
Detecting Strict Aliasing Violations in the Wild

Pascal Cuoq1(B), Löıc Runarvot1, and Alexander Cherepanov2,3

1 TrustInSoft, Paris, France
cuoq@trust-in-soft.com

2 Openwall, Moscow, Russia
3 National Research University Higher School of Economics, Moscow, Russia

Abstract. Type-based alias analyses allow C compilers to infer that
memory locations of distinct types do not alias. Idiomatic reliance on
pointers on the one hand, and separate compilation on the other hand,
together make it impossible to get this aliasing information any other
way. As a consequence, most modern optimizing C compilers implement
some sort of type-based alias analysis. Unfortunately, pointer conver-
sions, another pervasive idiom to achieve code reuse in C, can interact
badly with type-based alias analyses. This article investigate the fine line
between the allowable uses of low-level constructs (pointer conversions,
unions) that should never cause the predictions of a standard-compliant
type-based alias analysis to be wrong, and the dangerous uses that can
result in bugs in the generated binary. A sound and precise analyzer for
“strict aliasing” violations is briefly described.

Keywords: Strict aliasing ·Type-based alias analysis ·C ·Static analysis

1 Introduction

Until approximately 1999 [10,11], the static analysis literature tended towards
ignoring low-level aspects of C programs completely. Sound analyzers (either
actual prototypes or hypothetical implementations of the entirety of the analyzer
described in an article) would not deal with low-level programming idioms that
are, for better or for worse, present in C code as it exists and as it gets written.
An example, seen in safety-critical embedded code, is to take the address of the
first member of a struct that contains only floats, and proceed to initialize the
struct via a loop, through pointer arithmetic, as if it were an array. Rejecting this
construct outright means giving up on making the analyzer useful for this kind
of code. Alternately, the analyzer might maintain soundness by becoming very
imprecise in presence of such low-level constructs. This also makes the analyzer
unusable in practice. As sound static analysis gained industrial adoption as a
useful tool for the certification of safety-critical embedded software, the design
choice of accepting the low-level construct and handling it precisely became more
common [9].

c© Springer International Publishing AG 2017
A. Bouajjani and D. Monniaux (Eds.): VMCAI 2017, LNCS 10145, pp. 14–33, 2017.
DOI: 10.1007/978-3-319-52234-0 2

Detecting Strict Aliasing Violations in the Wild 15

Attempts to handle low-level constructs with precision in sound static analyz-
ers sometimes works at cross-purposes with increasingly sophisticated optimiza-
tions, based on undefined behavior1, in C compilers. In presence of constructs
that invoke undefined behavior for some or all inputs, compilers are allowed to
generate binary code:

– without any diagnostic at compile-time,
– that does not raise any exception at run-time,
– and only works as intended for inputs that do not invoke undefined behavior—

this can be the empty set in the case of intentional reliance on undefined
behavior by the developer.

Optimizations based on undefined behavior are useful2. But these optimiza-
tions can have the unfortunate effect of making static analyzers intended to be
sound unsound in practice. To be fair, the problem, as long as one is aware of it,
can easily be circumvented by disabling the optimization, aligning the seman-
tics of the compiler and the analyzer. GCC understands -fwrapv for wrapping
signed arithmetic overflows, and -fno-strict-aliasing for no type-based alias
analysis. Awareness is the only difficulty in this plan. For instance, legacy C
libraries that have worked well for 25 years and are now deployed everywhere
may violate the rules in a way that new versions of C compilers written in 2017
suddenly become sophisticated enough to take advantage of.

This article is concerned with the optimization named -fstrict-aliasing
in GCC and Clang, and with guaranteeing that programs do not invoke the
kind of undefined behavior that allows this optimization to change the behavior
of the program from what was intended by the developer. With funding from
the Linux Foundation’s Core Infrastructure Initiative, we are building a static
analyzer to detect violations of strict aliasing, so that legacy C libraries at the
heart of the Internet can be diagnosed with strict aliasing violations, and fixed
before the problem becomes urgent. This is work in progress.

2 Strict Aliasing in the C Standards

When the C programming language was standardized in 1980 s the Committee
considered the question whether an object may be accessed by an lvalue of a type
different from the declared type of the object. This would hamper optimization
and, thus, “[t]he Committee has decided that such dubious possibilities need not
be allowed for”3. However, certain prevalent exceptions were recognized: types
differently qualified and with different signedness may alias and any type may
be accessed as a character type. Interaction between aggregates (and unions)
and their members was also accounted for. The resulting rules were included in
C89 and got known as “strict aliasing rules”.
1 See http://blog.regehr.org/archives/213.
2 See https://gist.github.com/rygorous/e0f055bfb74e3d5f0af20690759de5a7.
3 C89 Rationale, http://std.dkuug.dk/jtc1/sc22/wg14/docs/rationale/c89/rationale.

ps.gz.

http://blog.regehr.org/archives/213
https://gist.github.com/rygorous/e0f055bfb74e3d5f0af20690759de5a7
http://std.dkuug.dk/jtc1/sc22/wg14/docs/rationale/c89/rationale.ps.gz
http://std.dkuug.dk/jtc1/sc22/wg14/docs/rationale/c89/rationale.ps.gz

16 P. Cuoq et al.

In 1997, it was pointed out4 that the text in the C89 standard does not cover
the case of allocated objects which do not have a declared type. The standard
was corrected and the strict aliasing rules in C99 have the following form:

[C99, 6.5:6] The effective type of an object for an access to its stored value
is the declared type of the object, if any.75) If a value is stored into an
object having no declared type through an lvalue having a type that is not
a character type, then the type of the lvalue becomes the effective type of
the object for that access and for subsequent accesses that do not modify
the stored value. If a value is copied into an object having no declared
type using memcpy or memmove, or is copied as an array of character
type, then the effective type of the modified object for that access and
for subsequent accesses that do not modify the value is the effective type
of the object from which the value is copied, if it has one. For all other
accesses to an object having no declared type, the effective type of the
object is simply the type of the lvalue used for the access.

[C99, 6.5:7] An object shall have its stored value accessed only by an lvalue
expression that has one of the following types:76)

– a type compatible with the effective type of the object,
– a qualified version of a type compatible with the effective type of the

object,
– a type that is the signed or unsigned type corresponding to the effective

type of the object,
– a type that is the signed or unsigned type corresponding to a qualified

version of the effective type of the object,
– an aggregate or union type that includes one of the aforementioned

types among its members (including, recursively, a member of a sub-
aggregate or contained union), or

– a character type.

75) Allocated objects have no declared type.
76) The intent of this list is to specify those circumstances in which an
object may or may not be aliased.

There were no changes in the text in C11 except for renumbering footnotes.
The rules are symmetric with regard to signedness of types but not to qual-

ified/unqualified versions.
The rules are quite clear for objects declared with one of the basic types.

Everything more complex poses some kind of problems.
The natural aliasing between aggregates (and unions) and their members is

permitted by the fifth item in C99, 6.5:7, but the formulation is quite sloppy.
The problem was pointed out5 at least in 1997, a later discussion can be found in

4 http://open-std.org/jtc1/sc22/wg14/www/docs/n640.ps.
5 http://open-std.org/jtc1/sc22/wg14/3406.

http://open-std.org/jtc1/sc22/wg14/www/docs/n640.ps
http://open-std.org/jtc1/sc22/wg14/3406

Detecting Strict Aliasing Violations in the Wild 17

defect reports 14096 and 15207. A shared understanding of the intended meaning
seems to exist, although nobody has found yet a fixed wording.

Unions have members of different types which naturally alias each other.
Possibility of uncontrolled access to these members would undermine the idea of
strict aliasing. Thus, we have to conclude that strict aliasing rules govern the use
of members of unions. But there is an exception—it’s always permitted to read
any member of a union by the . operator (and the -> operator). The relevant
part of the C99 standard is:

[C99, 6.5.2.3:3] A postfix expression followed by the . operator and an
identifier designates a member of a structure or union object. The value is
that of the named member,82) and is an lvalue if the first expression is an
lvalue.

82) If the member used to access[“read” in C11] the contents of a union
object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is
reinterpreted as an object representation in the new type as described in
6.2.6 (a process sometimes called “type punning”). This might be a trap
representation.

3 Examples

This section lists examples of simple functions where a memory access can be
optimized, or not, depending on the interpretation of the strict aliasing rules.
On the right-hand side of each example, the assembly code generated by an
optimizing compiler is shown8. While reading the examples, bear in mind that
in the x86-64 calling convention, %rax or its 32-bit subregister %eax is used for
the return value when it is an integer or a pointer. %rdi or %edi holds the
function’s first integer/pointer argument, and %rsi or %esi holds the second
one. The result, when a float, is instead placed in the floating-point register
%xmm0, and %xmm0 also holds the function’s first float argument if any.

int ex1(int *p, float *q) {

*p = 1;

*q = 2.0f;

return *p;

}

ex1:

movl $1, (%rdi)

movl $1, %eax

movl $0x40000000, (%rsi)

ret

6 http://open-std.org/jtc1/sc22/wg14/www/docs/n1409.htm.
7 http://open-std.org/jtc1/sc22/wg14/www/docs/n1520.htm.
8 https://godbolt.org/g/ggZzQo.

http://open-std.org/jtc1/sc22/wg14/www/docs/n1409.htm
http://open-std.org/jtc1/sc22/wg14/www/docs/n1520.htm
https://godbolt.org/g/ggZzQo

18 P. Cuoq et al.

unsigned ui(unsigned *p, int *q) {

*p = 1;

*q = 2;

return *p;

}

ui:

movl $1, (%rdi)

movl $2, (%rsi)

movl (%rdi), %eax

ret

long lll(long *p, long long *q) {

*p = 1;

*q = 2;

return *p;

}

lll:

movq $1, (%rdi)

movl $1, %eax

movq $2, (%rsi)

ret

int x;

unsigned y;

int *pp(int **p, unsigned **q) {

*p = &x;

*q = &y;

return *p;

}

pp:

movq $x, (%rdi)

movl $x, %eax

movq $y, (%rsi)

ret

typedef int (*f1)(int);

typedef int (*f2)(float);

int foo(int);

int bar(float);

f1 pf(f1 *p, f2 *q) {

*p = foo;

*q = bar;

return *p;

}

pf:

movq $foo, (%rdi)

movl $foo, %eax

movq $bar, (%rsi)

ret

struct s { int a; };

struct t { int b; };

int st1(struct s *p, struct t *q) {

p->a = 1;

q->b = 2;

return p->a;

}

st1:

movl $1, (%rdi)

movl $1, %eax

movl $2, (%rsi)

ret

struct s { int a; };

struct t { int b; };

int st2(struct s *p, struct t *q) {

int *pa = & (p->a);

int *qb = & (q->b);

*pa = 1;

*qb = 2;

return *pa;

}

st2:

movl $1, (%rdi)

movl $2, (%rsi)

movl (%rdi), %eax

ret

The assembly code shown was produced by GCC 6.2.0

Detecting Strict Aliasing Violations in the Wild 19

For each of the example functions in this section, the question is whether it
behaves the way a programmer with a näıve view of memory use in C would
expect, when somehow invoked with aliasing pointers as arguments, regardless
of how the aliasing has been created at the call-site. Reading the assembly gen-
erated for one example by a particular compiler is faster and less distracting
that building a caller that creates the aliasing condition.

For the sake of completeness, here is what a problematic caller would look
like for the first example ex1:

int main(int c, char *v[]) {
static_assert(sizeof(int) == sizeof(float),

"Only for 32-bit int and IEEE 754 binary32 float");
void *p = malloc(sizeof(float));
ex1((int *)p, (float *)p);

}

The main function here is creating the conditions for ex1 to misbehave, and,
in a “code smell” sense, it can be said to be where the programmer’s error lay.
Experienced programmers familiar with strict aliasing rules in particular would
worry about the conversions of the same p to two distinct pointer types. Regard-
less, it is the code inside function ex1 that, when invoked in this context, violates
the rules. Any reasonably precise analyzer can only hope to diagnose the prob-
lem there. The two pointer conversions in the above main are not invalid, and
would constitute a valid program if put together with a different implementa-
tion for the function ex1. We do not show additional examples of calling contexts
precisely in order to avoid wrongly thinking of the calling context as the place
where the strict aliasing issue is located. Warning about pointer conversions is,
essentially, what GCC’s -Wstrict-aliasing option does, and this is not satis-
factory because, to be blunt, pointer conversion is the sole code reuse mechanism
available in the C language, and as such it is used as much as necessary, both in
patterns that ends up violating strict aliasing rules and in patterns that do not.
This is especially true of legacy code written in the 1990s, a time at which C
was used to program high-level concepts for which a high-level language would
hopefully be the obvious choice for new implementations today.

The example ex1 shows the simplest, least controversial form of strict aliasing
optimization. The only C developers who disagree with it reject the concept of
type-based alias inference as a whole.

The example ui is not expected to be optimized, as C11 makes allowances
for accessing an unsigned effective type with an int lvalue and vice-versa. In
contrast, even when the standard integer types int and long (or respectively
long and long long) happen to have the same width, compilers can assume
that an lvalue of one type is not used to access an object with the other, as the
standard allows them to—the types int and long are not compatible even when
they have the same width.

20 P. Cuoq et al.

In the example ppp, GCC 6.2.0 (but none of the Clang versions available
at the time of this writing) correctly uses the fact that the types int* and
unsigned* are not compatible with each other to optimize the returned value
into &x. Similarly, in example pf, GCC version 6.2.0 takes advantage of the
incompatibility of the types “pointer to function taking an int and returning an
int” and “pointer to function taking a float and returning an int” to optimize
the returned value to the address of foo.

An example similar to st1 was a crucial part of an internal committee discus-
sion about the notion of type compatibility as early as 19959. This example has
popped again occasionally, for instance in GCC’s mailing list in 201010 and later
in Sect. 4.1.2 of “C memory object and value semantics: the space of de facto and
ISO standards”11. GCC versions 4.4.7 and 4.5.3 optimize st2 identically to st1,
but later GCC versions do not. It is not clear whether this change is incidental or
results from a decision to limit the scope of strict aliasing optimizations: the rea-
soning that justifies the optimization of st1 in GCC justifies the optimization of
st2, too. A consequence for any sound static detector of strict aliasing violations
is that the information of “pointed struct member” must be propagated associ-
ated to pa and qb in order to detect that the harmless-looking assignments *pa
= 1, *qb = 2 and retrieval return *pa; violate GCC’s memory model because
of previous statements.

int ar1(int (*p)[8], int (*q)[8]) {

(*p)[3] = 1;

(*q)[4] = 2;

return (*p)[3];

}

ar1:

movl $1, 12(%rdi)

movl $1, %eax

movl $2, 16(%rsi)

ret

int ar2(int c, int (*p)[8],

int (*q)[8]) {

int z = 0;

if (2 < c && c < 4) {

(*p)[c+z] = 1;

(*q)[4] = 2;

return (*p)[c];

}

else

return 0;

}

ar2:

xorl %eax, %eax

cmpl $3, %edi

je .L

rep ret

.L5:

movl $1, 12(%rsi)

movl $1, %eax

movl $2, 16(%rdx)

ret11

9 Example y.c in http://std.dkuug.dk/jtc1/sc22/wg14/docs/c9x/misc/tag-compat.
txt.gz.

10 https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html.
11 https://www.cl.cam.ac.uk/∼pes20/cerberus/notes30.pdf, Draft, Revision 1571,

2016-03-17.

http://std.dkuug.dk/jtc1/sc22/wg14/docs/c9x/misc/tag-compat.txt.gz
http://std.dkuug.dk/jtc1/sc22/wg14/docs/c9x/misc/tag-compat.txt.gz
https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html
https://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf

Detecting Strict Aliasing Violations in the Wild 21

int ar3(int (*p)[8], int (*q)[7]) {

(*p)[3] = 1;

(*q)[3] = 2;

return (*p)[3];

}

ar3:

movl $1, 12(%rdi)

movl $2, 12(%rsi)

movl 12(%rdi), %eax

ret

enum e1 { A = 0 };

enum e2 { B = 1 };

int ex1_enum(enum e1 *p, enum e2 *q)

{

*p = A;

*q = B;

return *p;

}

ex1_enum:

movl $0, (%rdi)

xorl %eax, %eax

movl $1, (%rsi)

ret

enum e1 { A };

unsigned ex2_enum(unsigned *p, enum e1 *q)

{

*p = 1;

*q = A;

return *p;

}

ex2_enum:

movl $1, (%rdi)

movl $1, %eax

movl $0, (%rsi)

ret

The assembly code shown was produced by GCC 6.2.0

The same optimization that GCC exhibits when compiling the function st1,
GCC 6.2.0 also applies to array types in example ar1, where index 3 of an array
of 8 ints is assumed not to alias with index 4 of an array of 8 ints. Clang versions
available as of this writing do not optimize ar1.

The example ar2 shows that there are no a priori bounds to the ingenuity
of compiler in order to infer that the indexes being accessed are necessarily
different. As a consequence, a sound and precise static analyzer cannot limit
itself to constant array indexes.

The example ar3, where the array types pointed by the arguments differ in
size, seems easier to optimize than ar1, but is surprisingly optimized by neither
Clang nor GCC as of this writing. Optimizing ar1 already constrains the devel-
oper never to view a large array as a superposition of overlapping smaller arrays,
so GCC could optimize ar3. Showing this example to GCC developers is taking
them in the direction of not optimizing ar1 instead12.

In C, enum types have an underlying integer type, chosen by the compiler
according to the set of values to hold by the enum. GCC chooses unsigned int
for an enum destined to contain only the values 0 and 1 or 0. Despite these two
enum types being compatible with unsigned int, GCC 6.2.0 optimizes programs
as if a memory location of effective type one such enum could not be modified
by an access to unsigned int, or an access to another such enum. We think
this is a bug13, but meanwhile, it is possible to detect that a program might be

12 https://gcc.gnu.org/ml/gcc/2016-11/msg00111.html.
13 See https://gcc.gnu.org/bugzilla/show bug.cgi?id=71598.

https://gcc.gnu.org/ml/gcc/2016-11/msg00111.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71598

22 P. Cuoq et al.

miscompiled by GCC 6.2.0 by treating in the analyzer an enum type based on
unsigned int as if it were incompatible with unsigned int and other enum
types based on unsigned int.

union u { int a; float b; };

int fr(float f) {

union u t = { .b = f };

return t.a;

}

fr:

movd %xmm0, %eax

retq

/* q is really a pointer to a union u */

int u1(int *p, void *q) {

*p = 1;

*&((union u *)q)->b = 2;

return *p;

}

u1:

movl $1, (%rdi)

movl $1073741824, (%rsi)

movl $1, %eax

retq

int u2(int *p, union u *q) {

*p = 1;

q->b = 0.1;

return *p;

}

u2:

movl $1, (%rdi)

movl $1036831949, (%rsi)

movl $1, %eax

retq

void *mem(void);

int u3() {

union u *p1 = mem();

union u *p2 = mem();

float *fp = &p2->b;

p1->a = 1;

*fp = 3.0;

return p1->a;

}

u3:

pushq %rbx

callq mem

movq %rax, %rbx

callq mem

movl $1, (%rbx)

movl $1077936128, (%rax)

movl $1, %eax

popq %rbx

retq

int u4(void) {

union u *p1 = mem();

union u *p2 = mem();

int* ip = &p1->a;

*ip = 1;

p2->b = 3.0;

return *ip;

}

u4:

pushq %rbx

callq mem

movq %rax, %rbx

callq mem

movl $1, (%rbx)

movl $1077936128, (%rax)

movl $1, %eax

popq %rbx

retq

Detecting Strict Aliasing Violations in the Wild 23

int u5(void) {

union u *p1 = mem();

union u *p2 = mem();

p1->a = 1;

p2->b = 3.0;

return p1->a;

}

u5:

pushq %rbx

callq mem

movq %rax, %rbx

callq mem

movl $1, (%rbx)

movl $1077936128, (%rax)

movl $1, %eax

popq %rbx

retq

The assembly code shown was produced by Clang 3.9.0

The interactions of unions with type-punning and type-based alias analyses
have caused enormous amounts of discussion, starting with a C99 standard that
initially implied that reading from a union member other than the one used
to setting the value of the union produced unspecified results (6.5.2.3:3) and
a defect report about a regression of the type-punning powers of union with
respect to C8914. Type-punning through unions remains ambiguously described
in the C11 standard, and compilers that want to take advantage of type-based
alias analyses for optimizations need to define their own rules15, and convey
them to the developer, which they do not always do clearly.

One extreme example of union use for type-punning is the function fr to
convert a float to its representation as an int. This function is compiled to
the intended binary code by all the compilers we tried. At the other end of the
spectrum, the very function ex1 that we used as first example can be an example
of type-punning through unions when it is invoked in the following context:

int main(int c, char *v[]) {
union { float f; int i; } u;
ex1(&u.i, &u.f);

}

Obviously, compilers do not want to compile the function ex1 cautiously just
because any other compilation unit might invoke it with the addresses of distinct
members of a same union. Between these two extremes exists a limit of what a
compiler defines as reasonable use of a union for type-punning. Only programs
within the limit are guaranteed to be translated to code that behaves as intended.
All three of GCC, ICC and Clang fit in this general framework, but with different
limits between reasonable and unreasonable uses of union for type-punning. GCC

14 DR283, http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr 283.htm.
15 See for instance https://gcc.gnu.org/bugzilla/show bug.cgi?id=65892#c9 or the

words “GCC doesn’t implement C99 aliasing as written in the standard regard-
ing unions. We don’t do so because we determined that this can’t possibly have
been the intent of the standard as it makes type-based aliasing relatively useless” in
https://gcc.gnu.org/ml/gcc/2010-01/msg00263.html.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_283.htm
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65892#c9
https://gcc.gnu.org/ml/gcc/2010-01/msg00263.html

24 P. Cuoq et al.

documents its expectations comparatively well16, and sticks to what it documents:
from the documentation, we expect functions u1 through u5 not to be optimized
by GCC 6.2.0, and indeed, they are not. Clang does not document what usages
of unions it deems acceptable that we could find. All the examples u1 through
u5 are optimized, implying that perhaps the only acceptable use of a union for
type-punning recognized by Clang is that of a variable accessed directly, without
any pointer dereference being involved. ICC appears to adopt a middle-ground,
by optimizing functions u3 and u4, but not u5.

4 Detecting Strict Aliasing Violations

In this section we sketch out the functioning principles of a static analyzer for
detecting strict aliasing violations. The analyzer is a forward abstract interpreter
[2] that assumes that the values of expressions are computed at the same time
as the effective types, or have been computed and saved in a usable form [4].
The analyzer propagates “memory states”, starting with the entry point of the
program, until a fixpoint has been reached. In this case, a “memory state” assigns
possible effective types to each bit of memory. The bit-level memory model is
necessary in order to handle low-level constructs such as unions and pointer
conversions, when they are used in accordance to strict aliasing rules.

The lattice used for each memory bit is the lattice of sets of effective types,
ordered by inclusion (the power set lattice). The empty set of effective types
is the least element. It would technically not be necessary to keep information
about all the possible effective types an object can have during the analysis.
As soon as two sufficiently distant effective types are possible effective types for
an object, there exists no declared type, compatible with both, with which this
object can be accessed without a warning. In other words, it would not lead to
a loss of precision to simplify the abstract domain used by identifying with the
greatest element all sets containing at least two incompatible effective types. Our
implementation avoids making all these sets of distant types the same in order
to improve the usefulness of warning messages. In particular, the attitude of the
analyzer’s user towards the message “there may be a violation here because this
int lvalue is used to access some unknown effective type” may be “I see why
the analyzer is imprecise here, this is a false positive”. The same user, provided
with the better warning message “there may be a violation here because this
int lvalue is used to access effective types long and float” may be “I see that
the analyzer is imprecise here when it predicts that a float can be accessed,
this is a false positive; but accessing a long can happen and is a genuine strict
aliasing bug”.

4.1 Effective Types

We describe the grammar of effective types using an OCaml-like notation.
16 Documentation at https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/Optimize-Options.

html.

https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/Optimize-Options.html

Detecting Strict Aliasing Violations in the Wild 25

type ival = ...

type integer_type =
| Bool
| Char | SignedChar | UnsignedChar
| Short | UnsignedShort
| Int | UnsignedInt
| Long | UnsignedLong
| LongLong | UnsignedLongLong

type float_type = Float | Double | LongDouble

type function_type =
{ return_type : simple_type;

formals : simple_type list }

type simple_type =
| Structure of structure
| StructureField of field * simple_type
| Array of simple_type * expr (* size *)
| ArrayElement of simple_type

* expr (* declared size for array *)
* ival (* set of actual values for the index *)

| Union of union_t
| Enum of enum_t
| IntegerType of integer_type
| FloatType of float_type
| FunctionType of function_type
| VariadicFunctionType of function_type
| PointerType of simple_type
| FirstAccessType
| VoidType
| MayAlias

Listing 1.1. Effective Types

The effective types used by the analyzer unsurprisingly resemble the static
types familiar to the C programmer. Below are the most notable departures from
the grammar of static types.

An effective type can be “member m of . . . ”, (resp. “array element at index
. . . of array . . . ”). This is not the same effective type as the type of the struct
member m (resp. the type of elements of the array). In order to handle example
functions st1, st2, ar1, . . . , all the available information about the location of
the subobject inside its containing objects must be memorized in the effective
type.

The FirstAccessType constructor indicates that the effective type will
be that of the lvalue used for reading until some effective type is written,

26 P. Cuoq et al.

following C11 6.5:6. The effective type FirstAccessType is used for the contents
of memory blocks allocated through calloc, as well as for contents written by
read, fread, memset, . . . This constructor is not necessary for the contents of a
block allocated through malloc, because in this case the contents of the allo-
cated block are uninitialized (“indeterminate” in C standard parlance). Reads
of uninitialized dynamically allocated memory can be assumed not to happen
in a defined execution, and any such reads that can happen in the conditions of
the analysis should have been warned about by the companion value analysis.
Since the value analysis already warns about such uses of dynamically allocated
memory, the allocated block should rather be set to bottom (the empty set of
effective types) for maximum accuracy.

The MayAlias constructor corresponds to the type attribute GCC17 and
Clang compilers to inform the optimizer that lvalues of a certain type are
expected to be used to access memory of a different effective type.

The possibility that the types in stdint.h are mapped to “extended integer
types” (in the sense of the C11 clause 6.2.5:4) can be taken into account by
adding as many constructors as necessary to integer type. This is particularly
relevant for the types int8 t and uint8 t because a 8-bit extended integer type
that these would have been defined as aliases of would not need to benefit from
the exception for “character types” in 6.5:718.

Note that the effective types “member m of type int of . . . ” and “int” are
unordered. It may initially seem that the latter should be included in the former,
but not doing so allows to distinguish the case of a pointer that can only point
to a certain struct member m of type int from the case of a pointer that may
point to a struct member m of type int or to an int variable, say, depending
on the execution path that has been followed.

4.2 Notable Analysis Rules and Checks

Compared to, say, a more traditional value analysis, the followed aspects of the
strict aliasing violation analysis deserve mention:

– When an lvalue read access occurs in an expression being evaluated, the type
of the lvalue is checked against the effective type contained by the memory
model for the location being accessed. This is the check that detects a problem
in the program int x = 1; 0.0f + *(float*)&x; and also in the program
void *p = malloc(4); *(int*)p = 1; 0.0f + *(float*)p;

– Upon assignment to an lvalue, if the location designated by the lvalue being
assigned is a variable or a subobject of a variable, then the static type of the
lvalue is checked against the type of the variable. This is the check that detects
a problem in the program int x; *(float*)&x = 1.0f;.

– Union types are handled specially only in the case of an assignment directly
to or a read directly from a variable. Outside these cases, union types are

17 https://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/Type-Attributes.html.
18 See discussion at https://gcc.gnu.org/bugzilla/show bug.cgi?id=66110.

https://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/Type-Attributes.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66110

Detecting Strict Aliasing Violations in the Wild 27

ignored: the effective types have to match as if there was no union. This is
intended to catch the cases where Clang might optimize despite the union
type.

4.3 A Short Example

int x;
FILE *stream = ...;
void *p = malloc(sizeof(int));
if (fread(p, sizeof(int), 1, stream) == 1)

x = *(int *)p;
else

/* ... */

After the third line of the example above, the allocated object pointed by p
has no effective type. Assuming the call to fread succeeds, it sets the effective
type of that memory zone to FirstAccessType. The pointed block having the
effective type FirstAccessType results in the read access *(int *)p succeeding.
Since the effective type of the memory zone pointed by p is FirstAccessType,
the effective type of the expression *(int *)p is determined by the type of the
lvalue, and thus automatically matches it: IntegerType(Int).

5 Analyzing Legacy C Libraries for Strict Aliasing
Violations

The analysis summarized in Sect. 4 is implemented as a Frama-C plug-in [3].
It works best when applied on definite inputs. In these conditions, the value
analysis plug-in [1] avoids false positives, and builds a result graph [4] that
contains all the information that has been inferred about the execution of the
program, so that the analyzers exploiting these results are not limited by any
loss of information about the order in which program variables take their values.

Finally, the strict aliasing violation analysis is itself designed to assign exactly
one effective type to each memory location, avoiding imprecisions and the result-
ing false positives, for programs applied to definite inputs resulting in bounded
execution. “Subjective false positive” may exist, where compilers do not cur-
rently exploit a strict-aliasing-violating pattern, and it turns out to be impos-
sible to convince the maintainer of the library that they are doing something
wrong. As long as the C standard’s definition of allowed memory accesses is as
poorly formalized as it is, and as long as the standard’s ambiguity is invoked as
excuse for compilers to invent their own, undocumented, rules, these “subjective
false positives” seem unavoidable.

5.1 Expat

We applied the strict aliasing analyzer described in this article to Expat, a
widely-used C library for parsing XML. The first of several strict aliasing

28 P. Cuoq et al.

violation detected by our analyzer has been reported19. This violation is caused
by uses of struct types with a common initial sequence as a poor man’s subtyp-
ing, as is otherwise extremely common in object-oriented code written in C. In
this case, the struct-with-common-initial-sequence pattern is used in an attempt
at implementing a generic hash-table data structure.

typedef struct {
char *name;

} NAMED;

typedef struct {
char *name;
char *rawName;
/* [...] */

} TAG;

typedef struct {
char *name;
PREFIX *prefix;
/* [...] */

} ELEMENT_TYPE;

typedef struct {
NAMED **v;
size_t size;
/* [...] */

} HASH_TABLE

The two structs TAG and ELEMENT TYPE have the same initial sequence as
the struct the hashtable is nominally intended to store pointers to, NAMED. The
lookup function retrieves an existing element, or, if none is found, allocates one
of the size given as parameter. This new element’s name member is initialized
through the NAMED struct type:

static NAMED *
lookup(XML_Parser parser, HASH_TABLE *table, KEY name,

size_t createSize)
{

/* [...] find the element or resize the table */
/* The element was not found into the table: create it. */
table->v[i] = (NAMED *)table->mem->malloc_fcn(createSize);
if (!table->v[i])

return NULL;
memset(table->v[i], 0, createSize);
table->v[i]->name = name;

19 https://sourceforge.net/p/expat/bugs/538/.

https://sourceforge.net/p/expat/bugs/538/

Detecting Strict Aliasing Violations in the Wild 29

(table->used)++;
return table->v[i];

}

In the analysis described in Sect. 4, the assignment table->v[i]->name =
name sets the effective type of the memory location being written to “member
name of the struct NAMED”. This means that subsequent read accesses to this
part of memory must be made through a pointer to the struct NAMED. Reading
the memory location through a pointer to another struct may interact badly
with compiler optimizations, as shown in the example functions st1 and st2.

static ELEMENT_TYPE *
getElementType(XML_Parser parser, const ENCODING *enc,

const char *ptr, const char *end)
{

DTD * const dtd = _dtd;
const XML_Char *name = poolStoreString(&dtd->pool, enc,

ptr, end);
ELEMENT_TYPE *ret;

if (!name)
return NULL;

ret = (ELEMENT_TYPE *) lookup(parser, &dtd->elementTypes,
name, sizeof(ELEMENT_TYPE));

if (!ret)
return NULL;

if (ret->name != name) {
...

} else {
...

}
}

The function getElementType exemplifies how the library Expat uses the
value returned by lookup. The member name is read through a pointer to the
structure ELEMENT TYPE. This leads to a violation of strict aliasing as shown by
the following warning:

expat/lib/xmlparse.c:6470:[sa] warning: Reading a cell with
effective type (struct __anonstruct_NAMED_13).name[char *]
through the lvalue ret->name of type
(struct __anonstruct_ELEMENT_TYPE_22).name[char *].
Callstack: getElementType :: expat/lib/xmlparse.c:4080 <-

doProlog :: expat/lib/xmlparse.c:3801 <-
prologProcessor :: expat/lib/xmlparse.c:3618 <-
prologInitProcessor :: expat/lib/xmlparse.c:1693 <-
XML_ParseBuffer :: expat/xmlwf/xmlfile.c:184 <-

30 P. Cuoq et al.

processStream :: expat/xmlwf/xmlfile.c:243 <-
XML_ProcessFile :: expat/xmlwf/xmlwf.c:853 <-
main

As part of the code normalization in the analyzer’s front-end, the
anonymous structures receive names: in the example above, struct
anonstruct ELEMENT TYPE 22 is the name given to struct { char *name;

PREFIX *prefix; ... }.
The resolution of this bug report was to add -fno-strict-aliasing, a per-

fectly reasonable solution for legacy C code

5.2 Zlib

We applied our strict aliasing analyzer to the general-purpose data compression
library Zlib. One strict aliasing violation was found and reported, and appears
as a comment in the source code20. The violation21 is caused by accessing four
unsigned char through a pointer to unsigned int:

#define DOLIT4 c ^= *buf4++; c = crc_table[3][c & 0xff] ^ \
/* ... */

#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4;\
DOLIT4; DOLIT4; DOLIT4

local unsigned long crc32_little(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
unsigned len;

{
register z_crc_t c;
register const z_crc_t FAR *buf4;
/* ... */
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
while (len >= 32) {

DOLIT32;
len -= 32;

}
while (len >= 4) {

DOLIT4;
len -= 4;

}
/* ... */

}

20 https://github.com/madler/zlib/commit/e08118c401d5434b7b3a57039263f4fa9b1f-
7d1a.

21 https://github.com/pascal-cuoq/zlib-fork/commit/d7cde11e0b44f4e97cc1fd5250d8-
26967841e614.

https://github.com/madler/zlib/commit/e08118c401d5434b7b3a57039263f4fa9b1f7d1a
https://github.com/madler/zlib/commit/e08118c401d5434b7b3a57039263f4fa9b1f7d1a
https://github.com/pascal-cuoq/zlib-fork/commit/d7cde11e0b44f4e97cc1fd5250d826967841e614
https://github.com/pascal-cuoq/zlib-fork/commit/d7cde11e0b44f4e97cc1fd5250d826967841e614

Detecting Strict Aliasing Violations in the Wild 31

In the simplified pattern above, the type z crc t is defined as unsigned
int. Our analyzer, when handling the statement buf4 = (const z crc t FAR
*)(const void FAR *)buf, sets the effective type of the variable buf4 to
“pointer to unsigned char” by ignoring the pointer conversions. Accessing to
the object through the pointer buf4 is a violation of strict aliasing rules, as
shown by the following warning of the analyzer:

zlib/crc32.c:267:[sa] warning: Reading a cell with effective type
char through the lvalue *tmp_0(buf4) of type unsigned int.
Callstack: crc32_little :: zlib/crc32.c:224 <-

crc32 :: zlib/inflate.c:1182 <-
inflate :: zlib/gzread.c:191 <-
gz_decomp :: zlib/gzread.c:248 <-
gz_fetch :: zlib/gzread.c:347 <-
gzread :: zlib/test/minigzip.c:439 <-
gz_uncompress :: zlib/test/minigzip.c:540 <-
file_uncompress :: zlib/test/minigzip.c:629 <-
main

In the warning, the temporary variable tmp 0, introduced by code nor-
malization, corresponds to the variable buf4 at that point of the function
crc32 little.

6 Related Work

The closest forms of analyses we are aware of are libcrunch [7] and SafeType [5].
The tool libcrunch takes a dynamic approach and instruments pointer casts
for violations to be revealed when executing. Since our analyzer handles whole-
programs only and can behave as a C interpreter when deterministic inputs
are provided, it is the most directly comparable of the two. Safetype is a static
analysis implemented inside a compiler, that is, a modular static analysis that
does not have access to the whole program. This in itself is a source of both false
positives and false negatives.

Each of libcrunch and SafeType warns at the level of the pointer conver-
sion, for instance when the address of an int ends up being converted to a
float*. SafeType can also warn about memory accesses with the wrong type.
Our analysis warns at the level of forbidden memory access only.

7 Conclusion

We have provided a number of examples showing the difficulty of analyzing
C programs precisely and soundly for strict aliasing violations. We think that
working from examples is crucial in this endeavor because the description of
the rules in the C standards are particularly open to interpretation by both C
developers and compiler authors.

32 P. Cuoq et al.

An analyzer for strict aliasing violations is being implemented. Our target is
legacy C code. We think that this justifies our chosen, and as far as we know,
original approach of warning only for actual strict aliasing violations, as opposed
to warning for suspicious uses of pointers that may not technically break the
rules. Legacy code should not be modified willy-nilly: billions of systems may rely
on it, and at the same time, this software is not always maintained by the original
developer, or even actively maintained at all. Contrary to first appearances, a
simple makefile change to explicitly disable strict aliasing optimizations is an
extremely satisfying outcome after successfully identifying an illegal pattern with
our analyzer. The analyzer can also help to eliminate the bad patterns one by
one, tweaking the code until the analyzer eventually remains silent, but such
is the respect due to legacy code that we do not expect this usage to be very
common.

Out of 18000 Debian packages indexed by Debian Code Search22, 1001 pack-
ages contain the string -fno-strict-aliasing, and 131 contain the string
may alias, GCC’s extension to get the benefits of the type-based alias analysis
while informing the compiler that some specific memory accesses may be to a
different effective type than expected. Our goal is to make every package that
needs it use one of these two options. According to Debian Sources23, 45 % of
the lines of code in Debian are written in C, so a lot of work remains after the
first two successful analyses of Expat and Zlib.

References

1. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: Proceed-
ings of the 2009 Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2009, pp. 123–124. IEEE Computer Society,
Washington, DC (2009). http://dx.doi.org/10.1109/SCAM.2009.22

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM, New York (1977). http://doi.acm.
org/10.1145/512950.512973

3. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33826-7 16

4. Cuoq, P., Rieu-Helft, R.: Result graphs for an abstract interpretation-based static
analyzer. To appear

5. Ireland, I.: SafeType: Detecting type violations for type-based alias analysis of C.
Ph.D. thesis, University of Alberta (2013)

6. ISO: ISO/IEC 9899:2011 Information technology – Programming languages –
C, December 2011. http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue
detail.htm?csnumber=57853

22 https://codesearch.debian.net.
23 https://sources.debian.net.

http://dx.doi.org/10.1109/SCAM.2009.22
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
https://codesearch.debian.net
https://sources.debian.net

Detecting Strict Aliasing Violations in the Wild 33

7. Kell, S.: Dynamically diagnosing type errors in unsafe code. In: Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2016, pp. 800–819. ACM,
New York (2016). http://doi.acm.org/10.1145/2983990.2983998

8. Krebbers, R.: The C standard formalized in Coq. Ph.D. thesis, Radboud University,
December 2015

9. Miné, A.: Field-sensitive value analysis of embedded c programs with
union types and pointer arithmetics. SIGPLAN Not. 41(7), 54–63 (2006).
http://doi.acm.org/10.1145/1159974.1134659

10. Siff, M., Chandra, S., Ball, T., Kunchithapadam, K., Reps, T.: Coping with
type casts in C. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE -
1999. LNCS, vol. 1687, pp. 180–198. Springer, Berlin (1999). doi:10.1007/
3-540-48166-4 12

11. Yong, S.H., Horwitz, S., Reps, T.: Pointer analysis for programs with structures
and casting. SIGPLAN Not. 34(5), 91–103 (1999). http://doi.acm.org/10.1145/
301631.301647

http://doi.acm.org/10.1145/2983990.2983998
http://doi.acm.org/10.1145/1159974.1134659
http://dx.doi.org/10.1007/3-540-48166-4_12
http://dx.doi.org/10.1007/3-540-48166-4_12
http://doi.acm.org/10.1145/301631.301647
http://doi.acm.org/10.1145/301631.301647

	Detecting Strict Aliasing Violations in the Wild
	1 Introduction
	2 Strict Aliasing in the C Standards
	3 Examples
	4 Detecting Strict Aliasing Violations
	4.1 Effective Types
	4.2 Notable Analysis Rules and Checks
	4.3 A Short Example

	5 Analyzing Legacy C Libraries for Strict Aliasing Violations
	5.1 Expat
	5.2 Zlib

	6 Related Work
	7 Conclusion
	References

