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Abstract. We present a game-theoretic approach to coercion-resistance
from the point of view of an honest election authority that chooses
between various protection methods with different levels of resistance
and different implementation costs. We give a simple game model of the
election and propose a preliminary analysis. It turns out that, in the
games that we look at, Stackelberg equilibrium for the society does not
coincide with maxmin, and it is always more attractive to the society
than Nash equilibrium. This suggests that the society is better off if the
security policy is publicly announced, and the authorities commit to it.

1 Introduction

It was recognised early on in the history of voting that ballot privacy is an
essential property of voting systems to counter threats of coercion or vote buying.
More recently, cryptographers and security experts have been looking at using
cryptographic mechanisms to provide voter-verifiability, i.e. the ability of voters
to confirm that their votes are correctly registered and counted. This strengthens
to integrity properties, but, if it is not done carefully, new threats to ballot
secrecy can be introduced. The observation lead to the introduction of more
sophisticated privacy-style notions: receipt-freeness and coercion-resistance. The
latter is the strongest property and can be defined informally as: a voting system
provides coercion-resistance if the voter always has a strategy to vote as they
intend while appearing to comply with all the coercer’s requirements. The coercer
is assumed to be able to interact with the voter throughout the voting process:
before, during and after.

Achieving coercion-resistance is extremely challenging, especially in the con-
text of internet and remote voting (e.g. postal). A number of schemes have been
proposed that provide it, but typically this comes at a cost, in particular in
terms of usability. In this paper, we take a game theoretic approach to analyse
the trade-offs between the costs of implementing coercion-resistance mechanisms
on the one hand, and on the other hand the cost the to society regarding the
threats to the legitimacy of the outcome due to coercion attacks.

c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2016, LNCS 10141, pp. 1–17, 2017.
DOI: 10.1007/978-3-319-52240-1 1



2 W. Jamroga and M. Tabatabaei

Unlike most existing papers, we neither propose a new coercion-resistant
voting scheme nor prove that a scheme is secure in that respect. Instead, we
focus on the context of coercion attempts in e-voting, namely costs and benefits
of involved parties. The main question is: Should the society invest in protection
against coercion attempts, and if so, in what way?. We do not aim at devising a
secure voting procedure, but rather at exposing conditions under which security
of a procedure is relevant at all.

Our game models rely on several simplifying assumptions. We do not repre-
sent ballot privacy explicitly, and we do not investigate its relation to coercion.
Furthermore, we do not differentiate on different coercion scenarios. Instead, we
model the level of coercion attempts and coercion-resistance as simple scalars.
The former refers to how many voters the coercer(s) attempt to coerce, i.e.,
indicates the scale of coercion in the election. The latter indicates how much
effort/cost is needed to break the protection measures. Although an actual vot-
ing system might consist of a set of authorities with possibly different interests,
we assume a single agent that we call the “election authority” whose interests are
in line with what we consider “the common good of the society”. This agent’s
interests might or might not represent the preferences of the actual authori-
ties of the election. But by modelling it this way we can study the question of
what strategy should the authorities collectively choose, if they want to benefit
the society as a whole. Finally, we assume that all the potential coercers fully
cooperate so that they can be represented by a single “coercer” player. Thus, the
scenario can be modelled as a two-player game with largely conflicting incentives.

Related Work on Preventing Coercion in Elections. The related work can
be roughly divided into three strands: definitions of coercion-resistance and its
relation to privacy, proposals of coercion-resistant voting procedures, and studies
of the context of coercion-resistance. The notion of coercion-resistance was first
introduced in [10]. In [5], a formalization of coercion-resistance was proposed,
and its relation to receipt-freeness and privacy was studied. [7] gave a formal
definition of coercion-resistance for the end-to-end voting schemes. In [14], a
game-based cryptographic definition of coercion-resistance was proposed.1 The
same authors added a game-based cryptographic definition of privacy in [15],
and showed that the relationship between privacy and coercion-resistance can
be more subtle than it is normally assumed. [6] provided formal definitions of
various privacy notions in applied pi calculus, and showed how they are related to
each other. Finally, [9] used CSP to fit a wide range of definitions and properties
given in the literature for coercion-resistance.

The second strand overlaps with the first: [7,10] all propose voting protocols
that satisfy their definitions of coercion-resistance while [14] proves coercion-
resistance of two previously existing protocols. Another coercion-resistant vot-
ing scheme was introduced in [2]. Several other papers proposed voting schemes

1 The definition was game-based in the technical sense, i.e., the security property
was defined as the outcome of an abstract game between the “verifier” and the
“adversary”. In this paper, we use game models to study the interaction between
the actual participants of the protocol.
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which provably satisfy privacy as an intuitive argument for coercion-resistance,
cf. e.g. [23]. Several works such as [1,2,13,16,17,20,24,27] have developed
weaker, more practical or more efficient ways to realize coercion-resistance.

Putting coercion-resistance in a broader economic or social context has been,
to our best knowledge, largely left untouched. The only paper in this strand
that we are aware of is [4]. The authors compare two voting systems using game
models, more precisely zero-sum two-player games based on attack trees. Two
actions are available for the attacker (performing the attack or not); the authority
is presumably choosing one of the two voting systems. The utility of the attacker
is the expected probability of successful coercion minus the expected probability
of being caught. The value is computed for the two systems using empirical data.
In contrast, we consider a more general game where coercion – and resistance
measures – come at a cost (instead of simply assuming probability distributions
for the possible events), and we look for the rational choices of the players using
game-theoretic solution concepts. We also argue that the coercion game is not
zero-sum, with important consequences for the best policy to be chosen.

Game-Based Analysis of Similar Application Domains. Our analy-
sis is based on two game-theoretic solution concepts: Nash equilibrium and
Stackelberg equilibrium. Nash equilibrium corresponds to the behaviour of play-
ers that should emerge “organically” when they adapt to the behaviour observed
from the other players over a period of time. It is often used to analyse how the
policies of multiple interacting users are likely to converge in the long run. The
typical application is to so called energy games where dynamic pricing schemes
are proposed and studied in order to balance the supply and demand of electrical
energy in a small-scale distributed market, cf. e.g. [19,22,25,30].

Stackelberg equilibrium corresponds to a scenario where a designated
“leader” commits openly to a selected strategy and thus forces the response from
the other players. Stackelberg games have become very popular in design and
analysis anti-terrorist policies [11,12,26,28]. Our study comes close to that line
of research, but differs in two important ways. First, anti-terrorist games focus
on protection of multiple tangible resources (planes, airport buildings, etc.),
while our coercion games address protection of “the good of the society” as a
whole. Secondly, because of the inherent differences between the two application
domains, we only use Stackelberg equilibria in pure (deterministic) strategies,
whereas the main solutions in the research on strategic prevention of terrorism
are based on mixed (randomised) Stackelberg strategies.

Finally, we mention [29] that applies Stackelberg games to prevent manipula-
tion of elections, but its focus is on the computational complexity of preventing
Denial of Service type attacks.

2 Game-Theoretic Preliminaries

In this paper, we propose a preliminary game-theoretic analysis of coercion pre-
vention in an election. The main idea is to model the election as a simple strategic
game between the society and coercer(s). We begin by a gentle introduction to
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Bob \ Sue Bar   Home   Theater
Bar 3, 2 2, 1 1,0

Theater 4, 0 0, 0 2, 3

Fig. 1. Example two-player strategic game. The only Nash equilibrium is indicated by
the black frame, maxmin for Bob is highlighted in bold, and Stackelberg equilibrium
for Bob is set on yellow background. The players’ best responses to the other player’s
strategies are underlined. (Color figure online)

the basic concepts of noncooperative game theory. A more detailed exposition
can be found in numerous textbooks, cf. e.g. [3,18,21].

2.1 Strategic Games

Definition 1 (Strategic game). A strategic game (called also normal form
game) is a tuple Γ = (N,Σ, u), consisting of:

1. a finite set of agents or players N = {A1, . . . , A|N |},
2. a set of strategy profiles Σ = ΣA1 × · · · × ΣA|N| , where ΣAi

collects the
available strategies of player Ai ∈ N ,

3. a utility profile u = {u1, . . . , u|N |} with ui : Σ → R being the utility function
of player Ai that assigns the “payoffs” of Ai to strategy profiles.

When needed, we will refer to Ai’s part of strategy profile σ by σi, and to the
other players’ part of the profile by σ−i.

A strategic game captures a “bird’s-eye view” of interaction, where Ai’s
strategies represent her possible behaviours in a game. Strategies are treated
as atomic: we are not interested in their internal structure, and can as well view
them as simple actions. The combined behaviour of all the players is represented
by a strategy profile, i.e., a tuple of individual strategies. Given a strategy pro-
file σ, ui(σ) defines how much the outcome of the game is “worth” to player
Ai. Thus, the utility profile is meant to represent the incentives (or preferences)
of each player. An example strategic game – a slightly modified variant of the
“Battle of the Sexes” – is shown in Fig. 1. Two players (Bob and Sue) are choos-
ing in parallel whether to go to the local bar, or to the theater. The strategies
and utilities of Sue are set in grey font for better readability.

When modelling interaction by a strategic game, we implicitly assume com-
plete information, i.e., that the structure of the game is common knowledge
among the players. In particular, players know each others’ preferences and the
available actions of the opponents. Especially the former assumption is often
unrealistic. We will come back to this issue and relax the assumption in Sect. 4.
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2.2 Solution Concepts

In game theory, solution concepts are used to define which collective behaviours
are “rational” and should (or may) be selected by players in the game. Formally,
a solution concept maps each game to a subset of strategy profiles. Different
solution concepts encode different assumptions about the deliberation process
that leads to selecting one or another strategy. In this paper, we compare the
predictions obtained by three solution concepts: Nash equilibrium, maxmin, and
Stackelberg equilibrium, presented briefly below.

Nash Equilibrium. A strategy profile σ is a Nash equilibrium if it is stable
under unilateral deviations of players, i.e., if player Ai changed her part of σ
(and the other players stuck to their strategies) then the payoff of Ai would
decrease or stay the same. Formally, for every Ai ∈ N and σ′

i ∈ Σi, it must hold
that ui(σ) ≥ ui(σ′

i, σ−i). Equivalently, σ is a Nash equilibrium if each σi is the
best response to σ−i. As an example, consider the game in Fig. 1. The strategy
profile (Theater,Bar) is not stable because Sue can improve her payoff from 0
to 3 by changing her strategy to Theater. On the other hand, (Theater,Theater)
is stable because both players can only lose when the change their minds: Bob
would then decrease his utility from 2 to 1, and Sue analogously from 3 to 0.

Intuitively, Nash equilibrium represents a collective behaviour that can
emerge when players play the game multiple times, and adapt their choices to
what they expect from the other players. Thus, it captures the “organic” emer-
gence of behaviour through a sequence of strategy adjustments from different
players that leads to a point when nobody is tempted to change their strategy
anymore.

Maxmin. Maxmin for player Ai aims at the largest value that the player can
ensure regardless of what the other players do. Formally, it is the strategy profile
σ∗ such that σ∗

i = argmaxσi
minσ−i

ui(σi, σ−i) and σ∗
−i = argminσ−i

ui(σ∗
i , σ−i).

Intuitively, maxmin captures decision making of “paranoid” agents who always
look at the worst possible outcome of their choices.

The maxmin for Bob in Fig. 1 is (Bar,Theater), since playing Bar guarantees
the payoff of at least 1 to Bob, while playing Theater may obtain 0.

Stackelberg Equilibrium. Finally, Stackelberg equilibrium for player Ai rep-
resents rational play in 2-player games where a designated player (the leader)
makes her choice first. Formally, it is the strategy profile σ∗ for which σ∗

i =
argmaxσi

ui(σi, argmaxσ−i
u−i(σi, σ−i)) and σ∗

−i = argmaxσ−i
u−i(σ∗

i , σ−i). That
is, for every strategy σi of the leader we find the response resp(σi) that max-
imizes the utility of the opponent; then, we select the σi which maximizes
ui(σi, resp(σi)). In our example, Bar is Sue’s best response to Bob’s strat-
egy Bar, and Theater is Sue’s best response to Bob’s Theater. Thus, the
Stackelberg equilibrium is (Bar, Bar) because it obtains 3 for Bob, whereas
(Theater, Theater) obtains only 2.

Intuitively, analysis based on Stackelberg equilibrium assumes that the leader
can either execute her strategy before the other player, or irrevocably commit
to her choice. Moreover, the choice of σi becomes common knowledge before
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the opponent chooses his strategy. Such commitment is typically possible in
case of public institutions and agencies that can commit to a chosen policy
through suitable legislation. Note that, when Stackelberg equilibrium coincides
with maxmin, it is actually irrelevant for the leader whether her choice will
be known to the opponent or not. Conversely, when Stackelberg equilibrium is
different from maxmin, the leader is better off publicly committing to her policy,
because this way she forces the other player to respond in a desirable way.

2.3 Pure Vs. Mixed Strategies

So far, we have mentioned only pure strategies of players, i.e., the choices explic-
itly given in sets ΣAi

of the game model. More sophisticated behaviour of players
can be represented by so called mixed strategies that model randomized play.
Formally, a mixed strategy for player Ai is a probability distribution over ΣAi

,
with the idea that the player will randomize her choice according to that dis-
tribution. A mixed strategy profile is a combination of mixed strategies, one per
player. Note that such a strategy profile uniquely determines a joint probabil-
ity distribution over Σ (assuming that individual probability distributions are
independent), and hence also the expected utility of each player. Thus, each
normal form game induces an infinite payoff table where the rows and columns
are given by the mixed strategies, and the cells contain vectors of the expected
utility values. This way, solution concepts like Nash equilibrium, maxmin, and
Stackelberg equilibrium are easily extended to analysis of randomized play.

Randomization makes it harder for the opponents to predict the player’s next
action, and to exploit the prediction. Moreover, the importance of randomized
strategies in game theory stems from the fact that Nash equilibrium is guar-
anteed to exist in mixed strategies, whereas no such guarantee applies to pure
strategies. We notice that Stackelberg equilibrium in mixed strategies, while the-
oretically elegant, is often questionable in practice. This is because the leader’s
commitment to her strategy must be believable to the opponent. However, com-
mitment to a randomized strategy is hard to verify unless the game is played
very frequently. This condition is satisfied, e.g., in case of anti-terrorist policies
for deployment of air marshals on domestic flights [11], with multiple flights
every day. On the other hand, elections are run way too infrequently to achieve
the same effect. Thus, we will limit our analysis of Stackelberg equilibrium to
pure strategies of the leader.

We also note that all but one of our coercion models have Nash equilibria
and maxmins in pure strategies.

3 A Simple Game Model of Coercion

Consider an election with a set of candidates Ω = {ω1, ..., ωg} and a set of n
voters. We model the election as a strategic game 〈{A,C}, Σ, (uA, uC)〉, where
Σ = ΣA × ΣC with the ingredients defined below.
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3.1 Players, Strategies, Utilities

Players. A and C are the players. Player A is an honest election authority who
acts on behalf of the society. We assume that the goal of A is in line with “the
good of the society” as a whole. A has no preference for any of the candidates,
and tries to make the result of the election as close as possible to the result when
no coercion occurs, i.e., when the voters vote according to their own preferences.

Player C represents the coercer. The coercer tries to change the result of the
election by threatening or bribing voters in order to make them vote according
to his plan, rather than to the voters’ own preferences over the candidates. In
general, several coercers can try to change the result of the election simultane-
ously. We adopt the worst case assumption that they all collude, and hence may
be represented by actions and preferences of a single player C.

Note that we do not consider candidates and voters as players in the game,
but rather as parameters of the model.

Strategies. ΣA = {α0, . . . , αMax} is the set of protection methods that can
be implemented by the election authority A. These represent the protection
measures that can prevent, or make it harder for the coercer to discover the
actual values of votes. It is assumed that α0 represents the case of no protection.

ΣC = {0, . . . , n∗, . . . , n} is the set of strategies for C, indicating the number
of voters that the coercer attempts to bribe or threaten to bribe according to his
wish. The minimal number of voters that the coercer needs to coerce in order to
change the result of the election in his favor is n∗. We assume that the value of
n∗ is common knowledge; we will relax the assumption in Sect. 4.

Preferences. Preferences are represented by utility functions over possible com-
binations of strategies. We define the utility of the election authority A as
uA(αj , k) = vA(out(αj , k)) − imp(αj) where:

– imp(αj) is the cost of implementing the protection method αj . We assume
that imp(α0) = 0, and t < t′ implies imp(αt) ≤ imp(αt′).

– out(αj , k) is the outcome of the election when A implements αj and C
attempts to coerce k voters.

– vA(ω) is the social value of the election outcome ω. We assume that
vA(ω) = v∗

A if the outcome of the election is the same as it would be without
coercion, and vA(ω) = v∗

A − εA otherwise.
Moreover, εA > imp(αi) for all αi ∈ ΣA.

The utility of the coercer is uC(αj , k) = vC(out(αj , k)) − k · costC(αj) where:

– vC(ω) is the value of the election outcome ω from the coercer’s point of view.
We assume that vC(ω) = v∗

C if the outcome of the election is in favor of the
coercer, and vC(ω) = v∗

C − εC otherwise, for some εC > 0.
– costC(αj) = dC(αj) + βC is the total cost that the coercer must bear when

coercing one voter, where dC(αj) is the cost of overcoming the protection
method, and βC is the bribing cost. We assume that dC(α0) = 0 and dC(αj)
increases with j. Moreover, βC is constant.
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A \ C 0 n∗

α0 v∗
A, v∗

C − C v∗
A − A, v∗

C − βC · n∗

α1 v∗
A − imp(α1),v∗

C − C v∗
A − imp(α1),v∗

C − C − βC · n∗

Fig. 2. Game model for perfect protection. The maxmin profiles and the Stackelberg
equilibrium for A are shown. The game has no Nash equilibrium in pure strategies.
(Color figure online)

We also assume that at least the strongest protection method αMax induces so
high costs of coercion that effective coercing becomes unprofitable, formally:
costC(αMax) · n∗ > εC .

We will consider two possible settings for the coercion game. In Sect. 3.2,
we assume that a perfect protection method is available to A, and if it is used
then any coercion attempt will inevitably fail. In Sect. 3.3, we analyze the other
variant where any protection method can be broken if the coercer invests enough
money and effort.

3.2 Coercion Against Perfect Protection

We first study the case where the election authority has a choice between no
protection (strategy α0) and perfect protection against coercion (α1). When A
plays α1 then the coercer cannot change the result of the election no matter how
many voters he attempts to bribe, as there is no way for him to verify the values
of the votes. Therefore the utility of the coercer in this case is v∗

C − εC − k · βC ,
where k is the number of voters he attempts to bribe. We assume that a coercion
attempt is successful only if the coercer can verify the votes.

Note that, for player C, the strategies 1 to n∗ − 1 are all dominated by
strategy 0. That is, C gets a higher payoff playing 0 no matter what the other
player chooses. In consequence, they never belong to any rational solution, and
can be omitted from the game table. Similarly, the coercer’s strategies from n∗+1
to n are dominated by strategy n∗. Thus, it suffices to consider only choices 0
and n∗. The resulting game table is shown in Fig. 2. In all the strategic games
from now on, we will underline the best response strategies of both players’,
indicate Nash equilibria by putting them in black frames, highlight the maxmin
for A by bold font, and point out the Stackelberg equilibrium for A by the yellow
background.

The game has no Nash equilibrium in pure strategies. The unique Nash
equilibrium in randomized strategies is as follows: the authority chooses “no
protection” with probability p = βC ·n∗

εC
and “perfect protection” with proba-

bility 1 − p, whereas the coercer attempts to coerce n∗ voters with probability
q = imp(α1)

εA
and 0 voters with probability 1 − q. This yields the expected utility

of v∗
A − imp(α1) for the society. The maxmin for A is strategy α1 which provides

exactly the same payoff for the society, and the same holds for the Stackelberg
equilibrium. Thus, it does not matter whether A adapts to the coercer’s strategy
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A \ C 0 n∗

α0 v∗
A, v∗

C − C v∗
A − A,v∗

C − costC(α0) · n∗

αm∗−1 v∗
A − imp(αm∗−1), v

∗
C − C v∗

A − imp(αm∗−1) − A, v∗
C − costC(αm∗−1) · n∗

αm∗ v∗
A − imp(αm∗), v∗

C − C v∗
A − imp(αm∗) − A, v∗

C − costC(αm∗) · n∗

αMax v∗
A − imp(αMax), v

∗
C − C v∗

A − imp(αMax) − A, v∗
C − costC(αMax) · n∗

Fig. 3. Game model for breakable protection (Color figure online)

(i.e., plays the Nash equilibrium), publicly commits to strategy α1 of maximal
protection method (i.e., plays the Stackelberg equilibrium), or simply chooses
α1 and sticks to it (i.e., follows the maxmin).

3.3 Coercion Game for Breakable Protection

The analysis in Sect. 3.2 did not bring very interesting conclusions, but the
assumption of a perfect protection method was not very realistic either. From
now on, we will assume that the election authority can implement several alter-
native protection methods, none of them fully coercion-proof. In other words, the
coercer can successfully coerce against any protection method. The costs of both
A and C increase with implementation of (resp. coercion against) more advanced
methods. As before, we assume that the structure of the game is common knowl-
edge, in particular, the value of n∗ (the amount of voters needed to be coerced
in order to change the result of the election in favour of the coercer) is known
to both players. The resulting strategic game is depicted in Fig. 3. Similarly to
Fig. 2, we omit dominated strategies from the table for better readability. Best
responses, maxmin, Nash equilibrium, and Stackelberg equilibrium are indicated
in the same way as before.

Like in the previous game model, the only undominated strategies for C are
0 and n∗, i.e., it makes only sense to coerce either 0 or n∗ voters. Moreover, as
the authority changes the protection method from α0 to αMax, the difficulty of
coercing for the coercer increases. For a given α, if v∗

C − costC(α) · n∗ is larger
than v∗

C − εC then C prefers coercing over not coercing. Note that, from some
protection method αm on, the cost of coercing for the coercer is more than εC .
In that case the coercer, although being able to coerce successfully, prefers not
to tamper with the election. It is easy to observe the following.

Theorem 1. For the coercion game with breakable protection, the Nash equilib-
rium and the maxmin for A is (α0, n

∗), whereas the Stackelberg equilibrium for
A is (αm, 0). Moreover, uA(α0, n

∗) < uA(αm, 0).

The unique Nash equilibrium in pure strategies is (α0, n
∗): the coercer

attempts to coerce sufficiently many voters, and the authority chooses the cheap-
est protection method, leaving the election open to manipulation. Thus, when
the players mutually adapt to each other’s play, the outcome is clearly undesir-
able for the society. The Stackelberg equilibrium (αm, 0) is much better in this
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respect: the authority invests in the minimal sufficient protection that makes
coercion unprofitable, and the coercer gives up coercion. Thus, A should choose
its strategy in advance and stick to it, without adapting to C’s play. Moreover,
the maxmin for A in the game coincides with the Nash equilibrium and not the
Stackelberg equilibrium, so in order to end up in the latter, the authority must
publicly and believable commit to strategy αm.

4 Coercion with Incomplete Information

In the previous section, we assumed that the players have complete informa-
tion about the structure of the game. In many scenarios the assumption is not
realistic, as players are not certain about some aspects of the game they are play-
ing. For example, they may be uncertain about the available strategies of other
players, their preferences, etc. We have deliberately defined the utility functions
uA, uC based on several basic parameters instead of fixing concrete utility values,
and specified as few constraints as possible about the relationships between the
parameters. Since our results hold for all the admissible values of the parameters,
our conclusions are valid even if the players do not know the exact numerical
values.2 By and large, this seems a justifiable level of abstraction except for one
point: typically, neither the election authority nor the coercer will know the pre-
cise number of voters that need to be coerced in order to swing the outcome
of the election. The coercer is also unlikely to know exactly which voters are
the right targets of coercion (for instance, it makes little sense to coerce voters
that plan to vote for the coercer’s favourite candidate). What the players know
instead is some probabilistic information, obtained e.g. from pre-election polls.
We incorporate the observation in this section and extend our game model to
include probabilistic uncertainty of the players about the n∗ parameter.

Formally, we will model the uncertainty by assuming that the players take
into account not one, but a set Γ of strategic games for different possible values of
n∗. The current belief of each player is represented by a probability distribution
over Γ , and possibly also over the probability distributions held as beliefs by the
other players. Such models are known as Bayesian games. Again, we refer the
interested reader to [3,18] for details.

In what follows, we assume that the coercer and the election authority hold
the same beliefs about n∗ (represented by the same probability distribution).
In general, this may not be true, but in the case of an election the players’
beliefs are usually based on public opinion polls which are equally accessible to
everyone. Thus, the assumption seems acceptable in our application domain. At
the same time, it greatly simplifies the analysis, as we will only need to take
into account the players’ factual beliefs, and not their beliefs about each others’
beliefs, beliefs about beliefs about beliefs, and so on.

2 It suffices that the constraints are common knowledge among the players.
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4.1 Bayesian Game for Coercion

We consider the Bayesian game 〈{A,C}, Ω,Σ, T, τ, p, (ûA, ûC)〉 with the follow-
ing elements:

Players and Strategies. The sets of players and their available strategies are
defined as before (cf. Sect. 3).

States of the World. Ω = {1, . . . , n} is the set of possible states of the world
(sometimes also called states of nature). In our scenario, each state of the world
corresponds to one possible value of n∗, i.e., the number of voters needed to be
coerced to swing the outcome of the election. Note that the same strategies are
available to players in all states of the world.

Preferences. ûA, ûC : Ω ×Σ → R are utility functions of the players. The only
difference to the complete information setting is that ûAi

(n∗, αj , k) depends not
only on the strategy profile (αj , k), but also on the actual value of n∗.

Player Types and Signaling. In Bayesian games, the set of type profiles T =
TA × TC is used to construct higher-order beliefs of players, i.e., beliefs about
beliefs etc. We define TA = {tA} and TC = {tC}. That is, players’ uncertainty
about each others’ beliefs is irrelevant. The signaling functions τA : Ω → TA

and τC : Ω → TC are trivial and can be also omitted from our analysis.

Players’ Beliefs. The probabilistic beliefs of A and C are represented by a single
probability distribution p ∈ Δ(Ω) over the states of nature. In this work, we
consider two cases of such probabilistic beliefs, based on the uniform distribution
(Sect. 4.2) and the normal distribution (Sect. 4.3). Although the values of n∗ are
discrete, when the number of voters is large we can use continuous probability
distributions to estimate the probability of different intervals of n∗.

Solution Concepts. In order to apply solution concepts to Bayesian games,
we use the standard transformation into strategic games [8]. That is, we trans-
form the Bayesian game 〈{A,C}, Ω,Σ, T, τ, p, (ûA, ûC)〉 into a strategic game
〈{A,C}, Σ, (uA, uC)〉 such that, for every strategy profile s ∈ Σ,

uA(s) = Eω∈Ω[ûA(ω, s)] and uC(s) = Eω∈Ω[ûC(ω, s)].

4.2 Uniform Probabilistic Beliefs

Our first approach is to assume the players’ beliefs in the form of a uniform
probability distribution in range [na, nb], where 0 ≤ a ≤ b ≤ n. Thus, we assume
that A and C can rule out some values of n∗, but apart from that they consider
all the possible states of nature equally likely. In order to transform the model
to a strategic game, we need to compute uA(α, n) and uC(α, n) for a protection
method α and the number of voters to coerce k.

Utility of the Coercer. We consider three ranges for k and compute uC(α, k)
in each range separately:
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– If k < a then in all states of the nature k < n∗, therefore:
uC(α, k) = v∗

C − εC − k · costC(α).
In this range the strategy 0 is the best response of player C. By choosing this
strategy the utility of the coercer is v∗

C − εC .
– If k ≥ b then in all states of the nature k ≥ n∗, therefore:

uC(α, k) = v∗
C − k · costC(α).

In this range the strategy b is the best response of the player C, which corre-
sponds to the utility v∗

C − b · costC(α) for the coercer.
– If a ≤ k < b then

uC(α, k) = Eω∈Ω [ûC(ω, (α, k))] = v∗
C − k · costC(α) − b − k

b − a
· εC

= v∗
C − b

b − a
· εC + k · (

εC

b − a
− costC(α)).

If εC
b−a − costC(α) is positive then uC(α, k) is increasing in k and otherwise it

is decreasing in k.

Utility of A. Again, we consider three possible ranges of k:

– If k < a then in all states of the nature k < n∗, therefore:
uA(α, k) = v∗

A − imp(α).
– If k ≥ b then in all states of the nature k ≥ n∗, therefore:

uA(α, k) = v∗
A − imp(α) − εA.

– If a ≤ k < b then
uA(α, k) = Eω∈Ω[ûA(ω, (α, k))] = v∗

A − imp(α) − k−a
b−a · εA.

Best Responses and Equilibria. By observing the values of uC , we can see
that in the range [0, a], and also when k > b, uC(α, k) is decreasing in k. In
the range [a, b], based on the sign of ( εC

b−a − costC(α)) it can be increasing or
decreasing in k. So the best response of the coercer is always one of the strategies
0 or b (strategy a is always dominated by 0). Therefore we need only to consider
these two strategies for player C. We have that uC(α, 0) = v∗

C−εC and uC(α, b) =
v∗

C −b ·costC(α). The coercer profits more by coercing b voters when costC(α) <
εC
b , and otherwise would prefer to not to coerce. We assume that from α0 to

αm∗−1, it holds that costC(α) < εC
b and from αm∗ on, it holds that costC(α) >

εC
b . Figure 4 shows the resulting strategic game for the uniform distribution of n∗.

Theorem 2. For the coercion game with uniform beliefs, the Nash equilibrium
and the maxmin for A is (α0, b), while the Stackelberg equilibrium for A is
(αm∗ , 0). Moreover, uA(α0, b) < uA(αm∗ , 0).

Thus, similar to the game in Sect. 3.3, this game has a unique pure Nash equi-
librium (α0, b). Again, the equilibrium is undesirable, and the authority should
instead prefer the Stackelberg equilibrium which is at (αm∗ , 0). As the Stackel-
berg equilibrium is different from the maxmin for A, player A needs to commit
to strategy αm, and to make this commitment public.
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A \ C 0 b

α0 v∗
A, v∗

C − C v∗
A − A,v∗

C − βC · b
αm∗−1 v∗

A − imp(αm∗−1), v
∗
C − C v∗

A − imp(αm∗−1) − A, v∗
C − b · costC(αm∗−1)

αm∗ v∗
A − imp(αm∗), v∗

C − C v∗
A − imp(αm∗) − A, v∗

C − b · costC(αm∗)

αMax v∗
A − imp(αMax), v

∗
C − C v∗

A − imp(αMax) − A, v∗
C − b · costC(αMax)

Fig. 4. Coercion game with incomplete information, where the number of voters needed
to coerce is estimated by a uniform probability distribution (Color figure online)

4.3 Normal Probabilistic Beliefs

In our second approach, we assume that the players’ beliefs about the value of n∗

are represented by a normal probability distribution with mean μ and standard
deviation σ.

Utility of the Coercer. When n∗ has a normal distribution with mean μ and
standard deviation σ, the probability of a chosen k being more than n∗ is:

Pr[n∗ ≤ k] =
1
2
[1 + erf(

k − μ

σ
√

2
)]

where:
erf(x) =

1√
π

∫ x

−x

e−t2 · dt.

Therefore uC(α, k) can be calculated as:

uC(α, k) = Eω∈Ω[ûC(ω, (α, k))] = v∗
C − k · costC(α) − 1

2
[1 − erf(

k − μ

σ
√

2
)] · εC

= v∗
C − μ · costC(α) − εC

2
+ γ(k).

where:
γ(k) =

εC

2
· erf(

k − μ

σ
√

2
) − (k − μ) · costC(α).

Analysing the changes of function γ(k) shows that if costC(α) > εC
σ

√
2

then
γ(k) is decreasing in k. In this case uc(α, k) has its maximum at k = 0. If
costC(α) < εC

σ
√
2

then γ(k), and hence uC(α, k), has a maximum at

kmax
α = μ +

√
2σ2ln(

εC√
2π · costC(α) · σ

).

Notice that this number is decreasing in costC(α). We denote the value of
uC(α, k) at this point by umax,α

C , where:

umax,α
C = v∗

C − kmax
α · costC(α) − 1

2
[1 − erf(

kmax
α − μ

σ
√

2
)] · εC

umax,α
C is positive and is increasing in σ and decreasing in costC(α).
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A \ C 0 kmax
m∗−1 kmax

0

α0 v∗
A, v∗

C − C uA(α0, kmax
m∗−1), uC(α0, kmax

m∗−1) uA(α0,kmax
0 ),umax,α0

C

αm∗−1 v∗
A − imp(αm∗−1), v∗

C − C uA(αm∗−1, kmax
m∗−1), u

max,αm∗−1
C uA(αm∗−1, kmax

0 ), uC(αm∗−1, kmax
0 )

αm∗ v∗
A − imp(αm∗ ), v∗

C − C uA(αm∗ , kmax
m∗−1), uC(αm∗ , kmax

m∗−1) uA(αm∗ , kmax
0 ), uC(αm∗ , kmax

0 )

αMax v∗
A − imp(αMax), v∗

C − C uA(αMax, kmax
m∗−1), uC(αMax, kmax

m∗−1) uA(αMax, kmax
0 ), uC(αMax, kmax

0 )

Fig. 5. Coercion game with incomplete information, where the number of voters needed
to coerce is estimated by a normal probability distribution (Color figure online)

Utility of A. The utility of the society in the transformed game is:

uA(α, k) = v∗
A − imp(α) − 1

2
[1 + erf(

k − μ

σ
√

2
)] · εA.

Notice that if we fix k, this function is decreasing in imp(α).

Best Responses and Equilibria. We can consider two cases: If costC(α) >
εC

σ
√
2

then the best response for the coercer is 0, and otherwise his best response
is kmax

α . We assume that from α0 to αm∗−1, it holds that costC(α) < εC
σ

√
2

and
from αm∗ on, it holds that costC(α) > εC

σ
√
2
.

Figure 5 shows the strategic game for the normal distribution of n∗. For
the choices of the authority, we have only shown four protection measures: α0,
αm∗−1, αm∗ and αMax. For the choices of the coercer, we only included the
ones that are the best responses to one of the depicted choices of the authority.
The choice 0 is the best response for the coercer when authority chooses any
protection method from αm∗ on. The choice kmax

0 is the best response when
authority chooses α0, and the choice kmax

m∗−1 is the best response when authority’s
choice is αm∗−1.

The game has a unique pure Nash equilibrium at (α0, k
max
0 ), which is clearly

a bad outcome for the society. However, if the implementation cost of the pro-
tection method αm∗ is less than the expected damage that player A gets from
the coercion at the Nash equilibrium, i.e., if imp(αm∗) < 1

2 [1+erf(kmax
0 −μ

σ
√
2

)] · εA,
then the authority can use the Stackelberg equilibrium at (αm∗ , 0) by committing
itself to choose the method αm∗ and to make this commitment public.

Now consider that the authority cannot, or does not prefer to implement αm∗

or more secure protection methods (for example because of the high cost of it)
and the strongest protection method that can be implemented is a suboptimal
protection method αm∗−1. By announcing its choice and committing to it, the
authority can achieve an equilibrium at (αm∗−1, bkmax

m∗−1
). In this equilibrium

the estimated cost of a successfully coerced election for the authority (12 [1 +
erf(k−kµ

σ
√
2

)] · εA) is lower than ones in the pure Nash equilibrium of the game.
If this reduction of cost is worthwhile for the authority (in comparison to the
extra implementation cost of αm∗−1 comparing to α0), the authority can benefit
from announcing and committing to its strategy even in a suboptimal protection
method.

Notice that by increasing the uncertainty about the number of needed votes
to buy, i.e. by increasing σ, the value of m∗ decreases. It means that the Stackel-
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berg equilibrium can be moved to a one with lower implementation cost for the
authority. This may suggest that the authority can in fact benefit from making
very accurate polls unavailable to the public before the election.

5 Conclusions

In this work, we look at simple game models of protection against coercion
in voting procedures. The models are two-person nonzero-sum noncooperative
games, where one player represents the society and the other a potential coercer
in the election. Our modelling relies on a number of abstractions and simplifying
assumptions. Still, even at this level of abstraction some interesting patterns
can be observed. Most importantly, we show that in all games that we consider,
Stackelberg equilibrium is different from Nash equilibrium. In other words, it is in
the interest of the society not to adapt to the expected strategy of the coercer.
Instead of that, the society should decide on its coercion-resistance policy in
advance.

Moreover, for almost all of our models, the Stackelberg equilibrium does
not coincide with maxmin. Translating the formal result to intuitive terms, the
society will benefit from announcing its anti-coercion policy openly. This way, the
rational coercer is forced to refraining from coercion altogether. Paraphrasing the
well-known slogan, the advice is not to seek coercion-resistance through obscurity.
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