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Abstract. The volume of tissue activated (VTA) is commonly used
as a tool to explain the effects of deep brain stimulation (DBS). The
VTA allows visualizing the anatomically accurate reconstructions of the
brain structures surrounding the DBS electrode as a 3D high-dimensional
activate/non-activate image, which leads to important clinical appli-
cations, e.g., Parkinson’s disease treatments. However, fixing the DBS
parameters is not a straightforward task as it depends mainly on both
the specialist expertise and the tissue properties. Here, we introduce a
kernel-based approach to learn the DBS parameters from VTA data.
Our methodology employs a kernel-based eigendecomposition from pair-
wise Hamming distances to extract relevant VTA patterns into a low-
dimensional space. Further, DBS parameters estimation is carried out
by employing a kernel-based multi-output regression and classification.
The presented approach is tested under both isotropic and anisotropic
conditions to validate its performance under realistic clinical environ-
ments. Obtained results show a significant reduction of the input VTA
dimensionality after applying our scheme, which ensures suitable DBS
parameters estimation accuracies and avoids over-fitting.

Keywords: Kernels · Volume of tissue activated · Deep brain
stimulation

1 Introduction

Deep brain stimulation (DBS) is a surgical therapy used mainly for treatment
of a variety of neurological disorders, in patients who do not respond well to
medication. In particular, DBS consists of an electrode inserted inside neural
tissue of the patient to modulate neural activity with applied electric pulses,
which depend on amplitude, pulse-width, frequency, and the electrode charac-
teristics [2]. Although the physiological mechanism of DBS still remains unclear,
its clinical effectiveness is evident [5]. A measure of the effects of the DBS resides
in the estimation of the volume of tissue activated (VTA), namely, the spatial
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spread of direct neural response to external electrical stimulation as a 3D high-
dimensional activate/non-activate image. Nonetheless, fixing the DBS parame-
ters is not a straightforward task since it depends on both the specialist expertise
and the brain tissue properties of each patient [6].

The VTA, and its visualization, jointly with reconstructions of the brain
structures surrounding the implanted electrode have been proposed as an alter-
native to accelerate the process of stimulation parameters adjustment, also min-
imizing the adverse side effects that can occur when they are not carefully
adjusted [1]. This system allows the medical specialist to observe the brain struc-
tures that are responding directly to the electrical stimulation. Thus, the clini-
cian determines the possible effects of a given stimulation configuration on the
patient. Nonetheless, such an approach still involves a heuristic search method
(trial and error), requiring high computational load and appropriate expertise
by the specialist [6]. So, the problem of computing a set of specific neuromod-
ulation parameters given an objective VTA has been less studied in the DBS
literature. In contrast, there is an extensive literature that attempts to estimate
the VTA from the stimulation parameters [1,10]. Authors in [7] introduced a
machine learning system to predict the VTA from DBS parameter space. It
allows the user to select a target to find the correlation between the calculated
and the desired VTA. Once the correlation between the VTAs is calculated,
the algorithm provides a possible configuration of neurostimulation parameters.
However, the approach only operates under isotropic conditions and the system
can not represent high stimulation parameter values and/or more than two active
contacts. In [4] our group presented an alternative strategy for DBS parameter
estimation from a previously specified VTA. We employed a framework based on
support vector machines for multi-output regression and classification. However,
our strategy is developed only under isotropic conditions.

In this work, we developed a kernel-based approach for DBS parameters
estimation from VTA data. In this sense, our data-driven kernel-based scheme
comprises mainly two stages (i) kernel-based principal components extraction
from VTA samples, and (ii) DBS parameter estimation using kernel-based multi-
output regression and classification. Moreover, our technique is developed under
both ideal (isotropic tissue conductivities) and realistic (anisotropic tissue1 con-
ductivities) assumptions. Our aim is to estimate neuromodulation parameters
from the planned VTA to support DBS-based treatments. Results obtained show
a remarkable reduction of the input VTA dimensionality after applying our fea-
ture extraction scheme, ensuring suitable DBS parameter estimation accuracies
and avoiding over-fitting. The remainder of this paper is organized as follows:
Sect. 2 describes the materials and methods of the approach introduced. Sec-
tions 3 and 4 describe the experimental set-up and the results obtained, respec-
tively. Finally, the concluding remarks are outlined in Sect. 5.

2 Materials and Methods

Let X ∈ {0, 1}N×P and Y ∈ R
N×Q be a given pair of matrices coding

the VTA and the DBS parameter spaces, respectively, holding P axons, Q
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stimulation parameters, and N samples. The i-th VTA xi ∈ R
P (i ∈

{1, 2, . . . , N}) is computed from the DBS configuration in row vector yi ∈ R
Q.

In particular, a six-dimensional DBS parameter vector y = [DA DW c0 c1 c2 c3]
is considered (Q = 6), where DA ∈ R

+ refers to the amplitude, DW ∈ R
+ to the

pulse width, and cr to the r-th contact condition, with r = {0, 1, 2, 3}. Regarding
the VTA simulation, given a DBS parameter vector yi, a finite element method
(FEM) is employed to compute the spatial distribution of the extracellular poten-
tial [10]. Then, a model of multicompartment myelinated axons is implemented
to determine the axonal response to electric stimulation and the VTA is com-
puted as the volume generated by the active axons [1]. The i-th VTA xi is stored
towards axon concatenation, where the element xip = 1 (p ∈ {1, . . . , P}) if the
p-th axon is activated by the DBS, otherwise, xip = 0. Figure 1 shows the VTA
estimation sketch.

Fig. 1. VTA estimation main sketch. The VTA is composed by elements labeled as
active ‘1’ (green dots) and non-active ‘0’ (red dots). (Color figure online)

With the aim to estimate the neuromodulation parameters from a planned
VTA in DBS-based treatments, we introduce a data-driven kernel-based scheme
to highlight the relevant relations between the VTA and the DBS parameter
spaces. Our approach comprises two main stages (i) VTA feature extraction
through kernel-based eigendecomposition, (ii) DBS parameter estimation using
kernel-based multi-output regression and classification.

Kernel-Based VTA Feature Extraction. Let φ:{0, 1}P→H be a nonlinear map-
ping function that embeds any x ∈ X into the element φ(x) ∈ H of the Repro-
ducing Kernel Hilbert Space (RKHS) H. By assuming that the elements in H
are centered (

∑N
i=1 φ(xi) = 0), the covariance matrix in the RKHS can be com-

puted as follows: S = (1/N)
∑N

i=1 φ(xi)φ(xi)�, where its eigenvalues λm ∈ R
+

and eigenvectors vm ∈ H satisfy Svm = λmvm (m = {1, 2, . . . ,MP }, vm �= 0).
Since all solutions vm lie in the span of {φ(xi)}Ni=1 we may consider the equiv-
alent system: λmφ(xi)�vm = φ(xi)�Svm, and that there exists a coefficient
vector set {αm ∈ R

N}MP
m=1, such that vm =

∑N
i=1 αm

i φ(xi) for all αm
i ∈ αm.

Then, an eigenvalue problem is solved to find αm as [9]: Nλmαm = Kαm, where
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K ∈ R
N×N is a kernel matrix holding elements kij = κx(xi,xj) = φ(xi)�φ(xj),

being κx:{0, 1}P × {0, 1}P→R
+ a positive definite kernel. Due to the binary

structure of the VTA, a Gaussian kernel is computed from a Hamming-based
distance:

κx(xi,xj) = exp
(−d2

h(xi,xj)
2σ2

x

)

, (1)

where d2
h(xi,xj) =

∑P
p=1 (1−δ(xip−xjp)) is the Hamming distance operator, δ(·)

stands for the delta function, and σx ∈ R
+ is kernel bandwidth. Afterwards, the

kernel principal component extraction (KPCA) zmi ∈ R of φ(xi) onto the m-th
basis in H is computed as:

zmi = v�
mφ(xi) =

∑N

j=1
αm
i κx(xi,xj) (2)

and the feature extraction matrix Z ∈ R
N×MP , holding row vectors zi ∈ R

MP ,
is built by concatenating the MP principal components.

Kernel-Based DBS Parameter Estimation. Given Z we build two kind of vector-
valued functions. The former, fR:RMP →R

2 estimates the amplitude and pulse-
width DBS parameter vector yR

i ∈ R
2 in Y R ∈ R

N×2 as: ŷR
i = fR(zi) =

ϕR(zi)W+b, where W ∈ R
MR×2, b ∈ R

2, and ϕR:RMP →R
MR . Then, a multi-

output support vector regression (MSVR) optimization problem can be defined
as follows [8]:

W ∗, b∗ = arg min
W ,b

1
2

∑2

m=1
‖wm‖2 + γR

∑N

i=1
ς(ui), (3)

where wm ∈ R
MR is the m-th column vector of W , γR ∈ R

+ is a reg-
ularization parameter, ui = (e�

i ei)1/2, ei = yR
i −̂yR

i , and ς(ui) = (u−ε)2 if
ui≥ε, otherwise, ς(ui) = 0 (ε ∈ R

+). Writing Eq. (3) in terms of ξmR
N , with

ϕϕϕ = [ϕR(z1), . . . , ϕR(zN )]� ∈ R
N×MR and wm = ϕϕϕ�ξm, a dual problem can be

solved as:
ŷR
i = kR

i Ξ+b (4)

where Ξ ∈ R
N×2 is a weighting matrix with column vectors ξm and kR

i ∈ R
N

is a row vector holding elements: kR
ij = κz(zi,zj), (i, j ∈ {1, 2, . . . , N}), being

κz:RMP×R
MP →R

+ a Gaussian kernel function:

κz(zi,zj) = exp
(−d2

e(zi,zj)
2σ2

z

)

; (5)

notation de(·, ·) stands for the Euclidean distance and σz ∈ R
+. Then, an itera-

tively reweighted least squares procedure is used to find Ξ, b [8].
Regarding the latter function, fC :RMP →{−1, 0, 1}, which allows computing

the DBS contact configuration vector yC
i ∈ {−1, 0, 1}4 in Y C ∈ {−1, 0, 1}N×4,

we built a soft margin support vector classifier (SVC) over Z to compute the
r-th contact value as:

ŷC
ir = fC

r (zi) =
∑N

j=1
�rjy

C
jrκz(zi,zj) + ar, (6)
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where �rj ∈ R is the weight of training sample j for the r-th classifier and ar ∈ R

is a bias term. So, each classifier is solved as a quadratic optimization from the
well-known SVC dual formulation (for details see [9]).

3 Experimental Set-Up

We built two VTA databases generated by 1000 randomly selected combinations
of realistic stimulation parameters, thereby, cr{−1, 0, 1}, DA ∈ [0.5, 5.5][V ], and
DW ∈ [60, 450] [μs]. Such parameter value ranges are relevant in the context
of VTA estimation for the Medtronic ACTIVA-RC stimulator.1 The first data-
base is built for both monopolar and bipolar conditions (one or two active con-
tacts), under the assumption of an isotropic tissue medium (ITM), which is the
most commonly used in clinical practice settings. The second database comprises
isotropic and anisotropic tissue medium conditions (IATM), namely, 500 VTAs
are computed for each of them. An extracellular potential model is executed
for both databases using the COMSOL Multiphysics 4.2 FEM toolbox. There-
fore, a model where the electric conductivity of the brain tissue is assumed to
be homogeneous and isotropic is employed for ITM, meanwhile an anisotropic
conductivity one is used for IATM. Such anisotropic conductivities are obtained
from magnetic resonance imaging by means of diffusion tensors. For concrete
testing, a DTI30 dataset is considered2 with the RESTORE (Robust Estima-
tion of Tensor by Outlier Rejection) algorithm, and then, linearly transformed
to conductivity tensors. After that, a model of multicompartment myelinated
axons is implemented by using NEURON 7.3 as a Python module, to determine
axonal response to the electric stimulation. Nevertheless, solving the gold stan-
dard approach for VTA estimation is computationally expensive. So, we use a
Gaussian Process classifier (GPC) to emulate the multicompartment myelinated
axonal model [3]. In this sense, the multicompartment axon model is executed
by a random sample set estimated from the whole axonal population, aiming to
simulate the axonal response to the electric stimulation by training the GPC.

For all the experiments, we performed a training-testing validation scheme
with 30 repetitions, where 80% of the samples are used as training set and
the remaining 20% as testing set. Two kind of systems are tested. The former,
high-dimensional kernel learning (HDKL), does not include the KPCA stage for
learning relevant components from the VTAs. Instead, the MSVR and the SVC
are applied directly from the input set X by applying a Gaussian kernel from a
Hamming-based distance. The latter, low-dimensional kernel learning (LDKL),
includes the KPCA stage as feature extraction. For both systems the MSVR algo-
rithm is implemented according to an open source code3. Furthermore, the kernel
bandwidth values are fixed as: σx = med(dh(xi,xj)) and σz = med(de(zi,zj)),
respectively, where med(·) stands for the median operator. Moreover, the number
of projected features in KPCA is computed from the set MR = {3, 4, . . . , 30}.

1 Available at www.aann.org/pdf/cpg/aanndeepbrainstimulation.pdf.
2 Available at www.cabiatl.com/CABI/resources/dti-analysis/.
3 http://isp.uv.es/soft regression.htm.

www.aann.org/pdf/cpg/aanndeepbrainstimulation.pdf
www.cabiatl.com/CABI/resources/dti-analysis/
http://isp.uv.es/soft_regression.htm.
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Additionally, the MSVR free parameters are fixed within the following ranges
based on the system performance: σz = [0.5med(de(zi,zj)), 1.5med(de(zi,zj))],
ε = [0.5, 2], and γR = [0.5, 2]. Alike, the SVC regularization parameter γC
is tuned from: γC = [1, 10, 50, 100, 1000]. For all the datasets provided, we
uniformly subsample each VTA vector to obtain the input dimensionalities
P = {17.405, 8.703, 3481} and P = {17.924, 8.897, 3559} in ITM and IATM,
respectively.

4 Results and Discussion

Figure 2(a) and (b) show the kernel-based eigendecomposition projections for
both VTA datasets studied. Each dot represents a different neurostimulation
configuration, where its size is given by the contact condition, and the color rep-
resents the amplitude value. After visual inspection of the ITM results, we note
that the kernel-based feature extraction allows differentiating between active and
non-active points. Since ITM is computed for isotropic conditions a smooth data
structure is revealed by the KPCA projection. In fact, the projected space allows
coding the DBS amplitude information, which probes the capability to encode
high-dimensional sample relations. Nevertheless, some overlaps are found due to
different combinations of the amplitude and pulse width values, which lead to
similar VTAs. Regarding the IATM visual inspection results, the achieved pro-
jection highlights more overlaps in terms of contact state and amplitude value in
comparison to the ITM results. The fact that both isotropic and anisotropic con-
ditions are studied in the same dataset leads to complex data relations between
VTAs, however, a bottom to top amplitude increases is presented.
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Fig. 2. Kernel-based eigendecomposition results. The dots color represents the ampli-
tude value and the size the contact settings: active (big dot), inactive (small dot). (a)
ITM dataset-Contact 0. (b) IATM dataset-Contact 0. (Color figure online)

Now, Tables 1 and 2 summarize the DBS parameter estimation accuracies
obtained for both considered kernel-based approaches (HDKL and LDKL).
The embedding dimensionality in LDKL is varied in the range MP =
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70} and the best result is presented
for each provided input dimensionality value. As seen, the HDKL approach
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Table 1. DBS parameter estimation results for the ITM dataset. Percentage of
training-set selected as support vector is shown in parentheses.

DBS par. HDKL LDKL (MP = 40) HDKL LDKL (MP = 40) HDKL LDKL (MP = 40)

P = 17405 P = 17405 P = 8703 P = 8703 P = 3481 P = 3481

DA [V] 87.62± 1.43 91.78 ± 0.84 87.49± 1.26 91.76 ± 0.86 87.28± 1.11 91.82 ± 0.88

(44.12± 9.93) (72.50 ± 4.41) 39.42± 5.08 (72.44 ± 3.53) 44.26± 9.96 (72.20 ± 4.50)

DW [µs] 84.65 ± 1.19 85.64± 0.89 84.83 ± 1.02 85.55± 0.96 84.50 ± 1.10 85.64± 0.90

(44.12 ± 9.93) (72.50± 4.41) (39.42 ± 5.08) (72.44± 3.53) (44.26 ± 9.96) (72.20± 4.50)

c0 97.47± 0.86 97.70 ± 0.96 97.25 ± 1.14 95.95± 3.43 97.37± 0.90 97.25 ± 1.11

(21.07± 3.88) (13.27 ± 2.95) (22.16 ± 3.91) (14.46± 2.99) (20.61± 3.70) (13.91 ± 3.37)

c1 94.92± 1.63 97.47 ± 1.70 94.84± 1.69 96.57 ± 3.47 94.92± 1.59 97.55 ± 0.98

(23.37± 4.03) (15.28 ± 3.60) (20.87± 0.69) (15.79 ± 4.88) (23.94± 4.35) (14.63 ± 2.68)

c2 95.68± 1.44 98.12 ± 0.82 95.11± 1.19 96.92 ± 3.39 95.71± 1.28 96.75 ± 4.23

(23.97± 3.67) (14.12 ± 2.41) (25.98± 5.03) (15.42 ± 2.51) (24.06± 3.98) (16.99 ± 6.83)

c3 97.65± 0.99 98.53 ± 0.76 96.62± 1.10 96.38 ± 2.88 97.50± 1.02 97.70 ± 1.34

(21.10± 4.10) (13.28 ± 2.10) (20.53± 4.03) (13.34 ± 2.70) (20.53± 4.13) (12.37 ± 2.25)

Average 93.00± 1.26 94.87 ± 0.99 92.68± 1.24 93.85 ± 2.49 92.90± 1.17 94.48 ± 1.54

(26.73± 5.12) (25.69 ± 3.09) (25.79± 3.75) (26.29 ± 3.32) (26.68± 5.22) (26.02 ± 3.93)

Table 2. DBS parameter estimation results for the IATM dataset. Percentage of
training-set selected as support vector is shown in parentheses.

DBS par. HDKL LDKL (MP = 40) HDKL LDKL (MP = 40) HDKL LDKL (MP = 40)

P = 17793 P = 17793 P = 8897 P = 8897 P = 3559 P = 3559

DA [V] 87.74± 1.14 89.31 ± 0.91 87.57± 1.14 89.28 ± 0.91 87.89± 1.17 89.45 ± 0.87

(40.08± 6.22) (73.08 ± 15.38) 39.92± 5.74 (74.09 ± 15.18) (43.10± 9.57) (75.96 ± 14.93)

DW [µs] 82.91± 1.39 85.13 ± 1.45 82.95± 1.50 85.15 ± 1.45 82.66± 1.48 85.15 ± 1.43

(40.08± 6.22) (73.08 ± 15.38) 39.92± 5.74 (74.09 ± 15.18) (43.10± 9.57) (75.96 ± 14.93)

c0 86.78 ± 2.09 84.15± 2.22 86.21 ± 2.11 83.53± 2.23 85.53 ± 2.34 83.47± 2.13

(38.64 ± 3.57) (33.42± 5.16) (38.17 ± 3.47) (34.34± 5.68) (38.87 ± 3.78) (33.90± 6.43)

c1 80.10 ± 2.80 77.74± 2.38 79.51 ± 2.97 77.67± 2.82 79.63 ± 3.08 76.60± 2.95

(51.40 ± 4.60) (43.60± 5.35) (52.14 ± 4.78) (41.98± 4.38) (50.07 ± 3.05) (44.65± 5.74)

c2 77.69± 3.00 77.50 ± 2.38 77.72± 2.88 77.75 ± 2.25 77.10 ± 2.58 76.67± 2.46

(54.43± 4.01) (48.40 ± 8.14) (54.35± 4.46) (46.09 ± 7.40) (54.81 ± 4.85) (47.79± 7.39)

c3 82.45± 2.32 82.16 ± 2.41 82.51± 2.43 82.19 ± 2.07 82.14± 2.12) 82.11 ± 2.19

(43.27± 3.42) (37.93 ± 5.23) (43.16± 2.95) (38.94 ± 5.56) (44.39± 4.18) (40.51 ± 5.88)

Average 82.94 ± 2.12 82.67 ± 1.96 82.75 ± 2.17 82.60 ± 1.96 82.49 ± 2.13 82.24 ± 2.01

(45.57 ± 4.36) (47.29 ± 7.85) (45.55 ± 4.28) (47.09 ± 7.64) (46.25 ± 5.09) (48.56 ± 8.07)

obtains slightly better results in terms of system accuracy in comparison to
the LDKL methodology. However, the LDKL extracts a representation space
of MP = 40 for both ITM and IATM, without affecting significantly the DBS
parameter estimation results. So, our kernel-based eigendecomposition is able to
code a high dimensional VTA space in a few number of relevant feature. Hence,
LDKL reduces the number of required support vectors by avoiding over-fitting.
Overall, LDKL performance is over 94% and 82% in ITM and IATM, respec-
tively, where the highest results are related to the c0 and c3 contacts and the
lowest ones to c1 and c2. The latter can be explained by their central position
along the DBS device. So, the activation of the volume around the c1 and c2
positions can be affected by the activity of c0 and c3. In this sense, similar VTAs
can provide different DBS configurations, especially, for axons positions around
the center of the stimulation device.
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5 Conclusions

In this study, we proposed a novel kernel-based approach to estimate the DBS
parameters from VTA data. The data-driven estimation introduced comprises
two main stages: (i) kernel-based feature extraction from VTA samples, and (ii)
DBS parameter estimation using kernel-based multi-output regression and clas-
sification. In this sense, we carried out a KPCA algorithm from pair-wise Ham-
ming distances between VTAs to extract relevant features from high-dimensional
and activated/non-activated-valued data. Then, a MSVR and SVC are trained
in the projected space to learn the DBS configuration. The problem we describe
in the paper has not been studied in deep in the literature. As we mention in
the introduction, there is an extensive literature that attempts to estimate the
VTA from stimulation parameters. However, attempting to solve the problem of
computing a set of specific neuromodulation parameters given a desired VTA has
been much less studied. The proposed approach is tested under both isotropic
and anisotropic conditions to validate its performance under realistic clinical
environments. According to the results achieved, a significant reduction of the
VTA space is obtained based on the kernel-based eigendecomposition analysis,
which avoids system over-fitting and ensures stable estimations. As future work,
authors plans to develop different kernel-based eigendecomposition, besides the
KPCA over the Hamming distances, aiming to enhance the system performance
in challenging VTA configurations. Moreover, a pre-image extension of the intro-
duced kernel-based extraction will be carried out for VTA reconstruction tasks.
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