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Abstract

Fuel cells are highly efficient and environmentally friendly energy con-

version devices that are receiving increasing attention and are steadily

moving toward commercialization. Fuel cells deliver electricity and heat,

based on the spontaneous electrochemical oxidation of fuels at the anode

and the reduction of oxygen at the cathode, without combustion. In many

ways, fuel cells are similar to batteries, although they do not require

recharging and operate as long as fuel continues to be provided. There

are four leading types of fuels reviewed in this chapter, proton exchange

membrane fuel cells (PEMFCs) operating on clean hydrogen, direct

alcohol (primarily methanol) fuel cells (DAFCs), solid oxide fuel cells

(SOFCs), and molten carbonate fuel cells (MCFCs). PEMFCs and DAFCs

normally operate at below 100 �C and are targeted primarily for transpor-

tation and mobile applications, while SOFCs and MCFCs, which run at

temperatures above 600 �C, can run on a wide variety of fuels and are

intended mostly for stationary combined heat and power applications.

This review is focused primarily on a description of each of these

technologies, with an emphasis on the materials used in the electrodes,

the electrolyte that separates them, and the current collectors.
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Introduction to Fuel Cells

Fuel cells are clean and highly efficient devices

that can convert the chemical energy of fuels,

such as methane, alcohols, diesel, syngas, and

H2, and oxidants such as air (or oxygen), directly

into electrical energy, without combustion (burn-

ing). In addition to their very high efficiency

(fuel cells are not limited by the Carnot cycle,

but rather involve direct electricity production

without combustion, with their efficiency defined

as ΔGrx/ΔHrx) [1, 2], these devices are environ-

mentally friendly in terms of pollutant emissions,

with no NOx or particulates released and only

small amounts of SOx produced under some

circumstances. As increasing energy demand is

one of the world’s major concerns, fuel cell tech-

nology represents a safe, highly efficient, and

green energy source that is a good replacement

for combustion-based technologies.

Fuel cells convert chemical energy to electric-

ity through electrochemical processes, very sim-

ilar to what occurs in a battery. In both cases, an

oxidation process occurs at the anode, a reduc-

tion reaction takes place at the cathode, the elec-

tron(s) move through an external circuit from

anode to cathode, and the electrolyte between

the anode and cathode transports a specific ion

from one electrode to the other to balance the

charge. In a battery, these reactions occur until

all of the electrochemically active materials at

the electrodes are consumed, and the battery then

needs recharging, a process that can take a sig-

nificant period of time. In contrast, in a fuel cell,

the reactants at both electrodes (fuels at the

anode and oxygen at the cathode) are continu-

ously supplied, and thus the fuel cell will con-

tinue to operate as long as the fuel (at the anode)

and the oxidant (at the cathode) are present,

similar to how energy is supplied in our existing

combustion-based infrastructure.

There are some common requirements in all

fuel cells. First, the electrolyte must be dense to

minimize fuel or oxygen crossover to the oppo-

site electrode, electron-blocking, so that

electrons move only through the external circuit,

ion conducting, and unreactive with the

electrodes. In contrast, the electrodes must be

porous to ensure a high active surface area and

to expedite the transport of fuel and air to the

reaction sites and remove the reaction products

away from them, electrocatalytic toward the

reactions of interest, and chemically stable

under either fuel or air conditions and when in

contact with the electrolyte. A key overarching

driver is that these critical components of all fuel

cells must be as low in cost and as durable as

possible.

The performance of all fuel cells is commonly

described by a plot of cell voltage (V ) vs. cell

current (I), as shown in Fig. 1, with the product,

V � I, being the fuel cell power, which can range
from mW to MW. The cell voltage under equi-

librium (no current flowing) is often termed the

open circuit voltage (OCV) of the equilibrium

voltage, obtained using the Nernst equation for

the full fuel cell reaction. Once current begins to

flow, various processes cause a loss of voltage,

which ultimately results in a maximum in the

power delivered at a particular combination of

V and I (Fig. 1).
All electrodes suffer from activation losses,

which are related to the intrinsic kinetics of the

fuel oxidation and oxygen reduction reactions

and defined by the activation energy barrier and

the reaction mechanisms [1, 2]. The more cata-

lytic the electrodes are and the higher their real

surface areas, the lower the activation losses will
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Fig. 1 Fuel cell performance plot, showing the three

sources of losses and the resulting power plot (voltage:

solid line; power, dashed line)
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be. At low currents, activation losses will domi-

nate the fuel cell power output, although reaction

kinetics will contribute to the cell performance at

all currents. It will be shown in the sections

below that significant research has been

undertaken to identify the best catalysts for fuel

oxidation and oxygen reduction, with oxygen

reduction normally being the more sluggish pro-

cess. Also, major efforts have been made to

increase the dispersion of electrocatalysts to

ensure the maximum active surface area.

All cells also suffer from ohmic losses, arising

from the resistance of the electrolyte (separator),

related to its intrinsic ionic conductivity and

thickness, as well as from the resistance of elec-

trode contacts and interfaces within the cell.

Thus, efforts have been focused on identifying

new electrolytes with higher ionic conductivities

and on improved current collectors that do not

form an oxide at the interface with the electrodes.

Higher temperatures normally serve to lower the

ohmic losses.

Finally, at high current densities, all fuel cells

can suffer from transport losses, termed “concen-

tration overpotentials” or “concentration losses.”

This is due to limitations in the mass transport of

oxygen, most typically, or fuel to the active sites,

products away from the electrodes, or ion trans-

port within the electrode structure. Once again,

higher temperatures and concentrations of the

reactants serve to increase the limiting currents

and thus minimize concentration or diffusion

losses in operating fuel cells.

In order to produce high power outputs, single

cells are connected in series with each other to

construct fuel cell stacks. The current collection

from each cell is achieved by using carbon or

metallic current collectors at both sides of the

cell, known as interconnects, bipolar plates, or

current collectors.

In order to maximize fuel cell performance

and its associated power output, research and

development efforts have been focused heavily

on minimizing the losses shown in Fig. 1. This

includes the careful selection of the most cata-

lytic electrode materials under the specific

conditions of operation of the fuel cell (type of

fuel, temperature, etc.) and optimizing the

porosity of the electrode structures to minimize

mass transport effects and to maximize active

surface areas. Also, new electrolyte materials

are being developed that have a high ionic con-

ductivity to minimize ohmic losses, while

nanoengineering is being utilized to make elec-

trolyte layers as thin as possible and yet durable.

Therefore, this review is focused primarily on

recent developments in the fuel cell

material area.

Fuel cells are commonly divided into five

different categories, based on the identity of the

electrolyte. These are polymer electrolyte (some-

times referred to as proton exchange) membrane

fuel cells (PEMFCs), solid oxide fuel cells

(SOFCs), molten carbonate fuel cells (MCFCs),

phosphoric acid fuel cells (PAFCs), and alkaline

fuel cells (AFCs). However, PAFCs and AFCs

are not presently being commercially developed,

and thus they are not included in the present

review. Furthermore, PEMFCs can be

subdivided into H2-fueled PEMFCs and those

operated on alcohols (methanol, ethanol), which

are called direct alcohol fuel cells (DAFCs),

systems that are actively being researched and

developed. For this reason, this review is focused

only on PEMFCs operated on H2 fuels (section

“H2-Fueled Polymer Electrolyte Membrane Fuel

Cells (PEMFCs)”), DAFCs (section “Proton

Exchange Membrane-Based Direct Alcohol

Fuel Cells (PEM-DAFCs)”), SOFCs (section

“Solid Oxide Fuel Cells (SOFCs)”), and

MCFCs (section “Molten Carbonate Fuel

Cells”).

H2-Fueled Polymer Electrolyte
Membrane Fuel Cells (PEMFCs)

Introduction

Polymer electrolyte membrane fuel cells

(PEMFCs) are also known as proton exchange

membrane fuel cells, devices that run at

60–100 �C and are able to convert the chemical

energy of H2 and O2 to electricity with electrical

efficiencies up to 60% in practice. H2 is used as

the fuel for PEMFCs because of its high energy
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density of 33 kWh/kg and also as hydrocarbon

fuels are not suitable for PEMFCs. Further, the

product of a conventional PEMFC, running on

H2 and air, is environmentally friendly, being

water, which can also be regenerated in an elec-

trolysis cell, running on renewable energy.

Similar to all fuel cells and as shown in Fig. 2,

a typical state-of-the-art PEMFC consists of

three layers, two catalyst layers (CLs), and a

polymer electrolyte membrane (PEM) separator,

which separates the two CLs. On the other side,

each CL is attached to a microporous layer

(MPL) which is connected to a gas diffusion

layer (GDL) and then to a bipolar plate (bipolar

plates are used when multiple single fuel cells are

stacked in series). Without including the flow/

bipolar plates, these components (PEM, CLs,

MPLs, and GDLs) are collectively referred to as

the membrane electrode assembly (MEA), which

is the core component of a PEMFC (Fig. 2).

During operation, humidified H2 flows through

the channels of the bipolar plate, diffusing

through the anode GDL and MPL and then the

anode catalyst layer (ACL), while humidified O2

or air flows through the GDL and MPL at the

cathode side and then into the cathode catalyst

layer (CCL).

At the anode catalyst layer (ACL), hydrogen

is oxidized, according to the electrochemical half

reaction (1):

2H2 ! 4Hþ þ 4e� E0 ¼ 0V ð1Þ
The generated protons (hydrated) are

transported through the electrolyte membrane to

the cathode catalyst layer (CCL), where they

react with oxygen (Fig. 2) and the electrons

released by reaction (1) (and passed through the

external circuit) to form water, as shown in Reac-

tion (2):

O2 þ 4Hþ þ 4e� ! 2H2O E0 ¼ 1:23V ð2Þ
When H2 and O2 are consumed in a PEMFC,

electrical power, heat, and pure water are

generated, with the overall reaction given in

Reaction (3):

2H2 þ O2 ! 2H2O ð3Þ
The H2O formed at the cathode is removed

either via the cathode flow channels by excess O2

or air, or through the PEM (Nafion) membrane to

the anode side, and is then carried out of the cell

by the excess H2 flow (Fig. 2).
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Fig. 2 Cross section of an

H2–air polymer electrolyte

membrane fuel cell

(PEMFC), labelling each

component on the anode

side (the same layers are

present at the cathode)
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Polymer Electrolyte Membrane
Separator

Nafion®

Various polymer electrolyte materials have been

developed for PEMFCs to satisfy the need for

both high ionic conductivity and chemical and

electrochemical stability under PEMFC

operating conditions [3]. The separator must

also serve as a pinhole-free gas separator

between the anode and cathode, preventing the

mixing of the fuel and oxidant.

The most common material used in PEMFCs

today is poly(perfluorosulfonic acid) (PFSA),

which exhibits very high proton conductivity.

Nafion® is the most commonly known commer-

cial brand, with its molecule structure shown in

Scheme 1. Nafion ionomers were developed by

the E. I. du Pont Company, with Nafion 117 refer-

ring to a polymer film having an equivalent

weight of 1100 and a nominal thickness of

0.007 in. (0.178 mm). Nafion is also a critical

component in both the anode and cathode CLs,

where it is mixed with the carbon-supported cat-

alytic Pt nanoparticles in order to facilitate pro-

ton transport to/from the catalytic sites [4–

9]. The cost of the Nafion membrane is estimated

as being 11% of the total cost of PEMFC stack

for the production of 500,000 systems/year [10].

Nafion consists of a polytetrafluoroethylene

(PTFE) backbone with attached sulfonic acid

functional groups (Scheme 1), giving it both

hydrophilic and hydrophobic characteristics.

The Teflon backbone also provides mechanical

strength, while the sulfonic acid (SO3
�H+)

chains provide charged sites for proton transport.

Proton transport in Nafion can take place by

the Grotthus (i.e., hopping of protons via the

water network) and vehicle (i.e., diffusion of

H3O
+ ions through the Nafion structure)

mechanisms [11, 12]. It is generally believed

that the probability of proton hopping in Nafion

is higher when it is hydrated. The water in the

swollen state is assumed to be more bulk like,

and therefore H-bond breaking and formation

between sulfonic groups and water can take

place. However, with low water content, proton

transport relies on the motion of water as well as

the polymer side chain motion [13]. Thus, to

maintain the high proton conductivity of Nafion,

it must be fully hydrated with liquid water.

The water content in Nafion, λ, is defined as the
ratio of the number of water molecules absorbed

to the number of charged sites (SO3
�H+). Based

on experimental results, λ can vary from almost

0 (completely dehydrated Nafion) to 22 (full

saturationundercertainconditions)[13,14].There-

fore, the water content in the membrane can be

estimated by knowing the humidity conditions

within the fuel. In general, the proton conductivity

of Nafion follows a linear trend with water content

and increases exponentially with temperature.

Figure 3 shows the relationship between the ionic

conductivity and the Nafion water content,

showing that the proton conductivity of Nafion

(up to ~0.1 S/cm) is highly dependent on water

content (the relative humidity of the operating

PEMFC) [2].

Since Nafion is the best candidate for

PEMFCs, it is necessary to understand its

n m
CF CF2 CF2 CF2

O

CF2

CFF3C O CF2 CF2 SO3H

Scheme 1 Molecular structure of Nafion

Fig. 3 Experimental data for ionic conductivity of

Nafion vs. water content at 303 K [2]. Reprinted with

permission of John Wiley and Sons
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morphology and structure in order to modify it

for optimum performance. While there are many

studies on characterizing the morphology of

Nafion, a universal structure for Nafion has not

yet been reported. This is due to the unique

random chemical structure of this ionomer that

is capable of organizing into ionic and crystalline

domains with significant spatial distribution.

Among the early concepts on the morphology

of Nafion was the work of Gierke et al. [15]

using small-angle X-ray scattering (SAXS) and

wide-angle X-ray diffraction (WAXD). Based on

their findings, the morphology of Nafion in the

hydrated state is described by a cluster-network

model, including ionic clusters that are approxi-

mately spherical in shape with a diameter of

4 nm. These ionic clusters are interconnected

by narrow channels with a diameter of 1 nm, as

shown in Fig. 4 [15–17].

Many other models have been proposed in the

literature to describe the morphology of Nafion

[18–23], with most agreeing that ionic groups

form clusters in the polymer network that allow

for significant swelling and efficient ion trans-

port. However, further studies have suggested

that structural reorganization occurs during

swelling in order to keep constant the specific

surface (area of polymer–water interface per

polar head) with increasing cluster size [24].

As Nafion is one of the key components of the

CLs, its morphology in the CLs, the thickness of

Nafion covering the electrode material, and the

optimum concentration for enhancing the ionic

conductivity are critical factors to CL

performance. The hydrophilic/hydrophobic

characteristics of Nafion likely produce different

adsorption modes and coverages of the catalyst

particles under different operating conditions in

PEMFCs [25]. PEM/catalyst interfaces were

experimentally monitored using idealized layers

of Nafion on glassy carbon and Pt surfaces [26],

showing the presence of discrete hydrophobic

and hydrophilic regions within the Nafion layer.

Nafion’s hydrophobic regions were shown to be

preferentially oriented toward Pt, and a three-

layer Nafion structure was observed in contact

with glassy carbon. Since the nanostructure of

the Nafion ionomer in the CL can differ from

that in the bulk membrane, the proton conduction

mechanism may also be different [27].

DuPont’s Nafion® is the industry standard

material for forming the ion permeable

membranes used in PEMFCs. The description

of the manufacturing process is based on patents

and publicly available information [28]. The

non-reinforced Nafion membranes are produced

by extrusion cast and dispersion cast methods.

The extrusion cast membranes are melt extruded

from perfluorosulfonyl fluoride resins, followed

by hydrolysis and acid exchange steps.

Dispersion-cast films are formed directly from

solutions of Nafion in water and alcohol by a

coating process onto an inert PTFE backing

film. These membranes are known to be the

new generation products, formed at lower

processing costs. The dispersion is casted on a

polymer belt from which the film can be easily

released (e.g., PTFE). The film is formed by

Fig. 4 Cluster-network model for the Nafion structure in hydrated state [15]. Reprinted with permission from Elsevier
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evaporating the liquid dispersion medium in two

steps, heating at a temperature below the coales-

cence temperature, i.e., less than 100 �C, and
then curing by heating to above the coalescence

temperature [28].

Nafion is also a key component of the CLs in

PEMFCs, serving to extend the region of proton

transfer beyond the CL/Nafion separator inter-

face. Nafion dispersions are available from both

DuPont and Ion Power. The dispersions consist

of PFSA polymer, water, and low-molecular

weight alcohols. DuPont’s product line includes

5, 10, and 20% PFSA with 34–90% water and

1–50% volatile organic compounds (VOCs) by

weight (5 and 15% dispersions, by weight, are

available from Ion Power). These PFSA

solutions are typically further diluted and mixed

with carbon-supported catalyst materials for the

fabrication of the PEMFC CLs.

As mentioned earlier, the proton conductivity

of Nafion depends on the relative humidity. This

shortcoming limits the operating temperature of

PEMFCs to temperatures below 80 �C, and

humidification of inlet gases is required to ensure

that the membrane remains fully hydrated. On

the other hand, the pores of the CLs and the

GDLs, as well as gas flow channels, may be

flooded by excessive liquid water (i.e., from

humidification and from the electrochemical pro-

duction of water at the cathode), resulting in a

higher mass transport resistance. Therefore, opti-

mization of water management is essential to

maintain a balance between membrane drying

and water flooding to prevent fuel cell

degradation [29].

The chemical degradation of Nafion under

PEMFC-operating conditions is another prob-

lem, related to the formation of hydrogen perox-

ide during oxygen reduction, which can then

generate active radicals (OH•, OOH•) in the pres-

ence of contaminating metal cations (e.g., Fe2+,

Pt2+) [30]. A study of Nafion degradation under

normal fuel cell conditions [31] showed that

H2O2 exposure results in cleavage of the sulfonic

groups from the side chain and may also cross-

link the sulfonic sites on the side chains (S–O–S

bond, SO2–O–SO2, and/or SO2F) in the Nafion

structure. In agreement with other studies, the

exposure of Nafion to H2O2 may lower the

H-bond strength between water molecules,

water uptake [32], and conductivity of Nafion

membranes. Metal cations, which are attracted

to the sulfonic sites in the Nafion polymer and

decrease its proton conductivity, can be

generated from low concentrations of impurities

in the gas stream or during cell preparation. The

ionomer in the membrane separator appears to be

more prone to degradation than the Nafion in the

anode and cathode catalyst layers, initiating

problems at the membrane–electrolyte interface

[33, 34].

In recent years, chemically modified

membranes have been developed by DuPont,

which show lowered fluoride release rates and

longer accelerated lifetimes [30]. In these

modified polymers, the number of reactive end

groups has been reduced by an alternative syn-

thesis route. Also, it is reported that

non-sulfonated aromatic membranes, such as

polyether ether ketone (PEEK), are less prone

to chemical attack by radicals, compared to

sulfonated compounds [35].

During the MEA manufacturing process,

pinholes and foreign materials can be introduced

into the Nafion membrane, which can initiate

cracks and lead to significantly reduced lifetimes

[36]. Under operating conditions, nonuniform

contact pressure [36], high differential initial

gas pressure over the membrane, punctures, and

fatigue from stresses occurring during tempera-

ture and humidity cycling [37, 38] can all lead to

mechanical failure of the membrane.

While Nafion membranes meet the mechani-

cal stability requirements in a PEMFC, a well-

controlled manufacturing process is necessary,

especially when using very thin membranes

(25 μm). Reinforcement of the membrane with

materials such as porous polyethylene or PTFE

[38, 39] has been done to enhance the dimen-

sional stability and lower the shrinkage stress in

Nafion membranes during drying.

Some H2 can diffuse through the Nafion mem-

brane to the cathode, where it can be oxidized,

releasing protons that are transported back to the

anode, where they can be reduced to H2. This

current is directly proportional to the crossover

Electrochemical Energy Production Using Fuel Cell Technologies 1735



rate of H2 through the membrane. For a Nafion

112 membrane (50 μm), a crossover current of

1 mA cm�2 at atmospheric conditions is reported

for the beginning of life, corresponding to

2.6 � 10�13 mol H2 cm�1 kPa�1 s�1. End-of-

life conditions are considered to correspond with

values in the order of 13 mA cm�2 bar�1

[40]. The permeability of membranes for oxygen

is usually half of the hydrogen permeability

[36, 41].

Alternative Polymer Electrolytes
To overcome some of the limitations of Nafion,

other commercially available perfluorinated sul-

fonic acid (PFSA) materials have also sometimes

been used, such as Flemion® and Aciplex®. In

addition, a number of new proton-conducting

polymer electrolytes are being developed, e.g.,

sulfonated PEEK, sulfonated polyimide [42], and

metal–organic framework materials [43], such as

Na3(2,4,6-trihydroxy-1,3,5-benzenetrisulfonate)

[44], LaH5(1,2,4,5-tetrakisphosphonomethyl-

benzene)(H2O)4 and [Na3(2,4,6-trihydroxy-

1,3,5-trisulfonate benzene)]0.66[Na3(1,3,5-

benzenetriphosphonate)]0.34�0.75H2O [43].

PFSA membranes similar to Nafion, but with

modified and shorter chain lengths, have been

developed for higher temperature PEMFC

applications. Their improved performance is

attributed to an increased crystallinity and a higher

glass transition temperature [45, 46]. To allow

higher temperature operation, sulfonated hydro-

carbon polymers have been studied, including

PEEK, an aromatic semicrystalline polymer with

high thermal and chemical stability and good

electrical and mechanical properties [47, 48].

Polybenzimidazole (PBI) has received much

attention due to its ability to serve as a proton

exchange membrane and as a host in phosphoric

acid [49, 50]. Direct copolymerization of

sulfonated monomers has been used to synthe-

size sulfonated PBIs, and a relatively high con-

ductivity of 0.037 S cm�1 at 170 �C and 0% RH,

and promising single-cell performance, was

achieved [51].

Azole-containing and azole-functionalized

polymer systems are another category of anhy-

drous proton-conducting membranes [52], while

amphoteric nitrogen-containing heterocyclic

structures, which can serve as a solvent for

protons, were introduced by Kreuer

[11, 53]. These proton solvents have been com-

bined with acidic polymers to fabricate thin

films, serving as a source of protons. Various

types of azole-based polymer systems have also

been developed, with a proton conductivity that

depends on temperature and doping ratio [54–

57]. To avoid leaching of the dopant out of the

polymer membrane under operating conditions,

these heterocycles have been immobilized in the

polymeric network. As the azole groups are

attached to the polymer chains, the flexibility

and polymer chain movement become important

factors in controlling proton conduction.

Modifying polymer membranes with

materials that can increase thermal stability is

another attractive approach being used. Compos-

ite membranes are prepared by incorporating

filler materials into the polymer network

[58]. These fillers can improve the water uptake

and retention, leading to reasonable conductivity

at high temperature and low humidification. Inor-

ganic fillers, such as hygroscopic oxides (SiO2,

TiO2, ZrO2, Al2O3) [58, 59], clays (montmoril-

lonite) [60], zeolites [61], and mineral acids

(HCl, H3PO4) [58], have been used in these

types of polymeric electrolytes. Recently,

Nafion, doped with sulfonic acid-functionalized

graphene oxide, has been shown to exhibit

enhanced proton conductivity at 120 �C and

30% RH [62].

Despite these many efforts, however, none of

these ionomeric materials have shown better

cumulative properties as yet than Nafion. Thus,

Nafion is still the leading material of use as

separators and as the ionically conducting phase

in the catalyst layers within PEMFCs.

Catalysts Used in PEMFC Anodes
and Cathodes

In terms of large-scale commercialization of

PEMFCs, the manufacturing of catalysts at high

production rates, with high quality, and at low

cost is a key consideration [63]. However, at both

the anode and cathode, platinum (Pt), which is

very costly, is still the material used to catalyze

1736 V. Birss et al.



the redox reactions (Reactions (1) and (2))

[64]. In order to decrease the cost and to increase

its utilization, Pt is normally in the form of

nanoparticles (2–6 nm, having a high mass-

specific catalytic surface area), deposited on a

carbon support, which has a relatively low cost

as well as a high electronic conductivity, surface

area, and porosity.

While hydrogen oxidation (HOR, Reaction

(2)) at Pt is a very rapid process, the catalytic

activity of Pt toward the oxygen reduction reac-

tion (ORR, Reaction (2)) is still quite sluggish

(~10-6 lower reaction rate) [64, 65]. Pt-based

alloys, such as PtNi, PtCo, and PtCoMn, have

been developed to improve the ORR activity by

up to ten times higher in some cases [63, 64,

66]. The catalytic activity of Pt-based alloys is

also dependent on the structure and/or morphol-

ogy of the alloy nanoparticles. For example,

core-shell nanoparticles are very promising,

with the non-Pt metal normally going into the

core, which influences the catalytic activity of

the surrounding thin Pt shell in three possible

ways, electronically, through strain effects, and

via bifunctional mechanisms [63]. However, the

dissolution (leaching) of the less noble metal

from the core of these nanoparticles can deterio-

rate the performance of the fuel cell. Prior

to loading into a PEMFC, de-alloying

(or leaching) and/or annealing of the particles

has been shown to be a successful approach to

further enhancing both the activity and stability

of Pt-alloy catalysts [63, 64, 67].

Challenges involved in the development and

commercialization of high-performance

PEMFCs include the need to lower the manu-

facturing costs and enhance the long-term dura-

bility [68–75]. In a PEMFC (Fig. 2), the Pt

catalyst, used at both electrodes, is much more

costly than all of the other components. There-

fore, it is essential to cut down the usage of Pt in

the CLs while also maintaining high power den-

sity, with the goal being to lower the Pt loading

to 0.15 mg/cm2 of the MEA and also simulta-

neously increase its power density to 0.8–0.9 W/

cm2 at a cell voltage of �0.65 V [76]. The US

Department of Energy (DOE) has established

technical targets for 2017 for the lowering of

the total Pt group metal (PGM) loading to

0.125 mgPGM/cm
2 of the MEA in PEMFCs or

0.125 gPGM/kW (the same as the 2020 targets

[77]), a significant decrease over current Pt

loadings of 0.4–1.0 mg/cm2 [78]. These targets

can be realized by enhancing the utilization of

the Pt-active surface area at high current

densities.

The use of non-noble metal catalysts is also

being developed in order to reduce the cost of

PEMFC manufacturing [79, 80]. Examples of

these electrocatalysts include non-pyrolyzed

and pyrolyzed transition metal nitrogen-

containing complexes, conductive polymer-

based catalysts, transition metal oxides/

carbides/nitrides/oxynitrides/carbonitrides, etc.

[79]. These catalysts can be carbon supported or

nonsupported. Of these, carbon-supported

pyrolyzed transition metal nitrogen-containing

complexes have shown promising ORR catalytic

activity [79]. Even so, the catalytic activity of

these electrocatalysts is still lower (<1/10) than

that of commercially available Pt/C catalysts,

and their long-term stability is another challeng-

ing issue for implementation in PEMFCs.

Catalyst Supports for PEMFCs

Carbon Support Materials
As mentioned in section “Catalysts Used in

PEMFC Anodes and Cathodes,” the most typical

support used for the catalyst at both the anode

and cathode in PEMFCs is carbon black, with

Vulcan carbon XC-72R (VC), Black Pearls BP

2000, and Ketjen Black Intl, being the most

widely used [81–83], due to their low cost and

high availability. Carbon blacks are normally

produced by the pyrolysis of hydrocarbons and

have been used almost exclusively as catalyst

supports in low-temperature PEMFCs [84]. VC

is a typical example of a carbon black with a

relatively high surface area, but it is microporous

(<2 nm pore size) in nature. Thus, the loaded Pt

nanoparticles are only present on the outer sur-

face of the VC particles (size: ~30 nm) (Fig. 5a,

b), making them unstable and prone to dislodge-

ment and agglomeration [85]. As there is likely a
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wide range of textural pores between the VC

particles, any aggregation of the VC particles

may bury some of the Pt nanoparticles and also

block gases and protons from reaching them

[86]. This will inevitably result in low utilization

of the loaded Pt nanoparticles. Thus, a range of

other carbon support materials have been

explored.

Due to their high graphitic nature, carbon

nanotubes (CNTs) are more stable and conduc-

tive than are carbon blacks. Wang et al. com-

pared the electrochemical surface oxidation of

Pt-loaded Vulcan carbon XC-72 (VC) to that of

Pt-loaded multiwalled CNTs and found that

CNT-supported Pt is more stable than

VC-supported Pt [87]. However, due to their
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Fig. 5 Transmission electron microscopic (TEM)

tomograms of 20% Pt-loaded (a and b) Vulcan carbon

(VC), (c) ordered mesoporous carbon (OMC), and (d)
colloid-imprinted carbon (CIC) and their (e) oxygen

reduction activity and (f) Tafel plots in room temperature

O2-saturated 0.5 M H2SO4 at 10 mV/s and 1000 rpm. The

red dash curves in (a and b) circled the cross section of

individual VC particles, showing their outer surfaces

reside the Pt nanoparticles, while Pt nanoparticles are

well distributed in the pores of (c) OMC and (d) CIC

[85]. Reprinted with permission of Elsevier
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nonpolar surfaces, CNTs may not be good for the

binding of the Pt nanoparticles [84], leading to

efforts to modify the CNT surface to improve the

bonding to Pt [84] without affecting the conduc-

tivity and corrosion resistance of the CNTs

[88]. In 2013, chemically modified single-wall

CNTs were used to support Pt for use in both

CLs of PEMFCs, resulting in a decrease in the Pt

loading to 0.06 mg/cm2 MEA, in accordance

with the US DOE 2017 targets [78]. However,

due to their unique shape, it may be difficult to

control the nature of the pores between individ-

ual CNTs and retain optimal pathways for gas

diffusion through the CLs [88].

Another class of carbon that has been

investigated as a PEMFC catalyst support is

ordered mesoporous carbon (OMC) [85, 86, 89,

90]. The high surface area of the OMCs promotes

good dispersion of Pt nanoparticles, and the

ordered mesopores (2–50 nm in size) could be a

benefit electrochemically (Fig. 5c). Using hexag-

onal mesoporous silica (HMS) with different

pore sizes, a series of OMCs with different car-

bon “nanostring” (wall) diameters were studied,

showing that the thinner the nanostring, the

poorer the ORR activity, attributed to ohmic

losses [91]. At the same time, the

OMC-supported catalysts (Pt/OMC) showed bet-

ter ORR performance at lower overpotentials due

to the smaller particle size of Pt on the OMCs,

while, at higher overpotentials, the ORR perfor-

mance of Pt/OMC was worse than Pt/Vulcan

carbon (Fig. 5e, f), due to significant mass trans-

port losses through the CL [85]. It was reported

that OMC pores 3–8 nm in size may allow for the

diffusion of reactants but restrict ionomer access

to the Pt nanoparticles contained in the pores

[84]. Therefore, for the use of the OMCs as

catalyst supports in PEMFCs, larger pores and

more conductive carbon walls would be required.

There are various methods used to fabricate

mesoporous carbons [92–95], including colloid

(e.g., silica) imprinting of various carbon

precursors, including mesophase pitch

(MP) [90, 96], followed by carbonization and

then removal of the colloid. Colloid-imprinted

carbons (CICs) formed in this way have a

uniform pore size distribution and dense (thus

very conductive) pore walls (Fig. 5d), making

them promising catalyst supports [85, 90, 97,

98]. CICs with a range of pore sizes

(15–80 nm) and varied pore depths have been

demonstrated to be quite active for oxygen

reduction in acidic solutions (e.g., Fig. 5e, f)

[85, 90, 97, 98]. In addition to the high-surface

area carbons discussed above, other types of car-

bon supports, such as carbon nanofibers

[99, 100], carbon gels [84], metal oxides

[100, 101], and so on [100], may be of use.

Each of them has been shown to have advantages

and disadvantages for PEMFC applications

[84, 100, 102–104].

Other Catalyst Supports
A key problem of carbon is its propensity toward

corrosion [105], which is thermodynamically

feasible even at very low potentials and is thus

a serious problem at the cathode, where

potentials of up to 1.4 V vs. SHE can be reached

[106]:

Cþ 2H2O CO2 þ 4Hþ þ 4e� E0 ¼ 0:207 V

ð4Þ
The corrosion of the carbon supports is

believed to be accelerated in the presence of Pt

and, in turn, carbon corrosion causes a loss of

active Pt nanoparticle surface area, thus decreas-

ing the ORR activity in the CCL [107]. Therefore,

it is also important to enhance the corrosion

resistance of the carbon supports, which can be

realized by surface functionalization or doping

with boron and phosphorous [108, 109], as well

as by heat treatment [107, 110–112].

Because of the corrosion susceptibility of car-

bon supports, there is great interest in employing

a range of metal oxides, which are thermody-

namically more corrosion resistant than carbon

samples [101]. Some of the metal oxides that are

promising as catalyst supports in PEM fuel cells

include titanium oxide (TiOx), tungsten oxide

(WOx), molybdenum oxide (MoOx), ruthenium

oxide (RuOx), tin oxide (SnOx), cerium oxide

(CeOx), manganese oxide (MnOx), and various

mixed metal perovskite oxide (ABO3) [101, 113,

114]. At the same time, metal oxides normally
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have a lower electric conductivity than do carbon

supports. However, doping with other metal ions

or generating oxygen vacancies can be used to

increase the conductivity of insulating oxides,

such as Ti4O7 (up to 1000 S/cm) and Nb-doped

TiO2 (up to 1.5 S/cm) [113].

Hybrid composites are also being considered

in order to obtain property-optimized catalyst

supports. For example, CeO2 nanocubes/

graphene oxide composites have been

investigated as catalyst supports in PEMFCs

[115], where CeO2 serves as the radical scaven-

ger to enhance the stability of the CLs. WO3/VC,

used as a support for Pd nanoparticles, was found

to show good ORR activity [116], while ultrathin

TiO2-coated multiwalled carbon nanotubes

(MWCNTs) show excellent conductivity and

also enhance the ORR activity and stability of

Pt nanoparticles [108].

Catalyst Layers (CLs)

The anode and cathode catalyst layers (CLs,

Fig. 2) in PEMFCs contain a mixture of both

the carbon-supported Pt catalyst and the electro-

lyte phase, typically Nafion, which is deposited

on the surface of the Nafion membrane, followed

by hot pressing, which allows the softened

Nafion membrane surface to fuse into the

CL. Notably, the specific Nafion content in the

CL has a significant impact on the catalyst activ-

ity and thus on the fuel cell performance [6–

9]. This is because, in a CL, the electrochemical

reactions ((1) and (2)) can occur only when the

gas (H2 or O2), liquid (water for H+ transport),

and electronically conducting and catalytic solid

(e.g., Pt supported on carbon) are in direct con-

tact, called the triple phase boundary (TPB) [6, 9,

70, 71].

As an example, Fig. 6a shows the normally

accepted TPB model for a PEMFC cathode,

where the TPB should be as long as possible.

Figure 6b shows a schematic of the cathode CL

that is probably closer to reality [117], where

water or hydrated Nafion covers the hydrophilic

catalyst surface. O2, dissolved in the aqueous

phase, can then reach the catalyst surface and

react with the protons and electrons to form

water (Reaction (2). Similarly, in the ACL, H2

moves through the aqueous phase and reacts on

the catalyst surface, forming protons, which are

transferred to the cathode by the hydrated Nafion

and electrons, conducted through the catalyst and

carbon support to the cathode via the external

circuit (Fig. 6).

In order to achieve high utilization of the Pt

nanoparticles, the number of TPB sites (Fig. 6a),

or reaction zones (Fig. 6b), must be maximized,

realized through the high dispersion of Pt on the

carbon support and of Nafion in the pores. Opti-

mal water management is also required within

the CLs, especially in the cathode CL, because

too much water in the CLs could block the

pathways for gases (O2 in CCL), termed

“flooding,” while too little reduces the proton

conductivity of Nafion. Thus, the surface wetta-

bility of the carbon supports used in PEMFC CLs

is critical to all of these objectives.
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Fig. 6 (a) Cartoon of the triple phase boundary (TPB)

and (b) the modified reaction zone in the catalyst layers

of a PEMFC where the hydrogen oxidation reaction

(HOR, Reaction (1)) and oxygen reduction reaction

(ORR, Reaction (2)) occur
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Gas Diffusion Layer (GDL)

A GDL is present on each side of a single PEM

fuel cell (Fig. 2). Normally, carbon fiber paper or

carbon fiber cloth is used as the GDL material

(Fig. 2) in order to support and protect the

CL-coated membrane and to collect the

electrons generated from the electrochemical

reactions in each CL (Reactions (1) and (2))

[118, 119]. These carbon fiber-based materials

contain pores that are tens to hundreds of

micrometer-size pores, which facilitate the mass

transport of humidified gases (Fig. 2) and provide

good conductivity for current collection. These

materials are normally treated with PTFE in

order to increase their hydrophobicity,

preventing water from being trapped within the

pores and impeding gas transport [72, 120].

Microporous Layer (MPL)

In the last decade, a microporous layer (MPL),

composed of carbon black or graphite particles

and PTFE beads, has often been placed between

the GDL and CL (at each electrode) in order to

improve mass transport and current collection

between these two layers. MPLs are also

believed to play an important role in maintaining

the water balance within the catalyst layers.

Recent research has shown that Nafion can also

be used as the binder in the MPL, replacing

PTFE, resulting in improved performance

[121]. In some manifestations, the MPL is con-

sidered to be part of the GDL, and thus the GDL

(composed of carbon fiber paper/cloth) is some-

times called a macroporous layer to distinguish

these two layers [120]. MPLs are commercially

available as a component of MPL-coated GDLs.

Bipolar Plates

The bipolar plates (Fig. 2) are typically

composed of polymeric graphite or a metal,

e.g., stainless steel, containing flow channels to

provide the desired flow field of hydrogen and

air at the anode and cathode, respectively

[122, 123]. The bipolar plate also functions as a

current collector and provides mechanical sup-

port to the MEA. In some cases, the flow

channels may not be a part of the plate. For

example, a three-dimensional (3D) fine mesh,

made of carbon-coated titanium, is used as air-

flow field at the cathode side of the PEMFCs in

the Toyota Mirai [124]. This novel design

promotes O2 diffusion and distribution within

the GDL and CCL, also preventing flooding

problems at the cathode.

Other Cell Components

During the operation of PEMFCs, ~40% or more

of the fuel energy is released in the form of heat

[2]. In order to maintain the temperature of

PEMFCs and prevent overheating, a cooling

plate, containing channels through which a cool-

ant flows, is often added to each cell. In most

cases, the channels are integrated with one or

both of the anode or cathode bipolar plates,

located on the side opposite to the reactant flow

channels.

Sealing materials (edge-sealing gasket), such

as polytetrafluoroethylene (PTFE) and silicone

rubber, are also a critical component of PEMFCs.

Sealing is essential for the prevention of reactant

gas leakage (e.g., fuel emitted to the air environ-

ment) and is also critical for performance stabil-

ity and enhanced lifetime [105, 125].

End plates are normally used in order to hold

the fuel cell assembly (Fig. 2) or a stack of fuel

cells together. As is commonly seen, the plates at

the two ends are held together with nuts and

bolts. These end plates also contain inlets and

outlets for both the oxidant (O2 or air) and fuel,

while also serving as the electrical leads needed

to connect the cells to the external circuit or load.

PEMFC Full System

As is the case for all fuel cell types, a complete

PEMFC system requires numerous other

components or subsystems in order to continu-

ously provide electric power. These include a
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fuel/oxidant supply, cooling subsystem, power

control, online monitoring, and so on. A fuel

supply subsystem includes, at a minimum, the

fuel (H2) tank, a flow control meter, a humidifier,

a pump to recycle the exhaust fuel from the exit

of fuel cell stack, as well as a tubing to connect

these components, with the same requirements

for the oxidant (O2 or air) supply subsystem. If

air is used, a pump is needed to compress air to

flow through a control meter, a humidifier, and

then into the fuel cell stack. If self-humidification

within the cells is used, the humidifiers can be

removed from the system, such as in the design

used in the Toyota Mirai PEMFCs [124].

The cooling subsystem normally involves at

least one pump to circulate the coolant as well as

a heat exchanger/radiator. The power control

system includes a DC/DC converter to maintain

a prescribed output voltage and/or a DC/AC

inverter to transform DC to AC power,

depending on the needs of the external load.

The complete full cell system is normally

operated using a control system, which adjusts

the operating parameters in order to generate the

desired power output. A control system should

have three main functioning components, sensors

(monitoring the conditions of fuel cells),

actuators (imposing changes to the fuel cell sys-

tem, e.g., switches, valves, etc.), and a central

control unit that mediates between the sensors

and actuators, in order to maintain the PEMFC

operating in a stable mode [2].

Proton Exchange Membrane-Based
Direct Alcohol Fuel Cells (PEM-DAFCs)

Although H2 is the preferred fuel for PEMFCs,

primarily because of its higher energy density

(32.7 Wh/g) and the high cell voltage that can

theoretically be obtained (1.23 V at 25 �C), the
use of H2 is associated with complexity in stor-

ing, handling, production, and transportation.

These are some of the factors that are driving

the use of other fuels [126], including organic

liquid fuels (OLFs). Of these, alcohols, such as

methanol and ethanol, are currently the most

promising, giving rise to direct alcohol fuel

cells (DAFCs). Methanol and ethanol are liquid

fuels of high volumetric energy density (Fig. 7)

[127] and are easy to handle and transport, espe-

cially compared to compressed gases, such as H2

or natural gas (NG).
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Compared to gasoline or diesel, methanol

and ethanol are available at a relatively

non-fluctuating cost per unit of energy; they are

not prone to ignition, have low volatility, and

remain in the liquid state over a broad range of

temperatures, from -98 to 65 �C for methanol

[128, 129] and from -114 to 78 �C for ethanol

[130]. Formic acid is also a promising nonflam-

mable fuel that is miscible in water over a broad

range of temperature (8–100 �C), with a high

energy density (2.1 kWh L�1), high theoretical

cell voltage (1.48 V), and fast oxidation kinetics.

A short discussion of direct formic acid fuel cells

is included in section “Direct Formic Acid Fuel

Cells (DFAFCs).”

Methanol can be prepared by the reduction of

CO2 or the oxidation of methane (NG). However,

it is most typically obtained from fossil fuel-

based syngas. It is believed that a long-range

solution for efficient energy storage and

overcoming global warming from the buildup

of greenhouse gases could be achieved by the

chemical recycling of CO2 [128, 129, 131,

132]. In this process, H2 obtained from water

electrolysis reacts with atmospheric CO2 that

was captured in order to produce methanol. The

limitation of this process is the absence of a low

cost and efficient technology for atmospheric

CO2 capture. However, if methanol can be pro-

duced efficiently on a large scale during this

process, it could replace oil and gas as both a

fuel and as a starting material for polymers and

other hydrocarbon-based products [128, 129,

131]. The conversion of NG to methanol is

even more convenient in terms of fuel transpor-

tation and storage. The photocatalytic conversion

of NG/CO2 and O2/H2O to produce methane,

methanol, and H2 is a very promising technology

that has attracted significant attention recently

[131–134].

Methanol and ethanol can also be produced

from renewable sources, such as biomass,

although the technology associated with

bioethanol production is more mature

[135]. Bioethanol can be produced using sugar-

cane, corn, beetroot, wheat, soybean, low-grade

widely available cellulose containing organic mat-

ter, woodchips, bagasse (dry pulpy residue left

after the extraction of juice from sugar cane),

waste from agro-industries, and organic fractions

from municipal waste or forestry residues

[136]. Although bioethanol can be easily produced

from food crops by fermentation, the production of

ethanol from non-edible lignocellulosic biomass

feedstock, such as forest residues, industrial

waste, and grass or trees grown specifically for

this purpose, is gaining momentum [137].

Alcohol fuel can be used, either after onboard

reformation or directly, in reformed alcohol fuel

cells (RAFCs) or in direct alcohol fuel cells

(DAFCs), respectively [138], as shown in

Fig. 8. In comparison with combustion engines,

onboard reformers operate at lower temperatures

(250–300 �C), produce sulfur-free hydrogen with
high efficiency (80–90%) [138], and have a low

probability of formation of NOx and SOx.

In comparison with DAFCs, although RAFCs

offer the use of small PEMFCs stacks that have a

high efficiency and improved operation at low

temperatures, they also have serious

disadvantages. In RAFCs, the PEMFC stacks

require a supply of H2 with very low CO content

(<20 ppm) in order to avoid poisoning of the

anode catalyst. In order to purify the hydrogen,

an array of fuel processors is necessary (Fig. 8)

[139], which is a challenge for the production

and design of a compact and user-friendly fuel

cell [127, 139]. Moreover, since the reformers in

RMFCs operate at higher temperatures, the

RMFCs require heat management and insulation.

In the case of DAFCs, the direct feed of the

alcoholic fuel to the PEMFC stacks cuts out the

reformer cost, heat management, and design

problems, which makes DAFCs more favorable,

especially for portable applications. In 2004,

15 companies were engaged in the development

of DMFCs [140], with more companies

participating in DAFC development in the last

decade.

Components and Reactions in Direct
Alcohol Fuel Cells

The overall structure and composition of a

DAFC are essentially the same as in conven-

tional PEMFCs (section “H2-Fueled Polymer

Electrolyte Membrane Fuel Cells (PEMFCs)”),
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and thus this will not be discussed again here. In

general, DAFCs consist of a polymer electrolyte

ion exchange membrane (e.g., Nafion) placed

between the anode and cathode, with each elec-

trode consisting of a catalyst layer, CL (normally

noble metal-based nanoparticles, supported on

various forms of high-surface area carbon), a

gas diffusion layer (GDL), and a backing layer,

and typically operate in the 60–80 �C tempera-

ture range. As explained in section “Catalyst

Layers (CLs),” the CLs are composed of a mix-

ture of three components, the ionomer (ionic

conductor, e.g., Nafion), carbon (electronic con-

ductor and catalyst support), and the

electrocatalyst (normally Pt-based materials).

The diffusion layer is usually a mixture of carbon

and polytetrafluoroethylene (Teflon®), since the

hydrophobic properties of these materials are

needed to remove water from the cathode, to

transport O2 to the catalytic sites and to facilitate

the release of CO2 from the anode [141], as

discussed in section “Gas Diffusion Layer

(GDL).” In DAFCs, alcohol/H2O mixtures are

fed directly to the anode. In the air-breathing

membraneless micro-DMFC, an alcohol/H2SO4

(or phosphate buffer) mixture is fed to a channel

in which the anode is at the base and the two

cathodes are at the side of the channel [142].

The simplest alcohol, methanol, is oxidized at

the anode in a direct methanol fuel cell (DMFC)

to form carbon dioxide, protons, and electrons,

according to the reactions shown in Fig. 9

[143]. In the case of direct ethanol fuel cells

(DEFCs), the main oxidation products are acetal-

dehyde and acetic acid, due the low probability

of C ̶ C bond breakage at low temperatures [144].

As in PEMFCs, the protons generated at the

anode pass through the proton exchange mem-

brane (under the electric field) and combine with

O2 (from air) and electrons at the cathode, reduc-

ing O2 to water. The overall reactions within a

DMFC and DEFC, based on the complete oxida-

tion of the fuel at the anode, are given in

reactions (5) and (6) [136, 145].

CH3OHþ3=2O2 !CO2þ2H2O

Ecell ¼ 1:21V½ � ð5Þ

CH3CH2OH þ 3O2 ! 2CO2 þ 3H2O

Ecell ¼ 1:14 V½ � ð6Þ

As Fig. 9 shows, one problem in a DMFC is

that methanol can cross the Nafion membrane,

Fig. 8 Configuration of an electrical generator equipped with a liquid fuel processor and PEM fuel cell [139]. Reprinted

with permission of Elsevier
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moving from the anode to cathode side, which

leads to undesirable results, such as a lower

(<0.8 V) open circuit potential (OCP), O2 con-

sumption by direct reaction with methanol,

cathode catalyst poisoning by the CO intermedi-

ately generated, and a lower fuel utilization effi-

ciency. In comparison with methanol, ethanol

has a lower permeation rate through the Nafion

membrane and thus exhibits lower crossover

rates [146]. Section “Catalysts Used in PEMFC

Anodes and Cathodes” shows a variety of

cathode catalyst materials for PEMFCs, which

are normally also suitable for DAFCs. In

DAFC, the cathode catalysts are also expected

to be tolerant to the fuel oxidation. Alcohol

crossover in DAFCs depends on several factors,

including the nature of the membrane material,

its morphology, and its thickness; a detailed

discussion of the membrane materials is given

in section “Polymer Electrolyte Membrane

Separator.” Also, the extent of this problem

depends on the fuel concentration, the fuel cell

operating temperature, and the anode activity

[146, 147].

Effect of DAFC Operating Conditions
on Performance

DAFCs can be categorized as active or passive

systems, according to the fuel delivery and

handling process employed. In passive systems,

very few external devices are needed for

pumping methanol or blowing air into the cell,

as oxygen diffuses into the cell by the

air-breathing action of the cell, and the fuel

diffuses from a feed container to the anode,

driven only by concentration gradients

[148, 149]. Even though passive systems would

result in a minimum power loss and a smaller

system volume, they exhibit lower performance

and involve less control of the operating

conditions (temperature, fuel flow rate, and

concentrations) compared to active

systems [148].

A very detailed study was carried out on the

effect of cell temperature, fuel (methanol) con-

centration, cathode humidification temperature,

fuel flow rate, and oxidant (air and pure O2)

flow rate on the performance of a single

Fig. 9 Schematic drawing showing the operating principles of a DMFC

Electrochemical Energy Production Using Fuel Cell Technologies 1745



DMFC [150]. Figure 10 shows the polarization

curve obtained at various operating temperatures,

while the other variables were fixed. Even though

higher temperatures are known to increase the

electrochemical kinetics of both the fuel oxida-

tion and oxygen reduction reactions, there are

some negative effects, such as a decrease in the

oxygen partial pressure and an increase in the

rate of fuel and water crossover from the anode

to the cathode [150, 151]. The enhancement

effect of temperature was found to be significant

up to 70 �C, with no further enhancement at

higher temperatures. The negative effect of

increasing temperature was observed only at

temperatures �70 �C, especially at high cell

potentials (lower currents).

Our study, and others [149–152], showed that

the optimum alcohol concentration is 1–2 M in

water, especially when air is used at the cathode

side. At concentration below 1 M, the anode

experiences mass transport limitations (Fig. 11),

while at concentrations>2 M, the sharp decrease

in the cell performance was attributed to the high

rate of methanol crossover. Figure 11 shows that

when the airflow rate was increased from 600 to

1200 sccm, the drop in the cell performance with

increasing methanol concentration (>2 M)

became less severe [150]. By replacing air with

pure oxygen, both at a flow rate of 600 sccm, the

cell performance remained almost constant with

a minimum effect of methanol crossover on the

cell performance [150]. These results reveal that

the problem of fuel crossover depends not only

on the anode conditions (concentration and flow

rate) but also on the cathode [150].

The fuel and oxidant flow rate also has a

tremendous impact on DAFC performance. A

higher fuel flow rate improves the performance

by suppressing the fuel starvation (reaching lim-

iting currents at low cell potentials), diffusion

resistance, and accumulation of CO2 gas

bubbles [148, 150]. Similarly, on the other

side of the cell (cathode), increasing the oxidant

flow rate (air) can enhance the cell performance

up to an optimum value (800 sccm), as a further

increase of flow rate will negligibly change the

oxygen concentration [150]. Also, the oxidant

flow rate plays a crucial role in keeping the

cathode side of the DMFC at an optimum

hydration condition; as at low flow rates, the

cathode can be flooded, while at high flow rates,

it could dry out.
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Methanol and Ethanol Oxidation
Mechanism

In order to improve the performance of DAFCs,

understanding the reaction mechanism is very

important to help select and design the best cata-

lytic materials at each electrode. Methanol oxi-

dation is believed to follow a dual pathway

mechanism on Pt catalysts [153–158]. One path-

way proceeds via CO formation, followed by its

subsequent oxidation to CO2, as shown in Fig. 12

[156], whereas the second pathway proceeds

through the formation of soluble intermediates,

such as formaldehyde and formic acid, which can

subsequently oxidize to form CO2. Strongly

adsorbed CO has been identified as the main

poisoning species that blocks Pt sites from

further adsorption of intermediates formed dur-

ing methanol oxidation [159].

In order to improve the kinetics of the metha-

nol oxidation reaction (MOR) on Pt, the elec-

tronic interactions between Pt and CO must be

modified, including by weakening the CO

adsorption energy or increasing the rate of CO

oxidation [143]. The addition of a second ele-

ment to Pt (e.g., Ru, Sn, Ni) should modify the

Pt–CO electronic interaction and facilitate COads

electrooxidation [160–163]. This mechanism of

improving the catalytic properties of Pt is called

the electronic or ligand effect [164–169]. Also,

CO, formed during methanol oxidation, can be

removed by its oxidation to CO2 when

O-containing species are present at the electrode

surface (bifunctional mechanism). The addition
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of other metals, e.g., Ru, that adsorb OH at lower

potentials than Pt has been found to lead to more

catalytic surfaces at which methanol oxidation

occurs more rapidly [170, 171].

On the other hand, the methanol adsorption/

dehydrogenation step in the MOR requires an

ensemble of three adjacent Pt atoms in order to

fully break all of the C–H bonds

[172, 173]. According to this mechanism, the

decrease in the Pt–Pt atomic distance could facil-

itate the breakage of C–H bonds during the meth-

anol oxidation and result in an overall increase in

the rate of the MOR. This compressive strain

effect is known to cause a downshift in the d-
band center of the Ptshell, which results in weaker

Pt-adsorbate interactions [174–176]. However,

theoretical studies [176] have shown that the

Ptshell compression causes only a minor change

in electronic properties compared to impact of

the atomic interactions between the Pt and the

second metal.

The complete oxidation of ethanol is more

complicated, as it involves the splitting of a C ̶
C bond (routes 1 and 4, Fig. 13) [177], a

challenge that is not present during methanol

oxidation. The high volumetric energy of ethanol

(Fig. 7) assumes the complete oxidation of etha-

nol to CO2 (12 e�). Therefore, the incomplete

oxidation of ethanol results in a loss in DEFC

performance. All known electrocatalysts have

Fig. 12 Methanol decomposition pathways in the formation of CO and formaldehyde at Pt (111) at 0.5 V. The pathway

that forms CO, shown in black arrows, is favored [158]. Reprinted with permission of the Royal Society of Chemistry

Fig. 13 Schematic representation of the various electro-

chemical pathways of ethanol oxidation
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difficulty in breaking the C ̶ C bond, even at

temperatures as high as 90 �C, which leads to

the incomplete oxidation of ethanol, forming

either acetaldehyde (route 2, Fig. 13) or acetic

acid (route 3 or route 2 plus 5, Fig. 13), which

clearly lowers the DEFC performance [178]. The

ratio between the amount of acetaldehyde and

acetic acid formed depends strongly on the etha-

nol concentration [177], temperature [127], and

catalyst composition [179].

According to routes 1 and 2 plus 4 (Fig. 13),

ethanol decomposes into adsorbed CO and CHx

species on platinum, with adsorbed CHx species

being even more difficult to oxidize to CO2 than

CO. CO thus accumulates on the platinum sur-

face, resulting in poisoning of the surface [144,

178–180]. Also, in order to increase the ethanol

oxidation efficiency, the complete oxidation of

acetaldehyde to acetic acid and/or CO2 is a

necessity. The oxidation of CO, CHx species,

and acetaldehyde requires the dissociation of

water to produce adsorbed OH on the surface.

Since OH formation starts at Pt at potentials

>0.75 V [181, 182], the addition of other metals,

such as Ru, Sn, and Rh, all of which can adsorb

OH at lower potentials than at Pt, is crucial to

obtaining high rates of ethanol oxidation [144,

178–180]. Another benefit of using Pt-based

binary or tertiary alloys is the prevention of the

formation of poisoning species, such as CO and

CHx, by suppressing C ̶ C bond breaking. This is

believed to take place by decreasing the required

number of Pt atoms for the reaction to occur

(ensemble effect) and/or changing the electronic

properties of Pt [180, 183, 184].

Anode Catalysts Used in DAFCs

Pt–Ru-Based Catalysts
In 1987, Watanabe et al. [170] reported the prep-

aration of highly dispersed Pt–Ru alloy

nanoparticles on carbon powder, with Pt–Ru

selected because the electronic effect between

Pt and Ru atoms was thought to be important

[141]. It was also shown that 40–60 atomic %

Ru gives the optimum catalytic activity for meth-

anol oxidation at unsupported, supported, and

bulk Pt–Ru alloys [170, 185–188]. Lu et al.

[189] applied cyclic voltammetry (CV), temper-

ature programmed desorption (TPD), and radio-

active labelling to probe the origin of MOR rate

enhancement at Ru deposited on a Pt electrode

surface. They found that changes in the Pt–CO

bonding due to the electronic effect played only a

minor role in enhancing CO tolerance, as the Ru

bifunctional effect was found to be about four

times larger than the electronic effect

[189]. More recently, Yang et al. [190] employed

in situ surface-enhanced Raman spectroscopy

and showed that the addition of Ru to Pt surfaces

does not change the Pt–CO stretching frequency,

again suggesting that Ru has no significant elec-

tronic effect on Pt [190].

In other works [191], nanoparticles consisting

of a Ru core covered with a 1–2 monolayers of Pt

atoms gave high CO oxidation activity, signifi-

cantly better than traditional Pt–Ru nano-alloys,

mixtures of monometallic nanoparticles, or pure

Pt particles [191]. Using DFT modelling,

Alayoglu et al. [191] showed that the presence

of subsurface Ru caused an enhancement of CO

oxidation through modification of the electronic

structure of the Pt surface, leading to a lower CO

coverage. This provides a greater number of free

active sites at which the reactants can be

activated [191].

Although Pt–Ru is one of the best MOR anode

catalyst materials, Zelenay et al. [192, 193] and

others [194–197] have reported that Ru can dis-

solve in a DMFC, crossing-over to the cathode

and inhibiting the oxygen reduction kinetics,

while also degrading the membrane. Although

Ru should be thermodynamically stable [198]

under normal DMFC operating conditions, it is

possible that hydrous Ru oxide species are

formed at the anode at high potentials and that

they then dissolve or leach out.

Pt–Sn-Based Catalysts
Pt–Sn has been studied for decades as an anode

catalyst for the electrooxidation of methanol and

other small hydrocarbon fuels [199], with mixed

results [200], depending on the method of prepa-

ration [141]. A theoretical study by Liu et al.

[169] showed that Pt3Sn should be more active
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toward CO electrooxidation than Pt or Pt–Ru,

similar to the data reported by Schmidt [201]. It

appears that Sn dissociates water (bifunctional

effect) and also weakens the CO bond to nearby

Pt sites (electronic effect), thus lowering the CO

coverage. However, the electronic effect of Sn on

Pt may also weaken methanol adsorption on Pt,

which lowers the Pt–Sn MOR activity. It is also

known that Sn is more susceptible to dissolution

than is Ru in MFC condition [198]. However, Sn

is 800 times less costly than Ru.

Other Pt-Based Catalysts for Both
Methanol and Ethanol Oxidation
Reactions
Similar to Sn, adsorbed oxygen on Ni helps to

remove CO from Pt and promotes its oxidation at

low potentials [202]. Consistent with this, Pt–Ni

generally shows a higher activity for the MOR

vs. Pt [203] but lower than at Pt–Ru [141],

although Park et al. showed Pt–Ni to be a better

catalyst than Pt–Ru [204]. A review by Antonlini

et al. [202] showed that, at low Ni contents, the

decreased MOR activity (vs. Pt–Ru) is due to the

decrease in the Pt content on the surface, hinder-

ing methanol adsorption. At high Ni contents, the

higher activity for the MOR is related to the

electronic effects, the enhanced CO oxidation,

and the presence of Ni oxide.

Pt–Ir has been proposed as a promising alter-

native to Pt–Ru, as Ir is more resistant to disso-

lution than Ru and shows very good MOR

activity [205–208]. Also, contrary to Pt–Ru, Pt–

Ir is reported to have a high catalytic activity

toward the ORR [207, 209]. Therefore, if any Ir

should be dissolved, the problems associated

with this will be less than with Ru dissolution.

Pt–Ir NP synthesis and activity toward the

MOR have been reported in a few previous stud-

ies. H. Tsaprailis et al. [205] prepared a Pt–Ir

catalyst by mixing individual Pt and Ir sols

together, aiming for a nanoparticulate binary

mixture containing Pt and Ir in a controlled

ratio. However, even though the sols were com-

bined, a 1:1 Pt:Ir molar ratio, the bulk composi-

tion was found to be close to 2:1, using

inductively coupled plasma atomic emission

spectrophotometry (ICP-AES). Clearly, the

mixing of these sols resulted in a different distri-

bution of Pt and Ir at the molecular level. In

another study [209], Pt–Ir alloy NPs (3–4 nm)

were fabricated by the reduction of an alkaline

mixture of H2PtCl6 and H2IrCl6 solutions at

80 �C. However, the predicted specific surface

area (based on NP size, as determined by XRD

measurements) was found to be 2–3 and 10–20

times the measured specific surface area deter-

mined by Brunauer–Emmett–Teller (BET) and

electrochemical methods, respectively, revealing

their low dispersion. In the same study [209],

XPS showed that the surface composition of the

Pt–Ir NPs matched their bulk composition. How-

ever, the Hupd (hydrogen underpotential deposi-

tion) peaks were similar to those at pure Pt NPs,

suggesting Pt surface enrichment.

Pt-Based Core–Shell Methanol
and Ethanol Oxidation Reactions
As it is known that the composition, size, and

shape of nanoparticles are critical to their cata-

lytic properties, recent work has focused on the

fabrication of bimetallic nanoparticles having a

“core–shell” structure, with one metal in the core

of the particle and the second metal forming an

outer shell around the core. Some of the core–

shell architectures reported recently include

Pdcore@Ptshell [210], Cucore–Ptshell [211], Rhcore–

Ptshell [212], Rucore–Ptshell [191, 213–215],

Ptcore–Rushell [215, 216], Ircore–Ptshell
[206, 217], Cocore–Ptshell [174], Aucore–Ptshell
[218], and Nicore–Ptshell [93, 219]. For most of

these systems, the core materials were prepared

using glycol as a reducing agent and PVP

(polyvinylpyrrolidone) as a stabilizer, followed

by the addition and reduction of precursors to

form the shell materials. Core–shell

nanoparticles are highly catalytic toward CO

oxidation [191, 210, 212], oxygen reduction

[93, 215], and NOx reduction [211]. However,

only a few papers have been published on

supported core–shell particles for methanol oxi-

dation [174, 206, 218, 220–224].

In order to overcome the Ru dissolution prob-

lem, several studies have focused on Rucore–

Ptshell preparation and characterization

[191, 216, 217, 220, 222–226], with several
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groups examining the MOR activity at these

materials [220, 222–224]. In some of this work

[220, 222], the Rucore–Ptshell catalytic activity

was judged based on the ratio between the for-

ward and backward MOR peak currents (If/Ib),

assuming that high If/Ib ratio indicates a higher

CO tolerance and MOR activity. However, it has

also been shown that If and Ib have the same

chemical origin, and hence the If/Ib ratio does

not predict the CO tolerance and catalytic activ-

ity for MOR [227]. Some of the factors that could

influence the MOR activity of the Rucore–Ptshell
NPs include the Pt shell strain (relaxation

vs. compression), the Ru electronic effect on

the Pt shell, and the bifunctional effect of

exposed Ru when the Pt shell coverage is less

than one monolayer. However, most prior studies

do not involve a systematic investigation to dis-

tinguish which of these effects is playing the

main role in determining the overall MOR cata-

lytic activity.

Nicore–Ptshell and Cocore–Ptshell NPs are attrac-

tive as alternatives to Rucore–Ptshell NPs, due to

the low cost of the core material and their strong

electronic effect on the shell material

[174, 219]. Chen et al. [93] found that Nicore–

Ptshell NPs exhibit characteristics of FCC Ni

nanocrystals but with a slightly expanded lattice,

even though the electrochemical properties of a

Pt surface are also seen. Further, a significantly

shortened Pt–Pt interatomic distance is seen in

the shell layer, compared to a pure Pt NPs. The

catalytic activity of Nicore–Ptshell NPs were

examined in an alkaline medium and found to

be highly active and more resistant to carbona-

ceous intermediate poisoning than is pure solid

Pt [219]. However, the catalytic activity of

Nicore–Ptshell NPs toward the MOR in acidic

media needs to be further investigated. Similar

to Nicore–Ptshell NPs, the Cocore–Ptshell MOR cat-

alytic activity, in an acidic medium, was found to

arise from both electronic and strain effects of

the Cocore on the Ptshell [174]. Even though Pt–Ir

catalysts have been reported to have a high cata-

lytic activity toward the MOR [207, 228–230],

very few of these studies have made efforts to

determine what the origin is of the catalytic

effect of Ir on Pt [229, 230].

Only a few reports have been published on

Ircore–Ptshell NP synthesis, all using relatively

complex procedures [206, 217]. A. U. Nilekar

et al. reported that Ircore–Ptshell NPs have higher

catalytic activity towards the preferential oxida-

tion (PROX) of CO in H2 feeds than Pt, Aucore–

Ptshell, or Pdcore–Ptshell [217]. Also, K. S. Lee

et al. prepared Ircore–Ptshell NPs (supported on

Vulcan carbon) with different Ptshell coverages,

trying to correlate between the Ptshell thickness

and the catalytic activity of these catalysts

toward the MOR but without a detailed investi-

gation of the presence of a bifunctional or elec-

tronic effect of Ir on Pt [206]. Other core–shell

NPs, such as Aucore–Ptshell and PdCo–Pt

[218, 221], were investigated as MOR catalysts

and showed promising results, but further studies

are needed to understand the reasons behind their

good catalytic activity.

Direct Formic Acid Fuel Cells (DFAFCs)

A promising candidate for the organic liquid fuel

cells is formic acid (FA). DFAFCs have the

highest theoretical cell potential (1.48 V)

among the other liquid fuels. Also, FA exhibits

rapid oxidation kinetics and less chance for fuel

crossover than methanol and ethanol [231–

234]. Also, in contrast to methanol or ethanol,

FA contributes to the proton conductivity in the

anode, further extending the triple phase bound-

ary and enhancing the cell performance [233].

Both methanol and ethanol have a high volu-

metric energy density in the pure form. However,

due to the crossover problem, only low concen-

tration (1–2 M) of these fuels can be used, as

mentioned earlier. The small volumetric energy

density (2104 Wh L�1) of pure FA compared to

methanol and ethanol could be seen as a disad-

vantage. However, due to the lower probability

of FA crossover, a high concentration of formic

acid can be used. Specifically, the methanol

crossover current and the crossover flux were

reported to be six times and two times, respec-

tively, greater than that of FA [235]. Others have

found the optimum FA concentration to be 10 M

[234], as at higher concentrations, a significant
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drop in the performance is observed, explained

by the high rate of FA crossover. Also, due to the

hygroscopic nature of FA, it is expected that the

membrane will dry out at high FA

concentrations, which could cause a substantial

increase in the cell resistance [234].

Understanding the reaction mechanism of FA

oxidation is again critical to help in the selection

of the best electrocatalytic materials for use in

DFAFCs. FA oxidation (FAO) through a dual

pathway is the most commonly accepted mecha-

nism, with a minor possibility for the formation

of the bridged structure [158, 236, 237]. In the

first pathway, FA oxidizes to CO2 through direct

dehydrogenation (direct pathway, reaction (7)),

while in the second pathway, FA chemically

dehydrates to form adsorbed CO (reaction (8)),

which is oxidized to CO2 (reaction (10)) at high

potentials (>0.8 V vs. RHE, in the case of Pt)

when water dissociation (reaction (9)) can take

place at a suitable rate (indirect pathway)

[231, 238]:

HCOOH ! CO2 þ 2Hþ þ 2e� ð7Þ
HCOOH ! COads þ H2O ð8Þ

Ptþ H2O ! Pt� OHþ Hþ þ e� ð9Þ

Pt� COþ Pt� OH ! CO2 þ Hþ þ e� ð10Þ
Pt- and Pd-based materials are the most com-

mon electrocatalysts employed to enhance the

FAO rate. In the case of Pt, at low overpotentials,

FAO takes place through the direct pathway.

However, due to the continuous production of

CO, the surface becomes blocked and the current

drops dramatically with time. However, at high

overpotentials, the indirect pathway dominates

due to the ability of Pt to dissociate water

[239]. In the case of Pd, the direct pathway

prevails. However, Pd is known to deactivate

with time due to the accumulation of inactive

surface intermediates [238], likely CO, resulting

from the reduction of the FA dehydrogenation

product (CO2) [240, 241].

The catalytic activity of Pt or Pd has been

improved by preventing CO formation by

blocking some fraction of the catalytic sites

(third-body or ensemble effect) [242, 243],

modifying electronic properties (electronic

effect) [242], and changing the surface atomic

distance (strain effect) [214]. These

modifications have been achieved by adding a

second metal to the surface of Pt (Pd) by irrevers-

ible adsorption or alloying [220, 242–245]. Also,

core–shell structures [246], normally involving a

Pt or Pd shell, have been examined, where the

catalytic activity was altered by modifying either

the core material or the shell coverage and thick-

ness [214, 241].

The irreversible adsorption of Bi, Sb, or Pb

(or as a second metal in an alloy) is known to

dramatically enhance the Pt or Pd

electrocatalytic activity through the third-body

or ensemble effect, along with generating a

selective FA adsorption orientation that enhances

the kinetics of FA oxidation [231, 232, 238,

247]. Several other metals have been employed,

such as Au, Ag, Cu, Ni, Co, Fe, Ir, Ru, and Sn,

with the electronic and strain effects believed to

be most relevant in altering the Pd or Pt FA

oxidation activity [238].

Solid Oxide Fuel Cells (SOFCs)

As explained earlier, one of the most important

features of fuel cells is their high-energy conver-

sion efficiency, which can vary between 20 and

90%, depending on whether both electrical and

thermal energy are used. SOFCs, which run at

temperatures typically of 700–800 �C (but which

could range from 600 to 900 �C), are one of the

most efficient types of fuel cells with a theoreti-

cal electrical efficiency as high as 85%, recently

reaching a practical efficiency close to 60%

[248]. Moreover, SOFCs can be produced in a

variety of sizes and therefore can cover the

energy needs from kilowatts that can be suitable

for individual residential needs to megawatts that

can provide the energy needed for a small town.

Another advantage of SOFCs is that they are fuel

flexible, being able to reform hydrocarbon fuels

internally, thus decreasing operation costs by

removing expensive fuel processing systems.

Furthermore, SOFCs are quiet and can thus be
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placed near urban areas. At the time of writing

this article, there is ca. 750 MW of installed

SOFC capacity worldwide, used primarily for

commercial/stationary applications.

The characteristic components of SOFCs

include a dense, oxygen ion-conducting electro-

lyte, and, similar to PEMFCs and DAFCs, they

also rely on porous solid electrodes (Fig. 14), but

these materials must be active and stable under

more aggressive conditions (temperatures

between 650 and 1000 �C). At these

temperatures, the electrode reactions are usually

very rapid but material stability is a challenge.

In an SOFC, the oxidant (oxygen, as in

PEMFCs and DAFCs) is pumped into the cath-

ode where the O2 reduction reaction (ORR) takes

place:

1

2
O2 þ 2e� ! O�2 ð11Þ

The dense electrolyte serves as a barrier to

prevent gas leakage, but oxygen anions can pass

through it and reach the anode, at which predom-

inantly the hydrogen oxidation reaction (HOR)

occurs (reaction (12)), as hydrocarbons and

steam, fed into the system, are typically reformed

quickly, generating H2 and CO:

H2þO�2 ! H2Oþ 2e� ð12Þ
As in all fuel cells, the electrons, produced at

the anode, are transferred to the cathode through

the external circuit. As fuel and oxygen ions are

required as the reactants and electrons and water

are the products, a porous structure, containing

both an ionic conductor and electronic conduc-

tor, is again needed.

SOFCs typically run at ambient pressure,

although efforts have been made to increase the

operating pressure [249], which adds to the volt-

age of the cell. Air and fuel utilization can vary

but is typically 15 and 70%, respectively [250].

SOFC Cell Designs

Because of the high temperature of operation of

SOFCs (> 600 �C), all of the cell components

must be chemically, morphologically, and

dimensionally stable under these challenging

conditions. A single cell within an SOFC can

have various designs in terms of cell dimensions,

as well as which layer serves as the mechanical

support. The two most common SOFC cell

designs are planar and tubular (Fig. 15). In the

planar design, all of the cell components are thin

and have a rectangular shape, often 10 � 10 cm2

up to 25 � 25 cm2 [251, 252]. Planar cells gen-

erally exhibit fewer ohmic and concentration

losses as they are compact, although they show

higher thermal gradients compared to tubular

cells (Fig. 15).

The tubular cell configuration, developed

originally by Westinghouse Corporation, was

introduced as a shock resistant and easy to seal

Cathode AnodeElectrolyte

Oxygen Hydrogen

O2-

O2-

O2-

O2-

O2-

e-
e-

Fig. 14 Schematic

diagram of an SOFC
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SOFC design. Michaela and Kendall [253], in the

early 1990s, reported the first work on microtu-

bular SOFCs. They demonstrated a thin-walled

extruded YSZ tube (1–5 mm dia), which had

reasonable performance and was surprisingly

shock resistant. This latter characteristic allows

a shorter start-up and shutdown time for the

SOFC system. These tubular cells can be formed

by conventional ceramic-forming methods, such

as slip casting [254] and extrusion [255]. One of

the benefits of the slip-casting technique of

microtubular cell construction is that all of the

cell components (anode, electrolyte, and cath-

ode) can be fabricated at the same time, as each

layer can be casted sequentially [254].

SOFC single cells can also be categorized in

terms of which layer of the cell provides the

mechanical support, including self-supported

and externally supported cells. Self-supported

cells can also be classified into three main

categories, i.e., electrolyte supported, anode

supported, and cathode supported, where the

supported component is typically the thickest

layer (Fig. 15). In externally supported cells, all

of the cell components are deposited as thin

layers on an additional porous support layer,

such as a porous metal layer or a porous ceramic

support. While metal-supported cells have

received attention recently due to their low cost,

robust, and shock-resistant characteristics, the

metal support cannot tolerate very high

temperatures compared to the ceramic cell

components, thus limiting the selection of the

other cell component materials [256]. For this

reason, the maximum operating temperature is

ca. 600 �C, as higher operating temperatures

can severely limit their lifetime [257, 258]. In

addition to difficulties in co-manufacturing of the

metal support and the other ceramic cell

components, Cr poisoning of the cathode is

another challenge associated with this type of

SOFC [258]. Recently, Ceres Power has devel-

oped a 1-kW metal-supported stack, based on a

gadolinia-doped ceria Ce0.9Gd0.1O1.95 (CGO10)

electrolyte, displaying a degradation rate of

0.43%/kh [259].

The methods used to produce each SOFC cell

depend on the materials used in each component,

as well as which component is selected as the cell

support. Tape casting and screen printing are the

most commonly used manufacturing techniques

for planar cell construction, due to their simplic-

ity and cost-effectiveness and because they are

amenable to mass production. For electrolyte-

supported cells, the electrolyte can be pressed

or tape-casted first and then the electrodes are

deposited, typically using screen printing or tape-

casting techniques [260, 261] or using tape

calendaring and wet spraying [262]. For

electrode-supported cells, the electrolyte is

deposited using sputtering [263], physical vapor

deposition (PVD) [264], pulsed laser deposition

(PLD) [265], chemical vapor deposition (CVD)

[266], slurry coating [267], or using sol–gel

methods [268]. Plasma spraying has also been

used to deposit each SOFC layer, especially

b

d

a c

Anode
Electrolyte
Cathode

Fig. 15 Various SOFC

cell designs including (a) a
planar anode-supported,

(b) planar electrolyte-

supported, (c) planar
cathode-supported cells,

and (d) tubular cell
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when the SOFC components cannot be

co-sintered together because of their different

melting points [269]. For tubular cells, the most

common manufacturing techniques are extrusion

[270, 271], slip casting [254, 272], and dip

coating [273].

Typical SOFC Cell Materials

SOFC Electrolytes
In addition to demonstrating chemical stability at

high temperatures and in both reducing and

oxidizing atmospheres, SOFC electrolytes must

have a high ionic conductivity to allow oxygen

ions, produced at the cathode, to travel through

and reach the anode. Yttria-stabilized zirconia

(YSZ) is the most commonly used SOFC electro-

lyte material. The ionic conductivity of YSZ,

when containing 8 mol% yttria (Y2O3), is about

0.01 S cm�1 at 800 �C [274]. By doping with

yttria, the cubic structure of zirconia can be

stabilized at high temperatures, and the ionic

conductivity of zirconia is increased by the gen-

eration of additional oxygen anion vacancies.

Further, YSZ has a very good mechanical

strength and thus can serve as a structural com-

ponent in SOFCs. Scandium (Sc) is another alter-

native dopant in zirconia, producing scandium-

stabilized zirconia (SSZ), which has an even

higher ionic conductivity than YSZ. The higher

conductivity of SSZ is related to the smaller

mismatch between the sizes of Zr+4 and Sc+3

compared with Zr4+ and Y+3, resulting in better

mobility of the O2� ions [275].

Despite the excellent properties of zirconia-

based materials as SOFC electrolytes, they have

several disadvantages that limit their application

as SOFC electrolytes. One problem is aging with

time at SOFC operating temperatures, leading to

a drop in conductivity [276]. Another limitation

is the decrease in ionic conductivity of zirconia-

based electrolytes at lower temperatures, making

the application of these electrolytes at lower

temperatures challenging. In addition, zirconia-

based electrolyte can react with several anode

and cathode materials, forming resistive

interfaces, especially during cell preparation

[277]. Therefore, electrolytes, such as doped

ceria and La1�xSrxGayMg1�yO3 (LSGM), have

been introduced as alternatives to zirconia-based

electrolytes.

Ceria and doped ceria are the most commonly

used electrolytes for intermediate temperature

SOFCs (550–650 �C) because of their higher O2�

conductivity than YSZ (0.1 S cm�1 at 800 �C) and
also their compatibility with a number of

perovskite-based anode and cathode materials,

such as La0.75Sr0.25Cr0.5Mn0.5O3�δ (LSCM)

[278]. In order to increase the conductivity of

ceria to values similar to that of YSZ, ceria can

be doped. Gadolinia and samaria are the most

common dopants for ceria (producing GDC and

SDC, respectively), showing the highest conduc-

tivity among the doped ceria electrolytes

[279]. However, Ce4+ can be reduced to Ce3+ at

high temperatures (>500 �C) in reducing

atmospheres, causing n-type electronic conductiv-

ity to develop in the electrolyte and therefore

allowing some electronic leakage through the

ceria and a loss in overall SOFC efficiency

[280, 281]. However, GDC is an excellent electro-

lyte, even at low temperatures (<500 �C).
LSGM has a conductivity similar to GDC

(0.1 S cm�1 at 800 �C), although, unlike ceria,

LSGM does not contain a reducible metal ion in

reducing atmospheres and at high temperatures

and therefore is more stable to reduction. How-

ever, LSGM can react with several SOFC elec-

trode materials through the interdiffusion of

elements. Other materials that have been

investigated as possible SOFC electrolyte

include Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3�δ

(BSCZGY) and BaZr0.1Ce0.7Y0.2O3�δ

(BZCY) [282].

SOFC Anode Materials
Ni/YSZ cermets (mixture of ceramic and metal)

are the most common anode electrocatalysts used

in SOFCs because of their low cost, chemical

stability at high temperatures and in reducing

atmospheres, very good activity for the HOR,

and the good match of the thermal expansion

coefficient of the cermet and the YSZ electrolyte

[283, 284]. The melting point of pure Ni is about

1455 �C with a thermal expansion coefficient of
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13.3 � 10�6 cm cm�1 k�1 and an electronic

conductivity of 138 � 104 S cm�1 and 2 � 104

S cm�1 at 25 �C and 1000 �C, respectively

[285]. In order to add ionic conductivity to the

anode and to also enhance the structural strength

of the anode at SOFC operating temperatures,

ionically conducting YSZ has been added as a

second component, roughly in a 1:1 mass (or 2

(YSZ):1 (Ni) volume) ratio. Additionally, as the

thermal expansion coefficient of Ni is much

higher than YSZ (10.5 � 10�6 cm cm�1 K�1),

the addition of YSZ makes the thermal expansion

coefficient of the cermet more compatible with

YSZ electrolytes.

Despite these advantages, Ni/YSZ anodes suf-

fer from dimensional instability as a result of

inadvertent air exposure, e.g., when the SOFC

is being used in long-term operation, when the

fuel supply is interrupted, or imperfect sealing is

encountered, followed by reduction in H2. Under

the air-exposure conditions, the Ni component of

the Ni/YSZ cermet is oxidized to form NiO,

which is accompanied by an expansion of ~70%

in solid volume [286–290]. This volume change

causes mechanical stress at the anode/electrolyte

interface and consequently results in damage and

cell degradation [286].

Another problem can arise with the use of

sulfur (H2S) and/or hydrocarbon-containing

fuels, in which undesired reactions of Ni bring

about a loss in cell performance. With<100 ppm

H2S exposure, it is known that up to one mono-

layer of adsorbed sulfur forms on Ni [291], thus

blocking the TPB sites for H2 oxidation. How-

ever, it has been suggested that the addition of

ceria can enhance the sulfur tolerance of Ni

under normal operating conditions (>750 �C)
[292]. Furthermore, it has been reported that

ppm levels of H2S can activate the H2 oxidation

reaction at lower temperatures (500–600 �C),
thought to reflect the formation of small amounts

of Ni sulfide at the Ni/YSZ TPB

[293]. Hydrocarbons can be a problem because

of the propensity of Ni to form coke, which

builds up in the anode pores, causing mechanical

stresses that ultimately lead to cell failure

[294]. Coke formation at Ni-based anodes can

be prevented by controlling the steam to carbon–

fuel ratio (at ca 1.5), although, in practice, this

ratio should be still larger [295].

When employing conventional two-phase

anode materials (such as Ni/YSZ), the catalyti-

cally active area is limited to the TPB area. This

is fully a function of the morphology of the

anode, which is known to change with time in

the case of Ni/YSZ anodes. To overcome these

limitations in terms of changing and limiting

TPB length, mixed ionic and electronic

conductors (MIECs), possessing both ionic and

electronic conductivity, have been developed.

For these materials (primarily metal oxides hav-

ing a perovskite or fluorite crystal structure),

their entire surface area is active for fuel oxida-

tion, thus lowering the anode polarization

resistance [296].

As one example, ceria-based oxides have been

investigated, especially as sulfur- and coke-

tolerant anodes, also related to their high H2

oxidation activity and their relatively low cost

[297–299]. Ceria-based materials show mixed

ionic and electronic conductivity in reducing

atmospheres due to the presence of mixed Ce

valencies (Ce+3 and Ce+4), although doping

with members of the lanthanide family can sig-

nificantly increase their ionic conductivity

[298]. Ceria-based materials can act as an oxida-

tion catalyst for methane without coking, while

cermets consisting of ceria mixed with a transi-

tion metal have been found to be effective even

for hydrocarbon reforming [298, 299]. As stated

above, ceria can serve as a sulfur-absorbing

material and consequently can decrease the

degree of sulfur poisoning of Ni [292, 300,

301]. However, GDC can react with the YSZ

electrolyte during cell preparation at

temperatures of ca. 1200 �C, forming interlayers

with much lower conductivity that YSZ. In order

to suppress the formation of this resistive layer,

short-time sintering of YSZ and GDC has been

suggested [302].

The most common family of mixed

conducting anodes is the perovskite oxides, hav-

ing the general chemical formula of ABO3. The

properties of perovskites can be modified by

doping with various aliovalent metals in both

the A (e.g., La, Sr, Ca, Pb, etc.) and B (e.g., Ti,
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Cr, Ni, Fe, Co, Zr, etc.) sites. In recent years,

several very promising perovskite materials have

been developed for use as SOFC anodes. These

include SrTiO3-based materials, such as

La1�xSrxTiO3+δ [303, 304] and La0.7Sr0.3Cr0.8
Ti0.2O3 [305]. Many other materials have been

examined, including La0.9Sr0.1Ga0.8 Mg0.2O2.85

(LSGM) [306], (La1�xSrx)0.9Cr0.5 Mn0.5O3�δ

[307], Ba(Zr0.1Ce0.7Y0.2)O3�δ (BZCY) [308],

and BaZr0.1Ce0.7Y0.1M0.1O3�δ (M ¼ Fe, Ni,

Co, and Yb), the latter showing some sulfur

tolerance and stability in CO2-containing

environments [309]. La0.3M0.7Fe0.7Cr0.3O3�δ

(M ¼ Sr, Ca) is a newly reported, very active,

sulfur-tolerant anode [310, 311], also being

active as a cathode. Other promising anode

materials include Sr2Mg1�xMnxMoO6�δ [312]

and La1Mn0.5Cr0.5O3�δ (LMC), the latter having

superior stability, electronic conductivity, and

catalytic activity [313] and multi-element-

doped ceria, such as Ce0.87Y0.1Mn0.01M0.02O2�δ

(M ¼ Ca, Mg), with a specific polarization resis-

tance (ASR) in the range of 0.2–0.3 Ω cm2 [314].

Recently, an interesting method has been

developed to increase the catalytic activity of

perovskites, where the active catalyst is first

doped into the B-site of the perovskite material

(e.g., La0.52Sr0.28Ni0.06Ti0.94O3) and then is par-

tially exsolved out of the lattice at lower

temperatures in reducing atmospheres [315]. In

this way, a more active catalyst (transition or

precious metal) is stabilized on the surface of

the less-active perovskite materials [316]. Over-

all, MIEC anodes with improving characteristics

are being developed. However, they still tend to

display relatively low catalytic activity and

chemical stability and also have a significantly

higher electronic conductivity than ionic

conductivity.

SOFC Cathode Materials
Similar to SOFC anodes, the materials used as

SOFC cathodes must also be stable at high

temperatures (>500 �C) but now in oxidizing

atmospheres (pO2 > 0.2). One of the first

materials used as an SOFC cathode was the

perovskite, La0.7Sr0.3MnO3�x (LSM). LSM is

primarily an electronic conductor, and thus it is

typically mixed with YSZ to add ionic conduc-

tivity and to extend its TPB length, similar to the

development of the Ni/YSZ anode [317]. Further-

more, LSM has good catalytic activity for the

oxygen reduction reaction and is also chemically

compatible with YSZ. However, the

electrocatalytic activity of this material

decreases at lower SOFC operating temperatures,

primarily due to its low oxygen ion conductivity

(	10�7 S cm�1 at 900 �C) [318].
To overcome the limitations of LSM/YSZ,

MIEC cathode materials, such as

La1�xSrxCo1�yFeyO3�δ (LSCF), having a higher

ionic conductivity than LSM, have been devel-

oped. LSCF also has a lower thermal expansion

coefficient (13.8 � 10�6 K�1), better compatibil-

ity with ceria-based electrolytes, and also consid-

erably better oxygen reduction reaction (ORR)

kinetics than does LSM [319, 320]. However, the

LSCF perovskite can react with the YSZ electro-

lyte and form undesirable (resistive) interfaces

[321], and thus a buffer layer, typically a ceria-

based material (GDC), must be placed at the

LSCF/YSZ interface [322]. A few other MIEC

cathodes, such as Ba0.5Sr0.5Co0.8Fe0.2O3�δ

[323], Pr1�xSrxCo0.8Fe0.2O3�δ (PSCF) [324],

and La0.3M0.7Fe0.7Cr0.3O3�δ (M ¼ Sr, Ca), the

latter having the ability to be employed as both

the fuel and air electrode in SOFCs, have

recently been developed as highly active cathode

materials [310, 325–327].

Interconnects
In order to produce higher power, single cells are

connected in series with each other to construct

SOFC stacks. The current collection from each

cell is achieved by using ceramic or metallic

current collectors (interconnects) at both sides

of the cell (Fig. 16).

The interconnects play a key role in SOFC

stack systems, as they electronically connect the

anode of one single cell to the cathode of the next

cell and also provide a physical barrier to gas

crossover. Doped lanthanum chromite

perovskites were the original interconnects used

in SOFCs, running at up to 1000 �C, as they are

relatively stable in both reducing and oxidizing

atmospheres and have good electronic
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conductivity, although this is poorer in reducing

conditions [328]. Therefore, metallic inter-

connects are now more common, including

Cr, Fe, and Ni-based alloys. In general, metallic

interconnects have the advantages of a higher

electronic conductivity (which is not oxygen par-

tial pressure dependent), a lower cost, and a less

complex fabrication technique over ceramic

interconnects. However, the thickening of a

layer of Cr2O3 on the cathode side and Cr poi-

soning of cathodes are the main disadvantages of

stainless steel interconnects [329].

In terms of new candidate interconnect

materials, Crofer 22 APU (a low Si ferritic stain-

less steel with 20–24% Cr and additions of Mn

and Ti and La) and Avesta 353 MA (austenitic

Fe–Cr–Ni alloy, with 35% Ni and addition of Mn

and Si) are two of the most promising

[330, 331]. Crofer 22 APU is a high-temperature

stainless steel that can form an electrically

conducting layer of Cr–Mn oxide on its surface

at SOFC operating temperatures, although during

long-term exposure in the SOFC environment,

Cr2O3 can again form, dropping the electrical

conductivity of the alloy and lowering cell per-

formance [331, 332].

As one solution, a protective layer can be

applied on the surface of metallic interconnects

[333–336]. The coating must have good elec-

tronic conductivity, a matching thermal expan-

sion coefficient (TEC) with adjacent

components, and chemical stability in oxidizing

and reducing atmospheres, and more impor-

tantly, it should minimize Cr vaporization and

prevent the formation of Cr2O3 on the cathode

side. Various coating materials have been devel-

oped, including conductive perovskites, such as

(La,Sr)CrO3, (La,Sr)CoO3, and (La,Sr)MnO3, as

perovskites generally have a high electronic con-

ductivity and also a matching TEC with the

interconnect alloy materials and the SOFC

electrodes [333, 334]. However, the use of perov-

skite coatings is limited, primarily as a result of

diffusion of Cr through the coating layer and also

difficulties with densification of the coatings. In

addition to perovskites, spinel protective

coatings, such as Mn1.5Co1.5O4, are also good

candidates, as they can be a more effective bar-

rier against Cr migration from the alloy to the

cathode [335, 336].

SOFC Material Synthesis Methods

The development of new materials and synthesis

methods is crucial in order to lower the SOFC

working temperature (to minimize material deg-

radation), to lower cost, and also to increase

performance and lifetime. Solid state synthesis

methods are the most frequently used techniques

for SOFC material fabrication, as they involve

inexpensive precursors and can easily be scaled

up for mass production [337, 338]. This involves

mixing together of ceramic precursor powders,

such as metal oxides, carbonates, and/or sulfides,

in the stoichiometric ratio of the desired

catalysts, followed by calcination of the mixture

at particular temperatures to form the desired

phases. Despite the simplicity and cost-

effectiveness of this approach, there are a num-

ber of disadvantages, such as poor compositional

homogeneity, uncontrolled particle size, low sur-

face area, and poor sinterability [339]. In order to

optimize the properties of the materials used in

SOFC components, especially in terms of purity

and particle size distribution, other chemical

Fig. 16 SOFC stack with

two cells
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synthesis techniques have been introduced.

These include solution combustion synthesis

[340], coprecipitation [341], sol–gel [342], poly-

meric complexing [343], and hydrothermal

methods, [344] all of which are generally more

complex than solid state synthesis and rely on

more costly precursors, as they require a higher

purity level.

Recently, nanostructured SOFC electro-

catalysts have been also investigated as highly

active electrode materials. The nanoparticles are

typically formed by precipitation and decompo-

sition of one or a mixture of metal salts (such as

metal nitrates) inside a porous pre-sintered back-

bone (e.g., of YSZ), using a technique termed

infiltration [345–348]. As the produced

nanoparticles have a higher active surface area

than those produced by conventional methods,

the cell performance is normally significantly

better. In addition, SOFC electrocatalysts

introduced by infiltration can be fired at much

lower temperatures compared to those prepared

using conventional fabrication techniques, such

as mixed powder synthesis, to form the desired

phase. This lower firing temperature is very ben-

eficial in allowing the use of a variety of catalyst

materials that cannot be sintered at high

temperatures due to their low melting points

(mostly for metallic catalysts) or their lack of

chemical compatibility with other SOFC

components.

Many anode and cathode catalysts have been

fabricated using the infiltration technique. For

anodes, metal-based catalysts, such as Ni, Co,

and Cu, have been infiltrated into a pre-sintered

scaffold (such as YSZ) [292, 349–352]. Infiltra-

tion of oxides, such as ceria-based materials

[353] and also perovskites, such as La0.8Sr0.2
Cr0.5Mn0.5O3 (LSCM) [354] and La0.3Sr0.7TiO3

(LST) [355], have also been studied. At the cath-

ode, many catalyst layers have been synthesized

using infiltration techniques, including the infil-

tration of La0.65Sr0.30MnO3 (LSM) [356],

La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) [357], and

Sm0.5Sr0.5CoO3�x (SSC) [358], as well as vari-

ous noble metals [359].

However, despite the advantages of infiltra-

tion techniques in terms of flexibility in the

material choice and in the formation of higher

surface area nanoparticles, the nanoparticles are

often unstable at SOFC working temperatures,

tending to grow in size (sinter) with time,

resulting in a gradually deteriorating perfor-

mance [349]. For this reason, efforts are under-

way to stabilize the infiltrated catalysts by

employing a range of techniques, including the

use of polymer-based vs. aqueous-based infiltra-

tion solutions [350, 360], exsolving of the

infiltrated material from the substrate [349], and

the use of a second ceramic phase to inhibit the

growth of the infiltrated particles [361].

Molten Carbonate Fuel Cells

Molten carbonate fuel cells (MCFCs) utilize an

alkali metal carbonate that is immobilized in a

porous ceramic matrix (maintained by capillary

forces), as the electrolyte. As such, the primary

charge carrier in this case is the carbonate ion

(CO3
2�), making the electrode reactions unique

among the various fuel cell types, as seen in

Fig. 17. The primary cathode reaction (13)

involves the reduction of O2, which together

with CO2, which is also fed into the cathode

compartment, forms carbonate ions, as follows:

½ O2 þ CO2 þ 2e� ! CO3
2� ð13Þ

At the anode (reaction (14)), H2 is oxidized,

forming water with an O2� ion from the carbon-

ate ion, thus releasing CO2, as follows:

CO3
2� þ H2 ! H2Oþ CO2 þ 2e� ð14Þ

The requirement for CO2 to be mixed with air

at the cathode (13) creates some challenges, as

CO2 released at the anode must be recycled to the

cathode. Significant materials and system design

challenges result, since the gas should ideally

remain at temperature in the journey from

anode to cathode. However, if the CO2 can be

delivered to the cathode from the exhaust gas of a

conventional combustion reaction, such as in a

coal power plant, this requirement for CO2 in the

cathode gas becomes a distinct advantage of

MCFCs. This is because the anode exhaust gas
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contains primarily CO2, H2O (which is easily

condensed out), and unreacted fuel, making

CO2 easily captured for subsequent storage.

MCFCs therefore have the advantage that they

can not only capture CO2 through their own

reactions, but they can also serve to concentrate

CO2 from the exhaust of other combustion

processes. It is estimated that the capacity for

CO2 capture of a 1 MW MCFC is approxi-

mately 11,000 t/y of CO2 fed to the cathode,

excluding its own inherent CO2 production

[363, 364].

The electrical efficiency of MCFCs, which

can be as high as 50% [363, 365], makes them

additionally promising for stationary power gen-

eration, as an efficient alternative to coal-fired

power plants and for backup power. Similar to

SOFCs, these cells operate at high temperatures

(600–650 �C), which results in fast kinetics

(no precious metal catalysts are required) with

no CO poisoning (CO is a fuel) and produces

high-quality waste heat (cogeneration is possi-

ble). Notably, this temperature is still low enough

to avoid significant NOx production, and the

majority of the NOx produced is destroyed

within the fuel cell [362]. The production of

heat by the MCFC can boost the overall effi-

ciency of the system to between 85 and 90%

[366], making MCFCs very attractive for

distributed generation.

Because CO is a fuel, rather than a poison, in

these systems, MCFCs (like SOFCs) can operate

on a variety of gasified fuel feedstock, including

H2, CO, CH4, etc. Thus, any hydrocarbon fuel

(e.g., diesel [367]) from any source (e.g., bio-

mass [368]) can be reformed to H2 and CO and

supplied to the anode. Further, the use of fuels

that reform in the stack (e.g., CH4) can serve to

remove some of the excess heat of the reaction at

the source and decrease the need for other stack-

cooling measures (e.g., increased airflow rate at

the cathode) that would lower the efficiency

[369]. While there are technical issues (coking

[368] and poisoning caused by sulfur, halogen,

and siloxane gas contamination [362]), fuel flex-

ibility is a key advantage that allows MCFCs

(and SOFCs) to serve as a bridge between the

use of the conventional fuels today and the

hydrogen economy of the future, when H2 prices

are expected to decrease [363].

The primary difficulty with developing high

temperature fuel cells, such as MCFCs, is that the

materials must be compatible with each other

(thermal expansion coefficients must match,

and there should be no chemical reactions

between adjacent layers), including at the rela-

tively high operating temperatures (>500 �C) for
>40,000 h. Also, although MCFCs are the fur-

thest along in terms of commercialization, there

are challenges with using an ionic melt

Fig. 17 Schematic

diagram of a molten

carbonate fuel cell showing

electrode reactions.

Reprinted from 362, with

permission of John Wiley

and Sons
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electrolyte. These include ensuring that there are

no discontinuities of the electrolyte where air and

fuel can intermix, and the electrolyte must be

replaced as quickly as it vaporizes. The molten

carbonate electrolyte is also very corrosive to the

metals that are typically present in the stack

(electrodes and interconnects), thus resulting in

the dissolution (corrosion) of the components

[370, 371]. In the case of NiO cathode dissolu-

tion, for example, the dissolved metal can precip-

itate within the electrolyte matrix as Ni metal and

cause short circuiting between the anode and

cathode [363, 371].

Ionic Melt Electrolytes

As discussed previously, the electrolyte is typi-

cally composed of a molten salt mixture

suspended in an inert ceramic matrix between

the anode and cathode by capillary forces. Pore

equilibrium and capillary control models were

developed for MCFCs in the 1970s [372], and

this understanding has allowed the electrolyte

ceramic matrix to remain filled and the

electrodes to remain partially filled

[362, 373]. The electrolyte is typically Li2CO3

(50–70 mol%) mixed with K2CO3 or Na2CO3,

since it has low volatility, high ion conductivity,

good wetting of the electrodes (especially the

cathode), and good compatibility with the other

cell and stack components at typical operating

temperature of 650 �C [371]. LiAlO2 is the pri-

mary material used as a support matrix for the

electrolyte, since it can have high porosity

(50–70%) with a narrow pore size distribution,

good strength, and a high ohmic resistance [374–

376].

As seen in Fig. 18, a period of constant degra-

dation is typically followed by rapid and cata-

strophic degradation rates that lead to cell’s end

of life, which is caused by gas crossover and NiO

dissolution at the cathode. Carbonate volatiliza-

tion is a factor, but gas crossover is primarily

caused by sintering of the ceramic LiAlO2 matrix

during long-term operation [377] [378, 379]. As

the ceramic matrix sinters, the pore size

increases, and the electrolyte material is lost as

the capillary liquid electrolyte retention forces

change [377]. NiO dissolution at the cathode

causes significant problems because Ni2+ will

migrate to the anode, reduce to Ni metal, and

eventually short circuit the anode and cathode.

While these two processes (gas crossover and

NiO dissolution) may not seem related, both have

been shown to be related to the basicity of the

carbonate melt [378]. LiAlO2 sintering proceeds

through a dissolution-precipitation mechanism

that proceeds more rapidly as the basicity

increases [379], and the dissolution of NiO at

the cathode proceeds faster as the basicity

decreases. The basicity of the melt has a strong

(I) Gradual degradation

0

(II) Rapid degradation

ÿ ÿ

ÿ

Increase of ohmic resistance
and electrode polarization
due to electrolyte loss

Ni short circuit due to
cathode NiO dissolution

Gas leakage due to
cumulative electrolyte loss

Operating time (h)

O
ut

pu
t 

vo
lt

ag
e 

(V
)

Fig. 18 Schematic

representation of the

typically observed MCFC

degradation over time with

a constant current.

Reprinted from 380, with

permission of Elsevier
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relationship with the CO2 content of the gas

phase (in the anode and cathode compartments),

decreasing as the CO2 content increases. This

relationship is typical in an oxyanion melt in

which the oxide ion defines the acidity of the

aqueous system. As such, NiO dissolves

according to the following acid mechanism

(reaction (15)), as an example [371]:

NiO sð Þ þ CO2 gð ÞNi2þ lð Þ þ CO3
2� ð15Þ

For this reason, lowering the CO2 pressure in

the gas will increase the basicity of the carbonate

melt, decrease the propensity for NiO dissolu-

tion, and increase the LiAlO2 sintering rate. In

addition, the basicity can be increased by

increasing the Li2CO3 content or by substituting

Na2CO3 for K2CO3 or by the addition of foreign

cations, such as rare earth and alkaline earth

cations [381]. However, Na2CO3 is not preferred

as the electrolyte, as it has low oxygen solubility

and high reactivity with the stainless steel

components of the stack. The low oxygen solu-

bility has a dramatic effect on cell performance,

as the limiting current with a Li/K melt is three

times higher than for Li/Na melts [371]. Current

research emphasis is on the ternary Li/K/Na

melts and on alternative cathode materials

systems, discussed below.

Another significant issue related to the life-

time of the electrolyte is the very large thermal

expansion mismatch between the LiAlO2 matrix,

which has a thermal expansion coefficient of

10 � 10�6 �C�1 and the solidified carbonate

electrolyte, which can have a thermal expansion

coefficient of 20 � 10�6 �C�1. Many different

approaches have therefore been taken to attempt

to improve the mechanical strength of the

LiAlO2 matrix, including the addition of

1–6 vol% refractory metal alloys (e.g., Fe

alloyed with Cr, Al, and Co) [382], the addition

of large particles that relieve stress by forming

tiny discontinuous cracks [383], and the addition

of ceramic fibers, rods or particulates, or metal

mesh [371]. Each of these attempts has been

successful in making the matrix stronger. How-

ever, the stability of the materials after exposure

to the carbonate melt is a key to long-term

stability [371].

In recent years, it has been noted that improv-

ing the solubility of O2 in the carbonate melt can

increase the cathode performance in a MCFC

[384, 385]. Oxygen solubility is typically on the

order of 1 ppm mol/cm3 at 650 �C, but with the

addition of 3 mol% MgO and 0.5 mol% La2O3,

the oxygen solubility increases to 6 ppm mol/cm

[384, 386]. Nitrate anions can be added to

increase oxidizing power [387] for chemical dis-

posal applications, but there is negligible effect

on oxygen solubility.

Anode Catalyst Materials

The current state-of-the-art MCFC anode is com-

posed of Ni metal alloyed with Cr and/or Al to

provide microstructural stability by forming

interspersed oxides and intermetallics

[363]. Mechanical creep of the Ni anode at

operating temperatures can be substantial with-

out these Cr/Al alloy additions, while endurance

tests show good stability and performance for ~5

y. Ni–Cr has exhibited good performance as an

anode because it has good wettability, due to Cr

oxidation (forming small pores) and lithiation

(forming LiCrO2) [388].

To accelerate commercialization, however,

research is focused on materials and alloy

additions that will both improve performance

and long-term stability and lower the costs

associated with the current materials system.

Ceramic additives, impregnation, and coating

processes have all been investigated to this aim.

CeO2, doped CeO2, TiO2, YSZ, LSC, LiAlO2,

and Li2TiO3 have all been investigated as

additives to the Ni-based anode to improve wet-

tability, but LSC has shown the best improve-

ment overall [389]. The addition of Zr, Cu,

Ni3Al, Al2O3, and LiAlO2 to the Ni anode have

all been shown to lower Ni creep, but long-term

stability continues to be an issue for these

materials [388, 390–393]. To lower cost, alterna-

tive anode materials have also been investigated,

such as LiFeO2 and Cu–Al [388]. LiFeO2 and

Cu–Al suffer from poor creep and electrochemi-

cal performance, and, further, Cu–Al suffers

from rapid oxidation during the stack condition-

ing stage and system interruption. Ni additions to
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the Cu–Al system have shown improvements in

these areas, however [388].

Performance and endurance of MCFC anodes

are influenced not only by the materials

employed but also by the electrolyte fill level,

pore structure, and wettability. The anode envi-

ronment plays a role in anode wetting, for exam-

ple, as it has been shown [388, 392] that the

contact angle increases as the CO2 partial pres-

sure increases.

Cathode Catalyst Materials

As Reaction (13) shows, the cathode gas requires

CO2 to be present in addition to O2 in order to

recharge the carbonate ions that are consumed at

the anode (Reaction (14)). Thus, a minimum of

2–3% CO2 is required in order to prevent lower-

ing of the cell performance due to insufficient

electrolyte charge carriers being present

[394]. The typical cathode gas used has a 15%

content of CO2 gas in order to replenish the

carbonate ions that are consumed at the anode,

and, due to mixing with the anode gas, the O2

content is typically only 10% [395].

The state-of-the-art cathode in MCFCs is NiO

that has been lithiated in situ by the Li2CO3

component of the electrolyte [396]. The conduc-

tivity of the NiO cathode is enhanced by Li

doping because of an enrichment of Ni3+ cations,

which enhances the intrinsic p-type conductivity

of NiO [371]. Wetting of the cathode is much less

of a problem in comparison with the anode, as

lithiated NiO has very low contact angles with

the Li2CO3-containing electrolyte [389].

As discussed above, a significant problem in

MCFC cathodes is the chemical deterioration of

NiO in the presence of molten salts and the CO2

environment. Free Ni2+ ions are released into

the solution (~15 mol ppm/cm3 solubility),

remaining in equilibrium with the cathode while

moving toward the anode as a result of a concen-

tration gradient. Once at the anode, Ni2+ is

reduced, and, eventually, Ni metal forms Ni

dendrites that can short circuit the electrodes

[374]. To overcome the problem, the electrolyte

basicity can be increased, or, alternatively,

additives, coatings, and new materials can be

used to mitigate the problem.

Other lithiated oxides have been investigated

as cathodes, including LiFeO2, LiCoO2, and

LiMnO2, all of which have shown promise with

good electrical conductivity and good stability

[371]. LiFeO2, for example, has a dissolution

rate of zero, and LiCoO2 has a dissolution rate

that is an order of magnitude lower than what is

seen with NiO. However, low mechanical

strength, high manufacturing costs, and poor

electrochemical performance hinder the use of

these materials [397]. Co and Fe doping of

lithiated NiO in a ternary system and coatings

of LiCoO2 on NiO have garnered recent atten-

tion. In the case of 20% Co doping of LiFeO2 and

NiO2 (mixed in a 1:3 ratio), the electrochemical

performance is almost as good as what is seen for

commercially used NiO [398]. Alternative

ceramic materials, such as Li2MnO3 and

La1�xSrCoO3, have also been investigated, but

their electrochemical performance is

inadequate [399].

Manufacturing of MCFCs

Manufacturing costs of MCFCs can be signifi-

cant, principally due to the large cell areas

required in order to compensate for the very

high cell resistance and low power output. The

costs associated with the need for a large reactive

area are typically mitigated by manufacturing

large cells, as seen in Fig. 19. Pre-sintering of

components, such as the electrolyte matrix, can

also add significant cost to the MCFC. One

method of avoiding any pre-sintering steps is to

add between 3 and 45% Al to the raw LiAlO2

powder and then precondition the electrolyte. In

this way, Al reacts, as follows [400], and

becomes a fully bonded matrix in situ.

2Alþ Li2CO3 þ 3=2O2 ! 2LiAlO2 þ CO2

ð16Þ
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Aluminum acetylacetonate has also been

investigated [401] as a sintering aid, and

Li-containing materials have also been added so

that the electrolyte is not depleted of Li2CO3

before operation [371].

Many manufacturing processes have been

investigated in recent years for the production

of anodes, including tape casting, dry doctoring,

and screen printing. However, the cost of many

of these processes, in addition to the sintering

steps that are normally required, is generally

high. At Fuel Cell Energy (the present-day

world leader in MCFC development), anode

tapes are typically produced by tape casting and

then laminated to the porous LiAlO2 electrolyte

support. The anode is then sintered during the

stack conditioning process in situ, which has

greatly simplified and lowered the cost of the

process [388, 402].

Direct Carbon (Molten Liquid) Fuel Cells
(DCFCs)

Significant work is also being carried out to

develop direct carbon fuel cells (DCFC), which

are attractive, because solid carbon fuel has a

very high energy density, as it is thought that

the theoretical electrical efficiency could be as

high as 72% for relatively small systems

(<100 kW) [363, 403] and as the solid fuel

source can be carbon [404, 405], coal

[405, 406], coke, tar, or even biomass and

organic waste [407, 408]. In addition, a very

concentrated CO2 by-product gas is produced,

which can then be sequestered with little

processing.

The electrolyte and electrode materials used

in DCFCs can be quite diverse, since these fuel

cells can utilize a molten carbonate, a molten

hydroxide [403], or a solid ceramic yttria-

stabilized zirconia (YSZ) electrolyte. In addition

to the typically high-temperature material com-

patibility issues that are encountered in MCFCs

and SOFCs, the DCFC has significant problems,

primarily dealing with the high ash (inorganic)

content present in most carbon sources, the car-

bon corrosion (i.e., consumption by the reverse

Boudouard reaction), and the need for continu-

ous fuel feeding [403].

There are two primary fuel feeding methods

that are utilized in DCFCs. Fuel is fed in either by

using a liquid carrier and a fluidized bed or using

a batch process (e.g., fuel is periodically input

during shutdown) to bring a constant supply of

carbon into the anode chamber of the cell. The

carrier fluid can be comprised of liquid Sb [407]

or molten hydroxide/carbonate [408]. In a batch

process, the carbon usually does not have direct

contact with the anode. Instead, fuel containing a

Fe-based catalyst (the Fe oxidation state does not

affect the catalytic properties) is brought into the

anode chamber prior to start-up [409], and resid-

ual oxygen from the loading reacts with carbon,

producing CO. CO diffuses to the anode and

reacts electrochemically to form CO2, which

then diffuses back to the fuel source and forms

more CO by the reverse Boudouard reaction

Fig. 19 Full size molten carbonate fuel cell and stack.

Reprinted from [362], with permission of John Wiley

and Sons
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(CO2 + C↔2 CO). CO2 containing some CO

then exits through the exhaust as the pressure

builds up [409].

Summary

Fuel cell technology, which is a clean and highly

efficient alternative to combustion technologies,

has been steadily moving toward commercializa-

tion over the last few years. Polymer electrolyte

membrane fuel cells (PEMFCs) are making sig-

nificant inroads into applications in the transpor-

tation sector and direct alcohol fuel cells

(DAFCs) in mobile applications, and solid

oxide fuel cells (SOFCs) and molten carbonate

fuel cells (MCFCs) are being implemented into a

variety of stationary applications.

Table 1 summarizes the current status of the

five main fuel cell types, where DAFCs are

represented by direct methanol fuel cells, which

are among the furthest along in terms of com-

mercialization. This table, which also includes

alkaline fuel cells (not discussed in this chapter),

provides a useful summary of the typical

reactants used, the electrode materials, the aver-

age efficiency, target costs, and more, similar to

(but updated) and relative to what has been

shown in other reviews [10, 28, 410–413].

Table 1 Current status of fuel cell technologies [10, 28, 410–413]

PEMFC DMFC AFC SOFC MCFC

Fuel H2 Alcohol, e.g.,

methanol, ethanol

H2 H2, CO, CH4,

etc.

H2, CO, CH4, etc.

Oxidant O2, air O2, air O2 O2, air O2, air (+ CO2)
e

Electrolyte Polymer

electrolyte

(membrane), e.g.,

polyfluorosulfonic

acid, Nafion

Polymer electrolyte

(membrane), e.g.,

polyfluorosulfonic

acid, Nafion

KOH Zirconia or

ceria based,

perovskites

Molten carbonate

(Li2CO3, Na2CO3,

K2CO3)

Anode

catalyst

Pt- or Pt alloy-

loaded carbon

(e.g., PtNi, PtCo)

PtRu alloy-loaded

carbon

Pt, other

transition metals

Ni + yttria-

stabilized

zirconia

(YSZ); ceria,

perovskites

Ni–Cr, Ni–Al

Cathode

catalyst

Pt- or Pt alloy-

loaded carbon

(e.g., PtNi, PtCo)

Pt- or Pt alloy-loaded

carbon (e.g., PtNi,

PtCo)

Pt, other

transition metals

LaSrMn oxide

perovskite +

YSZ,

LaSrCoFe

perovskite,

other mixed

oxides

Lithiated NiO

Anode

reaction

2H2 ! 4H++4e� CH3OH + H2O ! 6H+

+CO2 + 6e�
2H2 + 4OH�

! 2H2O + 4e�
H2 + O2�

! H2O + 2e�
H2 + CO3

2�

! H2O + CO2 + 2e�

Cathode

reaction

O2 + 4H++4e�

! 2H2O

O2 + 4H++4e�

! 2H2O

O2 + 2H2O + 4e�

! 4OH�
½O2 + 2e�

! O2�
½O2 + CO2 + 2e�

! CO3
2�

Current

collector

Carbon or

graphite, transition

metals (Ti,

stainless steel, etc.)

Carbon, transition

metals (Ti, stainless

steel, etc.)

Carbon, metal Ni, ceramic,

steel

Ni, stainless steel

End plate/

lead to ext.

circuit

Carbon or

graphite, metal

Carbon or graphite,

metal

metal Ni, stainless

steel

Ni, stainless steel

Operating

temp (�C)
~ 80, 20–120 ~ 80, 20–120 65–220 500–1000 600–800

Power

density

(mW/cm2)

100–2500 50–500 100–400 200–800 100–300

(continued)
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