
16Response Surface Methodology

16.1 Introduction

Response surface methodology was developed by Box and Wilson in 1951 to aid the improvement
of manufacturing processes in the chemical industry. The purpose was to optimize chemical reactions
to obtain, for example, high yield and purity at low cost. This was accomplished through the use of
sequential experimentation involving factors such as temperature, pressure, duration of reaction, and
proportion of reactants. The same methodology can be used to model or optimize any response that
is affected by the levels of one or more quantitative factors. The models are generalizations of the
polynomial regression models studied in Chap. 8.

The general scenario is as follows. The response is a quantitative continuous variable (e.g., yield,
purity, cost), and the mean response is a smooth but unknown function of the levels of p factors (e.g.,
temperature, pressure), and the levels are real-valued and accurately controllable. The mean response,
when plotted as a function of the treatment combinations, is a surface in p + 1 dimensions, called the
response surface. For example, Fig. 16.1 shows a response surface for two factors A and B.

We will denote the levels of A by values of x1 or xA and the levels of B by values of x2 or xB .
We will denote a treatment combination by x = (x1, x2, . . . , xp) or by x = (xA, xB , . . . , xP ) and the
mean response at x by ηx = E[Yx]. The general response surface model is of the form

Yx = ηx + εx ,

where εx is a random error variable.
The objective of obtaining a response surface is twofold:

(i) to locate a feasible treatment combination x for which the mean response is maximized (or mini-
mized, or equal to a specific target value); and

(ii) to estimate the response surface in the vicinity of this good location or region, in order to better
understand the “local” effects of the factors on the mean response.

In general, throughout the chapter we will think about maximizing the response, but we show via an
example that exactly the same techniques can be used for minimizing a response. The techniques can
easily be adapted when the goal is to have the response close to a target value.
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Fig. 16.1 Hypothetical
response surface for two
factors
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One possible approach to achieving the objective involves collecting observations at each location
on a grid of treatment combinations spanning the entire experimental region of interest (as suggested
by Fig. 16.1). However, the number of observations required by such a comprehensive approach can be
very large, and it grows very quickly as the number of factors under study increases. Also, somewhat
sophisticated modeling techniques would generally be needed to obtain an adequate fit of a model
over the entire region. Instead, it is generally more efficient to conduct a sequence of small “local”
experiments with which to search out the location of the peak mean response and then to study its
vicinity.

Seeking out the peak is analogous to climbing an unfamiliar mountain under conditions of limited
visibility—the mountain is the response surface, and your location on the mountainside is a treatment
combination, say xa . Standing at position xa , you look around and can see enough to determine in
which direction to go to continue a steep ascent. Then you climb in the determined direction as long
as it continues to take you up, not looking about lest you lose footing. Then you stop and look around
again to determinewhether you are at the top of themountain or inwhich direction you need to continue
your ascent. Of course, when you reach a peak, due to the limited visibility, you may not be sure that
you have actually reached the highest peak.

How does one do this experimentally? Looking around with limited visibility is equivalent to
analyzing the data of a local experiment, consisting of observations on treatment combinations x
close to your current position, xa . The local terrain is assessed by fitting a local model. Collecting
observations in sufficiently close proximity to one another generally allows the local response surface
to be well approximated by a rather simple polynomial regression model. When still far from the peak,
a first-order model is often adequate. The fitted first-order model is a plane, fromwhich the direction or
path of steepest ascent is easily determined. Then observations are collected along this path as long as
the response continues to increase. When the response stops increasing, another local experiment can
be conducted to determine a new path of steepest ascent. This process can be iterated until the first-order
model no longer adequately describes the local true surface. For example, close to the peak, the true
surface generally exhibits greater curvature, and a first-order regression model becomes inadequate,
exhibiting lack of fit. A larger number of observations is needed to fit a higher-order model with which
to locate and study the vicinity of the peak. Typically, a second-order model is suitable.

A flow chart describing the steps in this process is shown in Fig. 16.2. While a surface is difficult
to envisage in more than three dimensions, the process can work well for any number of factors. How
well it works depends on several decisions requiring judgment on the part of the experimenter. The first
part of this chapter (Sect. 16.2) looks at the left-hand portion of the flow chart and investigates first-
order designs and first-order models, including lack of fit and the path of steepest ascent. Section16.3
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addresses the right-hand portion of the flow chart, which becomes relevant when the vicinity of the
peak is reached. Second-order designs and models are described. More details about second-order
designs are given in Sect. 16.4, and an experiment conducted in the flour milling industry is described
in Sect. 16.5. The collection of observations as a block design is discussed in Sect. 16.6. Sections16.7
and 16.8 describe the use of the SAS and R software, respectively.

16.2 First-Order Designs and Analysis

16.2.1 Models

Before the peak of the response surface is reached, a small local experiment is conducted to assess the
local terrain. If the local experiment is not in the vicinity of the peak, then a first-order regression model
often provides an adequate approximation to the local response surface. For p factors, the standard
first-order model is a first-order polynomial regression model:
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Yx,t = β0 + β1x1 + · · · + βpxp + εx,t , (16.2.1)

where Yx,t denotes the t th observation at treatment combination x = (x1, . . ., xp), and the error
variables εx,t are assumed to be independent with N (0,σ2) distributions. The parameter βi is ameasure
of the local linear effect of the i th factor (i = 1, . . . , p).

We often code the levels of each factor in each local experiment so that zero represents themidrange
of the levels of the factor (the average of the highest and lowest levels included in the experiment) and
+1 and −1 represent the highest and lowest levels of the factor, respectively. For the i th factor, such
coded levels zi are obtained as

zi = (xi − mi )/hi , (16.2.2)

where mi denotes the midrange of the values of xi of the i th factor, and hi denotes the half-range—
half of the range. So, in terms of coded levels, the center of the design corresponds to the point
z0 = (0, 0, . . . , 0).

The first-order model (16.2.1) can be rewritten in terms of the coded factor levels as follows:

Yz,t = γ0 + γ1z1 + · · · + γpz p + εz,t . (16.2.3)

The parameters in models (16.2.1) and (16.2.3) are related, since

β0 = γ0 −
∑

i

miγi/hi and βi = γi/hi (i = 1, 2, . . . , p) .

A design for estimating the parameters of a first-order model is called a first-order design. A first-
order design should (i) allow for efficient estimation of each linear effect βi or γi , (ii) allow a test for
lack of fit of the first-order model, and (iii) be expandable to a good second-order design.

As long as there is no significant model lack of fit but there are significant linear effects, the fitted
first-order model can be used to estimate the path of steepest ascent. If there is significant lack of fit of
the first-order model, then additional observations may be collected to augment the first-order design
so that a second-order polynomial regression model can be fitted to the data.

If there is no significant model lack of fit and also no significant linear effects, then more data may
be needed to increase precision of the parameter estimators. Alternatively, the experimenters may need
to change the factors under study or increase the range of levels.

16.2.2 Standard First-Order Designs

Throughout the rest of Sect. 16.2, we consider designs whichwe refer to as standard first-order designs.
These designs consist of nf “factorial points” and n0 “center points.” The factorial points consist of
the treatment combinations of a 2p factorial experiment run as a completely randomized design as
in Chap.7, or a 2p−s fractional factorial design of Resolution III or higher. The center points are
observations collected at the center of the local region under study; that is, at z0 = (0, 0, . . . , 0). These
are needed to provide error degrees of freedom and to provide adequate power for a test for model lack
of fit.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Standard first-order designs are orthogonal, which means that

(i) for each factor, the sum of the coded levels used in the design is zero, (
∑

zi = 0, summing over
observations), so half of the nf factorial points in the design have each factor at its high level and
the other half have each factor at its low level; and

(ii) for each pair of factors, the sum of cross products of the coded levels in the design is zero
(
∑

zi z j = 0, summing over observations).

The factorial portion of the design is chosen to be at least Resolution III so that the linear effects
can be estimated. Higher resolution allows model lack of fit due to two-factor interaction effects to be
tested. The 2p−s orthogonal fractional factorial designs and the Plackett–Burman designs of Chap.15
are the most efficient designs for estimation of the linear effects.

16.2.3 Least Squares Estimation

The method of least squares (as shown in optional Sect. 8.3) is used to fit a first-order model to the
data. Denote the fitted model by

ŷx = β̂0 + β̂1x1 + · · · + β̂pxp (16.2.4)

or, in coded form,
ŷz = γ̂0 + γ̂1z1 + · · · + γ̂pz p . (16.2.5)

If a standard first-order design is used, with the extreme levels of each factor coded as +1 and −1,
then the least squares estimator γ̂i of the linear effect γi of the i th factor is

γ̂i = (Yzi (+1) − Yzi (−1))/2 , (16.2.6)

where Yzi (+1) and Yzi (−1) denote the averages of the response variables at the high and the low level of
the i th factor, respectively. The parameter 2γi denotes the change in the mean response between the
high and low levels of the i th factor. This is the same as the main-effect contrast for the i th factor. The
least squares estimator of βi in the uncoded model is β̂i = γ̂i/hi , where hi is the half-range of the
uncoded levels of the i th factor.

Example 16.2.1 Paint experiment, continued

Several experiments were run in Germany by Eibl et al. (1992) on the thickness of a paint coating. The
first experiment in the series was examined in Exercise 7 of Chap.15. To study how to decrease the
mean thickness, the experimenters selected the following six factors, each at two levels:

A : belt speed B : tube width C : pump pressure
D : paint viscosity E : tube height F : heating temperature

They used a 26−3
I I I fractional factorial design with defining relation

I = BCD = ADE = ABCE = ABF = ACDF = BDEF = CEF .

http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_15
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Table 16.1 Paint thickness for the paint experiment

zA zB zC zD zE zF yz1 yz2 yz3 yz4 yz. s2z
1 −1 1 −1 −1 −1 1.09 1.12 0.83 0.88 0.9800 0.021400

−1 −1 1 −1 1 1 1.62 1.49 1.48 1.59 1.5450 0.004967

1 1 −1 −1 −1 1 0.88 1.29 1.04 1.31 1.1300 0.042867

−1 1 −1 −1 1 −1 1.83 1.65 1.71 1.76 1.7375 0.005825

−1 −1 −1 1 −1 1 1.46 1.51 1.59 1.40 1.4900 0.006467

1 −1 −1 1 1 −1 0.74 0.98 0.79 0.83 0.8350 0.010700

−1 1 1 1 −1 −1 2.05 2.17 2.36 2.12 2.1750 0.017633

1 1 1 1 1 1 1.51 1.46 1.42 1.40 1.4475 0.002358

Source Eibl et al. (1992). Reprinted with Permission from Journal of Quality Technology © 1992 ASQ, www.asq.org

The experimenters decided to ignore all interactions for this first experiment. Since they wanted to
monitor the variation of the paint thickness, they took four observations on each of the 8 treatment
combinations in the fraction. The data are shown in Table16.1, with factor levels coded as −1 and 1.
If the data were collected in a completely random order, model (16.2.5) can be fitted using the 32
individual observations.

Using zA, . . . , zF rather than z1, . . . , z6 to denote the factor levels, the fitted first-order model for
the mean response is

ŷz = γ̂0 + γ̂AzA + · · · + γ̂F zF

= 1.42 − 0.32zA + 0.21zB + 0.12zC + 0.07zD − 0.03zE − 0.01zF ,

where, for example, the parameter estimate γ̂D is calculated as

γ̂D = (yzD(+1) − yzD(−1))/2 = (1.493125 − 1.348125)/2 = 0.0725 ≈ 0.07 ,

where yzD(+1) is the average of the observations with D at its high level and yzD(−1) is the average of
the observations with D at its low level. �

16.2.4 CheckingModel Assumptions

Before progressing with the analysis of the fitted model, the model assumptions should be checked.
We shall discuss tests for model lack of fit in Sect. 16.2.6.

If there is no model lack of fit, then the error assumptions may be checked using residual plots. If
the observations were collected sequentially in a known run order, then the residuals are plotted against
run order to check for independence of observations. Residuals are plotted against predicted values to
assess equality of error variances. Normality is checked by plotting residuals versus normal scores.

16.2.5 Analysis of Variance

Suppose that a standard first-order design has been used, with the extreme levels of each factor coded
as −1 and +1. Under the first-order model, it follows from Eq. (16.2.6) that

www.asq.org
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Table 16.2 Analysis of variance for a first order model for the paint experiment

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Ratio p-value Expected
mean square

A 1 3.2640 3.2640 242.07 0.0001 σ2 + 32γ2
A

B 1 1.3448 1.3448 99.73 0.0001 σ2 + 32γ2
B

C 1 0.4560 0.4560 33.82 0.0001 σ2 + 32γ2
C

D 1 0.1540 0.1540 11.42 0.0024 σ2 + 32γ2
D

E 1 0.0221 0.0221 1.64 0.2127 σ2 + 32γ2
E

F 1 0.0066 0.0066 0.49 0.4902 σ2 + 32γ2
F

Error 25 0.3371 0.0135 σ2

Total 31 5.5846

Computational formulae

ssi = nf γ̂2
i = nf (yzi (+1) − yzi (−1))

2/4, for i = A, B,C, . . .

ssE by subtraction sstot = ∑
z
∑

t y
2
zt − ny2.

Var(γ̂i ) =
(

σ2

nf /2
+ σ2

nf /2

)
/4 = σ2/nf ,

for any i = A, B,C, . . . . The sum of squares for testing that the main-effect contrast γA is zero (that
is, H A

0 : γA = 0 against H A
A : γA �= 0) is

ssA = γ̂2
A/(1/nf ) = nf γ̂

2
A ,

and since there is only one degree of freedom for the A contrast, msA = ssA. For the first-order model
and a standard first-order design, we have expected mean square

E[MSA] = nf E[γ̂2
A] = nfVar(γ̂A) + nf (E[γ̂A])2 = σ2 + nf γ

2
A .

It can also be shown that msE = ssE/(n − p− 1) is an unbiased estimate of σ2, where ssE is obtained
by subtraction in the analysis of variance table. Consequently, the decision rule for testing H A

0 against
H A

A is
reject H A

0 if msA/msE > F1,n−p−1,α .

Similar formulae hold for each main effect. The analysis of variance for the first-order model and a
standard first-order design will be illustrated for the paint experiment.

Example 16.2.2 Paint experiment, continued

The paint experiment was discussed in Example 16.2.1, and the data were given in Table16.1. The
purpose of the experiment was to study the effects of six factors on paint thickness. The experimental
design consisted of four observations on each of the treatment combinations of a 26−3

I I I design, which
is an orthogonal factorial design with nf = 32 factorial points and no center points. The analysis of
variance for a first order model is shown in Table16.2, together with the expected mean squares. The
linear effect of each of factors A, B, C , and D is significantly different from zero, but factors E and F
appear to have little effect on the response. �
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16.2.6 Tests for Lack of Fit

A first-order design allows the experimenter to determine when the first-order model is no longer
adequate, provided that there are more design points than first-order model parameters, and the design
includes replication at one or more points. There is said to be model lack of fitwhen the model does not
adequately represent the mean response as a function of the factor levels. Lack of fit of the first-order
model occurs when the local response surface is no longer a plane.

Generic Test

Let nd denote the number of distinct coded treatment combinations z. For each treatment combination
forwhich there is replication, the sample variance s2z of thenz observations at that treatment combination
provides an unbiased estimate of the error variance σ2, whether or not there is model lack of fit. These
sample variances can be pooled together to obtain a sum of squares for pure error

ssPE =
∑

z

(nz − 1)s2z (16.2.7)

with n − nd degrees of freedom, giving a mean square for pure error

msPE = ssPE/(n − nd) ,

with E[msPE] = σ2. The error sum of squares ssE with n − p − 1 degrees of freedom is obtained
from fitting the first-order model (Table16.2), and the difference

ssLOF = ssE − ssPE (16.2.8)

is called the sum of squares for lack of fit. The corresponding mean square is

msLOF = ssLOF/(nd − p − 1) .

The expected mean square is E[msLOF] = σ2 + θ2, where θ2 is a quadratic function of any higher
order parameters that are estimable due to the inclusion of more design points than needed to fit the
first order model. Then the ratio

msLOF/msPE

is used to test the null hypothesis of no model lack of fit. The null hypothesis is rejected at level α if
this ratio exceeds Fnd−p−1,n−nd ,α. This lack-of-fit test is summarized in Table16.3.

Example 16.2.3 Paint experiment, continued

The paint experiment was described in Example 16.2.1. The analysis of variance for the first-order
model was shown in Table16.2, giving ssE = 0.3371 with 25 degrees of freedom. There were nz = 4
observations at each of eight factorial points, and the corresponding eight sample variances, each with
three degrees of freedom, were given in Table16.1, p. 570. These eight sample variances can be pooled
together to obtain

ssPE =
∑

z

(4 − 1)s2z = 0.3367
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Table 16.3 Generic lack-of-fit test for the first-order model

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Ratio Expected
mean square

Lack of fit nd − p−1 ssLOF msLOF msLOF/msPE σ2 + θ2

Pure Error n − nd ssPE msPE σ2

Error n − p − 1 ssE

Computational formulae

ssE from Table16.2, ssPE = ∑
z(nz − 1)s2z , ssLOF by subtraction,

nd distinct design points, n observations total, p factors,

θ depends on the nature of estimable model lack of fit

Table 16.4 Generic lack-of-fit test for the paint experiment

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Ratio p-value

Lack of fit 1 0.0004 0.0004 0.03 0.8594

Pure error 24 0.3367 0.0140

Error 25 0.3371 0.0135

based on n − nd = 32 − 8 = 24 degrees of freedom. The sum of squares for lack of fit is

ssLOF = ssE − ssPE = 0.3371 − 0.3367 = 0.0004 ,

and the test is summarized in Table16.4. Since the p-value is large, there is no evidence of lack of fit
of the first-order model. �

Test for Second-Order Lack of Fit

If the generic test indicates lack of fit of the first-order model, this provides no insight into why the
model is not fitting well. To understand the nature of the lack of fit, it can be helpful to consider what
the mean square for lack of fit measures in terms of higher-order models. If the first-order model is
inadequate, the next possibility is that a second-order model would provide an adequate approximation
to the local response surface. If so, then lack of fit of the first-order model is attributable to the presence
of either two-factor interactions or to quadratic effects or to both.

If the only lack of fit is due to two-factor interaction effects, this corresponds to a twisting of the
response surface. Such lack of fit can be tested if the first-order design allows estimation of two-factor
interactions in addition to providing error degrees of freedom. In the paint experiment, for example, it
is possible to estimate the AC interaction effect, in addition to the six main effects, provided that all
other interaction effects are known to be negligible.

If the center of the experimental design is near the peak of the response surface, then one would
expect quadratic effects, or curvature, to be present and a higher mean response near the design center
than at the factorial points. Multiple center points z0 = (0, . . . , 0) are usually included in a first-order
design, because comparison of the mean response at the center of the design region with the mean
response at the factorial points provides an effective test for lack of fit due to quadratic effects.

So, to assess second-order lack of fit we fit a second-order polynomial regression model under the
alternative hypothesis. With respect to the coded factor levels, the standard second-order model for p
factors is
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Yz,t = γ0 +
∑

i

γi zi +
∑

i

γi i z
2
i +

∑

i< j

γi j zi z j + εz,t ,

where the parameter γi represents the linear effect of the i th factor, γi i represents the quadratic effect
of the i th factor, and γi j represents the cross product effect between the i th and j th factors.

If the factorial portion of the standard first-order design is either a complete factorial design or a
fraction of resolution V or higher, then all two-factor interaction parameters γi j in the second-order
model are estimable (assuming higher-order interactions to be negligible). For testing for second-order
lack of fit, we add the sums of squares for these two-factor interactions to obtain a pooled interaction
sum of squares, ssI. If the factorial portion of the design is a fraction of resolution less than V, then not
all two-factor interactions are estimable, and only the sums of squares of those two-factor interactions
which are not aliased with main effects may be pooled—one sum of squares from each alias set.

The quadratic-effect parameters are not individually estimable from a standard first-order design.
They are aliased with one another, and only their sum can be estimated. It can be shown that

E[Yf − Y0] =
p∑

i=1

γi i ,

with

Var(Yf − Y0) =
(

1

n0
+ 1

nf

)
σ2 = n

nf n0
σ2 ,

where Yf and Y0 denote the average of the nf factorial points and the average of the n0 center points,
respectively. It follows that the corresponding sum of squares for testing whether or not the sum of the
quadratic parameters is zero is

ssQ = nf n0
n

(Yf − Y0)
2 ,

with one degree of freedom. The expected mean square is

E[MSQ] = σ2 + nf n0
n

(

p∑

i=1

γi i )
2 .

In the generic test for lack of fit of the first-order model, ssI and ssQ are part of ssLOF. Thus, we
can write

ssLOF = ssI + ssQ + ssH ,

where ssH is the sum of squares for lack of fit due to a higher-order model. Then lack of fit due
specifically to interaction terms and quadratic terms can be investigated separately. The tests are
summarized in Table16.5 for a standard first-order design.

For all tests for lack of fit, an adequate number of pure error degrees of freedom are needed for the
test power to be reasonably high. Since Var(Yf − Y0) > σ2/n0, the test for lack of fit due to quadratic
effects will have low power if there are few center points. Typically, 3–6 center points would be used.

Example 16.2.4 Acid copper pattern plating experiment

Poon (1995) conducted a sequence of fractional factorial and response surface experiments each involv-
ing as many as seven factors to minimize the coating thickness variation of an acid copper-plating
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Table 16.5 Lack-of-fit test for the first-order model, given the data of a standard first-order design, with p factors
A, B, . . . and m alias sets for interaction effects clear of main effects

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Ratio Expected
mean square

Interaction m ssI = ssAB+ · · · msI msI
msPE σ2 + nf

m θ1

Quadratic 1 ssQ msQ msQ
msPE σ2 + n0nf

n θ22
Higher-order nd − p − m − 2 ssH

Pure Error n − nd ssPE msPE σ2

Error n − p − 1 ssE

Computational formulae

ssAB = nf γ̂2
AB = nf (yzAzB (+1) − yzAzB (−1))

2/4 ssE from Table16.2

ssQ = (n0nf /n)2(y f − y0)
2 θ1 = γ2

AB + · · ·
ssPE = ∑

z(nz − 1)s2z θ2 = γAA + γBB + · · ·
ssH = (ssE−ssPE)−ssI−ssQ

Table 16.6 Data for the acid copper pattern plating experiment

Anode–cathode
separation (in.)

Current density
(asf)

Standard
deviation (μm)

Coded Uncoded Coded Uncoded

−1 9.5 −1 31 5.60

−1 9.5 1 41 6.45

1 11.5 −1 31 4.84

1 11.5 1 41 5.19

0 10.5 0 36 4.32

0 10.5 0 36 4.25

Source Poon (1995). Reprinted with permission

process. In the final experiments, conducted in the vicinity of minimum thickness variation, response
surface methods were utilized to study the effects of anode-cathode separation (factor A) and cathodic
current density (factor B) on the standard deviation of coating thickness. One experiment used the
factorial points of a single replicate 22 design, augmented by two center points. The response was the
standard deviation (in μm) of copper-plating thickness. The coded and uncoded factor levels, together
with the resulting data, are given in Table16.6.

Themidrange of levels of factor A is (11.5+9.5)/2 = 10.5, and the half-range is (11.5−9.5)/2.0 =
1.0. So the coded levels are given by

zA = xA − 10.5 .

The midrange and half-range of the factor B levels are (41 + 31)/2 = 36 and (41 − 31)/2 = 5,
respectively, so the coded levels of factor B are

zB = (xB − 36)/5 .

Table16.7 shows the analysis of variance, including tests for lack of fit, due to a second-order
model. The analyses are identical for coded and uncoded factor levels. There are significant quadratic
effects—an indication that quadratic terms for either or both of factors A and B are needed to adequately
model the response surface. The first-order design is inadequate, then, because not all parameters in
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Table 16.7 Analysis of variance and lack-of-fit test for the acid copper pattern plating experiment

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Ratio p-value Expected
mean square

A 1 1.0201 1.0201 1.46 0.3137 σ2 + nf γ2
A

B 1 0.3600 0.3600 0.51 0.5250 σ2 + nf γ2
B

Error 3 2.0986 0.6995

Total 5 3.4787

Interaction AB 1 0.0625 0.0625 25.51 0.1244 σ2 + nf γ2
AB

Quadratic 1 2.0336 2.0336 830.05 0.0221 σ2 + n0nf
n θ2

Pure error 1 0.0025 0.0025

Error 3 2.0986 0.6995

where θ = γAA + γBB

the second-order model are estimable. The solution is to collect some additional observations, as will
be illustrated in Example 16.3.1. �

16.2.7 Path of Steepest Ascent

If there are significant linear effects and there is no significant lack of fit of the first-order model, then
the path of steepest ascent may be followed to climb towards the maximum of the response surface.

Given the fitted first-order regression model (16.2.5), the path of steepest ascent from the current
position za is determined as follows. If γ̂i is positive, increase zi to increase predicted mean response
ŷz. If γ̂i is negative, decrease zi to increase ŷz. To follow the path of steepest ascent up the fitted
response surface, change each zi in proportion to the magnitude of γ̂i . So, if the value z1 of the first
factor is changed by uγ̂1 units for some real number u, then the level zi of the i th factor should be
changed by uγ̂i for each other factor i .

The path of steepest ascent is defined above with respect to the coded variables. This presumes
that the original variables have been coded in such a way to make the coded scales in some sense
comparable. Since the original variable may be measured on scales that are not directly comparable,
there is some art to the scaling of the coded variables.

Example 16.2.5 Paint experiment, continued

The paint experiment was described in Example 16.2.1, p. 569. The experimenters conducted an
experiment to study how to decrease the thickness of a paint coating from about 2mm to the target
0.8mm. Four observations were taken at each treatment combination of a 26−3

I I I design and are shown
in Table16.1, p. 570.

The target thickness is approximately achieved at the experimental design point z = (+1,−1,−1,
+1,+1,−1) so perhaps no further analysis or experimentation is needed. Nevertheless, we will use
these data to illustrate how to move efficiently towards the lower target response surface value.

Since a lower mean response is required, we need to identify the path of steepest descent. The fitted
first-order model is obtained from Example 16.2.1 as

ŷz = γ̂0 + γ̂AzA + · · · + γ̂F zF

= 1.42 − 0.32zA + 0.21zB + 0.12zC + 0.07zD − 0.03zE − 0.01zF .
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The analysis of variance conducted in Example 16.2.2 suggests that only factors A, B, C , and D
significantly affect the response. So, these four factors should be adjusted in an attempt to reduce paint
thickness.

Based on the signs of the parameter estimates in the fitted model, we ought to be able to effect
a reduction in mean response if we increase the level of factor A and decrease the level of any of
factors B, C , and D. To follow the path of steepest descent, we change the levels of these factors each
in proportion to the magnitude of its corresponding parameter estimate, γ̂i . So, if we increase zA by
0.32u units for some real number u, then we decrease zB by 0.21u units, decrease zC by 0.12u units,
and decrease zD by 0.07u units.

Observations along the path of steepest descent moving away from the center of the current design,
z0 = (0, 0, 0, 0, 0, 0), consist of treatment combinations (0.32u,−0.21u, −0.12u,−0.07u, 0, 0) cor-
responding to increasing values of u, such as u = 3, 3.5, 4, . . .. The suggested values of u start at
u = 3. This value is large enough to move the level of factor A near to the edge of the region of
the current local experiment and corresponds to ŷ = 0.9226. For the value u = 4, the extrapolated
prediction of the first order model is ŷ = 0.7568, already less than the target value of 0.8, making
the step sizes reasonable or perhaps a bit too large. Certainly, other values of u could also have been
chosen. Observations may then be collected along this path setting u equal to each value in turn until
the target thickness is achieved, or until the response stops decreasing before reaching the target level.
In the latter case, at the point of lowest response along the path another first-order design could be run
to determine a new path of steepest descent. �

In the previous example, the effects of factors E and F were not found to be significantly different
from zero, so their levels were not changed in following the estimated path of steepest descent. There
are a variety of reasons why the effect of a factor may be negligible. The obvious reason is that response
is independent of the factor. However, it could also be that the levels used for the factor may be near
the optimal value, so the response surface may be relatively flat with respect to small changes in the
level of that factor. Alternatively, the levels of the factor may simply be too close together to give rise
to a detectable change in the mean response. In subsequent experiments, the levels of such factors can
be chosen farther apart to guard against the last scenario.

16.3 Second-Order Designs and Analysis

16.3.1 Models and Designs

Second-order designs and analysis are usedwhen the test for lack of fit of the first-ordermodel indicates
that the vicinity of the maximum (or minimum) of the response surface has been reached and a second-
order model should be fitted. For p factors, the standard second-order model is

Yx,t = β0 +
p∑

i=1

βi xi +
p∑

i=1

βi i x
2
i +

∑

i< j

βi j xi x j + εx,t , (16.3.9)

where Yx,t denotes the t th response observed for treatment combination x = (x1, x2, . . . , xp). The
random-error variables εx,t are assumed to be independent with N (0,σ2) distributions. The parameter
βi represents the linear effect of the i th factor. The parameter βi i represents the quadratic effect of the
i th factor, and βi j represents the cross product effect, or interaction effect, between the i th and j th
factors.
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With respect to the coded factor levels zi = (xi − mi )/hi , the second-order model is

Yz,t = γ0 +
p∑

i=1

γi zi +
p∑

i=1

γi i z
2
i +

∑

i< j

γi j zi z j + εz,t . (16.3.10)

Experimental designs used to fit a second-order model are referred to as second-order designs. A
second-order design should (i) allow for efficient estimation of the response surface, in the sense of
having Var(Ŷz) be small in the design region; (ii) allow a test for lack of fit of the second-order model;
and (iii) allow for efficient estimation of all model parameters. Second-order designs must have at least
(p + 1)(p + 2)/2 distinct design points; otherwise, not all of the (p + 1)(p + 2)/2 parameters in the
second-order model can be estimated. We will consider only such designs in this chapter. Observations
at even more points are needed, plus some replication, in order to be able to conduct a generic test
for model lack of fit. Other properties of second-order designs that are sometimes desirable include
rotatability, orthogonality, and orthogonal blocking—these will be discussed in Sects. 16.4.1–16.4.3.

The method of least squares is used to fit the second-order model to the data. This method is exactly
as discussed in optional Sect. 8.3, with each second-order term z2i or zi z j being treated as a single
regressor. In terms of the uncoded and coded factor levels, the fitted models are, respectively,

ŷx = β̂0 +
∑

i

β̂i xi +
∑

i

β̂i i x
2
i +

∑

i< j

β̂i j xi x j (16.3.11)

and
ŷz = γ̂0 +

∑

i

γ̂i zi +
∑

i

γ̂i i z
2
i +

∑

i< j

γ̂i j zi z j , (16.3.12)

where the parameters with hats denote the least squares estimates. Although it is possible to obtain
explicit formulae for the least squares estimates for any specific design, the formulae for the quadratic
parameter estimates γ̂i i are complicated. Consequently, we rely on statistical computer software to
obtain the least squares estimates (see Sects. 16.7 and 16.8 for the use of the SAS and R software,
respectively).

As long as there is no significant lack of fit, the fitted second-order model can be used to
study the local response surface. Generally, there will be a unique treatment combination xs =
(xs1, xs2, . . . , xsp), called the stationary point, at which the fitted surface ŷx is neither increasing
or decreasing—the tangent plane is level. At the stationary point, ŷx is maximized, minimized, or is at
a saddle point. The surface near a saddle point is reminiscent of a horse saddle—rising up from front
to back but sloping down from side to side. A saddle point yields neither a maximum nor a minimum
for the fitted model. Instead, these will be found at the boundary of the design region.

If there is significant lack of fit of the second-order model, a higher-order model could be used, or
a more local experiment could be run.

16.3.2 Central Composite Designs

Central composite designs were first described by Box and Wilson (1951), and they are nowadays
the most popular second-order designs. Each design consists of a standard first-order design with nf
orthogonal factorial points and n0 center points, augmented by na “axial points.”

We follow the convention of coding the factor levels so the factorial points have coded levels±1 for
each factor. However, it should be noted that some software packages will recode the levels in a central

http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Fig. 16.3 Central
composite designs for
p = 2 and p = 3 factors

(a) p = 2 (b) p = 3

composite design before doing the analysis. In SAS, for example, the default is to code the extreme
levels of each factor as ±1, whereas R allows the user to specify the coding. Under our convention,
axial points are points located at a specified distance α from the design center in each direction on
each axis defined by the coded factor levels. On the zi -axis, for example, two axial points are obtained
by setting zi = ±α, with z j = 0 for all j �= i . Thus, if there are p factors, there are 2p distinct axial
points. Axial points are also commonly referred to as star points. Figure16.3 shows central composite
designs for p = 2 and p = 3 factors, with axial points represented by unfilled circles or balls.

A central composite design is easily built up from a standard first-order design by the addition of
axial points, and possibly some extra factorial and center points. If the factorial portion of the design is
a complete factorial or a fractional factorial of resolution V or more, all parameters of the second-order
model are estimable. Otherwise, some aliasing will occur, and some terms will need to be omitted
from the second-order model. A design should include enough replication, often at the center points,
to allow for a test for model lack of fit. The axial points are located at a distance α from the center of
the design, where the choice of α depends on the properties required of the design. A popular choice
is α = (nf )1/4 (see Sect. 16.4.1).

Example 16.3.1 Acid copper pattern plating experiment, continued

In Example 16.2.4, p. 574, a standard first-order design was used to study the effects of anode–cathode
separation (factor A) and cathodic current density (factor B) on the standard deviation of a copper-
plating thickness. The first-order design involved the nf = 4 factorial points of a single-replicate 22

design, augmented by n0 = 2 center points. There was significant lack of fit of the first-order model,
so additional observations needed to be taken in order to fit a second-order model. The experimenters
augmented the first-order design with four axial points, using α ≈ (nf )1/4 = √

2, say α = 1.4142,
giving the central composite design and data shown in Table16.8.

The second-order model is fitted by a computer regression package. In terms of the uncoded factor
levels, the fitted model is given by

ŷx = β̂0 + β̂AxA + β̂BxB + β̂AAx
2
A + β̂BBx

2
B + β̂ABxAxB

= 84.1990 − 8.8689xA − 1.7526xB

+ 0.4419x2A + 0.0286x2B − 0.0250xAxB ,

and, in terms of the coded factor levels, zA = (xA − 10.5), zB = (xB − 36)/5, the fitted model is
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Table 16.8 Data for the acid copper pattern plating experiment—central composite design

Anode–cathode separation (in.) Current density (asf) Standard deviation (µm)

Coded Uncoded Coded Uncoded

−1.0000 9.5000 −1.0000 31.0000 5.60

−1.0000 9.5000 1.0000 41.0000 6.45

1.0000 11.5000 −1.0000 31.0000 4.84

1.0000 11.5000 1.0000 41.0000 5.19

0.0000 10.5000 0.0000 36.0000 4.32

0.0000 10.5000 0.0000 36.0000 4.25

−1.4142 9.0858 0.0000 36.0000 5.76

1.4142 11.9142 0.0000 36.0000 4.42

0.0000 10.5000 −1.4142 28.9290 5.46

0.0000 10.5000 1.4142 43.0710 5.81

Source Poon (1995). Reprinted with permission
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Fig. 16.4 Response surface contour plot and response surface plot of fitted second-order model for the acid copper
pattern plating experiment

ŷz = γ̂0 + γ̂AzA + γ̂BzB + γ̂AAz
2
A + γ̂BBz

2
B + γ̂ABzAzB

= 4.2850 − 0.4894zA + 0.2119zB

+ 0.4419z2A + 0.7144z2B − 0.1250zAzB .

Figure16.4 shows both a contour plot and a surface plot of the fitted model for uncoded factor levels.
The stationary point is in the center of the ellipses. Clearly, the stationary point provides a minimum.
The exact location of the stationary point will be determined in Sect. 16.3.5. �
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16.3.3 Generic Test for Lack of Fit of the Second-Order Model

If the second-order design includes nd distinct treatment combinations, with nd larger than the number
of parameters (p+2)(p+1)/2, and replication at one or more of these, then a generic test for lack of fit
of the second-order model can be conducted, just as for the first-order model (Sect. 16.2.6). The sum of
squares for pure error, ssPE, and the sum of squares for lack of fit, ssLOF, are calculated as in (16.2.7)
and (16.2.8). The error sum of squares ssE and the error degrees of freedom are obtained from the
analysis of variance table of the second-order model. The test proceeds exactly as in Table16.3 except
that the error degrees of freedom are n − [(p+ 2)(p+ 1)/2] and the degrees of freedom for lack of fit
are then nd − [(p + 2)(p + 1)/2]. The test will be illustrated for the acid copper-plating experiment
in Example 16.3.2 in the next subsection.

16.3.4 Analysis of Variance for a Second-Order Model

Table16.9 shows an outline analysis of variance table for a central composite design and second-order
model, assuming that all parameters are estimable. The degrees of freedom associated with the linear
effects have been added (pooled) together, as have those of the quadratic effects and those of the
interaction (cross product) effects. Sequential, or Type I, sums of squares are listed for each of these
pooled sources of variation. These include the sum of squares for all linear terms, ss(L); the sum of
squares for adding all quadratic terms to the model, given that all linear terms are already included,
ss(Q|L); and the sum of squares for adding all interaction terms to the model, given that all linear
and quadratic terms are already in the model, ss(I |L , Q). Using these sequential sums of squares,
the analysis of variance is the same whether factor levels are coded or not. The coefficients ai , aii ,
and ai j listed in the expected mean squares are positive and depend on the design and the model. If
coded factor levels are used, the expected mean squares would involve the parameters γ instead of the
parameters β, but would have the same form.

If a central composite design is used and factor levels are coded in the usual way, the linear, quadratic
and interaction sums of squares are independent of one another, so the corresponding sums of squares
are the same, no matter in which order the terms are fitted. Also, the individual linear and interaction
(cross product) parameters are estimated independently of one another and of the quadratic effects.
The quadratic parameters are estimated independently of each other only if α and the number of center
points n0 are chosen to satisfy certain restrictions (see Sect. 16.4.2).

Table 16.9 Analysis of variance for a central composite design and second-order model

Source of
variation

Degrees of
freedom

Sum squares
of (Type I)

Mean square
(Type I)

Ratio Expected
mean square

L p ssL msL msL
msE σ2 + ∑

i aiβ
2
i

Q|L p ss(Q|L) ms(Q|L)
ms(Q|L)

msE σ2 + ∑
i aiiβ

2
i i

I |L , Q 1
2 p(p − 1) ss(I |L , Q) ms(I |L , Q)

ms(I |L ,Q)

msE σ2 + ∑
i< j ai jβ

2
i j

Error df ssE msE σ2

Total n − 1 sstot

Formula: df = n − 1
2 (p + 2)(p + 1)
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Table 16.10 Analysis of variance for the acid copper pattern plating experiment

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Ratio p-value

Linear 2 2.2751

AL 1 1.9159 1.9159 65.99 0.0012

BL 1 0.3591 0.3591 12.37 0.0245

Quadratic 2 2.4361

AQ|BQ 1 0.8926 0.8926 30.74 0.0052

BQ|AQ 1 2.3330 2.3330 80.36 0.0009

Interaction 1 0.0625 0.0625 2.15 0.2162

Error 4 0.1161 0.0290

Total 9 4.8898

Example 16.3.2 Acid copper pattern plating experiment, continued

The data for the central composite design of the acid copper pattern plating experiment were shown
in Table16.8, p. 580. The analysis of variance for the coded data is given in Table16.10. The table
shows the decomposition of the linear sum of squares with respect to the individual linear effects.
Each of the two quadratic effects is shown adjusted for the other quadratic effect. If we test each
hypothesis at individual level 0.01, the linear effect of factor A is significantly different from zero, as is
the adjusted quadratic effect of each factor. Consequently, the model should include these three terms.
We would also include the linear effect of B, since the higher-order (quadratic) term is included. The
AB-interaction effect, or cross product effect, is not significantly different from zero.

Before settling on a final model, we should check the lack of fit of the second-order model. The only
replication consisted of two center-point observations with values 4.32 and 4.25. The sample variance
of these two observations is s20 = 0.00245, so ssPE = 0.00245 with one degree of freedom. From the
analysis of variance table, Table16.10, we see that ssE = 0.1161 with 4 degrees of freedom. So,

ssLOF = ssE − ssPE = 0.1161 − 0.00245 = 0.11365

with 4 − 1 = 3 degrees of freedom for lack of fit. There is significant lack of fit of the second-order
model if

msLOF/msPE > F3,1,α ,

for appropriate significance level α. Here,

msLOF/msPE = (0.11365/3)/(0.00245/1) = 15.463 ,

which is less than F3,1,0.10 = 53.6, so there is no significant lack of fit of the second-order model, and
the model fitted in Example 16.3.1, p. 579, should be a reasonable approximation to the true surface
in the local region under study (9.5 ≤ xA ≤ 11.5; 31 ≤ xB ≤ 41). �
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16.3.5 Canonical Analysis of a Second-Order Model

After fitting a second-order model, we need to (i) determine the location of the stationary point and
(ii) characterize the stationary point as providing a response surface minimum, maximum, or saddle
point. The nature of the response surface at the stationary point may be evident from contour or surface
plots, as is the case in Fig. 16.4, or its characterization may be done via canonical analysis. We provide
an overview and illustration of canonical analysis in this section, leaving the computations to software
(see Sects. 16.7.2 and 16.8.2 for the use of the SAS and R software, respectively).

In response surface methods, it is customary to perform the canonical analysis using the model
fit to the coded data. We think of each coded treatment combination z as a point in p-dimensional
space, z = (z1, z2, . . . , z p). Then the stationary point that we are trying to find is the point zs =
(zs1, zs2, . . . , zsp) at which the fitted response surface ŷz is neither increasing nor decreasing—the
tangent plane is level. The stationary point can be obtained via calculus as the critical point of the fitted
surface ŷz. The stationary point xs for the model fit to the uncoded data can be obtained from zs by
simply uncoding each factor level zsi . In view of Eq. (16.2.2), this uncoding is accomplished by taking
xsi = hi × zis + mi , for i = 1, 2, . . . , p.

The second step—characterizing the response surface at the stationary point as a minimum, maxi-
mum, or saddle point—may be accomplished by putting the fitted second-order response surface into
canonical form. To accomplish this, we change to a new coordinate system of points in two steps.
First we set v = z − zs , so that vi = zi − zsi for i = 1, 2, . . . , p. This moves the coordinate system
so that the stationary point is at the origin with respect to the vi -axes, so the stationary point is now
vs = (0, 0, . . . , 0). The other points v = z − zs measure position relative to the stationary point zs .
This eliminates all linear terms from the model. As the second step, the vi -axes are rotated to obtain
wi -axes, with the rotation chosen to eliminate the cross product terms from the model.

In terms of each of these coordinate systems, the fitted model has the following equivalent repre-
sentations:

ŷz = γ̂0 +
p∑

i=1

γ̂i zi +
p∑

i=1

γ̂i i z
2
i +

∑

i< j

γ̂i j zi z j ,

ŷv = ŷvs +
p∑

i=1

γ̂i iv
2
i +

∑

i< j

γ̂i jviv j ,

ŷw = ŷws +
p∑

i=1

λ̂i iw
2
i ,

where ŷvs and ŷws are equal and each denotes the predicted response at the stationary point.
The last equation is said to be in canonical form, and in this form, we can immediately tell whether

the stationary point is a maximum, a minimum, or a saddle point. If all of the λ̂i i ’s are negative, then
the fitted model is concave down and has a maximum at the stationary point. If all of the λ̂i i ’s are
positive, then the fitted model is concave up and has a minimum at the stationary point. If some of the
λ̂i i ’s are positive and some are negative, the stationary point is a saddle point. The λ̂i i are called the
canonical coefficients.

If a specific λ̂i i is relatively large in magnitude, then ŷw will change rapidly for changes away from
the stationary point ws = (0, 0, . . . , 0) in the wi direction. Thus, if the stationary point is a saddle
point and if λ̂�� is the largest positive λ̂i i , movement in either direction away from the stationary point
along the w�-axis provides a path of steepest ascent. On the other hand, if a specific λ̂i i is relatively
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small in magnitude, then ŷw is relatively unaffected by changes away from the stationary point along
the wi -axis.

Example 16.3.3 Acid copper pattern plating experiment, continued

In Example 16.3.1, p. 579, a second-order model was fitted to data collected from a central composite
design. The experiment was run in order to study the effects of anode-cathode separation (factor A)
and cathodic current density (factor B) on the standard deviation of copper-plating thickness. In terms
of the coded factor levels zA = (xA − 10.5), zB = (xB − 36)/5, the fitted model was

ŷz = γ̂0 + γ̂AzA + γ̂BzB + γ̂AAz
2
A + γ̂BBz

2
B + γ̂ABzAzB

= 4.2850 − 0.4894zA + 0.2119zB

+ 0.4419z2A + 0.7144z2B − 0.1250zAzB .

The following additional results are provided without computational details, since we are leaving those
to software (see Sects. 16.7.2 and 16.8.2).

The stationary point is zs = (zsA, zsB) = (0.5395,−0.1011). Using these values of zA and zB in
the fitted model, we obtain the predicted response at the stationary point to be ŷzs = 4.1423.

The canonical coefficients are λ̂11 = 0.7280 and λ̂22 = 0.4282. Since both canonical coefficients
are positive, the stationary point minimizes the estimated standard deviation of coating thickness. Now,
λ̂11 is larger than λ̂22—nearly twice as large—so the surface will rise more rapidly as we move away
from zs in the w1 direction than in the w2 direction.

The w1 canonical axis consists of all points (zA, zB) of the form

(zsA, zsB) = (0.5395,−0.1011) + u(−0.2134, 0.9770) .

The point (−0.2134, 0.9770) has been scaled to be one unit from the origin (i.e. (−0.2134, 0.9770)
is a vector of length one), so a unit change in u corresponds to a step of size one along the w1-axis.
Since the second component of this point is nearly one, the w1-axis is nearly parallel to the z2-axis,
or equivalently, to the B axis. This means that the coded level of B must be controlled more precisely
than the coded level of A in order to maintain a minimum response. This conclusion is suggested by
examining the fitted equation, since the coefficient of z2B is somewhat larger than those of z2A and zAzB .

Likewise, the w2 canonical axis consists of all points (zA, zB) of the form

(zsA, zsB) = (0.5395,−0.1011) + q(−0.9770,−0.2134) ,

where a unit change in q corresponds to a step of size one along the w2-axis. Since the first component
of the point (−0.9770,−0.2134) hasmagnitude nearly one, thew2-axis is nearly parallel to the zA-axis
(or z1-axis). �

The canonical analysis has been described and illustrated here in terms of the coded factor levels.
The SAS and R software likewise do the canonical analysis in terms of coded factor levels, though
SAS software codes the levels somewhat differently, which impacts the canonical coefficients.
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Canonical Analysis Formulas (Optional)

This subsection requires the knowledge ofmatrices and vectors. Consider the fitted second-ordermodel

ŷz = γ̂0 +
∑

i

γ̂i zi +
∑

i

γ̂i i z
2
i +

∑

i< j

γ̂i j zi z j

for p factors. Let b denote the p × 1 vector of linear parameter estimates, with i th entry γ̂i . Let B
denote the p × p matrix with i th diagonal element γ̂i i and with off-diagonal (i j)th entry γ̂i j/2. Then
the least squares fitted model can be written in matrix terms as

ŷz = γ̂0 + z′b + z′Bz .

Furthermore, the stationary point is

zs = −1

2
B−1b ,

with corresponding predicted mean response

ŷzs = γ̂0 − z′
sBzs = γ̂0 + 1

2
z′
sb .

The canonical coefficients λ̂i i are the eigenvalues of the matrix B. The eigenvectors of B determine
the canonical axes, the canonical axis wi being the normalized eigenvector of B corresponding to the
eigenvalue λ̂i i . Obtaining the canonical coefficients and canonical axes using SAS and R software will
be illustrated in Sects. 16.7.2 and 16.8.2, respectively.

16.4 Properties of Second-Order Designs: CCDs

In this section we discuss some desirable properties—rotatability, orthogonality, and orthogonal
blocking—of second-order designs. The discussion here focuses on central composite designs (CCDs)
because their properties can be controlled by judicious choice of the number of center points n0 and the
distance α of the axial points from the design center. In addition to rotatability, orthogonal blocking,
and orthogonality, a design should include enough center points (say 3–6) to provide a reasonably
sensitive test for lack of fit.

16.4.1 Rotatability

A design is rotatable if the variance Var(Ŷz) of the predicted response is the same for all coded points
z = (z1, z2, . . . , z p) at any given distance d = (

∑
i z

2
i )

1/2 from the design center, z0 = (0, 0, . . . , 0).
Thus, there is the same amount of information about the response surface at the same distance d in any
direction from the design center. This is a reasonable requirement of a design, since data are generally
collected without knowing in which direction from the design center the stationary point of the fitted
surface will be located.

Rotatable Central Composite Designs

Suppose we take a central composite design for p factors, with one observation at each axial point
located a distance α from the design center, and with one observation at each of the nf factorial points.
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It can be shown that such a central composite design is rotatable if

α = (nf )
1/4 , (16.4.13)

and if each axial point is observed ra times, then the requirement for rotatability becomes

α = (nf /ra)
1/4 .

The details can be found in the articles by Box and Hunter (1957) and Draper (1982).

Example 16.4.1 Acid copper pattern plating experiment, continued

In Example 16.3.1, p. 579, a central composite design was used for p = 2 factors. The design involved
one observation at each nf = 4 factorial points and na = 4 axial points, plus two center points. If the
model, in terms of coded factor levels, is fitted using α = (nf )1/4 = √

2, the design is rotatable with
respect to the coded factor levels. For example, it can be verified that the estimate of the variance is

V̂ar(Ŷz) = 0.0182

at each point z = (z1, z2) at distance
√
2 from the design center. This includes each factorial point and

each axial point. For comparison, V̂ar(Ŷ ) = 0.0145 at the center point and V̂ar(Ŷ ) = 0.0100 at the
points (−1, 0), (1, 0), (0,−1), and (0, 1), which are each a distance 1.0 from the design center. �

16.4.2 Orthogonality

The second-order model (16.3.10) includes (p + 1)(p + 2)/2 parameters, including the intercept γ0.
A second-order design is orthogonal if the sums of squares, ss(γi |γ0) (i = 1, 2, . . . , p), ss(γi i |γ0)
(i = 1, 2, . . . , p), and ss(γi j |γ0) (1 ≤ i < j ≤ p), each adjusted for the intercept γ0, are independent.
In the analysis of variance of an orthogonal design, the sums of squares associated with these (p +
2)(p + 1)/2− 1 parameters are independent, and do not depend on the order in which the parameters
are entered into themodel. Orthogonality is advantageous if the experimenter is interested in evaluating
which of the linear, quadratic, and cross product effects are significantly different from zero.

Orthogonal Central Composite Designs

Suppose we take a central composite design with one observation at each of the nf factorial points and
2p axial points, and with n0 observations at the center. As shown by Khuri and Cornell (1987), p. 119,
the design is orthogonal if

(nf + 2α2)2 = nf n ,

where n is the total number of observations; that is, n = nf + 2p + n0. So, a central composite design
with nf factorial points and 2p axial points can be made orthogonal by appropriate choice of α or
n0. For example, if the number of center points is fixed at n0, then n is fixed, and a central composite
design is orthogonal if

α =
(√

nf n − nf
2

)1/2

. (16.4.14)
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If a central composite design is to be rotatable and n0 is not fixed, then we would choose α = (nf )1/4,
and the design would also be orthogonal if the number of center points was chosen to be

n0 = 4
√
nf + 4 − 2p . (16.4.15)

This may not be achievable, since n0 must be an integer. Rounding (16.4.15) to the nearest integer
gives a rotatable design that is nearly orthogonal.

Example 16.4.2 Flour production experiment

In Sect. 16.5, we will consider the last of four experiments described by Tuck et al. (1993) to develop
robust bread flours. This experiment was run using a central composite design for three factors, with
one observation at each of nf = 8 factorial points and 2p = 6 axial points. From Eq. (16.4.15), since√
nf = √

8 is not an integer, the design with nf = 8 cannot be both orthogonal and rotatable. The
experimenters used only n0 = 2 center points, giving n = 16 observations in total. From Eq. (16.4.14),
the design is orthogonal if

α =
(√

(8)(16) − 8

2

)1/2

= 1.2872 .

This value of α was used by the experimenters. �

16.4.3 Orthogonal Blocking

If a second-order design is conducted as a block design, then the second-order model (16.3.10) is
modified to include additive block effects. For p factors, the model is

Yh,z,t = γ0 + θh +
p∑

i=1

γi zi +
p∑

i=1

γi i z
2
i +

∑

i< j

γi j zi z j + εh,z,t , (16.4.16)

where Yh,z,t denotes the t th observation at coded treatment combination z = (z1, z2, . . ., z p) in block
h, and the error variables εh,z,t are independent with N (0,σ2) distributions. The parameter θh denotes
the effect of the hth block, and the other parameters are defined as in the second-order model (16.3.10).

A design is said to have orthogonal blocking if the least squares estimates of the linear, quadratic, and
cross product effect parameters are the same under model (16.4.16), which includes block effects, as
under the model (16.3.10) without block effects; that is, the linear, quadratic, and cross product effects
are estimated independently of the block effects. The primary advantage of orthogonal blocking as
comparedwith nonorthogonal blocking is that an orthogonally blocked design gives the smallest values
of Var(Ŷ ), Var(γ̂i ), Var(γ̂i i ), and Var(γ̂i j ). A second advantage is that a rotatable design conducted
with orthogonal blocking is still rotatable.

Given a design in b blocks with orthogonal blocking, the analysis under the block design model
(16.4.16) is almost the same as it would be under model (16.3.10) for the design with no blocking.
However, the sum of squares for blocks is extracted from the sum of squares for error, and there are
b − 1 degrees of freedom for blocks giving b − 1 fewer degrees of freedom for error. The sum of
squares for blocks is

ssθ =
b∑

h=1

kh(yh.. − y...)
2 =

b∑

h=1

y2h../kh − y2.../n ,
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where yh.. is the sum of the observations in the hth block, kh is the size of the hth block, and y... is the
sum of all n observations in the design.

In their 1957 article, Box and Hunter developed the following general conditions under which a
second-order design can be blocked orthogonally.

(1) Each block must be a first-order orthogonal design: that is, (i) for each block and each factor i ,
the sum of coded levels of the factor,

∑
zi , is zero; and (ii) for each block and each pair of factors

i and j , the sum of cross products,
∑

zi z j , is zero. (Each sum is over all the observations in the
block.)

(2) For each block and each factor i , the sum of squares
∑

z2i of the coded levels of the i th factor in
the block must be proportional to the number of observations in the block.

Orthogonal Blocking of Central Composite Designs

For a central composite design, we first divide the observations into two blocks: an axial-points block
consisting of the na axial points plus n0a center points, and a factorial-points block consisting of the nf
factorial points plus n0f center points. This division into blocks is natural if, for example, a first-order
design results in lack of fit, so that axial and additional center points are added at a later date to build
up to a second-order design. Each of the blocks is a first-order orthogonal design, meeting condition
(1) for orthogonal blocking. Concerning condition (2), the sum of squares

∑
z2i of the coded levels of

each factor is 2α2 in the axial block and nf in the factorial block. So, condition (2) requires that

2α2

nf
= na + n0a

nf + n0f
.

Solving for α, a central composite design has orthogonal blocking if

α =
(
nf (na + n0a)

2(nf + n0f )

)1/2

. (16.4.17)

The design is also rotatable if α = (nf )1/4, in which case we require

n0f = (
√
nf /2)(na + n0a) − nf . (16.4.18)

If the numbers of center points, n0a and n0f , in the blocks can be chosen to satisfy this equation, then
the design will be rotatable and can be orthogonally blocked. When this is not possible, it is preferable
to maintain orthogonal blocking but to relax rotatability. To accomplish this, the numbers n0a and n0f
can be chosen such that Eq. (16.4.18) is approximately satisfied, and then α can be computed from
Eq. (16.4.17).

It is sometimes possible to block a central composite design orthogonally in more than two blocks.
The axial block cannot be further subdivided, but the factorial block can sometimes be divided into
2m factorial blocks while maintaining orthogonal blocking if the number of factorial center points n0f
is divisible by 2m so the factorial center points can be equally divided among the 2m factorial blocks.
This is done by confounding interaction effects between three or more factors. Box and Hunter (1957,
p. 233) provide a table of blocking arrangements for rotatable and near-rotatable central composite
designs. Notice that if center points are spread across b blocks, then they provide b − 1 fewer pure
error degrees of freedom than they would in a design that is not blocked.
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Example 16.4.3 PAH recovery experiment

Barnabas et al. (1995) used a central composite design to study the effects of four factors—pressure,
temperature, extraction time, and methanol content—on the total recovery of polycyclic aromatic
hydrocarbons (PAHs) when extracted from soil. The design was composed of nf = 24 = 16 factorial
points and na = 2p = 8 axial points. Taking α = 161/4 = 2 would give a rotatable design. From
Eq. (16.4.18),

n0f = (
√
16/2)(8 + n0a) − 16 = 2n0a ,

so use of twice as many factorial center points as axial center points would give a rotatable design that
could be orthogonally blocked.

The experimenters chose to use n0a = 2 axial center points and n0f = 4 factorial center points. This
gave an axial block of size 10 and a factorial block of size 20. They then subdivided the factorial block
into two blocks each of size 10 by confounding the four-factor interaction and including two of the
four factorial center points in each factorial block. The resulting design was rotatable with orthogonal
blocking. Analysis of the design is discussed in Sects. 16.7.2 and 16.8.2 using the SAS and R software
packages, respectively. The design itself is shown in Tables16.16 (p. 596) and 16.19 (p. 604), where
the first ten observations comprise the first factorial block, the second ten the second factorial block,
and the final ten the axial block. �

16.5 A Real Experiment: Flour Production Experiment,Continued

Tuck et al. (1993) described a series of four related experiments, involving quality improvement in the
milling industry. The collective purpose of the experiments was to develop a bread flour that would
give high loaf volume despite fluctuations in the bread-making process. We consider here their fourth
experiment.

Bread flour consists of wheat plus a small number of minor ingredients. Their fourth experiment
was concerned with the effects of three such ingredients (labeled design factors B, C , and D) on loaf
volume. An orthogonal central composite design, involving eight factorial points, six axial points, and
two center points, was used. For the axial points, the value α = 1.2872 was used to make the design
orthogonal (see Example 16.4.2).

When a product consists of a mixture of ingredients, and the total volume of the mixture is held
constant, the fractions associated with the ingredients in the mixture necessarily sum to one. This
has implications for the model and data analysis. However, in this experiment, the minor ingredients
constituted such a small portion of the mixture that the total volume did not need to remain fixed, and
standard response surface methods could be used to study the design factors.

There were a number of sources of variation in the production process that constituted noise factors.
The production factors were paired in order to keep the experiment small. So, noise factor G repre-
sented oven bake and proof time, noise factor J represented yeast and water level, and noise factor K
represented degree of mixing and moulding pressure. Each of these composite factors had two levels,
“high” and “low.” A 23−1

I I I fraction in the composite noise factors was used, with defining relation

I = GJK .

The experimental design used was a product array. It included 16 × 4 = 64 observations—each of
the 16 design factor combinations of the central composite design was observed with each of the four
noise factor combinations of the noise array. Also, the noise factors were difficult to change, so each
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Table 16.11 Flour production experiment: average specific volume yhz of loaves on half-day h; α = 1.2872

zB zC zD y1z y2z y3z y4z y.z 100 log10(sz)

−1 −1 −1 586 399 418 404 451.75 195.36

−1 −1 1 615 411 435 421 470.50 198.60

−1 1 −1 611 422 431 439 475.75 195.63

−1 1 1 639 436 444 454 493.25 198.88

1 −1 −1 603 422 400 430 463.75 197.17

1 −1 1 622 411 425 436 473.50 199.79

1 1 −1 634 471 436 425 491.50 198.68

1 1 1 673 433 423 462 497.75 207.19

α 0 0 618 414 419 477 482.00 197.80

−α 0 0 586 421 420 455 470.50 189.60

0 α 0 621 426 427 458 483.00 196.94

0 −α 0 629 412 412 426 469.75 202.68

0 0 α 631 411 433 453 482.00 200.35

0 0 −α 587 413 419 430 462.25 192.15

0 0 0 604 432 416 438 472.50 194.53

0 0 0 602 425 407 439 468.25 195.48

Source Tuck et al. (1993). Copyright © 1993 Blackwell Publishers. Reprinted with permission

noise factor combination constituted a different block, and in each block the design factor treatment
combinations (zBzC zD) were randomly ordered. Observations were collected over two days using
half-days as blocks, with the four blocks collected in the order (zGzJ zK ) = 111, 100, 010, 001. As a
result, noise factor effects are also confounded with changes in conditions from half-day to half-day.
For each observation, three loaves were baked from a single dough, then the average specific volume
of the three loaves recorded. The resulting data yhz are shown in Table16.11.

For each of the 16 treatment combinations z of the central composite design in turn, the sample
mean y.z and the log sample variance (×100) were computed from the observations yhz in the four
blocks (h = 1, 2, 3, 4). The effects of the design factors on these two response variables were studied
separately by fitting second-order response surface regression models to each set of 16 responses.

The analysis of variance for fitting the second-order model to the response y.z is shown in
Table16.12. Because the design is orthogonal, the effects can be assessed for significance indepen-
dently of their order of entry into the model. The only effects that are significantly different from
zero at an individual significance level of 0.01 are the main effects of factors C and D. The overall
significance level for the nine tests is at most 0.09. The experimenters decided also to retain the main
effect of factor B, for which p = 0.0204. If the corresponding first-order model is fitted to y.z, we
obtain

ŷ.z = 475.50 + 4.42zB + 10.24zC + 6.87zD .

The coefficients of zB , zC , and zD are all positive. Thus, increasing the level of design factors B, C ,
and D has a positive effect on the mean loaf specific volume.

The analysis of variance for the response 100 log10(sz) is shown in Table16.13. No effects can be
regarded as significantly different from zero at an individual 0.01 significance level. However, in this
setting it would not be particularly bad tomake a Type I error, and if we raise the individual significance
level we would select the linear effects of factors B and D and the quadratic effect of C as being the
important effects. If the corresponding model is fitted and the linear effect of C is also included, we
obtain
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Table 16.12 Flour production experiment: analysis of variance for y.z

Source of
variation

Degrees of
freedom

Sum of squares Mean square Ratio p-value

zB 1 221.4366 221.4366 9.77 0.0204

zC 1 1185.3603 1185.3603 52.30 0.0004

zD 1 533.2415 533.2415 23.53 0.0029

z2B 1 48.0081 48.0081 2.12 0.1958

z2C 1 50.4906 50.4906 2.23 0.1862

z2D 1 1.1997 1.1997 0.05 0.8257

zB zC 1 3.4453 3.4453 0.15 0.7101

zB zD 1 51.2578 51.2578 2.26 0.1833

zC zD 1 2.8203 2.8203 0.12 0.7363

Error 6 135.9897 22.6650

Total 15 2233.2500

Table 16.13 Flour production experiment: analysis of variance for 100 log10(sz)

Source of
variation

Degrees of
freedom

Sum of squares Mean squares Ratio p-value

zB 1 54.9174 54.9174 8.24 0.0284

zC 1 0.3730 0.3730 0.06 0.8208

zD 1 70.1514 70.1514 10.53 0.0176

z2B 1 0.6409 0.6409 0.10 0.7669

z2C 1 61.4625 61.4625 9.23 0.0229

z2D 1 7.8587 7.8587 1.18 0.3191

zB zC 1 8.7175 8.7175 1.31 0.2963

zB zD 1 2.6931 2.6931 0.40 0.5484

zC zD 1 4.3269 4.3269 0.65 0.4511

Error 6 39.9752 6.6625

Total 15 251.1164

̂100 log10(sz) = 195.19 + 0.18zC + 3.35z2C + 2.20zB + 2.49zD

≈ 195.19 + 3.35(zC + 0.027)2 + 2.20zB + 2.49zD .

Taking the two fitted models, we see that not only does the mean response increase as the levels of
factors B, C , and D are increased, but so does the variability. The minimum variability with respect to
factor C is achieved at zC = −0.027. However, the amount of factor C in the loaf cannot be negative,
and so the minimum variability is achieved when the amount of factor C , as well as factors B and D,
is zero.

The end result was that the experimenters set zC = 0 to achieve low variability and adjusted the
level of factor B (which has the slightly smaller effect on the variance, and may have been less costly
than factor D) to raise mean response to the desired level.
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16.6 Box–Behnken Designs

A central composite design has five levels for each factor, ±1, ±α, 0. For a given experiment, circum-
stances may dictate the use of fewer levels, but at least three levels per factor are needed for quadratic
terms to be estimable in the second-order model. Use of 3p factorial designs or regular 3p−s fractional
factorial designs might be considered. These tend to be large, however, and the smaller ones tend to
be of resolution III or IV so that two-factor interactions are confounded with main effects or other
two-factor interactions. For fitting a second-order response model a different type of design, called
a Box–Behnken design, is often preferred, since interaction parameter estimates are not completely
confounded, and in many cases, these designs are considerably smaller than 3p−s fractional factorial
designs.

A Box–Behnken design for p factors is constructed by a composition of an incomplete block design
for p treatments in b blocks of size k and a 2k factorial design having factor levels coded +1 and −1.
The method of composition is illustrated in Example 16.6.1. In addition to the points generated by the
composition, center points must be added to the design for all model parameters to be estimable.

A list of Box–Behnken designs can be found in the article of Box and Behnken (1960). The designs
have p factors with each factor observed at 3 levels, for p = 3–7, 9–12, and 16. The designs for p = 4
and 7 are rotatable, and the others are nearly rotatable. The designs for p = 4–7, 9, 10, 12, and 16 allow
orthogonal blocking. All of the designs possess a high degree of orthogonality, the only correlation
being between the estimators of the intercept and the quadratic terms.

Example 16.6.1 Construction of a Box–Behnken Design: p = 4

Suppose we require a second-order design for p = 4 factors, each observed at three levels, and with
a total of 27 observations. As illustrated by Box and Behnken (1960), a Box–Behnken design can be
constructed from a composition of a balanced incomplete block design in b = 6 blocks of size k = 2
and a 22 factorial design as follows. The balanced incomplete block design, shown below left, consists
of all possible combinations of four treatment labels taken two at a time. Shown to its right are the
v = 4 treatment combinations of a 22 design, with factor levels coded +1 and −1. These two designs
are composed as follows. In each of the six blocks of the incomplete block design, the treatment labels
are replaced by the symbol ±1 and the blank “−” by 0 to give the Box–Behnken design represented
in condensed form (and without center points) below right.

⎡

⎢⎢⎢⎢⎢⎢⎣

1 2 − −
− − 3 4
1 − 3 −
− 2 − 4
1 − − 4
− 2 3 −

⎤

⎥⎥⎥⎥⎥⎥⎦
with

⎡

⎢⎢⎣

−1 −1
−1 1
1 −1
1 1

⎤

⎥⎥⎦ gives

⎡

⎢⎢⎢⎢⎢⎢⎣

±1 ±1 0 0
0 0 ±1 ±1

±1 0 ±1 0
0 ±1 0 ±1

±1 0 0 ±1
0 ±1 ±1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

The same design, but expanded out and augmented with three center points, is shown in Table16.14.
The first ±1 in each row of the condensed design is replaced by the first column of levels of the
22 design, the second ±1 is replaced by the second column of levels, and each 0 is replaced by a
column of v = 4 zeros. With the addition of three center points, this gives the design with 27 treatment
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Table 16.14 Box–Behnken design: p = 4 factors, n = 27 treatment combinations
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0

−1 1 0 0

1 −1 0 0

1 1 0 0

0 0 −1 −1

0 0 −1 1

0 0 1 −1

0 0 1 1

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 0

−1 0 1 0

1 0 −1 0

1 0 1 0

0 −1 0 −1

0 −1 0 1

0 1 0 −1

0 1 0 1

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 −1

−1 0 0 1

1 0 0 −1

1 0 0 1

0 −1 −1 0

0 −1 1 0

0 1 −1 0

0 1 1 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

combinations shown as the 27 rows of Table16.14. Although this design has the same number of
treatment combinations as a 34−1

I V design, it does not have complete confounding of the two-factor
interactions in pairs. �

In general, the composition of an incomplete block design for p treatments in b blocks of size k
with a factorial design with v = 2k treatment combinations yields a Box–Behnken design for p factors
with bv treatment combinations. The i th of the k treatment labels in each block is replaced by the i th
of the k columns of the factorial design, and each “−” is replaced by a column of v zeros.

In general, if the incomplete block design is a balanced incomplete block design with r = 3λ, as in
Example 16.6.1, then the resulting Box–Behnken design is rotatable—otherwise not. If there does not
exist a balanced incomplete block design with r = 3λ, then one can either use a balanced incomplete
block design with r �= 3λ or use a partially balanced incomplete block design. If a partially balanced
incomplete block design is used, each pair of treatment labels must occur together in at least one block
for all second-order model parameters to be estimable.

Orthogonal Blocking

Many Box–Behnken designs can be blocked orthogonally. The requirements for orthogonal blocking
of a second-order design were given in Sect. 16.4.3, and these imply that a Box–Behnken design can
be blocked orthogonally under either of two circumstances.

First, if the blocks of the incomplete blockdesign in the composition canbepartitioned into equirepli-
cate sets, then the same partition of observations in the Box–Behnken design provides orthogonal
blocking as long as the same number of center points is included in each block. Such is the case
for the design of Example 16.6.1, since each pair of blocks in the balanced incomplete block design
includes every treatment label exactly once. For the resulting Box–Behnken design in Table16.14, each
bracketed set of nine treatment combinations is a corresponding block with one center point included.

The second situation that allows orthogonal blocking occurs when interactions involving three or
more factors can be confounded in the generating factorial design. An example follows:

Example 16.6.2 Example of orthogonal blocking

For p = 4 factors, the balanced incomplete blockdesignwith blocks consistingof the four combinations
of three treatment labels can be combined with the 23 factorial design as follows.
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⎡

⎢⎢⎣

1 2 3 −
1 2 − 4
1 − 3 4
− 2 3 4

⎤

⎥⎥⎦ with

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
−1 −1 1
−1 1 −1
−1 1 1
1 −1 −1
1 −1 1
1 1 −1
1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

gives

⎡

⎢⎢⎣

±1 ±1 ±1 0
±1 ±1 0 ±1
±1 0 ±1 ±1
0 ±1 ±1 ±1

⎤

⎥⎥⎦ ,

where the i th occurrence of ±1 in any row of the combined design is replaced by the i th column of the
factorial design, and each 0 in the combined design is replaced by a column of eight 0’s. The resulting
32-run Box–Behnken design can be partitioned into two blocks of size 16 by confounding the three-
factor interaction in the generating factorial design. Thus, treatment combinations in the combined
design are divided into two blocks, the division depending on whether they include an even or odd
number of factors at level “−1.” An equal number of center points must be added to each block. �

16.7 Using SAS Software

In this section we illustrate the analysis of a standard first-order design and a central composite design
using the SAS procedures GLM and RSREG, respectively.

16.7.1 Analysis of a Standard First-Order Design

The acid copper pattern plating experiment of Poon (1995) was introduced in Example 16.2.4 (p. 574).
This small experiment involved four factorial points and two center points. A SAS program using the
GLM procedure for the analysis of this standard first-order design is shown in Table16.15. After reading

Table 16.15 SAS program for first-order response surface regression

* Enter data of the first-order design and code levels;
DATA COPPER;

INPUT XA XB S;
ZA = (XA - 10.5);
ZB = (XB - 36)/5;
LINES;
9.5 31 5.60
9.5 41 6.45

11.5 31 4.84
11.5 41 5.19
10.5 36 4.32
10.5 36 4.25

;
* Analysis of the first-order design;
PROC GLM;

MODEL S = ZA ZB;
* Add model terms to test for lack of fit;
PROC GLM;

MODEL S = ZA ZB ZA*ZB ZA*ZA;
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the data and coding the factor levels, there are two calls of PROC GLM. Neither of these calls includes
a CLASS statement, since the goal is to fit a regression model to the levels of the quantitative factors
and not to compare the effects of their levels.

In the first call, the first-order model (16.2.3) is fitted, generating the output shown in Fig. 16.5.
Neither main effect is significantly different from zero, indicating either that the experimental region
is in the vicinity of the peak, or that neither factor affects the response.

In the second call of PROC GLM, the interaction term and one quadratic term are added to the model
to test for lack of fit of the first-order model—the model would contain too many parameters if both
quadratic terms were added. Some of the resulting output is shown in Fig. 16.6. At an overall level of

Fig. 16.5 SAS output
from the first call of PROC
GLM: analysis of variance
and parameter estimates for
a first-order design

Fig. 16.6 SAS output
from the second call of
PROC GLM: test for lack of
fit of the first-order model
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Table 16.16 SAS program for response surface regression (PAH recovery experiment)

DATA PAH;
INPUT RUN B1 B2 PRES TEMP ET MC Y;
LINES;

1 1 0 250 55 47.5 15 391.8
2 1 0 150 85 47.5 15 413.6
3 1 0 250 55 22.5 5 68.7
4 1 0 250 85 47.5 5 143.0
5 1 0 150 85 22.5 5 104.0
6 1 0 150 55 22.5 15 309.1
7 1 0 200 70 35.0 10 400.6
8 1 0 250 85 22.5 15 402.5
9 1 0 150 55 47.5 5 77.7

10 1 0 200 70 35.0 10 426.5
11 0 1 250 85 47.5 15 457.5
12 0 1 150 55 22.5 5 56.9
13 0 1 250 85 22.5 5 94.1
14 0 1 250 55 22.5 15 409.7
15 0 1 150 55 47.5 15 410.9
16 0 1 150 85 22.5 15 375.8
17 0 1 150 85 47.5 5 110.5
18 0 1 200 70 35.0 10 387.8
19 0 1 250 55 47.5 5 103.0
20 0 1 200 70 35.0 10 399.1
21 -1 -1 200 70 35.0 10 416.9
22 -1 -1 200 40 35.0 10 359.8
23 -1 -1 200 70 10.0 10 276.1
24 -1 -1 200 70 60.0 10 462.3
25 -1 -1 100 70 35.0 10 311.5
26 -1 -1 200 70 35.0 10 346.5
27 -1 -1 200 70 35.0 0 46.8
28 -1 -1 200 70 35.0 20 418.7
29 -1 -1 200 100 35.0 10 413.9
30 -1 -1 300 70 35.0 10 429.4

;
* Sort by independent variables for lack of fit test;
PROC SORT; BY B1 B2 PRES TEMP ET MC;
* Response surface regression, including contour plots;
ODS GRAPHICS ON; * Needed for contour plots;
PROC RSREG PLOTS = SURFACE;

MODEL Y = B1 B2 PRES TEMP ET MC / COVAR = 2 LACKFIT;
RUN;

ODS GRAPHICS OFF;

Source The data in the program are reprinted from Barnabas et al. (1995) with permission. Copyright © 1995 American
Chemical Society

0.10 for the four tests (each being done at individual level α∗ = 0.025), the quadratic term ZA*ZA
is significantly different from zero, indicating the presence of significant curvature. This fact caused
the experimenters to add axial points to the first-order design to obtain a central composite design (see
Example 16.3.1).
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16.7.2 Analysis of a Second-Order Design

The SAS procedure RSREG is used to fit a second-order response surface regression model. This
is illustrated in Table16.16 in the context of the PAH recovery experiment that was introduced in
Example 16.4.3 (p. 589). A rotatable central composite design with orthogonal blocking was used to
study the effects of four factors—pressure (PRES), temperature (TEMP), extraction time (ET), and
methanol content (MC)—on the total recovery of polycyclic aromatic hydrocarbons (Y) when extracted
from soil.

The SAS program shown in Table16.16 reads the run number, the levels of the block indicator
variables, the uncoded levels of the four factors, and the data into data set ONE. Until now, we have
always declared a block variable to be a classification variable via the CLASS statement and listed
its levels as 1, 2, . . . , b. However, PROC RSREG does not recognize classification variables, and if
a single block factor were included in the model, it would be interpreted as a single covariate—a
quantitative variable possessing one degree of freedom. We have included in the model the pair of
covariates (B1, B2), for which we have selected the three coded pairs of levels (1, 0), (0, 1) and
(−1,−1). The three pairs of levels distinguish the three blocks and provide two block degrees of
freedom.

Only the factor names need be listed in the MODEL statement in RSREG, as all quadratic and
cross product terms in the factors are automatically included in the model. To avoid treatment–block
interactions from being included, B1 and B2 are declared to be covariates. This is done via the option
COVAR = 2, which indicates that the first two listed independent variables are covariates and should
not be included in any interactions.

A generic test for model lack of fit can optionally be requested if the SAS data set has been sorted
by the independent variables in the model to cluster replicated observations. PROC SORT is used to
sort the data, and a test for lack of fit is requested via the option LACKFIT in the model statement of
PROC RSREG.

PROC RSREG codes the levels of each factor so that +1 and −1 represent the extreme levels of
each factor. For example, the axial points of a central composite design would typically be coded ±1
by SAS software rather than the conventional ±α. Figure16.7 shows how SAS codes the factor levels,
as well as the resulting analysis of variance table. The analysis of variance table includes Type I sums
of squares for covariates, linear terms, quadratic terms, and cross product terms, adding the terms to
the model in that order. These Type I sums of squares are the same, whether coded or uncoded factor
levels are specified in the model statement. Observe that the cross product terms are not significantly
different from zero, and there is no significant lack of fit of the model.

Type III sums of squares are also provided for each factor, pooling together the sums of squares
for all terms—linear, quadratic and interaction—involving the factor. This information can be used for
assessing whether any single factor can be removed from the model. These Type III sums of squares
are also the same using either the coded or uncoded factor levels. The Type III sums of squares indicate
that the factor methanol content (MC) is needed in the model, but perhaps not the other factors. Further
analysis could explore what additional terms are needed, if any.

Figure16.8 contains the parameter estimates and corresponding t-tests. Clearly the linear and
quadratic methanol content terms are needed in the model, providing some clarification to the analysis
of variance results.

In Fig. 16.9, the canonical analysis is shown, including the stationary point (Critical Value) in
terms of both coded and uncoded factor levels; the predicted value at the stationary point; the canonical
coefficients (Eigenvalues); classification of the stationary point as amaximum,minimum, or saddle
point; and the direction of each canonical axis (Eigenvectors). The canonical coefficients and axes
are with respect to the coded factor levels.
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Fig. 16.7 SAS output from PROC RSREG: coding of factor levels, analysis of variance, and lack-of-fit test

For this experiment, all eigenvalues (canonical coefficients) are negative, so the stationary point
is a maximum. The eigenvectors are each scaled to be of length one. The last eigenvalue, with value
−227.865046, is the largest in magnitude. For the corresponding eigenvector, the primary component
is that of MC with value 0.994301. So, the fitted model has greatest curvature at the stationary point
when moving in either direction determined by this fourth eigenvector, which is nearly parallel to
the MC-axis. This is evident from the contour plots in Fig. 16.10, where MC is the x-axis variable of
plots (b), (e) and (f). Such a panel of contour plots is generated by inclusion of PLOTS = SURFACE
as an option of PROC RSREG in Table16.16, whereas changing the option to PLOTS = 3D would
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Fig. 16.8 SAS output from PROC RSREG: parameter estimates for uncoded and coded factor levels

generate response surface plots. Note that such graphics require ODS GRAPHICS ON, and PROC
RSREG must run before turning ODS GRAPHICS OFF.

16.8 Using R Software

In this section we illustrate the analysis of a standard first-order design and a central composite design
using the response surface methods function rsm of the rsm library. We then illustrate generation of
central composite and Box–Behnken designs using functions of the rsm package.

16.8.1 Analysis of a Standard First-Order Design

The acid copper pattern plating experiment of Poon (1995) was introduced in Example 16.2.4 (p. 574).
This small experiment involved four factorial points and two center points. An R program and output
for the analysis of this standard first-order design is shown in Tables16.17 and 16.18. In Table16.17,
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Fig. 16.9 SAS output
from PROC RSREG:
canonical analysis

the data are read from file, coded using the coded.data function of the rsm package, saved as
copper1, and displayed.

In the R program continuation in Table16.18, the first-order analysis is generated using the rsm
function. In the statement

model1 = rsm(s ˜ FO(zA, zB), data = copper1)

the syntax FO(zA, zB) fits the first order model in both coded response variables, using the coded
data copper1, saving the results as model1. Then the summary(model1) command generates
pertinent information, including: parameter estimates, standard errors, and corresponding t-tests; the
analysis of variance table, including a lack-of-fit test; and the direction of steepest ascent with respect
to coded and uncoded variables. Finally, the command

steepest(model1, dist=seq(0, 5, by = 1), descent = F)

provides predicted response at steps along the path of steepest ascent, stepping from the origin (which
is the design center point for coded data) at distances from zero to five in unit increments, showing the
location of each step in terms of the coded and uncoded predictor variables.

Based on the t tests, neither main effect is significantly different from zero, indicating either that
the experimental region is in the vicinity of the peak, or that neither factor affects the response. The
lack-of-fit test yields a p-value of 0.034, indicating significant lack-of-fit of the first order model,
though the test does not distinguish whether this is due to interaction or quadratic effects. The reader
may verify that the significant lack-of-fit is due to a quadratic effect. This fact caused the experimenters
to add axial points to the first-order design to obtain a central composite design (see Example 16.3.1).
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Fig. 16.10 Response surface contour plots for the PAH recovery experiment
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Table 16.17 R program and output for first-order response surface regression: data entry and coding

> # Read first 6 observations from file
> copper.data = head(read.table("data/copper.txt", header = T), 6)
> # Code data
> # install.packages("rsm")
> library(rsm)
> copper1 = coded.data(copper.data, zA ˜ xA - 10.5, zB ˜ (xB - 36)/5)
> copper1

xA xB s
1 9.5 31 5.60
2 9.5 41 6.45
3 11.5 31 4.84
4 11.5 41 5.19
5 10.5 36 4.32
6 10.5 36 4.25

Data are stored in coded form using these coding formulas ...
zA ˜ xA - 10.5
zB ˜ (xB - 36)/5

16.8.2 Analysis of a Second-Order Design

In the previous section, the syntaxFOwas usedwith thersm function to fit a first order response surface
regression model. Analogously, the syntax SO is used to fit a second order model. This is illustrated
in the R program beginning in Table16.19, in the context of the PAH recovery experiment that was
introduced in Example 16.4.3 (p. 589). A rotatable central composite design with orthogonal blocking
was used to study the effects of four factors—pressure (Pres), temperature (Temp), extraction time
(ET), and methanol content (MC)—on the total recovery of polycyclic aromatic hydrocarbons (y) when
extracted from soil.

The R program beginning in Table16.19 reads the data from a file pah.txt which contains the
run number, the block level, the uncoded levels of the four factors, and the response variable. A factor
variable for blocks is created and all the information is saved in the data set pah.data. The function
coded.data of the response surface methods package rsm then codes the levels of each of the
factors, saving the coded data as pah.ccd.data. The data are then displayed (see Table16.19),
including the coding formulas. The coding formulas used here code the extreme levels of each factor
as ±1, so the results presented here are consistent with those in the prior SAS software section, though
one could certainly choose instead to code the levels of the factorial points as ±1.

The R program is continued in Table16.20, where the output shown is all generated by the following
two program lines.

model2 = rsm(y ˜ fBlock + SO(zP, zT, zET, zMC), data = pah.ccd.data)
summary(model2)

The first line fits the response surface regression model, saving the results as model2. Block effects
are included in themodel additively,whereas the syntaxSO(zP, zT, zET, zMC) causes inclusion
of all terms up to second order in the four factors, including linear, interaction, and quadratic effects.
The summary command then generates the output shown in Table16.20, as well as the canonical
analysis shown in Table16.21.
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Table 16.18 R program and output for first-order response surface regression: parameter estimates and analysis of
variance

> # First-order model analysis
> model1 = rsm(s ˜ FO(zA, zB), data = copper1)
> summary(model1)

Call:
rsm(formula = s ˜ FO(zA, zB), data = copper1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.108 0.341 14.96 0.00065
zA -0.505 0.418 -1.21 0.31373
zB 0.300 0.418 0.72 0.52495

Multiple R-squared: 0.397, Adjusted R-squared: -0.00545
F-statistic: 0.986 on 2 and 3 DF, p-value: 0.469

Analysis of Variance Table

Response: s
Df Sum Sq Mean Sq F value Pr(>F)

FO(zA, zB) 2 1.380 0.690 0.99 0.469
Residuals 3 2.099 0.700
Lack of fit 2 2.096 1.048 427.78 0.034
Pure error 1 0.002 0.002

Direction of steepest ascent (at radius 1):
zA zB

-0.85974 0.51074

Corresponding increment in original units:
xA xB

-0.85974 2.55368

> steepest(model1, dist = seq(0, 5, by = 1), descent = F)

Path of steepest ascent from ridge analysis:
dist zA zB | xA xB | yhat

1 0 0.000 0.000 | 10.500 36.000 | 5.108
2 1 -0.860 0.511 | 9.640 38.555 | 5.696
3 2 -1.720 1.021 | 8.780 41.105 | 6.283
4 3 -2.579 1.532 | 7.921 43.660 | 6.870
5 4 -3.439 2.043 | 7.061 46.215 | 7.458
6 5 -4.299 2.554 | 6.201 48.770 | 8.046

In Table16.20, the analysis of variance table includes Type I sums of squares for blocks, linear or first
order terms, two way interaction terms, and pure quadratic terms, adding the terms to the model in that
order. These Type I sums of squares would be the samemodeling either coded or uncoded factor levels.
A lack-of-fit test is also provided. Observe that the cross product terms are not significantly different
from zero, and there is no significant lack of fit of the model. The linear and quadratic components are
clearly significant. Looking at the parameter estimates and corresponding t-tests in Table16.20, clearly
the linear and quadratic methanol content terms are needed in the model, providing some clarification
to the analysis of variance results.
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Table 16.19 R program and output for second-order response surface regression: data entry and coding

> pah.data = read.table("data/pah.txt", header = T)
> pah.data$fBlock = factor(pah.data$Block)
> library(rsm)
> pah.ccd.data = coded.data(pah.data, zP ˜ (Pres - 200)/100,
+ zT ˜ (Temp - 70)/30, zET ˜ (ET - 35)/25, zMC ˜ (MC - 10)/10)
> pah.ccd.data

Run Block Pres Temp ET MC y fBlock
1 1 1 250 55 47.5 15 391.8 1
2 2 1 150 85 47.5 15 413.6 1
3 3 1 250 55 22.5 5 68.7 1
4 4 1 250 85 47.5 5 143.0 1
5 5 1 150 85 22.5 5 104.0 1
6 6 1 150 55 22.5 15 309.1 1
7 7 1 200 70 35.0 10 400.6 1
8 8 1 250 85 22.5 15 402.5 1
9 9 1 150 55 47.5 5 77.7 1
10 10 1 200 70 35.0 10 426.5 1
11 11 2 250 85 47.5 15 457.5 2
12 12 2 150 55 22.5 5 56.9 2
13 13 2 250 85 22.5 5 94.1 2
14 14 2 250 55 22.5 15 409.7 2
15 15 2 150 55 47.5 15 410.9 2
16 16 2 150 85 22.5 15 375.8 2
17 17 2 150 85 47.5 5 110.5 2
18 18 2 200 70 35.0 10 387.8 2
19 19 2 250 55 47.5 5 103.0 2
20 20 2 200 70 35.0 10 399.1 2
21 21 3 200 70 35.0 10 416.9 3
22 22 3 200 40 35.0 10 359.8 3
23 23 3 200 70 10.0 10 276.1 3
24 24 3 200 70 60.0 10 462.3 3
25 25 3 100 70 35.0 10 311.5 3
26 26 3 200 70 35.0 10 346.5 3
27 27 3 200 70 35.0 0 46.8 3
28 28 3 200 70 35.0 20 418.7 3
29 29 3 200 100 35.0 10 413.9 3
30 30 3 300 70 35.0 10 429.4 3

Data are stored in coded form using these coding formulas ...
zP ˜ (Pres - 200)/100
zT ˜ (Temp - 70)/30
zET ˜ (ET - 35)/25
zMC ˜ (MC - 10)/10

Source The data in the program are reprinted from Barnabas et al. (1995) with permission. Copyright © 1995 American
Chemical Society

In Table16.21, the canonical analysis is shown, including: the stationary point expressed in terms of
both coded and uncoded units; the eigenvalues, or canonical coefficients; and the eigenvectors, giving
the direction of each canonical axis. The canonical coefficients and axes are with respect to the coded
factor levels.

For this experiment, all eigenvalues (canonical coefficients) are negative, so the stationary point
is a maximum. The eigenvectors are each scaled to be of length one. The last eigenvalue, with value
−227.865, is the largest in magnitude. For the corresponding eigenvector, the primary component is
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Table 16.20 R program and output for second-order response surface regression: parameter estimates and analysis of
variance

> # Second-order model and analysis
> model2 = rsm(y ˜ fBlock + SO(zP, zT, zET, zMC), data = pah.ccd.data)
> summary(model2)

Call:
rsm(formula = y ˜ fBlock + SO(zP, zT, zET, zMC), data = pah.ccd.data)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 369.16 28.46 12.97 8.2e-09
fBlock2 6.78 26.35 0.26 0.80094
fBlock3 74.44 26.35 2.83 0.01431
zP 37.30 24.05 1.55 0.14492
zT 31.78 24.05 1.32 0.20911
zET 54.97 24.05 2.29 0.03972
zMC 263.07 24.05 10.94 6.3e-08
zP:zT -6.35 58.91 -0.11 0.91581
zP:zET -11.65 58.91 -0.20 0.84630
zP:zMC 23.10 58.91 0.39 0.70133
zT:zET 2.30 58.91 0.04 0.96945
zT:zMC -4.35 58.91 -0.07 0.94226
zET:zMC 16.55 58.91 0.28 0.78319
zPˆ2 -88.63 44.99 -1.97 0.07056
zTˆ2 -72.23 44.99 -1.61 0.13246
zETˆ2 -89.88 44.99 -2.00 0.06714
zMCˆ2 -226.33 44.99 -5.03 0.00023

Multiple R-squared: 0.928, Adjusted R-squared: 0.839
F-statistic: 10.5 on 16 and 13 DF, p-value: 0.0000582

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

fBlock 2 33884 16942 4.88 0.0262
FO(zP, zT, zET, zMC) 4 447761 111940 32.25 0.0000012
TWI(zP, zT, zET, zMC) 6 1008 168 0.05 0.9993
PQ(zP, zT, zET, zMC) 4 99227 24807 7.15 0.0029
Residuals 13 45118 3471
Lack of fit 10 42240 4224 4.40 0.1246
Pure error 3 2877 959

that of MC with value 0.994301. So, the fitted model has greatest curvature at the stationary point
when moving in either direction determined by this fourth eigenvector, which is nearly parallel to the
MC-axis, as is evident from the SAS contour plots in Fig. 16.10 (p. 601), where MC is the x-axis variable
of plots (b), (e) and (f). To generate similar plots using R, add the following code to the end of the R
program in Tables16.19 and 16.20.

par(mfrow = c(3, 2))
contour(model2, ˜ zP + zT + zET + zMC,

at = round(xs(model2), 3), las = 1)
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Table 16.21 R program output for second-order response surface regression: canonical analysis

Stationary point of response surface:
zP zT zET zMC

0.25947 0.19593 0.34721 0.60522

Stationary point in original units:
Pres Temp ET MC

225.947 75.878 43.680 16.052

Eigenanalysis:
$values
[1] -71.257 -84.168 -93.761 -227.865

$vectors
[,1] [,2] [,3] [,4]

zP 0.233360 0.712899 -0.655835 -0.084838
zT -0.964432 0.255316 -0.067269 0.012632
zET -0.121729 -0.652941 -0.744877 -0.063313
zMC 0.024413 0.016008 -0.102535 0.994301

The contour statement above generates six black-and-white contour plots—one for each pair of
the four factors listed. The par statement causes the six contour plots to be arranged in a 3×2
layout; otherwise, onewould obtain six separate plots. The optionat = xs(model2)would use the
stationary point rather than the center point to fix the levels of the unplotted factors, whereas the option
at = round(xs(model2),3) does the same but rounds each component to 3 digits, providing
cleaner subheadings. For color plots, include the option image = T.

16.8.3 Generating Designs

In this section, we illustrate some capabilities of the R software to generate response surface designs,
using functions of thersm package. Table16.22 contains sample R code generatingmost of the designs
used in examples in this chapter.

The function cube generates first order designs consisting of factorial (or cube) points and center
points. For example, the statement

cube(basis = ˜ A+B+C, generators = c(D ˜ B*C, E ˜ A*D, F ˜ A*B),
reps = 4, n0 = 0)

generates the design for the paint experiment introduced in Example 16.2.1. The syntax basis =
˜ A+B+C causes inclusion of all eight combinations of A, B and C at two levels each, then the
generators option defines the levels of D, E and F in terms of prior variables using the generators
BCD, ADE and ABF. Each of the resulting eight treatment combinations is replicated four times, since
reps = 4, and the design includes n0 = 0 center points.

Central composite designs can be generated either in one or two steps, as illustrated in the code in
Table16.22 for the acid copper plating experiment of Example 16.2.4. The ccd function generates a
complete central composite design. Alternatively, the cube function generates the first order design,
the star function generates the axial or star points and any additional center points, and the djoin
function joins these factorial and axial parts together. The default is for the design to have two blocks—
one for eachof the factorial and axial parts—unlessoneblock = T is specified.Thedesigngenerated
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Table 16.22 Sample R code for generating response surface designs used in the chapter

library(rsm)

# Paint experiment
cube(basis = ˜ A+B+C, generators = c(D ˜ B*C, E ˜ A*D, F ˜ A*B),

n0 = 0, reps = 4)

# Paint experiment: same design, different notation for factors
cube(3, generators = c(x4 ˜ x2*x3, x5 ˜ x1*x4, x6 ˜ x1*x2),

n0 = 0, reps = 4)

# Acid copper pattern plating experiment: rotatable CCD
# Create design in 2 parts, then join the parts
dsgn1 = cube(2, n0 = 2, reps = 1,

coding = list(x1 ˜ (A - 10.5)/1, x2 ˜ (B - 36)/5))
dsgn2 = star(dsgn1, n0 = 0, alpha = "rotatable", reps = 1)
dsgn12 = djoin(dsgn1, dsgn2)
dsgn12 # Show design in randomized order
stdorder(dsgn12) # Show design in standard order
# Create the design all at once: defaults is factorial and axial blocks
dsgn = ccd(2, n0 = c(2, 0), alpha = "rotatable", oneblock = T,

randomize = F, coding = list(x1 ˜ (A - 10.5)/1, x2 ˜ (B - 36)/5))
varfcn(dsgn, ˜ SO(x1, x2), contour = T) # Contour of scaled variances
# Add data to the coded data set containing the design
dsgn$s = c(5.60, 4.84, 6.45, 5.19, 4.32, 4.25, 5.76, 4.42, 5.46, 5.81)
# Data analysis
model2 = rsm(s ˜ SO(x1, x2), data = dsgn)
summary(model2)
contour(model2, ˜ x1 + x2, at = round(xs(model2), 3), image = T,

las = 1)

# Flour experiment: orthogonal CCD
ccd(basis = ˜ B+C+D, n0 = 2, alpha = 1.2872, randomize = F)

# PAH experiment: rotatable CCD, with orthogonal blocking
ccd(4, alpha = "rotatable", n0 = 2, blocks = ˜ x1*x2*x3*x4,

randomize = F)

# Flour experiment: noise array only
cube(basis = ˜ G+J, generators = c(K ˜ G*J), n0 = 0, randomize = F)

# Box-Behnken example design: 4 factors, 1 ctr pt per block
bbd(4, n0 = 3, block = F, randomize = F)
# Same design, except 3 blocks
bbd(4, n0 = 1, block = T, randomize = F)
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is in terms of coded variables, though the coding option allows the user to specify the coding formula
relating each variable to its coded levels. By default, the design is randomized separately within
each block, in which case the function stdorder can be used to display the design in standard, or
unrandomized, order. One can specify a specific value of α (e.g. alpha = 1.2872 for the flour
experiment), or request that the value be set corresponding to a desired design property, such as:alpha
= "rotatable" for a rotatable design; alpha = "orthogonal" for orthogonal blocking (not
orthogonality); alpha = "spherical" for the axial and factorial points to be the same distance
from the center points, and alpha = "faces" for the axial points to be on the faces of the cube
(same as alpha = 1). Given a design, the variance function varfcn can generate a contour plot
of the scaled variance for a given design and model, so one can see rotatability or non-rotatability, for
example.

Using the bbd function, one can generate Box–Behnken designs for 3–7 factors, including designs
with orthogonal blocking for either four factors and three blocks or five factors and two blocks.

For sake of completeness, the code for the acid copper pattern plating experiment illustrates one
way to add data to the coded design data set, as needed for data analysis.

Exercises

1. Paint experiment, continued

The paint experiment of Eibl et al. (1992) was discussed in Example 16.2.1 (p. 569), where the
first-order model was fitted to the data. For the fitted first-order model, do the following.

(a) Plot the residuals versus run order, and use the plot to check the independence assumption.
(The order of the observations was not randomized in this experiment. Rather, the observations
were collected in the order they are shown row by row in Table16.1, p. 570.)

(b) Plot the residuals versus the predicted values, and use the plot to check the assumption of equal
variance.

(c) Plot the residuals versus their normal scores, anduse the plot to check the normality assumption.
(d) Verify that the design is orthogonal.

2. Paint followup experiment

The data of the second paint experiment described by Eibl et al. (1992) are given in Table16.23.
This experiment involves factors A–D, as these had significant effects in the first experiment
(Example 16.2.1). The factors are

A: belt speed B: tube width
C : pump pressure D: paint viscosity

All four factors are at lower levels than in the first experiment. Lowering the levels of factors B–D
was indicated by the analysis of the first experiment. Lowering the level of factor A was based on
a conjecture of the experimenters.

(a) The experiment consists of two replicates of a half-fraction. Find the defining relation for the
half-fraction.

(b) Fit the first-order model, recoding the factor levels as ±1.
(c) Test for lack of fit of the first-order model.
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Table 16.23 Paint thickness yzt for the paint followup experiment

zA zB zC zD yz1 yz2

−1.5 0 −2 0 1.71 1.61

0.5 0 −2 0 0.91 1.30

−1.5 −2 0 0 1.71 1.60

0.5 −2 0 0 1.15 1.29

−1.5 0 0 −2 1.33 1.06

0.5 0 0 −2 1.74 1.98

−1.5 −2 −2 −2 0.64 0.78

0.5 −2 −2 −2 1.51 1.18

Source Eibl et al. (1992). Reprinted with Permission from Journal of Quality Technology © 1992 ASQ, www.asq.org

(d) What would you recommend the experimenters do next?

3. Fractionation experiment

Sosada (1993) studied the effects of extraction time, solvent volume, ethanol concentration, and
temperature on the yield and phosphatidylcholine enrichment (PCE) of deoiled rapeseed lecithin
when fractionated with ethanol. Initially, a single-replicate 24 experiment was conducted, aug-
mented by three center points.

(a) The results for the 16 factorial points are shown as the first 16 runs in Table16.24. Fit the
first-order model for the response variable “PCE” and conduct the corresponding analysis of
variance.

(b) The design also included n0 = 3 center-point observations of PCE. The sample variance of
these three observations was s20 = 1.120. Test the first-order model for lack of fit, using a 5%
level of significance. (Hint: Since the factorial points include no replication, msPE = s20 , and
ssE based on all 19 runs is equal to ssE from the factorial portion of the design plus (n0−1)s20 .)

(c) Based on the results of parts (a) and (b), what subsequent experimentation would you recom-
mend?

4. Fractionation experiment, continued

The fractionation experiment was described in Exercise 3, where the response PCE was used.
Consider here, instead, the analysis of “Yield”.

(a) Fit the first-order model for the response variable “Yield” based on the initial first-order 24

factorial design, shown as the first 16 runs in Table16.24. Conduct the corresponding analysis
of variance.

(b) At the design center point, three additional observations were collected, for which the sample
variance was s20 = 0.090. Test the first-order model for lack of fit, using a 5% level of
significance. (Hint: Since the factorial points include no replication, msPE = s20 , and ssE
based on all 19 runs is equal to ssE from the factorial portion of the design plus (n0 − 1)s20 .)

(c) Based on the results of parts (a) and (b), what subsequent experimentation would you recom-
mend?

www.asq.org
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Table 16.24 Purified lecithin yield and phosphatidylcholine enrichment (PCE), given extraction time (z1), solvent
volume (z2), ethanol concentration (z3), and temperature (z4); fractionation experiment

Run z1 z2 z3 z4 Yield PCE

1 1 1 1 1 27.6 43.8

2 −1 −1 1 1 16.6 27.2

3 1 −1 −1 1 15.4 23.6

4 −1 1 −1 1 17.4 26.2

5 1 −1 1 −1 17.0 27.8

6 −1 1 1 −1 19.0 30.2

7 1 1 −1 −1 17.4 25.2

8 −1 −1 −1 −1 12.6 18.8

9 1 −1 1 1 18.6 28.8

10 −1 1 1 1 22.4 36.8

11 1 1 −1 1 21.4 33.4

12 −1 −1 −1 1 14.0 21.0

13 1 1 1 −1 24.0 38.0

14 −1 −1 1 −1 15.6 23.6

15 1 −1 −1 −1 13.0 20.2

16 −1 1 −1 −1 14.4 22.6

17 0 0 0 0 22.6

18
√
2 0 0 0 23.4

19 −√
2 0 0 0 20.6

20 0
√
2 0 0 22.6

21 0 −√
2 0 0 13.4

22 0 0
√
2 0 20.6

23 0 0 −√
2 0 15.6

24 0 0 0
√
2 21.0

25 0 0 0 −√
2 17.6

Source Sosada (1993). Copyright © 1993 American Oil Chemists Society. Reprinted with permission

5. Fractionation experiment, continued

The fractionation experiment was described in Exercise 3, and analysis of the first-order model
for “Yield” was considered in Exercise 4. Based on the analysis of the first-order design, the
experimenter chose to augment the 16 factorial points of the first-order design into a 25-run central
composite design, the yields from which are shown in Table16.24.

(a) Determine whether the central composite design used is rotatable or orthogonal.
(b) Fit the second-order response surface model and determine which effects are significantly

different from zero.
(c) Conduct a canonical analysis and discuss the results with respect to the following items. What

is the nature of the critical point? Noting that the objective is to increase yield, in what direction
should one move in subsequent experimentation?

6. Film viscosity experiment

Cuq et al. (1995, Journal of Food Science) used a central composite design to study the effects
of protein concentration (g/100 g solution), pH, and temperature (◦C), denoted by P , H , and T ,
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respectively, on the apparent viscosity Y (mPa) of film-forming solution, in the development of
edible packaging films based on fish myofibrillar proteins. The data are shown in Table16.25.

(a) Is this central composite design rotatable or orthogonal?
(b) Fit the second-order model to the data using the coded factor levels, and check the model

assumptions. Would you recommend that a transformation of the data be taken?
(c) Fit the second-order model to the natural log of the data, ln(y), using the coded factor levels.
(d) Conduct the test for lack of fit of the second-order model for ln(y).
(e) Check the model assumptions for ln(y).
(f) Conduct the canonical analysis for ln(y).
(g) Conduct the analysis of variance for ln(y).
(h) Compute the coefficient of multiple determination R2 for the second-order model for ln(y).
(i) Assess the results of the experiment, based on the model for ln(y).

7. Flour production experiment, continued

Consider again the flour production experiment of Sect. 16.5. The data were given in Table16.11
(p. 590), along with the statistics y.z and 100 log10(sz) computed for the observations at each
design-factor combination z.

(a) Plot log10(sz) versus log10(y.z), and use the methods of Sect. 5.6.2 to determine an appropriate
variance-stabilizing transformation for these data. (Use of log10 is equivalent to use of ln for
choosing a transformation.)

Table16.25 Apparent viscosity yzt offilm-forming solution, for combinations of levels of protein concentration (g/100g
solution), pH, and temperature (◦C)

Design point P H T

zP xP zH xH zT xT y

1 −1 1.25 −1 2.75 −1 20 50

2 1 2.75 −1 2.75 −1 20 48

3 −1 1.25 1 3.25 −1 20 16700

4 1 2.75 1 3.25 −1 20 560

5 −1 1.25 −1 2.75 1 40 320

6 1 2.75 −1 2.75 1 40 18

7 −1 1.25 1 3.25 1 40 19000

8 1 2.75 1 3.25 1 40 5000

9 −2 0.50 0 3.00 0 30 12700

10 2 3.50 0 3.00 0 30 182

11 0 2.00 −2 2.50 0 30 14

12 0 2.00 2 3.50 0 30 27800

13 0 2.00 0 3.00 −2 10 133

14 0 2.00 0 3.00 2 50 4300

15 0 2.00 0 3.00 0 30 57

16 0 2.00 0 3.00 0 30 70

17 0 2.00 0 3.00 0 30 58

18 0 2.00 0 3.00 0 30 56

Source Cuq et al. (1995). Copyright © 1995 Inst. of Food Technologists. Reprinted with permission

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Table 16.26 Resin impurity content yzt (ppm)

Design point Time Temp. yx,t

1 7.0 232.4 18.5

2 3.0 220.0 22.5

3 11.0 220.0 17.2

4 1.3 190.0 42.2

5 7.0 190.0 28.6

6 7.0 190.0 19.8

7 7.0 190.0 23.6

8 7.0 190.0 24.1

9 7.0 190.0 24.2

10 12.7 190.0 19.1

11 3.0 160.0 54.1

12 11.0 160.0 33.8

13 7.0 147.6 55.4

(b) Repeat the first analysis of variance of Sect. 16.5, for which the response variable was y.z,
after applying the transformation determined in part (a) to the observations yhz. Compare your
conclusions with those reached in Sect. 16.5.

(c) Repeat the second analysis of variance of Sect. 16.5, for which the response variable was
100 log10(sz), after applying the transformation determined in part (a) to the observations yhz.
Compare your conclusions to those reached in Sect. 16.5.

8. Central composite design

Consider using a central composite design for three factors, to include eight factorial points and
six axial points.

(a) Determine the value of α to make the design rotatable.
(b) Investigate how α and the number of center points should be chosen to make the design both

rotatable and orthogonal, if possible. If this is not possible, how can the design be made
rotatable and nearly orthogonal?

(c) Investigatewhether the design canbe rotatablewith orthogonal blocking. If not, then investigate
whether orthogonal blocking is possible. If so, how many blocks could be used? Investigate
whether orthogonal blocking and near rotatability is possible.

9. Central composite design

Repeat Exercise 8 for a central composite design for four factors, to include 16 factorial points and
eight axial points.

10. Resin impurity experiment

An experiment was conducted using a design close to a central composite design to study the effects
of drying time (hours) and temperature (◦C) on the content y (ppm) of undesirable compounds in
a resin. The data are shown in Table16.26.
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Table 16.27 Resin degradation (ppm) for the resin moisture experiment

Design point T H P

zT xT zH xH zP xP y

1 −1 150 −1 0 0 4 83

2 −1 150 0 50 −1 1 103

3 −1 150 0 50 1 9 94

4 −1 150 1 100 0 4 98

5 0 185 −1 0 −1 1 51

6 0 185 −1 0 1 9 48

7 0 185 1 100 −1 1 106

8 0 185 1 100 1 9 108

9 1 220 −1 0 0 4 36

10 1 220 0 50 −1 1 153

11 1 220 0 50 1 9 107

12 1 220 1 100 0 4 87

13 0 185 0 50 0 4 80

14 0 185 0 50 0 4 81

15 0 185 0 50 0 4 77

16 0 185 0 50 0 4 80

17 0 185 0 50 0 4 82

(a) Determine the coded levels of time and temperature, as well as the values of n f , na , n0. What
values of α for each factor were selected by the experimenters for the axial points? Why is the
design not quite a central composite design?

(b) Fit the second-order model, using coded factor levels.
(c) Test for model lack of fit.
(d) Check the equal variance and normality assumptions of the model using residual plots.
(e) Conduct the canonical analysis.
(f) Conduct the analysis of variance.
(g) Summarize the results.

11. Resin moisture experiment

A Box–Behnken design was used to determine whether specific drying conditions for a process
could yield a resin that is sufficiently devoid of moisture and low-molecular-weight components.
The three factors T , H , and P under study were temperature (150, 185, 220◦C), relative humidity
(0, 50, 100%), and air pressure (1, 5, 9 torr). The response variable y was a measure of product
degradation (ppm). The design and data are shown in Table16.27.

(a) Fit the second-order model, using coded factor levels.
(b) Test for model lack of fit.
(c) Check the equal-variance and normality model assumptions using residual plots.
(d) Conduct the canonical analysis.
(e) Conduct the analysis of variance.
(f) Summarize the results.
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12. Box–Behnken design

(a) Construct a Box–Behnken design for three factors based on the balanced incomplete block
design for three treatments in three blocks of size two and the 22 factorial design.

(b) Determine whether the design constructed in part (a) is rotatable.
(c) For the design constructed in part (a), determine whether orthogonal blocking is possible.

13. Box–Behnken design

(a) Construct a Box–Behnken design for five factors based on the balanced incomplete block
design for five treatments in 10 blocks of size two.

(b) Determine whether the design constructed in part (a) is rotatable.
(c) For the design constructed in part (a), determine whether orthogonal blocking is possible.
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