
Automatic Margin Computation
for Risk-Limiting Audits

Bernhard Beckert1, Michael Kirsten1(B), Vladimir Klebanov1,
and Carsten Schürmann2

1 Institute of Theoretical Informatics,
Am Fasanengarten 5, 76131 Karlsruhe, Germany

{beckert,kirsten,klebanov}@kit.edu
2 IT University of Copenhagen (ITU),

Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
carsten@itu.dk

Abstract. A risk-limiting audit is a statistical method to create con-
fidence in the correctness of an election result by checking samples of
paper ballots. In order to perform an audit, one usually needs to know
what the election margin is, i.e., the number of votes that would need to
be changed in order to change the election outcome.

In this paper, we present a fully automatic method for computing elec-
tion margins. It is based on the program analysis technique of bounded
model checking to analyse the implementation of the election function.
The method can be applied to arbitrary election functions without under-
standing the actual computation of the election result or without even
intuitively knowing how the election function works.

We have implemented our method based on the model checker CBMC;
and we present a case study demonstrating that it can be applied to real-
world elections.

Keywords: Risk-limiting audit · Margin computation · Software
bounded model checking · Static analysis

1 Introduction

One reliable method to create confidence in the outcome of an election among
the electorate is to audit the election result against the physical evidence, i.e., the
ballots. Different methods for auditing elections exist, some of them require the
computation of a margin, that is the minimal number of ballots to be changed,
misfiled, etc. to affect the election outcome. For those methods, the precise defi-
nition of the margin is often hidden inside the theory, as it depends on the elec-
tion function—or social choice function—and the particular auditing methodol-
ogy. This means, that (1) for many election functions, including Ranked Choice
Voting (RCV) and Single Transferable Vote (STV), or election functions that
combine different electoral systems, for example on state and federal level, it is
difficult if not impossible to give closed forms for how to compute a margin, and
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2016, LNCS 10141, pp. 18–35, 2017.
DOI: 10.1007/978-3-319-52240-1 2



Automatic Margin Computation for Risk-Limiting Audits 19

(2) even if one manages to find a closed form for how to compute the margin, the
implementations of election function and margin computation differ, for example
in the way ambiguities are resolved, when and how to which precision to round,
how tie-breaking rules are implemented, etc.

In this paper, we focus on auditing methods that require the margins to be
known before they can be applied. Examples of these methods are, e.g., risk-
limiting audits that draw a random sample of paper ballots [14] whose size is
computed from (a) a risk-limit, i.e., how confident we wish to be in the election
result, and (b) the margin. For a comparision audit, the margin of a risk-limiting
audit is defined as the minimal number of votes that would need to be misfiled in
order to change the election outcome. The margin is identical to the number of
votes that would have had to be miscounted or tampered with during tabulation.
If the election margin is large, only a small sample needs to be drawn and audited.
The smaller the margin, the larger the sample. In the worst case, the audit will
trigger a full manual recount.

We describe a way to compute the margins that does not presuppose the
existence of a closed form for the margin and works directly on the source code
(e.g., written in C/C++). Our technique can be applied to any election function,
but it will perform best on those that are conceptually simple, such as D’Hondt
and Sainte-Laguë. The technique can in principle also be applied to more com-
plex election functions, such as instant-runoff voting (IRV), but only for small
elections with a small number of seats and candidates. For bigger elections, such
as the national elections in Australia, our technique does not scale – yet.

Our technique takes advantage of the state-of-the-art in program analysis, in
particular software bounded model checking (SBMC). We compute the margin
directly from the implementation of the election function. The trick is to use
software bounded model checking for determining whether tampering with (at
most) n votes can lead to a change in the election result. If yes, we have found an
upper bound for the margin; and, if no, we have found a lower bound. The model
checker is then called iteratively with different values for n, using binary search
to determine the exact value of the margin. Our method is agnostic to the math-
ematics behind the election function, and the statistics behind the audit sample
size computations. It can be applied to arbitrary C/C++ implementations of
election functions without understanding the actual computation of the election
result or without even intuitively knowing how the election function works.

Contents of this Paper. In Sect. 2, we recapitulate the idea of risk-limiting
audits and describe how election margins influence the audit; and in Sect. 3, we
give an introduction to software bounded model checking. Then, in Sect. 4, we
introduce our method that, based on SBMC, allows to automatically compute
election margins for arbitrary election functions. In Sect. 5, we illustrate our
approach using an election function based on the D’Hondt method. An extension
that leads to increased efficiency is described in Sect. 6. In Sect. 7, we present
a case study where we apply our method to compute the election margin for
the main part of the 2015 Danish national parliamentary elections. Finally, in
Sect. 8, we draw conclusions and discuss future work.



20 B. Beckert et al.

Related Work. The contribution of our paper is a generic method that infers
election margins for any election function, for which an implementation is avail-
able. In contrast to our work, there has been a lot of research on how to compute
margins for specific election functions, for which that problem is particularly
hard. The most prominent example is Instant-Runoff Voting (IRV) where mar-
gin computation is NP-hard [2]. Methods for computing lower bounds on margins
for IRV have been developed by Cary [6] and Sarwate et al. [16]; and methods
for computing the exact margin have been presented by Magrino et al. [15] and,
recently, by Blom et al. [5].

To compute the margin of an election is an instance of the general problem
of inverting a function for which an implementation is given, i.e., to ask for an
input to the implementation that leads to a particular kind of output. The idea
of using model checkers for solving such problems has also been applied in the
field of test-case generation, where one is looking for input values leading to some
specific program behaviour [20]. For example, the software model checker CBMC
has been integrated into the extensive test-suite FShell [12]. Similar techniques
have been used for generating high-quality game content, such as well-designed
puzzles that are hard to solve [17].

In the context of elections, SBMC with SAT/SMT solvers can furthermore
be used for analysing, whether the given election function does indeed compute
the correct result with respect to some given formal criteria [3].

2 Risk-Limiting Audits and Election Margins

A risk-limiting audit is a statistical method to create confidence in the correct-
ness of an election result by checking samples of paper ballots. Lindeman and
Stark [14] distinguish ballot-polling audits, where they draw a carefully chosen
random sample of ballots to check whether the sample gives sufficiently strong
evidence for the correctness of the published election result. In contrast, a com-
parison audit checks the ballot interpretation for a random sample during the
audit against the ballot’s respective interpretation in a vote-tabulation system.

Both auditing techniques, ballot-polling and comparison audits, rely on the
availability of the ballot manifest which describes in detail how the ballots are
organised and stored, including how many stacks there are and how many ballots
can be found in each stack. This information is needed for drawing the sample.

In addition, one needs to know what the election margin is, i.e., the number
of votes that would need to be changed in order to change the election outcome.
This is also the number of votes that would have had to be miscounted or
tampered with in order to change the election outcome. If the election margin is
large, only a small ballot sample needs to be audited. If it is small, the required
sample size increases.

We assume that the election function we consider has the anonymity property,
i.e., identical ballots have the same effect on the election outcome. Then, for
a given election with TOTAL votes, during the counting process, the votes are
accumulated into stacks S1, . . . , Sk, where each stack holds pi identical votes



Automatic Margin Computation for Risk-Limiting Audits 21

(pi ≥ 0 is the size of Si) and TOTAL =
∑

i pi. This allows us to use 〈p1, . . . , pk〉
as input to the election function. In the following, we assume that each stack is
associated with a political party and that PARTIES is the number of the running
parties, i.e., k = PARTIES (there can also be stacks for special cases such as
invalid votes). We call 〈p1, . . . , pk〉 the vote table for the election.

The election margin is the smallest number of votes that need to be put
on stacks different from where they are in order to change the outcome of the
election.

Definition 1. The election margin for an election function E and a vote table
〈p1, . . . , pk〉 is the smallest number MARGIN such that there is a vote table
〈p′

1, . . . , p
′
k〉 with

E(〈p1, . . . , pk〉) �= E(〈p′
1, . . . , p

′
k〉)

and

1. MARGIN =
∑k

i=1 di where di = p′
i − pi if p′

i > pi and di = 0 otherwise.
2.

∑k
i=1 p′

i − pi = 0.

The first condition in the above definition ensures that the total number of
votes that are moved between stacks is of size MARGIN. Furthermore, the second
condition ensures that a vote is moved from one stack to the other and is not
created or removed.

Besides the (global) margin defined above, our approach allows as well to
compute other margins that are defined by different types of changes in the vote
table or by particular effects on the election result. For example, one may com-
pute the margin for increasing the number of mandates allocated to a particular
party.

It is important to note that our technique is a generic one, and is hence
also applicable to different kinds of margins and types of changes in the votes,
than the ones defined in Definition 1. Instead of distinguishing between different
types, in the following we focus on two-vote overstatements of the margin, as
these are suitable for a variety of election functions. An audited ballot is a
two-vote overstatement if it witnesses simultaneously two mistakes, namely that
it was counted wrongly towards someone who won, while it should have been
counted towards someone who lost. In contrast, a one-vote overstatement refers
to a ballot that was erroneously not counted towards the loser, but neither was
it counted towards the winner. For the purposes of this paper, both one-vote and
two-vote overstatements are counted as one change in the vote tabulation. Our
methods can be extended to distinguish between the two types of error, but as
we want our method for margin computation to be general and the distinction
between one-vote and two-vote overstatements does not exist for all election
functions (e.g., approval voting), we do not address it within this paper.

Next, we review the statistics underlying margin-based risk-limiting audits
following [18]. Risk-limiting audits are performed in stages. At every stage, the
theory requires that we audit at least n = ρ/μ ballots, which is also called the



22 B. Beckert et al.

sample size. The value ρ is called the sample-size multiplier and defined below.
Each ballot is randomly chosen among all the ballots, and the audit verifies that
they were each counted for the correct stack Si. The fraction μ refers to the
diluted margin, i.e., the percentage of votes that would have to be changed to
change the election outcome. It is computed as μ = MARGIN/TOTAL, where MARGIN is
the election margin (Definition 1), and TOTAL is the total number of ballots cast.

Before the audit can start, a set of auditing parameters needs to be deter-
mined, which allows us to calculate the size of the sample to be drawn. The
auditing parameters include

– the risk-limit α, which determines the largest chance that an incorrect outcome
will not be corrected by the audit (if we want to be 99% sure that the election
outcome is correct, then we choose α = 0.01);

– the error inflation factor γ, which controls the trade-off between initial sample
size and the additional counting required if the audit finds too many errors;

– and lastly the tolerance factor λ, which describes the tolerance towards errors;
it is the number of detected errors that is tolerated, expressed as a fraction
of the election margin (i.e., λ = 0.1 means that 5 errors are tolerated when
MARGIN = 50).

Finally, we have everything in place needed to define the sample-size multiplier ρ,
which only needs to be computed once for each audit, as follows:

ρ =
− log α

1
2γ + λ log(1 − 1

2γ )
.

In summary, the auditing process as described by Stark [18] adheres to the
following steps:

First, the auditor commits values for α, γ, and λ and computes the value ρ as
shown above. Then, the diluted margin μ is computed, which explicitly depends
on the election margin MARGIN. Next, the real audit commences by drawing the
sample of size n = ρ/μ at random. If the audit encounters too many errors (more
than λ ∗ MARGIN), a new stage is triggered, with a sample size that is increased
by the factor γ; otherwise the audit is successfully concluded. In the worst case,
the technique proceeds to a full hand-count when the sample size exceeds TOTAL.
For a more detailed description on by how to compute by how much the sample
must grow from stage to stage, consult [18].

In all of this, the true challenge is to compute the correct election margin.
Different election functions require different margin computations, and for many
an algorithm to compute the margin is unknown. This is the challenge that we
are going to solve with this paper.

3 Software Bounded Model Checking

The technique of software bounded model checking (SBMC) statically analyses
programs. The method is static in the sense that programs are analysed without



Automatic Margin Computation for Risk-Limiting Audits 23

executing them on concrete values. Instead, programs are symbolically executed
and exhaustively checked for errors up to a certain bound, restricting the number
of loop iterations.

Even though this check is bounded, SBMC also checks whether the chosen
bound is sufficiently large to cover all possible program executions. Therefore,
if firstly the analysed program is shown to be correct up to the specified bound
and, secondly, SBMC verifies that this bound is sufficiently large, we obtain a
full proof which says there does not exist any counterexample—neither for the
specified nor any other bound. In case there exists no counterexample within
the bound, but there may exist one for a larger bound, SBMC outputs that a
larger bound is needed. Theoretically, we can always choose a sufficiently high
bound to be sure we compute the correct margin. As, however, the analysis for
very large bounds may require a considerable amount of computation time and
memory resources, the feasibility of SBMC generally relies on the small-scope
hypothesis [13], which argues that a high proportion of bugs can be found for
inputs within some small scope [1]. For our purposes, moreover, the search for
a sufficiently large bound is usually very simple, because we apply the method
for concrete elections. Here, the numbers of parties, mandates, etc., affecting the
number of required loop iterations, are known at the time when we compute the
election margin.

SBMC is a fully automatic technique and provides full verification covering
all possible inputs (within the scope of the given bound), including a verification
that the specified bound is sufficiently large. An SBMC tool unrolls the control-
flow graph of the program observing the bound for loop iterations and then
checks whether an assertion can be violated (leading to a counterexample) [4].
Other than generating a counterexample or proving the assertion, an SBMC tool
may also run into a timeout, or indicate that the specified bounds may need to
be increased for the assertion to be proven. Hence, one can simply increase the
specified bound until the assertion is fully proven. Additionally, SBMC analyses
the program beforehand, and—if no bound is specified by the user—infers a
sufficiently large bound if the program is simple enough, as it is the case for the
experiments within this paper. The graph resulting from symbolic execution is
transformed into a formula in a decidable logic (in our case propositional) that
is satisfiable if and only if a counterexample exists, reducing the verification
problem to a decidable satisfiability problem. Then, modern SAT/SMT-solving
technology is used to check whether such a counterexample exists. Furthermore,
SBMC tools support features of common complex programming languages such
as complex memory models or standard data types in order to check a wider
range of correctness properties, e.g., correct memory allocation.

In contrast to more heavy-weight verification techniques, SBMC does not
aim to establish universal correctness guarantees or full reliability for all possi-
ble input parameters. It is usually being used to find general low-level bugs in
programs, such as memory access errors or other sources of non-deterministic
behaviour. Nevertheless, SBMC can also be used to check more complex func-
tional properties – as we do for the purposes of this paper. SBMC considers only



24 B. Beckert et al.

a finite state space by cutting off program execution paths at a certain length.
Thus, it is comparable to systematic exhaustive testing up to a certain boundary
of input size. However, SBMC provides means of symbolic representation for a
state space and thus generally outperforms exhaustive testing by far.

Within this work, we use the model checker CBMC [7], which takes C/C++
or Java programs as input. The programs are annotated with specifications in the
form of assumptions and assertions. Since universal and existential quantifiers
are not supported by CBMC using the SAT back end, quantified expressions
need to be expressed as assumptions/assertions within a loop. CBMC internally
models all data structures as bit vectors. The symbolically executed programs
are translated into equations over bit vectors, which are then processed by a
powerful SAT solver modulo theories.

For our experiments, we use CBMC 5.3 with the built-in solver based
on the SAT solver MiniSat 2.2.0 [9]. All experiments are performed on an
Intel(R) Core(TM) i5-3360M CPU at 2.80 GHz with 4 cores and 16 GB of RAM.

4 Automated Margin Computation Using SBMC

We assume that an election function is given as an imperative program (a
C function called election function in our case) as well as a concrete input
(denoted as vote table) for that election function. The vote table is the result
of vote counting and tabulation. We model vote table as an integer array of size
PARTIES, where PARTIES is the number of different stacks into which identical
votes are accumulated during counting.

The idea of our approach is to use an SBMC tool to check an assertion claim-
ing that, when vote table is changed by putting at most a certain number m
of votes on other stacks than they were on, the outcome of the election is not
changed. If that assertion is provable, we know that the actual election margin is
greater than m. If the assertion is not provable, we know that the actual election
margin is less than or equal to m. In the latter case, the SBMC tool generates
a counterexample to the assertion demonstrating that the election outcome can
be changed by changing m votes. Having this proof obligation as a basis, we can
use binary search to find a value for m such that the assertion holds for m − 1
but fails for m, i.e., m is exactly the election margin.

The check for a particular prospective margin m can be executed by running
the SBMC tool CBMC on the program shown in Listing 1, where the variables
written in capital letters are given as concrete input values, and the method
nondet int() is a CBMC feature in order to denote non-deterministic, i.e.,
potentially different for each function call, and symbolic, i.e., unknown, integer
values.

The changes in the sizes of the vote stacks are non-deterministically chosen
(Line 4) in such a way that the total difference is zero (assumption in Line
15), i.e., votes can be moved from one stack to the other but not removed or
created, and such that the number of votes in each stack cannot become negative
(Line 6). Other types of margins for other kinds of changes to the vote table can
be computed using different assumptions on the chosen values for diff.



Automatic Margin Computation for Risk-Limiting Audits 25

1 void verify() {

2 int new_votes[PARTIES], diff[PARTIES], total_diff, pos_diff;

3 for (int i = 0; i < PARTIES; i++) {

4 diff[i] = nondet_int();

5 __CPROVER_assume (-1 * MARGIN ≤ diff[i] ≤ MARGIN);

6 __CPROVER_assume (0 ≤ ORIG_VOTES[i] + diff[i]);

7 }

8

9 for (int i = 0, total_diff = 0, pos_diff = 0; i < PARTIES; i++) {

10 new_votes[i] = ORIG_VOTES[i] + diff[i];

11 if (0 < diff[i]) pos_diff += diff[i];

12 total_diff += diff[i];

13 }

14 __CPROVER_assume (pos_diff ≤ MARGIN);

15 __CPROVER_assume (total_diff == 0);

16

17 int *result = election_function(new_votes);

18 assert (equals(result, ORIG_RESULT));

19 }

Listing 1. Implementation of the margin computation for CBMC.

The changes are added to the original vote table for computing the new table
(Line 10). And the election result for the new vote table is computed by calling
the method election function (Line 17).

Finally, the program contains the assertion to be checked by CBMC (Line 18),
expressing that the new election result is equal to the original one. Intuitively,
we have encoded any difference between the original election outcome and the
new one as a bug to be found by the model checker. This also means that our
approach gives us a concrete redistribution of votes for the computed margin,
as CBMC encodes detected bugs as concrete paths through the program, which
lead to the assertion violation, i.e., the changed outcome.

The algorithm performing a binary search for the exact election margin is
shown in Table 1 (for our experiments we use a shell script implementation of
this algorithm). The algorithm takes as input the implementation of an election
function and a concrete vote table. Its output is the exact election margin.

The algorithm first calls election function to obtain the original election
result (Line 3). The left and right bounds of the binary search are initialised to
zero resp. the total number of votes (Lines 5 to 6). Then, a while loop (Lines
9 to 17) performs the binary search and calls CBMC on the program from
Listing 1 with different values for MARGIN, i.e., different candidate margins, until
the solution is found. If the result of CBMC indicates that MARGIN is too low, the
left bound is increased (Line 13), and if CBMC indicates that MARGIN is either
the correct margin or is too high, then the right bound is decreased (Line 15). To
be more precise, if the result of calling CBMC reads SUCCESS, we know that the
assertion in the program in Listing 1 holds, i.e., the election outcome cannot be



26 B. Beckert et al.

Table 1. Binary search for election margin using SBMC.

affected and the speculative margin MARGIN is too low; otherwise MARGIN either
is the correct election margin or it is too high.

Note that neither the algorithm in Table 1 nor the program in Listing 1 make
any further assumptions regarding the election function. Our method can be
applied to arbitrary implementations of election function without making
any changes, only influencing the computation time needed by the satisfiability
solver used as a back end, e.g., for more complex mathematical operations. The
approach can also be adapted to more complex ballot structures. And, as said
above, margins for different notions of vote changes can be computed by using
different assumptions on the array diff in Listing 1, and margins for different
notions of changes in the election outcome can be computed by using different
versions of the function equal called in Line 18 from Listing 1.



Automatic Margin Computation for Risk-Limiting Audits 27

5 Margin Computation for the D’Hondt Method

Margin computation also plays a central role for risk-limiting audits regarding
the results after performing seat allocation methods such as the D’Hondt or
Saint-Laguë method [19]. In this section, we exemplarily apply our technique to
the D’Hondt method, which allocates mandates to a number of parties based on
the votes cast for these parties. Before the D’Hondt election function is applied,
vote counting and tabulation sorts the votes into stacks where each stack contains
votes for a single party. The input for the election function then is the number
of votes for each party (i.e., the number of votes in the corresponding stack).

The D’Hondt method proportionally allocates mandates to parties in such
a way that the number of votes represented by mandates is maximised, i.e.,
the votes-per-seats ratio—intuitively the price in number of votes to be paid by
a party to get one seat—is made as high as possible while still allocating all
seats in parliament. By this means, D’Hondt achieves an—as far as possible—
proportional representation in parliament [11].

D’Hondt can be implemented as a highest averages method: the number of
votes for each party is divided successively by a series of divisors, which produces
a table of quotients (or averages). In that table, there is a row for each divisor and
a column for each party. For the D’Hondt method, these divisors are the natural
numbers 1, 2, . . . , MANDATES, where MANDATES is the total number of mandates
to be distributed. Then, the highest numbers in the quotient table—resp. the
parties in whose columns these numbers are—are each allocated one seat. The
“final” seat goes to the MANDATES’th highest number. Hence, the threshold level
of the votes-per-seats-ratio lies in the interval between the MANDATES’th highest
number and the (MANDATES + 1)’st highest number of all computed averages in
the quotient table.

An efficient C implementation of D’Hondt is shown in Listing 2. There, the
constants PARTIES and MANDATES encode the numbers of parties and the num-
ber of mandates to be allocated, respectively. The input is given in the array
vote table, which holds the numbers of votes cast for each individual party.
This implementation avoids constructing the complete quotient table. Instead,
it stops as soon as the MANDATES’th highest quotient has been found. For this
purpose, the divisors currently under consideration for finding the next highest
value are stored in the array divisor for each party. Note that in case of a tie,
the order in vote table is the tie-breaker, i.e., the first party in vote table
which is tied with the current maximum divisor takes the seat.

After initialising the arrays mandates and divisor (Lines 5 and 6), we exe-
cute the outer loop (Lines 9 to 15) MANDATES times. Each time, it uses the inner
loop (Lines 10 to 12) to find the maximum

elected = max
i=1,...PARTIES

vote table[i]
divisor[i]

and then assigns one seat to the elected’th party (Line 13), and increases
the divisor for that party (Line 14). To find the maximum, the comparison



28 B. Beckert et al.

1 int *election_function(int vote_table[PARTIES]) {

2 int *mandates = malloc(PARTIES * sizeof(int));

3 int divisor[PARTIES];

4

5 for (int i = 0; i < PARTIES; i++) mandates[i] = 0;

6 for (int i = 0; i < PARTIES; i++) divisor[i] = 1;

7

8 int elected = 0;

9 for (int j = 0, j < MANDATES; j++) {

10 for (int i = 0; i < PARTIES; i++)

11 if (divisor[i] * vote_table[elected]

12 < divisor[elected] * vote_table[i]) elected = i;

13 mandates[elected]++;

14 divisor[elected]++;

15 }

16 return mandates;

17 }

Listing 2. Implementation of the D’Hondt method as a C program.

vote table[elected]/divisor[elected] < vote table[i]/divisor[i] is replaced by divisor[i] ∗
vote table[elected] < divisor[elected] ∗ vote table[i], which is equivalent
as the divisors are positive numbers. The advantage of using the latter form
for the comparison is to avoid dealing with fractional numbers and rounding
effects in C. This is a sensible choice for any implementation of D’Hondt as,
depending on the programming language and hardware, rounding may both
show unexpected behaviour and potentially lead to faulty election results.

In order to test our margin computation for D’Hondt, we used the preliminary
official results of the Schleswig-Holstein state elections in 20051. In that election,
1, 367, 095 votes were cast and 69 mandates were to be allocated. Out of the
13 parties running, four parties received the necessary quota of 5% to be eligible
for the mandate allocation. The fifth party to receive seats, the South Schleswig
Voter Federation, represents the Danish minority and is exempted from the quota
rule for reasons of minority protection. The mandates (seats in parliament) were
allocated using the D’Hondt method. The parties, their votes, and the allocated
mandates are shown in Table 2.

We applied our approach to the vote numbers (i.e., the vote table) of the
Schleswig-Holstein election for various values of MANDATES. In doing so, we were
able to compute the margin of the election with the runtime increasing for higher
values of MANDATES as shown in Fig. 1a and b. The runtime for the final check
is shown in Fig. 1a. This check requires showing that the election result can
be changed by changing m votes (counterexample generation) but cannot be
changed by changing m − 1 votes (margin verification), implying that m is the

1 The results of that election are also used as an example in the German Wikipedia
article on the D’Hondt method (http://de.wikipedia.org/wiki/D’Hondt-Verfahren).

http://de.wikipedia.org/wiki/D'Hondt-Verfahren


Automatic Margin Computation for Risk-Limiting Audits 29

Table 2. Preliminary official results for the 2005 Schleswig-Holstein elections.

Party Votes % Mandates %

Christian Democratic Union (CDU) 576 100 42.1 30 43.4

Social Democratic Party (SPD) 554 844 40.6 29 42.0

Free Democratic Party (FDP) 94 920 6.9 4 5.8

Alliance ’90/The Greens 89 330 6.5 4 5.8

South Schleswig Voter Federation (SSW) 51 901 3.7 2 2.9

Totals 1 367 095 69

true margin. Figure 1a shows the accumulated time for the complete binary
search that computes m. For values of MANDATES between 2 and 45, the computed
margins range from only 433 (for MANDATES = 23) to 177, 863 (for MANDATES = 2).
Note that, with only two mandates, the CDU and the SPD each get a seat; the
margin of 177, 863 then is the number of votes that have to be moved from the
SPD to the CDU so that the CDU gets both mandates instead of only one, which
is smaller than the number of votes that would have to be moved from the SPD
to the FDP so that the FDP gets a seat instead of the SPD.

The runtimes shown in the figure do not form a smooth curve because they
depend on the margin that is computed, which is, e.g., smaller for 40 mandates
than for 35. But the numbers increase with the value of MANDATES. And as
can be seen from the figure, they get prohibitively large for more than about
45 mandates.

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

Mandates

R
un

-t
im

e
[s

]

Margin Verification
Counterexample Generation

(a) Time for last step in computation.

5 10 15 20 25 30 35 40 45
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Mandates

R
un

-t
im

e
[s

]

(b) Accumulated time for whole computation.

Fig. 1. Runtimes of automatic margin computation for the D’Hondt method with
various values for MANDATES.

Thus, our approach can be applied to real implementations of real election
functions, but only if the number of loop iterations does not go beyond a few



30 B. Beckert et al.

1 int *election_function(int votes[PARTIES]) {

2 int *mandates = malloc(PARTIES*sizeof(int));

3 for (int i = 0; i < PARTIES; i++) mandates[i] = 0;

4

5 int quotaNumerator = nondet_int();

6 int quotaDenominator = nondet_int();

7

8 __CPROVER_assume (0 < quotaNumerator ≤ INT_MAX);

9 __CPROVER_assume (0 < quotaDenominator ≤ MANDATES);

10 __CPROVER_assume (quotaDenominator < quotaNumerator);

11

12 for (int i = 0; i < PARTIES; i++) {

13 __CPROVER_assume (0 ≤ quotaDenominator * votes[i] ≤ INT_MAX);

14 mandates[i] = ((quotaDenominator * votes[i]) / quotaNumerator);

15 __CPROVER_assume (0 ≤ mandates[i] ≤ MANDATES);

16 }

17

18 int total_mand = 0;

19 for (int i = 0, total_mand = 0; i < PARTIES; i++)

20 total_mand += mandates[i];

21 __CPROVER_assume (total_mand == MANDATES);

22

23 return mandates;

24 }

Listing 3. Implementation of the Jefferson method as a symbolic C program.

hundred (about 5 parties times 45 mandates in this case). For elections with a
larger number of parties and mandates or election functions with more complex
loop nestings, improvements are required. One such improvement is discussed in
the following section.

6 Using SBMC to Find Parameters in Election Function

The election function defined by the D’Hondt method can also, equivalently, be
described without a quotient table. Instead, a quota is chosen, i.e., a number
of votes needed to “buy” one mandate, such that the resulting mandates per
party, when rounded down to the next natural number, sum up to the required
total number of mandates. This is known as Jefferson’s method and is similar
to largest-remainder methods such as the Hare-Niemeyer method. The quota
corresponds to the lowest quotient in the D’Hondt table for which a mandate is
allocated.

If the implementation of an election function is based on choosing or search-
ing for some parameter (here the quota), then the margin computation can be
made much more efficient by replacing the search for the parameter by a non-
deterministic choice to be resolved by the SBMC tool.



Automatic Margin Computation for Risk-Limiting Audits 31

An implementation of the Jefferson method in C is shown in Listing 3. It
uses a non-deterministic choice of quota = quotaNumerator/quotaDenominator (Lines 5
to 6). Assumptions are made to limit the range of the quota (Lines 8 to 10 and
Line 13). The number of mandates for each party is computed (Line 14), as
well as the total number of mandates (Lines 18 to 20). Then, the assumption is
checked that the total number of mandates for the chosen quota is the correct
one (Line 21). This final check is an assumption and not an assertion, i.e., we
want to consider only the case(s) where the total number of mandates is correct;
other cases are irrelevant. An assertion, on the other hand, would have to be
true for all cases where the (other) assumptions are fulfilled. Note that this
implementation does not deal with tie-breaking, as in this case no such quota
can be found, and no program execution path can satisfy the assumption in Line
21. However, tie-breaking mechanisms can easily be integrated in the program.

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.5

1

1.5

2

2.5

3

3.5

4

Mandates

R
un

-t
im

e
[s

]

Margin Verification
Counterexample Generation

(a) Time for last step in computation.

5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

30

Mandates

R
un

-t
im

e
[s

]

(b) Accumulated time for whole computa-
tion.

Fig. 2. Runtimes of automatic margin computation for the Jefferson method with
various values for MANDATES.

The runtimes of the automatic margin computation for the 2005 Schleswig-
Holstein state elections with various values for MANDATES, i.e., the total number
mandates to be allocated, are shown in Fig. 2a and b. Note that these runtimes
are much lower than those for the D’Hondt method in Fig. 1a and b. Now, all
computations stay well below the time-out of 9, 000 s (i.e., 2.5 h), even below
30 s. And the computation of the election margin for the original number of
mandates in the election, which is 69, is now easily possible; that margin is 634.
The computed margins range from only 42 (for MANDATES = 62) to 177, 863 (for
MANDATES = 2). Performing our method for various values for MANDATES scales
well on the Jefferson method, as we got rid of the loop depending on the value of
MANDATES. However, further experiments also indicated a non-exponential depen-
dency on the value for PARTIES. For example, an allocation of 69 mandates to
10 parties takes about 55 s, whereas for 20 parties, the analysis runs in ca. 300 s.



32 B. Beckert et al.

Naturally, the implementation in Listing 3 cannot be compiled and executed
to produce a binary file using standard C compilers, because it contains con-
structs only understood by the model checker CBMC. However, it can neverthe-
less be compiled and executed using CBMC, which also allows for performing
tests and similar measures in order to generate confidence in the implementa-
tion. Furthermore, when any C implementation of the Jefferson method is given,
it is easy to construct a CBMC version in a uniform way by replacing the search
for quota by a non-deterministic choice. The same principle for making margin
computations more efficient can uniformly be applied to any election function
where parameters such as quotas are chosen or computed within the election
function.

Table 3. Official results for the 2015 national Danish elections [8].

Party Votes % Mandates %

Socialdemokratiet 924 940 26.3 43 31.9

Radikale Venstre 161 009 4.6 2 1.5

Det Konservative Folkeparti 118 003 3.4 0 0.0

SF – Socialistisk Folkeparti 147 578 4.2 2 1.5

Liberal Alliance 265 129 7.5 9 6.7

Kristendemokraterne 29 077 0.8 0 0.0

Dansk Folkeparti 741 746 21.1 33 24.4

Venstre, Danmarks Liberale Parti 685 188 19.5 33 24.4

Enhedslisten – De Rød-Grønne 274 463 7.8 10 7.4

Alternativet 168 788 4.8 3 2.2

Totalsa 3 515 921 135
aExcluding non-party votes.

7 Computing the Margin for National Danish Elections

In this section, we demonstrate the applicability of our approach to a further,
more complex real-world election, namely the Danish parliamentary elections
in 2015. The Danish elections use a two-tier system, further classified as an
adjustment-seat system, where the main part of the seats (135 mandates) is
allocated using the D’Hondt method for each of the lower-tier electoral districts
(so-called constituencies) separately [10]. The remaining seats (40 mandates)
are used for adjusting the proportionality with respect to the three higher-tier
districts using the Saint-Laguë method (which is also a highest averages method,
bounded by the Hare quota).

The aggregated results for the 2015 election are shown in Table 3. For the
sake of readability, the table only contains the total numbers of votes, not the
numbers for each constituency. In the following, we perform our analysis on the



Automatic Margin Computation for Risk-Limiting Audits 33

first tier, i.e., the distribution of the 135 mandates which are allocated separately
within each constituency.

Using the Jefferson-version of D’Hondt, we compute a margin of 10 votes
within 7, 815 s, i.e., around 2 h and 10 min. The final verification (proving that
a change in 9 votes cannot change the election outcome) takes 53 s and a coun-
terexample for 10 votes (i.e., an example ballot box that does change the election
outcome) can be found within 27 s. The generated counterexample shows that
shifting – only – 10 votes from SF – Socialistisk Folkeparti to Venstre, Danmarks
Liberale Parti in the constituency of Sjællands Storkreds results in a different
election outcome where one mandate goes the same way as the 10 votes. That
is, SF loses its single seat, and Venstre then has five seats. The vote table and
election results for the constituency of Sjællands Storkreds are shown in Table 4.

Table 4. Results for the Danish constituency Sjællands Storkreds [8].

Party Votes % Mandates %

Socialdemokratiet 146 464 27.9 7 35.0

Radikale Venstre 16 906 3.2 0 0.0

Det Konservative Folkeparti 15 083 2.9 0 0.0

SF - Socialistisk Folkeparti 20 575 3.9 1 5.0

Liberal Alliance 32 598 6.2 1 5.0

Kristendemokraterne 1 996 0.4 0 0.0

Dansk Folkeparti 134 195 25.6 6 30.0

Venstre, Danmarks Liberale Parti 102 818 19.6 4 20.0

Enhedslisten - De Rød-Grønne 35 374 6.7 1 5.0

Alternativet 18 202 3.5 0 0.0

Totalsa 524 211 20
aExcluding non-party votes.

With the table-based D’Hondt method as a basis (Listing 2), the margin com-
putation takes 16,860 s (around 4 h and 40 min). The final verification takes 659 s
and a counterexample can be found within 652 s. Using the table-based D’Hondt
implementation, for which margin computation is less efficient, is possible in this
case because the number of mandates for each constituency is sufficiently low
(around 20).

8 Conclusion and Future Work

In this paper, we have presented a method that computes election margins fully
automatically. It can be applied to arbitrary implementations of election func-
tions without understanding or even knowing how the election result is com-
puted. Our approach can be applied to real implementations of real election



34 B. Beckert et al.

functions if the number of loop iterations in the election function does not go
beyond a few hundred. With the improvement from Sect. 6 for guessing para-
meters needed in the computation, the method scales up to larger and more
complex elections.

Future work includes the computation of different types of election margins
and an integration with software for supporting real-world risk-limiting audits.
Further, we plan to apply our method to election functions for which margin
computation is notoriously hard (such as instant-runoff voting). First experi-
ments indicate that such functions are hard for our method as well. But it will
be possible to adapt our method to computing lower bounds for margins in IRV
elections using techniques described in the literature [6,16].

Acknowledgements. This work has been partly supported by COST Action IC1205
on Computational Social Choice. This publication was made possible in part by the
DemTech grant 10-092309 from the Danish Council for Strategic Research, Program
Commission on Strategic Growth Technologies and in part by NPRP Grant #7-988-
1-178 from the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

References

1. Andoni, A., Daniliuc, D., Khurshid, S.: Evaluating the “small scope hypothesis”.
Technical report, MIT Laboratory for Computer Science, Cambridge, MA (2003)

2. Bartholdi, J.J., Orlin, J.: Single transferable vote resists strategic voting. Soc.
Choice Welf. 8, 341–354 (1991)

3. Beckert, B., Goré, R., Schürmann, C., Bormer, T., Wang, J.: Verifying voting
schemes. J. Inf. Secur. Appl. 19(2), 115–129 (2014)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

5. Blom, M.L., Stuckey, P.J., Teague, V., Tidhar, R.: Efficient computation of exact
IRV margins. Computing Research Repository (CoRR) abs/1508.04885 (2015)

6. Cary, D.: Estimating the margin of victory for instant-runoff voting. In: Confer-
ence on Electronic Voting Technology/Workshop on Trustworthy Elections (EVT/-
WOTE). USENIX Association (2011)

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

8. Statistik, D.: Befolkning og valg (2015). http://www.dst.dk/valg/Valg1487635/
other/2015-Folketingsvalg.pdf. Accessed 23 August 2016

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: International Conference on
Theory and Applications of Satisfiability Testing (SAT), Selected Revised Papers,
pp. 502–518 (2003)

10. Elklit, J., Pade, A.B., Nyholm Miller, N.: The parliamentary electoral system
in Denmark (2011). http://www.ft.dk/Dokumenter/Publikationer/Engelsk/The
Parliamentary Electorial System Denmark.aspx. Accessed 23 August 2016

11. Gallagher, M.: Proportionality, disproportionality and electoral systems. Elect.
Stud. 10(1), 33–51 (1991)

http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://www.dst.dk/valg/Valg1487635/other/2015-Folketingsvalg.pdf
http://www.dst.dk/valg/Valg1487635/other/2015-Folketingsvalg.pdf
http://www.ft.dk/Dokumenter/Publikationer/Engelsk/The_Parliamentary_Electorial_System_Denmark.aspx
http://www.ft.dk/Dokumenter/Publikationer/Engelsk/The_Parliamentary_Electorial_System_Denmark.aspx


Automatic Margin Computation for Risk-Limiting Audits 35

12. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-70545-1 20

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

14. Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE
Secur. Priv. 10(5), 42–49 (2012)

15. Magrino, T.R., Rivest, R.L., Shen, E., Wagner, D.: Computing the margin of vic-
tory in IRV elections. In: Conference on Electronic Voting Technology/Workshop
on Trustworthy Elections (EVT/WOTE). USENIX Association (2011)

16. Sarwate, A., Checkoway, S., Shacham, H.: Risk-limiting audits and the margin of
victory in nonplurality elections. Stat. Polit. Policy 4(1), 29–64 (2013)

17. Smith, A.M., Butler, E., Popovic, Z.: Quantifying over play: constraining undesir-
able solutions in puzzle design. In: International Conference on the Foundations of
Digital Games (FDG), pp. 221–228 (2013)

18. Stark, P.B.: Super-simple simultaneous single-ballot risk-limiting audits. In: Con-
ference on Electronic Voting Technology/Workshop on Trustworthy Elections
(EVT/WOTE), pp. 1–16 (2010)

19. Stark, P.B., Teague, V.: Verifiable european elections: risk-limiting audits for
D’Hondt and its relatives. USENIX J. Elect. Technol. Syst. (JETS) 1, 18–39 (2014)

20. Vorobyov, K., Krishnan, P.: Combining static analysis and constraint solving for
automatic test case generation. In: Fifth IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 915–920 (2012)

http://dx.doi.org/10.1007/978-3-540-70545-1_20
http://dx.doi.org/10.1007/978-3-540-70545-1_20

	Automatic Margin Computation for Risk-Limiting Audits
	1 Introduction
	2 Risk-Limiting Audits and Election Margins
	3 Software Bounded Model Checking
	4 Automated Margin Computation Using SBMC
	5 Margin Computation for the D'Hondt Method
	6 Using SBMC to Find Parameters in Election Function
	7 Computing the Margin for National Danish Elections
	8 Conclusion and Future Work
	References


