT is one of the most
important theories of consciousness currently proposed [20]. IIT is an attempt
to characterize consciousness both quantitatively and qualitatively, giving it a
precise mathematical formulation. Unlike the traditional approach used in neuro-
science, IIT takes as its starting point the phenomenology of consciousness, and
postulates the properties the physical mechanisms, such as neurons with their
synapses, shall respect so that consciousness can take place. One of goals of IIT
is to quantify in what extent one system has consciousness, that is, what mech-
anisms belonging to that system contribute to the emergence of consciousness,
and how much they contribute to it. The second goal is to build a theoretical
tools able to discriminate the different kinds of consciousness that the system
can display. In other words, define a qualia-space.
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According IIT, a system that is capable of generating consciousness must
have a high capacity to discriminate a large number of different states, which
are related to the amount of information that distinct subsystems may generate.
However, IIT also affirms that the ability to differentiate different states is not
enough for the emergence of consciousness: the system must also be able to
integrate information. This postulate is motivated by the fact that, under non-
pathological conditions, the phenomenological experience does not occur in a
fragmented way, i.e., we do not experience the colors of objects separated from
their shapes.

Using concepts from mathematical information theory, Tononi proposes a
measure of consciousness, Φ. In IIT the integrated information Φ is an informa-
tion measure of the repertoires generated by the whole system, compared to the
repertoires generated by the subsystems. Φ is defined in such a way that one of
its consequences is the possibility of existence of different levels of consciousness.
The set of elements within a system endowed with this property to generate a
local maximum of conceptual information integrated is called complex.

For Tononi, systems that are able to generate consciousness are made of sub-
mechanisms, and those sub-mechanisms can be combined in different ways to
create mechanisms. It is the particular configuration of sub-mechanisms, at a
given moment, that Tononi calls “context.”

Though Tononi clearly sees the relevance of contexts to consciousness, in his
model he makes the following assumption for the outcomes of mechanisms (see
the supplementary methods of [20]):

p
(
ABCt|ABCt−1

)
= p

(
At|At−1

)
p

(
Bt|Bt−1

)
p

(
Ct|Ct−1

)
. (2)

Tononi’s justification for (2) is that there are “no instantaneous interactions
between mechanisms and causes precede their effects.” It also seems to be an
practical essential assumption to allow for computations in his model.

First, we should point out that the appeal to instantaneous interactions is
misleading. To rule out instantaneous interactions, one would have to assure that
the observations corresponding to, say, At or Bt, were separated by an spacelike
interval (see [3] for a detailed argument in a different context). For example, if At

and Bt were measured for an amount of time δt and were processes situated at
a distance d, then any (non-instantaneous) interaction whose propagation speed
is lower than the speed of light could account for violations of (2) if δt ≥ cd.
Since typical distances within the brain are at the order of 10−1 m, this means
that for processes taking longer than 3 × 109 s, we can always explain them
with non-instantaneous signaling. But most cognitive processes are believed to
take much longer than 108 s. So, for biological processes, it is quite reasonable to
assume that (2) may be violated due to physically plausible interactions between
mechanisms (see [4] for a simple neural oscillator model exhibiting contextuality).
Furthermore, we should point out that (2), as shown by Suppes and Zanotti [24],
implies the existence of a jpd. Therefore, the assumption behind (2) is not, as
Tononi claims, that of no instantaneous interactions: it is, instead, an assumption
about no contextuality!
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Fig. 1. (a) Contextual system of mechanisms, composed of six sub-mechanisms, A, B,
and C. The sub-mechanisms are such that only pairs are simultaneously observable.
(b) For example, when A is active, so is B, but not C. This is shown in the figure by
the grayed area for the system.

To show how contextuality may appear in IIT, let us focus on the mech-
anisms shown in Fig. 1. This system behaves in a very simple way, and it is
constructed merely to show how contextuality can emerge here. We start with
three mechanisms, A, B, and C, each taking values ±1, which we represent
by the ±1-valued random variables A, B, and C. Let us assume that those
mechanisms are stochastic, but, more importantly, that we can only observe the
following simultaneously: (A,B), (A,C), (B,C), and (A,B,C). If contextuality
is present, it is possible to have pairwise correlations for the situations where
(A,B), (A,C), (B,C) are observed such that (1) is violated. In other words,
any measurements except (A,B,C), give strong negative correlations between
A, B, and C. This mechanism is explicitly contextual, since the marginals from
(A,B,C) cannot match the correlations from the pairwise observations, and it
is also implicitly contextual, since the pairwise correlations lead to no jpd. Now,
let us imagine that, in this case, the mechanism is such that at time t only one
of the pairs (A,B), (A,C), (B,C) is observed, and at time t−1 the triple mech-
anism (A,B,C). It is clear, in this case, that Eq. (2) cannot hold, since there is
no joint probability distribution.

One might argue that no mechanism is truly contextual, since we could, in
principle, measure all quantities of interest simultaneously. This is not necessarily
true for the following reasons. The first one is that in some cases it is not, in
principle, possible to measure all quantities simultaneously. If, and we are not
making this case here, there are underlying processes in the mechanism that are
quantum, non-commuting observables cannot be simultaneously measurable, and
contextuality may exist. This is what happens with entangled states in quantum
mechanics, as in the famous Bell-EPR setup.

The second reason, which we consider more relevant, is simply empirical. It
may be true that, for a certain system, it is possible in principle to measure all
relevant variables simultaneously. However, for reasons of experimental limita-
tions, it is close to impossible to measure them all. For example, imagine, that
A, B, and C are neural oscillators that are measured with EEG. Because the
activity strength of neural oscillators varies, and because EEGs are not spatially
localized and are noisy, it is possible that under a certain stimulus, the only
observable neural oscillators are a subset of the relevant oscillators involved in
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the mechanism (say, A, and B). This does not necessarily mean that the other
oscillator C has no existing outcomes, but simply that it cannot be measured
under the experimental conditions. As a result, because of contextuality, when
correlations are observed, they are enhanced by the selection of a subset of oscil-
lators, and no jpd compatible with the observations will exist, even though all
quantities are in principle well defined simultaneously. This, of course, would
provide an empirical difficulty to guarantee that the system is not contextual.

Finally, the third reason is that, for some contextual systems, the experiment
of measuring the pairs (A,B), (A,C), (B,C) has different marginal expectations
(for correlations) than what you would observe for the triple (A,B,C). In this
case, one could have direct influences from context, as the marginal expectations
change. We emphasize that such direct influences do not imply any non-local
interactions, since, as argued above, their time scales are large compared to the
distance scales. To summarize, we provided here a toy example showing how
context-dependent mechanisms violate (2).

4 Conclusions

IIT is a remarkable theory that opens up the possibility of empirically measuring
consciousness. As such, it has the potential to have a significant impact in the
way we think about consciousness. This explains how IIT has become one of the
main theories in consciousness study.

One of the main ideas in IIT is that consciousness comes from processes
that integrate information. Therefore, to measure consciousness, one needs to be
able to measure the integration of information, and, more basically, information
itself. The question is how to measure information for contextual systems, in
light of the trilemma we mentioned at the outset. We know, for instance, that
Shannon’s entropy is not adequate for some contextual systems, and in par-
ticular, we know that for the special type of contextuality constrained by the
formalism of quantum mechanics, the more appropriate measure of information
is given by von Neumann’s entropy. However, a more general way of measuring
information in more general contextual systems, such as those necessary for the
description of consciousness, is yet to be developed.

Until such measures of information in contextual systems are developed, the
use of IIT to measure consciousness needs to be clarified, in particular as to how it
is to be applied to contextual systems, which candidate systems to consciousness
are believe to be.
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Abstract. In this paper we examine two well-controlled experiments
where order effects were shown under stress. We show that for only one
of those experiments the QQ equality of Wang and Busemeyer [21] seems
to be fairly satisfied (under independence assumptions). Since the exper-
iment satisfying QQ measures physiological variables, this may suggest
that quantum order effect outside human judgment models.

1 Introduction

It is a well-known fact that the order in which two questions are asked affects the
frequencies of their answers. Question order effects are observed by presenting
two questions, Q1 and Q2, to two similar populations but in different orders. To
one group, Q1 precedes Q2, whereas to the other group, Q2 precedes Q1. If there
are changes in the frequencies for the answers to the questions between groups,
then we see an order effect. This is known as the order effect, and it has been
the subject of interest and study of social scientists for a while. Another well-
know fact is that order effects also exist in physical measurements, in particular
in quantum mechanics, where order effects exist in principle. They are associ-
ated to the existence of complementary variables whose observable operators in
the Hilbert space do not commute, and therefore cannot have a simultaneous
projector basis yielding repeatable experimental outcomes.

The main difficulty behind order effects is that they seem to violate standard
probability theory, where the expectation of a random variable does not depend
on which order we observe it. Therefore, it should not come as a surprise that
among the first successful attempts to use quantum-like models in the social
sciences were ones related to order effects. Furthermore, one may argue that all
quantum-like effects in social sciences are actually order effects, mainly for two
reasons. First, no experimental situation can preclude subluminal communica-
tion as a means of creating the superclassical (quantum-like) correlations, and
therefore it is always possible to think of causal classical mechanisms that lead
c© Springer International Publishing AG 2017
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to such correlations. This means that the effects on the context-dependent prob-
abilities could be seen as caused by this (perhaps difficult-to-observe) order.
Second, it seems that all violations of contextual (Bell-type) inequalities may
be explained by direct influences between the observables [11], which would be
modeled in physics by order-effect like computations.

Be that as it may, quantum-like order-effect models make non-trivial predic-
tions. For instance, in their seminal paper, Wang and Busemeyer [21] showed
that for order effects described by the collapse of a state vector, the diagonal
terms of the order effect matrix (see Sect. 2) would add to zero. This result is
know as the Quantum Question (QQ) equality, and it not only holds for order
effect models that use projections in a Hilbert space, but also for a vast set of
data examined in [22].

In this paper we investigate order effects in stress. Stress can be thought
of as, among other things, be caused by conflicting conditions. This is what
is often seen in cognitive order effects, where the order of questions changes
the assessment of the subsequent question. Here we investigate two experiments
showing order effect under stress: one involving decision making under stress,
and another measuring physiological effects. In both cases, the data suggests
that the QQ equality is satisfied, thus supporting the idea that order effects are
better described by quantum probabilities.

2 Quantum-Like Order Effects and the QQ Equality

In this Section, we will discuss how the Hilbert space quantum formalism leads
to the order effect, in the same way that it is applied to the QQ model. For our
purpose it suffices to examine a simple case. Imagine two propositions about the
system of interest, PA and PB. Such propositions can be either true or false,
depending on the state of the system. For example, PA can be the question
“Is the spin in direction z equal to +1/2?” To know whether this is the case,
a spin measurement must be made, and the outcome would be either “yes, it
is equal to +1/2,” or “no, it is not equal to +1/2;” in this case the system
of interest would be a particle with spin. PB would then be a question that
probes the same Hilbert space, e.g. “Is the spin in direction e �= z equal to
+1/2?” Another example outside of physics, discussed in [22], is when PA is the
question “Is Bill Clinton honest and trustworthy?” and PB is “Is Al Gore honest
and trustworthy?” The system of interest here is a participant in an opinion
pool, who may answer the question in the positive or negative.

To represent the stochastic outcomes of answers for the above cases, we
use a standard quantum model for order effects (see [4,12,15]). We start with
two yes-no questions, QA and QB , and associate to them projector operators
P̂A and P̂B in a Hilbert space, H. Because there is an order effect, originated
from the impossibility of simultaneously measuring QA and QB , we assume that[
P̂A, P̂B

]
�= 0 (we remark that non-commuting operators are typical in quantum

descriptions of cognitive systems). Prior to the first question, the participant’s
“cognitive state” may be represented by a quantum mixture ρ. However, after a
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question is asked, this state collapses into either P̂iρP̂i or
(
1̂ − P̂i

)
ρ

(
1̂ − P̂i

)
,

i = A,B, with the former expression corresponding to “yes” to question Qi and
the latter to “no.” This new collapsed state is then measured again, by P̂j , j �= i.

To understand where the order effect comes from, consider the example where
the quantum state is not a proper mixture, but a pure state ρ = |ψ〉〈ψ| (where
|ψ〉 is a vector in the Hilbert space and 〈ψ| its associated dual vector) that is
measured first by PA and then by PB . What is the probability that PA = 1 and
PB = 1, when measured in that order? The probability that PA is one is given
by p (PA = 1|ρ) = Tr

(
ρP̂A

)
, and when such value is measure, the quantum

state collapses to P̂AρP̂A/Tr
(
ρP̂A

)
. Now, the probability of PB = 1 for the

state ρ = |ψ〉〈ψ| is p
(
PB = 1|P̂A|ψ〉

)
= 〈ψ|P̂AP̂BP̂A|ψ〉/〈ψ|P̂A|ψ〉. Therefore,

the answer to our question is simply

pa:b = 〈ψ|P̂AP̂BP̂A|ψ〉,
where we introduced the notation where pa:b corresponds to to the probability
of PA = 1 followed by PB = 1, pb:a to PB = 1 followed by PA = 0, and so on.
From similar computations,

pb:a = 〈ψ|P̂BP̂AP̂B|ψ〉,

pa:b = 〈ψ|
(
1 − P̂A

)(
1 − P̂B

) (
1 − P̂A

)
|ψ〉,

and
pb:a = 〈ψ|

(
1 − P̂B

) (
1 − P̂A

)(
1 − P̂B

)
|ψ〉.

Since P̂A and P̂B do not commute, it follows that pa:b �= pb:a, which is what
we understand as an order effect: the probability of answer PA is different when
asked before or after PB .

From systems that present order effect (or any system, for that matter), we
can define an effect size matrix

E =
(

pa:b − pb:a pa:b − pb:a
pa:b − pb:a pa:b − pb:a

)
.

This matrix reflects how much the probabilities change given the order: if there
are no order effects, then E is the zero matrix; if the elements of E are large,
then there is a strong order effect, as the expectation s change considerably with
orders. Notice that E has nothing to do with a quantum model, as it expresses
the order effect in terms of measurable probabilities. However, from the above
quantum model, it is straightforward to compute, from the algebra of projection
operators (mainly their idempotent property), that the diagonal term sums to
zero, i.e.,

q = (pa:b − pb:a) +
(
pa:b − pb:a

)
= 0.

This is called the QQ equality by [22], and it is exactly satisfied by quantum
systems.
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It is striking that most order effects in psychology seem to satisfy the QQ
equality. In their paper [22], Wang et al. examined 72 datasets related to order
effects to opinion-pool questions (the Clinton and Gore question above was part
of a Gallup pool). With the exception of a few (pathological?) cases, the vast
majority of the data satisfied the QQ equality. Perhaps more telling, Wang et al.
[22] examined alternative models used to describe order effects, and none of them
main alternatives in the literature fit the QQ equality. In the next section we
will discuss order effects in the stress literature, and show not only that the QQ
equality is satisfied in decision-making under stress, but also for physiological
outcomes.

3 Order effects in Stress

Order effects are well established in stress research, thought with perhaps a
different meaning from the ones discussed above. For instance, a physiological
response seems to change with time in almost every cases of emotional responses,
and repeating the same stimulus frequently decreases or increases a response,
which just depends on the stimulus type. In the case of stimuli inducing adaptive
behavior, most usually positive stimuli, repeating of the stimulus usually leads to
a decreased response, which is called habituation (e.g. delicious food everyday)
[3,20]. In cases of maladaptive responses most usually stressful stimuli, a frequent
type of response is “sensitization” [10,14], i.e. a progressively increasing response
to the same stimulus. Additionally, there is evidence that those types of responses
work also for electric stimulation of the brain: upthreshold stimulus usually leads
to epileptic discharges due to increasing responsibility to subthreshold stimuli
related to “sensitization,” and consequently very small sub-threshold electric
stimulus at later times may cause epileptic discharges [16,18].

The order effects in the above paragraph present two challenges to testing the
QQ model. First, it is not immediately clear how they actually correspond to the
standard idea of order effect as modeled by a collapse of the wave function, since
they do not seem to correspond to successive “measurements” (in the quantum
sense) of two different operators. Second, as far as we know, and related to the
first issue, they do not provide data sets that can be used to observe the QQ
equality. For these reasons, we focus here on two well-controlled experiments with
human subjects where order effects are shown: one where behavioral outcomes
change with the order of stressors, and another where physiological outcomes did
as well. In the subsection below, we describe the relevant experiments analyzed
here. Then, in the following subsection, we analyze the QQ equality, showing
that it is apparently satisfied also for those two experiments.

3.1 Order Effect Experiments

Well controlled experiments that provide enough information to allow for the
computation of order effects in situations under stress are not widely available.
At least as far as the authors can tell, the only (human) experiments that are set
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under the necessary criteria that allows us to estimate the QQ equality from the
available published data are the experiments of Banis and Lorist [1] and Caceres
and Burns [5]. We describe them briefly in the subsections that follow.

Behavioral Order Effect in Stress. In an interesting work, Banis and Lorist
[1] studied the impact of acute noise stress on the feedback-related negativity
(FRN), and whether the predictability of the stressor affected the results. FRN is
an event-related potential (ERP) electroencephalogram component that is trig-
gered by external feedback. Banis and Lorist used loud white noise, a stressor
known to activate the hypothalamic-pituitary-adrenal axis and sympathetic ner-
vous system that increases stress hormones, thus affecting the activity in brain
areas responsible for feedback evaluation. Their goal was to test if acute noise
stress had any influence on the cognitive control functioning of the anterior-
cingular-cortex (ACC) through the analysis of the FRN feedback, and if the
results depended on the predictability of the noise stressor. In their experiment,
32 healthy male undergraduates participated in an experiment where they per-
formed a gamble task. Each trial started with a cross displayed at the center of
a computer screen. After 500 ms, two white rectangles were displayed to the left
and right side of the cross. Those rectangles remained on the screen until the
subject selected one of them by pressing a button with their left or right index
finger, corresponding to the equivalent location of the rectangle selected. The
selected rectangle was then highlighted with a thick yellow border, for a ran-
dom time interval between 800–1200 ms. After that, the highlighted rectangle
was filled with one of two colors, cyan or magenta, corresponding to monetary
gain or loss. Which color was associated with gain or loss varied across partic-
ipants. Simultaneously to the appearance of cyan or magenta, the amount of
gain or loss (±5 or ±25 cents of Euros) appeared inside the selected rectangle,
informing the participant of how much money they won or lost during that trial.
The values displayed inside the rectangles were selected randomly with equal
probability for all of four possible values (though participants were not informed
of this). This feedback was displayed for 1000 ms, and after that the next trial
started. The experiment was conducted with five-minute trial blocks separated
by 15 min of rest. Some trial blocks were performed first under a noise stres-
sor, consisting of a discontinuous (75–95 dB) or continuous (85 dB) white noise,
with intervals varying between 2 to 7 s, and then in silence; other blocks had
the reverse order. Silence and noise condition trials were counterbalanced across
subjects, with participants performing an equal number in each condition. At
the beginning of the experiment, participants started with a balance of 5 euros,
and were instructed to select whichever strategy they wished to maximize their
gain: whatever balance they had at the end of the experiment was theirs to
keep. At the end of each block, participants were informed about the amount of
money they earned in the previous block. Though this experiment’s main goal
was to measure the effect of acute stress as a decreased in cognitive control by
the ACC, it also showed that mean reaction time and mean stay percentages
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(i.e., how often a participant selected the same response as a strategy) depended
on the condition order of the block (silence-noise vs. noise-silence conditions).

Physiological Order Effect in Stress. Many studies have shown a correlation
between stress-induced physiological reactivity and indexes of pain sensitivity,
but there was no proof whether such reactivity could affect consecutive levels
of pain threshold, tolerance, and self-reported severity. To answer this question,
Caceres and Burns [5] investigated if the indexes of pain sensitivity were influ-
enced by physiological reactivity (namely, blood pressure and heart rate) induced
by acute noise as a psychological stressor. To test that hypothesis, 52 individuals
were randomly selected to perform one of two experimental protocols: mental
arithmetic (MA) task followed by a cold pressor (CP) task or vice versa (we
will refer to those two orders as MA/CP and CP/MA, respectively). Subjects
were classified into low/high heart rate (HR) and low/high mean arterial pres-
sure (MAP) based on reactivity to MA. The expectation was that stress-induced
physiological changes would be able to modulate pain sensitivity. In such situa-
tion, the degree of sensitivity to pain could be predicted for the following task,
since subjects with a high level of reactivity to the MA task would be more sus-
ceptible to exhibit characteristic pain threshold, tolerance, and self-reported pain
severity. A second topic investigated was the hypothesis that there is a causal
association between a presumed stress-pain mechanism evoked at the time of the
initial task and pain sensitivity during a posterior task, or whether a common
cause could explain both the presumed mechanism and subsequent pain. Their
results showed that stress-induced MAP reactivity was related to pain threshold
and tolerance only for subjects who received the MA task in the first phase of
the experiment. In addition, their results showed that subjects in the MA/CP
condition with high MAP increases during the first MA task exhibited a lower
pain threshold and tolerance in a posterior CP task than low MAP reactors in
the same condition. In the CP/MA case, the high and low MAP reactors the
pain index had no significant differences. For high MAP reactors to the MA task
in the MA/CP case had a lower pain threshold and tolerance if compared with
high MAP reactors to the MA task in the CP/MA case. In other words, the
mean arterial pressure under CP or MA presented an order effect.

3.2 QQ equality in Stress

In this subsection we examine the order effects observed in [1,5], in particu-
lar whether they satisfy the QQ model, in terms of obeying the QQ equality
(how well the model fits the data is not interesting here, since the number of
parameters for the quantum model is fairly large). Let us start with the data
from [1], who report a strong and statistically significant order effect for the
behavioral component of their experiment, where the mean stay percentage was
observed. So, in terms of order effect, we have the following two random vari-
ables, SN and SS , corresponding to “Was the strategy, under noisy condition,
to repeat the last response?” and “Was the strategy, under silence condition,
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Table 1. Data, adapted from [1].

to repeat the last response?” Averaging over the mean stay percentages for
large and small gains, given that trials were balanced, we obtain for the silent-
noise order, E (SN ) = 0.665 and E (SS) = 0.665, and for the noise-silence order
E (SN ) = 0.545 and E (SS) = 0.558. There is a clear order effect. To compute
the order effect matrix E, we need to know the complete probability of events
in both situations, namely, e.g., what is the probability that SN = 1 in the first
half and SS = 0 in the second, what is the probability that SN = 1 in the first
half and SS = 1 in the second, and so on. To do so, we obtained the original set
of data from the authors, and computed the outcomes in Table 1.1

From this data, we can compute the order effect matrix,

EBL =
(

.1430 −.0761
−.0612 −.0057

)
,

which gives a q = 0.1373, which does not corroborate the values predicted by
quantum models.

More interesting than the previous result, however, is the experiment by
Caceres and Burns, as it shows an order effect in physiological data, namely the
mean arterial pressure (MAP). Once again, the data provided in [5] was the mean
values of MAP (in mmHg) and their corresponding variance. We used this data
to estimate, assuming a log-normal distribution for MAP [24], and comparing to
the provided baseline, the probability for the following two questions, represented
by the random variables PM and PC : “Was the mean arterial pressure above the
baseline under the mental arithmetic task?” and “Was the mean arterial pressure
above the baseline under the cold pressor task?” The estimated probabilities are
given on Table 2. Once again, the order effect matrix can be computed from
Table 2, yielding

ECB =
(

0.0468 0.0011
−0.0151 −0.0327

)
,

which gives a q = 0.014, also close to quantum models.

1 The assumption of statistical independence are possibly false. However, it is not pos-
sible to reconstruct the joint probability from the marginals without some additional
assumptions.
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Table 2. Order effect data for MA/CP and CP/MA conditions, adapted from [5].

4 Final Remarks

In this paper we examined two experiments in stress that observed order effects.
For the Banis and Lorist experiment, we obtained the original data set and
computed the joint probability distribution from it. For the other experiment
examined, from the published data, we constructed (under simplifying condi-
tions) data tables that allowed us to define an order effect matrix, from which
the QQ equality could be computed. We saw that for the Banis and Lorist
paper, the sum of the diagonals of the effect matrix was far from zero, thus
not supporting the idea that the QQ equality holds, whereas for the simplifying
assumptions used here the Caceres and Burn experiment satisfied the QQ equal-
ity. This shows that the QQ equality may be satisfied for some physiological
experiments, though our results do not support it.

Our results relate to the broader literature in mental disorder that identi-
fies disturbances in the synchronization connecting different regions of the brain
[2,6]. For instance, quantum-like effects may appear in phase-synchronization
models where incompatible stimuli are presented simultaneously [7–9]. Such
quantum-like effects are similar to the order effects discussed, and recent studies
on brain dynamics under stress conditions [13,17,19,23] suggest a decrease in
synchronizing patterns compatible with those modeled in reference [8].

Our conclusions are limited, for many reasons. First, because of our limited
access to experimental data limited to publicly available results in the literature,
we could only obtain the order-effect matrix under very simplifying assumptions
which are likely not true. Furthermore, without the actual data (except for [1]),
we could not perform a χ2 test to verify whether satisfying the QQ equality
was done in a statistically significant way (that order effects were present were
reported with statistical significance on the original papers). Second, the exper-
imental protocols used in [1,5] were not conducive to accurately measure the
order effect in a way defined by [21]. For example, the QQ equality was derived
from quantum models where you have an ensemble of participants from a same
population, and the first experiment does not fit this criteria. So, even with the
raw data from experiments, we would expect to have problems constructing the
data in Tables 1 and 2. Finally, we should point out that the data is not within
subjects, so our conclusions for within subjects should be taken with a grain of
salt.

As such, this paper should be seen only as an indication that quantum-
like probabilistic order effects may possible not only for human judgments, but
also that stress may affect such order effects. Furthermore, as we have seen,
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the quantum models seem to extend beyond human judgment, and fits with the
description of order effects on the mean arterial pressure, a physiological variable.
This is an exciting result, if actually found to be true once further experiments
are carried out, where such effects could be measured in a more precise way, as
they would raise the question as to why quantum probability would be a good
descriptor of such types of processes.
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Abstract. The ‘quantum cognition’ paradigm was recently challenged
by its proven impossibility to simultaneously model ‘question order
effects’ and ‘response replicability’. In the present article we describe
sequential dichotomic measurements within an operational and realistic
framework for human cognition, and represent them in a quantum-like
‘extended Bloch representation’, where the Born rule of quantum proba-
bility does not necessarily hold. We then apply this mathematical frame-
work to successfully model question order effects, response replicability
and unpacking effects, thus opening the way toward ‘quantum cognition
beyond Hilbert space’.

Keywords: Cognitive modeling · Quantum structures · General
tension-reduction model · Order effects · Response replicability ·
Unpacking effects

1 Introduction

‘Quantum cognition’ is the name given to the approaches that apply the mathe-
matics of quantum theory in Hilbert space to model cognitive phenomena. Con-
junctive and disjunctive fallacies, over- and under-extension effects in member-
ship judgments, unpacking effects and expected utility paradoxes are some of
the situations where quantum probabilistic approaches show significant advan-
tages over the approaches in cognitive psychology that use classical probability
theory (see, e.g., [1–12]). Notwithstanding this success, two well known experi-
mental situations, ‘question order effects’ and ‘response replicability’, seriously
challenge the acceptance of ‘Hilbert space quantum cognition’ as a universally
valid paradigm in cognitive psychology [13–17], as we will emphasize in Sect. 2.

The difficulties of quantum approaches to model the statistics of responses
of sequential questions where these cognitive effects occur led us to investigate
c© Springer International Publishing AG 2017
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origins and range of applicability of the Born rule of quantum probability.
To this end, we firstly developed an operational and realistic framework to
describe cognitive entities, states and context-induced changes of states, indi-
vidual and sequential measurements, measurement outcomes and their proba-
bilities, etc. [18]. This general framework is applied in Sect. 3 to the operational
and realistic description of a wide class of dichotomic measurements, including
those exhibiting the above mentioned cognitive effects.

We also elaborated a ‘general tension-reduction (GTR) model’ [21,22] that
extends some previous results obtained on the ‘hidden measurements interpreta-
tion of quantum mechanics’ [19]. This GTR-model, together with the associated
‘extended Bloch representation (EBR)’ [20], puts forward an explanation for the
concrete effectiveness of the mathematical formalism of quantum theory in cog-
nition. Indeed, the Born rule of quantum probability can be characterized in it
as uniform fluctuations of the measurement context, and emerges as a ‘universal
average’ over all possible forms of non-uniform fluctuations of the said context
[20–22]. In this way, the GTR-model is also able to explain the difficulties of the
Hilbert space formalism in the simultaneous modeling of question order effects
and response replicability within a quantum-like framework where the Born rule
does not generally hold [17].

Accordingly, in Sect. 4, we apply the GTR-model to represent dichotomic
measurements that are performed individually and sequentially, together with
the corresponding probabilities, and show that the GTR-model exhibits
quantum-like aspects, although the Born rule of quantum probability is not gen-
erally valid in it. Hence, the GTR-model is generally non-Hilbertian. However,
we also observe that the model is compatible with an operational and realistic
framework for cognitive entities, and we also provide an intuitive illustration of
how it can be interpreted in cognition.

In Sect. 5, we apply the model to the experimental data collected by Moore
[24] and exhibiting question order effects. We then show, in Sect. 6, how ques-
tion order effects and response replicability can be modeled together within
the GTR-model, which is not the case in the Hilbert space quantum modeling
[13,14]. Finally, in Sect. 7, we observe that another cognitive effect, the ‘unpack-
ing effect’, also requires a non-Kolmogorovian probability framework, like the one
provided by the GTR-model, when unpacking effects are interpreted in terms of
the relationship between measurements and sub-measurements.

2 Challenges to Quantum Cognition in Hilbert Space

Quantum cognition in Hilbert space was recently challenged by ‘question order
effects’ and ‘response replicability’ (the latter effect, however, is still waiting
for a clear experimental confirmation). In the former, the response probabilities
of two sequential questions, in an opinion poll, depend on the order in which
the questions are asked, whereas in the latter the response to a given question
should give the same outcome if repeated, regardless of whether another ques-
tion is asked and answered in between [13]. More precisely, let us consider two
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dichotomic questions that are asked sequentially, in whatever order, on a sample
of participants, such that probabilities of ‘yes’ and ‘no’ responses are collected as
large number limits of statistical frequencies. The two questions thus correspond
to two ‘yes-no measurements’ A and B. Their possible outcomes are ‘yes’ and
‘no’, which we denote by Ay, An, and By, Bn, respectively. Hence, performing
first A then B produces the possible outcomes AiBj , while performing first B
then A produces the possible outcomes BjAi, i, j ∈ {y, n}. A question order
effect occurs when, in a given cognitive situation, the probability distribution
of measurement outcomes depends on the order in which the two sequential
measurements are performed, i.e. p(AiBj) �= p(BjAi).

Response replicability may instead appear in two forms, ‘adjacent replica-
bility’ and ‘separated replicability’ [14]. Suppose that a measurement A (B)
is performed twice sequentially in a given cognitive situation. Then, adjacent
replicability requires that, if the outcome Ai (Bj) is obtained in the first mea-
surement, then the same outcome Ai (Bj) should be obtained in the second mea-
surement with certainty, i.e. with probability 1. Suppose now that the sequence
of three measurements ABA (BAB) are performed in a given cognitive situation.
Then, separated replicability requires that, if the outcome Ai (Bj) is obtained
in the first measurement, then the same outcome Ai (Bj) should be obtained
in the final measurement with certainty, i.e. with probability 1. We thus formal-
ize response replicability by setting the conditional probability p(Ai|Ai) = 1 in
a AA sequence, p(Bj |Bj) = 1 in a BB sequence, p(Ai|AiBj) = 1 in a ABA
sequence, and p(Bj |BjAi) = 1 in a BAB sequence, i, j ∈ {y, n}.

Let us now come to the way in which the above class of psychological mea-
surements are modeled in Hilbert space. The cognitive situation is represented
by a unit vector |ψ〉 of a suitable Hilbert space, the measurements A and B are
represented by the spectral measures {PA

i } and {PB
j }, i, j ∈ {y, n}, and the Born

rule is assumed to hold in both individual and sequential measurements, that
is, pψ(Ai) = 〈ψ|PA

i |ψ〉, pψ(Bj) = 〈ψ|PB
j |ψ〉, pψ(AiBj) = 〈ψ|PA

i PB
j PA

i |ψ〉, and
pψ(BjAi) = 〈ψ|PB

j PA
i PB

j |ψ〉, i, j ∈ {y, n}. Finally, this class of psychological
measurements are assumed to be ‘ideal first kind’ measurements in a standard
quantum sense, hence the state transformations induced by the measurements A

and B are |ψ〉 → PA
i |ψ〉

‖PA
i |ψ〉‖ and |ψ〉 → PB

j |ψ〉
‖PB

j |ψ〉‖ , respectively, for every i, j ∈ {y, n},
according to the Lüders postulate.

Recent studies confirm that, while the standard quantum formalism in
Hilbert space is able to separately model question order effects and response
replicability [3,7,9,12], the same formalism does not work in cognitive situa-
tions where both effects are simultaneously present [13,14,17]. Roughly speaking,
while the latter effect requires the spectral measures representing measurements
to commute, the former can only be reproduced by non-commuting spectral
families – the possibility of solving this problem by using more general positive
operator values measurements is still under investigation. One may then wonder
whether cognitive experiments exist where question order effects and response
replicability are effectively observed. In this respect, one typically accepts the lat-
ter effect as a natural requirement for a wide class of psychological measurements.
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On the other hand, order effects in sequential measurements have been thor-
oughly studied since the seventies [23]. In particular, Moore reviewed a Gallup
poll conducted in 1997, in which he reported interesting results of different exper-
iments on question order effects [24].

Hilbert space models of question order effects predict that a so-called ‘QQ
equality’ should be satisfied by the experimental data, for every initial state
|ψ〉 [9]. The QQ equality is important, as it provides a ‘parameter-free test of
quantum models for question order effects’, valid for projection operators of arbi-
trary dimension. Interestingly enough, this equality is approximately satisfied by
some of the data collected by Moore, like those of the ‘Clinton/Gore experiment’,
while it is significantly violated by others, like the ‘Rose/Jackson experiment’.
Furthermore, some authors [15,16], including ourselves [17], lately observed that
a special version of the quantum model, the ‘non-degenerate model’, should sat-
isfy further parameter-free conditions, which are instead generally violated by
the data. As we will analyse more specifically in Sect. 5, we can thus already
draw a major result from the preceding discussion: at the level of question order
effects, not only when they are simultaneously present with response replica-
bility, quantum modeling in Hilbert space is problematical, and a more general
probabilistic framework becomes necessary.

3 An Operational and Realistic Framework for Cognitive
Entities and Measurements

In this section, we apply an operational and realistic framework to describe
cognitive situations of the type mentioned in Sect. 2 [18]. This framework rests
on the operational and realistic foundations of quantum physics and quantum
probability that were formalized by the SCoP formalism [25]. Here, the terms
‘operational’ and ‘realistic’ have a precise meaning. Our approach to cognition is
‘operational’, in the sense that the basic notions (states, measurements, outcomes
and their probabilities, etc.) are defined in terms of the concrete operations that
are performed in the laboratory of experimentation. Furthermore, our approach
to cognition is ‘realistic’, in the sense that the state of the cognitive entity is
interpreted as a ‘state of affairs’, hence it expresses a reality of the cognitive
entity, albeit a reality not of a physical but of a conceptual nature.

In experimental psychology, we can introduce ‘psychological laboratories’,
that is, spatio-temporal domains where cognitive experiments are performed. Let
us focus ourselves on opinion polls, where a large number of human participants
are asked questions in the form of structured questionnaires, and let the questions
involve a ‘cognitive entity’ S (a concept, a combination of concepts, or a more
complex conceptual situation). The experimental design, the questionnaire and
the cognitive effect under study define a ‘preparation’ of the cognitive entity
S, which is thus assumed to be in an ‘initial state’ pS , and all participants
interact with the cognitive entity in the state pS . Suppose that the question,
or ‘yes-no measurement’, A is asked to a participant as part of the opinion
poll. The measurement has the possible outcomes Ay and An, depending on
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whether the response of the participant was ‘yes’ or ‘no’. The interaction of the
participant with the cognitive entity S, when the dichotomic measurement A is
performed, thus leads to one of the two possible outcomes, and generally also
gives rise to a change of the state of the entity from pS to either pAy

or pAn
,

depending on whether the response is ‘yes’ or ‘no’. Hence, the participant acts
as a measurement context for the cognitive entity in the state pS . If the same
measurement A is performed by making use of a large sample of participants, a
statistics of responses is collected, which determines in the large number limit
a ‘transition probability’ μ(pAi

, eA, pS) that the initial state pS of the cognitive
entity S changes to the state pAi

, i ∈ {y, n}, under the effect of the context eA

determined by the measurement A.
The above framework formalizes the situation of the ‘Clinton/Gore experi-

ment’ mentioned in Sect. 2, where the participant is asked to answer ‘yes’ or ‘no’
to the question: “Is Gore honest and trustworthy?”. If, for a given participant,
the response is ‘yes’, the initial state pHonesty of the conceptual entity Honesty
and Trustworthiness (which we will simply denote Honesty, for the sake of sim-
plicity) changes to a new state pAy

, which is the state the entity is in when
the choice ‘Gore is honest’ is added to its original content. Let us now suppose
that a second question B is asked to the participants as part of the opinion
poll. This defines a measurement B, with possible outcomes By and Bn, on the
cognitive entity in the state pS . Also in this case, the response determines a
change of the state of S from pS to either pBy

or pBn
, depending on whether the

response is ‘yes’ or ‘no’. In the large number limit, we get a transition probability
μ(pBj

, eB , pS) that the initial state pS of S changes to the state pBj
, j ∈ {y, n},

under the effect of the context eB determined by the measurement B.
The measurement B formalizes the situation where the participant is asked to

answer ‘yes’ or ‘no’ to the question: “Is Clinton honest and trustworthy?”. If, for a
given participant, the response is ‘yes’, the initial state pHonesty of the conceptual
entity Honesty and Trustworthiness changes to a new state pBy

, which is the state
the entity is in when the choice ‘Clinton is honest’ is added to its original content.
Then, let us suppose that each participant is first asked question A and then
question B. This defines a new measurement AB, with possible outcomes AiBj ,
i, j ∈ {y, n}, on the cognitive entity S in the state pS . The probability pS(AiBj)
of obtaining the outcome AiBj in the measurement AB, i.e. the outcome Ai

when performing A, and then Bj when performing B, i, j ∈ {y, n}, on S in
the state pS , is given by the product pS(AiBj) = μ(pAi

, eA, pS)μ(pBj
, eB , pAi

).
Finally, let us suppose that each participant is first asked question B and then
question A. This defines a new measurement BA, with possible outcomes BjAi,
i, j ∈ {y, n}, on the cognitive entity S in the state pS . The probability pS(BjAi)
of obtaining the outcome BjAi in the measurement BA, i.e. the outcome Bj

when performing B, and then Ai when performing A, i, j ∈ {y, n}, on S in the
state pS , is given by the product pS(BjAi) = μ(pBj

, eB , pS)μ(pAi
, eA, pBj

).
To conclude this section, we stress that the state of a cognitive entity

describes an element of a conceptual reality that is independent of the subjective
beliefs of the persons questioning about that entity. Such subjective beliefs are
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rather incorporated in the measurement context, which describes the cognitive
interaction between the entity and the persons deciding on it. As such, our oper-
ational and realistic approach to cognition departs from other approaches that
apply the quantum formalism to model cognitive phenomena [3,7,8].

4 The GTR-model for Dichotomic Measurements

In this section, we present a geometric representation, in the 3-dimensional
Euclidean space R

3, of the operational and realistic entities we have introduced
in Sect. 3, focusing on the representation of the sequential measurements AB
and BA. Our results rest on [17], to which we refer for technical details and
calculations. The model presented here is an application of the ‘general tension-
reduction (GTR) model, where quantum probabilities are recovered as ‘universal
averages’ over all possible forms of non-uniform fluctuations [21,22]. When the
state space is Hilbertian, as in quantum physics, the GTR-model reduces to the
so-called ‘extended Bloch representation’ (EBR) of quantum theory [20].

Let us firstly consider individual measurements with two outcomes on a cog-
nitive entity, and study how they are represented in the EBR representation. The
cognitive entity S is represented by an abstract point particle that can move on
the surface of a 3-dimensional unit sphere, called the ‘Bloch sphere’. The ini-
tial state pS of S is represented by a state of the point particle on the sphere
corresponding to a given position xψ on the sphere. Dichotomic measurements
on S are then represented by 1-dimensional breakable and elastic structures,
anchored at two antipodal points, corresponding to the two possible outcome
states. More precisely, the measurement A is represented by a breakable elas-
tic band stretched between two points ay and an = −ay, ‖ay‖ = ‖an‖ = 1,
corresponding to the two outcomes Ay and An, respectively. Analogously, the
measurement B is represented by a breakable elastic band stretched between
two points by and bn = −by, ‖by‖ = ‖bn‖ = 1, corresponding to the two
outcomes By and Bn, respectively. Accordingly, the outcome states pAi

and pBj

are represented by the positions ai and bj , respectively, i, j ∈ {y, n}.
We assume that the points x of the two breakable elastics are parameterized

in such a way that the end points coordinate x = 1 and x = −1 correspond
to the outcome ‘yes’ and ‘no’, respectively, with x = 0 describing the center of
the elastics, also coinciding with the center of the Bloch sphere. Each elastic
represents a possible dichotomic measurement, and is described not only by its
orientation within the sphere, but also by ‘the way’ it can break. More con-
cretely, breakability of the elastic representing the measurement A is formalized
by a probability distribution ρA(x|ψ) such that

∫ x2

x1
ρA(x|ψ)dx is the probability

that the elastic breaks in the interval [x1, x2], −1 ≤ x1 ≤ x2 ≤ 1, when the
measurement A is performed and the point particle is in the initial position xψ.
The condition

∫ 1

−1
ρA(x|ψ)dx = 1 guarantees that the elastic will break in one

of its points, with certainty, i.e. that the measurement will produce an outcome.
Let us now describe the measurement A on the cognitive entity S in the state

pS as represented in the Bloch sphere. When the measurement A is performed
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Fig. 1. The unfolding of the A-measurement, here producing outcome An.

and the point particle is in the initial position xψ, a certain probability distribu-
tion ρA(x|ψ) is actualized, which describes the way the A-elastic band will break,
in accordance with the fluctuations that are present in the measurement context
eA. Then, the point particle “falls” from its original position xψ, orthogonally
onto the A-elastic band, and sticks to it. Next, the elastic breaks in some point,
and its two broken fragments contract toward the corresponding anchor points,
bringing with them the point particle (see Fig. 1). If xA is the position of the
point particle onto the elastic, i.e. xA = xψ · ay = cos θA, and the elastic breaks
in a point λ, with xA < λ, then the particle attached to the elastic fragment
[−1, λ] is drawn toward the position ay. In this case, we say that the measure-
ment A gives the outcome ‘yes’. If instead xA > λ, then the particle attached
to the elastic fragment [λ, 1] is drawn toward the position an. In this case, we
say that the measurement A gives the outcome ‘no’. The transition probability
pψ(Ay) that the initial position xψ collapses to ay, and pψ(An) that the initial
position xψ collapses to an, are given by:

pψ(Ay) =
∫ cos θA

−1

ρA(x|ψ)dx pψ(An) =
∫ 1

cos θA

ρA(x|ψ)dx (1)

and represent the transition probabilities μ(pAy
, eA, pS) and μ(pAn

, eA, pS),
respectively, which we have introduced in Sect. 3.

It is worth noticing that: (i) the probabilities in (1) formalize a lack of knowl-
edge about the measurement process, i.e. the breaking point λ corresponds
to a ‘hidden measurement-interaction’; (ii) the Born rule of quantum proba-
bility is recovered when ρA(x|ψ) = 1

2 , i.e. when the probability distribution
is globally uniform, in which case (1) becomes: pψ(Ay) = 1

2 (1 + cos θA) and
pψ(An) = 1

2 (1 − cos θA). This result is not limited to dichotomic measurements,
but has a general validity, i.e. it can be naturally generalized to degenerate and
non-degenerate measurements having an arbitrary number of outcomes [20–22].
For the transition probabilities pψ(By) and pψ(Bn), associated with measure-
ment B, one has the same formulae, simply replacing θA by θB and ρA(x|ψ)
by ρB(x|ψ), with θB now defining the landing point xB = xψ · by = cos θB of
the point particle onto the B-elastic band, and ρB(x|ψ) being the probability
distribution associated with the latter (generally different from ρA(x|ψ)).
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Let us then consider sequential measurements on a cognitive entity and study
how they are represented in the GTR-model. Suppose that we firstly perform the
measurement A and then the measurement B. We thus have the four transition
probabilities pψ(AiBj) that the point particle position xψ, representing the ini-
tial state, first changes to the position ai and then to the position bj (sequential
outcome Ai and then Bj), i, j ∈ {y, n}. If we set cos θ = ay · by, we can first
write the conditional probabilities pAi

(Bj) that the position ai changes to the
position bj , i, j ∈ {y, n}, as

pAy
(By) =

∫ cos θ

−1
ρB(x|Ay)dx pAy

(Bn) =
∫ 1

cos θ
ρB(x|Ay)dx

pAn
(By) =

∫ − cos θ

−1
ρB(x|An)dx pAn

(Bn) =
∫ 1

− cos θ
ρB(x|An)dx (2)

where ρB(x|Ay) (respectively ρB(x|An)) is the probability distribution actual-
ized during the measurement B, knowing that the measurement A produced the
transition from xψ to ay (respectively to an). Now, for every i, j ∈ {y, n}, we
have pψ(AiBj) = pψ(Ai)pAi

(Bj) for the transition probabilities in the sequential
measurement AB. More explicitly, using (2) and (1), we can write:

pψ(AyBy) =
∫ cos θ

−1
ρB(x|Ay)dx

∫ cos θA

−1
ρA(x|ψ)dx

pψ(AyBn) =
∫ 1

cos θ
ρB(x|Ay)dx

∫ cos θA

−1
ρA(x|ψ)dx

pψ(AnBy) =
∫ − cos θ

−1
ρB(x|An)dx

∫ 1

cos θA
ρA(x|ψ)dx

pψ(AnBn) =
∫ 1

− cos θ
ρB(x|An)dx

∫ 1

cos θA
ρA(x|ψ)dx (3)

and by exchanging the role of A and B in (3), we get similar expressions for the
probabilities pψ(ByAy), pψ(ByAn), pψ(BnAy) and pψ(BnAn) of the sequential
measurement BA. Clearly, these sequential probabilities coincide by construction
with the probabilities pS(AiBj) and pS(BjAi), i, j ∈ {y, n}, given in Sect. 3.

Our general modeling of cognitive entities, states, dichotomic measurements
and sequential measurement processes is thus completed. One realizes at once
that it incorporates quantum aspects, as context induced changes of state, pure
potentiality, unavoidable and uncontrollable uncertainty. In this sense, one can
say that the model that we have presented is ‘quantum-like’. However, it is
more general than the standard Hilbert space representation, as the Born rule
of quantum probability is only recovered in the specific case in which ρA and ρB

are both globally uniform probability distributions (describing uniform elastic
structures, having the same probability to break in all their points).

In order to find explicit solutions, to be used in specific applications, one
needs to add some reasonable constraints to the measurements A and B, in
particular for what concerns the probability densities ρA and ρB . Before doing
so, let us observe that the elastic mechanism we have described also provides a
possible representation of what we intuitively feel when confronted with decision
contexts, and a neural/mental equilibrium is progressively built, resulting from
the balancing of the different tensions between the initial state and the available
mutually excluding answers. Indeed, an elastics stretched between two antipodal



Quantum Cognition Beyond Hilbert Space 89

points in the Bloch sphere can be seen as an abstract representation of such
equilibrium, which at some moment will be altered in a non-predictable way
(when the elastic breaks), causing a sudden and irreversible process during which
the initial conceptual state is drawn to one of the possible answers.

The compatibility of the GTR-model with our intuitive understanding of the
human cognitive processes remains such also when psychological measurements
with an arbitrary number N of outcomes are considered [20–22]. The elastics are
then replaced by disintegrable hyper-membranes having the shape of (N − 1)-
dimensional simplexes. Similarly to the N = 2 situation, the latter can still be
viewed not only as mathematical objects naturally representing the measure-
ments’ probabilities, and their relations, but also as a way to ‘give shape’ to the
different mental states of equilibrium, characterized by the existence of differ-
ent competing ‘tension lines’ going from the on-membrane position of the point
particle to the N vertices of the simplex, representing the different answers.

These ‘tension-reduction processes’ can also describe situations where the
conflicts between the competing answers cannot be fully resolved, so that the
system is brought into another state of equilibrium, between a reduced set of
possibilities, which in the GTR-model correspond to lower-dimensional sub-
simplexes [20–22]. These are situations describing sub-measurements of a given
mesurement, called degenerate measurements in quantum mechanics. As we see
in Sect. 7, they may have some relevance in the description of unpacking effects.

Let us now provide an exact solution to the modeling of data about sequential
measurements. For this, we will assume in the following that ρA(x|ψ) does not
depend on the initial state and that it is ‘locally uniform’, i.e. only characterized
by two parameters εA ∈ [0, 1] and dA ∈ [−1+ εA, 1− εA], such that: ρA(x) = 0 if
x ∈ [−1, dA − εA)∪ (dA + εA, 1], and ρA(x) = 1/2εA if x ∈ [dA − εA, dA + εA]. To
obtain compact expressions, we also assume that cos θA ∈ [dA−εA, dA+εA]. If we
describe in a similar way a second dichotomic measurement B, then in addition
to the three parameters εA, dA and θA, characterizing A, we have three more
parameters εB , dB and θB , characterizing B, and a supplementary parameter
θ, defined by cos θ = ay · by, characterizing the relative orientation of the two
measurements within the Bloch sphere. In the following, we also assume that
cos θ ∈ [dA − εA, dA + εA] and cos θ ∈ [dB − εB , dB + εB ]. Then, if we perform in
sequence the measurement A followed by the measurement B (which we denote
AB), the sequential measurement has the 4 outcomes AiBj , i, j ∈ {y, n}, and the
associated probabilities are given by the products pψ(AiBj) = pψ(Ai)pAi

(Bj).
Performing the integrals (1), one obtains:

pψ(AyBy) = 1
4 (1 + cos θ−dB

εB
)(1 + cos θA−dA

εA
)

pψ(AyBn) = 1
4 (1 − cos θ−dB

εB
)(1 + cos θA−dA

εA
)

pψ(AnBy) = 1
4 (1 − cos θ+dB

εB
)(1 − cos θA−dA

εA
)

pψ(AnBn) = 1
4 (1 + cos θ+dB

εB
)(1 − cos θA−dA

εA
) (4)

and by exchanging the role of A and B in (4), we get similar expressions for the
probabilities pψ(ByAy), pψ(ByAn), pψ(BnAy) and pψ(BnAn) of the sequential
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measurement BA. These systems of equations are underdetermined, as the 8
outcome probabilities can determine all the parameters but one. Thus, we are
free to choose one of the parameters, for instance εA, and by doing so all the
others will be fixed. Since we must have εA(1 + dA

εA
) ≤ 1, i.e. εA ≤ 1/(1 + dA

εA
),

this means that if dA

εA
is different from zero, it is not be possible to model the

data by means of the standard quantum formalism (in a 2-dimensional Hilbert
space), as the Born rule corresponds to the choice dA = 0 and εA = 1.

5 Modeling Moore’s Data

We now use the system of Eq. (4), for the sequential measurement AB, and its
reversed order version, for the sequential measurement BA, to ‘exactly’ model
the data obtained in a Gallup poll conducted in 1997, as presented in a review of
question order effects by Moore [24]. More precisely, we consider the probabilities
given by [26] (see also [9]), where the participants who did not provided a ‘yes’ or
‘no’ answer have been excluded from the statistics. In one of the experiments, a
thousand participants were subjected to a pair of questions, asked in a sequence.
The first question, which we associate with measurement A, is Clinton’s ques-
tion, and the second question, which we associate with measurement B, is Gore’s
question, as we described them in Sect. 3. Half of the participants were submit-
ted to the two questions in the order AB (first ‘Clinton’ then ‘Gore’) and the
other half in the reversed order BA, and the collected response probabilities are:
p(AyBy) = 0.4899, p(AyBn) = 0.0447, p(AnBy) = 0.1767, p(AnBn) = 0.2887,
p(ByAy) = 0.5625, p(ByAn) = 0.1991, p(BnAy) = 0.0255, p(BnAn) = 0.2129.

These probabilities show a significant question order effect. Inserting them
in (4), and in its reversed order version, one obtains, after some calculations,
the following explicit values for the model’s parameters (we refer to [17] for a
detailed analysis): dA

εA
= 0.1545, cos θA

εA
= 0.2237, cos θ

εA
= 0.6316, dB

εB
= −0.2961,

cos θB

εB
= 0.2271 and cos θ

εB
= 0.5367.

We see at once that the solution does not admit a representation by means of
the Born rule, considering that dA

εA
, dB

εB
�= 0. Furthermore, we see that we cannot

have εA = εB and dA = dB , i.e. the solution requires the two measurements to
be characterized by different rules of probabilistic assignment (ρA �= ρB). The
structure of the probabilistic data is thus irreducibly non-Hilbertian. If we choose
εA = 1/2, we obtain for the other parameters (writing them in approximate
form, to facilitate their reading): εA = 0.5, εB ≈ 0.59, dA ≈ 0.08, dB ≈ −0.17,
cos θ ≈ 0.32, cos θA ≈ 0.11, and cos θB ≈ 0.13 – hence, θ ≈ 72◦, θA ≈ 84◦, and
θB ≈ 74◦.

In another experiment reported by Moore, always performed on a thou-
sand participants, the opinion poll consisted in a pair of questions about the
baseball players Pete Rose and Shoeless Joe Jackson. More precisely, question
A was: “Do you think Rose should or should not be eligible for admission to
the Hall of Fame?”. Similarly, question B was: “Do you think Jackson should
or should not be eligible for admission to the Hall of Fame?”. The collected
response probabilities are (also in this case we use the data given in [9,26]):
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Fig. 2. The (a) Clinton/Gore and (b) Rose/Jackson probability distributions.

p(AyBy) = 0.3379, p(AyBn) = 0.3241, p(AnBy) = 0.0178, p(AnBn) = 0.3202,
p(ByAy) = 0.4156, p(ByAn) = 0.0671, p(BnAy) = 0.1234, p(BnAn) = 0.3939,
and the modeling now gives [17]: dA

εA
= −0.0995, cos θA

εA
= 0.2245, cos θ

εA
= 0.6224,

dB

εB
= 0.4369, cos θB

εB
= 0.4023 and cos θ

εB
= 0.4578. Again, we can observe that

these values are irreducibly non-Hilbertian. For εA = 1/2, we obtain: εA = 0.5,
εB ≈ 0.68, dA ≈ −0.05, dB ≈ 0.30, cos θ ≈ 0.31, cos θA ≈ 0.11, cos θB ≈ 0.27.

The two solutions are graphically represented in Fig. 2. The two black dots
denote the values of cos θA and cos θB , and the black regions are those where
the probability distributions are zero (corresponding to the unbreakable elastic
regions). What strikes the eye is that the Clinton/Gore and Rose/Jackson solu-
tions are structurally very similar, despite the fact that only the former (almost)
obey the ‘QQ equality’ [9,26]. This is because the latter is insufficient to fully
characterize a Hilbertian structure and that both solutions are actually intrinsi-
cally non-Hilbertian [17].

It is worth mentioning that the QQ equality, i.e. the equality

pψ(AyBy) − pψ(ByAy) + pψ(AnBn) − pψ(BnAn) = 0 (5)

simply follows by taking the average 〈ψ|Q|ψ〉 of the operatorial identity Q = 0,
where Q ≡ PA

y PB
y PA

y − PB
y PA

y PB
y + PA

n PB
n PA

n − PB
n PA

n PB
n = 0 [17,18]. Now,

it has been pointed out that the Clinton/Gore data are different from the
Rose/Jackson, as for the latter, participants also received some sequential back-
ground information before answering the two questions, and this would explain
why, contrary to the Clinton/Gore data, they violate the QQ equality. Indeed, if
this supply of information is modeled by using two unitary operators U (for the
information given before A) and V (for that given before B), we now have to
write pψ(AiBj) = 〈ψ|U†PA

i V †PB
j V PA

i U |ψ〉, and similarly for pψ(BjAi). Thus,
the relevant operator becomes:

Q′ = U†PA
y P ′B

y PA
y U − V †PB

y P ′A
y PB

y V + U†PA
n P ′B

n PA
n U − V †PB

n P ′A
n PB

n V

= [P ′B
y − U†P ′B

y U ] + [V †P ′A
y V − P ′A

y ] + [U†P ′B
y UP ′A

y − P ′B
y V †P ′A

y V ]

+ [P ′A
y U†P ′B

y U − V †P ′A
y V P ′B

y ] (6)
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where we have defined P ′A
i ≡ U†PA

i U , P ′B
j ≡ V †PB

j V , i, j ∈ {y, n}. Since the
average 〈ψ|Q′|ψ〉 can now in principle take any value within the interval [−1, 1]
(unless U = V = I), this could explain why the QQ equality is violated in the
Rose/Jackson situation.

The above argument, however, is weakened by the observation that there are
other quantum equalities that are strongly disobeyed both by the Clinton/Gore
and Rose/Jackson data, like for instance, in the situation of non-degenerate
measurements [17,18]: q′ ≡ pψ(AyBn)pψ(AnBn) − pψ(AnBy)pψ(AyBy) = 0,
which must be obeyed also when participants receive some background informa-
tion. Indeed, we have in this case pψ(AiBj) = |〈Ai|U |ψ〉|2|〈Bj |V |Ai〉|2, where
PA

i = |Ai〉〈Ai| and PB
j = |Bj〉〈Bj |, i, j ∈ {y, n}, so that we can write:

q′ = |〈Ay|U |ψ〉|2|〈An|U |ψ〉|2
× [|〈Bn|V |Ay〉|2|〈Bn|V |An〉|2 − |〈By|V |An〉|2|〈By|V |Ay〉|2] (7)

Using |〈By|V |An〉|2 = 1−|〈Bn|V |An〉|2 and |〈By|V |Ay〉|2 = 1−|〈Bn|V |Ay〉|2, it
is easy to check that the terms in the above bracket cancel, so that q′ = 0. Thus,
we have a genuine quantum equality which must be satisfied also when some
information is sequentially provided to the participants. However, it is strongly
violated by the experimental data [17].

6 Response Replicability

As emphasized in [13], the standard quantum formalism is unable to jointly
model question order effects and response replicability. The reason is simple to
understand: response replicability, the situation where a question, if asked a sec-
ond time, receives the same answer, even if other questions have been answered
in between, requires commuting observables to be modeled. Indeed, since we
have the operatorial identity PB

n PA
y PB

n − PA
y PB

n PA
y = (PB

y − PA
y )[PB

y , PA
y ], it

follows that the difference pψ(BnAy)−pψ(AyBn) can generally be non-zero only
if [PB

y , PA
y ] �= 0, i.e. the spectral families associated with the A and B mea-

surements do not commute. Thus, not only an exact description of question
order effects requires to go beyond-quantum, but the combination of the latter
with response replicability also creates a contradiction, which persists even when
measurements are represented by positive-operator valued measures [13,14].

The reason why the above contradiction cannot be eliminated is that in
quantum theory an observable automatically determines, via the Born rule, the
outcome probabilities. This means that, once the initial state is given, and the
possible outcomes are also given, there is only one way to choose them: that
prescribed by the Born rule. This means that, if a specific participant were able
to interact with a cognitive entity by employing different ‘ways of choosing’,
at least one of them has to be non-Bornian. In our opinion, such a situation
precisely occurs when considering the effect of response replicability. Indeed,
in this case there are at least two possible ways of choosing an outcome from
the memory of the previous interaction. In the standard formalism there is no
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place to describe such a memory effect, hence the impossibility to model it in a
consistent way, beyond the so-called ‘adjacent replicability’ [14], which is built-in
in all first-kind measurements. On the other hand, in the richer structure of the
GTR-model, changes in the way outcomes are selected can be easily modeled
as changes in the measurements’ probability distributions [17]. In other words,
the reason why ‘separated replicability’ can be taken into account in the GTR-
model, jointly with possible question order effects, is that it allows not only to
describe how the action of contexts can produce state transitions, but also how
state transitions can determine a change of future contexts, via a change of the
associated probability distributions.

To see how the above works, let us consider the sequence of three mea-
surements ABA on a given cognitive entity (see also [17] for a more general
discussion). Let ρA be the probability distribution describing the measurement
A, and let us suppose that the outcome is Ay. We do not need to associate any
change of the probability distribution ρA to this transition, as measurements are
already first kind measurements in the GTR-model, as in quantum theory. Then,
let us suppose that, when the measurement B is performed, with the entity now
in the state associated with outcome Ay, the outcome By is obtained. Again,
we do not need to associate any change of the probability distribution ρB to
this second transition, but we now have to update the probability distribution
describing the measurement A, to guarantee that, if we repeat the latter, the
outcome Ay is certain in advance. In other words, we now associate a probabil-
ity distribution transition ρA → ρ′

A, to ensure response replicability. Similarly,
when the measurement A is performed, giving Ay with probability 1, there will
be a transition ρB → ρ′

B , to ensure that a subsequent measurement B will give
By with certainty, and from that point on subsequent A or B measurements can
only deterministically reproduce the same outcomes, with no further changes of
contexts. More precisely, the probability distributions ρ′

A and ρ′
B can be obtained

by simple truncation and renormalization [17]:

ρ′
A(x) =

ρA
∫ cos θ

−1
ρAdx

χ[−1,cos θ)(x) ρ′
B(x) =

ρB
∫ cos θ

−1
ρBdx

χ[−1,cos θ)(x) (8)

Fig. 3. The measurement sequence BA, in the GTR-model.
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where χI(x) is the characteristic function of the interval I. Figure 3 illustrates
this ‘double transition process’, where not only states but also probability dis-
tributions can change. Figure 3(a) represents the situation following the first
measurement A, the outcome being Ay. Figure 3(b) describes the subsequent
measurement B, the outcome being By, also producing the transition from ρA

to ρ′
A. Figure 3(c) describes the second measurement A, giving again outcome

Ay, with certainty, which is also accompanied by the transition from ρB to ρ′
B .

7 Unpacking Effects

In this final section, we analyze the so-called ‘unpacking effects’, usually mod-
eled in the quantum formalism by assuming that the participants actually per-
form non-compatible sequential measurements, in a predetermined order [27].
Our thesis is that, if we consider these effects in relation to the notion of sub-
measurement, they point to an inadequacy of the quantum formalism in Hilbert
space, as they describe situations that are incompatible with the quantum rep-
resentation of degenerate measurements.

Two kinds of unpacking are usually considered, ‘implicit’ and ‘explicit’.
The implicit unpacking is when a question is addressed in two different ways,
a ‘packed way’ and an ‘unpacked way’. More precisely, if A and B are two
dichotomic measurements with outcomes Ay and An, and By and Bn, respec-
tively, we can define a measurement A′, with outcomes A′

y and A′
n, where A′

n is
the same as An, and A′

y describes a possibility that is logically equivalent to Ay,
expressed as an alternative over two mutually exclusive and exhaustive possibil-
ities, defined by the outcomes of B. In other words, A′

y = (Ay ∧By)⊕ (Ay ∧Bn),
where the symbol ⊕ denotes the logical exclusive conjunction.

An example adapted from a list of experiments performed by Rottenstre-
ich and Tversky [28] is the following. Measurement A is the question: “Is the
winner of next US presidential election a non-Democrat?”, with outcome Ay

and An corresponding to the answers “Yes, is a non-Democrat,” and “No, is a
Democrat,” respectively. Measurement B is the question: “If the winner of next
US presidential election is a non-Democrat, will be an Independent?”, with out-
come By and Bn corresponding to the answers “Yes, an Independent,” and “No,
not an Independent,” respectively. On the other hand, the implicitly unpacked
measurement A′ is defined by the question: “Is the winner of the next presi-
dential election an Independent or Republican rather than a Democrat?”, with
outcome A′

y corresponding to the (unpacked) answer “Yes, is an Independent or
a Republican rather than a Democrat” and outcome A′

n to the answer “No, is a
Democrat,” which is the same as An.

Following Sect. 3, we denote by pS the initial state of the conceptual entity S,
which in our case is: The winner of next US presidential election. Moreover, we
denote by pAi

and pA′
i
the final states of S associated with the outcomes Ai and

A′
i, i ∈ {y, n}, respectively. Then, we can write the corresponding probabilities

as pS(Ai) = μ(pAi
, eA, pS) and pS(A′

i) = μ(pA′
i
, eA′ , pS), i ∈ {y, n}, where eA

and eA′ are the contexts associated with A and A′, respectively, causing the
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transitions from the initial state pS to the observed outcome states pAi
and

pA′
i
, respectively. If pS(A′

y) is found to be sensibly different from pS(Ay), one
says that there is an unpacking effect, i.e. an effect where logically equivalent
descriptions of a same possibility can produce different probabilities, thus violat-
ing the so-called principle of ‘description invariance’. More precisely, one speaks
of ‘superadditivity’ if pS(Ay) > pS(A′

y) and ‘subadditivity’ if pS(Ay) < pS(A′
y).

Let us also describe the situation corresponding to the ‘explicit unpacking
effect’. In this case the dichotomic measurement A′ is further decomposed into a
measurement having three distinct outcomes, transforming the implicit alterna-
tive into an explicit one. More precisely, this fully unpacked measurement, which
we denote by A′′, now has the three outcomes A′′

yy, A′′
yn and A′′

n, and the associ-
ated states pA′′

yy
, pA′′

yn
and pA′′

n
, respectively, where A′′

n = An, A′′
yy = Ay ∧By and

A′′
yn = Ay ∧ Bn. Thus, participants can now choose among three distinct possi-

bilities, with probabilities pS(A′′
i ) = μ(pA′′

i
, eA′′ , pS), i ∈ {yy, yn, n}. Again, one

speaks of superadditivity if pS(Ay) > pS(A′′
yy) + pS(A′′

yn) and of subadditivity if
pS(Ay) < pS(A′′

yy) + pS(A′′
yn).

Since superadditivity and subadditivity are in general both possible, the usual
quantum analysis exploits the interference effects as a way to explain, by means
of a single mechanism, both possibilities, as interference terms can take both
positive and negative values [27]. The assumption behind this approach is that
participants act in a sequential way, all with the same order for the sequence.
Accordingly, one associates the non-commuting projection operators PA

i and PB
j

to the outcomes Ai and Bj , respectively, i, j ∈ {y, n}, so that one can write, for
every i ∈ {y, n}, PA

i = PB
y PA

i PB
y + PB

n PA
i PB

n + Ii, for every i ∈ {y, n}, where
PB

n = I − PB
y and Ii = PB

y PA
i PB

n + PB
n PA

i PB
y is the interference contribution,

responsible of the superadditivity or subadditivity effects.
The above analysis, however, has some weak points. Firstly, the above pro-

jection operators do not commute, hence the order of evaluation in the sequence
becomes important, and one needs to assume that all participants always start
by answering first the question B and only then the question A. However, since
this sequentiality is not part of the experimental protocol, nothing guarantees
that it will be carried out in practice, instead of considering A′′

yy and A′′
yn as

outcomes of a single non-sequential measurement. Secondly, it is incompatible
with the natural interpretation of the packed and explicitly unpacked outcomes
as belonging to two measurements that are logically related, in the sense that A
can be understood as the degenerate version of the non-degenerate measurement
A′′ or, to put it another way, as a sub-measurement of A′′.

Considering the packed measurement A and the associated explicitly
unpacked measurement A′′, the question is: How should we use the quantum
formalism to model these experimental situations? In both measurements we
have a cognitive entity in the same initial state pS . We also have outcomes that
are the same for both measurements, An and A′′

n, which therefore should be asso-
ciated with the same state, describing the same intersubjective reality. Then, we
have outcomes that are described in a packed way in one measurement and in
an explicitly unpacked way in the other – in our example the outcome Ay that
is decomposed into the two alternatives A′′

yy and A′′
yn.
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If quantum theory is taken as a unitary and coherent framework, one should
then be able to use the notion of ‘degenerate measurement’ (the quantum notion
of sub-measurement) to model these two logically related experimental situa-
tions. Considering the previous example of the entity The winner of next US pres-
idential election, it is clear that a ‘non-Democrat’ president is either a ‘Republi-
can’ or an ‘Independent,’ and that ‘Republican’ and ‘Independent’ presidents are
always ‘non-Democrat’ presidents. This means that the ‘Republican’ or the ‘Inde-
pendent’ specification is an additional specification for the ‘non-Democrat’ state,
and this means that when comparing an experimental situation where this spec-
ification is made, to a situation where it is not made, the latter should be consid-
ered as a sub-measurement of the former, i.e. a ‘degenerate measurement’ in the
quantum jargon. Indeed, when the outcome is just ‘Non-Democrat’, the exper-
imenter has no information about the ‘Independent’ or ‘Republican’ element,
this being not specified in the outcome state. Also, since ‘Republican’ and ‘Inde-
pendent’ are excluding possibilities, within the quantum formalism one should
certainly describe them by two orthogonal subspaces, or two orthogonal states.
Considering all this, one would thus expect to get: pS(Ay) = pS(A′′

yy)+ pS(A′′
yn)

and pS(An) = pS(A′′
n).

However, since explicit unpacking effects are observed (which are generally
stronger than the implicit ones), equalities like the above can be expected to be
significantly violated, meaning that sub-measurements in psychology would not
allow themselves to be consistently represented in the Hilbert space quantum
formalism. Again, this can be attributed to the fact that the latter only admits
a single ‘way of choosing’ the available outcomes, the ‘Born way’, whereas it is
more natural to assume that the selection process can generally depend on the
overall cognitive situation that is presented to the participants. Indeed, partici-
pants’ propensity of choosing a given outcome certainly depends on the nature
of the alternatives that are presented to them, and this is a contextuality effect
that the quantum formalism is unable to describe. Yet, it can be represented in
the GTR-model and its EBR implementation, by assuming that the probability
distribution ρA characterizing the degenerate measurement A is not the same
as the probability distribution ρA′′ describing the corresponding non-degenerate
versions A′′, associated with an explicitly unpacked situation.

Concerning the implicitly unpacked case, one would also expect, if the
standard quantum formalism applied, that pS(An) = pS(A′

n), implying that
pS(Ay) = pS(A′

y). However, since the packed and implicitly unpacked mea-
surements are dichotomic measurements, sharing the same state pAn

= pA′
n
,

if follows that the two states corresponding to the outcomes Ay and A′
y =

(Ay ∧ By) ⊕ (Ay ∧ Bn) should also be equal, implying the equality of the asso-
ciated transition probabilities. Thus, also in this case a Hilbert space quantum
formalism cannot be used to model the data. In fact, even the EBR is too specific
in this case, as it also relies on the Hilbert space structure for the representation
of states (in the EBR, if two non-degenerate two-outcome measurements share
an eigenstate, they necessarily also share the other one, as to each point on the
3-dimensional Bloch sphere there is only one corresponding antipodal point).
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This is a situation where the more general GTR-model is required, as it allows
one to describe two dichotomic measurements by means of two probability dis-
tributions defined on line segments that share one of their vertex points (corre-
sponding to the outcome An), but not the other.

To conclude, we observe that in [28] the protocol was such that respondents
were partitioned in four groups, each group responding one of the four differ-
ent ‘yes/no’ alternatives for The winner of the next US presidential election:
‘Non-Democrat’, ‘Independent rather than Republican or Democrat’, ‘Repub-
lican rather than Independent or Democrat’ and ‘Independent or Republican
rather than Democrat’. In other words, they were actually performing a single
measurement with five distinct outcomes. The experimental situation we have
discussed is different, although of course related, and to apply the data to our
analysis one should repeat the experiment by splitting it into three measure-
ments: (A) one with outcomes ‘non-Democrat’ and ‘Democrat’; (A′) another
one with outcomes ‘Independent or Republican rather than a Democrat’ and
‘Democrat’; (A′′) and a last one with outcomes ‘Independent’, ‘Republican’ and
‘Democrat’.
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15. Boyer-Kassem, T., Duchêne, S., Guerci, E.: Testing quantum-like models of judg-
ment for question order effect. Math. Soc. Sci. 80, 33–46 (2016)
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Abstract. How well does a given pitch fit into a tonal scale or key, being
either a major or minor key? This question addresses the well-known phe-
nomenon of tonal attraction in music psychology. Metaphorically, tonal
attraction is often described in terms of attracting and repelling forces
that are exerted upon a probe tone of a scale. In modern physics, forces
are related to gauge fields expressing fundamental symmetries of a the-
ory. In this study we address the intriguing relationship between musical
symmetries and gauge forces in the framework of quantum cognition.

1 Introduction

The application of physical metaphors is quite common in theories of tonal
music. The basic assumption seems to be that our experience of musical motion
is in terms of our experience of physical motion and their underlying forces. For
example, Schönberg speaks of different forces when he explains the direction of
musical forces in cadences where the tonic attracts the dominant [23, p. 58].
In a similar vein, Larson [14] proposed three musical forces generating melodic
completions, which he calls gravity, inertia, and magnetism, respectively. These
forces should be regarded as conceptual metaphors in the sense of Lakoff and
Johnson [12]. They structure musical cognition in analogy with falling, inert and
attracting physical bodies. Physical forces are represented in our naive (common
sense) physics or folk physics.

In contrast to Larson, Mazzola [18] suggested a quite different analogy
between music theory and modern (non-folk) physics. Modern foundational
physics describes forces as being caused by the “exchange” of particular particles.
Forces are basically connected with certain symmetries of the physical micro-
world. Mazzola was probably the first who saw the analogy between physics and
music in connection with the existence of musical symmetries, especially for the
domain of modulation. Although Mazzola did not directly apply quantum theory
for his theoretical models, he made use of a simplified framework for handling
the underlying symmetries.

Mazzola’s insights are of highest importance for the present paper, because
“exchange particles” in the standard model of elementary particle theory emerge
from the quantization of gauge fields mediating symmetry transformations
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 99–111, 2017.
DOI: 10.1007/978-3-319-52289-0 8
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between localized quantum states. Therefore, we investigate the central problem
of tonal attraction in terms of quantum symmetries and gauge fields. The term
“tonal attraction” refers to the idea that melodic or voice-leading pitches tend
toward other pitches in greater or lesser degrees. The present conception sees a
close relationship between the phenomenon of tonal attraction and the existence
of tonal forces. After a short discussion of the music-psychological phenomenon of
tonal attraction in the next section, Sect. 3 provides a quantum-cognitive model
based on a qubit representation of tones along the lines developed in [3]. In
Sect. 4 we outline a gauge theory of musical forces, presenting first the force-free
case as a default model which essentially reproduces the findings of the qubit
model. Second, it is demonstrated how the introduction of local phase factors
can improve the descriptive power of the model. Gauge forces can be regarded
as correction terms that apply to the force-free (default) case. Section 5, finally
derives some general conclusions and gives an outlook on future works, e.g. the
possible relationship of gauge theory and brain wave models [21] similar to exist-
ing proposals by de Barros and Suppes [1], Large [13], and most recently Friston
and coworkers [25].

2 The Phenomenon of Tonal Attraction

In the last twenty years, there has been an enormous progress in the development
of cognitive theories of tonal music. A central issue has been the question of tonal
attraction. How well does a given pitch fit into a tonal scale or tonal key, let
it be a major or minor key? In a celebrated study, Krumhansl and Kessler [11]
asked listeners to rate how well each note of the chromatic octave fitted with a
preceding context, which consisted of short musical sequences in major or minor
keys. This finding plays an essential role in Lerdahl’s and Jackendoff’s generative
theory of tonal music [16] and is one of the main pillars of the structural approach
in music theory.

For illustration, Fig. 1(a) depicts the C major scale arranged around the circle
of fifths comprising 12 semitones within one octave. The tonic, indicated with
“0”, defines the origin of the chroma circle [9]. Open bullets are members of the
C major (diatonic) scale, while black bullets do not belong to the scale. One can
see from Fig. 1(a) that the whole chromatic scale is divided into two connected
subparts: the diatonic part (open bullets) and the remaining (nondiatonic) part.
The empirical results of Krumhansl and Kessler [11] are replicated in Fig. 1(b) for
the C major context. The probe tones are represented as real numbers x = jπ/6
(j = 0, . . . 12, with C(0) ∼= C’(12) one octave higher) at the x-axis corresponding
to the radian angles at the chroma circle Fig. 1(a). The subjective ratings y(x)
are plotted at the y-axis. The results of this experiment clearly show a kind of
hierarchy: the tonic pitch j = 0 which is mostly attracting received the highest
rating, followed by the pitches completing the tonic triad (third j = 1 and
fifth j = 4), followed by the remaining scale degrees, and finally the chromatic,
nonscale tones.
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Fig. 1. Tonal attraction at the chroma circle. (a) The circle of fifths for C major scale as
indicated by open bullets. (b) Rating data y(x) of Krumhansl and Kessler [11] (dashed-
bullets) and scaled quantum models of tonal attraction. Gray bold-solid: unmarked
quantum model from Sect. 4.1 [Eq. (9)]. This model makes the same predictions as the
qubit quantum model described in Sect. 3. Black bold-solid: marked quantum model
from Sect. 4.2 [Eq. 11]. Obviously, the nondiatonic pitches (6–10 on the circle of fifth) are
the pitches with the lowest attraction values as described by the traditional, hierarchic
model.

3 Qubit Quantum Model of Tonal Attraction

One important model for the Krumhansl and Kessler [11] data was given by
Lerdahl [15] and recently rephrased by Blutner [3] in terms of optimality the-
ory [22]. In this framework, cognitive representations are described by several
constraints that could either be satisfied of violated. The constraint violation
profile of a construction accounts for its markedness. Unmarked constructions
are generally easier to process in psychological experiments as is reflected by
lower processing times and higher accuracies. On the other hand, marked con-
structions increase processing demands in terms of “mental energy” or “cognitive
forces”. Therefore it sounds reasonable to look for a similar relationship between
tonal markedness in the sense of [3,15] and musical forces.

One of the fundamental ideas of quantum cognition is to apply the mathe-
matics of the physical formalism to the domain of cognition. For example, we can
use a series of qubit states to represent the 12 pitch classes used in tonal music.
In addition, we can use the probability that one of these qubit state collapses
into another one as a measure for the tonal attraction between the corresponding
tones (see [3]).

For getting an explicit model of tonal states as states of a Hilbert space, the
concept of symmetry is essential. Mathematically, symmetry is simply a set of
transformations applied to given states such that the transformations preserve
the properties of the states. In music, the most basic symmetry principle is the
principle of translation invariance. It says that the musical quality of an episode
is essentially unchanged if it is transposed into a different key. That means, the
operations of the cyclic group Z12 are applied to the chroma circle from Fig. 1(a)
[18]. Therefore, we can say that Z12 is the symmetry group of (Western) music.



102 P. beim Graben and R. Blutner

More concretely, in the present case of tonal music, the underlying symmetry
group could be represented by certain rotations of vectors in a two-dimensional

vector space. For instance we can rotate the vector ϕ→ =
(

1
0

)
in n steps to the

original vector. In linear algebra, the elementary rotation steps can be described
by the following rotation matrix γ:

γ =

⎛

⎜
⎜
⎝

cos
2π

n
sin

2π

n

− sin
2π

n
cos

2π

n

⎞

⎟
⎟
⎠ (1)

Performing a repeated application of the rotation matrix to our vector ϕ→ above,
we can generate the 12 tones of the circle of fifth in the following way:

ψj = γj

(
1
0

)
=

⎛

⎜
⎜
⎝

sin
πj

12

cos
πj

12

⎞

⎟
⎟
⎠ (2)

In the case of pure states, quantum theory defines structural probabilities. This
means the probability that a state ψ collapses into another state depends exclu-
sively on the geometric, structural properties of the considered states. How well
does a given tone fit with the tonic pitch? What is the probability that it col-
lapses into the (tonic) comparison state? The probability of a collapse of the
state ψj into a state ψl can be calculated straightforwardly:

pψl
(ψj) = cos2

π(j − l)
12

=
1
2

[
1 + cos

π(j − l)
6

]
where 0 ≤ j, l < 12 . (3)

For a fixed element ψl the probabilities of the 12 tones indexed by j(0 ≤ j < 12)
sum up to one. Hence, formula (3) offers a probabilistic attraction profile relative
to a given context tone ψl to which we refer to as a kernel function. If the context
is not given as a single tone, but rather as a tonal region, a chord, or a series of
chords, then we would consider the mixture of all the states conforming to all the
involved single tonal elements. For simplicity, we could take all tones contributing
to this mixture as being equivalent and give them the common weight 1/N
(assuming N tonal elements are taken into account), thereby computing a density
operator over different kernel functions [3]. This assumption is rather similar to
Woolhouse’s treatment of the problem of context effects in tonal attraction [26].

Figure 1(b) shows the attraction profile for the C major key as the kernel
pψ0(ψj), obtained from the quantum model, and scales it to the Krumhansl
and Kessler data [11] plotted in gray bold. Note that the quantum model is
parameter-free. The correlation coefficient between the predicted profile and the
Krumhansl-Kessler profile is r = 0.7 in the case of C major. That means that
about 50% of the variance is already explained by the default quantum kernel.

In order to permit the comparison with the symmetric model of
Woolhouse [26], we fitted a kernel mixture, assuming symmetric phase para-
meters in the quantum model (i.e., the phases of the first seven tones of
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the circle of fifth are mirrored at the tritone point). The phase parame-
ters were fitted as follows (starting from the tonic in the circle of fifth):
(0, π/2, π, 0, 0.9, 0, 0.99, 0, 0.9, 0, π, π/2, 0). In the present case of a symmetric ker-
nel function, the correlation coefficient between the model fit and the Krumhansl-
Kessler profile is r = 0.82 in the case of major keys. Moreover, an asymmetric
distribution of phase angles improves the goodness of fit to r = 0.95 for major
keys [3].

4 Gauge Theory of Tonal Attraction

In the following, we present an alternative treatment of tonal structures allowing
the introduction of musical forces that is inspired by quantum gauge theory. In
the last paragraph we have seen how the introduction of locally different phase
factors could substantially improve the goodness of fit of the quantum model of
tonal attraction. In modern physics, such phase functions lead naturally to the
emergence of forces as frustrated connections of an underlying spatial structure.

In contrast to the qubit approach explained above, where a tone was repre-
sented by a state in the Hilbert space H = C

2 subjected to the cyclic group Z12

as symmetry, we strive here for a representation in terms of Schrödinger wave
functions. A wave function is a state in a function Hilbert space H = L2(Ω)
of complex-valued (square-integrable) functions ψ : Ω → C over a configuration
space Ω. I.e., for a fixed “site” x ∈ Ω, the value ψ(x) belongs to a “local” Hilbert
space Hx = C attached to x. These local Hilbert spaces altogether form a “fiber
bundle” over the configuration space Ω, which is the appropriate framework of
gauge theory as required for the proper treatment of musical forces.

Our starting point is the chroma circle Fig. 1(a) representing tones as equiv-
alence classes of pitches over one octave. This is essentially the continuum of the
unit circle S1 = R (mod 2π) which contains the semitone cyclic group Z12 as a
subgroup. A tone is then given through its radian angle x = jπ/6 (j = 0, . . . 12)
as a spatial site of the unit circle. Therefore, the “tonal configuration space” of
our quantum model will be taken as the chroma circle Ω = S1. A quantum state
is then given as a wave function ψ(x, t) that is dependent on tonal site x ∈ S1

and time t solving the one-dimensional Schrödinger equation [24]

Hψ = i
∂ψ

∂t
(4)

with Hamilton operator H.1 Finally, the complex value of a wave function ψ(x, t)
for fixed x, t will be regarded as a state in a local Hilbert space Hx = C allowing
for gauge transformations.

1 Note that we chose a natural unit system with particle’s mass m = 1/2 and Planck’s
quantum of angular momentum � ≡ 1 as necessary for quantum cognition applica-
tions.
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4.1 Unmarked Behavior

In a first approximation for the unmarked behavior, we study the “movement”
of a free particle with Hamiltonian

H = T = p2

around the chroma circle. Here T denotes kinetic energy with p = −i∂/∂x the
momentum operator. Inserting the latter expressions into Eq. (4) yields

− ∂2ψ

∂x2
= i

∂ψ

∂t
(5)

which is solved by plane waves

ψk(x, t) = Akei(kx−ωt) (6)

and their linear combinations, where Ak denote complex amplitudes. The wave
number k and circular frequency ω depend on each other through the dispersion
relation

ω = k2. (7)

The final solution of the Schrödinger equation must obey the given initial and
boundary conditions. As initial condition we may set ψ(xl, 0) = A for encod-
ing the tonic of the context as a phase shift xl with A as maximal attraction
amplitude that is subjected to the normalization constraint

∫

Ω

|ψ(x, t)|2 dx = 1.

Additionally we need Möbius-type periodic boundary conditions on the unit
circle ψ(x + 4π, t) = ψ(x, t) thus reflecting the double covering from Eq. (2).
Therefore, the chroma circle exhibits the topology of a Möbius tape. Inter-
estingly, Mazzola [18] has visionarily foreseen the putative relevance of these
structures for mathematical music theory as well. Moreover, Möbius-type con-
nectivities have been suggested as possible organizational principles of cortical
structure and brain wave dynamics by Wright and coworkers [27,28]. The for-
mer yields the normalization A = 1/(2

√
π), while the latter gives a quantization

constraint e4πik = 1, and hence k ∈ Z/2. Choosing the two fundamental wave
numbers k = ±1/2 yields ω = 1/4 and Ak = Ae−ikxl . Finally, the superposition
of fundamental solutions entails

ψ(x, t) =
1√
π

e
−i

t

4 cos
x − xl

2
(8)

which is a standing wave along the unit circle with probability density

p(x) = |ψ(x, t)|2 =
1
π

cos2
x − xl

2
. (9)
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Inserting the semitones xj = jπ/6 around the circle of fifths for x, confirms the
previous result obtained from the qubit quantum model [3] (Sect. 3).

pj(xl) = |ψ(xj , t)|2 =
1
π

cos2
π(j − l)

12
. (10)

This default distribution kernel characterizes unmarked music cognition and
is plotted in gray bold after scaling in Fig. 1(b). The correlation with the
Krumhansl-Kessler data [11] is r = 0.7 as reported above.

4.2 Marked Behavior

In order to understand marked behavior as well, we have to develop a theory
of musical forces that complements the metaphoric notions of Larson [14] and
Mazzola [18]. To that aim, we first realize that the distribution (10) simply
reflects the similarity relations between tones along the chroma circle where C,
G, and F are close neighbors and hence similar with respect to their attraction
profiles, whereas C and the tritone F	 are maximally distant and thus unrelated
[Fig. 1(a)]. A suitable deformation of the distances along the chroma circle could
lead to an improved description of the empirical data presented in Fig. 1(b).
Therefore, we make the ansatz

ψ(x) = A cos(γ(x)) (11)

for the stationary wave function where γ(x) is a spatial deformation function and
A a normalization constant. For the sake of simplicity, we focus on the C major
scale with xl = 0 here. Differentiating (11) twice and eliminating trigonometric
terms, we obtain the differential equation

− ψ′′(x) +
γ′′(x)
γ′(x)

ψ′(x) − γ′(x)2ψ(x) = 0 (12)

which we compare with the stationary Schrödinger equation Hψ(x) = Eψ(x)
for the energy eigenvalue E. With

H = T + M + U

this comparison yields the following operators: The first term T is, as usual, the
operator of kinetic energy

T = − ∂2

∂x2
.

The second term could be interpreted in the context of electromagnetism where
the velocity-dependent contribution to the Hamilton operator is regarded as
magnetic interaction energy

M =
γ′′(x)
γ′(x)

∂

∂x
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Finally, the last term, which is simply a scalar multiplication operator, receives
its usual interpretation as potential energy

U = E − γ′(x)2

which might be seen either as electrostatic or gravitational potential. Note that
the constant

E = γ′(0)2 (13)

can be interpreted as the total energy of the tonal dynamics.
The marked Schrödinger equation obeys conservation of energy, as unveiled

by multiplication with the adjoint solution ψ∗ from the left. Introducing energy
densities

t(x) = −ψ(x)∗ψ′′(x) (14)

m(x) = ψ(x)∗ γ′′(x)
γ′(x)

ψ′(x) (15)

u(x) = ψ(x)∗(E − γ′(x)2)ψ(x) (16)

yields
t(x) + m(x) + u(x) = Eψ(x)∗ψ(x) = Ep(x)

with p(x) = |ψ(x)|2 the resulting probability distribution. Interestingly, this
distribution describes the original Krumhansl-Kessler data [11] which there-
fore receive a straightforward interpretation as total energy density of tonal
attraction.

From the general deformation ansatz Eq. (11) for the marked case we retain
the unmarked wave function by the choice

γu(x) =
x

2

rendering the force-free dynamics with U(x) = E −γ′
u(x)2 = E − 1/4, i.e. U = 0

and E = ω = 1/4. For the marked attraction profile we assume a symmetric
polynomial of fourth order

γm(x) = a0 + a4(x − π)4,

with boundary conditions γ(0) = 0, i.e. the tonic should not be deformed, and
γ(π) = π/2, i.e. the tritone receives maximal deformation. This leads to the
parameter-free model

γm(x) =
π

2
− (x − π)4

2π3
. (17)

Interestingly, the terms higher than linear order can be interpreted as spatially
dependent phase shifts of the unmarked wave function which depends on the
linear term only. From (17) we obtain the total energy (13) as E = 4 which is
sixteen times larger than the energy required to the unmarked dynamics.

Inserting the deformation (17) into the wave function (11), yields the
marked attraction kernel for the tonic context, plotted as the bold black curve
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Fig. 2. Emergent energies of tonal attraction. (a) Energy densities: Solid: “inertia” i(x),
dashed: “gravity” u(x), dotted: “magnetism” m(x). (b) Density of potential energies
d(x) [Eq. (18)].

in Fig. 1(b). The correlation with the Krumhansl-Kessler data [11] is r = 0.89,
i.e. our fit accounts now for 79% of the data’s variance. Computing the mixture
over the C major tonic triad context, improves the fit to r = 0.97, covering 95%
of the data.

Finally, we compute the three energy densities (14–16) and also the density
of potential energy alone

d(x) = m(x) + u(x). (18)

The results are presented in Fig. 2.
Figure 2(a) shows the three densities “inertia” (solid), “gravity” (dashed),

and “magnetism” (dotted). Both, “inertia” and “gravity” clearly indicate that
the tonic at x = 0 (mod 2π) acts as a center of gravity, where the gravita-
tion potential (16) approaches minus infinity while the kinetic energy (14) tends
toward plus infinity. Therefore, the gravitational force which is the negative gra-
dient of the potential is negative in the tonic’s vicinity, i.e. the tonic is attracting,
leading to high acceleration (14). The tonic is also attracting with respect to the
“magnetic” force (15) which also has positive slope for small x-values. However,
for tones in the interval 0.4 < x < 5.8, corresponding to G – F, “magnetism”
prevents tones from being attracted by the tonic. This makes the tritone F	 a
“magnetic trap” in this region.

Even more instructive is Fig. 2(b) depicting the summed potential energy
density. Here again, the tonic appears as a center of force. Extrema of the poten-
tial d(x) are equilibrium points which are either unstable for local maxima or
stable for local minima. On the one hand, there are two unstable equilibria
around x = 0.8 (D) and x = 5.4 (B
). On the other hand, the only equilibrium
at x = π is stable, which is precisely the tritone. Because the total energy density
is low in this region, tones are trapped by the tritone.

4.3 Gauge Invariance

Finally, we have to prove the local gauge invariance of our music quantum model.
To that aim, we first realize that the probabilities p(x) do not change under
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a shift of the wave functions’s phases. Let ψ be an arbitrary wave function
solving the Schrödinger equation (4) and ϕ ∈ R a real phase value. Then the
operation ψ �→ ψ̃ = eiϕψ yields another solution of the Schrödinger equation
simply obtained by multiplying Eq. (4) with eiϕ. However, this global gauge
transformation does not affect the observable probabilities p̃ = |ψ̃|2 = p.

Yet, things get much more involved when the phase shift becomes a function
of space,2 ϕ(x), describing a local gauge transformation. Writing

ψ̃(x) = eiϕ(x)ψ(x) (19)

we have to take the spatial derivatives in (12)

∂ψ̃

∂x
= i

∂ϕ

∂x
eiϕψ + eiϕ

∂ψ

∂x
= eiϕ

(
∂

∂x
+ i

∂ϕ

∂x

)
ψ.

Repetition of the derivation yields the Laplacean

∂2ψ̃

∂x2
=

∂

∂x

[
eiϕ

(
∂

∂x
+ i

∂ϕ

∂x

)
ψ

]
= eiϕ

(
∂

∂x
+ i

∂ϕ

∂x

)2

ψ.

For the operator appearing in round brackets we introduce the notation

Dx =
∂

∂x
+ i

∂ϕ

∂x
(20)

which is called covariant derivative, thereby alluding to the curved space of gen-
eral relativity which was the historically first formulated local gauge theory. The
gradient of the phase function ϕ(x) is called the gauge field in this connection.

The Schrödinger equation (12) is called locally gauge invariant, if the trans-
formed wave function obeys a structurally equivalent equation with transformed
coefficients

− ψ̃′′(x) +
γ̃′′(x)
γ̃′(x)

ψ̃′(x) − γ̃′(x)2ψ̃(x) = 0. (21)

Using covariant derivatives instead of the conventional ones (which emerge as
limiting cases for ϕ = constant) yields

−D2
xψ(x) +

γ̃′′(x)
γ̃′(x)

Dxψ(x) − γ̃′(x)2ψ(x) = 0,

which gives after some rearrangements

−ψ′′(x) +
(

γ̃′′(x)
γ̃′(x)

− 2iϕ′(x)
)

ψ′(x)−
[
γ̃′(x)2 − ϕ′(x)2 + i

(
ϕ′′(x)− γ̃′′(x)

γ̃′(x)
ϕ′(x)

)]
ψ(x) = 0.

This expression is invariant under the constraints

γ̃′′(x)
γ̃′(x)

− 2iϕ′(x) =
γ′′(x)
γ′(x)

(22)

γ̃′(x)2 − ϕ′(x)2 = γ′(x)2 (23)

ϕ′′(x) =
γ̃′′(x)
γ̃′(x)

ϕ′(x), (24)

2 For the sake of simplicity, we neglect time-dependence of the gauge field in our
exposition.
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which restrict the freedom of choice for the local phase function ϕ(x). Thus, our
musical gauge theory has a broken symmetry that is not the full U(1) symmetry
of quantum electrodynamics.

5 Discussion and Outlook

In this study we have discussed the phenomenon of tonal attraction in a quan-
tum cognition framework. After reviewing a previous approach based on a qubit
representation of the essential musical symmetry group [3], we formulated an
alternative description in terms of wave functions. Solving the Schrödinger equa-
tion of a “free particle” over the circle of fifths as musical configuration space,
we were able to reproduce the results of the unmarked qubit quantum model
for the experimental findings of Krumhansl and Kessler [11]. In a second step
we addressed the important issue of gauge symmetry of the Schrödinger equa-
tion and derived three expressions for musical forces which might be related to
similar concepts discussed in the literature [14,23]. The introduction of gauge
forces led to a spatial deformation of the circle of fifths that we approximated
by a polynomial of fourth order, for which we could explicitly derive the musical
forces of tonal attraction of the marked quantum model, in good agreement with
the Krumhansl and Kessler data.

Sofar, our approach accounts for the effect of “static forces” which deter-
mine the center(s) of a series of tones or chords by means of stationary wave
functions. Yet, there are also “dynamic forces” affecting melodic or harmonic
progression and predictability, investigated, e.g. in [10]. The most interesting
dynamical aspect of music theory is, notably, modulation, the dynamic transi-
tion from one scale or key into another one. Inspired by Schönberg’s modulation
theory [23], Mazzola [18] developed a sophisticated mathematical account based
on musical symmetries and cadences. Its most important ingredient is, what he
calls the “modulation quantum”, a collection of chords mediating the dynamic
transition from one key into another. It will be a challenging endeavor to further
develop our gauge theory of musical forces into these fascinating directions.

In the recent literature of explaining tonal attraction, the spectral pitch class
model [20] plays an essential role. In this model, the pitch perception of any
musical sound is described by using spectral pitch class vectors. There are close
similarities between this Helmholtzian model [8] and the present quantum app-
roach which should be pursued in a later publication. At this point we only
note that Schrödinger’s idea of “quantization as eigenvalue problem” [24] was
crucially influenced by Helmholtz’ idea of oscillating strings.

Next, let us speculate about the putative relevance of our approach in the
neurosciences. Partial differential equations are well-known in the discipline of
neural field [5] and dynamic neural field theory [7,17] within computational
neuroscience where they appear as brain wave equations [5,21]. In the latter,
fields are regarded as functions over abstract feature spaces and we might consider
the chroma circle in our approach as such a feature space. These neural fields
are clearly real-valued functions in contrast to the generically complex wave
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functions solving the Schrödinger equation. However, according to Bohm [4], the
Schrödinger equation for one complex field is equivalent to two coupled real fields
describing the motion of a classical particle in a “quantum mechanical potential”
and its respective field dynamics. In quantum theory this leads to disputably
nonlocal representations. Yet in neural field theory, nonlocal interactions are
ubiquitous due to long-range synaptic connectivity. Thus, our gauge theory of
musical forces may find its neurophysiological counterparts in the organization
of cortical areas [25,28].

Finally, let us remark on the relationship between the process of musical
perception and the musical composition process. A very naive understanding
of the composition process is that it is nothing else than looking for the most
probable continuation of a starting sequence of tones. Of course, this is simply
to realize with the help of neural networks (e.g. [2]). A composer normally aims
to generate emotions in the mind of the listener. Emotions are deeply connected
with subjective expectancy [19]. However, it is crucially surprise that generates
great musical effects. Hence, the process of composition cannot be described as a
mechanism for finding the most probable continuation. If one insists to view the
process of composing as an optimization algorithm, then one has to considering
higher rules of optimization. These rules are directed to resolving conflicting aims
in following particular emotional goals, optimally separating different voices and,
at the same time, pursuing certain restrictions of a particular style.

References

1. de Barros, J.A., Suppes, P.: Quantum mechanics, interference, and the brain. J.
Math. Psychol. 53(5), 306–313 (2009)

2. Blutner, R.: Nonmonotonic inferences and neural networks. Synthese 142(2), 143–
174 (2004)

3. Blutner, R.: Modelling tonal attraction: tonal hierarchies, interval cycles, and quan-
tum probabilities. Soft Comput., 1–19 (2015). doi:10.1007/s00500-015-1801-7

4. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden”
variables. I. Phys. Rev. 85, 166–179 (1952)

5. Coombes, S., beim Graben, P.: Potthast: tutorial on neural field theory. In:
Coombes et al. [6], pp. 1–43

6. Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds.): Neural Fields: The-
ory and Applications. Springer, Heidelberg (2014)

7. beim Graben, P., Potthast, R.: Universal neural field computation. In: Coombes
et al. [6], pp. 299–318

8. von Helmholtz, H.: On the Sensations of Tones. Dover, New York (1877). Trans-
lated by Ellis, A.J

9. Krumhansl, C.L.: The psychological representation of musical pitch in a tonal
context. Cogn. Psychol. 11(3), 346–374 (1979)

10. Krumhansl, C.L.: Music psychology and music theory: problems and prospects.
Music Theor. Spectr. 17(1), 53–80 (1995)

11. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal
organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334
(1982)

http://dx.doi.org/10.1007/s00500-015-1801-7


Toward a Gauge Theory of Musical Forces 111

12. Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press,
Chicago (1980)

13. Large, E.W.: A dynamical systems approach to musical tonality. In: Huys, R., Jirsa,
V.K. (eds.) Nonlinear Dynamics in Human Behavior. Studies in Computational
Intelligence, pp. 193–211. Springer, Heidelberg (2011)

14. Larson, S.: Musical Forces: Motion, Metaphor, and Meaning in Music. Indiana
University Press, Bloomington (2012)

15. Lerdahl, F.: Tonal pitch space. Music Perception 5, 315–350 (1988)
16. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press,

Cambridge (1983)
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Abstract. We set out a strategy for quantizing attribute bootstrap
aggregation to enable variance-resilient quantum machine learning. To
do so, we utilise the linear decomposability of decision boundary parame-
ters in the Rebentrost et al. Support Vector Machine to guarantee that
stochastic measurement of the output quantum state will give rise to
an ensemble decision without destroying the superposition over projec-
tive feature subsets induced within the chosen SVM implementation. We
achieve a linear performance advantage, O(d), in addition to the exist-
ing O(log(n)) advantages of quantization as applied to Support Vector
Machines. The approach extends to any form of quantum learning giving
rise to linear decision boundaries.

1 Introduction

Quantum Machine Learning is a recent area of research initiated by the demon-
stration of a quantum Support Vector Machine (SVM) by Rebentrost, Mohseni
& Lloyd [1] and the k-means algorithm by Aı̈meur, Brassard & Gambs [2] (cf also
[3–8]). The development of the quantum SVM can be regarded as particularly sig-
nificant in that the classical SVM constitutes perhaps the exemplar instance of a
supervised binary classifier, i.e. an entity capable of learning an optimal discrim-
inative decision hyperplane from labeled vectors {(x, y) | x ∈ X̃, y ∈ {−1,+1}}
existing within a feature space.

BootstrapAggregation (‘Bagging’) is awell establishedmethodwithin stochas-
tic machine learning for removing variance from classifiers via the production of
bootstrap ensembles to refine the final decision accuracy. It shall be the argument
of this paper that this decision ensemble canbe equivalently representedvia a quan-
tum superposition, such that the final decision can be straightforwardly obtained
via quantum measurement. Moreover, we shall demonstrate that this is necessarily
more economic in both execution time and the total number of logic gates required
in comparison to classical (and even parallelized quantum) SVM implementations.

2 Methodological Background

The Classical SVM. The standard SVM [9] seeks to maximize the margin
(i.e., the distance of the decision hyperplane to the nearest data point), sub-
ject to a constraint on the classification accuracy of the labelling induced by
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 115–121, 2017.
DOI: 10.1007/978-3-319-52289-0 9
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the hyperplane’s delineation of a general decision boundary. In its primal form,
the soft margin SVM optimization takes the form of a Lagrange optimization
problem:

arg min
(w,b)

{
1
2
‖w‖2 + C

M∑

i=1

ξi

}

subject to: ∀i yi(w · xi − b) ≥ 1 − ξi, ξi ≥ 0

where (xi, yi) i = 1 . . . M are the training vectors/labels, yi ∈ {−1,+1}, w is
the weight orientation vector of the decision hyperplane, and b is its bias offset.
(The margin is inversely proportional to ‖w‖). The ξi are slack variables that
give rise to the soft margin with sensitivity controlled by hyper-parameter C.

In the dual form [9], the slack parameters disappear such that the problem
is solved in terms of the Karush–Kuhn–Tucker (KKT) multipliers αi:

argmax
(αi)

n∑
i=1

αi − 1

2

∑
i,j

αiαjyiyj(x
T
i xj) subject to:

∑
αiyi = 0 : ∀i 0 ≤ αi ≤ C

The problem is one of quadratic programming. As the optimization proceeds,
only a sparse set of the αs’s retain non-zero values. These denote the support
vectors defining the decision hyperplane. This sparsity (i.e. the low parametric
complexity of the decision boundary with respect to the training data) gives the
SVM substantial resilience to over-fitting (and thus reduces classifier variance).

Notably, the term (xT
i xj) in the above (equating to the training vector Gram

matrix) may be freely replaced by any kernel function K(xi,xj) that satisfies
Mercer’s condition (i.e. positive semi-definiteness). This vastly extends the util-
ity of the SVM by enabling the mapping of the input decision space into a
large variety of alternative Hilbert spaces of potentially infinite dimensional-
ity (thus guaranteeing linear separability). The decision boundary in the input
space may thus undergo significant morphology variation while crucially retain-
ing the low parametric support-vector characterization of the decision bound-
ary within the Mercer embedding space (the space denoted φ(x) for which
K(xi,xj) ≡ φ(xi)T (φ(xj)). Critically, at no stage are we required to com-
pute φ(xi)). The KKT conditions guarantee the existence of φ, but the kernel
itself may be calculated based on any similarity function that gives rise to a
kernel matrix obeying Mercer’s condition.

The Quantum SVM. The quantum SVM implementation proposed by Reben-
trost, Mohseni and Lloyd [1] uses a least square reimplementation of the classic
kernelized SVM so as to implicate the efficient quantum matrix inversion of
Harrow, Hassidim & Lloyd [10]. The problem to be solved now becomes:

F

(
b
α

)
.=

(
0 1T

1 K + γ−1I

)(
b
α

)
=

(
0
y

)
1T ≡ (1, 1, 1 . . .)T (1)

where K is the kernel matrix (i.e. a permissible generalization of the Gram matrix
satisfying Mercer’s condition), γ−1 is the trade-off parameter between the SVM
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optimization and accuracy. Training object classifications are denoted by the
vector y ∈ ([−1, 1]M )T for the M training objects order-correlated with the
kernel matrix K (training object vectors xk are represented in their own basis).
Finally, α and b (the object of the optimization) are respectively the weight and
bias offset parameters of the decision hyperplane within the Mercer embedding
space induced by the kernel (though note that here the alpha represent distances
from the margin).

Consequently, quantum matrix inversion of F solves for the SVM parameters
α, b, producing the solution state:

|α, β〉 =
1

b2 +
∑M

k=1 α2
k

(

b |0〉 +
M∑

k=1

αk | k〉
)

(2)

Utilization of these parameters for classification of novel data requires the
implementation of a query oracle implicating all of the labeled data:

|ũ〉 =
1

(
b2 +

∑M
k=1 α2

k |xk | 2
) 1

2

(

b | 0〉 | 0〉 +
M∑

k=1

|xk | αk | k〉 |xk〉
)

(3)

and also the query state:

|x̃〉 =
1

M |x | 2 + 1

(

| 0〉 | 0〉 +
M∑

k=1

|xk | | k〉 |xk〉
)

(4)

( | k〉 is thus an index state over training vectors)
The classification is then carried out as the inner product of the two states,

i.e. by performing a swap test and allocating class labels on the basis of the inner
product probability being greater or less than 1

2 (the swap test is performed via
the use of an ancilla to construct the state 1√

2
( | 0〉 | ũ〉 + | 1〉 | x̃〉) which is then

measured in the basis 1√
2
( | 0〉 − | 1〉)).

Bootstrap Aggregation and Attribute Bootstrap Aggregation. Stan-
dard bootstrap aggregation is an effective approach for stabilizing unstable clas-
sifiers such as decision trees and neural networks [11]. It consists in randomly
sampling, with replacement, d groups from the total set of training samples M ,
training the resulting classifiers and combining the output either via decision
fusion (such as majority voting) or averaging in the case of regression-like clas-
sifiers. Each set can be expected to have M(1 − e−m/M ) unique training vectors
on average for draw size m.

It may be shown, via bias/variance analysis [12], that bagging can be con-
sidered primarily as a method for reducing variance with respect to training-set
permutation/sampling. It is therefore be employed predominantly on low-bias
classifiers, since classifiers must necessarily trade-off variance against bias in their
design (bias is in this sense the expected discrepancy from Bayes optimality).
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Bootstrap aggregation is therefore notably less effective for an idealized SVM
(or in completely linearly separable problems) owing to the intrinsic variance-
resilience implied in the definition of the maximum margin SVM classifier in terms
of the support objects -i.e. those objects for which, in which the dual form of
SVM optimization problem, the Lagrangian multipliers are non-zero [9]. Typi-
cally, these are highly sparse, and therefore training set sub-sample permutation
has no effect unless explicitly excluding these objects.

There are, however, techniques for artificially adjusting bias/variance within
SVMs. The parameter γ−1 above dictates the trade off between data fitting
and maximization of the margin. Favoring the former should therefore reduce
the bias. An alternative strategy for bias reduction applicable to the quantum
SVM applies when considering the polynomial kernel: K(xj ,xk) = (xj ·xk)D ≡
φ(xj) ·φ(xk). Here, D can control bias via the relationship between polynomial
degree and functional localization.

The most generally effective strategy for bootstrap aggregation, however, uti-
lizes feature subspaces (referred to as either ‘attribute bagging’ or the ‘random
subspace method (RSM)’). Here, it is the selection of the features for classifi-
cation that constitutes the bootstrap set. Subspace remapping is, however, also
a natural quantum operation (implemented by projectors). Thus, if the set of
training vectors xk are represented within an orthonormal Hilbert basis, we are
implicitly concerned with the projectors { | P1〉〈P1 | , | P2〉〈P2 | , . . .} in carrying
out subspace selection within a quantum context, where the Pi are Hilbert space
vectors with spans corresponding to the feature subsets Pi. We will thus utilize
this approach in the following to define distinct set of classifiers constituting the
ensemble.

Critically, from the point of view of efficiently quantizing attribute bagging,
we do not require individual classifier decisions to be identified as such within the
final ensemble decision: in effect, the collective classifier acts as a single composite
classifier. In quantum terms, this implies that classifiers are able to exist as a
superposition without individual measurement prior to the final decision output.

3 Proposed Attribute Bootstrap Aggregation Method

The standard attribute bootstrap aggregation algorithm proceeds as follows: for
M training objects with N features, we individually train S classifiers on the
respective feature sets ds = {ds ⊂ N | | ds | < N}, either with or without
replacement. To classify test objects, we combine the S classifier outputs by e.g.
majority vote or summation over posterior probabilities.

In the following quantum implementation of attribute bootstrap aggregation
our objective will thus be to set up a quantum superposition of classifier deci-
sion hyperplanes associated with each attribute selection. This will give rise to
an ensemble sum over decisions for which it may be demonstrated that a collec-
tive measurement is sufficient for ensemble classification (we are thus implicitly
opting for the ‘summation over posterior probability’ form of attribute bootstrap
aggregation.)
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We initialize our approach by selecting a total of S random selections, ps,
from N features, either with or without replacement, such that ps ∈ {0, 1}N . ps
is hence a characteristic function indexing basis states | k〉. For each projector
indexed by s we can thus train an SVM: F−1

s

(
φ(Psxj)Tφ(Psxk),y

)
where Ps is

the projection matrix corresponding to ps (i.e. Ps is the diagonal matrix having
the binary values of ps on its leading diagonal; Ps{i, j} = 0 if i 
= j, Ps{i, i} =
ps(i) ∀i, j ∈ {1, 2, . . . , N}).

In quantum terms, this means that we can construct a solution state super-
position over training vector basis states in order to construct the query oracle
(Note that the bootstrap sets occupy the full training vector Hilbert space, irre-
spective of the differential subspace dimensionalities, so that we are free to form
a superposition over projected vectors; thus we do not consider explicit sums over
projectors,

∑S
s=1 | Ps〉〈Ps | , or density operators, such as would be implicit in

a statistical ensemble approach).
Hence, (setting φ to the identity for convenience) we can construct the quan-

tum state:

|ũB〉 =
1

S
1
2

S∑
s=1

| αs, βs〉 ≡ N
S∑

s=1

(
bs | 0〉 | 0〉 +

M∑
k=1

| Psxk | α(k,s) | k〉 | Ps〉〈Ps | | xk〉
)

where N =
1

(
∑S

s=1 b2s +
∑M

k=1 α2
(k,s) | Psxk | 2) 1

2

(implicitly obtaining the quantum speed up for each SVM implementation
within the superposition).

A key point to note is that the set of α(k,s)’s for some arbitrary S acts
over all of the M training vectors in order to define the decision hyperplane
(in contrast to the Lagrange dual SVM formulation), each defining a distance
from the optimal margin. As such, the set {α(k,s)} defines a unique subspace of
dimensionality | ps | − 1 within the subspace subtended by the {Psxk} (i.e. the
decision hyperplane), where | ps | here indicates the Hamming weight. However,
the same {α(k,s)} also define a unique subspace of dimensionality N − 1 within
X, namely the direct product of the decision hyperplane with the null space of
Ps. We may therefore, (in constructing the solution state only, and absolutely
not the SVM matrix inversion) treat | Ps〉〈Ps | |xk〉 and |xk〉 equivalently with
regard to the {α(k,s)} (though not the |xk | ).

If we thus set α′
k =

(∑S
s=1 α(k,s)

)
, b′

k =
(∑S

s=1 bs

)
and |x′

k | = | |Psxk | ,
then it may be seen (by moving the summation inside the bracket and gathering
terms) that the following equivalences and equalities hold:

|ũB〉 =
1

S
1
2

S∑
s=1

| αs, βs〉 = N
(

S∑
s=1

bs | 0〉 | 0〉 +
M∑

k=1

S∑
s=1

| Psxk | α(k,s) | k〉 | Ps〉〈Ps | | xk〉
)

≡ N
(

S∑
s=1

bs | 0〉 | 0〉 +
M∑

k=1

S∑
s=1

| x′
k | α(k,s) | k〉 | xk〉

)

≡ normalisation const. ×
(
b′ | 0〉 | 0〉 +

M∑
k=1

| x′
k | α′

k | k〉 | xk〉
)
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It may thus be seen that the modified basis is identical to the previous basis,
and the ensemble training-data oracle has the same overall form as the original
training oracle. Critically, this means that the training oracle is thus represented
in the same basis as the query state x̃; i.e. the sum over projectors | Ps〉〈Ps |
has not altered the representation of the final decision state within the training
vector basis, a result that comes about because of the linear separability of
training weights in the least squares SVM implementation.

The solution is therefore read off as before (i.e. by using an ancilla to construct
the state 1√

2
( | 0〉 | ũB〉 + | 1〉 | x̃〉) measured in the basis 1√

2
( | 0〉 − | 1〉)).

Individual classification decisions are thus no longer resolvable in the swap
measurement; only the ensemble decision is measurable. Importantly, no new
logic gates or oracle basis is implicated in this construction. Consequently, boot-
strap aggregation is “free” within the Rebentrost, Mohseni and Lloyd framework.

4 Conclusion

We have demonstrated that it is possible to implement quantum bootstrap aggre-
gation, specifically quantum attribute bootstrap aggregation, without penalty
in quantum machine learning scenarios, using as an exemplar the Rebentrost,
Mohseni and Lloyd SVM model. Thus, we can harness the stabilizing character-
istics of bagging without requiring either additional logical gates or computation
time. To do so, we exploit quantum superposition in such a way as to guarantee
that stochastic measurement of the output state will give rise to an aggregate
(i.e. ensemble) decision without destroying the superposition over feature subsets
induced within the SVM implementation. This is enabled by the linear decom-
posability of decision boundary parameters within the Kernel-induced Mercer
embedding space.
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Abstract. We accommodate the Integrated Connectionist/Symbolic
Architecture (ICS) of [32] within the categorical compositional semantics
(CatCo) of [13], forming a model of categorical compositional cognition
(CatCog). This resolves intrinsic problems with ICS such as the fact
that representations inhabit an unbounded space and that sentences with
differing tree structures cannot be directly compared. We do so in a way
that makes the most of the grammatical structure available, in contrast to
strategies like circular convolution. Using the CatCo model also allows
us to make use of tools developed for CatCo such as the representa-
tion of ambiguity and logical reasoning via density matrices, structural
meanings for words such as relative pronouns, and addressing over- and
under-extension, all of which are present in cognitive processes. Moreover
the CatCog framework is sufficiently flexible to allow for entirely differ-
ent representations of meaning, such as conceptual spaces. Interestingly,
since the CatCo model was largely inspired by categorical quantum
mechanics, so is CatCog.

1 Introduction

A key question in artificial intelligence and cognition is how symbolic reasoning
can be accomplished with distributional representations. [32] present a view of
cognition called the Integrated Connectionist/Symbolic Architecture (ICS) that
incorporates two levels of formal description: “the continuous, numerical lower-
level description of the brain”, characterized by a connectionist network, and
“the discrete, structural higher-level description of the mind”, characterized in
terms of symbolic rules. ICS is a hybrid approach to the computational mod-
elling of the mind which uses vectors to represent roles, from which symbolic
structures may be built, and fillers, the objects to be manipulated. These roles
and fillers are then combined using the tensor product. However, as argued by
[7], the tensor product representations used to codify the isomorphism between
connectionist and symbolic representations reveal shortcomings. Firstly, the rep-
resentational space of a concept grows in size as more elements are added to the
compound. Secondly, it is unclear how to compare representations that have
differing underlying structures. For example, the concepts joke and funny joke,
have structurally different representations, and it is not obvious how one relates
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to the other. The third and last problem is to do with particular implementa-
tions of ICS. [15,33] use tensor binding representations to model grammar in
the following manner: words such as funny or joke are tagged with their parts
of speech. This tagging takes the following form. Each part of speech is assigned
a vector, and each word token is assigned a vector. The outer product of the
word vector and the part of speech vector is taken, giving a matrix. Circular
convolution [26], consisting of taking the sum over diagonals of the matrix, is
then used to reduce the matrix back down to a vector. However, this ignores the
fact that parts of speech have different roles and structures.

The problem of unifying symbolic and distributional representations has
been addressed in the field of computational linguistics. Distributional seman-
tics [30,34] provides vector meanings for words, but has no clear compositional
structure. In contrast, compositional approaches such as that of [23] are able
to compute the meanings of phrases, but must take the meanings of words as
given. The CatCo model of [13] unifies the distributional theory of meaning
in terms of vector space models and the compositional theory of grammatical
types. It utilises grammar to derive the meaning of a sentence, represented by
a vector, from the word vectors that make up the sentence. This model uses
composite spaces without increase in size of the resulting meaning space and
allows composite concepts to be directly compared with their constituents of the
same type, as well as the meaning of sentences of varying length and structure
to be compared. Further, this model explicitly recognises the differing structures
of parts of speech, and uses these structures to compute the meaning of the sen-
tence. We use the ideas in CatCo to improve the representation of grammar in
connectionist frameworks. At the same time, we reformulate the representations
in CatCo so that compositionality can be implemented in a more cognitively
realistic setting.

We accommodate ICS within CatCo, forming a new model of categorical
compositional cognition (CatCog). The CatCo model was greatly inspired by
the categorical semantics for quantum teleportation [6] and nicely matches the
template of a quantum-like logic of interaction [8]. Hence, we obtain a model for
cognition that draws inspiration from quantum theory.

2 ICS Architecture

In [32], the authors implement symbolic structures within a connectionist archi-
tecture. They use vectors and tensor products to represent objects, roles, and
structures. Recursive structures such as trees can be represented. The contents
of the leaves are encoded in the fillers, and role vectors encode the tree structure.
Fillers are bound to roles using the tensor product, and collections of roles and
fillers are combined using vector addition.

Recursive Connectionist Realization. Embedding and recursion require the
tensor product representation to handle embedded structure, where the filler is
itself a complex structure, and not an atomic symbol. The binding f/r of a filler
f to a role r is realized as a vector f/r = f ⊗ r that is the tensor product of a
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vector f realizing f with a vector r realizing r. A sentence s is represented as a
sum of filler/role bindings

∑
i fi ⊗ ri, and these can be applied recursively. For

example, let s = [NP VP] be a binary tree with left and right subtrees NP and
VP. Let s,v1,v2 be the vectors realizing s,NP,VP. The connectionist realization
of s is:

s = v1 ⊗ r0 + v2 ⊗ r1 (1)

If VP is a tree rather than an atomic symbol, it can be expressed in terms of
its left and right subtrees VP = [Vt NP]. If v3,v4 represent the trees Vt, NP,
then the structure s = [NP [Vt NP]] has the following representation:

s = v1 ⊗ r0 + (v3 ⊗ r0 + v4 ⊗ r1) ⊗ r1 (2)
= v1 ⊗ r0 + v3 ⊗ (r0 ⊗ r1) + v4 ⊗ (r1 ⊗ r1) (3)
≡ v1 ⊗ r0 + v3 ⊗ r01 + v4 ⊗ r11 (4)

The notable feature of this representation is that the vector space in which
concepts live must be arbitrarily large, depending on the size of the structure
to be represented. Symbols at depth d in a binary tree are realized by S(d), the
FRd-dimensional vector space formed from vectors of the form f⊗ri⊗rj⊗· · ·⊗rk

with d role vectors, where F is the dimension of the filler vectors f and R is the
dimension of the individual role vectors ri. A vector space containing all vectors
in S(d) for all d is:

S∗ ≡ S(0) ⊕ S(1) ⊕ S(2) ⊕ · · · (5)

Vectors s(i) are embedded into this space, meaning that the normal operation of
vector addition can be used to combine sentence components.

Symbol Processing. Information is processed in the mind/brain by widely dis-
tributed connection patterns (i.e. weight matrices W) that, for central aspects of
higher cognition, possess global structure describable through symbolic expres-
sions for recursive functions. [32] show how basic symbol manipulation can be
achieved using a distributed system via matrix multiplication. Central aspects
of many higher cognitive domains (including language) are realized via recursive
processing. Feed-forward networks and recurrent networks provide a mechanism
to compute a large class of cognitive functions with recursive structure. In either
case, W is a finite matrix of weights that specifies a particular function (Table 1).

Table 1. Space of descriptions in ICS

Structure Symbolic Connectionist

Set f f ∈ VF

String fi/ri fi ⊗ ri

Tree s = {fi/ri} s =
∑

i fi ⊗ ri ∈ S∗
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3 CatCo Semantics

In this section, we summarize the categorical compositional semantics introduced
in [13], describing a method for constructing the meanings of sentences from the
meanings of words using syntactic structure.

3.1 Pregroup Grammars

Lambek’s pregroup grammars [20] are used to describe syntactic structure. This
choice of grammar is not essential, and other forms of categorial grammar can be
used, as argued in [10]. A pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially ordered
monoid (P,≤, ·, 1) where each element p ∈ P has a left adjoint pl and a right
adjoint pr, such that the following inequalities hold:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p (6)

The pregroup grammar PregB over an alphabet B is freely constructed from
the atomic types in B. In what follows, B = {n, s}. The type s is used to
denote a declarative sentence and n to denote a noun. A transitive verb can
then be denoted as nrsnl. If a string of words and their types reduce to the type
s, the sentence is judged grammatical. The sentence Clowns tell jokes is typed
n (nrsnl) n, and can be reduced to s as follows:

n (nrsnl) n ≤ 1 · snln ≤ 1 · s · 1 ≤ s (7)

This symbolic reduction can also be expressed graphically, as shown in Eq. 8.
In this diagrammatic notation, the elimination of types by means of the inequal-
ities n ·nr ≤ 1 and nl ·n ≤ 1 is denoted by a ‘cup’, while the fact that the type s
is retained is represented by a straight wire.

3.2 Categorical Compositional Models

The symbolic account and distributional approaches are linked by the fact that
they share the common structure of a compact closed category. This compati-
bility allows the compositional rules of the grammar to be applied in the vector
space model, so that sentences may be mapped into one shared meaning space.

A compact closed category is a monoidal category in which for each object
A there are left and right dual objects Al and Ar, and corresponding unit and
counit morphisms εl : Al ⊗ A → I, ηl : I → A ⊗ Al, εr : A ⊗ Ar → I, ηr : I →
Ar ⊗ A such that the snake equations hold. The morphisms of compact closed
categories can be expressed in a convenient graphical calculus [19].

The underlying poset of a pregroup can be viewed as a compact closed
category with monoidal structure given by the pregroup monoid, and mor-
phisms εl, ηl, εr, ηr witnessing the inequalities of (6). Distributional vector space
models live in the compact closed category FHilb of finite dimensional real
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Hilbert spaces and linear maps. Given a fixed basis {vi}i of V , ε and η are
defined by:

ε : V ⊗ V → R::
∑

ij

cijvi ⊗ vj �→
∑

i

cii, η : R → V ⊗ V ::1 �→
∑

i

vi ⊗ vi

3.3 Grammatical Reductions in Vector Spaces

Following [27], reductions of the pregroup grammar may be mapped into the
category FHilb of finite dimensional Hilbert spaces and linear maps using an
appropriate strong monoidal functor Q : Preg → FHilb. Strong monoidal func-
tors automatically preserve the compact closed structure. For Preg{n,s}, we must
map noun and sentence types to appropriate finite dimensional vector spaces:

Q(n) = N Q(s) = S

Composite types are then constructed functorially using the corresponding struc-
ture in FHilb. Each morphism α in the pregroup is mapped to a linear map
interpreting sentences of that grammatical type. Then, given word vectors wi

with types pi, and a type reduction α : p1p2...pn → s, the meaning of the sen-
tence w1w2...wn is generated by:

w1w2...wn = Q(α)(w1 ⊗ w2 ⊗ · · · ⊗ wn)

For example, as described in Sect. 3.1, transitive verbs have type nrsnl, and can
therefore represented in FHilb as a rank-3 space N ⊗ S ⊗ N . The transitive
sentence Clowns tell jokes has type n(nrsnl)n, which reduces to the sentence
type s via εr ⊗ 1s ⊗ εl. So if we represent tell by:

tell =
∑

ijk

cijkei ⊗ sj ⊗ ek

using the definitions of the counits in FHilb we then have:

Clowns tell jokes = εN ⊗ 1S ⊗ εN (Clowns ⊗ tell ⊗ jokes)

=
∑

ijk

cijk〈Clowns | ei〉 ⊗ sj ⊗ 〈ek | jokes〉

=
∑

j

sj

∑

ik

cijk〈Clowns | ei〉〈ek | jokes〉

This equation has the graphical representation given in 8:

Clowns tell jokes
n s nnr nl

�→ N NSN N

Clowns tell jokes

(8)

Meanings of sentences are compared using the cosine distance between vector
representations. Detailed presentations of the ideas in this section are given
in [13,27], and an introduction to relevant category theory is provided in [12].
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4 Categorical Compositional Cognition

Within both ICS and CatCo, we can view sentence meanings in the following
way: the semantics of the individual words of the sentence are given as vectors,
and the grammar of the sentence is given as an n-linear map, which is linear in
each component. In this section, we map the ICS model to the CatCo model,
creating a model for categorical compositional cognition, or CatCog.

The representation in [32] is of the following form:
∑

i

fi ⊗ ri ∈
⊕

i

V ⊗ R(i)

The index i here is general, but if we are considering the set of roles to describe
a binary tree, then the i corresponds to the depth of the tree.

By using carefully chosen matrices, described in [32], this representation can
be written as:

W · f
where here, f =

⊕
fi. This representation allows the sentence to be processed

by matrix multiplication, changing order and meaning of words.
In the CatCo model, the representation starts with a tensor product of

semantic fillers, represented by triangles in the graphical calculus, and then
applies an n-linear map. In order to bring this application in line with the ICS
representation, we should represent these fillers as a direct sum. There is a map
from a direct sum of vectors to a tensor product of vectors expressed as:

⊕

i

vi �→
⊗

i

vi (9)

Given a direct sum of vectors, we firstly convert this to a tensor product
of vectors. For example, suppose we have vectors a = [a1, ..., an]� and b =
[b1, ..., bm]�. The direct sum of these is essentially the vector formed by concate-
nation, [a,b]�. From this, we can map to the tensor product of the two vectors,
which in this case can be viewed as the outer product, i.e. the matrix with elements
{aibj}i=1...n,j=1...m. We then apply the n-linear map formed of ε, η, 1 that cor-
responds to the grammatical structure of the sentence. The action of this linear
map is the same as tensor contraction, of which matrix-vector multiplication is an
instance. This maps the vectors we start out with down to one sentence vector. All
such sentence representations inhabit one finite shared meaning space, rather than
the unbounded meaning spaces required in [32]. TheCatComodel shows how ten-
sor contraction can be used to form sentence meanings in a way that fully utilizes
grammatical structure. This comparison is given in diagrammatic form in Fig. 1.

Now that we can see that ICS and CatCo have the same sort of structure, we
can cross-fertilize in order to reap the maximum benefit from each representation.
The ICS representation has been developed with connectionist implementations
in mind, and therefore methods developed in [32], and implementations such as
[14–16,33] can be used to develop the CatCo model into a cognitive system
rather than the purely linguistic system that it is currently used for.
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W

⊕
i

⊕
i fi fi

εN ⊗ · · ·

�→ ⊕
i �→ ⊗

i

· · ·

Fig. 1. Comparison of ICS (left) and CatCo (right). In ICS, the string of filler vectors
is sent to a linear map which forms a structured tree, represented by thick lines. In
CatCo, the string of filler vectors, again represented by a thick line, is first sent to a
tensor product of vectors, represented by multiple thin lines. An n-linear map is then
applied mapping the string of vectors down to one vector - a single thin line.

ICS is able to characterise a notion of approximate grammatical parsing,
called harmony that the CatCo model currently lacks. Relationships between
the two are explored in [21]. Implementation of the CatCo model within a cogni-
tive framework will also allow for richer representations. Currently, this model is
limited to linguistic representations, where meanings of words are derived from
text corpora. However, the compositionality that CatCo is able to carry out
should transfer very well to meanings derived from other stimuli, such as sound,
vision, and so on.

5 Semantic Roles in CatCog

In Fig. 1, we showed how the grammatical structure of a sentence in the CatCo
model is viewed as a linear map that corresponds to the matrices used to encode
grammatical structure in ICS. However, we may want to enrich the roles from a
purely grammatical map to having some semantic content. This would be useful if
we wish to utilise the idea of having semantic roles as well as purely formal roles.
Semantic roles are discussed in [31,32]. These essentially allow the role vectors to
have some semantic content of their own. For example, a proposition ‘John gave
Mary the book’ can be analyzed as having three semantic roles: the giver, the
recipient, and the object given. Clearly here, there is more information about the
action expressed by the predicate ‘give’ than is available in purely grammatical
roles representing nouns and verbs. This can be implemented within CatCog
by manipulating the diagrams we use. We give here the diagram manipulation
and a procedure for bringing semantic content into the role.

N NSN N

Clowns tell jokes

=
N

N

S

N

N

Clowns

tell

jokes

≡
N ⊗ N

Wtell

S

f

(10)
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We can also recursively bring more chunks of semantic information into the
role vectors if desired. A symbolic structure s is represented by a collection of
structural roles {ri} represented by Wi and a base filler f1 represented by a
tensor product of atomic fillers {aj}. The realization of s is an activation vector
s = Wn · fn that is the recursive matrix-vector multiplication of a matrix Wi

realizing ri with a vector fi realizing a filler/role binding fi−1/ri−1, i.e.

Wn · fn = Wn · (Wn−1 · fn−1) (11)
= Wn · (· · ·W1 · (a1 ⊗ · · · ⊗ am) · · · ) (12)

A simple representation, W · f , where f is the tensor product of atomic fillers,
for a symbolic structure s realized by Wn · fn is as follows:

1. Apply an identity matrix (of the appropriate dimension) to each atomic filler
in fn

2. Pull out the matrix-vector multiplication over tensor products to give fn =
Wn−1 · fn−1

3. Repeat steps 1 and 2 recursively until fi is the tensor product of atomic fillers
W · f = (Wn · ... · W1) · (a1 ⊗ · · · ⊗ am)

This procedure is equivalent to “stretching up” atomic fillers (e.g. nouns in the
linguistic case) and “drawing a box” around them to form f and then “drawing a
box” around the rest of the structure to give W, as shown in (10). For example:

Clowns tell funny jokes = Wtell · (Clowns ⊗ [Wfunny · jokes]) (13)
= Wtell · (IdN

⊗ Wfunny) · (Clowns ⊗ jokes) (14)
= W

′ · (Clowns ⊗ jokes) (15)

Using this type of representation, we can also represent relative pronouns
such as ‘which’. The phrase Clowns who tell jokes has string diagram

Clowns who tell jokes

=

Clowns tell jokes

(16)

To represent this in the ICS format W·f , we construct matrices implementing
the grammatical structure. In CatCo, the grammatical morphisms are (μN ⊗
ιS ⊗ εN ) which we apply to the vectors (Clowns ⊗ tell ⊗ jokes).

μ can be thought as a multiplication map that pointwise multiplies two vec-
tors together, and ι can be thought of as a deleting map. For a concrete example,
suppose N = R

2 = S and let {ni}i and {sj}j denote orthonormal bases of N
and S respectively. Clowns, jokes ∈ N , tell ∈ N ⊗ S ⊗ N are given in (17).
Note that tell is a rank-3 tensor with entries [tell]ijk. For example, [tell]212 = 9.

Clowns :
[
7
4

]
jokes :

[
5
1

]
tell :

[
3 8 4 1
6 2 9 5

]
(17)
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From these, matrices are constructed to implement the grammatical structure.
W

μ
v is a matrix that implements the Frobenius multiplication of a vector with v,

Wι is the deleting map, and W
Obj
tell performs application of a verb to an object.

−−−−−−−−−−−−−−−−−−−−−→
Comedians who tell jokes = W

μ
Comedians · (Wι · (WObj

tell · (jokes))) (18)

=
[
7 0
0 4

]
·
[
1 1 0 0
0 0 1 1

]
·
[
3 8 4 1
6 2 9 5

]T

·
[
5
1

]
=

[
441
156

]
(19)

6 Unbinding

The availability of an unbinding mechanism is essential for systematicity in cog-
nitive architectures. This means that given a sentence such as ‘Clowns tell jokes’,
we may access the individual components of the sentence, allowing us to, for
example, answer questions about what is going on in the sentence, or allow-
ing us to take the sentence apart and modify it. We propose an approximate
unbinding operation which arises naturally from the pulling down of the seman-
tic information into the role information, and hence we use the representation
that we introduced in (10).

6.1 Approximate Unbinding

Unbinding is the procedure where we extract a filler from a semantic binding.
To achieve this, we require a method to invert Wr, which may not be invertible.
We therefore use the Moore-Penrose pseudoinverse for approximate unbinding.
For a binding Wr · f , we approximately unbind f from Wr by application of the
Moore-Penrose pseudo inverse of Wr: W+

r · (Wr · f) ≈ f .
Consider s = Wtell · (Clowns ⊗ jokes) where Clowns, jokes ∈ N . We want

to insert the adjective funny, giving t:

t = Wtell · (Clowns ⊗ [Wfunny · jokes]) (20)

This mapping can be done using WF ·s where WF = Wtell ·(IdN
⊗Wfunny) ·W+

tell

WF · s = [Wtell · (IdN
⊗ Wfunny) · W+

tell] · s (21)
≈ Wtell · (IdN

⊗ Wfunny) · IdN ·dN
· (Clowns ⊗ jokes) (22)

= Wtell · (IdN
⊗ Wfunny) · (Clowns ⊗ jokes) (23)

= Wtell · (Clowns ⊗ [Wfunny · jokes]) = t (24)

7 Consequences of CatCog

The structure of the CatCog model means that all the power of categorical
compositional semantics can be leveraged to represent phenomena that are useful
in a model of cognitive AI. We give a short description of these structures and
how they will be useful.
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The representation of ambiguity is important in cognition. How can one
representation mean more than one thing, and how does context collapse the
ambiguous symbol down to one meaning? CatCo uses quantum theory which
has a ready-made structure called a density matrix that can represent ambigu-
ous symbols. These can be used with grammatical composition to model word
ambiguity and how the sentence context disambiguates [17,24,25].

Density matrices have also been used to implement logical entailment at
the word and the sentence level [1–4]. Results in these papers show how log-
ical entailment between two sentences can be derived as a function of logical
entailments between the words in the sentences, within a distributional repre-
sentation. These results are useful for implementation of logical reasoning, and
showing how reasoning at the sentence level will work.

More subtle grammatical structures can be represented such as relative pro-
nouns. Using relative pronouns allows us to form definitional noun phrases such
as ‘The woman who rules England’. These noun phrases are represented in the
same noun space N as their components, and we can therefore compare them
directly [18,28,29]. This will be useful in modelling knowledge update.

The CatCo representation has also been used in examining how psycholog-
ical phenomena such as over- and under-extension of concepts can occur [3,11].
This is a particularly interesting area, since it is not clear that these type of
phenomena can be adequately represented using ICS style representations. We
give an example to illustrate.

Suppose we take the vectors pet and fish and suppose we choose role vectors
mod = [1, 0]� and noun = [0, 1]�. In the ICS representation, we have

pet fish = pet ⊗ mod + fish ⊗ noun

Then, we may wish to compare goldfish and pet fish. We cannot do this directly
without some initial processing. One option might be to form the tensor product
goldfish⊗noun, and use the matrix inner product. However, then, the similarity
depends only on the similarity between the noun goldfish and the noun fish,
due to the orthogonality of the role vectors. An objection to this might be that
the role vectors do not have to be completely orthogonal, but may be noisy.
Then, the similarity is just a noisy similarity to fish, and pet still plays no real
role in the combined meaning.

Another approach would be to use circular convolution [26]. Applying circular
convolution to each of pet⊗mod and fish⊗noun leaves pet as is, but shifts the
indices of fish by one. These vectors are then summed. If we view the dimensions
of the vectors pet and fish as representing attributes, this gives a notion of
interaction between attributes. However, this notion seems ad hoc - why should
the indices of the attributes be shifted along by one? In contrast, the CatCo
model uses the underlying grammatical structure of the sentence to explain the
interactions of attributes [11].

The abstract framework of the categorical compositional scheme is actually
broader in scope than natural language applications. It can be applied in other
settings in which we wish to compose meanings in a principled manner, guided by
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structure. Another extension is therefore in using other representational formats
such as conceptual spaces [5].

8 Conclusion and Outlook

So what have we achieved with our CatCog representation in relation to ICS?
The benefit of this new recursive representation is that filler/role bindings (i.e.
constituents) that make up a symbolic structure s are now composed in such a
way that all well-formed s, with respect to a certain cognitive task, are realized
in a finite shared meaning space. This allows the comparison of well-formed
symbolic structures with different underlying grammatical structures.

This new representation opens up a number of avenues for further work.
On the theoretical side, a key line of enquiry will be to push the comparison
between ICS and CatCo further. This will allow us to analyse the type of
theoretical structure that is used within the W matrices employed by ICS. In
particular, the representations of verbs, adjectives, and other relational words in
CatCo inhabit a higher dimensional space than nouns, and therefore it might
be thought that there is an unfair comparison between the two models. In fact,
it is possible to take a vector representation, and lift it into a higher dimensional
space. Investigating how to do this so ICS structure is preserved is future work.

Another current line of research will look at how to properly formalise the
notion of knowledge updating. If I tell you that John runs, and you previously did
not know this, how is your representation of John updated? Again, architectures
including ICS and [16] will feed into this research.

On the implementation side, future work in this area will be to apply the
theory within a model such as Nengo [14] or LISA [16]. These implementa-
tions already use tensor product representations, and therefore have the right
kind of underlying structure to serve as a good implementation. Extensions of
approaches such as [22,31] will also be fruitful.

CatCog draws inspiration from categorical quantum mechanics, and there-
fore techniques and structures from quantum theory can be incorporated into
the formalism. Further uses concern phases and (strong) complementarity [9].

While our examples are all linguistic, our model accounts for general cognitive
tasks that manipulate filler and roles. We therefore leave with a programme for
producing compositional structure within distributed representation of cognitive
processes.
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Abstract. Semantic vector models generate high-dimensional vector
representations of words from their occurrence statistics across large cor-
pora of electronic text. In these models, an occurrence of a word or num-
ber is treated as a discrete event, including numerical measurements of
continuous properties. Furthermore, the sequence in which words occur
is often ignored. In earlier work we have developed approaches to address
these limitations, using graded demarcator vectors to represent mea-
sured distances in high-dimensional space. This permits incorporation
of continuous properties, such as the position of a character within a
term or a year of birth, into semantic vector models. In this paper we
extend this work by developing a novel representational approach for
protein sequences, in which both the positions and the properties of
the amino acid components of protein sequences are represented using
graded vectors. Evaluation on a set of around 100,000 immunoglobu-
lin receptor sequences derived from subjects recently infected with West
Nile Virus (WNV) suggests that encoding positions and properties using
graded vectors increases the similarity between immunoglobulin receptor
sequences produced by cells from ancestral lines known to have developed
in response to WNV, relative to those from other cell lines.

Keywords: Distributional semantics · Vector Symbolic Architec-
tures · Binary Spatter Code · Quantum Interactions · Computational
immunology

1 Introduction

The application of compositional operators to semantic vector representations —
vectors that encode the distribution of terms across large text corpora — has
been an active area of inquiry for the Quantum Interactions community since
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its inception [1]. In these models, the presence of a term in a particular context
is considered as a discrete event - the term is either present or absent, though
it may be present more than once. However, as we have argued previously [2],
a vector space model providing a holistic account of conceptual representation
would also need to represent continuous properties. Consider the phrase “has
an average high temperature of 106 ◦F in July”, which refers to the city of
Phoenix, Arizona. A semantic vector representation for Phoenix could take into
account that the term “106” had been observed, but this would result in a vector
representation that is dissimilar to a similarly constructed vector for the city of
Las Vegas, which has an average high temperature of 105 ◦F in the same month.
Ideally, these semantic vectors would accommodate continuous values of this
sort, resulting in proximal vector representations when similar measurements
are encountered.

To this end, in our recent work we have developed an approach to represent
both discrete events and continuous measurements with semantic vector mod-
els, using a quantization technique similar to that employed to model angular
momentum in quantum mechanics [3]. This approach was originally developed
to encode orthographic similarity between words, such that words with match-
ing characters in proximal positions will have similar vector representations [4].
Subsequently, these methods were extended to the more general case of encoding
continuous properties of tabular data [2]. In this paper, we develop these ideas
further by encoding both sequence and continuous properties, to generate vector
representations of protein sequences.

The paper proceeds as follows. First we provide some context for the current
work, in relation to immunology and prior Quantum Interactions contributions.
Then we introduce the mathematical structures to-be-employed, and their appli-
cation for the purpose of representing protein sequences. We then proceed to the
empirical component of this paper, in which we evaluate the extent to which
variants of this approach lead to similar vector representations for collections
of immunoglobulin (Ig) receptors expressed by B cell clones from the blood of
subjects recently infected with West Nile Virus (WNV).

2 Background

The human immune system is a complex learning network of cells and molecules
that are responsible for eliminating infections. Despite its inherent complexity,
aspects of the immune system are amenable to computational modeling [5]. B
cells are members of the adaptive immune system that recognize foreign organ-
isms and molecules (antigens), using a receptor known as the Ig receptor. Once a
B cell recognizes an antigen, it undergoes a process of rapid cell division, muta-
tion and selection that leads to generation of cells with receptor variants having
increasing affinity for the antigen. B cells that, through mutation, develop recep-
tors with high affinity for an intruding antigen survive and multiply. Those with
receptors having low affinity do not. In this way, the immune system adapts to
this antigen by customizing the population of B cells to favor those with Ig recep-
tors that recognize it effectively. Through several experimental steps, the DNA
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sequence of the Ig receptor’s antigen binding region can be determined. This
DNA sequence can then be translated into the sequence of component amino
acids that, in part, encode the binding affinity of the Ig receptor protein.

The technology is available to accomplish such sequencing quickly and inex-
pensively [6]. These high-throughput sequencing technologies lead to the genera-
tion of large numbers of such sequences, which raises the informatics problem of
how best to index, retrieve and analyze them. Historically, sequence comparisons
have been conducted with algorithms that determine the minimum cost of pair-
wise alignment, using variants of string edit distance calculated via dynamic pro-
gramming approaches [7]. A scalable alternative involves utilizing the hamming
distance, which calculates the number of amino acids in common at matched
positions, without considering approximate relationships in position [8]. These
algorithms represent amino acids as discrete symbols, without considering their
chemical properties. Alternatively, the average score of amino acid properties
in a particular region may be considered [9], or the similarity between vector
representations of “bags” of amino acids, discrete properties [10], or shorter sub-
sequences [11] may be estimated. Such metrics discard information concerning
position within a sequence. An algorithm for rapid pairwise comparison address-
ing both variations in local sequence and biochemical properties is a desirable
alternative.

3 Mathematical Structures and Methods

3.1 Random Indexing

Random Indexing (RI) is an efficient method of generating semantic vector repre-
sentations of words [12]. The starting point for RI involves generation of random
vectors for the contexts in which terms occur. For example, each document may
have a random vector. Random vectors are high-dimensional in nature (d on the
order of 1,000 for real vectors), and are generated by assigning a small number
(on the order of 10) of the elements of a zero vector to +1 or −1 at random. On
account of the statistical properties of high-dimensional space, such vectors have
a high probability of being mutually close-to-orthogonal. This is reasonably intu-
itive when considering sparse vectors with a small number of non-zero values.
However, it is also the case that randomly-constructed densely populated vectors
have a high probability of being far apart in high dimensions [13], including the
binary vectors with an equal probability of one or zero in each dimension that
provide the fundamental unit of representation for the current experiments [14].
RI utilizes several of the operators used in this research. Firstly, RI involves
the generation of mutually close-to-orthogonal random vectors as a fundamental
representational unit. In the current paper, and in accordance with our previ-
ous work, we will refer to such vectors as elemental vectors, and the elemental
vector for a term will be denoted E(term). We will use the term “semantic vec-
tor” and the denotation S(term) to refer to vectors that are generated through
superposition of component vectors, and the symbol + to indicate the superposi-
tion operation. For example, RI generates semantic word vectors by superposing
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(adding) the random vectors representing each of the n contexts a word occurs
in, and normalizing the resulting vector.

3.2 Vector Symbolic Architectures

Our approach to encoding sequence and properties draw on a family of represen-
tational approaches known as Vector Symbolic Architectures [15] (VSAs). VSAs
emerged in response to the critique that connectionist representations, such as
neural networks, could not support composition of nested structures thought to
underlie reasoning and language, and as such could not provide a comprehensive
account of cognition [16]. In connectionist models, the unit of representation
is a vector of activation weights. VSAs provide the means to generate compo-
sitional structures from such vectors, by providing space-efficient alternatives
to Smolensky’s initial application of the tensor product for this purpose [17].
These alternatives include circular convolution [18] and element-wise exclusive
or (XOR) [19]. In the latter case, the underlying representational unit is a high-
(or hyper-) dimensional binary vector, and the VSA is known as the Binary
Spatter Code (BSC) [19]. These operators, which are known as binding opera-
tors, and will be depicted in this paper with the symbol ⊗, provide the means
for composition. For example, if “temperature” and “106” are represented by
vectors, the bound product of these vectors,

−−−−−−−−−→
temperature ⊗ −→

106, can be used to
implement binding of the value “106” to the variable “temperature”. A key fea-
ture of binding operators is that they are invertible, albeit approximately in some
cases. Consequently, we would anticipate if C = A⊗B then B ≈ C �A, where �
represents the inverse of the binding operator. This mechanism can recover the
value bound to a variable, or the variable to which a particular value is bound.
VSAs also employ superposition (+) as a compositional operator. Of note, for
the current research the symbol + here indicates probabilistic superposition of
binary vectors rather than the majority rule that is prescribed by the BSC. The
number of 1s and 0s in each dimension are tallied across the component vectors,
and the superposition is generated probabilistically, such that P (x = 1) in any
dimension is equal to count(x = 1) ÷ count(x = 1 ∪ x = 0).

These operators have different functions. Superposition of two vectors pro-
duces a vector that is similar to both of its components. Binding produces a
vector that is dissimilar from them. In particular, the use of elemental vectors
to represent variables entails that values bound to different variables will not be
confused with one another: if E(born) ≈⊥ E(died), then E(born)⊗E(1917) ≈⊥
E(died)⊗E(1917). However, relaxing the constraint that these units of represen-
tation be mutually close-to-orthogonal provides the means to encode continuous
values, such as relative position within a sequence, into semantic vector repre-
sentations.

3.3 Encoding Sequence

Our approach to encoding sequences was initially developed to encode ortho-
graphic representations of words [4]. Consider the word “monk”. One way to use
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VSAs to generate an orthographic representation of this term would be to treat
positions as variables, and characters as values [20], exemplifying an approach
that is known as “slot coding” [21]. We can then generate an orthographic vector
for “monk” as follows:

O(monk) = E(m) ⊗ E(1) + E(o) ⊗ E(2) + E(n) ⊗ E(3) + E(k) ⊗ E(4)

However, this approach would result in orthographic vector representations
that are similar only for two terms with identical characters in identical posi-
tions. This is inconsistent with the flexible nature of human orthographic encod-
ing, which is robust to transposition of characters, amongst other perturbations
of sequence. This limitation also applies to VSA-based approaches where a per-
mutation is applied to elemental vectors to encode relative position [22]. A more
flexible VSA-based approach involves the generation of bound products repre-
senting n-grams, such as the bigram E(w) ⊗ E(o) [20,23]. However, the need
to encode multiple n-grams and the encoding of “skip-grams” that permit wild-
card characters results in a large number of encoding operations - for example,
up to fifteen superpositions and sixteen binding operations to generate a bi- and
uni-gram based orthographic representation of a five-letter word [24]. In addi-
tion, the resulting representations would only be similar for terms with identical
n-grams (or skipgrams). Similarity is a measure of the extent to which discrete
symbolic representations of character subsequences match one another exactly.

Our approach to encoding sequence is different, in that character posi-
tions are treated continuously. This is accomplished by generating a pair of
mutually close-to-orthogonal demarcator vectors, and interpolating between
them1. Consider again the word “monk”. Given four character positions, p1,
p2, p3 and p4, and the approximately orthogonal demarcator vectors D(α) and
D(ω), we would construct demarcator vectors for these positions such that
D(p1) = 4

5D(α) + 1
5D(ω), D(p2) = 3

5D(α) + 2
5D(ω), D(p3) = 2

5D(α) + 3
5D(ω),

and D(p4) = 1
5D(α) + 4

5D(ω)2. In high dimensions, this results in a set
of demarcator vectors in which sim(D(p1),D(p2)) ≈ sim(D(p2),D(p3)) >
sim(D(p1),D(p3)) > sim(D(p1),D(p4)) [4]. With these demarcator vectors
established an orthographic vector for the word monk, and similarly for any
other four-letter word, can be generated as follows:

O(monk) = E(m) ⊗ D(p1) + E(o) ⊗ D(p2) + E(n) ⊗ D(p3) + E(k) ⊗ D(p4)

The resulting representation will be similar to the orthographic vectors for words
that have the same characters in similar positions. Better character alignment
results in higher similarity. Examples and results are presented in [4], which
also discusses the fit between the model and findings from cognitive research on
human word recognition.
1 A similar approach, with interpolation between random matrices rather than random

vectors, has recently been proposed as a way to represent the positions of pixels
within images [25].

2 With binary vectors, superposition occcurs probabilistically - if D(α) has a 1 as its
first element and D(ω) does not, D(p1) is generated with a 0.8 probability of a one
in this position.
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3.4 Encoding Properties with Graded Values

Subsequently, this approach was generalized as a means to encode continuous
values. The procedure in this case involves generating D(α) and D(ω) for each
continuous property of a concept to be represented with a semantic vector. For
example, the vector for a city may encode its average temperature, population
and square mileage. Then, the minimum (vmin) and maximum (vmax) of each
property is calculated. A vector representing any value v(c) of this continuous
property is then generated by interpolation:

D(vc) =
vmax − v(c)
vmax − vmin

D(α) +
v(c) − vmin

vmax − vmin
D(ω).

For a concept with multiple attributes, an elemental vector is generated for
each attribute. A semantic vector for this concept can then be generated by
binding the elemental vector for each attribute, E(Ai) to the demarcator vec-
tor representing this attribute’s value D(Vi), and superposing the resulting
attribute-value bound product vectors: S(C) =

∑n
i=1 E(Ai) ⊗ D(Vi). Examples

and results are presented in [2].

3.5 Quantum Structures

The encoding process utilized for this purpose draws upon a number of math-
ematical structures that relate to Quantum Theory. The quantization proce-
dure for generating demarcator vectors is similar to that used to model angular
momentum in quantum mechanics [3]. The binding operator employed is equiv-
alent to the use of circular convolution in Circular Holographic Reduced Repre-
sentations, a complex vector based VSA, with phase angles quantized to 0 and π
[18]. Circular convolution in turn derives from the tensor product (for a concise
account of the relationship between the tensor product and the binding operators
of different VSAs, see [26]), used in quantum mechanics to represent compos-
ite systems. As has been noted previously, superpositions of role-filler bound
products (such as E(m) ⊗ D(p1)) constitute entangled states [27]. Finally, the
variant of the hamming distance employed to compare sequence vectors to one
another is equivalent to the cosine metric, and as such bears correspondence to
the use of projection operators to estimate the probability of observations.

4 Protein Sequences and Amino Acid Properties

In this section, we will describe how we combine our approach to encoding
sequence with our approach to encoding continuous values, to generate vec-
tor representations of protein sequences. In addition, we employ a permutation
operator to enable the algorithm to distinguish between regions of interest. The
permutation operator is used in the context of VSAs to dissociate vectors from
one another [28]. The general idea is that, once permuted, a high-dimensional
vector is highly likely to be close-to-orthogonal to all other vectors in the
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space - including the vector to which the permutation operator was applied.
In the context of modeling sequence, permutation has been used to ensure that
words in each position of a sliding window are treated differently [22]. Follow-
ing this approach, we use a permutation operation in which we shift the bits
of a binary vector n positions to the right, with a different n for each region
of interest. For computational convenience we perform this operation blockwise,
shifting 64-bit blocks to the right rather than individual bits. Figure 1 provides
an overview of our approach to encoding sequence. The enumerated list below
refers back to the numbers in this figure.

1. DNA sequences are segmented into three-character codons, and translated
into amino acids in accordance with the genetic code [29] where mapping is
possible.

2. Representations of amino acids are composed from demarcator and ele-
mental vectors representing property value pairs, as described in Sect. 3.4.
Encoded properties are shown in Table 1. For charge, amino acids without
charge are given the value of zero, and other values are converted to charge
at pH 7.4 using the Hendersen-Hasselbach equation, such that charge =
(1 + 10(7.4−pK[X]))−1 for pK[X] ∈ {pK[R], pK[H], pK[K]} and charge =
−(1 + 10−(7.4−pK[X]))−1 for pK[X] ∈ {pK[D], pK[E], pK[C], pK[Y ]} where
pK[X] is the negative log of the acid dissociation constant for the amino acid
residue X. Categorical values are encoded as the bound products of elemental
vectors representing the categories and values concerned. Unmapped codons
are represented by elemental vectors.

Fig. 1. Overview of encoding processes.
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Table 1. Encoded properties for partial list of amino acids (10 of 20).

Hydropathy Bulkiness Chemical Charge Polarity Hydrogen Char

Ala 1.8 11.5 Aliphatic 0 8.1 None A

Arg −4.5 14.28 Basic 0.9999 10.5 Donor R

Asn −3.5 12.82 Amide 0 11.6 Donor/acceptor N

Asp −3.5 11.68 Acidic −0.9997 13 Acceptor D

Cys 2.5 13.46 Sulfur −0.0736 5.5 None C

Gln −3.5 14.45 Amide 0 10.5 Donor/acceptor Q

Glu −3.5 13.57 Acidic −0.9995 12.3 Acceptor E

Gly −0.4 3.4 Aliphatic 0 9 None G

His −3.2 13.69 Basic 0.1118 10.4 Donor/acceptor H

Ile 4.5 21.4 Aliphatic 0 5.2 None I

3. Permutation is applied to differentiate regions of a protein sequence from
one another. We applied permutations to distinguish between each of the
Complementarity Determining Regions (CDR1-3) and Framework Regions
(FWR1-3), as defined by the IMGT numbering scheme [30], when encoding
structure. These regions were assigned permutations of 1 through 6 64-bit
blocks to the right (P+1 to P+6).

4. Graded vectors are employed to encode position within a region. For each
encoded region, the vector representation of each amino acid is bound to a
demarcator vector indicating its position within this region.

5. Vector representations of sequences, composed from region vectors via super-
position, are in turn superposed to generate representations of clonal lin-
eages, where a clonal lineage is defined as the population of B cells that are
descended from a common ancestor B cell. The vector for a clonal lineage is
the superposition of the vectors for all the Ig receptor sequences of that cell
population.

5 Evaluation

To evaluate the model, we employed a set of 98,402 Ig sequences derived from
three individuals identified as recently infected with the WNV [31]. These
sequences originated from 52,505 unique clonal lineages, with clonal lineage
membership determined using the Change-O [32] toolkit and the parameters
specified in Tsioris and Gupta et al., 2015 [31]. Three of these clones were identi-
fied as producing WNV-specific antibodies using a single-cell nanowell approach
to identify WNV-specific B cells [31,33]. We set out to evaluate the extent to
which the vector representation of each WNV-specific clonal lineage could serve
as a cue to retrieve the remaining two, amongst the 52,504 possibilities (the
probability of this occurring by chance is vanishingly small, at 3.8092e−5).
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Table 2. Summary of models across 36 cue-by-target-by-dimensionality combinations.
Rgn= region encoded via permutation. Pos= position encoded, either with graded vec-
tors (Gr), or with slot coding (Sl). Prp= Properties encoded. AA= Amino Acid.

Model Rgn Pos Prp Description

GrSP � Gr � “Graded Structure and Properties”: property-based AA
vectors bound to graded position vectors, with permuted
regions.

GrS � Gr “Graded Structure”: elemental AA vectors bound to
graded position vectors, with permuted regions.

BoP � “Bag-of-Properties”: sum of property-derived AA vectors.

BoAA “Bag-of-amino-acids”: sum of elemental vectors for AAs.

SloP Sl � “Slotted Properties”: BoP + bind to elemental position
vectors.

SloAA Sl “Slotted Amino Acids”: BoAA + bind to elemental
position vectors.

To evaluate the utility of encoding structure and amino acid properties,
we tested several configurations of the model, shown in Table 2. These include
graded-vector encoding structure and properties in accordance with the entirety
of Fig. 1 (GrSP); encoding structure only, without encoding properties (GrS);
ignoring structure and treating the protein sequences as “bags” of amino acids
(BoAA) or amino acid properties (BoP); and “slot coding” approaches in which
vector representations of amino acids (SloAA) or amino acid properties (SloP)
are bound to elemental vectors representing their position within the protein
sequence, such that the similarity function requires finding an identical (SloAA)
or similar (SloP) amino acid in exactly the same position as in a cue sequence.
In all cases, 52,205 “clone vectors” were generated, each one representing the
repertoire of Ig sequences derived from a single clonal lineage.

For each of the model variants in Table 2, we generated binary vectors at six
different dimensionalities between 1024 and 32,768 (210 − 215). For the sake of
reproducibility, we generated elemental vectors using a deterministic approach in
which the pseudo-random number generator is seeded by applying a hash func-
tion to the term-to-be-represented [34]. This preserves the desirable property of
near-orthogonality, while ensuring that the influence of random overlap between
elemental vectors is consistent across experiments. For each model, and at each
dimensionality, we used the vector representations of each of the three WNV-
specific clones as cues. Each cue vector was compared against the other 52,504
clone vectors in the space, which were rank ordered with respect to their similar-
ity, with similarity estimated as 1− 2

n hamming distance (HD)3. Generation and

3 This corresponds to the cosine metric if binary vectors are treated as vectors in
{1,−1} not {1,0}. For example, 1 − (2/4) ∗ HD(1110, 1111) = 0.5, and cos((0.5, 0.5,
0.5, −0.5), (0.5, 0.5, 0.5, 0.5)) = 0.5 (with 0.5 for normalized vector components
after division by

√
4).
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comparison of high-dimensional binary vectors, including graded vectors, was
conducted using the open source Semantic Vectors package [35]. In each case,
the ranks of the vectors for the other two WNV-specific clones were recorded.

6 Results

The results of these experiments are shown in Table 3, which provides the median
and minimum rank across the 36 searches (6 dimensionalities × 3 cues × 2
targets), and counts of the number of these examples that fell within the top-
ranked results at different thresholds. All of the models evaluated reliably recover
WNV-specific clonal lineages within the top 1,000 results (the probability of this
occurring at random is around .02). The graded vector based methods (GrSP
and GrS) retrieve the most WNV-specific lineages within the top 100 results,
and the GrSP method has the lowest median rank of retrieval across all cases.

Table 3. Summary of results across all examples and dimensionalities. Best results in
each row are in bold. Models incorporating amino acid properties are in grey columns.

Incorporating information about amino acid properties (grey columns) improves
the performance of models that incorporate structure (GrSP > GrS and SloP >
SloAA), and vice-versa - GrSP and SloP also outperform BoP with respect to
proximal (e.g. recall within top 100) and overall (median rank) performance.
However, the effect of incorporating property information when structure is
ignored (BoP vs. BoAA) is more nuanced, with slightly better recall of higher-
ranked results but worse performance overall. These two structure-agnostic mod-
els are competitive with respect to their ability to recover WNV-specific lineages
in the top 1,000 results, but seldom recover these within the top 100. Of the
models that incorporate structure, the graded vector approaches, which accom-
modate approximate alignment, outperform the tighter constraints of the “slot
coding” approaches. SloAA performs worst by most metrics, which is not sur-
prising as it is the model with the tightest constraints, with insistence upon
an exact match between both position and specific amino acid. Table 4 summa-
rizes performance for productive cue:target pairs, excluding 125584:68974 which
was not retrieved within the top 1000 results in either orientation. This pattern
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Table 4. Minimum, median and maximum rank for productive cue:target pairs
(MIN ;MED

MAX
). Best MIN in bold, best MED underlined, best MAX in italics if ≤ 1000.

Ranks > 1000 in grey text. Models incorporating properties in grey columns. C/T =
Cue

Target
.

C/T GrSP GrS BoP BoAA SloP SloAA
125584
314052

26; 54
111

45; 57.5
9323

116; 267.5
337

107; 227.5
306

228; 349.5
14489

1632; 5342.5
7292

314052
125584

510; 1000
3056

3584; 7608
32883

324; 429
745

317; 472.5
599

1917; 2296.5
39694

1802; 8434.5
9512

314052
68974

520; 877.5
16851

96; 560.5
4131

15230; 20214
42451

10711; 14808
16032

1997; 3199
10117

409; 2208
2842

68974
314052

5; 9
317

4; 12.5
387

33; 501.5
8390

98; 165
418

34; 53.5
339

26; 350.5
924

suggests one target, 314052, is more readily retrieved than others. One expla-
nation for this might be that more Ig sequences related to this clone appear in
the data set (n = 44 vs. n = 5 and n = 12 for 68974 and 125584 respectively). So
the clone vector representing it exhibits a broader range of WNV-related char-
acteristics. Superposition of these sequences will emphasize characteristics that
are preserved across the ancestral lineage. From a biological perspective, these
should be the characteristics that define specificity for WNV.

7 Discussion

In this paper, we develop and evaluate a method through which the position
and properties of components of a protein sequence are encoded into high-
dimensional vector representations, such that proteins with similar amino acids
in similar positions will have similar vectors. These vectors can be compared effi-
ciently using a variant of the hamming distance, and superposed to represent the
Ig sequence collection of a clonal lineage. Evaluation reveals encoding amino acid
properties improves retrieval of one WNV-binding clonal lineage when another
is used as a cue, if sequence and structure are also encoded. Encoding sequence
and structure improves retrieval with or without encoding properties, if position
is not rigidly encoded. Of note, it is not necessarily the case that clonal lin-
eages ranked higher than the desired targets are not WNV-specific. Rather, our
approach may have identified other sensitized clones, a possibility that would
need to be evaluated empirically. Nonetheless, these results suggest our app-
roach provides scalable solution for approximate matching of protein sequences,
a fundamental problem in computational genomics. In future work we will incor-
porate a broader range of amino acid properties, and conduct evaluation using
larger data sets.
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8 Conclusion

In this work, we adapt approaches to encoding sequence and continuous val-
ues into semantic vector representations to the task of representing protein
sequences. Evaluation suggests that encoding amino acid properties is of value
for the identification of proteins with similar immunological specificity, if and
only if the position of these amino acids is encoded also. However, it is prefer-
able that this encoding be flexible, permitting approximate match in position.
Our approach transforms the computationally demanding task of approximate
alignment of sequence into the computationally convenient task of measuring
the similarity between semantic vector representations. Consequently, it may be
applicable to situations requiring rapid evaluation of large numbers of sequences.
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30. Lefranc, M.-P., Pommié, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L.,
Thouvenin-Contet, V., Lefranc, G.: IMGT unique numbering for immunoglobulin
and T cell receptor variable domains and IG superfamily V-like domains. Dev.
Comp. Immunol. 27(1), 55–77 (2003)



148 T. Cohen et al.

31. Tsioris, K., Gupta, N.T., Ogunniyi, A.O., Zimnisky, R.M., Qian, F., Yao, Y., Wang,
X., Stern, J.N.H., Chari, R., Briggs, A.W., Clouser, C.R., Vigneault, F., Church,
G.M., Garcia, M.N., Murray, K.O., Montgomery, R.R., Kleinstein, S.H., Love, J.C.:
Neutralizing antibodies against West Nile virus identified directly from human B
cells by single-cell analysis and next generation sequencing. Integr. Biol. 7(12),
1587–1597 (2015)

32. Gupta, N.T., Heiden, J.A.V., Uduman, M., Gadala-Maria, D., Yaari, G., Klein-
stein, S.H.: Change-O: a toolkit for analyzing large-scale B cell immunoglobulin
repertoire sequencing data: table 1. Bioinformatics 31, 3356–3358 (2015)

33. Ogunniyi, A.O., Thomas, B.A., Politano, T.J., Varadarajan, N., Landais, E.,
Poignard, P., Walker, B.D., Kwon, D.S., Love, J.C.: Profiling human antibody
responses by integrated single-cell analysis. Vaccine 32, 2866–2873 (2014)

34. Wahle, M., Widdows, D., Herskovic, J.R., Bernstam, E.V., Cohen, T.: Determin-
istic binary vectors for efficient automated indexing of medline/pubmed abstracts.
In: AMIA Annual Symposium Proceedings, American Medical Informatics Asso-
ciation, vol. 2012, p. 940 (2012)

35. Widdows, D., Cohen, T.: The semantic vectors package: new algorithms and public
tools for distributional semantics. In: Fourth IEEE International Conference on
Semantic Computing (ICSC) (2010)



Contextuality and Foundations of
Probability



Testing Contextuality in Cyclic Psychophysical
Systems of High Ranks

Ru Zhang1,2(B) and Ehtibar N. Dzhafarov1

1 Purdue University, West Lafayette, USA
2 Indiana University, Bloomington, USA

{zhang617,ehtibar}@purdue.edu

Abstract. Contextuality-by-Default (CbD) is a mathematical frame-
work for understanding the role of context in systems with determin-
istic inputs and random outputs. A necessary and sufficient condition
for contextuality was derived for cyclic systems with binary outcomes.
In quantum physics, the cyclic systems of ranks n = 5, 4, and 3 are
known as systems of Klyachko-type, EPR-Bell-type, and Leggett-Garg-
type, respectively. In earlier publications, we examined data collected
in various behavioral and social scenarios, from polls of public opinion
to our own experiments with psychophysical matching. No evidence of
contextuality was found in these data sets. However, those studies were
confined to cyclic systems of lower ranks (n ≤ 4). In this paper, con-
textuality of higher ranks (n = 6, 8) was tested on our data with psy-
chophysical matching, and again, no contextuality was found. This may
indicate that many if not all of the seemingly contextual effects observed
in behavioral sciences are merely violations of consistent connectedness
(selectiveness of influences).

Keywords: Contextuality · Contextuality-by-default · Cyclic systems ·
Consistent connectedness · Psychophysical matching

1 Introduction

Consider a system having two external factors (or inputs) α and β, which can be
deterministically manipulated, and two random outputs A and B that we interpret
as responses to, or measurements of, α and β, respectively. The system can belong
to any empirical domain, from quantum physics to behavioral sciences. If manip-
ulating β does not change the marginal distribution of A and manipulating α does
not change the marginal distribution of B, we say that the system is consistently
connected. Physicists traditionally test contextuality by assuming consistent con-
nectedness (referred to as “no-signaling,” “no-disturbance,” etc.). However, even
in quantum experiments inconsistent connectedness may occur, e.g., because of
context-dependent errors in measurements. In behavioral sciences inconsistent
connectedness is ubiquitous. The Contextuality-by-Default (CbD) theory allows
one to detect and measure contextuality, or to determine that a system is non-
contextual, irrespective of whether it is consistently connected [1–8]. In quantum
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 151–162, 2017.
DOI: 10.1007/978-3-319-52289-0 12
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physics, many experiments and theoretical considerations demonstrate the exis-
tence of contextual systems [9–15], including in cases when consistent connected-
ness is violated [8]. By contrast, we found no evidence of contextuality in various
social and behavioral data sets, from polls of public opinion to visual illusions to
conjoint choices to word combinations to psychophysical matching [16,17].

Most of the experimental studies of contextuality, both in quantum physics
and in behavioral and social sciences, have been confined to cyclic systems [4,6,8],
in which each entity being measured or responded to enters in two contexts and
each context contains exactly two entities. In this paper we only deal with cyclic
systems of even ranks, those that can be formedusing the paradigmwith two exper-
imental factors (or inputs) α, β and two outputs in response to the two factors. A
cyclic system of an even rank 2n ≥ 4 can be extracted from a design in which α
and β vary on n levels each, denoted α1, α2, . . . , αn and β1, β2, . . . , βn. Out of n2

possible treatments one extracts 2n pairs, we call contexts, whose elements form
a cycle, e.g.,

Context 1 Context 2 . . . Context (2n − 1) Context 2n
(α1, β1) (β1, α2) . . . , (αn, βn) (βn, α1)

. (1)

This is a cyclic system of rank 2n. The outputs of the system corresponding to
these 2n contexts are 2n pairs of random variables

(A11, B11) , (B21, A21) , . . . , (Ann, Bnn) , (B1n, A1n) , (2)

where Aij is interpreted as a response to (measurement of) αi in the context
(αi, βj), and Bij is interpreted as a response to (measurement of) βj in the same
context, where i, j ∈ {1, . . . , n}. It is assumed in addition that each random
output is binary, with values denoted −1,+1. The random variables Aij and
Bij (recorded in the same context) are jointly distributed, so that, e.g., the joint
probability of Aij = 1 and Bij = −1 is well-defined. However, according to CbD,
any two random outputs recorded in different contexts, such as Aij and Bi′j′

or Aij and Ai′j′ , with (i, j) �= (i′, j′), are stochastically unrelated, have no joint
distribution [3–5,7,8,16].

In CbD, the system just described is considered noncontextual if and only
if the 2n pairs of random variables in (2) can be coupled (imposed a joint dis-
tribution on) so that any two random variables responding to the same factor
point in different contexts (i.e., Aij and Aij′ , or Bij and Bi′j) are equal to
each other with maximal possible probability, given their individual distribu-
tions [4,5,7,8,16,17]. A necessary and sufficient condition for noncontextuality
of a cyclic system (2) was derived in Refs. [4,6]:

ΔC = s1 (〈A11B11〉 , 〈B21A21〉 , . . . , 〈AnnBnn〉 , 〈B1nA1n〉)

−ICC − (2n − 2) ≤ 0,
(3)



Testing Contextuality in Cyclic Psychophysical Systems of High Ranks 153

where 〈·〉 denotes expected value, s1 (x1, . . . , xk) is the maximum of all linear
combinations ±x1 ± . . . ± xk with odd numbers of minuses, and

ICC = |〈A11〉 − 〈A1n〉| + |〈B11〉 − 〈B21〉|

+ . . . +
∣
∣〈An(n−1)

〉 − 〈Ann〉∣∣ + |〈Bnn〉 − 〈B1n〉| .
(4)

If a system is consistently connected, ICC vanishes.
Experimental studies of cyclic systems in quantum physics were confined

to ranks 3, 4, and 5 (see Refs. [4,8] for an overview). In behavioral and social
experiments and surveys the ranks of the cyclic systems explored were 2, 3, and
4 (see Refs. [16,17] for an overview). In the present study, we analyze cyclic
systems of ranks 4, 6, and 8.

2 Experiments

The experimental design and procedure were described in detail in Ref. [17].
Three different psychophysical matching tasks were used (Fig. 1): dot position
reproduction task (Experiment 1(a) and 1(b)), concentric circles reproduction
task (Experiment 2(a), 2(b) and 2(c)), and floral shape reproduction task (Exper-
iment 3(a) and 3(b)). Each of the seven experiments was conducted on three
participants.

Fig. 1. Stimuli used in the (a) dot position reproduction task, (b) concentric circles
reproduction task, and (c) floral shape reproduction task.

In each experimental trial, the participants were shown two stimuli on a
computer screen, as shown in Fig. 1. One was a fixed stimulus, the other stimulus
was adjustable, by means of rotating a trackball. The participants were required
to change this stimulus until it appeared to match the position or shape of the
fixed target stimulus. Once a match was achieved, she or he clicked the button
on the trackball to terminate the trial. Each stimulus was characterized by two
parameters. For the target stimulus these parameters are denoted as α and β,
and their values in each trial were generated from a pre-defined set of numbers.
The values of the same parameters in the matching stimulus are denoted A
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Table 1. External factors (α, β) and random outputs (A, B) for the three types of
tasks.

Task α β A B

Dot position
reproduction
(rectangular
coordinates)

Horizontal
coordinate of the
target dot

Vertical coordinate
of the target dot

Horizontal
coordinate of
the matching
dot

Vertical
coordinate of
the matching
dot

Dot position
reproduction (polar
coordinates)

Radial coordinate
of the target dot

Angular coordinate
of the target dot

Radial
coordinate of
the matching
dot

Angular
coordinate of
the matching
dot

Concentric circle
reproduction

Radius of the
target circle 1

Radius of the target
circle 2

Radius of the
matching circle
1

Radius of the
matching circle
2

Floral shape
reproduction, see (5)

Amplitude 1 of
the target shape

Amplitude 2 of the
target shape

Amplitude 1 of
the matching
shape

Amplitude 2 of
the matching
shape

and B (as they randomly vary for given values of α and β). Table 1 shows the
parameters used.

The trials were separated by .5 s intervals. Each experiment took several
days, each of which consisted of about 200 trials with a break in the middle.
Each such session began by a practice series of 10 trials (which were not used
for data analysis).

The original data sets for all the experiments are available as Excel files
online (http://dx.doi.org/10.7910/DVN/OJZKKP). Each file corresponds to one
participant in one experiment.

2.1 Participants

All the participants were students at Purdue University. The first author of this
paper, labeled as P3, participated in all the experiments. Participants P1 and
P2 participated in Experiments 1(a) and 2(a), and Participants P4 and P5 in
Experiments 1(b), 2(b), 2(c), 3(a), and 3(b). All participants were about 25 years
old and had normal or corrected to normal vision.

2.2 Stimuli and Procedure

Visual stimuli consisting of curves and dots were presented on a flat-panel moni-
tor. The diameter of the dots and the width of the curves was 5 pixels (px). The
stimuli were grayish-white on a comfortably low intensity background. The par-
ticipants viewed the stimuli in darkness using a chin rest with a forehead support
at the distance of 90 cm from the monitor, making 1 screen pixel approximately
62 s arc.

Experiment 1. In Experiment 1(a), each trial began with presenting two circles
with a dot in the first quadrant of each circle (as shown in Fig. 1(a)). The dot in
the upper left circle was fixed at one of randomly chosen six positions. These six

http://dx.doi.org/10.7910/DVN/OJZKKP
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positions contained a 2 × 2 “rectangular” sub-design: {32 px, 64 px} × {32 px,
64 px} and a 2 × 2 “polar” sub-design: {53.67 px, 71.55 px} × {63.43 deg, 26.57
deg}. The coordinates were recorded using the center of the circle as the origin.
The position adjustable dot was in the bottom right circle. The task was to move
the bottom right dot by rotating the trackball to a position that matched that
of the fixed one. There were 1200 trials overall.

Experiment 1(b) was identical to Experiment 1(a) except the horizontal coor-
dinate and vertical coordinate of the target dot were random integers drawn from
the interval [20 px, 80 px). This “rectangular” design also contained a “polar”
sub-design [40 px, 90 px)× [30 deg, 60 deg). The overall number of trials for the
“rectangular” design was 1800, for the polar sub-design about 900.

Experiment 2. In each trial of Experiment 2(a), the target stimulus on the
left consisted of two concentric circles and a dot in their center. The radii of
circle 1 and circle 2 were randomly chosen from the sets {16 px, 56 px, 64 px}
and {48 px, 72 px, 80 px}, respectively. At the beginning of each trial the right
stimulus was a dot. The participants had to reproduce the target stimulus by
rotating the trackball to “blow up” two circles from that dot one by one. They
had the freedom to produce the inner or the outer circle first. Once the first
matching circle was produced, the participants clicked a button on the trackball
to confirm this circle and then the program enabled them to “blow up” the other
circle. After the second circle was created, the trial was terminated by clicking
the same button. There were 1800 trials overall.

Experiment 2(b) was identical to Experiment 2(a) except that in each trial
the radii of the target circles were randomly chosen from four possibilities {12
px, 24 px} × {18 px, 30 px}. There were 1600 trials overall.

Experiment 2(c) was identical to Experiment 2(a) except that in each trial
the radii of the target circles were numbers randomly chosen from [18 px, 48
px)× [56 px, 86 px). There were 1800 trials overall.

Experiment 3. Two floral shapes (Fig. 1(c)) were presented simultaneously in
each trial in Experiment 3(a). The target one was on the left. The right one was
modifiable. Each floral shape was generated by a function

x = cos(.02πΔ)[70 + α cos(.06πΔ) + β cos(.1πΔ)], (5)
y = sin(.02πΔ)[70 + α cos(.06πΔ) + β cos(.1πΔ)],

where Δ is polar angle and x and y are the horizontal and vertical coordinates (in
pixels). For a matching floral shape, α, β are replaced with A,B, respectively.
The amplitudes α, β of the target shape were randomly chosen from the sets
{−18 px, 10 px, 14 px} and {−16 px, −12 px, 20 px}, respectively. The two
amplitudes of the right shape were randomly initialized from the interval [−35
px, 35 px). The participants were asked to match the left shape by modifying
the right shape by rotating the trackball. There were 1800 trials overall.
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Experiment 3(b) was identical to Experiment 3(a) except that the two ampli-
tudes of the target shape were randomly chosen numbers from the interval
[−30 px, 30 px).

3 Results

In each experiment the matching points that were too far from the target values
were considered outliers and they were removed from data analysis. The outliers
made less than 1% of all data. Ref. [17] briefly reported how contextuality for
cyclic systems of rank 4 was tested using the data collected from our seven
experiments. In this paper, we present the contextuality test for rank 4 in greater
details, and add the analyses for cyclic systems of ranks 6 and 8, using the same
data.

3.1 Testing Contextuality for Rank 4

A cyclic system of rank 4 can be represented by four contexts

Context 1 Context 2 Context 3 Context 4
(α1, β1) (β1, α2) (α2, β2) (β2, α1)

. (6)

To form such a system, we chose {α1, α2} × {β1, β2} = {32 px, 64 px} ×
{32 px, 64 px} for the “rectangular” sub-design of Experiment 1(a). The “polar”
sub-designs of Experiment 1(a) and Experiment 2(b) also have 2 × 2 struc-
tures, and they were presented as cyclic systems analogously. Experiment 2(a)
and Experiment 3(a) have 3 × 3 factorial designs. We extracted 9 cyclic sys-
tems of rank 4 from each of them by selecting two α’s and two β’s from the
sets of α and β. The “rectangular” design of Experiment 1(b) and the “polar”
sub-designs of Experiment 1(b), Experiment 2(c), and Experiment 3(b) have
external factors spanning certain intervals. In order to have a cyclic system of
rank 4, each interval was dichotomized into two subintervals. For instance, four
experimental conditions (αi1 , βi2), i1, i2 ∈ {1, 2}, are formed in the “rectangular”
design of Experiment 1(b) if one chooses α1 = [20 px, 50 px), α2 = [50 px, 80 px),
β1 = [20 px, 50 px), and β2 = [50 px, 80 px). Of course other cut-off points can
be chosen to dichotomize the intervals. In this paper, we only report the results
from the midpoint-dichotomized data sets.

Irrespective of the experiment, the random outputs Ai1i2 , Bi1i2 should each
be dichotomized. The two values for each random variable were defined by choos-
ing a value ai1 and a value bi2 and computing

A∗
1i2

=
{

+1 if A1i2 > a1

−1 if A1i2 ≤ a1
, A∗

2i2
=

{
+1 if A2i2 > a2

−1 if A2i2 ≤ a2
,

B∗
i11

=
{

+1 if Bi11 > b1
−1 if Bi11 ≤ b1

, B∗
i12

=
{

+1 if Bi12 > b2
−1 if Bi12 ≤ b2

.

(7)
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We chose a value a1 as any integer (in pixels) between max(minA11, minA12)
and min(maxA11, maxA12), b1 as any integer (in pixels or degrees) between
max(minB11, minB21) and min(maxB11, maxB21), and analogously for a2 and
b2. The total number of the rank-4 systems thus formed varied from 3024 to
11,663,568 per experiment per participant. For each choice of the quadruple, we
applied the test (3)–(4) to the distributions of the obtained A∗ and B∗ variables.
No positive �C was observed, indicating the absence of contextuality in the rank
4 cyclic system for each participant in each experiment.

We present an example to illustrate how the test of (non)contextuality was
conducted. For participant P3 in the “polar” sub-design of Experiment 1(a), one
choice of the quadruple was (a1, a2, b1, b2) = (72 px, 67 px, 60 deg, 23 deg). The
distributions of the random outputs for the four contexts indexed as in (6) are
presented in Table 2, where the numbers in the grids are joint probabilities and
the numbers outside are marginal probabilities.

Table 2. Distributions of the random outputs for the cyclic system of rank 4, P3 in
the “polar” sub-design of Experiment 1(a).

Context 1 B11 > b1 B11 ≤ b1
A11 > a1 .0056 0 .0056
A11 ≤ a1 .3944 .6 .9944

.4 .6

Context 2 B21 > b1 B21 ≤ b1
A21 > a2 .6403 .3399 .9802
A21 ≤ a2 .0099 .0099 .0198

.6502 .3498
Context 3 B22 > b2 B22 ≤ b2
A22 > a2 .5789 .4167 .9956
A22 ≤ a2 .0044 0 .0044

.5833 .4167

Context 4 B12 > b2 B12 ≤ b2
A12 > a1 .0273 .0219 .0492
A12 ≤ a1 .4699 .4809 .9508

.4972 .5028

We have, in reference to (3)–(4)

s1 (〈A∗
11B

∗
11〉 , 〈B∗

21A
∗
21〉 , 〈A∗

22B
∗
22〉 , 〈B∗

12A
∗
12〉) = s1 (.2112, .3004, .1578, .0164) = 0.653,

ICC = |〈A∗
11〉 − 〈A∗

12〉| + |〈B∗
11〉 − 〈B∗

21〉| + |〈A∗
21〉 − 〈A∗

22〉| + |〈B∗
22〉 − 〈B∗

12〉|
= |(−.9016) − (−.9888)| + |(−.2) − .3004| + |.9604 − .9912| + |.1666 − (−.0056)|
= .7906.

With 2n − 2 = 4 − 2 = 2 we obtain

ΔC = −2.1376 < 0,

no evidence of contextuality.

3.2 Testing Contextuality for Rank 6

Both Experiment 2(a) and Experiment 3(a) have 3× 3 designs: {α1, α2, α3} ×
{β1, β2, β3}. From each of them we extracted one cyclic system of rank 6,



158 R. Zhang and E.N. Dzhafarov

Context 1 Context 2 Context 3 Context 4 Context 5 Context 6
(α1, β1) (β1, α2) (α2, β2) (β2, α3) (α3, β3) (β3, α1)

, (8)

and labeled the random outputs A,B accordingly.
The “rectangular” design of Experiment 1(b), the “polar” sub-designs of

Experiment 1(b), Experiment 2(c), and Experiment 3(b) are the systems with
quasi-continuous factors. These factors were discretized into three levels by using
the one-third quantile and the two-third quantile of each interval as cut-off
points.

Again, the random outputs should be dichotomized in each experiment. We
chose a value ai1 and a value bi2 , i1, i2 ∈ {1, 2, 3}, and defined

A∗
1i2

=
{

+1 if A1i2 > a1

−1 if A1i2 ≤ a1
, A∗

2i2
=

{
+1 if A2i2 > a2

−1 if A2i2 ≤ a2
,

A∗
3i2

=
{

+1 if A3i2 > a3

−1 if A3i2 ≤ a3
, B∗

i11
=

{
+1 if Bi11 > b1
−1 if Bi11 ≤ b1

,

B∗
i12

=
{

+1 if Bi12 > b2
−1 if Bi12 ≤ b2

, B∗
i13

=
{

+1 if Bi13 > b3
−1 if Bi13 ≤ b3

.

(9)

We chose a1 as any integer between max(minA11, minA13) and min(maxA11,
maxA13), b1 as any integer between max(minB11, minB21) and min(maxB11,
maxB21), and analogously for a2, a3, b2, and b3 for the experiments with dis-
crete factor points Experiment 2(a) and Experiment 3(a). For the experiments
with quasi-continuous factors, we chose a1, a2, a3, b1, b2, b3 as every third inte-
ger within the corresponding range. The total number of the rank-6 systems
thus formed varied from 18,000 to 31,905,600 per experiment per participant.
For each such choice of the sextuple (a1, a2, a3, b1, b2, b3) we conducted the test
(3)–(4). No positive �C was observed for the systems of rank 6 we investigated.

We present an example of how the test (3)–(4) was conducted. For participant
P1 in Experiment 2(a), in which {α1, α2, α3} × {β1, β2, β3} = {16 px, 56 px, 64
px} × {48 px, 72 px, 80 px}, one choice of the sextuple was (a1, a2, a3, b1, b2, b3) =
(16 px, 56 px, 64 px, 48 px, 72 px, 80 px). The distributions of the random outputs
for the six contexts indexed as in (8) are presented in Table 3.

We have

s1 (〈A∗
11B

∗
11〉 , 〈B∗

21A
∗
21〉 , 〈A∗

22B
∗
22〉 , 〈B∗

32A
∗
32〉 , 〈A∗

33B
∗
33〉 , 〈B∗

13A
∗
13〉)

= s1 (.1192, .4843, .5116, .4865, .8246, .2736) = 2.4613,

ICC = |〈A∗
13〉 − 〈A∗

11〉| + |〈B∗
11〉 − 〈B∗

21〉| + |〈A∗
22〉 − 〈A∗

21〉| + |〈B∗
22〉 − 〈B∗

32〉|
+ |〈A∗

32〉 − 〈A∗
33〉| + |〈B∗

33〉 − 〈B∗
13〉|

= |−.0778 − (−.3396)| + |−.1918 − (−.2218)| + |−.3212 − (−.593)|
+ |−.4302 − (−.0632)| + |−.3424 − (−.7660)| + |−.7778 − (−.4056)|

=.2618 + 0.03 + .2718 + .367 + .4236 + .3722 = 1.7264,
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Table 3. Distributions of the random outputs for the cyclic system of rank 6, P1 in
Experiment 2(a).

Context 1 B11 > b1 B11 ≤ b1
A11 > a1 .2124 .2487 .4611
A11 ≤ a1 .1917 .3472 .5389

.4041 .5959

Context 2 B21 > b1 B21 ≤ b1
A21 > a2 .2353 .1041 .3394
A21 ≤ a2 .1538 .5068 .6606

.3891 .6109
Context 3 B22 > b2 B22 ≤ b2
A22 > a2 .1221 .0814 .2035
A22 ≤ a2 .1628 .6337 .7965

.2849 .7151

Context 4 B32 > b2 B32 ≤ b2
A32 > a3 .2703 .0586 .3288
A32 ≤ a3 .1982 .4730 .6712

.4685 .5316
Context 5 B33 > b3 B33 ≤ b3
A33 > a3 .0702 .0468 .1170
A33 ≤ a3 .0409 .8421 .8830

.1111 .8889

Context 6 B13 > b3 B13 ≤ b3
A13 > a1 .1321 .1981 .3302
A13 ≤ a1 .1651 .5047 .6698

.2972 .7028

whence
ΔC = 2.4613 − 1.7264 − (6 − 4) = −3.2651 < 0,

no evidence of contextuality.

3.3 Testing Contextuality for Rank 8

The “rectangular” design of Experiment 1(b), the “polar” sub-designs of Experi-
ment 1(b), Experiment 2(c), and Experiment 3(b) have quasi-continuous factors.
Each factor in each experiment was discretized into four levels in order to form a
rank 8 cyclic system. Three points should be chosen for each factor to make this
discretization. We chose the first quartile point, the second quartile (median)
point, and the third quartile point of each interval. A cyclic system of rank 8
was extracted from each experiment:

Context 1 Context 2 Context 3 Context 4 Context 5 Context 6 Context 7 Context 8
(α1, β1) (β1, α2) (α2, β2) (β2, α3) (α3, β3) (β3, α4) (α4, β4) (β4, α1)

,

(10)with the random outputs labeled accordingly.
To dichotomize the outputs, we chose a value ai1 and a value bi2 , i1, i2 ∈

{1, 2, 3, 4} to define

A∗
1i2

=

{
+1 if A1i2 > a1
−1 if A1i2 ≤ a1

, A∗
2i2

=

{
+1 if A2i2 > a2
−1 if A2i2 ≤ a2

,

A∗
3i2

=

{
+1 if A3i2 > a3
−1 if A3i2 ≤ a3

, A∗
4i2

=

{
+1 if A4i2 > a4
−1 if A4i2 ≤ a4

,

B∗
i11

=

{
+1 if Bi11 > b1
−1 if Bi11 ≤ b1

, B∗
i12

=

{
+1 if Bi12 > b2
−1 if Bi12 ≤ b2

,

B∗
i13

=

{
+1 if Bi13 > b3
−1 if Bi13 ≤ b3

, B∗
i14

=

{
+1 if Bi14 > b4
−1 if Bi14 ≤ b4

.

(11)
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For each rank 8 cyclic system, we chose a1 as every sixth integer between
max(minA11, minA14) and min(maxA11, maxA14), b1 as every sixth integer
between max(minB11, minB21) and min(maxB11, maxB21), and analogously for
a2, a3, a4, b2, b3, and b4. The total number of the rank-8 systems thus formed var-
ied from 432 to 6,453,888 per experiment per participant. For each thus obtained
octuple we conducted the test (3)–(4). No positive �C was observed in all the
investigated cyclic systems of rank 8.

To give an example, for participant P4 in Experiment 3(b), one choice of the
octuple was (a1, a2, a3, a4, b1, b2, b3, b4) = (-21 px, -6 px, 6 px, 21 px, -21 px, -9
px, 9 px, 21 px). The distributions of the random outputs for the eight contexts
indexed as in (10) are presented in Table 4.

Table 4. Distributions of the random outputs for the cyclic system of rank 8, P4 in
Experiment 3(b).

Context 1 B11 > b1 B11 ≤ b1
A11 > a1 .1532 .2823 .4355
A11 ≤ a1 .1855 .3790 .5645

.3387 .6613

Context 2 B21 > b1 B21 ≤ b1
A21 > a2 .1619 .2667 .4286
A21 ≤ a2 .1905 .3810 .5715

.3524 .6477
Context 3 B22 > b2 B22 ≤ b2
A22 > a2 .2759 .2155 .4914
A22 ≤ a2 .2586 .2500 .5086

.5345 .4655

Context 4 B32 > b2 B32 ≤ b2
A32 > a3 .4130 .1739 .5869
A32 ≤ a3 .1957 .2174 .4131

.6087 .3913
Context 5 B33 > b3 B33 ≤ b3
A33 > a3 .2736 .3208 .5944
A33 ≤ a3 .1604 .2453 .4057

.4340 .5661

Context 6 B43 > b3 B43 ≤ b3
A43 > a4 .2460 .3095 .5555
A43 ≤ a4 .1667 .2778 .4445

.4127 .5873
Context 7 B44 > b4 B44 ≤ b4
A44 > a4 .3209 .3134 .6343
A44 ≤ a4 .1493 .2164 .3657

.4702 .5298

Context 8 B14 > b4 B14 ≤ b4
A14 > a1 .1619 .2571 .4190
A14 ≤ a1 .2381 .3429 .5810

.4 .6

We have then

s1
(〈
A∗

11B
∗
11
〉
,
〈
B∗

21A
∗
21
〉
,
〈
A∗

22B
∗
22
〉
,
〈
B∗

32A
∗
32
〉
,
〈
A∗

33B
∗
33
〉
,
〈
B∗

43A
∗
43
〉
,
〈
A∗

44B
∗
44
〉
,
〈
B∗

14A
∗
14
〉)

= s1 (.0644, .0857, .0518, .2608, .0377, .0476, .0746, .0096) = .613,

ICC = |〈A∗
11〉 − 〈A∗

14〉| + |〈B∗
11〉 − 〈B∗

21〉| + |〈A∗
22〉 − 〈A∗

21〉| + |〈B∗
22〉 − 〈B∗

32〉|
+ |〈A∗

33〉 − 〈A∗
32〉| + |〈B∗

43〉 − 〈B∗
33〉| + |〈A∗

44〉 − 〈A∗
43〉| + |〈B∗

14〉 − 〈B∗
44〉|

= |−.129 − (−.162)| + |−.3226 − (−.2952)| + |−.0172 − (−.1428)| + |.069 − .2174|
+ |.1888 − .1738| + |−.1746 − (−.132)| + |.2686 − (.1110)| + |−.2 − (−.0596)|

=.033 + .0274 + .1256 + .1484 + .015 + .0426 + .1576 + .1404 = .6902,
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whence
ΔC = .613 − .6902 − (8 − 2) = −6.0772 < 0,

no evidence of contextuality.

4 Conclusions

Contextuality-by-default is a mathematical framework that allows to classify
systems as contextual or noncontextual. Experimental data suggest that the
noncontextuality boundaries are generally breached in quantum physics [8]. In
Refs. [16,17] we reviewed several behavioral and social scenarios to conclude
that none of them provided evidence for contextuality. By examining the psy-
chophysical data collected in our laboratory, we found no contextuality for cyclic
systems of different ranks, including high ranks (6 and 8) that have never been
analyzed before. We suspect that it may be generally true that human and social
behaviors are not contextual in the same sense in which quantum systems are.
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AFOSR grant FA9550-14-1-0318.

References

1. Dzhafarov, E.N., Kujala, J.V.: A qualified kolmogorovian account of probabilistic
contextuality. In: Atmanspacher, H., Haven, E., Kitto, K., Raine, D. (eds.) QI
2013. LNCS, vol. 8369, pp. 201–212. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54943-4 18

2. Dzhafarov, E.N., Kujala, J.V.: Embedding quantum into classical: contextualiza-
tion vs conditionalization. PLoS One 9(3), e92818 (2014). doi:10.1371/journal.
pone.0092818

3. Dzhafarov, E.N., Kujala, J.V.: Contextuality is about identity of random variables.
Physica Scripta T 163, 014009 (2014)

4. Dzhafarov, E.N., Kujala, J.V., Larsson, J.Å.: Contextuality in three types of
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Abstract. [6] have introduced a contextual probability theory called
Contextuality-by-Default (C-b-D) which is based on three principles. The
first of these principles states that each random variable should be auto-
matically labeled by all condition under which it is recorded. The aim
of this article is to relate this principle to block structured computer
programming languages where variables are declared local to a construct
called a “scope”. In this way a variable declared in two scopes can be
safely overloaded meaning that they can have the same label but pre-
serve two distinct identities without the need for the modeller to label
each variable in each condition as advocated by C-b-D. A core issue
addressed is how to construct a single probabilistic model from the var-
ious interim probability distributions returned by each syntactic scope.
For this purpose, a probabilistic variant of the natural join operator of
relational algebra is used to “glue” together interim distributions into
a single distribution. The semantics of this join operator are related to
contextual semantics [1].

1 Introduction

[6] have introduced a contextual probability theory called Contextuality-by-
Default (C-b-D) which is based on three principles:

1. (Indexation by conditions): A random variable is identified (indexed, tagged)
by all conditions under which its realizations are recorded.

2. (Unrelatedness): Two or more random variables recorded under mutually
incompatible conditions are stochastically unrelated, i.e., they possess no joint
distribution.

3. (Coupling) A set of pairwise stochastically unrelated random variables can
be probabilistically coupled, i.e., imposed a joint distribution on; the choice
of a coupling is generally non-unique.

Its curious with respect to the first principle that a similar line of thinking emerged
in the field of computer programming languages in the nineteen sixties, particularly
with the advent of a radical new language called ALGOL-60. Before ALGOL-60,
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 163–174, 2017.
DOI: 10.1007/978-3-319-52289-0 13
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programming languages such as FORTRAN featured variables that are always
accessible fromanypart of the program.These variableswere termed “global” vari-
ables because of this property.As programming languages evolved, global variables
were seen as a cause of errors, because a variable may be inadvertently used for two
different functional purposes at different points in the program. In order to help
counter such errors so called block structured programming languages were devel-
oped.

A block is sometimes referred to as a “lexical scope”, which is a syntactically
delineated fragment of a program within which program constructs such as vari-
able definitions are defined as being local to the scope. As a consequence, the
same variable name can be “overloaded” meaning it can be used in two differ-
ent scopes but preserve unique “identities”, where the identity is defined by its
particular functional use in a given scope. This offers advantages to the proba-
bilistic modeller as it maybe natural or convenient for the modeller to overload
a variable while developing their model - the question is how to do this safely.

The use of syntactic scopes has two consequences. Firstly, it allows random
variables be safely overloaded in a way that accords with the first principle of
C-b-D. Secondly, as P-programs may have multiple scopes, each scope returns a
probability distribution as an interim result. As it is desirable that a P-program
returns a single model, the question arises as how to combine these interim results
into a single probability distribution. This question is related to contextuality in
the following way. [3] have shown that contextuality can be abstractly formalized
by obstructions to the existence of global sections in sheaf theory. The advantage
of the sheaf-theoretic approach is that it provides the foundations of a general
semantics of contextuality. In addition, [1] has discovered that an instance of this
general formulation of contextuality is surprisingly present in relational database
theory where the problem is to determine whether a universal relation exists for
a set of relations such that the component relations can be recovered from the
universal relation via projection. This formulation of contextuality is very similar
to the problem just posed regarding the composition of interim results. This
article will attempt to further develop this connection by investigating how the
join operation in relational database theory can be used to provide the semantics
of the composition, and how these semantics relate to contextuality.

2 An Example P-program

Figure 1 tries to convey an impression of P-program syntax based on the open
source programming language called “Julia” [4]. (This syntax is an operational
refinement of the syntax presented in [5])

The using pProgram statement loads a module to interpret P-program syn-
tax and operational semantics into the Julia execution framework. An innovative
feature of P-programs syntax is the notion of a context which is intended to cor-
respond to a measurement context related to the phenomenon being modelled.
Scopes x1 and x2 define two measurement contexts. Note that the variable T is
declared local to both contexts and is thus overloaded. The semantics to be pre-
sented below will ensure that this overloading can be safely handled by renaming
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the variable as necessary in accord with the first principle of C-b-D. Contexts
can also access global variables as needed, e.g., variable V is used in both scopes.
Global variables reflect the modeller’s assumption that their marginal distribu-
tion will not vary across measurement contexts.

The P-program statement p = ProbFrame(T,U,V) defines a probability dis-
tribution labeled p local to the scope labeled x1. Such a distribution will be
referred to as a probabilistic table, or p-table for short, as these are a natural
probabilistic extension to the tables defined in relational databases. (Examples
of p-tables are given below). The p-table is populated with data using the p =
readtable(exp1.csv) statement. In this way, empirically collected data can be
incorporated into a P-program for processing.

Finally, each context in a P-program returns an interim probability distrib-
ution representing the model of the phenomenon in that measurement context.
Special syntax, e.g., pjoin(x1,x2) allows interim distributions from different
contexts to be “glued together” to form a single distribution which is returned
as the final result of the program. In the semantics to follow, we will investigate
standard operations used in database theory to glue p-tables together to form a
universal p-table.

3 Joining Distributions

The second last line of the P-program in Fig. 1 is p ∼ pjoin(x1,x2). Consider
Fig. 2 which depicts two p-tables returned by scopes x1 and x2 of our example
P-program. The semantics of pjoin(x1,x2) differ depending on whether the
marginal distribution of variable T across the p-tables x1 and x2. This is the
only variable shared between the distributions returned by the respective scopes.
If the marginal distributions of T differ across the scopes, i.e., Ψ↓T

x1 �= Ψ↓T
x2 , then

this means that variable T has different identities in each scope. In this case,
Cartesian product of two tables can be used resulting in a table where each row
in one table is concatenated with each row in the other table and the variable T
renamed according to the first principle of C-b-D. (See the left p-table in Fig. 3).

Now consider the second case where the marginal distribution of T does not
vary across the scopes x1 and x2, i.e., Ψ↓T

x1 = Ψ↓T
x2 . In this case the variable

T is assumed to have single identity across both scopes and this no renaming
is needed. In this case a subset of the Cartesian product can be formed where
rows are stitched together based on the columns that are common to both tables
resulting in p-table with 16 rows. [10] refers to the result as the “product join”,
denoted x×y, which is depicted as the p-table on the right in Fig. 3. The product
join does not deliver a p-table because the probabilities are not normalized. In
order to normalize the probabilities, we adopt the same approach as [10] by
using inverted p-tables. An inverted p-table is one in which for each row, the
probability p is replaced by 1/p. For instance, the inverted p-table x1 (see Fig. 2),
denoted x1−1, is a table where the column p now contains the value 1/p1 instead
of p1 etc.

[10] shows that in order to normalize the probabilities of the product join
depicted on the right of Fig. 3, then this product join must be product joined
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Fig. 1. Example P-program

x1:

T U p

1 1 p1
1 0 p2
0 1 p3
0 0 p4

x2:

T V p

1 1 q1
1 0 q2
0 1 q3
0 0 q4

Fig. 2. p-tables corresponding to distributions returned by scope x1 (left) and scope
x2 (right)

with the inversion of a marginal distribution defined by the shared variable T,
or more formally, x1 × x2 × (Ψ↓T

x1 )−1. (As we know the marginal probabilities
of T are the same across p-tables x1 and x2, this could equivalently be written
as x1 × x2 × (Ψ↓T

x2 )−1). [10] refers to the result as a “generalized join”, denoted
x1 ⊗ x2 as it is a probabilistic extension of the natural join found in relational
database theory.
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p:

T1 T2 U V p

1 1 1 1 p1q1
1 1 1 0 p1q2
1 1 0 1 p1q3
1 1 0 0 p1q4
1 0 1 1 p2q1
1 0 1 0 p2q2
1 0 0 1 p2q3
1 0 0 0 p2q4
0 1 1 1 p3q1
0 1 1 0 p3q2
0 1 0 1 p3q3
0 1 0 0 p3q4
0 0 1 1 p4q1
0 0 1 0 p4q2
0 0 0 1 p4q3
0 0 0 0 p4q4

p:

T U V p

1 1 1 p1q1
1 1 0 p1q2
1 0 1 p2q1
1 0 0 p2q2
0 1 1 p3q3
0 1 0 p3q4
0 0 1 p4q3
0 0 0 p4q4

Fig. 3. Joining tables via Cartesian product (left) and product join (right)

The generalized join of our example is therefore defined as follows: x1 ⊗ x2 =
x1 × x2 × (Ψ↓T

x1 )−1 (or x1 ⊗ x2 = x1 × x2 × (Ψ↓T
x2 )−1). The resulting p-table

is displayed in Table 1. Figure 4 depicts the semantics of pjoin(x1,x2) using the
database language SQL which provides a more readable semantics than relational
algebra. These semantics are dependent on the set of variables common to the
distributions represented by the p-tables x1 and x2, in this case {T}. When the
marginal distribution of variable T is not the same across scopes x1 and x2, the
Cartesian product of p-tables returned by these scopes is employed with the auto-
matic renaming of common variable T (x1.T and x2.T) of both contexts into T1
and T2. In this way the semantics adhere to the first principle of C-b-D without
the programmer having to explicitly rename the variables.

Table 1. p-table resulting from the generalized join x1 ⊗ x2 = x1 × x2 × (Ψ↓T
x1 )−1

T U V p

1 1 1 p1q1
(p1+p2)

1 1 0 p1q2
(p1+p2)

1 0 1 p2q1
(p1+p2)

1 0 0 p2q2
(p1+p2)

0 1 1 p3q3
(p3+p4)

0 1 0 p3q4
(p3+p4)

0 0 1 p4q3
(p3+p4)

0 0 0 p4q4
(p3+p4)



168 P.D. Bruza and S. Abramsky

Fig. 4. Complete SQL semantics of pjoin(x1,x2)

If, however, the marginal distributions are the same, then the SQL semantics
of the generalized join are employed. Here we can see inversion necessary for
normalization as the sub-SELECT in the FROM clause. This results in the table
labelled “inv”. Other than that, the SELECT statement has the form of the
natural join between two tables commonly found in relational databases. These
semantics show the structure of the resulting p-table differs from the Cartesian
product as there is a single instantiation of the variable T via x1.T as in this case
the variable has a single identity across scopes x1 and x2. In order to form the
natural join, the condition x1.T = x2.T in the WHERE clause specifies that rows
of the respective p-tables x1 and x2 are “stitched together” where the values of
T across the rows of the respective component tables are equal. Stitching the
rows together in this way delivers the required set of rows to form the basis of
the joint distribution across the three columns: x1.T, x2.U,x1.V. Similarly, the
condition x1.T = inv.T allows these rows to be stitched together with the rows
of the inverted table labelled “inv”, which allows normalized probabilities to be
computed via “x1.p * x2.p * inv.p” with the resulting column labelled “p” as is
required for a p-table.

Generalized pjoin Semantics

Consider the two P-programs in Fig. 5. These programs differ only in the local
variable declarations in scope P4. The left hand program declares variables A3,
B2 in this scope and the right hand one declares variables A2 and B2. In both
cases the programs return a single distribution P by joining the distributions
P1, . . . , P4 returned by each of the scopes P1 ... P4. Recall that if the distrib-
ution (universal p-table) P can be formed such that P1, . . . , P4 are marginal
distributions of P , then the phenomenon being modelled by the P-program is
not contextual.

Relational database theory tells us that a key consideration in this problem
turns out to be whether the database schema comprising constituent relations
(p-tables) are cyclic or acyclic. A database schema is deemed “acyclic” iff the
hypergraph H(N,E) can be reduced into an empty graph using the Graham
procedure [8]. In our case, the nodes N of the hypergraph are the the indi-
vidual variables in the p-table headers and the edges correspond to the sets of
variables in these headers, i.e., there will be one edge corresponding to each
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(a) P-program 1 (b) P-program 2

Fig. 5. Two P-programs

p-table in the pjoin expression, where the edge is the set of variables defining
the header of that p-table. For example, the database schema corresponding to
P-program 1 in is depicted in Fig. 6. In this case, N = {A1, A2, A3, B1, B2} and
E = {{A1, B1}, {A1, B2}, {A2, B1}, {A3, B2}} The Graham procedure is applied
to the hypergraph H until no further action is possible:

– delete every edge that is properly contained in another one
– delete every node that is only contained in one edge
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P1:

A1 B1 p

1 1 0.5
1 0 0
0 1 0
0 0 0.5

P2:

A1 B2 p

1 1 0.5
1 0 0
0 1 0
0 0 0.5

P3:

A2 B1 p

1 1 0.5
1 0 0
0 1 0
0 0 0.5

P4:

A3 B2 p

1 1 0.5
1 0 0
0 1 0
0 0 0.5

Fig. 6. Example acyclic database of the four p-tables returned by P-program 1

The following details the steps of the Graham procedure to the example:

1. {A1, B1}, {A1, B2}, {A2, B1}, {A3, B2}
2. {A1, B1}, {A1, B2}, {A2, B1}, {B2}
3. {A1, B1}, {A1, B2}, {A2, B1}
4. {A1, B1}, {A1, B2}, {B1}
5. {A1, B1}, {A1, B2}
6. {A1, B1}, {A1}
7. {A1, B1}
8. {A1}
9. ∅
The Graham procedure results in an empty hypergraph, so the schema is deemed
“acyclic”. Note, however, that the set of edges corresponding to P-program 2 in
Fig. 5 is

E = {{A1, B1}, {A1, B2}, {A2, B2}, {A2, B1}}
and the hypergraph cannot be reduced to an empty set of edges, so the schema
of this P-program is termed “cyclic”.

There are a number of theoretical results in relational database theory which
make “acyclic” hypergraphs significant to providing the semantics of joining p-
tables. [10] detailed the relationship between a Markov network and a relational
database model. The key idea behind this connection was the discovery of the
equivalence between probabilistic conditional independence and a generalized
form of multivalued dependency (GEMVD). Multivalued dependencies are a par-
ticular form of mathematical function which are used define constraints on the
data stored within the database. This connection allows a Markov distribution
to be constructed by joining component distributions together. [10] described
this relationship between Markov distributions and relational database theory
as “generalized acyclic join dependency” (GAJD) which was formalized in an
extended relational database model. GAJDs are in turn related to acyclic hyper-
graphs. The connection with GAJDs and hypergraphs is the following: A joint
distribution factorized on a acyclic hypergraph is equivalent to a GAJD [11].
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Consider once again the acyclic schema in Fig. 6. There are four p-tables,
P = {P1, P2, P3, P4}. As the hypergraph is acyclic, there is a so called join tree
construction, denoted ⊗{S1, . . . , Sn}, that satisfies the GAJD. The practical
consequence of this is that there is a join expression of the form: (((S1 ⊗ S2) ⊗
S3) ⊗ S4) where the sequence S1, . . . , S4 is a tree construction ordering derived
from the acyclic hypergraph and each Si denotes a unique p-table in the set P . In
summary, if the hypergraph constructed from the schema comprising n p-tables
{P1, P2, P3, . . . Pn} is acyclic, then a generalized join expression (. . . (S1 ⊗ S2) ⊗
S3) . . .⊗Sn) exists which joins the p-tables into a single probability distribution
P such that each Pi, 1 ≤ i ≤ n is a marginal distribution of P .

{A1,B1}

{A1,B2}

{A2,B1}

{A3,B2}

2:{A1}

1:{B1}

3:{B2}
P1

P2

P4

P3

Fig. 7. Join tree of the p-tables P1, P2, P3, P4 to be joined

In order to gain some intuition about how this plays out in practice, the
acyclic database schema depicted in Fig. 6 results in the join tree depicted in
Fig. 7. The nodes depict the variables in the respective p-tables, and the edges
represent the overlap between the sets of variables in the respective headers. The
numbers on the edges denote the ordering used to produce the join expression:
(((P3 ⊗P1)⊗P2)⊗P4). Under the assumption that the probability distributions
represented in the nodes have identical distributions when marginalized by the
variable associated with the edge, we can see how the hypertree produces a
Markov network which, in turn, specifies the probabilistic join of the constituent
p-tables [9]:

P (A1, A2, A3, B1, B2) =
P (A2, B1)P (A1, B1)P (A1, B2)P (A3, B2)

P (B1)P (A1)P (B2)
(1)

Observe how the structure of equation mirrors the graph in Fig. 7 where the
numerator corresponds to the nodes of the join tree and the denominator
corresponds to terms which normalize the probabilities. Using the Wong for-
malism of the previous section, this same distribution is expressed as follows:
(((P3⊗P1)⊗P2)⊗P4) = (((P3×P1×(Ψ↓B1

P3
)−1)×P2×(Ψ↓A1

P2
)−1)×P4×(Ψ↓B2

P4
)−1)

3.1 pjoin Semantics of Cyclic Join Dependencies

The semantics of pjoin(P1,P2,P3,P4) in the previous section relied on the
schema of the constituent p-tables to be acyclic. Attention is now turned to the
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{A1,B1}

{A1,B2}

{A2,B1}

{A2,B2}

{A1}

{B1}

{B2}

P1

P2

P4

P3
{A2}

Fig. 8. Cyclic schema of the p-tables P1, P2, P3, P4

1 pjpoin(P1,P2,P3,P4) A1,B1,A2,B2 =
2 SELECT P1 .A1 AS A11 , P2 .A1 AS A12 ,
3 P1 .B1 AS B11 , P3 .B1 AS B12 ,
4 P3 .A2 AS A21 , P4 .A2 AS A22 ,
5 P2 .B2 AS B21 , P4 .B2 AS B22 ,
6 P1 . p∗P2 . p∗P3 . p∗P4 . p AS p
7 FROM P1 ,P2 , P3 , P4 ;

Fig. 9. SQL semantics of an example cyclic schema

case when the schema is cyclic. Figure 8 depicts a cyclic schema of four p-tables
P1, P2, P3 and P4 returned by P-program 2 of Fig. 5.

There is a substantial literature in relational database theory surrounding
cyclic schemas. For example, [8] states the following: “Cyclicity implies that
one or more attributes of the database are ‘overloaded’ ..... The reason why a
database attribute such as PRODUCT might become overloaded is that it has
more than one function; it might mean a product that is being supplied and
a product being purchased”. [8] suggest that a way to deal with cyclicity is
to “split the ‘overloaded’ attributes into two or more new attributes” in order
to render the schema acyclic. This is clearly similar to the first principle of
C-b-D which would view PRODUCT as one variable in two conditions, hence
according to this principle, PRODUCT should not be a single attribute, but two
attributes: PRODUCT SUPPLIED and PRODUCT PURCHASED, a unique
attribute for each condition. [8] show that in some cases a cyclic hypergraph
can be decomposed into two hypergraphs; one acyclic and the other cyclic. They
prove that the cyclic sub-graph is not further decomposable. Such cyclic graphs
are referred to as “supercycles”.

The cyclic schema depicted in Fig. 8 is an example a simple supercycle. Here
the overloaded variables are denoted on the edges of the graph. In such cases,
each overloaded variable should be renamed into two variables. A straightfor-
ward semantics forms the Cartesian product of the four p-tables where renaming
automatically occurs with respect to the overloaded variables.
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By way of illustration, the semantics of the super-cycle depicted in Fig. 8 are
expressed in Fig. 9. These semantics define a p-table in which the overloaded
variables have been split and renamed. In this example, all the variables happen
to be overloaded.

4 Broader Discussion on pjoin Semantics
and Contextuality

Recall that [1] establishes connections between relational databases and contex-
tuality theory and suggests further connections could be made with probabilistic
databases. The present work can be considered as a step in this direction. The
p-tables presented in this article are probabilistic variants of tables commonly
found in relational databases. The semantics of the pjoin are designed to “glue”
p-tables together, which is analogous to the glueing of local sections in the sheaf-
theoretic definition of contextuality [3]. The question now arises what the pjoin
semantics say about contextuality.

For a system of p-tables with acyclic schema, there are two cases: (1) When
the marginal distributions of the overlapping variables of the p-tables being
glued do not agree, the semantics deem the phenomenon modelled by the P-
program to be contextual. (In this case there will be automatic renaming of
variables according to the first principle of C-b-D) (2) When the marginals of
the p-tables being glued do agree, the pjoin semantics yields a joint distribution,
which implies that the phenomenon is not contextual. (This case corresponds to
the “Vorob’ev condition” [1]). In other words, glueing the component p-tables
together into a universal p-table succeeds such that each component table can
be recovered by projection For a system of p-tables with cyclic schema, the
semantics of the pjoin cannot determine whether the system is contextual.

In short, a simple approach using semantics based on the p-table - a simple
probabilistic extension of the notion of table in a relational databases together
with straightforward adaptions of the Cartesian product and natural join to
provide means to glue p-table together is unfortunately not particularly effective
in diagnosing contextuality. It is an open question whether more sophisticated
methods from relational database theory can be informative with respect to
contextuality to the same degree that linear programming methods can [2,7].
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Abstract. We use algorithmic information to define co-measurability of
observables and investigate its relation to the phenomenon of quantum
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1 Introduction

Quantum theory (QT) of matter is extremely successful in its explanations of
the building blocks of the universe. At the moment there is not even a single
experiment that cannot be explained by it and thus there is no need to amend
it in any way. However, there has not been any other physical theory as contro-
versial as quantum mechanics. Since the inception of QT in the early 30s, many
scientists have been struggling with its philosophical consequences or at least
spent a thought or two on the topic. Ironically, Planck and Einstein, two of the
prominent founding fathers of the theory, could not accept its consequences as
it undermined their preferred views on how the universe should look like.

What is it in QT that makes people uncomfortable? It is difficult to say
as opinions vary but all problems seem to originate from an attempt to implant
notions of classical physics into QT. One such notion, which we would like to dis-
cuss in this article, is an assumption that all observables should be co-measurable
with arbitrary precision. This is a basic assumption in classical physics but an
anathema in QT where non-commuting observables are non-commeasurable. A
classic example is a particle’s position and momentum measurement. Perfectly
all right to be co-measured in classical physics but forbidden in QT because of
the famous relation XP − PX = i�.

Mathematically, the fact that non-commuting observables cannot be co-
measured is a consequence of Gleason theorem [1] that ties this with the Born
c© Springer International Publishing AG 2017
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rule as long as the dimension of the quantum system under consideration is 3
or more (and there is little doubt it should be different for a physical system of
the dimension 2). If A and A′ do not commute (we assume here that A and A′

are nonorthogonal projectors), one cannot find a joint probability distribution
p(A = a,A′ = a′) where a, a′ are measurement outcomes.

Physical meaning of the above assertion is that it is impossible or at least
no one knows how to build a physical apparatus capable of co-measuring A and
A′. You can either measure A or A′ or you can measure them sequentially but
never together.

What if QT is not right about this issue? What if our experiments are crude?
After all, not being able to do something does not amount to its impossibility.
However outrageous those questions appear they have been asked again and
again since the birth of QT. The most famous attempt to disqualify QT was
the famous Einstein-Podolsky-Rosen [2] paper that gave birth to works of John
Bell [3] and Kochen-Specker [4] and ultimately lead us to a blooming field of
quantum information science, and a much better understanding of QT.

In this paper we ask the following question: Is it possible to define co-
measurability of non-compatible observables that is consistent with all experi-
mental data? We will answer this question and relate it to the phenomenon of
quantum contextuality [3,4].

2 Preliminaries

Co-measurability of A and A′ can be understood as existence of a joint prob-
ability distribution for these observables, i.e., p(A = a,A′ = a′). This is the
standard and already discussed interpretation [3,11,12]. However, it can also be
understood in a more fundamental way without invoking probabilistic interpre-
tation of QT. In fact, every quantum experiment is a series of detection events
that can be encoded as 0s and 1s (0 means ‘no detection’ and 1 means ‘detec-
tion’). After a series of measurements we obtain some binary strings A and A′

that are primitives of any experimental test.
Now, we need to define what we mean by co-measurability of A and A′

given bit strings A and A′. We propose an algorithmic approach: A and A′ are
jointly measurable if the strings A and A′ can be jointly generated by a universal
deterministic Turing machine (UTM). This is in line with a physical version of
the Church-Turing hypothesis: a universal computing device can simulate every
physical process [6].

The possibility of generating bit string A is described by algorithmic infor-
mation K(A) [9] that is defined as the length (in bits) of the minimal program
on a UTM that outputs the string A. In general, such a program exists but is
uncomputable just like the Turing halting problem – the analogon of Goedel’s
incompleteness theorem. If K(A) is much shorter than the string A it means
that this string can be compressed, i.e., it is not random; if K(A) is comparable
to the length of A it means that A cannot be compressed and it is random.
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Can we have a UTM generating A and A′? If yes, then there must exist
algorithmic information K(A,A′), i.e., there exists a program generating both
strings in one go. Our goal is to find if and when this can happen.

2.1 Information Distance

In order to answer our question we need to use tools developed and studied
extensively in [7]. We introduce, following [7] the so called information theoretic
metric that measures similarity between bit strings A and A′

d(A,A′) = K(A|A′) + K(A′|A), (1)

where K(A′|A) is a conditional algorithmic information, i.e., the shortest pro-
gram generating A′ from A. Conditional algorithmic information can be also
expressed as

K(A′|A) = K(A,A′) − K(A), (2)

therefore
d(A,A′) = 2K(A,A′) − K(A) − K(A′). (3)

The above expression is a metric (up to irrelevant logarithmic corrections
log |A|), i.e., it is (i) non-negative and equal to zero if and only if A = A′,
(ii) symmetric when A and A′ are swapped and most importantly (iii) it obeys
triangle inequality

d(A,A′) ≤ d(A,B) + d(B,A′) (4)

for arbitrary bit strings A,A′, B.
Note, that (i) holds because the program generating A twice is practically the

same program as the one generating A once, i.e., K(A,A) = K(A). In addition,
it is clear that (ii) holds. Finally, note that

K(A|B) + K(B|A′) ≥ K(A|A′). (5)

This is because the shortest program generating A from A′ cannot be longer than
the sum of lengths of shortest programs generating B from A′ and A from B. In
worst case scenario the shortest program generating A from A′ would generate
B as an intermediate step and we would have equality. Similarly,

K(B|A) + K(A′|B) ≥ K(A′|A). (6)

By combining (5) and (6) we get (4). Finally, we have

max{K(A),K(A′)} ≤ K(A,A′) ≤ K(A) + K(A′), (7)

and the distance is bounded

|K(A) − K(A′)| ≤ d(A,A′) ≤ K(A) + K(A′). (8)
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2.2 Contextuality

The triangle inequality is directly related to the phenomenon of contextuality
[13–15]. Here we simply define contextuality as a dependence of a measurement
of B on whether it is co-measured with A or with A′. In such scenarios one
would generate pairs of bit strings {A,BA} and {A′, BA′}. We explicitly denote
context dependence of two bit strings BA and BA′ generated in a measurement
of B. However, as discussed in [14], the algorithmic version of non-contextuality
assumption implies that both bit strings have the same algorithmic information
K(BA) = K(BA′) = K(B) because they describe the information content of the
same physical process and we assume that this process is context-independent.
Thus, we have K(A,BA) = K(A,B) and K(A′, BA; ) = K(A′, B).

One can study d(A,B), d(A′, B) and d(A,A′) and identify contextuality with
a violation of any distance property. Here we focus on the triangle inequality. In
this case we need to consider a distance d(A,A′) for the two observables that
constitute two different contexts for the measurement of B. It may happen that
such a distance is not directly measurable due to incompatibility of the two
contexts.

2.3 Bounds on Incompatible Measurements

Although we may be unable to jointly measure two observables and the corre-
sponding distance, we can find an upper bound on it via triangle inequality and
an additional measurement B, which is jointly measurable with both observables

d(A,A′) ≤ d(A,B) + d(B,A′). (9)

In a similar way we can find a lower bound using a different measurement B′

d(A,A′) ≥ d(A,B′) − d(B′, A′). (10)

The reason why we use two different measurements, B and B′, is that we want
to minimise the upper bound and at the same time maximise the lower bound.
However it is not guaranteed that both optimisations can be done with the same
measurement.

Next, we plug (3) into (9) and (10) and obtain

K(A,B′)−K(A′, B′)+K(A′) ≤ K(A,A′) ≤ K(A,B)+K(A′, B)−K(B). (11)

The crucial observation is that K(A,A′) exists only if the upper bound is greater
or equal to the lower bound. Thus, we arrive at a quadrangle inequality

d(A,B) + d(B,A′) + d(A′, B′) − d(B′, A) ≥ 0. (12)

This is an information-theoretic Bell-type inequality. An experimental violation
of an equivalent inequality was recently reported in [14], where uncomputable
algorithmic information was approximated by realistic compression software.
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3 Incompatible Algorithmic Information

For the rest of this paper we assume that incompatible measurements A and
A′ are done on a qubit, however our discussion can be generalised to higher-
dimensional systems as well. Therefore, the measurements B and B′ have to be
performed on an ancilliary system.

The problem considered by us differs from the usual Bell scenario in which
two parties are given a bipartite system and they try to find optimal measure-
ments to violate a Bell inequality. Here, the state of Alice’s system and the two
incompatible measurements A and A′ are fixed. The only optimisation is done
over two measurements B and B′ and over a state of the joint system, which is
constrained to reproduce Alice’s state when the ancilla is discarded.

Now, we provide two important examples supporting our thesis. We show
that in quantum theory two different situations can occur: (i) one can always
define algorithmic information for incompatible observables or (ii) one can never
define it.

3.1 Pure State

Let us first assume that the state on which the incompatible measurements are
performed is pure. In this case the ancilliary system must separate from it and the
joint system is in a product state |ψ〉〈ψ| ⊗ ρanc. For such cases quantum theory
predicts that measurements on both systems are uncorrelated and therefore

K(X,Y ) = K(X) + K(Y ), (13)

where X and Y are outcome strings of arbitrary measurements performed on the
original system and ancilla, respectively. The bounds on algorithmic information
(11) read

K(A) ≤ K(A,A′) ≤ K(A) + K(A′) + K(B). (14)

The lower bound does not depend on any ancilliary measurement, whereas the
upper bound is minimised for K(B) = 0, which leads to

K(A) ≤ K(A,A′) ≤ K(A) + K(A′). (15)

We see that for pure states algorithmic information for any pair of incompatible
observables can be defined.

3.2 Mixed State

If the incompatible measurements are performed on a mixed state, the ancilliary
system can be correlated with it. The state of the joint system can be pure and
entangled.

In order to show that algorithmic information for incompatible measurements
on an entangled state cannot exist one needs to observe that (12) is violated.
This inequality takes the following form

K(A,B) + K(B,A′) + K(A′, B′) − K(A′) − K(B) ≥ K(A,B′). (16)
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In case of maximally entangled states local measurements produce random
strings, therefore K(A′) = K(B) = N , where N is the number of bits in each
string. The violation occurs if there are weak correlations (or no correlations)
between A and B′ and strong correlations between the remaining three pairs.

Unfortunately, bipartite entangled states cannot provide us with maximal
correlations for all pairs of measurements and we need to consider joint algorith-
mic information for which

max{K(X),K(Y )} < K(X,Y ) < K(X) + K(Y ). (17)

This means that we cannot reduce all joint algorithmic information to algorith-
mic information of single measurements and in order to detect violations we need
to compare their values.

The problem is that algorithmic information is in most cases uncomputable.
In order to be able to detect some violation we need to make additional assump-
tions. Such assumptions allow us to approximate algorithmic information with
some other computable functions like realistic compression software [16]. Indeed,
using compression algorithms on experimentally generated data it was shown
that for a state of two maximally polarisation-entangled photons and two incom-
patible polarisation measurements A and A′ one can obtain a violation of (12).
The polarisation measurements were separated by an angle θ ≈ 17.2o. The
observed violation (normalised by the length of bit strings) was 0.0494 ± 0.0076
per bit. This indicates that for such scenarios one cannot define algorithmic
information for incompatible observables A and A′.

4 Summary and Discussion

In this work, we approach the problem of co-measurability of incompatible
observables in quantum mechanics with the help of algorithmic information. Our
starting point is an assumption that it makes sense to talk about co- measura-
bility of observables A and A′ on some state ρ if there exists a program which,
when executed on a universal Turing machine, produces two binary strings of
outcomes A and A′ corresponding to the joint measurements of the given observ-
ables. Moreover, the strings A and A′ must be compatible with all possible
experiments that can be performed on the state ρ.

We show that the requirement of compatibility imposes a lower and upper
bound on the joint algorithmic complexity K(A,A′) of the computed strings A
and A′. These bounds are uniquely tied to the phenomenon of quantum contextu-
ality in the algorithmic sense. It says that computability of the strings A and A′

must be independent of the context they are computed with, i.e., in the presence
of the measurement of some observable B or some other observabale B′.

We prove that for measurements of any two incompatible observables on a
qubit in a pure state it is always possible to find a program on a universal Turing
machine that does the job. It is not always true for the qubit in a mixed state.
This is because any mixed state can be viewed as a result of entanglement with
some other quantum system, which can provide a context for the computation
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of A and A′. When the state is pure, no entanglement with any other system is
possible and no context is provided.

We would like to mention that our approach differs from that presented
in [11] where the problem of co-measurability is formulated as a problem of
the existence of a joint probability distribution for the observables A and A′.
Assuming a probabilistic structure for bit strings produced in an experiment is
unnecessary as we demonstrated here.
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Abstract. The Contextuality-by-Default (CbD) theory allows one to
separate contextuality from context-dependent errors and violations of
selective influences (aka “no-signaling” or “no-disturbance” principles).
This makes the theory especially applicable to behavioral systems, where
violations of selective influences are ubiquitous. For cyclic systems with
binary random variables, CbD provides necessary and sufficient condi-
tions for noncontextuality, and these conditions are known to be breached
in certain quantum systems. We apply the theory of cyclic systems to
a psychophysical double-detection experiment, in which observers were
asked to determine presence or absence of a signal property in each of two
simultaneously presented stimuli. The results, as in all other behavioral
and social systems previously analyzed, indicate lack of contextuality.
The role of context in double-detection is confined to lack of selective-
ness: the distribution of responses to one of the stimuli is influenced by
the state of the other stimulus.

Keywords: Contextuality · Cyclic systems · Inconsistent connected-
ness · Psychophysics

The Contextuality-by-Default (CbD) theory [9,10] describes systems of mea-
surements with respect to the conditions under which they are recorded and
determines the tenability of a non-contextual description of the system. In this
paper, we study the double-detection paradigm suggested in Refs. [6,8]. In this
paradigm, two stimuli are presented to an observer simultaneously (left-right),
each on one of several possible levels. The observer is asked to state (Yes/No),
for each of the two observation areas, whether it contains a particular target
property (signal). The signal is objectively present in a subset of levels of a
stimulus. When such experimental situation includes only two levels for each
stimulus (e.g., present/absent), the system of measurements is formally equiv-
alent to that of the Einstein– Podolski– Rosen/Bohm (EPR/B) paradigm (see
e.g., Ref. [6]).

1 Contextuality in CbD

We briefly recapitulate the concepts of the CbD, to make this paper self-
sufficient. For detailed discussions see Refs. [9,10]; the proofs may be found
in Refs. [11,14,15].
c© Springer International Publishing AG 2017
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Definition 1 (System of measurements). A system of measurements is a
matrix Rn×m, in which columns correspond to the properties {q1, . . . , qn} and
rows to the contexts {c1, . . . , cm}. A cell (i, j) contains the random variable Rj

i

if qi is measured in context cj, and the cell is left empty otherwise.

When adopting the CbD framework, the first goal is to produce a matrix R
that formally represents the experiment and its results.

Definition 2 (Connections and bunches). The random variables in any
column of a system of measurements form a connection for the corresponding
property; denote the connection for property qi by Ri. Those in any row form
a bunch representing the corresponding context; denote the bunch for context cj

by Rj.

Note that elements of a connection are necessarily (“by default”) pairwise
distinct and pairwise stochastically unrelated, i.e., no Rj

i and Rk
i with k �= j

have a joint distributions. Consequently, the system R does not have a joint
probability distribution including all of its elements. See Refs. [5,10].

Definition 3 (Coupling). Let Xi, with i ∈ I, an index set, be a random
variable on a probability space (Xi, Σi, Pi). Let {Yi : i ∈ I} be a collection of
jointly distributed random variables (i.e., a random variable in its own right)
on a probability space (Y, Ω, p). The random variable {Yi : i ∈ I} is called a
coupling of the collection {Xi : i ∈ I} if for all i ∈ I, Yi

d= Xi, where d= denotes
identity in distribution.

Definition 4 (Maximal coupling). Let Y = (Yi : i ∈ I) be a coupling of a
collection {Xi : i ∈ I}. And let M be the event where {Yi = Yj for all i, j ∈ I}.
If Pr(M) is the largest possible among all couplings of {Xi : i ∈ I}, then Y is a
maximal coupling of {Xi : i ∈ I}.
Definition 5 (Contextual system). Let R be a system of measurements. Let
S be a coupling of R such that for each cj ∈ {c1, . . . , cm}, S j is a coupling of Rj

contained in S. The system R is said to be non-contextual if it has a coupling
S such that for all qi ∈ {q1, . . . , qn}, the coupling Si is a maximal coupling.

Definition 6 (Cyclic system with binary variables). Let R be a system
of measurements such that (a) each context contains two properties; (b) each
property is measured in two different contexts; (c) no two contexts share more
than one property; and (d) each measurement is a binary random variable, with
values ±1. Then the system R is a cyclic system with binary variables and in
the following will be simply called a cyclic system.

Remark 1. Note that a cyclic system is composed of the same number n of
connections and of bunches, and it contains 2n random variables. We shall say
that a cyclic system has rank n or is of rank n to explicitly refer to this number.
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Definition 7 (Consistent connections). Let Ri be a connection in a system
R. It is said that Ri is a consistent connection if for all cj , ck ∈ {c1, . . . , cm}
such that Rj

i and Rk
i are defined (i.e., both cells (i, j) and (i, k) of R are not

empty), Rj
i

d= Rk
i .

Definition 8 (Consistently connected system). A system of measurements
R is said to be consistently connected if for all qi ∈ {q1, . . . , qn}, the connection
Ri is a consistent connection. For a cyclic system, define

ICC =
n∑

i=1

∣
∣
∣
〈
Rj

i

〉
− 〈

Rk
i

〉∣∣
∣ .

ICC provides a measure of how inconsistent the connections are in the system.

Definition 9 (Contextuality in cyclic systems). Let R be a cyclic system
with n binary variables. Let

s1(x1, x2, . . . , xn) = max

{
n∑

k=1

akxk : ak = ±1 and
n∏

k=1

ak = −1

}

.

Let

ΛC = s1
({〈

Rj
i R

j
i′

〉
: qi, qi′ measured in cj , and cj ∈ {c1, . . . , cm}

})

Let ΔC = ΛC − ICC − (n − 2). The quantity ΔC is a measure of contextuality
for cyclic systems.

Theorem 1 (Cyclic system contextuality criterion, [14]). A cyclic system
R is contextual if and only if ΔC > 0.

Remark 2. ΔC for a consistently connected cyclic system with n = 4 reduces to
the Bell/CHSH inequalities [3,10].

2 Contextuality in Behavioral and Social Data

In Ref. [13] many empirical studies of behavioral and social systems were
reviewed. Most of those systems come from social data; that is, an observation
for each measurement was the result of posing a question to a person, and the
set of observations comes from questioning groups of people. For all the studies
considered there, the CbD analyses showed that the systems, treated as cyclic
systems ranging from rank 2 to 4, were non-contextual. Only one of the stud-
ies reviewed in Ref. [13] dealt with responses from a single person to multiple
replications of stimuli.

Now, a key modeling problem in cognitive psychology has been determin-
ing whether a set of inputs selectively influences a set of response variables
(Refs. [4,16–18]). The formal theory of selective influences has been developed
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for the case of consistent connectedness, which has been treated as a necessary
condition of selective influences; it follows from this formalism that selectiveness
of influences in a consistently connected system is negated precisely in the case
where it is contextual [6].

However, in most, if not all, behavioral systems, some form of influence upon
a given random output is expected from most, if not all, of the system’s inputs
(Ref. [17]). This means that in the behavioral domain inconsistently connected
systems are ubiquitous. While the presence of inconsistent connections rules out
the possibility of selective influences, it does not imply that the full behavior of
the system is accounted for by the direct action of inputs upon the outputs; an
inconsistently connected behavioral system may still be contextual in the sense
of CbD.

The double detection paradigm suggested in [6,8] provides a framework where
both (in)consistent connectedness and contextuality can be studied in a manner
very similar to how they are studied in quantum-mechanical systems (or could be
studied, because consistent connectedness in quantum physics is often assumed
rather than documented).

3 Method

3.1 Participants

Three volunteers, two females and one male, graduate students at Purdue Uni-
versity, served as participants for the experiment, including the first author of
this paper. They were recruited and compensated in accordance to Purdue Uni-
versity’s IRB protocol #1202011876, for the research study “Selective Proba-
bilistic Causality As Interdisciplinary Methodology” under which this experi-
ment was conducted. All participants reported normal or corrected to normal
vision and were aged around 30. They are identified as P1 − P3 in the text and
their experience with psychophysical experiments ranged from none to more than
three previous participations.

3.2 Apparatus

The experiment was run using a personal computer with an Intel R© CoreTM

processor running Windows XP, a 24-in. monitor with a resolution of 1920×1200
pixels (px), and a standard US 104-key keyboard. A chin-rest with forehead
support was used so that the distance between subject and monitor was kept
at 90 cm; this made each pixel on the screen to occupy about 62 s arc of the
subjects’ visual field.

3.3 Stimuli

The stimuli were similar to those from Refs. [1,12]. They consisted of two circles
drawn in solid grey (RGB 100, 100, 100) on a black background in a computer
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Fig. 1. Stimulus example

screen, with a dot drawn at or near their center. The circles radius was 135 px
with their centers 320 px apart; the dots and circumference lines were 4 px wide.
The offset of each dot with respect to the center of each circle, when they were
not presented at the center, was 4 px. An example of the stimuli (in reversed
contrast) is shown in Fig. 1.

3.4 Procedure

Each participant performed nine experimental sessions. At the beginning of
each experimental session, the chin-rest and chair heights were adjusted so that
the subject could sit and use the keyboard comfortably. The time available
for each session was 30 min, during which the participants responded in 560
(non-practice) trials (except for participant P3 in the sixth session, who only
responded in 557 trials) preceded by up to 30 practice trials. The number of
practice trials was set to 30 during the first two sessions and reduced to 15 dur-
ing subsequent sessions. After each practice trial, the subject received feedback
about whether their response for each circle was correct or not. The responses
to practice trials were excluded from the analyses. Additionally, depending on
their previous experience in psychophysical experiments the participants had
up to three training sessions, also excluded from subsequent analyses.

Instructions for the experiment were presented to each participant verbally
and written in the screen. In each trial the participant was required to judge for
each circle whether the dot presented was displaced from the center or not. The
stimuli were displayed until the subject produced their response. The responses
were given by pressing and holding together two keys, one for each circle. Then,
the dots in each circle were removed and a “Press the space bar to continue”
message was flashed on top of the screen. After pressing the space bar, the
message was removed and the next stimuli pair were presented after 400 ms.
(Reaction times were measured from the onset of stimulus display until a valid
response was recorded, but they were not used in the data analysis.)

3.5 Experimental Conditions

In each of two circles the dot presented could be located either at its center, or 4
px above, or else 4 px under the center. These locations produce a total of nine
experimental conditions.
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Table 1. Probabilities with which a trial was allocated to one of the 9 experimental
conditions.

Center Up Down

Center 1/4 1/8 1/8

Up 1/8 1/16 1/16

Down 1/8 1/16 1/16

During each session, excepting the practice trials, the dot was presented at
the center in a half of the trials; above the center in a quarter of them; and below
the center in the remaining quarter, for each of the circles. Table 1 presents the
proportions of allocations of trials to each of the 9 conditions.

For each session, each trial was randomly assigned to one of the conditions
in accordance with Table 1. The number of experimental sessions was chosen so
that the expected number of (non-practice) trials in the conditions with lowest
probabilities was at least 300. This number of observations was chosen based on
Ref. [2], whose results show that coverage errors with respect to nominal values
are below 1% for almost all confidence intervals for proportions with n > 300.

4 Analyses

Based on the experimental design depicted in Table 1, we specify the following
properties:

– lc: a dot is presented in the center of the left circle;
– rc: a dot is presented in the center of the right circle;
– lu: a dot is presented above the center of the left circle;
– ru: a dot is presented above the center of the right circle;
– ld: a dot is presented below the center of the left circle; and
– rd: a dot is presented below the center of the right circle.

The 9 experimental conditions (contexts) then are denoted lcrc, lcru, etc. Thus,
the system of measurements depicted by the matrix in Fig. 2 represents the
complete 3 × 3 design given in Table 1.

We approach the exploration of this system through the theory of contextu-
ality for cyclic systems in two ways. Firstly, note that from the system in Fig. 2
we can extract six different cyclic subsystems of rank 6 and nine of rank 4. One
of the rank 4 subsystems is presented in the left matrix in Fig. 3. One of the
rank 6 subsystems is shown in the right matrix in Fig. 3.

Secondly, in addition to the definition of the quantities as presented above,
there are several interesting systems produced by redefining these quantities.1

From the description of the double-detection paradigm, one can argue, e.g., that
1 There are also several uninteresting ways to construct systems of measurements for

the conditions and measurements in this experiment. Examples of how to construct
them and why they are not interesting may be found in Ref. [7].
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lc rc lu ru ld rd
lcrc Rlcrc

lc
Rlcrc

rc · · · ·
lurc · Rlurc

rc Rlurc
lu

· · ·
luru · · Rluru

lu
Rluru

ru · ·
ldru · · · R

ldru
ru R

ldru
ld

·
ldrd · · · · R

ldrd
ld

R
ldrd
rd

lcru Rlcru
lc

· · Rlcru
ru · ·

lurd · · R
lurd
lu

· · R
lurd
rd

ldrc · R
ldrc
rc · · R

ldrc
ld

·
lcrd R

lcrd
lc

· · · · R
lcrd
rd

Fig. 2. System of measurements for double detection experiment.

lc rc lu ru
lcrc Rlcrc

lc
Rlcrc

rc · ·
lurc · Rlurc

rc Rlurc
lu

·
luru · · Rluru

lu
Rluru

ru

lcru Rlcru
lc

· · Rlcru
ru

lc rc lu ru ld rd
lcrc Rlcrc

lc
Rlcrc

rc · · · ·
lurc · Rlurc

rc Rlurc
lu

· · ·
luru · · Rluru

lu
Rluru

ru · ·
ldru · · · R

ldru
ru R

ldru
ld

·
ldrd · · · · R

ldrd
ld

R
ldrd
rd

lcrd R
lcrd
lc

· · · · R
lcrd
rd

Fig. 3. Examples of cyclic subsystems of rank 4 and 6.

the center location may be viewed as a signal to be detected, with either of
the two off-center locations being treated as absence of the signal. This way of
looking at the stimuli induces the following definition of the properties to be
measured:

– lc: a dot is presented in the center of the left circle;
– rc: a dot is presented in the center of the right circle;
– lud: a dot is presented off-center in the left circle;
– rud: a dot is presented off-center in the right circle.

Analogously one could also consider lcu, lcd, rcu, rcd, as properties to be measured
in appropriately chosen contexts.

Another way of dealing with our data is to consider the locations of the dots
as properties to be measured (by responses attributing to them to a left or to a
right circle). For instance, a pair of properties can be chosen as

– c: a dot is presented in the center of a circle; and
– ud: a dot is presented off the center of a circle.

A systematic application of both of these redefinitions leads to also consider
quantities lcu, lcd, rcu, rcd, u, cd, d, and cu with the analogous interpretations. In
this way, six systems of rank 2 and 27 systems of rank 4 may be constructed.
Thus, we shall consider systems with the structures depicted by the matrices in
Figs. 4, 5, and 6.
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x y

lxry R
lxry
x R

lxry
y

lyrx R
lyrx
x R

lyrx
y

Fig. 4. Rank 2 systems structure where (x, y) is any of (c, ud) , (cu, d) , (cd, u) , (c, u) ,
(c, d) , (u, d) .

lx rx ly ry
lxrx Rlxrx

lx
Rlxrx

rx · ·
lyrx · R

lyrx
rx R

lyrx
ly

·
lyry · · R

lyry
ly

R
lyry
ry

lxry R
lxry
lx

· · R
lxry
ry

Fig. 5. Rank 4 systems structure where (lx, ly) is any of (lc, lud) , (lcu, ld) , (lcd, lu) ,
(lc, lu) , (lc, ld) , (lu, ld), and (rx, ry) is any of {(rc, rud) , (rcu, rd) , (rcd, ru) , (rc, ru) ,
(rc, rd) , (ru, rd)}.

lx rx ly ry lz rz
lxrx Rlxrx

lx
Rlxrx

rx · · · ·
lyrx · R

lyrx
rx R

lyrx
ly

· · ·
lyry · · R

lyry
ly

R
lyry
ry · ·

lzry · · · R
lzry
ry R

lzry
lz

·
lzrz · · · · Rlzrz

lz
Rlzrz

rz

lxrz Rlxrz
lx

· · · · Rlxrz
rz

Fig. 6. Rank 6 systems structure where (x, y, z) is any of (c, u, d) , (c, d, u) , (u, c, d) ,
(d, c, u) , (u, d, c) , (d, u, c) .

5 Results

5.1 Results for Cyclic Subsystems

Table 2 presents the individual data for all of the expectations used in the calcu-
lations of all subsystems. Note that the statistics associated with the redefined
quantities are obtained by an appropriate linear combination of those in Table 2
with weights proportional to the number of trials of the combined conditions.

Table 3 presents the values of ΛC, ICC, and ΔC calculated for each partic-
ipant and each of the rank 6 cyclic subsystems. Table 4 presents the respective
values for each of the rank 4 cyclic subsystems. For all participants, the subsys-
tems are noncontextual.
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Table 2. Individual level data

P1 P2 P3

l r
〈
Rlr

l

〉 〈
Rlr

r

〉 〈
Rlr

l Rlr
r

〉 〈
Rlr

l

〉 〈
Rlr

r

〉 〈
Rlr

l Rlr
r

〉 〈
Rlr

l

〉 〈
Rlr

r

〉 〈
Rlr

l Rlr
r

〉
lc rc 0.4349 0.2730 0.4825 0.7317 0.5683 0.3984 0.3582 0.1946 −0.0913

lc ru 0.6190 −0.5397 −0.2095 0.7016 −0.0825 −0.2413 0.6762 −0.8508 −0.6159

lc rd −0.1873 0.2698 0.4095 0.8857 −0.8635 −0.7937 0.3937 −0.3524 −0.3429

lu rc −0.5048 0.1175 0.2254 −0.2063 0.5238 −0.5302 −0.7302 0.6603 −0.5683

lu ru 0.0476 −0.0286 0.4794 0.1111 0.1683 0.2190 −0.4904 −0.6624 0.4459

lu rd −0.8476 −0.0857 0.1619 0.2254 −0.7778 −0.4222 −0.7643 −0.2166 0.0446

ld rc 0.5873 −0.3937 −0.0825 −0.6667 0.7810 −0.5238 −0.4159 0.3429 −0.4762

ld ru 0.5619 −0.9111 −0.5365 −0.7333 0.2635 −0.4286 −0.2508 −0.7079 0.0095

ld rd 0.5111 0.3016 0.4730 −0.5175 −0.5937 0.5810 −0.3079 −0.1746 0.0413

Table 3. Contextuality cyclic subsystems of rank 6

System P1 P2 P3

(lx,, ly, lz), (rx, ry, rz) ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC

(lc, ld, lu), (rd, ru, rc) 1.6254 2.4127 −4.7873 2.4571 1.3714 −2.9143 2.0382 1.0779 −3.0397

(ld, lc, lu), (rc, rd, ru) 1.7143 2.4889 −4.7746 2.4508 1.4286 −2.9778 2.4078 1.3138 −2.9060

(ld, lu, lc), (rc, ru, rd) 1.9873 3.4476 −5.4603 2.3476 0.7286 −2.3810 1.4104 0.8040 −3.3936

(lc, lu, ld), (rd, rc, ru) 2.6063 2.2952 −3.6889 2.9508 1.0968 −2.1460 1.4991 1.0213 −3.5222

(lu, lc, ld), (rd, ru, rc) 1.7238 2.7206 −4.9968 2.3857 0.9413 −2.5556 1.7151 1.0784 −3.3633

(lu, ld, lc), (rc, rd, ru) 1.7651 1.4921 −3.7270 2.1190 1.2524 −3.1333 1.3708 1.0598 −3.6890

Table 4. Contextuality cyclic subsystems of rank 4

System P1 P2 P3

(lx, ly), (rx, ry) ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC

(lc, lu), (rc, ru) 1.3968 1.4032 −2.0063 0.9508 0.6429 −1.6921 1.7213 1.2118 −1.4904

(lc, lu), (rc, rd) 0.9556 1.4762 −2.5206 2.1444 0.7159 −0.5714 1.0470 0.6711 −1.6241

(lc, lu), (ru, rd) 1.2603 2.5683 −3.3079 1.6762 0.6349 −0.9587 1.3600 0.8806 −1.5206

(lc, ld), (rc, ru) 1.3111 1.2476 −1.9365 1.5921 0.6556 −1.0635 1.1929 0.7742 −1.5812

(lc, ld), (rc, rd) 1.4476 1.3968 −1.9492 1.5000 0.7857 −1.2857 0.9517 0.4694 −1.5177

(lc, ld), (ru, rd) 1.2095 1.2603 −2.0508 2.0444 1.0159 −0.9714 0.9905 0.6603 −1.6698

(lu, ld), (rc, ru) 1.1587 1.9714 −2.8127 1.7016 0.7365 −1.0349 1.4808 0.7678 −1.2870

(lu, ld), (rc, rd) 0.9429 1.3175 −2.3746 2.0571 1.0222 −0.9651 1.0478 0.5015 −1.4538

(lu, ld), (ru, rd) 1.6508 2.2159 −2.5651 1.2127 0.6095 −1.3968 0.5222 0.4185 −1.8963

5.2 Results for Cyclic Systems with Redefined Quantities

Table 5 presents the values of ΛC, ICC, and ΔC calculated for each participant
for each of the rank 2 cyclic systems, and Table 6 shows those for the rank 4
cyclic systems. Note that for participant P3, two of the rank 2 systems, those
with (x, y) = (c, d) and (x, y) = (cu, d), have a positive ΔC value, which might
suggest that these two systems show contextuality. However, their respective



Contextuality in Double-Detection 191

Table 5. Contextuality cyclic systems of rank 2

System (x,y) P1 P2 P3

ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC

(c, ud) 0.0286 0.5302 −0.5016 0.0095 0.1778 −0.1683 0.0429 0.0619 −0.0190

(cd, u) 0.5228 0.5947 −0.0720 0.1905 0.2286 −0.0381 0.0430 0.0631 −0.0201

(cu, d) 0.5608 0.5862 −0.0254 0.1778 0.2032 −0.0254 0.1003 0.0695 0.0308

(c, u) 0.4349 0.5365 −0.1016 0.2889 0.3016 −0.0127 0.0476 0.1365 −0.0889

(c, d) 0.4921 0.5238 −0.0317 0.2698 0.3016 −0.0317 0.1333 0.1143 0.0190

(u, d) 0.6984 0.7111 −0.0127 0.0063 0.0825 −0.0762 0.0351 0.0906 −0.0556

Table 6. Contextuality cyclic systems of rank 4

System (lx, ly), (rx, ry) P1 P2 P3

ΛC ICC ΔC ΛC ICC ΔC ΛC ICC ΔC

(lc, lud), (rc, rud) 0.6556 0.7032 −2.0476 1.4556 0.5921 −1.1365 1.2281 0.7648 −1.5367

(lc, lud), (rcd, ru) 0.7926 1.1228 −2.3302 0.6720 0.5238 −1.8519 1.3525 0.9192 −1.5667

(lc, lud), (rcu, rd) 0.9407 1.3937 −2.4529 1.2857 0.7460 −1.4603 0.9247 0.5181 −1.5934

(lc, lud), (rc, ru) 0.7349 0.9286 −2.1937 1.2714 0.5381 −1.2667 1.4568 0.9931 −1.5363

(lc, lud), (rc, rd) 1.1381 1.4048 −2.2667 1.6397 0.7063 −1.0667 0.9993 0.5365 −1.5371

(lc, lud), (ru, rd) 0.9079 1.5111 −2.6032 1.2190 0.8254 −1.6063 1.1431 0.7703 −1.6271

(lcd, lu), (rc, rud) 0.7841 0.4688 −1.6847 1.0423 0.6106 −1.5683 1.3443 0.7911 −1.4469

(lcd, lu), (rcd, ru) 1.3418 1.6402 −2.2984 1.0681 0.4804 −1.4123 1.4357 0.9428 −1.5070

(lcd, lu), (rcu, rd) 0.8127 1.6275 −2.8148 0.9975 0.5284 −1.5309 0.7726 0.5453 −1.7727

(lcd, lu), (rc, ru) 1.3175 1.3683 −2.0508 0.9619 0.6106 −1.6487 1.6412 1.0639 −1.4227

(lcd, lu), (rc, rd) 0.7884 1.2159 −2.4275 1.3788 0.7037 −1.3249 1.0473 0.5867 −1.5394

(lcd, lu), (ru, rd) 1.3905 2.4508 −3.0603 1.2804 0.4487 −1.1683 1.0235 0.6986 −1.6751

(lcu, ld), (rc, rud) 0.6212 0.9725 −2.3513 0.9153 0.6868 −1.7714 0.9903 0.4030 −1.4127

(lcu, ld), (rcd, ru) 1.0328 1.3848 −2.3520 0.6603 0.6145 −1.9541 0.8142 0.5372 −1.7230

(lcu, ld), (rcu, rd) 1.3051 1.4399 −2.1347 1.7129 0.8698 −1.1570 0.8240 0.2918 −1.4677

(lcu, ld), (rc, ru) 0.9958 1.4889 −2.4931 1.1291 0.6423 −1.5132 0.9988 0.5452 −1.5464

(lcu, ld), (rc, rd) 1.2794 1.3704 −2.0910 1.6857 0.8646 −1.1788 0.9818 0.2608 −1.2790

(lcu, ld), (ru, rd) 1.3566 1.5788 −2.2222 1.7672 0.8804 −1.1132 0.5084 0.5496 −2.0412

(lc, lu), (rc, rud) 0.9286 0.5571 −1.6286 1.5476 0.6492 −1.1016 1.3842 0.9073 −1.5231

(lc, lu), (rcd, ru) 1.3513 1.7915 −2.4402 0.9534 0.5069 −1.5534 1.6014 1.1021 −1.5007

(lc, lu), (rcu, rd) 0.8095 1.6328 −2.8233 1.6815 0.6296 −0.9481 0.8847 0.6947 −1.8101

(lc, ld), (rc, rud) 0.6333 1.1063 −2.4730 1.3635 0.6238 −1.2603 1.0723 0.6218 −1.5495

(lc, ld), (rcd, ru) 1.1016 1.1968 −2.0952 0.8265 0.7757 −1.9492 1.1043 0.7363 −1.6320

(lc, ld), (rcu, rd) 1.3683 1.3513 −1.9831 1.6815 0.8624 −1.1810 0.9647 0.4479 −1.4833

(lu, ld), (rc, rud) 0.5968 0.9143 −2.3175 1.2317 0.8127 −1.5810 1.2643 0.5585 −1.2942

(lu, ld), (rcd, ru) 1.3228 1.7608 −2.4381 1.2974 0.6180 −1.3206 1.1044 0.6240 −1.5195

(lu, ld), (rcu, rd) 1.1788 1.6169 −2.4381 1.7757 0.8847 −1.1090 0.5485 0.4365 −1.8880

confidence intervals, ΔC(cu,d) ∈ (−0.267, 0.241) and ΔC(c,d) ∈ (−0.233, 0.215),2

indicate that the values are consistent with lack of contextuality.

2 95% confidence intervals corrected by Bonferroni for the number of tests for ΔC
values in the experiment. However, it should be noted that even uncorrected intervals
covered the value 0.
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6 Conclusions

The experiment presented in this paper illustrates the use of the double factorial
paradigm in the search of contextuality in behavioral systems, namely in the
responses of human observers in a double-detection task. This paradigm provides
the closest analogue in psychophysical research to the Alice-Bob EPR/Bohm
paradigm.

We have found that for the participants in the study there was no evidence
of contextuality in their responses. These results add to the existing evidence
that points towards lack of contextuality in psychology (cf. Ref. [13].)
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1 Introduction

The debate regarding the interpretation of probability theory remains still open
in the literature [3]. And these interpretational problems become particularly
important when the probabilities arising in quantum phenomena are considered
[37]. The statistical nature of Quantum Theory posed intriguing questions since
its beginnings. This was expressed, for example, by R. P. Feynman [51], who
stressed the radical changes needed in the methods for computing probabilities:

I should say, that in spite of the implication of the title of this talk the
concept of probability is not altered in quantum mechanics. When I say
the probability of a certain outcome of an experiment is p, I mean the
conventional thing, that is, if the experiment is repeated many times one
expects that the fraction of those which give the outcome in question is
roughly p. I will not be at all concerned with analyzing or defining this
concept in more detail, for no departure of the concept used in classi-
cal statistics is required. What is changed, and changed radically, is the
method of calculating probabilities.

The sum rule of probability amplitudes giving rise to interference terms was
rapidly recognized as a non-classical feature [5]. Later, it was discovered that this
was strongly related to the nonexistence of joint distributions for noncommuting
observables. These peculiarities and formal aspects of the probabilities involved
in quantum theory have been vastly studied in the literature [6–12].
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One of the most important axiomatizations in probability theory is due
to Kolmogorov [13]. In his approach, probabilities are considered as measures
defined over a Boolean sigma algebra of a sample space, i.e., as positive maps
defined on certain subsets of a given set. Interestingly enough, states of classical
statistical theories can be described using Kolmogorov’s axioms, because they
define measures over the sigma algebra of measurable subsets of phase space.
An interesting approach to the statistical character of quantum systems con-
sists in considering quantum states as measures over the non-Boolean structure
of projection operators in a Hilbert space [4,5,8]. As is well known, projection
operators can be used to describe elementary experiments (the analogue of this
notion in the classical setting is represented by subsets of phase space). In this
way, a comparison between quantum states and classical probabilistic states can
be traced in formal and conceptual grounds. The equivalence between this app-
roach and the usual one, based on the Born’s rule [26], is provided by Gleason’s
theorem [35,36]. This is the reason why quantum states are termed “non-Boolean
or non-Kolmogorovian” probability measures [8].

It is important to remark that a generalization of Kolmogorov’s axioms can
be given in terms of measures over arbitrary orthomodular lattices (instead of
Boolean algebras) [6,23,24]. This approach contains quantum and classical sta-
tistical models as particular instances [5,8]. Another way to put this in a more
general setting, is to consider a set of states of a particular probabilistic model
as a convex set [5]. While classical systems can be described as simplexes, non-
classical theories can display a more involved geometrical structure. These mod-
els can go far beyond classical and quantum mechanics, and can be used to
described different theories (see for example [28,29] and references therein). We
will discuss these notions in Sect. 2 of this work.

The fact that states can be considered as measures over different sets of pos-
sible experimental results, reveals an essential structural feature of a vast family
of physical statistical theories. A statistical model must specify the probabili-
ties of actualization of all possible measurable quantities of the system involved:
this is a feature which is common to all models, no matter how different they
are. In this paper, we want to study which are the possible ontologies compat-
ible with the general features arising in generalized probabilistic models. The
fact that generalized models of physical theories can be characterized using very
precise mathematical structures, should allow us to draw conclusions about pos-
sible interpretations. A study of the ontological constrains imposed by this gen-
eral structure was not addressed previously in the literature. As we shall see,
the algebraic and geometric features of the event structures defined by these
measurable properties imposes severe restrictions on the interpretation of the
probabilities defined by generalized states. In Sect. 3 we will show that a novel
approach, based on putting constrains on degrees of belief functions defined over
arbitrary orthomodular lattices [37,38], is particularly suitable for an extension
of the Bayesian interpretation to arbitrary contextual probabilistic models. We
will also see that, an ontology based on bundles of actual properties poses seri-
ous difficulties in most models of interest (specially, in all those which are not
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classical). An approach based on bundles of possible properties is discussed as
an alternative [52]. Finally, we draw our conclusions in Sect. 4.

2 Non-Kolmogorovian Probabilistic Models

Suppose that we have a physical system whose states are given by measures which
yield definite probabilities for the different outcomes of all possible experiments.
From an operational perspective, these probabilities can be understood first in
the sense used by Feynman in the quotation of Sect. 1. Then, for an experiment
E with discrete outcomes {Ei}i=1,..,n, a state ν gives us a probability p(Ei, ν) :=
ν(Ei) ∈ [0, 1] for each possible value of i. The real numbers p(Ei, ν) must satisfy∑n

i=1 p(Ei, ν) = 1; otherwise, the probabilities would not be normalized. In this
way, each state ν defines a concrete probability for each possible experiment.
A crucial assumption here is that the set of all possible states C is convex:
this assumption allows to form new states by mixing old ones and [29,34]. In
formulae, if ν1 and ν2 are states in C, then

ν = αν1 + (1 − α)ν2 (1)

belongs to C for all α ∈ [0, 1]. We will also assume that it is a compact set. This
mixing property can be extended trivially to finite mixtures with more than two
elements. Notice that each possible outcome Ei of each possible experiment E,
induces a linear functional Ei(...) : C −→ [0, 1], with Ei(ν) := ν(Ei). Functionals
of this form are usually called effects. Thus, an experiment will then be a col-
lection of effects (functionals) satisfying

∑n
i=1 Ei(ν) = 1 for all states ν ∈ C. In

other words, the functional
∑n

i=1 Ei(...) equals the identity functional 1 (which
satisfies 1(ν) = 1 for all ν ∈ C). Any compact convex set C can be canonically
embedded as a base for the positive cone V+(C) of a regularly ordered linear
V (C) (see [30,31] for details). This means that for every element z in V+(C), we
can write z = tν in a unique way, with t ≥ 0 and ν ∈ C.

In this way, any possible experiment that we can perform on the system, is
described as a collection of effects represented mathematically by affine func-
tionals in an affine space V ∗(C). A model represented by a convex set C will
be said to be finite dimensional if and only if V (C) is finite dimensional. As in
the quantum and classical cases, extreme points of the convex set of states will
represent pure states.

It is important to remark the generality of the framework described above:
all possible probabilistic models with finite outcomes can be described in such
a way. Furthermore, if suitable definitions are made, it is possible to include
continuous outcomes in this setting.

A face F of a convex set C is a convex subset of it satisfying that for all μ, if
μ = αμ1+(1−α)μ2 with α ∈ [0, 1], then μ ∈ F if and only if μ1 ∈ F and μ2 ∈ F .
Faces can be interpreted geometrically as subsets that are stable under mixing
and purification. Faces are very important for our discussion, because it can be
proved that the set of all possible faces of any convex set forms a lattice. For
very important models this lattice is an orthomodular one, and can be put in
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connection with the approach described below [1,24]. In particular, the lattice of
faces of the convex set of states of a quantum system is isomorphic to the lattice
of projection operators in the associated Hilbert space [1,24]. A similar result
holds for classical statistical models: the lattice of faces is a Boolean one. This
means that, at least for very important models, there exists a strong connection
between the geometry of a convex set of states and the propositional algebra
associated to the system in question [37,47]. This connection can be exploited in
order to draw conclusions about how to interpret the states of the given model.

Birkhoff and von Neumann showed [4] that the empirical propositions associ-
ated to a classical system can be naturally organized as a Boolean algebra (which
is an orthocomplemented distributive lattice [6,16]). While classical observables
are defined as functions over phase space and form a commutative algebra,
quantum observables are represented by self adjoint operators, which fail to
be commutative. Due to this fact, empirical propositions associated to quantum
systems are represented by projection operators, which are in one to one corre-
spondence to closed subspaces related to the projective geometry of a Hilbert
space [27,32]. Thus, empirical propositions associated to quantum systems form
a non-distributive—and thus non-Boolean—lattice.

An important example of a classical probabilistic model is provided by a point
particle moving in space time whose states are described by probability functions
over IR6. Suppose that A represents an observable quantity (i.e., it is a function
defined over the phase space). Then, the proposition “the value of A lies in the
interval Δ”, defines a testable proposition, which we denote by AΔ. The proposal
of [4] is to associate AΔ to the measurable set f−1(Δ), which is the set of all
states that make the proposition true. If the probabilistic state of the system is
given by μ, the corresponding probability of occurrence of fΔ will be given by
μ(f−1(Δ)). The situation is analogous for more general classical probabilistic
systems. There is a strict correspondence between a classical probabilistic state
and the axioms of classical probability theory. Indeed, the axioms of Kolmogorov
[13] define a probability function as a measure μ on a sigma-algebra Σ such that

μ : Σ → [0, 1] (2)

which satisfies
μ(∅) = 0 (3)

μ(Ac) = 1 − μ(A), (4)

where (. . .)c means set-theoretical-complement. For any pairwise disjoint denu-
merable family {Ai}i∈I ,

μ(
⋃

i∈I

Ai) =
∑

i

μ(Ai). (5)

A state of a classical probabilistic theory will be defined as a Kolmogorovian
measure with Σ = P(Γ ) (where Γ and P(Γ ) denote the phase space of the
system and its measurable subsets, respectively). It is straightforward to show
that the set of all possible measures of this form is convex.
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Quantum models can be described in an analogous way, but using operators
acting on Hilbert spaces instead of functions over a phase space. If A represents
the self adjoint operator associated to an observable of a quantum system, the
proposition “the value of A lies in the interval Δ” will define a testable experi-
ment represented by the projection operator PA(Δ) ∈ P(H), i.e., the projection
that the spectral measure of A assigns to the Borel set Δ [25]. The probability
assigned to the event PA(Δ), given that the system is prepared in the state ρ,
is computed using Born’s rule [1,26]:

p(PA(Δ)) = tr(ρPA(Δ)). (6)

Born’s rule defines a measure on P(H) with which it is possible to compute all
probabilities and mean values for all physical observables of interest [1,26]. It
is well known that, due to Gleason’s theorem [35,36], a quantum state can be
defined by a measure s over the orthomodular lattice1 of projection operators
P(H) as follows [8,26]:

s : P(H) → [0; 1] (7)

such that:
s(0) = 0 (0 is the null subspace). (8)

s(P⊥) = 1 − s(P ), (9)

and, for a denumerable and pairwise orthogonal family of projections Pj

s(
∑

j

Pj) =
∑

j

s(Pj). (10)

As in the classical case, the set of states defined by the above equations is
also convex. Despite their mathematical resemblance, there is a big difference
between classical and quantum measures. In the latter case, the Boolean algebra
Σ is replaced by P(H), and the other conditions are the natural generalizations
of the classical event structure to the non-Boolean setting. The fact that P(H) is
not Boolean lies behind the peculiarities of probabilities arising in quantum phe-
nomena. In articular, their geometrical features as convex sets are very different;
while classical models are simplexes, models arising in quantum systems have a
more involved geometry [28]. As an example, the set of probabilistic states of a
classical bit (a classical system with only two possible outcomes) forms a line
segment, while the set of states of its quantum version, the qubit (a quantum
system represented by a two dimensional Hilbert space) has the form of a sphere.
As the dimensionality grows, the geometrical features of sets of quantum states
becomes more and more involved [1]. The fact that classical states are always

1 An orthomodular lattice L, is defined as an orthocomplemented lattice satisfying
that, for any a, b and c, if a ≤ c, then a ∨ (a⊥ ∧ c) = c. In the Hilbert space case,
projection operators are in one to one correspondence to closed subspaces. These
form an orthomodular lattice with “∨” representing the closure of the sum of two
subspaces, “∧” its intersection, and “(...)⊥”representing the orthogonal complement
of a given subspace. “≤” means subspace inclusion. See [23] for a detailed exposition.
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simplexes, implies that each point has a unique decomposition in terms of pure
states; but this property does no longer holds in the quantum case, posing a
serious problem for the attempts to give an ignorance interpretation of mixed
states.

In a series of papers Murray and von Neumann searched for algebras more
general than B(H) [43–46]. The new algebras are known today as von Neumann
algebras, and their elementary components can be classified as Type I, Type II
and Type III factors. It can be shown that, the projective elements of a factor
form an orthomodular lattice. Classical models can be described as commutative
von Neumann algebras. The models of standard quantum mechanics can be
described by using Type I factors (Type In for finite dimensional Hilbert spaces
and Type I∞ for infinite dimensional models). These are algebras isomorphic
to the set of bounded operators of a Hilbert space. Further work revealed that
a rigorous approach to the study of quantum systems with infinite degrees of
freedom needed the use of Type III factors, as is the case in the axiomatic
formulation of relativistic quantum mechanics [8,48,49]. A similar situation holds
in algebraic quantum statistical mechanics [8,50]. In these models, states are
described as complex functionals satisfying certain normalization conditions, and
when restricted to the projective elements of the algebras, obey laws similar to
those given by Eq. 7. In other words, they define measures over lattices which
are not the same to those of standard quantum mechanics. This opens the door
to a meaningful generalization of Kolmogorov’s axioms to a wide variety of
orthomodular lattices. Thus, a general probabilistic framework can be described
by the following equations. Let L be an orthomodular lattice. Then, define

s : L → [0; 1], (11)

(L standing for the lattice of all events) such that:

s(0) = 0. (12)

s(E⊥) = 1 − s(E), (13)

and, for a denumerable and pairwise orthogonal family of events Ej

s(
∑

j

Ej) =
∑

j

s(Ej). (14)

where L is a general orthomodular lattice (with L = Σ and L = P(H) for the
Kolmogorovian and quantum cases respectively).

Equations 11–14 define what is known as a non-commutative probability the-
ory [8]. It is very important to remark that the above measures do not exist for
certain orthomodular lattices; for a detailed or a detailed discussion on the con-
ditions under which these measures are meaningful, see [24], Chap. 11. It suffices
for us that the most important physical examples fall into this scheme, and this
is indeed the case.
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3 Different Ontologies

Now a question arises. Can we say something about the nature of probabilities
by simply looking at the structural properties of the above described general
framework? Is it possible to find a theoretical framework which allows us to
give a general interpretation of probabilistic statistical models? The generalized
setting is a mathematical framework capable of accommodating models of a
very different nature. Given that it contains classical statistical mechanics and
quantum mechanics as particular instances, we know that the models involved
can be very different. But there are some specific features which allow us to
extract some structural conclusions by studying the relationship between the
lattice of properties and the geometry of the set of states.

In order to find an answer to the above questions, let us start first by con-
sidering an approach based on the restrictions imposed by the algebraic features
of the event structure on the probability measures which can be defined in a
compatible way. When the property lattice is Boolean, R. T. Cox [14,15] showed
that the only measures compatible with the algebraic symmetries of the lat-
tice are those which obey the usual Kolmogorov’s axioms. Furthermore, in this
approach, Shannon’s entropic measure appears as the most natural informa-
tion measure for these models [20]. Cox approach works as follows. Start with
a Boolean algebra B, representing the domain of possible events available to a
rational agent (which could be an automata). The algebra is assumed to be dis-
tributive, because this fact reflects that the logic used by the agent is classical.
The agent has to put a numerical valuation to each possible proposition with a
degree of belief function ϕ. This is done in a conditional way. Thus, for example,
the real number ϕ(a|b) represents the degree of belief of the agent that a is true
given that b is true. This works as a sort of inference calculus: when we have
complete certainty, the agent uses classical logic in order to make deductions;
when he has no certainty, he must use a degree of belief function. But it turns
out that, if the function ϕ has to be compatible with the algebraic properties
of B, there are not too many options at hand: ϕ has to satisfy, up to rescaling,
a set of laws which are equivalent to those given by Kolmogorov’s axioms. This
approach has been modified and used to derive Feynman laws of probability in
the quantum setting [17–20].

But as we have seen in Sect. 2, if the lattice of properties involved is not
Boolean, non-Kolmogorovian measures appear. This is the case for standard non-
relativistic quantum mechanics and many other statistical models of interest,
such as those provided by algebraic quantum field theory and quantum statistical
mechanics. What happens if a rational agent has to define belief functions under
the condition that the empirical event structures depart from the Boolean realm
of classical physics?

Indeed, if the lattice of properties is represented by the orthomodular lattice
of projection operators in a Hilbert space, it is possible to show that the only
consistent possibility is given by the Born’s rule [37]. Moreover, if the lattices are
more general and non-Boolean, it can be shown that the probability measures will
not be Kolmogorovian either [37]. In this approach, the Shannon’s information



On the Interpretation of Probabilities in Generalized Probabilistic Models 201

measure must be replaced by the von Neumann’s entropy in the quantum case
and the measurement entropy in the general case [38]. Let us briefly describe
how this method works in the general case. One first starts by identifying the
algebraic structure of the event structure of a given theory T . In many cases
of interest, this will be specified as a particular orthomodular lattice L. Notice
that, in principle, this could be considered as empirical information available to
the agent. Once the algebraic properties of the event structure are determined,
a variant of Cox method can be applied by studying the constrains imposed on
the degree of belief functions. The crucial point here is that event structures
are not always organized as Boolean lattices. Thus, in order to determine the
general properties of the probabilities of a given theory, Cox’s method has to be
applied to lattices more general than Boolean ones.

The existence of this approach opens an interesting perspective for the
Bayesian interpretation of probabilities. The interpretation would be as follows.
There is an empirical scenario in which a rational agent2 (which could be an
automata) must take a decision, and with that aim, he must define a degree of
belief function. Different possible experiments and results are available and they
are organized in an event structure, assumed to be an orthomodular lattice. If
the lattice of events that he is facing is Boolean (as in Cox’s approach), then the
measures of degree of belief of the rational agent will obey laws equivalent to
those of Kolmogorov. On the contrary, if the state of affairs that the agent must
face presents contextuality (as in standard quantum mechanics), the measures
involved must be non-Kolmogorovian. The natural information measures will
be Shannon’s or more general ones, according to the algebraic structure of the
context involved [38]. This kind of approach would allow for a natural justifi-
cation for the peculiarities of probabilities arising in quantum phenomena from
the standpoint of the Bayesian approach.

But one of the problems of the Bayesian interpretation of probabilities is
that it says nothing about ontology in a deliberate way. What can we do if
we want to go beyond the subjective approach and say something about the
nature of the models involved? As we have seen, a generalized probabilistic
model establishes a relationship between the state of the system and the results
of possible experiments to be performed on the system. Is it possible to assign
concrete properties of the system to these experiments? In the Kolmogorovian
setting, it is possible to find global valuations of the Boolean lattice to the set
{0, 1}. In other words, for each possible property, we can consistently affirm
that the system either possesses that property or does not possess it. Thus,
at least in principle, we can consider classical models as objects with definite
properties. The probabilities would simply reflect our subjective ignorance about
this objective situation.

The situation changes radically in the quantum case. The Kochen-Specker
(KS) theorem poses a serious threat for the interpretation of a quantum system as

2 It is important to notice here that different notions of “rational agent” could be
used. In particular, it would be interesting to study the possibility of using Dutch
Book Arguments in the generalized setting.
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an object with definite properties: it is not possible to establish a global Boolean
valuation to the elements of the lattice of projection operators. Of course, this
problem can be solved if hidden variables are assumed, as in the Bohmian for-
mulation of quantum theory (where the interpretation displays highly non-local
features). But one thing we know for sure: we cannot interpret the elements of
the event structure as representing definite properties of the system. The trick
of considering the state of the system as the quantum logical conjunction of all
actual properties (i.e., those properties for which the probability of occurrence
is equal to one in a given state), becomes untenable when entangled states and
improper mixtures are considered [53].

What about an interpretation in terms of bundles of properties for quantum
systems? One may think that the problem of the interpretation of quantum
systems is related to the assumption of an ontology of substances and properties,
being the system a sort of ‘carrier’ of its actual properties. In order to avoid this,
one may try to think quantum systems not as individual objects, but as bundles
of properties. According to this interpretation, properties have an ontological
priority, and there is no individual substratum acting as a carrier. In other
words, an object is no longer considered as an individual substratum possessing
properties, but simply a convergent bundle of properties without any substratum.
But again, the KS theorem threatens the interpretation of a quantum system
as a bundle of actual properties. For this reason, some authors have attempted
an interpretation of standard quantum mechanics based on bundles of possible
properties (see for example, [52] and references therein). The fact that possible
properties do not pertain to the realm of actuality, would avoid the problems
imposed by the KS theorem.

But the above considerations with regard to the impossibility of consider-
ing the elements of the event structure as a set of definite (or actual) properties,
imposes a severe restriction on the interpretation of probabilities arising in quan-
tum phenomena: an ignorance interpretation will be problematic, due to the fact
that, in these interpretations, there will always exist sets of properties for which
definite values cannot be consistently assigned previously to the measurement
process. For these reasons, it seems natural to take quantum probabilities as
ontological (provided that we want to avoid hidden variable models).

One of the key features that allows for the existence of the KS theorem is the
fact that the orthomodular lattice of projections is not Boolean. Indeed, in [40],
a detailed study of the orthomodular structures underlying the Kochen-Speker
construction is presented. As we have seen, the event structures associated to
more generalized probabilistic models can be non-Boolean in the general case.
This means that, for a vast family of non-Kolmogorovian models, we will not be
able to think about the elements of the event structure as representing actual
properties of an individual system. And with regard to the algebraic formula-
tion of physical probabilistic theories, a generalized version of the KS theorem
exists for von Neumann algebras [41] (see also [42]). Due to the existence of
these results, an interpretation based on bundles of actual properties for gen-
eralized probabilistic models seems to be problematic. As in the quantum case,
the approach based on bundles of possible properties could be used instead [52].
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But again, as in the standard quantum mechanics example, the probabilities
involved will no longer admit an ignorance interpretation for generalized proba-
bilistic models showing contextuality.

4 Conclusions

In this work we have discussed the connection between the event structures asso-
ciated to general non-Kolmogorovian models and measures representing states.
We reviewed an approach in which states are regarded as functions measuring
the degree of belief of a rational agent, and find that a Bayesian interpretation
seems to be suitable for the most important probabilistic models, provided that
contextual phenomena is accepted as a starting point. Of course, this program
should be worked out with more detail, specially with regard to the study of
conditional probabilities and the Bayes’ rule in the generalized setting.

In order to go beyond the subjective interpretation, we also discussed the
conditions under which the event structures can be related to properties of a
system, and inquired on the ontological aspects of such an association. Due
to the existence of generalized versions of the KS theorem, we find that for the
majority of models the description of systems as bundles of actual properties will
be problematic. This opens the door to a generalization of previous approaches in
which bundles of possible properties are the elementary bricks out of which real-
ity is constructed. But in all these interpretations, an ignorance interpretation
of probabilities will no longer be possible.
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Abstract. Traditionally, probability is treated as a function that takes values in
the interval [0, 1]. All conventional interpretations of probability support this
assumption, while all popular formal descriptions, e.g., axioms for probability,
such as Kolmogorov’s axioms, canonize this premise. However, researchers
found that negative, as well as larger than 1 probabilities could be a useful tool
in physics. Some even assert that probabilities that can be negative, larger than 1
or less than −1 are necessary for physics. Here we develop an axiomatic system
for such probabilities, which are called symmetric inflated probabilities and
reflect interaction of particles and antiparticles, and study their properties.

Keywords: Negative probability � Antiparticle � Annihilation � Symmetry �
Axiom � Additivity � Frequency � Inflation

1 Introduction

Traditionally, probability is regarded as a function that takes values in the interval [0,
1]. However, researchers found that probabilities values of which did not belong to this
interval could be useful in various situations. For instance, negative probabilities have
been applied to a number of theoretical and practical problems.

Historically, Hermann Weyl was the first researcher to unconsciously encounter
negative probability in (Weyl 1927). Explicitly, negative probabilities emerged in
physics in works of Dirac (1930a) and Heisenberg (1931) within the context of
quantum theory. However, both physicists missed its significance and possibility to
take negative values, using this distribution as an approximation to the full quantum
description of a system such as the atom. In contrast to this, Wigner (1932) came to the
conclusion that quantum corrections often lead to negative probabilities, or as some
prefer to say quasi-probabilities.

The importance of Wigner’s construction for foundational problems was not rec-
ognized until much later when Wigner quasi-probability distribution little by little has
become very popular in physics finding application to many different physical prob-
lems, including quantum optics, statistical mechanics, hydrodynamics, nuclear theory
and quantum field theory (Hillery, et al. 1984).

Later Dirac (1942) in his work on the quantization of electromagnetic field did not
only support Wigner’s approach but also introduced the physical concept of negative
energy strongly connected to negative probabilities. It was discovered that physical
theories operating in a Hilbert space with indefinite metric entail negative probabilities
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(Dirac 1942; Pauli 1943; Le Couteur 1949; Gupta 1957; Howard et al. 1961; Sudarshan
1961).

Dirac (1974) and Feynman (1987) described various useful physical interpretations
of negative probabilities to demonstrate importance of negative probabilities in physics.

A little by little, negative probabilities were becoming more and more popular in
physics (cf., for example, (Dirac 1943; Bartlett 1945; Feynman 1950; 1987; Baker
1958; Mückenheim 1986; 1988; Sokolovski and Connor 1991; Scully et al. 1994;
Belinskii 1994; Han et al. 1996)). Now negative probabilities is a commonplace tool
for many physicists (cf., for example, (Youssef 2001; Curtright and Zachos 2001;
Galvao 2005; Sokolovski 2007; Bednorz and Belzig 2009; Hofmann 2009; Kronz
2009; Gell-Mann and Hartle 2011; Abramsky and Brandenburger 2014; de Barros and
Oas 2015)).

Negative probabilities also came to economics and finance (Duffie and Singleton
1999; Forsyth et al. 2001; Haug 2004; Székely 2005; Kronz 2009; Burgin and
Meissner 2010). Besides, according to (Ferrie and Emerson 2008), several finite
dimensional quasi-probability representations of quantum states have been proposed to
study various problems in quantum information theory.

In addition, negative probabilities were used in social and behavioral sciences (cf.,
for example, (de Barros 2014; de Barros and oas 2014)).

At the same time, larger than 1 probabilities, also called above unity probabilities or
bigger than one probabilities, i.e., probabilities values of which can be larger than 1,
have received less attention. One of the few to address them was Nobel Prize laureate
Paul Dirac who wrote (1943):

“The various parts of the wave function which referred to the existence of positive and
negative-energy photons in the old interpretation now refer to the emissions and absorptions of
photons. The probabilities, equal to 2 and −2, are not physically understandable, but one can
use them mathematically in accordance with the rules for working with a Gibbs ensemble.”

However, even before Dirac used and contemplated larger than 1 probabilities, they
were intrinsically brought into play by other physicists. In his fundamental review on
extended probabilities, Mückenheim (1986) explains how such probabilities emerge by
extending the quantum theoretical description of radiation given by Weisskopf and
Wigner (1930). They calculated the natural linewidth of radioactive decay of an excited
atom in which the normalized decay probability density q(E, t) can take on negative
values, as well as values exceeding unity. As a result, the corresponding normalized
probability, which is an observable quantity, may violate both the lower and the upper
limit in Kolmogorov’s axioms (Mückenheim 1986). It is important that these results
were verified by experiments, demonstrating that utilization of larger than 1 probabilities
well reflected physical reality (Holland et al. 1960; Lynch et al. 1960; Wu et al. 1960).

One more Nobel Prize laureate Richard Feynman (1987) also argued that larger
than 1 probabilities could be useful for probability calculations in different problems of
quantum physics.

Later larger than 1 probabilities have been considered in physics, biology and finance
in the works of Mack (2002), Sjöstrand (2006), Venter (2007), and Nyambuya (2011).
Some of the researchers did not want to accept meaningfulness of larger than 1 proba-
bilities and tried to eliminate them by some artificial transformations. For instance,
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Mack (2002) tries to get rid of larger than 1 probabilities by reducing the probability mass
at zero. Other researchers recognized as an inherent property of the studied phenomena.
For instance, Haug (2004) argued that negative, as well as larger than 1 probabilities
could be a useful tool in enhancing financial modeling. Even more, Kronz (2009)
explains necessity of greater than one probabilities demonstrating that one can account
for constructive quantum interference, if probability values greater than one are allowed.

Gell-Mann and Hartle (2011) extended probability ensemble interpretation by
including real numbers that may be negative or greater than 1 as the probability values and
providing an unconventional interpretation of such probabilities. According to them, such
extended probabilities obey the usual rules of probability theory except that they can be
negative or greater than one for an alternative for which it cannot be determined whether it
occurs or not (as on the alternative histories in the two-slit experiment).

In addition, larger than 1 (inflated) probabilities are specifically useful in finance as
they, for example, were successfully applied to solving problems in financial modeling
(Burgin and Meissner 2012a).

Looking into the history of mathematics and physics, we see that the evolution of
negative, as well as larger than 1 probabilities is similar to many new concepts in
mathematics, which were initially met with skepticism. When negative numbers came
from India and China to Europe, critics dismissed their sensibility. Some of the
European mathematicians, such as d’Alembert or Frend, rejected the sensibility of
negative numbers until the 18th century and referred to them as ‘absurd’ or ‘mean-
ingless’ (Kline 1980; Mattessich 1998). Even in the 19th century, it was a common
practice to ignore any negative results derived from equations, on the assumption that
they were meaningless (Martinez 2006). For instance, Lazare Carnot (1753–1823)
affirmed that the idea of something being less than nothing is absurd (Mattessich 1998).
Such outstanding mathematicians as William Hamilton (1805–1865) and August De
Morgan (1806–1871) had similar opinions. Likewise, irrational numbers and later
imaginary numbers were firstly rejected.

It is interesting that analogous situations happen even now. For instance, Blass and
Gurevich (2015) declared that “negative probabilities were obviously inconsistent with
the frequentist interpretation” 5 years after a frequentist interpretation had been pub-
lished in (Burgin 2010). Other researchers also emphasized that interpreting negative
probabilities is a difficult problem (Halliwell and Yearsley 2013; Oas et al. 2014).

Today irrational, negative and imaginary numbers are accepted and applied in
numerous scientific and practical fields, such as physics, chemistry, biology and
finance.

In a similar way, negative, as well as larger than 1 probabilities are finding more
and more practical applications. There were axiomatic mathematical theories of neg-
ative probabilities and of inflated (larger than 1) probabilities: partial axiomatization
was given in (Allen 1976); axiomatization for p-adic negative probabilities was given
in (Khrennikov 2009); axiomatization for regular negative probabilities used in physics
and finance was given in (Burgin 2009; 2013; Burgin and Meissner 2010; 2012), while
axiomatization for inflated (larger than 1) probabilities was given in (Burgin and
Meissner 2012a). The goal of this paper to elaborate an axiomatic mathematical theory
that includes both negative probabilities and of inflated (larger than 1) probabilities.
This theory describes symmetric inflated probabilities.
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2 Mathematical Foundations of Symmetric Inflated
Probability

Let us consider a set X, which consists of two irreducible disjoint parts (subsets) X+

and X−, i.e., neither of these parts is equal to its proper subset. Elements from the set
X+ are called elementary positive events, while elements from the set X− are called
elementary negative events or antievents. Subsets of the set X+ are called positive
events, while subsets of the set X− are called negative events or antievents. All other
subsets of the set X are mixed events.

The following axiom defines a correspondence between positive and negative
events.

Axiom SIP1 (Order structure). There is a graded with respect toX+ andX− involution a:
X! X, i.e., a is a mapping with the following properties: a2 is an identity mapping onX,
a(w) = −w for any element w from X, a(X+) � X−, and if w 2 X+, then a(w) 62 X+.

If w 2 X+, then −w is called the antievent of w. We assume that −(−w) = w.
There are different examples of negative events (antievents). They are usually

connected to negative objects. For instance, encountering a negative object is a neg-
ative event.

An example of negative objects is given by antiparticles, which form an antimatter
counterpart of quantum particles. For instance, the antiparticle of the electron e− is
called the positron and denoted by e+. The discovery of the positron has an interesting
history. When Paul Dirac extended quantum mechanics to include special relativity, he
derived a formula known as the Dirac equation. This equation had two solutions. One
of them described the electron, while the other one predicted that an electron should
have a positively charged counterpart (Dirac 1930b). However, other physicists did not
accept this conclusion and even mocked at Dirac for his innovation. In spite of this
negative attitude, this particle, the positron, was soon discovered in the cosmic radi-
ation by Carl Anderson in 1932. It was not easy to find positrons because the positrons
produced in natural radioactive decay quickly annihilate themselves with electrons,
producing pairs of gamma rays.

Another example of negative objects is given by antipatterns, which are negative
design patterns in the software industry field (Koenig, 1995; Laplante and Neill 2005).
A software design pattern is an antipattern if it is a repeated pattern of action, process
or structure that initially appears to be beneficial, but ultimately produces more bad
consequences than beneficial results, and for which an alternative solution exists that is
clearly documented, proven in actual practice and repeatable.

Observations of subatomic particles have persuasively demonstrated that when a
particle meets its antiparticle, they annihilate each other and disappear, their combined
rest energies becoming available to appear in other forms (Feynman 1987a). These
processes are described by creation and annihilation operators.

Note that annihilation occurs not only in physics where particles and antiparticles
annihilate one another, but also in ordinary life of people. For instance, Alice has stocks
of two companies. If in 2009, the first set of stocks gave profit $1,000, while the second
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set of stocks dropped by $1,000, then the combined income was $0. The loss anni-
hilated the profit.

Here is even a simpler example. Bill finds $20 and loses $10. As the result, the
amount of this person’s money has increased by $10. The loss annihilated a part of the
gain.

Thus, it is natural to assume that if an event contains an elementary event w and its
antievent −w, then w and −w annihilate one another. To formalize this situation, we
introduce additional equality relation determined by the following formula

fvi; w; � w; vi; w 2 X & i 2 Ig � fvi; vi2 X & i 2 Ig

This allows us to define the union with annihilation of two subsets X and Y of X by
the following formula:

X� Y ¼ ðX[YÞ n ½ X \ � Yð Þ [ �X \ Yð Þ�

Here �X ¼ �w;w 2 Xf g and the set-theoretical operation \ represents annihila-
tion, while sets X \ −Y and X \ −Y are formed from annihilating entities.

Some properties of the new set operation ⊕ are the same as properties of the union
[ .

Lemma 2.1

(a) X ⊕ X � X for any subset X of X.
(b) X ⊕ Y � X [ Y for any subsets X and Y of X.
(c) X ⊕ Ø = X for any subset X of X.
(d) X ⊕ (Y ⊕ Z) � (X ⊕ Y) ⊕ Z for any subsets X, Y and Z of X.
(e) X ⊕ Y = Y ⊕ X for any subsets X and Y of X.

At the same time, other properties of operations⊕ and [ are different. For instance,
operations \ and [ are not distributive with respect to the operation ⊕.

Lemma 2.2

(a) It is possible that Z [ (X ⊕ Y) 6¼ (Z [ X) ⊕ (Z [ Y) for some subsets X, Y and
Z of X.

(b) It is possible that X ⊕ (Y \ Z) 6¼ (X ⊕ Y) \ (X ⊕ Z) for some subsets X, Y and
Z of X.

(c) It is possible that X ⊕ (Y [ Z) 6¼ (X ⊕ Y) [ (X ⊕ Z) for some subsets X, Y and
Z of X.

(d) It is possible that Z \ (X ⊕ Y) 6¼ (Z \ X) ⊕ (Z \ Y) for some subsets X, Y and
Z of X.

Proof

(a) Let us take X = {w1, w2, w3, −w1, −w2, −w3}, Z = {w1, w2, −w1, −w2}, X = {w1,
w2} and Y = {−w1, −w2}. Then X ⊕ Y = Ø, Z [ X = Z, Z [ Y = Z, Z [ (X ⊕
Y) = Z, and (Z [ X) ⊕ (Z [ Y) = Z ⊕ Z = Ø. Thus, Z [ (X ⊕ Y) 6¼ (Z [ X) ⊕
(Z [ Y).
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(b) Let us take X = {w1, w2, w3, −w1, −w2, −w3}, X = {w1, w2, −w1, −w2}, Z = {w1}
and Y = {−w2}. Then Y \ Z = Ø, X \ Z = Z = {w1}, X \ Y = Y = {−w2}, X⊕
(Y \ Z) = X = {w1, w2, −w1, −w2}, while (X ⊕ Y) \ (X ⊕ Z) = Ø. Thus, X ⊕
(Y \ Z) 6¼ (X ⊕ Y) \ (X ⊕ Z).

(c) Let us take X = {w1, w2, w3, −w1, −w2, −w3}, X = {w1, w2, −w1, −w2}, Z = {w1}
and Y = {−w2}. Then Y [ Z = {w1, −w2}, X⊕ Z = {w1, w2, −w2}, X⊕ Y = {w1,
−w1, −w2}, X⊕ (Y [ Z) = {w1, −w2}, while (X⊕ Y) [ (X⊕ Z) = {w1, w2, −w1,
−w2}. Thus, X ⊕ (Y [ Z) 6¼ (X ⊕ Y) [ (X ⊕ Z).

(d) Let us take X = {w1, w2, w3, −w1, −w2, −w3}, Z = {w1, w2, −w1}, X = {w1, w2}
and Y = {−w1, −w2}. Then X ⊕ Y = Ø, Z \ X = X = {w1, w2}, Z \ Y = {−w1},
Z \ (X ⊕ Y) = Ø, and (Z \ X) ⊕ (Z \ Y) = {w2}. Thus, Z \ (X ⊕ Y) 6¼ (Z \
X) ⊕ (Z \ Y).

Lemma is proved.

Lemma 2.3. Z \ (X ⊕ Y) � (Z \ X) ⊕ (Z \ Y) for all subsets X, Y and Z of X.

Proof. If w 2 Z \ (X ⊕ Y), then w 2 Z and w 2 X ⊕ Y. The second membership
means that either (w 2 X and −w 62 Y) or (w 2 Y and −w 62 X). In the first case, w 2 Z \
X and −w 62 Z \ Y. In the second case, w 2 Z \ Y and −w 62 Z \ X. So, in both cases,
w 2 (Z \ X) ⊕ (Z \ Y). Thus, Z \ (X ⊕ Y) � (Z \ X) ⊕ (Z \ Y).

Lemma is proved.
As a is an involution of the whole space, we have the following result.

Lemma 2.4. a is a one-to-one mapping and |X+| = |X−|.

Corollary 2.1 (Domain symmetry). w 2 X+ if and only if −w 2 X−.

Corollary 2.2 (Element symmetry). −(−w) = w for any element w from X.

Corollary 2.3 (Event symmetry). −(−X) � X for any event X from X.

Lemma 2.5. a(w) 6¼ w for any element w from X.

Proof. For any w 2 X+ this is true by Axiom SIP1. If for some w 2 X−, we have
a(w) = w, then a(v) = w for some element v from X+ because by Axiom SIP1, a is a
projection of X+ onto X−. Consequently, we have

aða vð ÞÞ ¼ a wð Þ ¼ w

However, a is an involution, and we have a(a(v)) = v. This results in the equality

v ¼ w:

Consequently, we have a(v) = v. This contradicts Axiom SIP1 because v 2 X+.
Lemma is proved.
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Lemma 2.6

Xþ \ X� � ;:

Proof. Let w2 X+ \ X−. Then by Axiom EP1, −w2 X \ X+ = X− \ X+ as X = X− [
X+. Thus, we can define X0

− = X− \ {w} and take X = X0
− [ X+. However, this

contradicts irreducibility of X−.
Proposition is proved by contradiction.

Corollary 2.4. For any element w from X, w 2 X+ if and only if −w 2 X−.
For any set X � X, we define:

X þ ¼ X \ Xþ

X� ¼ X \ X�

�X ¼ �w;w 2 Xf g

An important property of the basic set-theoretical operations is that it is possible to
perform operations separately on positive and negative components of sets and then to
combine these results.

Lemma 2.7. A [ B = (A+ [ B+) [ (A− [ B−) for any subsets A and B of X.
Indeed, as A � A+ [ A− and B � B+ [ B−, we have

A[B ¼ ðAþ [A�Þ [ ðBþ [B�Þ ¼ ðAþ [Bþ Þ [ ðA� [B�Þ

Lemma 2.8. A \ B � (A+ \ B+) ⊕ (A− \ B−) for any subsets A and B of X.
Indeed, as A � A+ [ A− and B � B+ [ B−, we have

A\B ¼ ðAþ [A�Þ \ ðBþ \B�Þ �
ðAþ \Bþ Þ [ ðAþ \B�Þ [ ðA� \Bþ Þ [ ðA� \B�Þ � ðAþ \Bþ Þ � ðA� \B�Þ

because (A+ \ B−) � Ø and (A− \ B+) � Ø.
In a similar way, we prove the following result.

Lemma 2.9. A \ B � (A+ \ B+) ⊕ (A− \ B−) for any subsets A and B of X.

Lemma 2.10. X � X+ ⊕ X − = X + [ X − for any set X from F.
Indeed, as X � X, X + = X \ X+, X− = X \ X−, and X = X+ [ X−, we have

X = X + [ X−. In addition, X + ⊕ X− = X + [ X − because by Lemma 2.6, we have X +

\ X − = ∅.

Lemma 2.11. A ⊕ B � (A+ ⊕ B+) ⊕ (A− ⊕ B−) for any sets X and Y from F.
Indeed, as by Lemma 2.10, A � A+ ⊕ A− and B � B+ ⊕ B−, we have
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A� B � ðAþ � A�Þ � ðBþ � B�Þ � ðAþ � Bþ Þ � ðA� � B�Þ

because by Lemma 2.1, operation ⊕ is commutative and associative.

The main idea behind probability is that probability is defined only for random
events. Although the concept of randomness has different interpretations and formal-
izations, here we follow the classical approach developed by Kolmogorov, in which the
set F of random events consists of subsets of X and is simply defined by its formal
properties. This approach allows treating different types of random events. Even more,
it makes possible inclusion of all events considered in the theory of hyperprobability
into the general schema (Burgin and Krinik 2009).

Axiom SIP2 (Algebraic structure). F+ = {X 2 F; X � X+} is a set algebra that has X+

as its element.

We remind that a collection of sets A is a set algebra if it is closed with respect to
union, intersection and difference of sets, while a set algebra B closed with respect to
complements of its elements is called a set field (Kolmogorov and Fomin 1999). For
any set algebra A, the empty set Ø belongs to A and for any set field B in X, the set X
belongs to B.

Axiom SIP3 (Operational structure). F is closed with respect to annihilation, i.e., if
X � Y and X 2 F, then Y 2 F.

Elements from F, i.e., subsets of X that belong to F, are called random events.
Elements from F + = {X 2 F; X � X+} are called positive random events.
Elements from F– = {–A; A 2 F+} are called negative random events or random

antievents.
Elements from X+ that belong to F+ are called elementary positive random events

or elementary random events.
Elements from X− that belong to F- are called elementary negative random events

or elementary random antievents.
Note that the model is symmetric because positive events are, in this sense, anti-

vents of the corresponding negative events, e.g., E is the antivent of −E.
If A 2 F+, then –A is called the antievent of A.

Axiom SIP4 (Composition). F � fX;X þ�Fþ &X��F� &X þ \ � X�� � ;&X�

\ � X þ � ;g

This axiom means that in a general case, each element from F consists of two parts
– one from F+ and another from F- although one of these parts may be empty.

We remind that a set algebra is called a set field if it has the largest element and is
closed with respect to complement (Kolmogorov and Fomin 1999).

Properties of the structure F + are inherited by the structure F−.

Theorem 2.1 (Algebra symmetry). If F+ is a set algebra (set field), then F– is a
set algebra (set field).
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Proof. Let us assume that F + is a set algebra and take two negative random events
H and K from F−. By the definition of F–, H = −A and K = −B for some positive
random events A and B from F+. Then we have

H \K ¼ ð�AÞ \ ð�BÞ ¼ �ðA\BÞ

As F+ is a set algebra, A \ B 2 F+. Thus, H \ K 2 F−.
In a similar way, we have

H [K ¼ ð�AÞ [ ð�BÞ ¼ �ðA[BÞ

As F+ is a set algebra, A [ B 2 F+. Thus, H [ K 2 F−. By the same token, we
have H \ K 2 F−.

Besides, if F+ has a unit element E, then –E is a unit element in F−.
Thus, F− is a set algebra.
Now let us assume that F + is a set field and H 2 F−. Then by the definition of F−,

H = −A for a positive random event A from F+. It means that CX+A = X+ \ A 2 F+. At
the same time,

CX� H ¼ X�nH ¼ ð�Xþ Þnð�AÞ ¼ �ðXþ nAÞ ¼ �CXþ A

As CX+ A belongs to F+, the complement CX− H of H belongs to F−. Consequently,
F− is a set field.

Theorem is proved.
Properties of the structure F + are inherited by the structure F.

Theorem 2.2 (Algebraic completeness). If F+ is a set field (set algebra), then F is a set
field (set algebra) with respect to operations [ and \ .

Proof. Let us assume that F+ is a set algebra and take two random events A and B from
F. Then by Theorem 2.1, F− is a set algebra. By Lemma 2.10, A = A+ [ A− and
B = B+ [ B−. By Axiom SIP4, A+, B+ 2 F+, A−, B− 2 F−, while by Lemma 2.6, A+ \
A− = ∅, B+ \ B− � ∅, A � A+ [ A-, and B � B+ [ B-.

By Lemma 2.8, we have A \ B � (A+ \ B+) [ (A− \ B−). Thus, (A \ B)+ � A+

\ B+ and (A \ B)- � A− \ B−. As F+ is a set algebra, (A \ B)+ � A+ \ B+2 F+. As
by Theorem 2.1, F- is a set algebra, (A \ B) − � A− \ B−2 F−. Consequently, A \
B 2 F.

By Lemma 2.9, A \ B � (A+ \ B+) [ (A− \ B−). Thus, (A \ B)+ � A+ \ B+ and (A \ B)−

� A− \ B−. As F+ is a set algebra, (A \ B)+ � A+ \ B+2 F+. As by Theorem 2.1, F− is a
set algebra, (A \ B)− � A− \ B−2 F−. Consequently, A \ B 2 F.

By Lemma 2.11, A [ B � (A+ [ B+) [ (A− [ B−). Thus, (A [ B)+ � A+ [ B+

and (A [ B)− � A− [ B−. As F+ is a set algebra, (A [ B)+ � A+ + B+ � A+ [ B+2
F+. As by Theorem 2.1, F− is a set algebra, (A [ B)− � A− [ B− 2 F−. Consequently,
A [ B 2 F.
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Besides, if F+ has a unit element E, then –E is a unit element in F− and E [ − E is a
unit element in F.

Thus, F is a set algebra.
Now let us assume that F+ is a set field and A 2 F. Then by Theorem 2.1, F− is a set

field. By Lemma 2.10, A � A+ + A−. As by Lemma 2.6, X+ \ X− = Ø, we have

CXA ¼ CX þAþ þ CX�A�

Then CX+A
+ belongs to F+ as F+ is a set field, while as it is proved in Theorem 2.1,

CX-A
− belongs to F−. Consequently, CXA belongs to F and F is a set field.

Theorem is proved.
Now it is possible to give an axiomatic definition of a probability function for

symmetric inflated probability. Here we treat only the finite case when X = {w1, w2,
w3, …, wn, −w1, −w2, −w3,…, −wn}, X

+ = {w1, w2, w3,…, wn} and X
− = {−w1, −w2,

−w3, …, −wn}.

Definition 2.1. A function P from F to the set R of real numbers is called a symmetric
inflated probability function, if F satisfies axioms SIP1 – SIP4 and P satisfies the
following axioms:

Axiom SIP5 (Upper normalization). 0 	 P(X+) 	 m for some natural number m.

Axiom SIP6 (Lower normalization). 0 	 P(A) for all A 2 F+.

Axiom SIP7 (Finite additivity)

PðA[BÞ ¼ P Að ÞþP Bð Þ

for all sets A, B 2 F such that

A\B � ;

Axiom SIP8 (Adequacy). If A � B and A 2 F, then P(A) = P(B).

For instance, P({w, −w}) = P(Ø) = 0.
We can see that Axioms SIP1–SIP8 establish a connection between symmetric

inflated probabilities and signed measures in the same way as Kolmogorov axioms
determine a connection between conventional probabilities and measures (Billingsley
1995).

Theorem 2.3. The system of Axioms SIP1–SIP8 is consistent.
Indeed, we can take X = {w, −w}, X+ = {w}, X− = {−w}, F = {∅, {w, −w}, {w},

{−w}} and assign P(∅) = 0, P({w, −w} = 0, P({w}) = 1, and P({−w}) = −1. Then it
is easy to check that P satisfies all Axioms SIP1–SIP7.

Definition 2.2

(a) The triad (X, F, P) is called a symmetric inflated probability space.
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(b) If A 2 F, then the number P(A) is called the symmetric inflated probability or
simply siprobability of the event A.

Let us obtain some properties of symmetric inflated probability.

Proposition 2.1. 0 	 P(A) 	 P(X+) for all A 2 F+.

Proof. X+ = A [ B for the event B = X+ \ A. As A 2 F+ and F+ is a set algebra, we
have B 2 F+. Thus, the probability P(B) is defined and by Axioms SIP7, P(X+) = P
(A) + P(B). Consequently, P(A) = P(X+) − P(B). As by Axioms SIP6, P(B) 
 0, we
have P(A) 	 P(X+) and by Axioms SIP6, P(A) 
 0.

Proposition is proved.

Corollary 2.5. 0 	 P(A) 	 m for some natural number m and all A 2 F+.

Lemma 2.12. P(∅) = 0.
Indeed, by Axiom SIP7, we have P(A [ ∅) = P(A) + P(∅). Thus, P(∅) = P(A [

∅) − P(A) = P(A) − P(A) = 0.
Lemma 2.12 has the following interpretation. In each trial (experiment), something

happens. Therefore, the extended probability that nothing happens is equal to zero.
Lemma 2.1 and Axioms SIP4 and SIP8 imply the following result.

Proposition 2.2. P(X ⊕ Y) = P(X [ Y) for any two random events X and Y from F.
Axioms imply symmetry of the probability P.

Proposition 2.3 (Symmetry). P(−A) = − P(A) for any random event A from F.

Proof. By Lemma 2.6, A [ −A = Ø. By Axiom SIP8, P(A [ −A) = P(Ø). By Axiom
SIP7, P(A [ −A) = P(A) + P(−A) as A \ −A = Ø. By Lemma 2.12, P(∅) = 0. Thus,
P(A) + P(−A) = 0 and P(−A) = −P(A) for any random event A from F.

Proposition is proved.

Note that this mathematical result supports and is supported by intuition of
physicists with respect to negative probability. For instance, Dirac (1942) compared
negative probability to (the probability of) a negative sum of money, i.e., to a debt.
Indeed, debts annihilate (to some extent) those amounts of money that people have. In a
similar way, Belinskii (1994) writes, “a negative probability reduces the probability for
events corresponding to it and increases the probability for opposite events.”

Corollary 3.5 (Non-positivity). P(A) 	 0, for all A 2 F−.

Proposition 2.4. 0 
 P(C) 
 P(X−) for all C 2 F−.

Proof. By Proposition 2.3, P(C) = −P(A) for some random event A 2 F+ and P
(X–) = −P(X+). By Proposition 2.1, 0 	 P(A) 	 P(X+). Thus, 0 
 P(C) 
 P(X−).

Proposition is proved.
The extended probability of a random event is composed from two components as

the following theorem shows.

Proposition 2.5. P(A) = P(A+) − P(−A−) = P(A+) + P(A−) for any random event A 2 F.
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Proof. As A = A+ [ A−, by Axiom SIP7, P(A) = P(A+) + P(−A−) because by
Lemma 2.6, A + \ A– = Ø for any subset A of X. By Proposition 2.3, P(A−) = −P
(−A−). Consequently, P(A) = P(A+) − P(−A−).

Propositions 2.1, 2.4 and 2.5 imply the following result.

Theorem 2.4. P(X−) 	 P(A) 	 P(X+) for all A 2 F.
Indeed, by Propositions 2.5, P(A) = P(A+) − P(−A−) and P(−A−) 
 0. Thus, P

(A) 	 P(A+) 	 P(X+).
At the same time, P(X−) 	 P(A−) 	 P(A).

Proposition 2.6. P(X) = 0.
Indeed, P(X) = P(X–) + P(X+) and P(X–) = −P(X+).
Proposition 2.6 has the following interpretation. The set X cannot exist (be stable)

due to annihilation. So, its extended probability, or more adequately, the extended
probability of its existence, is equal to zero.

Proposition 2.7. If A = {w1, w2, w3, …, wk} belongs to F and all w1, w2, w3, …, wk

belongs to F, then P(A) = P(w1) + P(w2) + P(w3) + ��� + P(wk).
Proposition 2.7 directly follows from Axiom SIP7 because A is a set of elementary

random events.

Proposition 2.8. Any probability function P is monotone on F+, i.e., if A � B and A,
B 2 F+, then P(A) 	 P(B), and is antimonotone on F−, i.e., if H � K and H, K 2 F−,
then P(H) 
 P(K).

Proof. Let us consider two random events A and B from F+, such that A � B. In this
case, B = A [ C for some random event C from F+ where A \ C = Ø. By Axiom
SIP7, P(B) = P(A) + P(C) and by Proposition 2.1, both P(A) and P(C) are
non-negative numbers. Thus, P(A) 	 P(B).

Let us consider two random events H and K from F−, such that H � K. In this case,
K = H [ G for some random event G from F− where H \ G = Ø. By Axiom SIP7, P
(K) = P(H) + P(G) and by Proposition 2.4, both P(H) and P(G) are not positive
numbers. Thus, P(K) 	 P(H).

Proposition is proved.

3 Frequency Interpretation of Symmetric Inflated
Probability

We have constructed an axiomatic system for a function called symmetric inflated
probability. Some properties of this function are the same as properties of the conven-
tional probability, for example, additivity. However, there are important properties of
symmetric inflated probability that are essentially different from properties of the con-
ventional probability. For instance, symmetric inflated probability can take negative
values and the probability of the maximal event represented by the space X is equal to
zero. The frequency interpretation for a probability function with these properties is given
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in (Burgin 2010). This interpretation provides real-life semantics for the axiomatic sys-
tem constructed in this paper. One more interpretation of probability taking both positive
and negative values is considered in (Abramsky and Brandenburger 2014).

However, not all unusual properties of symmetric inflated probability were repre-
sented by those interpretations. For instance, it was not explained how probability can
be larger than 1 or how it is possible that the probability of the maximal positive event
represented by the space X+ can be less than 1. Therefore, here we give explanation of
these properties using the most popular in physics frequency interpretation. Note that
probabilities of positive events encompass the conventional probability.

To understand probability larger than 1, we have to assume that in contrast to the
conventional schema of probability described, for example, in (Kolmogorov 1933),
outcomes of experiments are not necessary events and one outcome is exactly one
event from the set 2X, but an outcome is a multiset (Knuth 1997) of events in a general
case. It means, for example, that one outcome can contain two different events and
three events identical to the first of those two events. Thus, the totality of events in this
outcome is equal to four. To understand how it can be in real life, let us consider the
following examples.

Example 3.1. In a trial, three coins are tossed. The conventional question is: What is
the probability of getting, at least, one head in one toss? To calculate this probability,
we assume that all coins are without defects and all tosses are fair and independent.
Thus, the probability of having the head on one tossed coin is p1(h) = 0.5. The same is
true for tails. Consequently, the probability of having no heads or what is the same,
three tails in one toss is p(3t) = 0.5 � 0.5� 0.5 = 0.125.

At the same time, we may ask the question: What is the probability of getting heads
in one toss? To answer this question, let us suppose that probability reflects not only the
limit average number of getting heads but also the limit average number of obtained
heads in one toss. In this case, the probability of having heads in tossing three coins is
p3(h) = 0.5 + 0.5 + 0.5 = 1.5.

Note that with the growth of the number of the tossed coins, the probability of
having heads also grows being larger than 1 when there are more than two coins.

Example 3.2. In an experiment, 10 dice are rolled. Let us ask the question: What is the
probability of showing three spots in one experiment? To calculate this probability, we
assume that all dice are without defects and all trials are fair and independent. In this
case, the probability of having three spots in one rolling is p1 = 1/6 for one die and
p10 = 10/6 for ten dice.

Now let us describe the formal definition of the frequency interpretation.
Taking a event A = {wi1, wi2, wi3,…, wir} and a sequence of N trials, each of which

gives some outcome, we denote by n the sum of multiplicities of positive events from
A that occur during this sequence of trials and by m the sum of multiplicities of
negative events from A that occur during this sequence of trials.

Then we have the frequency
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rN Að Þ ¼ n=N � m=N

In contrast to the conventional approach, it is possible that rN(A) > 1 or rN(A) < −1.
Let us consider the set PA of all events A such that limits lim N!∞ n/N and lim N!∞

m/N exist. We call these events quasi-random. Random events satisfy additional
conditions considered by different authors. Then we define the symmetric inflated
frequency probability of the event A equal to

p Að Þ ¼ limN!1rN Að Þ

In other words, when the number N of trials goes to infinity (N ! ∞) the number
rN(A) approaches the symmetric inflated frequency probability of the event A. The
regularity of rN(A) converging to a number characterizes the meaning of the probability
of the event A.

Now let us treat the situations when the probability of the maximal positive event
represented by the space X+ is less than 1.

In the classical probability theory, it is assumed that the space X of elementary
events provides a representation of all possible outcomes of the considered system of
trials (Kolmogorov 1933). As a result, the event represented by X always happens in
each trial. In contrast to this, there are many situations when the set of all possible
outcomes is unknown. For instance, a biologist goes to jungles. Is it possible to know
in advance what species she will find in the jungles? One more example is the situation
when somebody uses the Internet. Is it possible to know in advance what viruses she
will encounter there?

This example shows that there are situations when the outcome of a trial does not
always consist of elementary events from X. In such a situation, taking the frequency
m/n where m is the number of trials when the event (represented by) X happened in
n trials, we see that it is possible that m/n < 1 and the sequence of these frequencies m/
n will converge to a number p less than 1 when m tends to infinity. In the frequency
interpretation, p is the probability of the event represented by X and it is less than 1.

4 Conclusion

The developed theory of symmetric inflated probabilities shows that in the context of
quantum interaction, negative probabilities reflect existence of antiparticles, as well as
the possibility to encounter antiparticles in experiments represent interaction of parti-
cles and antiparticles when an antiparticle annihilates interacting with a corresponding
particle. This approach allows consistent frequency interpretation of negative and
inflated, that is, larger than 1, probabilities.

In addition, the developed theory employs the principle of symmetry, which is
basic in physics in general and in quantum physics, in particular.

This shows that symmetric inflated probability essentially employs ideas and
structures from theoretical physics in general and in quantum physics, in particular.

It is also possible to suggest open problems for further research.
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In (Burgin 2010), the frequency interpretation, which is the most important and
popular in physics, is developed for symmetric probabilities in general and negative
probabilities, in particular.

Problem 1. Build other types of interpretations, e.g., the propensity interpretation for
symmetric probabilities and negative probabilities.

In this paper, the frequency interpretation, which is the most important and popular
in physics, is developed for symmetric inflated probabilities in general and probabilities
larger than 1, in particular.

Problem 2. Build other types of interpretations, e.g., the propensity interpretation for
symmetric probabilities and probabilities larger than 1.

There are two basic types of axiomatics for probabilities – quantitative and qual-
itative. In this paper, a quantitative axiomatics is developed for symmetric inflated
probabilities in general and negative probabilities, in particular.

Problem 3. Construct qualitative axiomatics for symmetric probabilities and negative
probabilities.

To conclude, it is necessary to remark that negative probabilities, introduced in
quantum physics, have become useful tools in social and behavioral sciences, machine
learning, quantum computation, psychology, economics and finance, in particular, the
mathematical theory of symmetric inflated probabilities presented in this paper also has
other interpretations, which allow their applications to problems in economics and
finance (Burgin and Meissner 2012; 2012a).
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Abstract. To our knowledge, all applications of the quantum frame-
work in social sciences are used to model measurements done on a dis-
crete nominal scale. However, especially in cognition, experiments often
produce data on an ordinal scale, which implies some internal struc-
ture between the possible outcomes. Since there are no ordinal scales in
physics, orthodox projection-valued measurement (PVM) lacks the tools
and methods to deal with these ordinal scales. Here, we sketch out an
attempt to incorporate the ordinal structure of outcomes into the sub-
spaces representing these outcomes. This will also allow us to reduce the
dimensionality of the resulting Hilbert spaces, as these often become too
high in more complex quantum-like models. To do so, we loosen restric-
tions placed upon the PVM (and even POVM) framework. We discuss
the two major consequences of this generalization: scaling and the loss
of repeatability. We also present two applications of this approach, one
in game theory and one concerning Likert scales.

Keywords: Quantum-like measurement · Ordinal scales · Likert scales

1 Introduction

With the emerging success of applying the quantum probabilistic toolbox in social
sciences, there is also an increasing focus on its limitations. In physics, the con-
struction of the needed model is relatively straightforward. However, in quantum
cognition, the quite rigid recipe sometimes shows its limits both mathematically
and interpretationally [9]. So, it shouldn’t come as a surprise that more recent
work tries to expand the reach of these tools by looking at possibilities beyond
the standard projective measurement (PVM) principles. The best known gen-
eralization beyond PVM is the use of Positive Operator Valued Measurement
(POVMs) [2], but alternative, sometimes even more general, approaches also arise
(e.g. [1,11]). These ventures are mostly theoretical in nature, with applications
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using experimental data being rather sparse. None of these approaches, however,
deals with the problem of representing outcomes with an internal structure.

In this paper we present an idea which also goes beyond orthodox quantum-
like techniques. This new technique was originally formulated for a specific set-
ting in [10] and further developed and tested in [7]. In these two papers, a model
is constructed which deals with the relationship of a participant’s beliefs and
preferences in a game theoretic setting, taken from [3]. During this process,
problems concerning a too high dimension of a Hilbert space arose, which where
solved by drawing inspiration from a rotational solution presented in [15] and
(ab)using the ordered structure of the possible outcomes. To do so, we opted to
loosen certain restrictions which lead to alternative types of projectors. While
the solution to these problems served an ad hoc purpose, the question whether
this new technique could be applied in different settings presented itself.

Here we argue that this generalization of P(O)VM can be used to model any
situation where different outcomes of a measurement have an internal ordinal
structure. After defining this generalization, we discuss two consequences of using
this new structure and present two possible applications of this approach: the
game theoretic one mentioned before and Likert scales in general.

2 Revisiting the Clinton/Gore Example

We take a new look at the quantum-like model concerning public opinion on Bill
Clinton and Al Gore. This is one of the go-to introductory examples in quantum
cognition, see for example [4]. In a Gallup poll, conducted September 6-7, 1997,
participants were asked 2 separate questions: if they think Clinton is trustworthy
and if they think Gore is trustworthy. When the Clinton question is posed first,
53% of the participants consider him to be trustworthy and 73% consider Gore to
be trustworthy. However, when the question order is reversed, 67% think Gore
is trustworthy and 59% think Clinton is trustworthy. This change in attitude
indicates an order effect, which suggests a quantum-like approach by considering
the Clinton and Gore questions to be incompatible. In the resulting quantum-
like model each question is represented by an orthogonal 2 dimensional basis,
with each vector representing the relevant ‘yes’ or ‘no’ answer and by defining
a 2-dimensional Hilbert space containing both bases. The resulting model has a
good statistical fit, with only two parameters (one coordinate of the state vector,
as the second coordinate is fixed due to the normalization restriction, and one
angle between the two bases) to be estimated.

We now identify two properties of this experimental paradigm, which become
problematic when we leave this relative simple example for more complex ones.
First, the number of possible outcomes is low. Both questions only allow 2 pos-
sible replies, while trustworthiness of presidential candidates could be consid-
ered far more complex. This gives the resulting Hilbert space a manageable two
dimensions. Note that as all measurements are considered incompatible, no ten-
soring is required, which would increase dimensionality exponentially. Second,
there is no structure in the outcomes. The yes and no outcomes are on a discrete
nominal scale, with no implicit relationship between them.
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Let’s make the situation a bit more complex. First, suppose we want to
add some more nuance to the questions and allow for more replies: very trust-
worthy/quite trustworthy/somewhat trustworthy/neutral/somewhat untrust-
worthy/quite untrustworthy/very untrustworthy. These outcomes clearly have
an internal structure, as they are ordered. This extension makes the resulting
Hilbert space 7-dimensional. Second, suppose that, for whatever research rea-
sons, a third similar measurement is performed, which also allows for a similar
set of 7 outcomes, that does not produce order effects. Even though the situation
is not extreme from an experimental point of view, the Hilbert space needed to
model this situation would be 49-dimensional. This would increase the amount
of parameters needed to fit the state vectors and subspaces dramatically, result-
ing in an inoperable model. Next to this unwieldy dimensionality, this approach
lacks the tools to incorporate the ordinal structure of the outcomes. Since, to our
knowledge, no ordinal scales1 are present in quantum mechanics, where would
these tools come from? However, in contrast, ordinal scales are widespread in
psychology, with their own distinct theory, framework and statistics.

In what follows, we propose a first attempt at modeling ordinal outcomes,
within the quantum-like approach. This attempt also reduces the problematic
dimensionality that arises when measurements with more than two outcomes are
performed and tensoring is needed, when constructing the relevant bases.

3 Defining the New Ordinal Projectors

Paraphrasing Kirsty Kitto in her QI15 talk, see [2], a quantum(-like) measure-
ment M , with its set of possible outcomes {M i}, is represented by a set of
subspaces {Mi}, where Mi represents outcome M i. These subspaces Mi each
define a projector Pi, which projects any vector |S〉 on the relevant subspace
Mi. The state of a system (e.g. a participant in a psychological experiment) is
represented by a normalized state vector |ψ〉. Now, the mathematical rules are
quite straightforward:

(i) The probability of obtaining outcome M i is 〈ψ|Pi|ψ〉 or, intuitively, the
closer the state vector is to the relevant subspace, the higher the probability
of obtaining that outcome.

(ii) After obtaining outcome M i, the state after measurement becomes
Pi|ψ〉√
〈ψ|Pi|ψ〉 or, intuitively, when obtaining an outcome, the state vector

becomes a normalized vector in the relevant subspace.

PVM Structure. As is widely known, the orthodox quantum measurement
paradigm (Projection-valued measurement or PVM) demands that all subspaces
associated with one measurement are orthogonal and, perhaps trivially, that
these subspaces span the entire Hilbert space. This ensures that probabilities
sum to one and that when a measurement is performed twice, without any

1 Ordinal scales are discrete scales with a well defined order on the outcomes.
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manipulation in between both measurements, the same outcome is obtained
twice. We call this last property repeatability.

POVM Structure. Perhaps less widely known, when we weaken the demand
that all subspaces associated with one measurement are orthogonal but still
ensure that all probabilities sum to one by demanding that all relevant projector
matrices sum to the identity matrix:

∑

i

Pi = I, (1)

we obtain a more general class of measurements which we call Positive Operator-
Valued Measurement (POVMs). Note that POVMs do not adhere to repeata-
bility. This first generalization gives us freedom to incorporate structure in the
outcomes, while reducing the dimensionality. However, this solution is still more
restrictive then one might think at first, as restriction 1 is still quite strong. More
concrete, when a set of outcome vectors is defined, typically an extra outcome
vector has to be introduced to ensure all projectors sum to the identity matrix.
Take, as an example, a simple two dimensional case. When two non-orthogonal
vectors |M1〉 = (1, 0) and |M2〉 = (cos θ, sin θ), with projectors

P1 =
(

1 0
0 0

)
and P2 =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
, (2)

are needed to model an experimental situation, their projectors sum to:

P1 + P2 =
(

1 + cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)
. (3)

Having the diagonal elements equal to one can easily be achieved by appropriate
scaling. However, to have the off-diagonal elements equal to zero, a third outcome
vector |M3〉 = (± cos θ,∓ sin θ) or |M3〉 = (± sin θ,∓ cos θ) must be introduced,
even when there is no third possible experimental outcome!

Ordinal Scales. To solve this, we propose to omit the demand that all projec-
tors sum to the identity matrix, effectively losing almost all structure, but use
this freedom to add new structure which reflects our ordinal scale, while still
adhering to our basic quantum-like rules (i) and (ii). The necessity of general-
izing measurement beyond POVMs is not a new idea, as remarked in [9] and
discussed in Chap. 8 of [14].

As we only have two mathematical entities at hand (a state vector |ψ〉 and a
set of subspaces {Mi} representing outcomes), this structure has to be incorpo-
rated in these two. On the one hand, as the state vector is supposed to represent
the particular state of the system, the type of scale of the measurement should
not impact this state vector. On the other hand, as the set of subspaces is repre-
senting the outcomes, any structure between these outcomes, should be reflected
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in a structure between the subspaces. This is why we allow subspaces associated
with outcomes of the same measurement to be non-orthogonal to each other.
Now we can define the notion of a subspace Mi being closer to a subspace
Mj then to a subspace Mk, when M̂iMj , the angle2 between Mi and Mj , is
smaller then M̂iMk the angle between Mi and Mk. This gives us a natural way
of representing an ordinal scale with outcomes M i (admitting to a well defined
order ≺) by demanding that:

Definition 1. ifM i ≺ M j ≺ Mk, thenM̂iMj ≤ M̂iMk &M̂jMk ≤ M̂iMk.

Note that the maximum angle between two subspaces is π/2, so orthogonal
subspaces are considered to be the farthest away possible from each other.

The exact value of these angles is an empirical question, which we discuss
later. When all relevant subspaces are orthogonal, each subspace adds its own
dimension to the total dimension of the encompassing Hilbert space, which is the
reason of the exploding dimensionality in the introductory example. As the need
for orthogonality is now omitted, the resulting dimensionality can be greatly
reduced as compared to the traditional PVM approach. This makes the dimen-
sion of the final Hilbert space also an empirical question and/or a deliberate
choice, taking into account, e.g., the number of data points or certain demands
for elegance or simplicity of the resulting model. The concepts for calculating
probabilities (i) and post-measurements states (ii) remain identical to the ones
used with PVMs and POVMs. Note that as all considered Pi are projectors,
they are still Hermitian positive semi-definite, so 〈ψ|Pi|ψ〉 is positive and real.
Because the state vector still gets projected on the subspace representing the
obtained outcome, this approach keeps the quantum-like nature. As a result, all
concepts (order effects, contextuality, entanglement...) used in quantum cogni-
tion are still a part of this approach because the regular PVM structure is now
a specific case of our more general framework.

4 Consequences

Our loosening of restrictions used when defining P(O)VMs has significant con-
sequences. Here, we discuss the major two.

4.1 Sum of Probabilities

As we do not require restriction (1) to hold, it is possible that the sum of the
possibilities across all possible outcomes exceeds 1. While this seems problematic
at first, two solutions naturally present themselves. First, a scaling factor can be

2 The angle M̂iMj between two subspaces Mi and Mj is classically defined as

min(V̂iVj), with Vi ∈ Mi and Vj ∈ Mj .
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introduced. This is the solution used in [7]. Keeping the notations defined as in
the previous section, for all |ψ〉 define CM as:

CM =
∑

j

〈ψ|Pj |ψ〉. (4)

This allows us to scale appropriately. Now, we redefine the probability of obtain-
ing outcome M i as

P ′(M i) =
P (M i)

CM
(5)

=
〈ψ|Pi|ψ〉

∑
j〈ψ|Pj |ψ〉 . (6)

This gives us

∑

i

P ′(M i) =
∑

i〈ψ|Pi|ψ〉
∑

j〈ψ|Pj |ψ〉 (7)

= 1. (8)

While this approach lacks mathematical elegance, it effectively makes the
probabilities sum to one.

A second, more elegant, solution is inspired by classical logistic regression.
In logistic regression, a function f(x1 . . . xn) is derived, where, given a number
of predictors x1 . . . xn, the outcome of a binary variable (A or ¬A) is estimated.
The natural way of predicting a binary outcome would be to estimate the prob-
ability of obtaining A. However, as there is no way to ensure that the image
of the derived function f(x1 . . . xn) is a subset of [0, 1] (the same problem as
with our non-orthogonal subspaces) the odds P (A)

P (¬A) are modeled, instead of the
probability P (A). Since odds only have the restriction that they are positive,
this approach can also be successfully introduced here:

ODDS(M i) =
P (M i)

P (¬M i)
(9)

=
〈ψ|Pi|ψ〉

〈ψ|I − Pi|ψ〉 . (10)

Using odds does not introduce any new factors, making it more elegant math-
ematically. One can easily calculate standard probabilities from these odds since
the scaling factor needed beforehand would disappear throughout the calcula-
tions. However, odds might be more difficult to interpret. To our knowledge,
there are no quantum-like models where these odds are used. It can be easily
shown by calculating the odds with the newly defined P ′(M i) that both solu-
tions are identical from a modeling point of view.
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4.2 Loss of Repeatability

As a consequence of allowing non-orthogonal subspaces to represent outcomes of
the same measurement, we lose repeatability: when a measurement is performed
twice, without any manipulation between both measurements, two different out-
comes can be obtained. While repeatability seems a necessity at first, multiple
instances where it is not required (or is even considered too strict) can be found
in, among other fields, cognition. The best known approach lacking repeatability
is the use of POVMs, which we defined in Sect. 3. For an in-depth discussion of
the use of POVMs in cognition and the relationship to repeatability, we refer
to [2,9]. More on the application of POVMs in physics can be found in [13].
Summarizing, models not adhering to repeatability are not only feasible, but
also sometimes required within quantum cognition.

What could this loss of repeatability mean within our Clinton/Gore example
and ordinal scales in general? When we go back to our 7 outcome ordinal scale
‘very trustworthy/quite trustworthy/somewhat trustworthy/neutral/somewhat
untrustworthy/quite untrustworthy/very untrustworthy’, we claim that some of
these outcomes should not exclude each other. To justify this, we introduce the
notion of unsharp measurement. This idea is already successfully implemented
in [7]. We claim that when participants are forced to pick one of these outcomes,
their reply does not mean a complete dismissal of another option as these opin-
ions are not completely distinguishable (see also the discussion of ‘distinguish-
ing quantum states in 2.2.4 of [14]). When, e.g., a participant replies that he
thinks Gore is somewhat trustworthy, the participant does not necessarily dis-
agree with the notion that Gore is quite trustworthy. The more probable it is
that two options do not preclude each other, the closer their respective vector
spaces should be. While the example might be too simple and underestimating
the cognitive abilities of the participants, there is always a tipping point where
outcomes do become psychologically indistinguishable. To construct an extreme
example, suppose that the trustworthiness question allows for an ordinal scale
ranging from 1 (untrustworthy) to 1000 (trustworthy). There is no participant
that could successfully fathom the difference between, e.g., replying 503 and
replying 504. The internal structure we incorporated, ensures that if repeata-
bility is violated in such cases, the possible outcomes of the repeated questions
are neatly scattered around the original answer, as the closer two subspaces are,
the more likely it is that the outcomes they represent are obtained after each
other. The upper limit case of this is the original outcome, which has the high-
est probability of being obtained again. The lower limit case of this are outcome
vectors orthogonal to the vector representing the original outcome. They can not
be obtained in the repeated measurement. As such, the class of measurements
where repeatability does occur, is a subclass of the one we propose, by having
all relevant outcome vectors orthogonal.

Note that this idea of unsharp measurement can be empirically tested. To
do so, simply confront the participant with a different option than the given
reply and ask if the participant could agree with it. These ideas allow the
model to be constructed in an empirical way: test or argue which outcomes are
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mutually exclusive and represent these by orthogonal subspaces (this also deter-
mines the dimension of the resulting Hilbert space). Observe which outcomes
are not excluded and define their subspaces accordingly. We illustrate this type
of reasoning in the second example of the next section. Moreover, this approach
allows for statistical testing of certain cognitive hypotheses concerning cognitive
abilities and/or ordinal scaling by checking if allowing these ‘close’ subspaces
results in (more) satisfying statistical fits of experimental data.

5 Applications

5.1 QP and B Model

A first example where these new types of projectors on non-orthogonal subspaces
have already been constructed and successfully applied was presented in [10]
and later expanded upon in [7] (including a successful statistical test against
experimental data). The incentive of constructing them in this paradigm, lay in
the emergence of a problematic dimensionality when following the traditional
quantum-like course. A thorough overview of the game theoretic experiment
and the resulting model falls outside the scope of this paper. The relevant part
in this discussion concerns the part of the experiment where participants are
asked to estimate how much of their 9 possible opponents in a game choose
to cooperate (as opposed to defect) in a certain step of the experiment. As
this measurement allows 10 different outcomes (0 . . . 9 opponents believed to
be cooperating), it naturally leads to a 10 dimensional Hilbert space. Due to
the relationship between other measurements performed in this experiment, two
of these Hilbert spaces need to be tensored, resulting in a (problematic) 100-
dimensional Hilbert space. Internal structure is clearly present in the replies, as,
e.g., replying ‘6’ is closer to replying ‘7’ then it is to replying ‘8’. Combined with
an argument that the ‘0’ and ‘9’ replies should exclude each other, which forces
the subspaces representing ‘0’ and ‘9’ to be orthogonal, the resulting subspaces
are defined in a 2-dimensional Hilbert space, with reply ‘i’ being represented
by vector |Bi〉, as can be seen in Fig. 1. Defining the participant’s beliefs as
projections of the state vector in the same plane doesn’t differ much from rotating
the state vector by using a Hamiltonian, as is done in a similar prisoner dilemma
setting in [5]. However, we opted to still derive probabilities from our projectors,
as opposed to just using the rotation for representing a time evolution, as in [5].
This approach reduced the problematic dimensionality, with the final dimension
equal to 4, while still retaining the advantages quantum-like models provide
(such as modeling order effects) and yielded a very good statistical fit.

It is worth mentioning briefly that the above situation can also be modeled
using a POVM structure, with an extra outcome, as mentioned when discussing
POVMs in Sect. 3. This approach is taken from [17], where it is described in
detail. To do so we keep the definition of the 10 outcome vectors |Bi〉 as before-
hand and define an ad hoc new outcome vector |Bf 〉, representing that ‘the mea-
surement has failed’, similar to the vector |M3〉 in Sect. 3. This |Bf 〉 ensures that
all projector matrices sum to the identity matrix. The probabilities in this case
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|B0〉

|B9〉

|S〉

|B7〉

Fig. 1. The outcome ‘i’ is represented by |Bi〉. The participant is represented by state
vector |S〉. Here, the participant replies that he thinks 7 opponents have cooperated,
projecting/rotating the state vector onto |B7〉.

are redefined as the probabilities of obtaining a certain outcome on the condition
that the measurement didn’t fail. When ‘the measurement failed’ outcome would
be (theoretically) obtained, the measurement is supposed to redone immediately.
The resulting probabilities are identical to the probabilities obtained by using
our new non-POVM ordinal structure. Note that in this experimental setting the
measurement never fails, therefor the POVM structure does not represent the
experiment in a clean way. This poses a question to the modeler: to stay within
the bounds of POVM structures, at the cost of not naturally representing the
experiment or to stray beyond POVM structure, but achieving a straightforward
representation of the experiment.

5.2 Likert Scales

A second natural candidate for this treatment is the modeling of Likert scales
(for an overview on Likert scales, see [16]). Likert scales are used in polling
of opinions and consist of multiple Likert items. A Likert item consists of a
statement, which the participant evaluates on a given scale. This scale should be
symmetric (a neutral option and equal number of positive and negative options)
and balanced (the perceived distance between following options is equal). The
format of a typical five level Likert item looks like

strongly disagree (1) - disagree (2) - neutral (3) - agree (4) - strongly agree (5),

which is clearly on an ordinal scale. These Likert scales are widely used in
Psychology in general and in opinion polling surveys in particular. The use
of quantum-like techniques when dealing with these kind of surveys is already
established, as, e.g., they are prone to order effects [12]. Some work has already
been done to use quantum-like techniques when dealing with Likert scales [6].
However, this approach suffers from the two problems flagged before. First, the
dimension of the used Hilbert spaces gets high very quickly and second, the
implicit ordinal structure of the outcomes is represented in the state vector,
which should only represent the participant, and not in the outcome vectors.
Our view opens up new possibilities to tackle these Likert scales. We construct
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one as an example, but keep in mind that this particular form has not been tested
against any experimental data. We only wish to take some first steps to show-
case the flexibility of our approach. When looking at the (1)–(5) scale presented
above, we argue that ‘strongly disagree (1)’, ‘neutral (3)’ and ‘strongly agree (5)’
should exclude each other, as we consider them in our example as non-nuanced,
very clear opinions. As such, they are represented by orthogonal vectors, called
|1〉, |3〉 and |5〉 respectively, giving us a 3-dimensional Hilbert space H. We also
argue that picking options (2) or (4), represented by the vectors |2〉 and |4〉, does
not necessarily means that the participant disagrees with (1) and (3) or (3) and
(5) respectively. Keeping in mind the balanced property of Likert scales, places
|2〉 symmetrically between |1〉 and |3〉 and |4〉 symmetrically between |3〉 and
|5〉. Note that we can easily incorporate assumptions (e.g. balanced) from Likert
scale theory into our model. This naturally leads to the structure depicted in
Fig. 2.

|3〉

|5〉

|ψ〉

|4〉|2〉

|1〉

Fig. 2. The outcome ‘(i)’ is represented by |i〉. The participant is represented by state
vector |ψ〉.

Our implied structure in the outcomes does not impose restrictions on the
agents. We can still model a person who doubts between (1) and (5) but not (3),
by having a state vector equal to, for example, |ψ〉 = (1/

√
2, 0, 1/

√
2).

Our arguments about the (non)-excluding outcomes and resulting dimen-
sions here are very superficial. One could, e.g., argue that option (3) should
be symmetrical between (1) and (5), leading to a 2-dimensional Hilbert space.
A meticulous investigation of Likert scales in this paradigm falls outside the
scope of this paper. We only wish to show that it is possible to represent inher-
ent ordinal structure in the outcomes, possibly combined with other theoretical
assumptions or restrictions.

6 Concluding Remarks

In this paper we propose some tentative first steps towards modeling ordinal
scales using quantum-like techniques. After losing some of the restrictions used
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in the construction of projective measurements (and even lose restrictions placed
upon POVMs), we use this lack of structure to impose new structure, now
originating from the internal structure that ordinal outcomes exhibit. These
techniques also allow for a reduction of the resulting dimensionality, as this
can become problematic quickly in slightly more complex situations than the
common examples seen in quantum cognition. We discuss the two biggest conse-
quences of this approach, the first one being the total sum across all probabilities
exceeding one and the second one being the loss of repeatability of outcomes.
Exceeding one when adding the probabilities makes scaling necessary or requires
the modeling of odds of outcomes instead of probabilities. We argue that the loss
of repeatability is not as problematic as it seems at first and provide a possible
interpretation of this phenomenon. Finally, we mention two possible applica-
tions. First, we give a short overview of an implementation already done in a
game theoretic setting. Second, we propose the idea of applying our quantum-like
ordinal system to model Likert scales.

This contribution is only a first step into modeling ordinal scales in a
quantum-like way. The theoretical side of this story needs to be deepened, with
a more thorough discussion of the concepts sketched out in Sect. 3, next to inves-
tigating structures similar in role to Naimark’s Theorem for POVMs [8]. Also,
more data-driven applications than the one presented here need to be formulated
and statistically tested to investigate the true merit of this new approach.
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Abstract. We propose a matrix model for two- and many-valued logic
using families of observables in Hilbert space, the eigenvalues give the
truth values of logical propositions where the atomic input proposition
cases are represented by the respective eigenvectors. For binary logic
using the truth values {0, 1} logical observables are pairwise commut-
ing projectors. For the truth values {+1, −1} the operator system is
formally equivalent to that of a composite spin 1/2 system, the logical
observables being isometries belonging to the Pauli group. Also in this
approach fuzzy logic arises naturally when considering non-eigenvectors.
The fuzzy membership function is obtained by the quantum mean value
of the logical projector observable and turns out to be a probability mea-
sure in agreement with recent quantum cognition models. The analogy of
many-valued logic with quantum angular momentum is then established.
Logical observables for three-value logic are formulated as functions of
the Lz observable of the orbital angular momentum � = 1. The repre-
sentative 3-valued 2-argument logical observables for the Min and Max
connectives are explicitly obtained.

Keywords: Finite elements · Quantum gates · Boolean functions
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1 Introduction

Quantum logic developed by Birkhoff and von Neumann in their seminal article
in 1936 [1] considers logical propositions as subspaces of a quantum state Hilbert
space. As will be shown hereafter and also underlined in [2], these subspaces can
be viewed as eigenspaces of projectors, the projectors corresponding to logical
propositions. A true proposition is then associated to the eigenvalue +1. The
representation of logical propositions in a vector space could be of interest in
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modern semantic theories such as distributional semantics, for example using
the “Hyperspace Analogue to Language” algorithm as was done in [3], or in
connectionist models of cognition [4].

In this work we show that a proposition in a logical system can be represented
by an observable in Hilbert space. When interpreted in the context of quantum
mechanics this model uses finite dimensional projectors and angular momentum
observables. Conversely, a quantum system when considered in its eigenspace is
formally equivalent to a logical propositional system. The view here, which comes
under the name of “Eigenlogic” (for the original motivation and more detailed
discussion see [5]), considers that the eigenvalues of the logical observables are
the truth values of a proposition and the associated eigenvectors correspond to
the different input atomic propositional cases. When considering vectors outside
of the eigensystem this view leads to a “fuzzy” measure of the degree of truth
of a logical proposition.

In our model for binary valued logic, using numbers {0, 1}, the logical observ-
ables are pairwise commuting projectors. The model is extended to the other
binary system using numbers {+1,−1}, differences reside in the symmetry of the
corresponding logical observables. In the latter case the observables are equiva-
lent to quantum spin 1/2 observables, no more idempotent projectors but isomet-
ric self-inverse reflection observables squaring to 1. These are equivalent to the
recently proposed “quantum Boolean functions” [6] developed in the context of
the research topic “Fourier analysis of Boolean functions” having many applica-
tions in theoretical computer science, information theory and also in social deci-
sion and voting theory. We then propose an algebraic generalization, based on
the finite-elements method, that can be applied to whatever m-value n-argument
logical system.

The paper is organized as follows: we start with Boolean two-valued {0, 1}
logic and we demonstrate important expressions for the projector observables
in the 2-argument case indicating also the general method for n-arguments.
The case for binary values {+1,−1} is then presented. Then we consider the
case for fuzzy logical propositions and give the method for calculating fuzzy
membership functions by using the Born rule and show that these functions can
be identified with probabilities. The last section is devoted to the many-valued
systems (m > 2) the case of 3-valued 2-argument logic is discussed with some
examples of applications.

2 Two-Valued Eigenlogic

2.1 Projector Two-Valued Logic

We will consider a two-dimensional rank-1 projector Π acting on a single set.
What are the expected outcomes when applying this projector? If, for example,
vector |a > corresponds to an element of the set, the following matrix equation
will be verified: Π · |a >= 1 · |a >. The value 1 being the eigenvalue of the pro-
jector associated with the eigenvector |a >. Interpretable results [5] considered
in a two-value {0, 1} logical system will correspond to the possible eigenvalues
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0 and 1, where 0 is the result for elements not belonging to the set. So in this
way a question concerning the proposition of belonging or not to a particular
set, will have as an answer one of the two eigenvalues. The “true” value 1 will
correspond to the eigenvector |a >, now named |1 >, and the “false” value 0 will
correspond to the complementary eigenvector |a >, named |0 >. When these
properties are expressed in matrix form: vectors |1 > and |0 > become 2 dimen-
sional orthonormal column vectors and the projection operators 2 × 2 square
matrices. This gives:

|1 > =
(

0
1

)
, |0 > =

(
1
0

)
.

The choice of the position of the value 1 in the column vectors is arbitrary, here
it follows the quantum information convention for a “qubit-1” [7]. As usual in
Quantum Mechanics we can find the set of projectors that completely repre-
sent the quantum system, in particular by lifting the eventual degeneracy of the
eigenvalues. Here eigenvalues are always equal to 0 or 1 and the question about
the multiplicity of eigenvalues is natural. In this contribution we focus on differ-
ent projective structures that completely define the logical system. In the very
simple case where 0 and 1 are both not degenerate eigenvalues, the projectors
relative to the eigenvector basis take the form:

Π1 = Π =
(

0 0
0 1

)
, Π0 = I − Π =

(
1 0
0 0

)
. (1)

We systematically consider all the possible structures of such projectors. When
representing logic with n atomic propositions using projectors various possibili-
ties are intrinsically present in a unique structure with 22

n

different projectors.
Once the eigenbasis is chosen the remaining structure is intrinsic.

For example the two projectors shown in Eq. (1) are complementary and
idempotent. One can give a general expression of a one-argument “logical observ-
able” as an expansion over the commuting projectors Π0 and Π1 spanning the
vector space:

F = f(0)Π0 + f(1)Π1 =
(

f(0) 0
0 f(1)

)
(2)

the coefficients f(0) and f(1) in the expansion are the truth values of the
corresponding {0, 1} Boolean logical connective. Eq. (2) represents the spectral
decomposition of the operator and because the eigenvalues are real the logical
operator is Hermitian and can thus be considered as a quantum observable. In
this way, in Eigenlogic, the truth values of the logical proposition are the eigen-
values of the logical observable. One can then construct the 4 logical observables
corresponding to the 4 one-argument Boolean connectives: A = Π1 is the “log-
ical projector” and A = I − Π1 = Π0 its complement. The “True” operator
corresponds here to the identity operator I. The “False” observable corresponds
to the null operator. These four observables form a complete family of com-
muting projectors. The extension to more arguments is obtained by using the
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Kronecker product ⊗ in the same way as for the composition of quantum systems
(for technical details on this operation see for example [7]).

In the case of n = 2 arguments we will have an expansion over 4 commuting
orthogonal rank-1 projectors. Some properties of the Kronecker product on pro-
jectors have to be specified: (i) The Kronecker product of two projectors is also
a projector; (ii) If projectors are rank-1 projectors (a single eigenvalue is equal
to 1, all the others are 0) then their Kronecker product is also a rank-1 projec-
tor. Using these properties, the 4 commuting orthogonal rank -1 projectors Π00,
Π01, Π10, and Π11, spanning the 4 dimensional vector space are calculated in
a straightforward way:

{
Π00 = (I − Π) ⊗ (I − Π) , Π01 = (I − Π) ⊗ Π ,
Π10 = Π ⊗ (I − Π) , Π11 = Π ⊗ Π .

So one can write the logical observable for n = 2 arguments:

F = f(0, 0) Π00 + f(0, 1) Π01 + f(1, 0) Π10 + f(1, 1) Π11 . (3)

In an explicit way:

F =

⎛

⎜
⎜
⎝

f(0, 0) 0 0 0
0 f(0, 1) 0 0
0 0 f(1, 0) 0
0 0 0 f(1, 1)

⎞

⎟
⎟
⎠ .

Equation (3) represents a spectral decomposition with the eigenvalues being the
truth values, in this case we will have a family of 16 possible different observables.
All these observables are pairwise commuting projectors and in general their
product (matrix product) is not equal to zero. This last point is essential in the
model, because not only mutually exclusive projectors are representative for a
logical system, the complete family of projectors must be used. For example the
observables for conjunction, AND, and disjunction, OR, which have in common
the truth value, (1, 1), for the input combination (True ≡ 1, True ≡ 1), have
their matrix product different from zero.

This method can be extended to whatever number of arguments n using the
“seed” projector Π, its complement (I − Π) and by applying the Kronecker
product. So given the number of input arguments n and knowing the truth table
of the logical connective one directly obtains the corresponding binary Eigenlogic
observable.

Now let’s develop the case for n = 2 arguments: one can express the connec-
tives corresponding to a “logical projector” according to the composition rule,
thus obtaining two commuting projector observables:

A = Π ⊗ I , B = I ⊗ Π , A · B = Π ⊗ Π (4)

the conjunction, AND, observable becomes simply the product of these two log-
ical projectors A · B. The disjunction, OR, and exclusive disjunction, XOR,
observables are shown on Table 1, where the algebraic expansions for Boolean
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Table 1. The sixteen two-argument two-valued logical connectives and the respective
Eigenlogic observables for eigenvalues {0, 1} and {+1, −1}.

Connective for Truth table {F, T} : {0, 1} projective {+1, −1} isometric

Boolean A, B {0, 1} ; {+1, −1} logical observable logical observable

False F F F F F 0 +I

NOR ; A ∨ B F F F T I − A − B + A · B 1
2
(+I − U − V − U · V )

A � B F F T F B − A · B 1
2
(+I − U + V +U · V )

A F F T T I − A −U

A � B F T F F A − A · B 1
2
(+I + U − V + U · V )

B F T F T I − B −V

XOR; A ⊕ B F T T F A + B − 2A · B U · V = Z ⊗ Z

NAND; A ∧ B F T T T I − A · B 1
2
(−I − U − V + U · V )

AND; A ∧ B T F F F A · B = Π ⊗ Π 1
2
(+I + U + V − U · V )

A ≡ B T F F T I − A − B + 2A · B −U · V

B T F T F B = I ⊗ Π V = I ⊗ Z

A ⇒ B T F T T I − A + A · B 1
2
(−I − U + V − U · V )

A T T F F A = Π ⊗ I U = Z ⊗ I

A ⇐ B T T F T I − B + A · B 1
2
(−I + U − V − U · V )

OR; A ∨ B T T T F A + B − A · B 1
2
(−I + U + V + U · V )

True T T T T T I −I

connectives explicitly derived in [5] are used. Negation (complementation) is
obtained by subtracting from the identity operator for projective logical observ-
ables and by multiplying by −1 for isometric logical observables (see hereafter).
Useful transformations are obtained by De Morgan’s theorem (for general the-
orems in logic see for example Knuth [8]), for the negative conjunction, NAND
one has the identity A ∧ B = A ∨ B in the same way one can obtain NOR with
the identity A ∨ B = A ∧ B. Implication observables are also shown on Table 1.

2.2 Isometric Reversible Two-Valued Logical Observables

There is a linear bijection (isomorphism) from the projector logical observables
F towards reversible observables G:

G = I − 2F .

The two families of observables commute and have the same system of eigenvec-
tors. Practically to obtain G from F one just has to substitute the eigenvalue 0
with +1 and 1 with −1. The observables G are “isometries”: unitary reflection
operators. From projector Π in Eq. (4) one obtains the observable Z:

Z = I − 2Π =
(

+1 0
0 −1

)
= σz
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which is actually one of the Pauli matrices σz and corresponds in quantum
mechanics, to the z component of a spin 1/2 observable Sz = (�/2)σz where � is
the reduced Planck’s constant. In the field of quantum information this operator
is also named the “Pauli-Z” gate or “phase-π” gate [7]. Here, U = Z designates
the “logical projector” connective and U = −Z its complement (negation), nota
bene in this case the connective “logical projector” is not a projection operator,
in order to avoid ambiguity it is often named [6] “dictator”.

For n = 2 arguments one can then write directly the expression for a logical
isometric observable by using its spectral decomposition. The logical “dictators”
U and V become:

U = Z ⊗ I , V = I ⊗ Z , U · V = Z ⊗ Z .

The exclusive disjunction XOR observable is here simply given by the product
of the dictators: U · V . Negation is obtained by multiplying by the number −1.
From Table 1 one sees that there are more complicated relations, for example
the conjunction, AND, observable is:

1
2
(I + U + V − U · V ) =

⎛

⎜
⎜
⎝

+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 −1

⎞

⎟
⎟
⎠ = CZ .

Those familiar with the domain of quantum information can easily recognize the
reversible logical gate “control-Z” or simply named CZ [7].

3 From Deterministic Logic to Fuzzy Logic

Fuzzy logic deals with truth values that may be any number between 0 and 1,
here the truth of a proposition may range between completely true and com-
pletely false. It is generally considered that probability theory and fuzzy logic
are related to different forms of uncertainty, the first is concerned with how
probable it is that a variable belongs to a given set and the second one uses the
concept of fuzzy set membership, intended as the degree of membership. This
was the first motivation of fuzzy logic [9]. But this distinction when considering
the quantum probabilistic Born rule is not so strict from a formal point of view.
We will start the discussion by giving the interpretation of a vector state in
Eigenlogic.

In the preceding sections we considered operations on the eigenspace of a
logical observable family. For example for n = 2 arguments a complete family of
16 commuting logical observables represents all possible logical connectives and
becomes “interpretable” [5] when applied to one of the four possible canonical
eigenvectors of the family. These vectors, corresponding to all the possible atomic
input propositional cases, are represented by the vectors |00 >, |01 >, |10 > and
|11 > forming a complete orthonormal basis. When applying a logical observable
on one of these vectors the resulting eigenvalue will correspond to the truth value
for the considered input.
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Now what happens when the state-vector is not one of the eigenvectors of
the logical system? In quantum mechanics, where vectors operate in Hilbert
space, one can always express a state-vector as a decomposition on a complete
orthonormal basis. In particular we can express it over the canonical eigenbasis
of the logical observable family. For two-arguments this vector can be written as:

|Ψ > = C00 |00 > +C01 |01 > +C10 |10 > +C11 |11 > .

We can interpret this in the following way: when only one of the coefficients
is non-zero (in this case its absolute value must take the value 1) then we are
back in the preceding situation of a determinate input atomic propositional case.
But when more than one coefficient is non-zero we are in a “mixed” or “fuzzy”
propositional case. Such a state could also possibly be interpreted as a quantum
superposition of atomic propositional cases.

We can then calculate the “mean value” of a logical observable. In particular
the logical projector observables F will give a “fuzzy measure” of the logical
proposition in the form of the “fuzzy membership function” μ. Let’s show this
on some examples: in the case of one argument one can express an arbitrary
2-dimensional quantum state as: |ϕ >= sin α |0 > +eiβ cos α |1 > where the
“angles” α and β are real numbers. The quantum mean value of the “logical
projector” observable A = Π can then be calculated using the Born rule:

μ(a) = < ϕ|Π|ϕ > = cos α e−iβ < 1|1 >< 1| cos αeiβ |1 > = cos2 α ;

in the same way one can calculate the complement

μ(a) = < ϕ|I − Π|ϕ > = sin2 α = 1 − μ(a) .

This verifies one of the requirements of fuzzy logic for the complement (negation)
of a fuzzy set.

According to standard notations for spin 1/2 quantum states, or qubits, on the
Bloch sphere [7] we use the transformation α = (π−θ)/2 and β = ϕ. A quantum
compound state can be built by taking the tensor product of two elementary
states: |ψ >= |ϕp > ⊗|ϕq >, where |ϕp >= cos θp

2 |0 > +eiϕp sin θp

2 |1 > (for
|ϕq > we have a similar expression). Now sin2 θp

2 = p and sin2 θq

2 = q represent
the probabilities of being in the “True” state |1 > for spins 1/2 oriented along
two different axes θp and θq.

One can calculate the fuzzy membership function of the corresponding “log-
ical projector” for the two-argument case using Eq. (4).

μ(a) =< ψ|Π ⊗ I|ψ >= p(1 − q) + p · q = p , μ(b) =< ψ|I ⊗ Π|ψ >= q .

This shows that the mean values correspond to the respective probabilities.
Now let’s “measure” for example the conjunction and the disjunction, using the
observables in Table 1, this gives:

{
μ(a∧b) = < ψ|Π ⊗ Π|ψ > = p · q = μ(a) · μ(b) ,
μ(a∨b) = p + q − p · q = μ(a) + μ(b) − μ(a) · μ(b) .
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Similar results for conjunction and disjunction have been outlined recently,
also using projector operators, when considering concept combinations [10] for
quantum-like experiments in the domain of quantum cognition.

What happens when the state-vector cannot be put in the form of a tensor
product, that is when it corresponds to an entangled state? The problem is
outside the scope of this paper but an interesting result can be shown: the mean
value of whatever logical observable of the type F on an arbitrary quantum state
|Ψ > will always verify the inequality:

< Ψ |F |Ψ > = Tr (ρΨ · F ) ≤ 1 , with ρΨ ≡ |Ψ >< Ψ | ,
and can thus be interpreted as a probability measure.

4 From Two-Valued to Multi-Valued Logic

Multi-valued logic requires a different algebraic structure than an ordinary
binary-valued one. Many properties of binary logic do not support set of values
that do not have cardinality 2n. Multi-valued logic is often used for the devel-
opment of logical systems that are more expressive than Boolean systems for
reasoning [11]. Particularly three and four valued systems, have been of interest
with applications to digital circuits and computer science.

The total number of possible logical connectives for an m-valued n-argument
system is the combinatorial number mmn

, so in particular for a binary 2-valued
2-argument system, as shown above, the number of connectives will be 22

2
= 16,

the complete list indicated on Table 1. For a binary three-argument system, the
number increases to 22

3
= 256. For a 3-valued 1-argument system the number of

connectives will be 33
1

= 27 and for a 3-valued 2-argument system: 33
2

= 19683.
So it is clear that by increasing the values from two to three the possibilities
of new connectives becomes intractable for a complete description of a logical
system, but some special connectives play important roles and will be illustrated
hereafter. We will proceed by showing the general algebraic method.

4.1 Interpolation with Finite Elements

The finite element method (see for example [12]) allows one to interpolate a
function, id est to make explicit the values f(x) from the given values of specific
numbers, the (so-called) degrees of freedom.

Let’s consider the following simple example: given the values f(+1), f(0) and
f(−1) of a function f at the particular points x = +1, 0, −1, and using the
appropriate Dirac linear forms, we can write: < δ+1, f >= f(+1), < δ0, f >=
f(0) and < δ−1, f >= f(−1), where Σ ≡ {δ+1, δ0, δ−1} is called the set of
degrees of freedom. This linear structure shows that it is natural to consider a
three-dimensional space. The “basis function” ϕi associated to the set of degrees
of freedom Σ and to the polynomial space solves this problem. The three basis
functions using degrees of freedom and second-degree polynomials are:

ϕ+1(x) =
1
2

x (x + 1) , ϕ0(x) = 1 − x2 , ϕ−1(x) =
1
2

x (x − 1) . (5)
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So in general, an arbitrary function f can be written:

f(x) =
∑

i=+1,0,−1

f(i) ϕi(x) ,
∑

i=+1,0,−1

ϕi(x) ≡ 1 (6)

where the completeness of the basis functions is verified by their sum being 1.

4.2 Formalization of Three-Valued Eigenlogic

We use an operator system which is equivalent to the one of orbital angular
momentum � = 1. In general angular momentum is characterized by two quan-
tum numbers: j the angular momentum number and mj the magnetic momen-
tum number. Both these numbers must be integer or half integer. The rules are:
j ≥ 0, and attached to this value we have the condition: −j ≤ mj ≤ j. The
value j = 0 is possible and gives a single value mj = 0 the next is j = s = 1/2
giving two values ms = ±1/2 corresponding to the two-valued spin system. The
value j = 1 gives three possible values mj = {+1, 0,−1} and so on. We consider
for j = � = 1 the z-component orbital angular momentum observable [13]

Lz = �Λ = �

⎛

⎝
+1 0 0
0 0 0
0 0 −1

⎞

⎠ . (7)

In the above matrix the three eigenvalues {+1, 0,−1} will be considered as the
logical values. A convention for these values, extending binary logic, is the fol-
lowing: False : F ≡ +1 , Neutral : N ≡ 0 , True : T ≡ −1 .
We can now express the three-value logical observables as spectral decomposi-
tions over the rank-1 projectors spanning the vector space: Π+1, Π0 and Π−1.
These operators correspond to the pure state density matrices of the three eigen-
states | + 1 >, |0 > and | − 1 > of Lz. The three projectors can be expressed
as a function of the dimensionless observable Λ, using directly the expressions
given above in (5) where the basis functions ϕi become the projectors and the
symbol x the observable Λ given in (7):

Π+1 =
1
2
Λ (Λ + I) Π0 = I − Λ2 Π−1 =

1
2
Λ (Λ − I) (8)

Then every one-argument “local projector” F (Λ) can be obtained using the
relation (6).

4.3 Three-Valued, Two-Argument Examples: Min, Max

When considering a 2-argument 3-valued system we find the expansion by using
the Kronecker product in the same way as for the binary system in Eq. (3):

F =
∑

i, j =+1, 0, −1

fij Πi ⊗ Πj , fij ∈ {+1, 0, −1} . (9)
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these observables are now 9 × 9 matrices. We can define the two argument “dic-
tators”, U and V , simply by the rule of composition, this leads to:

U = Λ ⊗ I V = I ⊗ Λ U · V = Λ ⊗ Λ . (10)

In trivalent logic (see e.g. [11]) popular connectives are Min and Max, defined
in the maps on Table 2.

Table 2. The Min and Max maps for a three-valued two-argument logic.

Min U \\ V F N T
F ≡ +1 +1 +1 +1
N ≡ 0 +1 0 0

T ≡ −1 +1 0 −1

Max U \\ V F N T
F ≡ +1 +1 0 −1
N ≡ 0 0 0 −1

T ≡ −1 − 1 −1 −1

Here the connectives Min and Max are symmetric, they are equivalent for a
complete inversion of signs on inputs and outputs. Using the relations (8), (9)
and (10) in conjunction with reduction rules we obtain the following observables:

⎧
⎪⎨

⎪⎩

Min(U ,V ) =
1
2

(
U + V + U2 + V 2 − U · V − U2 · V 2

)

Max(U ,V ) =
1
2

(
U + V − U2 − V 2 + U · V + U2 · V 2

) (11)

The proof of the relations (11) is a direct consequence of relations (5) and (9).
We have on one hand:
Min (U, V ) = ϕ1(U) ⊗ ϕ1(V ) + ϕ1(U) ⊗ ϕ0(V ) + ϕ1(U) ⊗ ϕ−1(V )

+ϕ0(U) ⊗ ϕ1(V ) + ϕ−1(U) ⊗ ϕ1(V ) − ϕ−1(U) ⊗ ϕ−1(V )
= ϕ1(U) + ϕ1(V ) − ϕ1(U) ⊗ ϕ1(V ) − ϕ−1(U) ⊗ ϕ−1(V ) due to (6)
= 1

2 U (U + I) + 1
2 V (V + I) − 1

4 U (U + I)V (V + I) − 1
4 U (U − I)V (V − I)

= 1
2

(
U2 + U + V 2 + V − U2V 2 − UV

)

and the first relation of (11) is proven. On the other hand, we have
Max (U, V ) = ϕ1(U) ⊗ ϕ1(V ) − ϕ1(U) ⊗ ϕ−1(V ) − ϕ0(U) ⊗ ϕ−1(V )

−ϕ−1(U) ⊗ ϕ−1(V ) − ϕ−1(U) ⊗ ϕ1(V ) − ϕ−1(U) ⊗ ϕ0(V )
= ϕ1(U) ⊗ ϕ1(V ) − ϕ−1(U) − ϕ−1(V ) + ϕ−1(U) ⊗ ϕ−1(V ) due to (6)
= 1

4 U (U + I)V (V + I) − 1
2 U (U − I) − 1

2 V (V − I) + 1
4 U (U − I)V (V − I)

= 1
2

(
U2V 2 + UV − U2 − V 2 + U + V

)

and the second relation of (11) is proven. �
The proof presented above exploits the properties of the Kronecker product and
reduction rules due to the completeness of the finite projection space. Reduction
of logical expressions is an important topic in logic. In binary logic it is formalized
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by using Karnaugh maps which represent canonical SOP (Sum Of Products)
disjunctive normal forms [8].

Binary logic is “included” in ternary logic, we want to verify this by elimi-
nating the “neutral” state, N ≡ 0, and considering only the two logical values
{+1,−1}. In this case we have: U2 = V 2 = I and so (11) reduces to:

{
Min (U ,V ) = 1

2

(
I + U + V − U · V

)
,

Max (U ,V ) = 1
2

( − I + U + V + U · V
)

considering that for binary logic the Min connective becomes the conjunction,
AND, and the Max connective the disjunction, OR, we find the previous results
given on Table 1 for binary {+1,−1} observables.

5 Discussion and Conclusion

We have presented an operational formalism named “Eigenlogic” using observ-
ables in Hilbert space. The original feature being that the eigenvalues of a logical
observable represent the truth values of the corresponding logical connective,
the associated eigenvectors corresponding to one of the fixed combination of the
inputs (atomic propositions). This approach differs from other geometric formal-
izations of logic (for references and discussion see [5]). Here the outcome of a
“measurement” or “observation” on a logical observable will give the truth value
of the associated logical proposition, and becomes “interpretable” when applied
to the eigenspace leading to a natural analogy with the measurement postulate
in quantum mechanics. One of the referees proposed the following diagram to
summarize the point of view presented in this contribution:

eigenvectors in Hilbert space −→ atomic propositional cases
projectors −→ logical connectives

eigenvalues −→ truth values.

At first sight this method could be viewed as “classical” because exactly the
same results are obtained in Eigenlogic as in ordinary propositional logic. This
is in itself an important result demonstrating a new method in logic based on
linear algebra, the method being also developed in multivalued logic. But when
considering vector states, id est input propositions, that are not eigenvectors,
the measurement outcomes are governed by the quantum Born rule, and inter-
pretable results are then given by the mean values. This fact led us to apply the
method to Fuzzy logic.

Another important point is the general algebraic method, based on classical
interpolation framework suggested by the finite-element method. Our method
can be employed for whatever m-valued n-argument logical system and in each
case the corresponding logical observables can be defined. Some observables can
be formally compared with angular momentum observables in quantum mechan-
ics. Because of the exponential increase of complexity, an analytical formulation
is only tractable for a low number of logical values and arguments. We treated
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the two-argument binary case completely and the three-valued case using the
logical observables Min and Max. An algorithmic approach for logical connec-
tives with a large number of arguments could be interesting to develop using
Eigenlogic observables in high-dimensional vector spaces. But because the space
grows in dimension very quickly, it may not be particularly useful for practi-
cal implementation without logical reduction. It would be interesting to develop
specific algebraic reduction methods for logical observables inspired from actual
research in the field. For a good synthesis of the state of the art, see e.g. [14].

Eigenlogic could create a new perspective in the field of quantum compu-
tation because several of the observables turn out to be well-known quantum
gates. Here we represent them as diagonal matrices, id est in their eigenbasis,
other “normal” forms being easily recovered by unitary transformations. It would
be interesting to operate quantum gates in our framework. Many-valued logic
is being investigated in quantum computation for example with ternary-logic
quantum gates using “qutrits”. Our formulation of multivalued logical observ-
ables could be used for the design of new quantum gates.

Dynamical evolution of the logical system could be included in the model
by identifying the appropriate Hamiltonian operators. Standard procedures for
expressing interaction Hamiltonians as a function of angular momentum observ-
ables could be used [13].

More generally we think that this view of logic could add some insight on
more fundamental issues. Boolean functions are nowadays considered as a “tool-
box” for resolving many problems in theoretical computer science, information
theory and even fundamental mathematics. In the same way Eigenlogic can be
considered as a new “toolbox” and could be of interest for the “Quantum Inter-
action” community where quantum-like approaches in human and social sciences
need to be founded on a logical basis.

Acknowledgments. The authors thank both referees for their precise and construc-
tive remarks and suggestions. Some of them have been included in the present version
of this contribution.
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Abstract. We take a first step towards establishing a link between the
topos approach to quantum theory and the monoidal approach to quan-
tum theory. The topos approach to quantum theory makes extensive
use of categories of commutative C∗-algebras and their corresponding
Gelfand spectrum. We generalise these categories of C∗-algebras and gen-
eralise the notion of Gelfand spectrum via defining the abstract spectral
presheaf. We then characterise this spectral presheaf for the category of
sets and relations, and examine how this relates to the notion of observ-
able in this category as studied in the monoidal approach to quantum
theory.

1 Introduction

The monoidal category approach to quantum theory [1], and the topos approach
to quantum theory [2,3] are two projects which seek to reformulate parts of
quantum theory in the language of category theory.

The monoidal approach uses the language of †-symmetric monoidal categories
to present a general mathematical framework in which a variety of quantum and
quantum-like theories can be studied and compared. In doing so, the monoidal
approach abstracts away from the language of Hilbert space or C∗-algebras, to
much more general mathematical structures. Monoidal categories admit graphi-
cal languages, and hence this general framework presents an intuitive and prac-
tical formalism for reasoning about physical theories.

The topos approach to quantum theory addresses unresolved foundational
issues of quantum theory, using modern mathematics to attack the old problems
of physics and metaphysics.

These approaches use very different kinds of mathematics, and address dif-
ferent questions. This work can be seen as a first step towards establishing a
relationship between these two distinct approaches to quantum theory. In par-
ticular we use the notion observable in each approach as a point of contact.

We first look at this connection for a standard model of quantum theory,
the category of finite dimensional Hilbert spaces. We then describe the same
relationship for the category of sets and relations. In the topos approach Hilbert
spaces, C∗-algebras, and von Neumann algebras remain fundamental concepts,
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 252–264, 2017.
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and hence we must first generalise aspects of the topos approach before special-
ising to the category of sets and relations.

Definition 1. A †-category consists of a category A equipped with a functor
† : Aop → A which is the identity on objects and satisfies † ◦ † = idA.

A †-symmetric monoidal category consists of a symmetric monoidal category
(A,⊗, I) with a dagger, such that † is a symmetric monoidal functor, and where
all of the natural isomorphisms forming the symmetric monoidal structure are
unitary, i.e. α−1 = α†.

Example 1. The archetypal example of a †-symmetric monoidal category is the
category of finite dimensional complex Hilbert spaces, with linear maps, and
usual tensor product (fdHilb,⊗,C).

Example 2. The category of sets and relations with monoidal product the carte-
sian product (Rel,×, {∗}) is a †-symmetric monoidal category. The dagger is
given by simply reversing relations in the obvious way.

The category of relations is a simple but non-trivial †-symmetric monoidal
category and hence provides a useful non-standard model of quantum theory.
As such, there is an extensive literature on this category from the perspective of
quantum theory, for example, providing a categorical model for Spekkens Toy
Theory [4,5].

Definition 2. A unital algebra in a symmetric monoidal category (A,⊗, I) con-
sists of an object C ∈ A together with morphisms μ : C ⊗ C → C and η : I → C
such that the following diagrams commute

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

id ⊗ μ

μ ⊗ id μ

μ

C

C ⊗ I

I ⊗ C

C ⊗ C

C ⊗ C

C

ρC

λC

id

id ⊗ η

η ⊗ id μ

μ

Such an algebra is commutative if the following diagram commutes

C ⊗ C

C ⊗ C

CσC,C

μ

μ

where σ is the monoidal braiding of A.
A cocommutative counital coalgebra is a commutative unital algebra in Aop,

i.e. consists of morphisms δ : C → C ⊗ C and ε : C → I, such that the reversal
of the above diagrams commute.
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Definition 3. A special commutative Frobenius algebra in (A,⊗, I) consists of
a commutative algebra η : I → C, μ : C ⊗C → C and a cocommutative coalgebra
ε : C → I, δ : C → C ⊗ C such that the following commute

C ⊗ C

C ⊗ C ⊗ C C ⊗ C

C

id ⊗ δ

μ

δ
μ ⊗ id

C C ⊗ C

C

δ

id
μ

If (A,⊗, I) is †-symmetric, (C, μ, η, δ, ε) is called a †-special commutative
Frobenius algebra if μ† = δ and η† = ε.

Let H be a finite dimensional Hilbert space, and let { |ei〉 }i∈I be an ortho-
normal basis. With this data we define the algebra (H,μ, η) as follows

H ⊗ H H

|ei〉 ⊗ |ej〉
{ |ei〉 if i = j

0 otherwise

μ
C H

1
∑

i∈I

1
|I| |ei〉

η

(1)

It is straightforward to check that this algebra, together with its adjoint maps
satisfy the equations of a †-special commutative Frobenius algebra. The following
theorem [6, Theorem 5.1] states that these are all of the †-special commutative
Frobenius algebras in fdHilb.

Theorem 1. Every †-special commutative Frobenius algebra (H,μ, η) in fdHilb
is of the form (1) for some orthonormal basis { |ei〉 }i∈I .

Hence there is a 1-1 correspondence between orthonormal bases of a finite
dimensional Hilbert space H and the †-special commutative Frobenius algebra
structures with which H can be endowed. This provides the justification that
†-special commutative Frobenius algebras provide an axiomatisation of observ-
ables.

For a †-special commutative Frobenius algebra (H,μ, η) in fdHilb corre-
sponding with the orthonormal basis { |ei〉 }i∈I , it is exactly these basis elements
which are copied by the comultiplication map, i.e. satisfy μ†(|ei〉) = |ei〉 ⊗ |ei〉.
These are called the set-like elements of the Frobenius algebra and can be defined
for Frobenius algebras in an arbitrary category.

Definition 4. The set-like elements of a †-special commutative Frobenius alge-
bra (X,μ, η) are the points x : I → X satisfying

I I ⊗ I

X X ⊗ X

∼

x
μ†

x ⊗ x
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Within the monoidal approach to quantum theory set-like elements can be
seen as a generalisation of eigenstates of a non-degenerate self-adjoint operator.

We now discuss the topos approach to quantum theory. Consider the category
Hilb of Hilbert spaces and bounded linear maps. For each Hilbert space H the
set Hom(H,H) carries the structure of a C∗-algebra. In the topos approach
to quantum theory one considers, for a fixed Hilbert space H, the category
Hilb-Alg(H), whose objects are commutative C∗-subalgebras of Hom(H,H),
and whose morphisms are inclusions of subalgebras, i.e. Hilb-Alg(H) is the
poset of commutative subalgebras of Hom(H,H) viewed as a category.

In [3] the full subcategory Hilb-AlgvN(H) ↪→ Hilb-Alg(H) of commutative
von Neumann subalgebras is considered. Here we focus on the case where H is
finite dimensional for which these categories coincide.

Commutative C∗-subalgebras of this kind can be thought of as a “classical
snapshots” of a quantum system represented by H; they encode what can be
observed of that system.

The topos considered is the category of presheaves F : Hilb-Alg(H)op →
Set. One presheaf of particular interest is the spectral presheaf [3], which clas-
sifies the Gelfand spectrum of a commutative C∗-algebra.

Definition 5. The spectral presheaf Spec : Hilb-Alg(H)op → Set, is defined

Spec(C) = { γ : C → C | γ a unital C∗ − algebra homomorphism }
while for i : C2 ↪→ C1 the action on morphisms is given by precomposition

Spec(C1) Spec(C2)
γ γ ◦ i

Spec(i)

Remark 1. One important feature of the spectral presheaf in topos quantum
theory is that the Kochen-Specker theorem, which asserts the contextual nature
of quantum theory, is equivalent to the statement that this presheaf has no global
sections [3].

We now discuss the passage from an observable in the monoidal approach,
to an observable in the topos approach.

For a finite dimensional Hilbert space H, it follows from the Artin
Wedderburn Theorem that every commutative C∗-subalgebra of Hom(H,H) can
be decomposed as follows

C ∼= p1C ⊕ p2C ⊕ . . . ⊕ pnC

where pi are self-adjoint primitive idempotents, that is, projectors onto orthog-
onal subspaces of H. The set Spec(C) is canonically isomorphic to the set of
projectors {pi}i∈I . In particular, for each γ : C → C, there is exactly one pi

such that the kernel of γ is the annihilator of the subalgebra piC ⊂ C.
It is easy to see how a †-special commutative Frobenius algebra (H,μ, η) for

finite dimensional H determines an algebra Cμ ∈ Hilb-Alg(H). Let {|ei〉}i∈I be
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the set of set-like elements of the Frobenius algebra, and let Cμ be the algebra
generated by the self-adjoint projectors pi = |ei〉 〈ei|. Note the canonical corre-
spondence between elements of Spec(Cμ) and the set-like elements of (H,μ, η).

In the sequel we develop the same story as above but having replaced the cat-
egory of finite dimensional Hilbert spaces with Rel. In order to do this we need
an appropriate generalisation of the category Hilb-Alg(H), abstracting away
from Hilbert spaces and C∗-algebras. This is done in Sect. 3 by defining the cat-
egory A-Alg(X) for an arbitrary locally small †-symmetric monoidal category
with †-biproducts A. We do this by observing that the sets Hom(X,X) in such
categories carry a rich algebraic structure. We then generalise the Gelfand spec-
trum of a C∗-algebra by defining an analogous spectral presheaf for these general
categories Spec : A-Alg(X)op → Set. In particular we will give a classification
of this spectrum for the case where A = Rel.

This is done using the language of semirings, semimodules, and semialgebras
which we review in Sect. 2.

In Sect. 4 we look at how to construct an object of the category Rel-Alg(A)
from a †-special commutative Frobenius algebra (A,μ, η) in Rel. We discuss the
advantages of considering the category Rel-Alg(A) as opposed to just the †-
special commutative Frobenius algebra structures with which A can be endowed.

2 Semirings, Semimodules and Semialgebras

Here we recall some definitions and fix some terminology. The reader familiar
with the passage from a commutative ring R, to R-modules, and to R-algebras,
will see the exact parallel in developing semirings, semimodules, and semialge-
bras.

Definition 6. A semiring consists of a set S equipped with a commutative
monoid structure + : S × S → S with unit 0 ∈ S, and a monoid structure
· : S × S → S, with unit 1 ∈ S, such that for all r, s, t ∈ S

1. t · (r + s) = t · r + t · s;
2. (r + s) · t = r · t + s · t;
3. 0 · s = s · 0 = 0.

A semiring is called commutative if · is commutative.
A ∗-semiring, or involutive semiring is one equipped with an operation ∗ such

that for all s, t ∈ S

4. (s∗)∗ = s;
5. (st)∗ = t∗s∗;
6. 0∗ = 0;

7. 1∗ = 1;
8. (s + t)∗ = s∗ + t∗.

As the notation suggests we will refer to the monoid operations of a semi-
ring as addition and multiplication respectively. We will simplify multiplicative
notation s · t = st, when the intended meaning is clear.
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Note that we are assuming all semirings to be unital, i.e. that they have a
multiplicative unit 1. A subsemiring of S is a subset containing 0 which is closed
under addition and multiplication, and contains a multiplicative unit.

Definition 7. Let S be a commutative semiring. A subset I ⊂ S is called an
ideal if it contains 0, is closed under addition, and such that for all s ∈ S and
a ∈ I, as ∈ I.

An ideal is called prime if st ∈ I implies s ∈ I or t ∈ I.

A semiring is called idempotent if s + s = s for all s ∈ S.

Lemma 1. Let S be an idempotent semiring, S comes equipped with a canonical
partial order defined a < b iff a + b = b.

Definition 8. Let S be an idempotent semiring and I an ideal. The downward
closure of I is defined ↓ I = { p ∈ S | there exists x ∈ I such that p < x}.
It is easy to check that ↓ I is also an ideal. An ideal I is said to be downward
closed if I =↓ I.

Definition 9. Let (S, ·, 1,+, 0) be a commutative semiring, an S-semimodule
(or a semimodule with scalars S, or simply a semimodule) consists of a com-
mutative monoid +M : M ×M → M , with unit 0M , together with a scalar action
or scalar multiplication • : S ×M → M such that for all r, s ∈ S and m,n ∈ M :

1. s • (m +M n) = s • m +M s • n;
2. (r · s) • m = r • (s • m);
3. (r + s) • m = (r • m) +M (s • m);
4. 0 • m = s • 0M = 0M ;
5. 1 • m = m.

A subsemimodule of (M,+M , 0M ) consists of a submonoid which is also a
semimodule under the same action of S.

The annihilator of an S-semimodule M is the set of elements of s ∈ S such
that s • m = 0M for all m ∈ M . It is easy to verify annihilators are ideals.

Definition 10. An S-semialgebra (M, ·M , 1M ,+M , 0M ) consists of an S-
semimodule (M,+M , 0M ) equipped with a monoid structure ·M : M × M → M ,
with unit 1M , such that (M, ·M , 1M ,+M , 0M ) forms a semiring, and where the
scalar action obeys s • (m ·M n) = (s • m) ·M n = m ·M (s • n).

An S-semialgebra is called commutative if ·M is commutative.

When we talk about the ideals of a semialgebra M we mean the ideals of M
as a semiring. Similarly, we call a semialgebra idempotent if it is idempotent as
a semiring.

Notice that every semiring S is an S-semialgebra, where the action of S is
taken to be the usual multiplication in S.
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Definition 11. Let S be a ∗-semiring. A ∗-semialgebra with scalars S consists
of an S-semiring (M, ·M , 1M ,+M , 0M ), with an involution such that the involu-
tions of S and M are compatible, i.e. (s • m)∗ = s∗ • m∗.

A subsemialgebra of M is a subset which is both a subsemiring and a sub-
semimodule. A ∗-subsemialgebra of a ∗-semialgebra is a subsemialgebra closed
under taking involutions.

Homomorphisms and kernels of homomorphisms for all of these structures
are defined in the obvious ways, preserving the relevant algebraic structure.

3 The Abstract Spectral Presheaf

In this section we show that for a locally small †-symmetric monoidal category
with †-biproducts A, each set Hom(X,X) is naturally equipped with the struc-
ture of a ∗-semialgebra. We show that by a direct generalisation of Definition 5
the Gelfand Spectrum of a C∗-algebra can be generalised to these ∗-semialgebras
through defining a spectral presheaf for arbitrary A.

Recall a zero object in a category is an object, typically denoted 0, which is
both initial and terminal. Given a zero object, for any objects X and Y there
is a zero morphism denoted 0XY : X → Y , given by the unique factorisation
through the zero object

X 0 Y
! !

Definition 12. Let A be a †-category. A monoidal product is a biproduct if it
is both a product and a coproduct.

A †-biproduct is a biproduct such that canonical projections π and coprojec-
tions κ are related by π† = κ.

The following is a well known result in categorical algebra going back at least
as far as [7].

Lemma 2. Locally small categories with biproducts ⊕ and a zero object are
enriched in the category of commutative monoids, i.e. each hom-set Hom(X,Y )
is a monoid. For morphisms f, g : X → Y , define f + g : X → Y by

X X ⊕ X Y ⊕ Y Y
Δ f ⊕ g ∇

and where the additive unit is given by the unique zero map 0 : X → Y

The categories fdHilb and Rel have †-biproducts. Biproducts in fdHilb are
given by the direct sum of the underlying vector spaces. The resulting additive
structure on linear maps f, g : H → K is the pointwise sum.

In Rel disjoint union is a biproduct. The resulting additive structure on
relations r, s : A → B is the union of relations.



A New Perspective on Observables in the Category of Relations 259

Definition 13. In a locally small symmetric monoidal category (A,⊗, I) we call
the set Hom(I, I) the abstract scalars.

As the name suggests, the abstract scalars come equipped with algebraic
structure [8], in particular they form a commutative monoid, with product given
by composition, and unit element given by the identity morphism on I. For the
categories we are interested in the scalars will have even more structure.

Lemma 3. For (A,⊗, I) a locally small †-symmetric monoidal category with
†-biproducts, the set Hom(I, I) is a commutative ∗-semiring.

Proof. Biproducts give the scalars the structure of a semiring. This is folklore,
but a proof can be found in [9].

The claim is that the dagger gives us the required involution. To see this
we need to verify the remaining equations of Definition 6. Equations 5 and 7
follow from functoriality. Equation 8 follows from addition being defined by a †-
biproduct. Equation 4 follows from the equation † ◦ † = IdA. Since the functor
† is identity on objects, it preserves the zero object and hence preserves zero-
morphisms, and hence Eq. 6 holds, as required. ��
Example 3. In Hilb the scalars are the set of linear maps Hom(C,C), which is
canonically isomorphic to the field C. Involution is given by complex conjugation.

The following is shown in [9].

Lemma 4. Let (A,⊗, I) be a locally small symmetric monoidal category with
biproducts. Each Hom(X,Y ) carries the structure of an S-semimodule, with
scalars S = Hom(I, I). Addition of morphisms is as defined in Lemma 2, and
scalar action s • f given by

X X ⊗ I Y ⊗ I Y
∼ f ⊗ s ∼

Lemma 5. Let (A,⊗, I) be a locally small †-symmetric monoidal category with
†-biproducts and zero object. For each object X, Hom(X,X) carries the structure
of a ∗-semialgebra with scalars S = Hom(I, I).

Proof. By Lemma 4 Hom(X,X) is a semimodule. We define the multiplication
to be morphism composition. This distributes over addition by the properties
of biproducts [7]. The scalar action being compatible with multiplication follows
from the coherence conditions of symmetric monoidal categories.

The dagger provides the necessary involution by the same argument in the
proof of Lemma 3. ��

We now have everything we need to give the necessary generalisation of the
topos approach to quantum theory, and define the abstract spectral presheaf.
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Definition 14. Let (A,⊗, I) be a locally small †-symmetric monoidal category
with †-biproducts and zero object. For each object X ∈ A define the category

A-Alg(X)

with objects commutative ∗-subsemialgebras of Hom(X,X), and morphisms
inclusions of ∗-subsemialgebras.

Remark 2. Since there exists a purely algebraic characterisation of the von
Neumann algebras in Hilb-Alg(H), we can similarly define the subcategory
A-AlgvN(X) ↪→ A-Alg(X) of semialgebras which satisfying the double commu-
tant identity. This will not be discussed further in this work.

Definition 15. Let (A,⊗, I) be a locally small †-symmetric monoidal category
with †-biproducts and scalars S = Hom(I, I). The spectral presheaf for A

A-Alg(X)op Set
Spec

is defined on objects

Spec(A) = { ρ : A → S | ρ a †-semialgebra homomorphism }

and on morphisms by precomposition.

By Example 3 we see that this spectral presheaf coincides with Definition 5
when A = Hilb.

We end this section by considering the case where (A,⊗, I) = (Rel,×, {∗}),
and give a complete characterisation of the spectrum for Rel. In Rel there
are two elements of Hom({∗}, {∗}): the identity and the zero relation. Under
the operations defined this gives the Boolean semiring 2 with trivial involution.
Since addition in a semialgebra A ∈ Rel-Alg(A) is given by union of relations
these semialgebras are idempotent, and hence by Lemma 1 are equipped with a
partial order.

Theorem 2. Let A ∈ Rel-Alg(A). The spectrum Spec(A) is isomorphic to the
set of proper downward closed prime ideals of A.

Proof. It is straightforward to show that an ideal of an arbitrary idempotent
semiring A is prime and downward closed iff it is the kernel of a homomorphism
ρ : A → 2.

It remains to show that for A ∈ Rel-Alg(A) the semialgebra homomorphisms
into 2 are ∗-semialgebra homomorphisms.

It is enough to show that downwards closed ideals are closed under involu-
tions. Let p ∈ I be the top element of the ideal I, defined to be the sum of all
elements in I. It is easy to see that p is idempotent, and moreover x ∈ I iff
x < p. It is easy to verify that x < y implies x∗ < y∗, hence it is enough to show
that p is self-adjoint, i.e. p = p†.
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By assumption of commutativity we have pp† = p†p, and hence pp† is self-
adjoint.

Next we prove p < pp† directly, using properties of relations. Suppose a ∼p b,
then we need to show a ∼pp† b. Note that if a ∼p b then b ∼pp† b, and hence we
have a ∼p b ∼pp† b. Since pp† = ppp† we have a ∼pp† b, and thus p < pp†.

Since pp† ∈ I, we have pp† < p and hence p = pp†. Therefore p is self-adjoint,
as required. ��

4 Semialgebras of Relations from Frobenius Algebras

Here we give some results which parallel those discussed in Sect. 1. In particular
looked at the passage from a †-special commutative Frobenius algebra (H,μ, η)
to an object in the category Hilb-Alg(H). In the category of sets and relations,
given a †-special commutative Frobenius algebra (A,μ, η) we can also construct
a semialgebra in Rel-Alg(A), however it is slightly more subtle.

A complete classification of †-special commutative Frobenius algebras in Rel
is given in [10, Theorem 4.4].

Theorem 3. A †-special commutative Frobenius algebra (A,μ, η) in Rel is an
abelian groupoid, i.e. A is a disjoint union of abelian groups A =

⊔

i∈I

Gi where

the multiplication relation μ : A × A → A is defined by the individual group
multiplication maps. The unit of the groupoid is the set of unit elements ei ∈ Gi

from each group. Comultiplication μ†(g) for each g ∈ A is given by

μ†(g) = { (h, h′) | μ(h, h′) = g }

From this it is easy to see that each connected component of the groupoid
corresponds with a set-like element.

Definition 16. Two †-special commutative Frobenius algebras in A are obser-
vationally equivalent if they are isomorphic and have the same set-like elements.

Remark 3. Observationally equivalent †-special commutative Frobenius algebras
in fdHilb are necessarily equal, as these Frobenius algebras are completely deter-
mined by their set-like elements.

This is not the case in Rel. For example, consider the set A = {a, b}. There
are two ways to endow A with the group structure Z2, by picking either a or b
to be the unit element. In either case there is a single set-like element consisting
of the whole set A. Hence there are two observationally equivalent †-special
commutative Frobenius algebras on A.

Theorem 4. A †-special commutative Frobenius algebra (A,μ, η) in Rel deter-
mines a ∗-semialgebra denoted Aμ ∈ Rel-Alg(A) such that the set Spec(Aμ) is
canonically isomorphic to the set of set-like elements of (A,μ, η).

Moreover, for observationally equivalent †-special commutative Frobenius
algebras (A,μ, η) and (A, ν, θ) we have Aμ = Aν .
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Proof. Let (A,μ, η) be a †-special commutative Frobenius algebra, i.e. a disjoint
union of groups

⊔

i∈I

Gi. Then there is a family of maps μg : A → A for each

g ∈ A, with μ†
g = μg−1 . Take Aμ to be the closure of this family under the given

binary operations.
Under the construction of Aμ each Gi determines an ideal of Aμ, which is

also a subsemialgebra, by taking the closure of the family μg for g ∈ Gi. Every
prime ideal of Aμ is of the form Ri =

⊔

j �=i

Gj for some i ∈ I. This ideal is the

annihilator of the subsemiring determined by Gi. Hence there is a natural 1-1
correspondence between prime ideals and connected components of the groupoid,
i.e. the set-like elements. ��
Example 4. Consider the set A = {a, b, c, d} and †-special commutative Frobe-
nius algebra with multiplication μ : A × A → A defined

(a, a) a

(a, b) b

(b, b) a

(c, c) c

(c, d) d

(d, d) c

This is a Frobenius algebra isomorphic to the groupoid Z2 �Z2. For this Frobe-
nius algebra we have specified the elements a and c to be the identity elements
of each respective copy of Z2. The two set-like elements of this Frobenius algebra
are the subsets {a, b} and {c, d}.

The semialgebra Aμ determined by this †-special commutative Frobenius
algebra is generated by the relation which permutes a and b, acting as the zero
map on c and d, and the corresponding relation which permutes c and d acting
as the zero map on a and b.

Notice that any whatever choice we make endowing the structure of Z2 on
the subsets {a, b} and {c, d} yields the same semialgebra Aμ ∈ Rel-Alg(A).

Remark 4. A torsor, or principle homogeneous space consists of a set X upon
which a group G acts freely and transitively. One can think of X as the group
G having “forgotten” what the identity element is.

It is already known that this precise group structure is not necessary when
considering Frobenius algebras as observables in Rel [11].

The passage of a †-special commutative Frobenius algebra (A,μ, η) to the †-
semialgebra Aμ can be seen as going from a disjoint union of abelian groups to a
disjoint union of torsors; we retain the essential groupoid structure which we need
to reason about important monoidal category quantum–theoretic structures, e.g.
phase groups [12], but forget the arbitrary choice of identity element.

Considering the ∗-semialgebra Aμ, rather than (A,μ, η) makes precise the
notion that the exact group structure of the Frobenius algebra does not matter.

5 Conclusion and Further Work

This work can be seen as a first step in establishing a connection between
the monoidal category and topos theoretic approaches to quantum theory,
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by providing a necessary abstraction of the topos approach in the form of the
categories A-Alg(X) and associated spectral presheaves.

Having a firm grasp on concrete cases, e.g. A = fdHilb and A = Rel will
be key in understanding the more general connection for arbitrary A. In light of
Theorem 4 we pursue a general connection between the †-special commutative
Frobenius algebras in A, and the categories A-Alg(X), and in particular between
the set-like elements of the former and the spectrum of the latter.

We have given only the most preliminary account of the categories
Rel-Alg(A) and their relation to the †-special commutative Frobenius alge-
bras in Rel. Future work will give a comprehensive account of the categories
Rel-Alg(A), and their relationship to the †-special commutative Frobenius alge-
bras (A,μ, η).

Much more can be said connecting the category Rel-Alg(A) with the estab-
lished concepts in the monoidal category approach to quantum theory, for exam-
ple phase groups, complementarity [13] and abstract notions of non-locality [14].
Given Remark 4 this seems particularly worthwhile and will be explored further.

There are multiple approaches to contextuality using the language of sheaves
for example [15,16]. One can now apply this machinery to the abstract spectral
presheaf we have defined. In particular, in light of Remark 1, a version of the
Kochen-Specker theorem can now be stated for arbitrary A; we can ask if the
abstract spectral presheaf for this category has global sections. This allows us to
talk about contextuality in these categories in a way which was previously not
possible.
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Abstract. Random Indexing is a simple implementation of Random
Projections with a wide range of applications. It can solve a variety of
problems with good accuracy without introducing much complexity. Here
we demonstrate its use for identifying the language of text samples, based
on a novel method of encoding letter N -grams into high-dimensional
Language Vectors. Further, we show that the method is easily imple-
mented and requires little computational power and space. As proof
of the method’s statistical validity, we show its success in a language-
recognition task. On a difficult data set of 21,000 short sentences from
21 different languages, we achieve 97.4% accuracy, comparable to state-
of-the-art methods.

Keywords: N -gram vector · Language profile · Vector symbolic archi-
tecture · Multiply–Add–Permute Algebra

1 Introduction

As humans who communicate through language, we have the fascinating ability to
recognize unknown languages in spoken or written form, using simple cues to dis-
tinguish one language from another. Some unfamiliar languages, of course, might
sound very similar, especially if they come from the same language family, but we
are often able to identify the language in question with very high accuracy. This
is because embedded within each language are certain features that clearly distin-
guish one from another, whether it be accent, rhythm, or pitch patterns. The same
can be said for written languages, as they all have features that are distinctive.
Recognizing the language of a given text is the first step in all sorts of language
processing, such as text analysis, categorization, translation and much more.

As popularized by Shannon [1], most language models use distributional sta-
tistics to explain structural similarities in various specified languages. The tra-
ditional method of identifying languages in the absence of dictionaries consists
of counting individual letters, letter bigrams, trigrams, tetragrams, etc., and
comparing the frequency profiles of different text samples. As a general princi-
ple, the more accurate you want your detection method to be, the more data
you have to store about the various languages. For example, Google’s recently
open-sourced program called Chromium Compact Language Detector uses large
c© Springer International Publishing AG 2017
J.A. de Barros et al. (Eds.): QI 2016, LNCS 10106, pp. 265–274, 2017.
DOI: 10.1007/978-3-319-52289-0 21
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language profiles built from enormous corpora of data. As a result, the accuracy
of their detection, as seen through large-scale testing and in practice, is near
perfect [2].

High-dimensional vector models are popular in natural-language processing
and are used to capture word meaning from word-use statistics. The vectors are
called semantic vectors or context vectors. Ideally, words with a similar meaning
are represented by semantic vectors that are close to each other in the vector
space, while dissimilar meanings are represented by semantic vectors far from
each other. Latent Semantic Analysis is a well-known model that is explained in
detail in [3]. It produces 300-dimensional (more or less) semantic vectors from a
singular value decomposition (SVD) of a matrix of word frequencies in a large
collection of documents.

An alternative to SVD, based on Random Projections, was proposed by
Papadimitriou [4] and Kaski [5]. Random Indexing [6,7] is a simple and effec-
tive implementation of the idea. It has been used in ways similar to Mikolov et
al.’s Continuous Bag-of-Words Model (KBOW; [8]) and has features similar to
Locality-Sensitive Hashing (LSH) but differs from them in its use of high dimen-
sionality and randomness. With the dimensionality in the thousands (e.g., D
= 10,000)—referred to as “hyperdimensional”—it is possible to calculate useful
representations in a single pass over the dataset with very little computing.

In this paper, we will present a way of doing language detection using Random
Indexing, which is fast, highly scalable, and space efficient. We will also present
some results regarding the accuracy of the method, even though this will not be
the main goal of this paper and should be investigated further.

2 Random Indexing

Random Indexing represents information by projecting data onto vectors in a
high-dimensional space. There exist a huge number of different, nearly orthog-
onal vectors in such a space [9, p. 19]. This lets us combine two such vectors
into a new vector using well-defined vector-space operations, while keeping the
information of the two with high probability. In our implementation of Ran-
dom Indexing, we use a variant of the MAP (Multiply, Add, Permute) coding
described in [10] to define the vector space. Vectors are initially taken from a
D-dimensional space (with D = 10,000) and have an equal number of randomly
placed 1 s and −1 s. Such vectors are used to represent the basic elements of
the system, which in our case are the 26 letters of the Latin alphabet and the
(ASCII) Space. These vectors for letters are sometimes referred to as their Ran-
dom Labels.

The binary operations on such vectors are defined as follows. Elementwise
addition of two vectors A and B, is denoted by A + B. Similar, elementwise
multiplication is denoted by A ∗ B. A vector A will be its own multiplicative
inverse, A ∗ A = 1, where 1 is the D-dimensional identity vector consisting of
only 1s. The cosine is used to measure the similarity of two vectors. It is defined
as cos(A,B) = |A′ ∗ B′|, where A′ and B′ are the normalized vectors of A and
B, respectively, and |C| denotes the sum of the elements in C.
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Information from a pair of vectors A and B is stored and utilized in a single
vector by exploiting the summation operation. That is, the sum of two separate
vectors naturally preserves unique information from each vector because of the
mathematical properties of the space. To see this, note that cos(A,A) = 1, while
for all B �= A, cos(A,B) < 1. The cosine of two random, unrelated vectors tends
to be close to 0. Because of this, the vector B can easily be found in the vector
A + B: cos(B,A + B) differs significantly from 0.

For encoding a sequence of vectors, we use a random (but fixed throughout
all our computations) permutation operation ρ of the vector coordinates. Hence,
the sequence A-B-C is encoded as the D-dimensional vector ABC by permuting
the first vector twice, permuting the second vector once, taking the third vector
as is, and by multiplying the tree: ABC = ρ(ρ(A)) ∗ ρ(B) ∗ C = ρρA ∗ ρB ∗ C =
ρ2A∗ρB∗C. This efficiently distinguishes the sequence A-B-C from, say, A-C-B.
This can be seen from looking at their cosine (here c is the normalization factor):

V1 = ρρA ∗ ρB ∗ C

V2 = ρρA ∗ ρC ∗ B

=⇒ cos(V1, V2) = c · |(ρρA ∗ ρB ∗ C) ∗ (ρρA ∗ ρC ∗ B)|
= c · |ρρA ∗ ρρA ∗ ρB ∗ ρC ∗ C ∗ B)|
= c · |ρρ(A ∗ A) ∗ ρ(B ∗ C) ∗ (B ∗ C))|
= c · |1 ∗ ρ(B ∗ C) ∗ (B ∗ C))|
≈ c · 0

since a random permutation ρV of a random vector V is uncorrelated to V .

2.1 Making and Comparing of Text Vectors

We use the properties of high-dimensional vectors to extract certain properties
of text into a single vector. [11] shows how Random Indexing can be used for
representing the contexts in which a word appears in a text, into that word’s
context vector. We show here how to use a similar strategy for recognizing a
text’s language by creating and comparing Text Vectors: the Text Vector of an
unknown text sample is compared for similarity to precomputed Text Vectors of
known language samples—the latter are referred to as Language Vectors.

Simple language recognition can be done by comparing letter frequencies
of a given text to known letter frequencies of languages. Given enough text, a
text’s letter distribution will approach the letter distribution of the language in
which the text was written. The phenomenon is called an “ergodic” process in
[1], as borrowed from similar ideas in physics and thermodynamics. This can
be generalized to using letter blocks of different sizes. By a block of size N , we
mean N consecutive letters in the text so that a text of length M would have
M −N +3 blocks. When the letters are taken in the order in which they appear
in the text, they are referred to as a sequences (of length N) or as N -grams.

As an example, the text “a book” gives rise to the trigrams “a b”, “ bo”,
“boo”, and “ook” (here “ ” stands for Space). The frequencies of such letter
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blocks can be found for a text and compared to known frequencies for different
languages. For texts in languages using the Latin alphabet of 26 letters (plus
Space), like English, this would lead to keeping track of 273 = 19,683 different
trigram frequencies. For arbitrary alphabets of L letters, there would be (L+1)N

N -grams to keep track of. These numbers grow quickly as the block size N
increases, yet Random Indexing encodes all N -gram frequencies into a single
10,000-dimensional Text Vector.

The Random Indexing approach for doing language recognition is similar.
A text’s Text Vector is first calculated by running over all the blocks of size
N within the text and creating an N -gram Vector for each. An N -gram Vector
is created for the sequence of letters as described earlier. As an example, if
we encounter the block “rab”, its trigram vector is calculated by performing
ρρR ∗ ρA ∗ B, where R, A and B are the Random Labels for r, a, and b—they
are random D-dimensional vector with half 1s and half −1 s, and the same ones
are used with all languages and text samples.

A text’s Text Vector is now obtained from summing the N -gram Vectors
for all the blocks in the text. This is still an D-dimensional vector and can be
stored efficiently. Language Vectors are made in exactly the same way, by making
Text Vectors from samples of a known language and adding them into a single
vector. Determining the language of an unknown text is done by comparing its
Text Vector to all the Language Vectors. More precisely, the cosine measure dcos
between a language vector X and an unknown text vector V is defined as follows:

dcos(X,V ) =
X · V

|X||V | =
∑D

i=1 xivi√∑D
j=1 x2

j

∑D
k=1 v2

k

If the cosine is high (close to 1), the trigram frequencies of the text are similar
to the trigram frequencies of that language and thus, the text is likely to be
written in the same language. Hence, the language that yields the highest cosine
is chosen as the system’s prediction/guess.

2.2 Complexity

The outlined algorithm for Text Vector generation can be implemented effi-
ciently. For generating a vector for an N -gram, N − 1 vector permutations and
multiplications are performed. This takes time O(N ·D). Looping over a text
of M letters, O(M) N -gram Vectors must be created and added together. This
clearly implies an O(N ·D·M) implementation. This can be improved to O(D·M)
by noting that most of the information needed for creating the N -gram Vector
for the next block is already contained in the previous N -gram Vector, and can
be retrieved by removing the contribution from the letter that is now no longer
in the block.

Say we have the N -gram Vector A = ρN−1V1 ∗ ρN−2V2 ∗ . . . ∗ ρVN−1 ∗ VN for
block number i, and now want to find the N -gram Vector B for block i + 1. We
remove from A the vector ρN−1V1 by multiplying with its inverse (which is the
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vector itself), which we can do in O(D) time since ρN−1 is just another (pre-
calculated) permutation. Then we permute the result once using ρ and multiply
that with the Letter Vector VN+1 for the new letter in the block. This gives us
the new N -gram Vector

B = ρ(ρN−1V1 ∗ A) ∗ VN+1

= ρ(ρN−2V2 ∗ . . . ∗ ρVN−1 ∗ VN ) ∗ VN+1

= ρN−1V2 ∗ . . . ∗ ρ2VN−1 ∗ ρVN ∗ VN+1

and so we can create N -gram Vectors for arbitrary size blocks without adding
complexity.

Fig. 1. 10,000-dimensional Language Vectors for 21 languages roughly cluster based
on the known relations between the languages. The Language Vectors were based on
letter trigrams and were projected onto a plane using t-SNE [12].

3 Experimental Results

The algorithm outlined above was used to create Language Vectors for 21
languages. Texts for the Language Vectors were taken from the Wortschatz
Corpora [13] where large numbers of sentences in selected languages can be
easily downloaded. Each Language Vector was based on about a million bytes of
text. Computing of the Language Vectors corresponds to training the system.

Intuitively, Language Vectors within a language family should be closer to
each other than vectors for unrelated languages. Indeed, the hyperdimensional
Language Vectors roughly cluster in this manner, as seen in Fig. 1.

To get an idea of how well the actual detection algorithm works, we tested
the Language Vectors’ ability to identify text samples from the Europarl Parallel
Corpus, described in [14]. This corpus includes 21 languages with 1,000 samples
of each, and each sample is a single sentence.



270 A. Joshi et al.

Table 1. Percentage of sentences correctly identified as a function of N -gram size.

N Detection success

1 74.9

2 94,0

3 97.3

4 97.8

5 97.3

Table 1 shows the result for N -gram sizes from 1 to 5 (N = 1 is the equivalent
of comparing letter histograms). With tetragrams we were able to guess the
correct language with 97.8% accuracy. Even when incorrect, the system usually
chose a language from the same family, as seen from Table 2.

Table 2. The confusion matrix of language detection using 10,000-dimensional Lan-
guage Vectors based on letter trigrams. Each row corresponds to the correct label
and each column is the predicted label for the Europarl corpus detection test. The
entry (i, j) is the number of sentences (out of a 1,000) that language j was guessed for
language i. A high value diagonal shows the very high accuracy.

ell eng ita ces est spa nld por lav lit ron pol fra bul deu dan fin hun swe slk slv

ell 987 1 . . . . 3 3 . . . 1 . 4 . . 1 . . . .

eng 2 982 . 4 . . 1 . 2 . . . 6 . . 1 . 2 . . .

ita . . 992 . 1 2 . . . . 2 3 . . . . . . . . .

ces 1 1 . 940 1 . . . 1 1 1 1 . 5 1 . . . . 35 12

est 1 . . 1 983 . . . 3 . . . 3 . 1 1 5 1 1 . .

spa . . 6 . . 946 2 30 8 1 2 . 5 . . . . . . . .

nld . 1 . . . . 980 1 . . 2 1 . . 5 9 . . 1 . .

por . 1 2 . . 1 1 991 . . . . 3 1 . . . . . . .

lav 2 . . 1 . . . 2 963 26 . 2 . 2 . 1 . . . 1 .

lit 2 . 1 2 1 1 . 2 18 969 . . 1 . . . . . . 1 2

ron . . 1 . . 1 . 2 . 1 987 2 4 2 . . . . . . .

pol 2 1 . 3 1 . . . . . . 984 . 4 . . . . . 4 1

fra 3 . 2 . . 4 2 1 1 2 1 . 982 . . 1 . . . 1 .

bul 1 . . 7 . . 4 . . . . . . 984 . . . . . 3 1

deu . 2 1 1 . . 3 . . . . . 3 . 985 4 . . 1 . .

dan . 2 . . . . 9 . . . . . 2 . . 974 . . 13 . .

fin . . . . 4 . 2 . 1 . . . . . . . 993 . . . .

hun . . . . . . 6 1 1 1 . . . . . 2 . 989 . . .

swe . 1 . . . 1 5 . . . 4 . 1 . 4 10 . . 974 . .

slk 2 . . 72 . . 1 . 2 1 4 18 . 6 1 . . . . 881 12

slv 1 . . 5 2 . . 1 . . 1 . . 6 1 1 . . . . 982
LEGEND:bul = Bulgarian, ces = Czech, dan = Danish, deu = German, ell = Greek, eng = English, est =
Estonian, fin = Finnish, fra = French, hun =Hungarian, ita = Italian, lav = Latvian, lit = Lithuanian,
nld =Dutch, pol = Polish, por = Portuguese, ron = Romanian, slk = Slovak, slv = Slovene, spa = Spanish,
swe = Swedish
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It is worth noting that 10,000 small integers keep track of 14,348,907 possible
pentagrams just as easily as 19,683 trigrams. The method should be explored
further, as explained in the Future Work section.

The arithmetic (algebra) of the operations with which Text Vectors are
made—i.e., permutation, multiplication, and addition, and how they work to-
gether—make it possible to analyze the Language Vectors and find out, for
example, what letters are most likely to follow “th”. In English it would be “e”,
but what is the next most likely? In Table 3, we answer this question using a
learnt Language Vector for English.

Table 3. Using the vector operations of multiplication and inverse permutations, and
noting that the multiplicative inverse of a random vector with only 1 s and −1s is itself,
we find the most likely letter to follow the bigram “th”, knowing the answer is encoded
in an English Vector. As expected intuitively, the result shows that “e” is the most
likely letter. Additionally, we have easily accessible information about the second most
likely and so on. We show the top 6. (Note that is (ASCII) space.)

Letter Distance

e 0.31

0.063

a 0.049

i 0.024

r 0.024

o 0.018

4 Details of Implementation

The 21 Language Vectors were “trained” with text from the Leipzig Corpora Col-
lection (website http://corpora.uni-leipzig.de/download.html). The file for each
language is about a million bytes and contains 10,000 sentences of news mate-
rial. Letters outside the 26 in the Latin alphabet were replaced by their Latin
equivalents by hand-coding and using the Unidecode 0.04.17 package (https://
pypi.python.org/pypi/Unidecode), and sequences of nonletters were treated as
a single space. The 21,000 test sentences (1,000 per language) came from the
European Parliament Proceedings Parallel Corpus 1996–2011 (http://www.
statmt.org/europarl/) and were preprocessed the same way as the training cor-
pus.

The “random,” fixed permutation ρ was implemented as a rotate by one
coordinate position. This is safe because the vectors themselves are random,
only one permutation is needed, and the permutation is iterated a few times at
most (much fewer than 10,000).

The experiment was programmed in Python and run on a laptop computer.
The following run-time statistics are from a 64-bit, 2.70 GHz (100 MHz clock)

http://corpora.uni-leipzig.de/download.html
https://pypi.python.org/pypi/Unidecode
https://pypi.python.org/pypi/Unidecode
http://www.statmt.org/europarl/
http://www.statmt.org/europarl/
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Intel processor, 4 cores and 32 GB of 1600 MHz memory (total). Computing a
10,000-dimensional Language Vector from a million bytes of text takes 14.5 s.
Computing the 10,000-dimensional Text Vectors for the 21,000 test sentences
and comparing them to the 21 Language Vectors, to make the confusion matrix,
takes 2 min. The run time for a round of experiments to make Table starting
with a random seed is just over 7 min.

5 Discussion

Computing with high-dimensional random vectors is the larger issue addressed
by this paper: what are the operations on the vectors, what is their algebra, and
what kinds of algorithms the algebra favors? Language identification provides
us with an easily understood example of the concepts involved.

The addition and multiplication operations on the vectors form an algebraic
structure that approximates a field, which is further complemented by a permu-
tation operation that distributes over both addition and multiplication. These
operations constitute a kind of Multiply–Add–Permute (MAP) algebra [15] that
seems particularly suited for modeling human cognition and language.

This style of computing goes back to Hinton’s Reduced Representation which
emphasizes the need to represent sets and their elements with vectors of equal
width [16], and to Smolensky’s Tensor Product Variable Binding which allows a
set of variable–value pairs to be encoded and superposed in a higher-order tensor
from which the individual constituents can be extracted [17]. These two ideas are
brought together in Plate’s Holographic Reduced Representation (HRR; [18,19]),
of which the present system is a special case. The idea is to work in a closed
system—namely, that the outputs of addition, multiplication and permutation
have the same dimensionality (and statistical distribution) as the inputs. The
term Vector Symbolic Architecture (VSA; [20]) refers to systems of this kind.

VSA systems use either multiplication or permutation for variable binding
because they are invertible and they distributes over addition. Here we have
encoded N -grams using both. First the letters are bound to their positions within
an N -gram with permutations and then the position-encoded letters are “bound”
to each other with multiplication—this latter “binding” is a more general map-
ping because it is not between variables and their values. When the N -gram
Vectors for a given text are superposed with vector addition, we get an N -grams
profile that can be compared to profiles of other text samples (see Fig. 1 and
Table 2).

The example of Table 3 is more subtle, where we query a Language Vector for
the letter that appeared most often after “th”. The solution can be understood
in terms of the vector algebra that makes use of both the inverse permutation
and the inverse multiplication. This kind of representation vaguely resembles
quantum superposition that allows all the superposed vectors to be operated on
in parallel and the results to be extracted with appropriate inverse operations.
The simplicity of the algorithm is worth pointing out.
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6 Future Work

Many adjustments can be made to improve the efficacy of Random Indexing on
language detection. The results of this paper are based mainly on letter trigrams.
However, it is a simple matter to add into the Text Vectors single-letter frequen-
cies and bigrams, for example. Also, the vector dimensionality can be reduced
to several thousands without markedly affecting the results. Early experiments
suggest that this method works well with encoding language information in mul-
tilingual texts, which is often much more difficult to do.

Because of the generality of Random Indexing on texts, any time series with
a well-defined “alphabet” can be encoded using this scheme. In this way, we
propose that our method can be used to do language detection in speech data,
addressing our original problem.

7 Conclusion

We have described the use of Random Indexing to language identification. Ran-
dom Indexing has been used in the study of semantic vectors since 2000 [6,7],
and for encoding problems in graph theory [10], but only now for identifying
source materials. It is based on simple operations on high-dimensional random
vectors: on Random Labels with 0-mean components that allow weak signals to
rise above noise as the data accumulate. The algorithm works in a single pass,
in linear time, with limited memory, and thus is inherently scalable, and it pro-
duces vectors that are amenable to further analysis. The experiments reported
in this paper were an easy task for a laptop computer.
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