
UTP Semantics of Reactive Processes
with Continuations

Gerard Ekembe Ngondi(B) and Jim Woodcock

Department of Computer Science, University of York, York YO10 5GH, UK
gen501@york.ac.uk

Abstract. Based on the Unifying Theories of Programming (UTP)
semantic framework, Hoare and He have defined (a means for construct-
ing) a high-level language with labels and jumps, using the concept of
continuations. The language permits placing labels at given points within
a program and making jumps to these labels when desired. In their work,
Hoare and He have limited themselves to the definition of continuations
for sequential programs. This paper is concerned with the extension of
that work to reactive programs. We first extend their results to include
parallelism and Higher Order programs. This is achieved by designing a
new control variable L whose value follows the parallel structure of pro-
grams. We then proceed to define reactive (CSP) processes that contain
the new control variable L, resulting in the theory of Reactive (Process)
Blocks. The encapsulation operator defined by Hoare and He and which
may also be used for hiding the control variable L does readily provide a
(functional) link between both UTP theories of Reactive Processes and
of Reactive Blocks. The semantics are denotational.

Keywords: Continuations · Denotational semantics · UTP · CSP ·
Reactive processes

1 Introduction

Implementing a program consists of adding details related to the program’s exe-
cution on a given platform: the result is called an implementation. A detail of
particular importance relates to control flow, or the order of the execution of the
instructions in the program. A device called the program counter normally com-
putes and stores the value of the address of the next instruction to be executed.
When executing a program, the processor always refers to the program counter.

The method of continuations [10,11] has been devised for giving semantics to
programming languages with labels and jumps. As it also allows giving semantics
to other programming constructs than jumps, it has resulted in a programming
paradigm called continuation-passing style or CPS.

Continuations naturally permit to localise the instructions of a program
amongst other instructions. Locations are unique and are ordered according to the
order of execution within a given program. Since locations are explicit, a program

c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 114–133, 2017.
DOI: 10.1007/978-3-319-52228-9 6

UTP Semantics of Reactive Processes with Continuations 115

must always provide the location of the next program, which is properly called the
continuations of its predecessor. High-level programs do not rely on continuations
for defining control flow, which is rather associated with the order of evaluation
of the instructions of the program.

Process mobility [7] refers to any model or theory that describes the movement
of a process from its initial computational environment (or source) to another com-
putational environment (or target). It has two variants: weak mobility, in which
only the code of the process moves; and strong mobility, in which a program is
first interrupted, then its code and interrupt state are migrated to a remote tar-
get where its execution is to be resumed. Denotational semantics for weak mobility
have been defined on the basis of UTP-CSP by Tang and Woodcock [5,6]. We plan
to extend their results with semantics for strong mobility.

The resume operation on the remote machine requires the capacity to tell
what instruction to execute next, and also to jump to that instruction. However,
UTP-CSP [1,4]may rightly be called a high-level language and hence does not
provide any jump instruction. The concept of continuations naturally comes to
mind for reasoning about control flow in process algebra, and we are not aware
of any other model for achieving that. Although some may argue that jumps
are a harmful feature at an implementation level, such is not the case as far as
semantics are concerned, given that simple elegant models are to be preferred. In
sum, we need to extend UTP-CSP with jump features in order to define strong
mobility, and we propose using continuations as a solution.

Much work is dedicated to continuation-passing style, e.g. [12–16]. However
their approach is not directly relevant to our work. In [9], Jahnig et al. provide a
denotational semantics for a CSP-like language. Hence, they do not deal directly
with CSP either. In the context of UTP, two pieces of work deal with continu-
ations. [1, Chap. 6] provides semantics for sequential programs in general. This
work may be used for giving semantics to UTP-CSP processes that have no par-
allel operator, only. In [8], the authors also use continuations, although they are
interested in verifying shared-memory programs. It is not clear from their work
why they use continuations. Notwithstanding, their semantics deal with parallel
programs in general, hence their work may be used for giving semantics to all
UTP-CSP processes. Unfortunately this latter extension is not straightforward
and leads us to design a new control variable.

In Sect. 2 we present the UTP semantics for continuations defined in
[1, Chap. 6]. They will notably serve as a basis for the formalisation of con-
tinuations for parallel programs in general (including the design of the new con-
trol variable), discussed in Sect. 3. The corresponding denotational semantics are
then presented in Sect. 4. The continuations semantics for UTP-CSP processes
are then obtained by applying CSP healthiness conditions to parallel programs
(with continuations), thus yielding reactive process blocks, presented in Sect. 5.
We then conclude.

116 G.E. Ngondi and J. Woodcock

2 UTP Background - Continuations for Sequential
Programs

2.1 An Overview of UTP

UTP [1] is a formal semantics framework for reasoning about programs, pro-
gramming theories and the links between theories. The semantics of a program
are given by a relation between the initial (undecorated) and final (decorated)
observations that can be made of the variables that characterise the program
behaviour. Relations are themselves represented as alphabetised predicates, i.e.
predicates of the form (αP ,P). αP is called the alphabet of the predicate P ,
and determines what variables P may mention. αP may be partitioned into
two subsets: inαP , which represents the initial observations, and outαP , which
represents the final observations.

Programming languages and paradigms are formalised as UTP theories.
A UTP theory is just a collection of predicates, and consists of three elements: an
alphabet, containing only those variables that the predicates of the theory may
mention; a signature, which contains the operators of the theory, and healthiness
conditions which are laws constricting the set of legal predicates to those that
obey the properties expressed by the conditions.

Healthiness conditions generally have the form: NAME P = f (P), for
some idempotent function f (i.e. f ◦ f (x) = f (x)). NAME stands for the
name of the healthiness condition and is also used as an alias for f i.e. we write
P = NAME(P) and we say that P is NAME-healthy.

Specifications are also expressible in UTP, and a theory of refinement permits
us to ensure the correctness of a program with regard to a given specification.

The most basic of all UTP theories is the theory of Relations, on top of which
every other UTP is built. We define below some program constructs.

Assignment. x :=A e denotes the assignment of an expression e to a variable x .
The meaning of assignment is thus equality: that between x and e after the assign-
ment.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ .. ∧ z ′ = z)
α(x := e) =̂A ∪ A′

Skip. IIA denotes the command that does nothing; it is equivalent to the assign-
ment x := x .

IIA =̂ (x ′ = x) where A = {x , x ′}
αIIA =̂A

Conditional. P �b�Q stands for ‘if b then P else Q ’, where b is some testable
condition. Formally, a condition is defined as a predicate not containing dashed
variables.

P � b � Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ
α(P � b � Q) =̂ αP

UTP Semantics of Reactive Processes with Continuations 117

Variable Declaration, Undeclaration. var x denotes the declaration of a
new program variable x and end x its undeclaration. Let A be an alphabet
which includes x and x ′. Then:

var x =̂ ∃ x • IIA α(var x) =̂A \ {x}
end x =̂ ∃ x ′ • IIA′ α(end x) =̂A \ {x ′}

Alphabet Extension. The scope of x lies between var x and end x ; beyond,
the variable is undefined and cannot be observed. Let x , x ′ ∈ αR, then:

R+x =̂R ∧ x ′ = x
αR+x = αR ∪ {x , x ′}

Floyd Assertion and Assumption. An assertion is the statement that a con-
dition, c say, is expected to be true at the point at which it is written; otherwise,
the program behaves in a totally unpredictable, chaotic way, i.e. like ⊥. We also
say that the failure is caused by the programmer. An assertion captures the intent
of the programmer, that something is meant to be true.

c⊥ =̂ II � c � ⊥

On the other hand, an assumption is the statement that a condition is true at the
point at which it is written; otherwise the program behaves in an impossible, mirac-
ulous way, i.e. like
. We also say that the failure is caused by the program. An
assumption captures the confidence of the programmer, that something is true.

c� =̂ II � c �

Reactive Processes

The theory of Relations is too general and may be restricted accordingly by
means of healthiness conditions. Here, we give a brief overview of the theory of
reactive processes, which permits reasoning about communicating programs.

The alphabet of a reactive process consists of the following:

– A, the set of authorised events; tr , tr ′ : A∗, the trace; ref , ref ′ : PA, the refusal
set

– ok , ok ′ : B, stability and termination; wait ,wait ′ : B, waiting states
– v , v ′, other variables

The above alphabet alone is not enough to characterise reactive processes. Predi-
cates with such an alphabet must also satisfy the following healthiness conditions.

R1 P = P ∧ tr ≤ tr ′

R2 P = �{P [s, s � (tr ′ − tr)/tr , tr ′] | s ∈ A∗}
R3 P = IIR � wait � P

118 G.E. Ngondi and J. Woodcock

where IIR =̂ (ok ′ = ok ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref ∧ v ′ = v) � ok �
(tr ≤ tr ′).

R1 states that the occurrence of an event cannot be undone viz. the trace can
only get longer. R2 states that the initial value of tr may not affect the current
observation. R3 states that a process behaves like IIR when its predecessor has
not yet terminated.

Alternatively, we may use the single healthiness conditionR = R1 ◦ R2 ◦ R3.
A particular model of reactive processes is provided by the CSP process alge-

bra ([2,3]) whose semantics in UTP are presented subsequently. CSP processes
are reactive processes that obey the following additional healthiness conditions:

CSP1 P = P � ok � tr ≤ tr ′

CSP2 P = P ; J

where J =̂ (ok ⇒ ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref ∧ v ′ = v)
CSP1 states that if a process has not started (ok = false) then nothing except

for trace expansion can be said about its behaviour. Otherwise the behaviour of
the process is determined by its definition.CSP2 states that a process may always
terminate. It characterises the fact that divergence may never be enforced.

Alternatively, we may use the single healthiness condition CSP = R ◦
CSP1 ◦ CSP2.

We present the semantics of some CSP processes subsequently. Some defini-
tions are similar to the ones presented earlier, with some changes. For example,
the definitions mention new alphabet elements, and certain healthiness condi-
tions are applied directly, as in assignment below.

Assignment (2). Denoted by x := e, is the process that sets the value of the
variable x to e on termination, but does not modify the other variables. It does
not interact with the environment, always terminates, and never diverges.

(x := e) =̂R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ x ′ = e ∧ v ′ = v)

A particular kind of assignment is one that leaves everything unchanged, and
has already been seen above viz. IIR.

Skip (2). Denoted by SKIP , is the process that refuses to engage in any event,
terminates immediately and does not diverge. It is a special instance of IIR.

SKIP =̂ ∃ ref • IIR

Parallel Composition. Denoted by P ‖ Q , is the process that behaves like
both P and Q and terminates when both have terminated. P and Q may not
share any variable other than the observational variables (ok ,wait , ...). P and

UTP Semantics of Reactive Processes with Continuations 119

Q modify separate copies of the shared observational variables which are then
merged at the end using the merge predicate M , as defined below.

A(P ‖ Q) =̂ AP ∪ AQ
P ‖ Q =̂P(o, 1.o′) ∧ Q(o, 2.o′) ;M (1.o, 2.o,o′)

M =̂

⎛

⎜

⎜

⎜

⎝

ok ′ = (1.ok ∧ 2.ok) ∧
wait ′ = (1.wait ∨ 2.wait) ∧
ref ′ = (1.ref ∪ 2.ref) ∧
(tr ′ − tr) =

(

(1.tr − tr) ‖ (2.tr − tr)
)

⎞

⎟

⎟

⎟

⎠

;SKIP

2.2 Continuations in UTP

In UTP [1, Chap. 6], the program counter is represented by a variable, denoted
l , and referred to as the control variable. The set of possible values which l can
take is called continuations set or simply continuations, and is denoted by αl
(αlP , the continuations of a predicate P). The instructions of the program are
represented by steps, which are themselves predicates. An implementation may
consist of a ‘single’ step or of an assembly of such steps.

First, we define programs that may be represented as the sequential repetition
of a single step. The value of l is tested before each repetition of the step and
determines if the execution of the step starts, continues or ends. Hence, l does
also specify termination.

Definition 1 (Continuations and execution).

P∗ =̂ (l ∈ αlP) ∗ P

αlP denotes the set of continuations of P; l ∈ αlP denotes the control variable
for its execution; and P∗ denotes the execution of P, defined as a loop, which
iterates the step as long as l remains in the continuations set.

For a step P , the value of l determines the start and termination of its
execution. When l is outside the continuations of P , P may not be started.
Although the behaviour of P in such case may be anything, it is safe to assume
that it does nothing, i.e. that its behaviour is II . This is a sound assumption
when we consider the execution of P in conjunction with that of other steps.

Definition 2 (Step). A predicate P is a step if l ∈ αlP and

P = P � l ∈ αlP � II

As a consequence,

((l /∈ αlP)⊥ ;P) = (l /∈ αlP)⊥

120 G.E. Ngondi and J. Woodcock

The following theorem gives the closure property of some operators.

Theorem 1 (Step closure). If P and Q are steps, then

1. P ;Q is a step.
2. P � Q and P � b � Q are also steps whenever αlP = αlQ.
3. The set of steps is a complete lattice.

Programs may occupy disjoint storage areas, in which case they are said to
be disjoint. This means that two steps which have disjoint continuations are
disjoint. It is possible to assemble them into a single program, by using the
assembly operator defined below.

Definition 3 (Assembly). Let P and Q be disjoint steps, i.e. αlP ∩ αlQ = {}.
P �� Q =̂ (P � l ∈ αlP � Q) � (l ∈ αlP ∪ αlQ) � II
αl(P �� Q) =̂ αlP ∪ αlQ

There are two known ways of implementing a program: compilation and
interpretation. In what follows we present the former only.

Compilation. Compilation is the transformation of the program into a target
program expressed in the machine code of the processor that is to execute it.
Compilation conserves the meaning of the source program. The semantics of the
target language (or machine code) may equally be given in UTP. Each instruction
in the language may be given a meaning as a step.

A single instruction is a step with a single continuation given by the singleton
set {m}.

Definition 4 (Single instruction). If INST is a machine code instruction
then

m : INST =̂ INST � l = m � II

is a single instruction.

Single instructions may be assembled together using the assembly operator (��).

Definition 5 (Machine code block). A machine code block is a program
expressed as an assembly of single instructions.

S0 �� S1 �� ... �� Sn

Using the preceding definition, it is possible to enter a machine code block at
any of its constituent continuation points. In practice, it is common to define a
normal starting point, denoted by s, and a normal finishing point, denoted by f .
They relate respectively to the first and last single instructions of the program.
s is the value of l when control enters sequentially into the program; any other

UTP Semantics of Reactive Processes with Continuations 121

point should be entered by a jump. f is the value of l when control leaves sequen-
tially through the last instruction. Respectively in each case, we will also talk
about normal start or entry and normal termination or exit. The assumption of
normal entry is expressed by the predicate (l = s)�. The obligation to terminate
normally is expressed by the predicate (l = f)⊥. Machine code blocks that have
these pre- and post-condition are called structured.

Definition 6 (Structured block). A structured block is a program of the
form

(l = s)� ;P∗ ; (l = f)⊥

where P is a machine code block. The value of s is called its starting point and
the value of f its finishing point.

Let P̂ denote the target program into which a source program P has been
compiled by a compiler. P̂ should have the same effect (or behaviour) as P .
l ∈ αP̂ but l /∈ αP (since P is not a step).

P�(var l ; P̂ ; end l)

Definition 7 (Target code). A program is in target code if it is expressed in
the form

〈s,P , f 〉 =̂var l ; (l = s)� ;P∗ ; (l = f)⊥ ; end l

where P is a machine code block. An equivalent formulation is:

〈s,P , f 〉 =̂var l := s ;P∗ ; (l = f)⊥ ; end l

According to the fundamental theorem of compilation [1, Chap. 6, Theorem
6.2.10], every program can be expressed in target code.

Theorem 2 (Fundamental theorem of compilation). Every program can
be expressed in target code.

It is possible to combine low-level language features, such as jumps and labels,
with high-level language features. Such a facility was provided by many early
programming languages.

122 G.E. Ngondi and J. Woodcock

High-Level Language with Jumps and Labels. For the combination of a
high-level language with jumps and labels to be possible, it is necessary to con-
sider, in addition to s and f , other continuation points viz. those corresponding
to entry and exit by a jump. A special value, denoted by n, will be used for
both s and f . αl0P will denote the set of all entry points; αl ′P will denote the
set of all exit points; and neither may contain n. If l takes its value in either of
these sets, it will signify that the program has been entered or exited by a jump
respectively, in contrast to normal entry and exit through n.

Definition 8 (Blocks and proper blocks). Let S and F be sets of labels
(continuation points), and n /∈ S, and n /∈ F.

(P : S ⇒ F) =̂P = (P ; (l ∈ F ∪ {n})⊥) � l ∈ S ∪ {n} � II)

A program is a block if it satisfies P : αl0P ⇒ αl ′P; a block is called a proper
block if αl0P ∩ αl ′P = {}.

The construction label s permits placing a label within the program at the
point intended to be the destination of a jump. label s may be entered normally
or by a jump, but it always exits normally. The construction jump f permits
jump-ing to the location indicated by the label f . jump f may be entered nor-
mally or by a jump, but it always exits by a jump.

Definition 9 (Labels and jumps).

label s =̂ (l := n) � l ∈ {s,n} � II αl0label s =̂ {s} αl ′label s =̂ {}
jump f =̂ (l := f) � l = n � II αl0jump f =̂ {} αl ′jump f =̂ {f }

The following theorem gives the permitted operators for blocks having the same
alphabets of entry and exit points.

Theorem 3 (Block closure) The set of blocks {P | P : S ⇒ F} is a complete
lattice, and closed with respect to non-deterministic choice and conditional. The
same applies to proper blocks.

Before giving the closure for sequential composition, we first give its continuations.
A sequential composition P ;Q may be entered normally through n, or by a jump.
In the second case, the entry point may belong to either P or Q . Similarly, it may
be exited normally through n, or by a jump from either P or Q .

Definition 10 (Continuations for sequential composition).

αl0(P ;Q) =̂ αl0P ∪ αl0Q
αl ′(P ;Q) =̂ (αl ′P \ αl0Q) ∪ αl ′Q

Theorem 4 (Sequential composition closure) If P : S ⇒ F and Q : T ⇒
G, then

(P ;Q) : S ∪ T ⇒ ((F \ T) ∪ G)

UTP Semantics of Reactive Processes with Continuations 123

3 Concepts and Formalisation

Note. For ease, we will refer to the work presented in the previous section as
HH98 steps or simply HH98. Similarly, we will refer to the work in [8] as WH02
steps or simply WH02.

The CPS transformation (or compiler) is inherently sequential [10,11]. UTP-
CSP processes also permit the representation of sequential programs, which form
a subset of the class of reactive programs. This suggests that HH98 may be
applied at least to sequential UTP-CSP. All that is needed is to extend the
alphabet of UTP-CSP sequential processes, and point-wise extend the definition
of sequential composition to the control variable l , as suggested in HH98. How-
ever, l is not expressive enough for reasoning about control flow in the presence
of parallelism.

The problem actually lies with the design of the control variable as single-
valued. We need a mathematical model that follows more tightly the computation
model. For example, using l in the presence of interrupt, it would be as if a single
program was interrupted at a time whereas we should be able to say that many
programs may be interrupted at a time. The solution is to design a value of the
control variable that follows more tightly the structure of processes. This is what
is done in [8].

In [8] (hereafter also WH02), Woodcock and Hughes use a set-valued control
variable, denoted ls instead, and that contains the continuations of all the steps
that may be executed in parallel next. Using WH02, we may point-wise extend
the UTP-CSP parallel composition operator. However, a number of changes must
first be considered. Unlike HH98 steps, a WH02 step may now exit at many points
at any one time, implying that a step may be entered simultaneously at multiple
entry points. This is a little counter-intuitive but poses no great difficulties. Yet,
ls is not sufficient for our purpose. To see this, consider the following illustration.

Let P = 〈s,P1, h〉 ; 〈h,P2, f 〉, and let ls = {s, h}. The value of ls is valid, but
does not reflect the structure of P . If the programmer was expecting parallel
composition, sequential composition will be performed instead, which is an error
and will not be detected. Let Q = 〈s,Q1, f 〉 ‖ 〈t ,Q2, g〉, and let ls = {s}. Then
Q will behave like Q1, since Q2 behaves like SKIP (by definition). Again, if
parallel composition was expected then only one step will be executed instead
of two in parallel, which is an error and will not be detected.

In sum, we have to design a new value for the control variable seeing that
neither HH98 variable l nor WH02 variable ls are adequate. L will denote the
new control variable, and we discuss its formalisation subsequently.

Design of the Control Variable L
Parallel composition may be seen as a single block such that when entered
sequentially, the steps that compose the block are executed in parallel, and
when they have all exited, then the block is also exited. That is, entry into
(resp. exit from) a block of parallel steps is identical to entry into (resp. exit
from) a sequential block. Sequential and parallel blocks would hence differ in

124 G.E. Ngondi and J. Woodcock

their respective execution order: for the first, only one step may be executed
at a single (observation) time, whilst multiple steps may be executed at a sin-
gle time for the second. In other words, parallel composition acts as an envelop
w.r.t. its components. It has its own continuations, that differ from those of its
constituents. Let P = P1 ‖ P2, then the block denoted by P differs from its
component blocks P1 and P2. P has its own entry and exit points that differ
from those of P1 and P2.

A control flow graph (CFG) is a standard representation of programs with no
parallel constructs, using a graph. A CFG and related concepts are appropriate
for discussing the structure of UTP-CSP processes. Note that we are not inter-
ested in a graphical formalism, but only to use graphs as an adequate means for
discussion. In what follows, we sketch what such a graph might look like.

A CFG for Reactive Processes. Figure 1(a) shows an example of such a
graph read in a left-right, then top-down, iterative manner, thus indicating the
flow of control. Pi nodes may denote either single instructions, sequential blocks,
or nested (parallel) blocks. Both the root node (P) and initial nodes (e.g. P31,
P32, P33) are indicated by empty circles. A nesting node (e.g. P3) is indicated
by a vertical line starting from the node downwards, as shown in (b). An empty
square indicates termination for a horizontal line, whereas it simply serves as a
visual aid to indicate the end of a vertical line. A flattened graph (c) shows how
control goes through P3, and then again through P312. More information could
have been added for loops, and jumps, and bigger graphs may be conceived, but
such are not our main interest. Rather, we may also annotate nodes with their
continuations. The annotation procedure would then show how to evaluate the
control variable.

Fig. 1. Example of a CFG for reactive processes

UTP Semantics of Reactive Processes with Continuations 125

Value of L
Let L denote the control variable whose value we will be discussing. Then αLP
denotes the continuations of a step P .

To formalise the nesting relation between a parent and its children, we may
partition the continuations set of every node into two subsets: αl , the contin-
uations of the parent, and αls, the continuations of its children. We make the
following restriction: the parent-child relation does not extend beyond two adja-
cent levels. Hence, αls contains the continuations of nodes at the lower adjacent
level only; e.g. for sequential blocks, αls = {}. In what follows, we describe
in detail the procedure for attributing continuations to nodes. That is also the
procedure for computing the value of αL for a given block.

Continuations may be attributed hierarchically, in a bottom-up fashion.

1. We make no difference between nodes denoting either single instructions or
sequential blocks, and we will refer to them commonly as lv0 (read level-0)
nodes. Such nodes do not introduce nesting, hence they have no children, i.e.
αls = {}.

2. We then put in parallel lv0 nodes, exclusively, to form lv1 nodes. Such
nodes correspond to the nesting nodes mentioned earlier. The value of αls
is given by the union of continuations αl of its constituents. e.g. αlsP3 =
{αlP31, αlP32, αlP33}.

3. Again, putting exclusively lv1 nodes in parallel, or together with lv0 nodes,
we obtain lv2 nodes. αls is the union of all the continuations of adjacent
lv1 (and lv0) nodes, only. Hence the value of αls for a lv2 node does
not contain the continuations of those lv0 nodes that are nested to lv1

nodes. e.g. αlP312x � αlsP3, although αlP312 ⊆ αlP31 ⊂ αlsP3 &αlsP312 =
{..., αlP312x , ...}. This illustrates what we said earlier about αls: it contains
only the continuations of the lower adjacent levels. We reiterate this construc-
tion procedure for higher-levelled nodes.

The value of αL may be obtained by iteration on the level of a node considered
as the root (of the graph), as follows:

lv0 root, no children: αlP &αlsP = {}&αLP = αlP
lv1 root or parent, lv0 children only: αlsP =

⋃

i αlPi &αLP = αlP ∪ αlsP
lv2 root or parent, at least one lv1 child: αlsP =

⋃

i αlPi &αLP = αlP ∪
(
⋃

i αLPi)
lvn root or parent, at least one lvn−1 child: αlsP =

⋃

i αlPi &αLP = αlP ∪
(
⋃

i αLPi)

Note. The introduction of a nesting step is what distinguishes the value of L from
that of WH02’ control variable ls [8]. Its effect is to delegate the instantiation of
parallel (nested) nodes to the nesting node, which is a dummy. Thanks to that,
control flows as in sequential programs, since the dummy node hides away the
parallel structure of programs. It is also thanks to the nesting node that we solve
the limitations of ls discussed earlier. Indeed, using WH02 steps, it is possible
to jump to a step without care for its nesting level. The presence of the dummy

126 G.E. Ngondi and J. Woodcock

step resolves this by imposing that control must enter into the dummy step first
before it can then enter into the parallel steps.

In what follows we describe the semantics of L formally.

4 Continuations for Programs with Nested Parallelism

HH98 steps (Sect. 2) are programs that compute the control variable l . By anal-
ogy, we present programs that compute the control variable L instead. We
follow the same methodology of Hoare and He [1, Chap. 6] that consists of start-
ing with unstructured predicates (i.e. steps) and then adding more structure
to obtain in turn target code programs, and then program blocks. In our case,
after (re)defining steps, we shall restrict our programs to Reactive Processes and
obtain, as a result, the theory of Reactive Process Blocks (Sect. 5) i.e. reactive
processes that contain the control variable L.

We now describe predicates whose alphabet include a set of continuations
denoted by αL. αL is partitioned into two subsets: αl , which contains the con-
tinuations at the current level of execution, and αls, which contains the contin-
uations at the adjacent lower level of execution, w.r.t. nesting.

At first, each level of execution may be considered without regard for nest-
ing. Then, every step is entered horizontally, and exits horizontally. In a graph,
a level corresponds to a single horizontal line that links nodes arranged from left
to right, according to their execution order. There is a node which has no hori-
zontal predecessor, called the root of the level. Each node on a line is adjoined
a continuation. We say that a node is entered horizontally if we can draw a
line from the root leading to it viz. the value of L corresponds to the node’s
continuation.

In the case of nesting, in a graph, there is a vertical line linking the higher
level, at the top, with its adjacent lower levels, all arranged as parallel horizontal
lines. The root of the graph has neither vertical nor horizontal predecessors (i.e.
there is no vertical/horizontal line leading to the graph-root); the root of a
lower level has no horizontal predecessor and should have at least one vertical
predecessor. A lower level (or child) node may be entered only if its parent has
been entered first. That is, we can draw a vertical line from the parent node to
the lower level line that contains the given child node, when traversing the graph
of the step from its root to the given node. In other words, the value of L must
hold both the parent and the child nodes continuations.

Definition 11. Let P be a predicate describing a step. Let αLP denote its set
of continuations, and let L be the control variable for its execution. We may
partition the set αLP into two subsets αlP and αlsP such that:

– αlP denotes the set of all the continuations of P at a single level of execution.
– αlsP denotes the set of all the continuations of P at the adjacent lower level

of execution.

UTP Semantics of Reactive Processes with Continuations 127

Control may enter into a step horizontally with regard to its own execution level,
or vertically with regard to nesting. In either case, a step may be entered only
when the value of L coincides with one of the step’s entry points. Otherwise the
step does nothing. Formally,

P = P � L ∈ αLP � II

Some operators induce/embed a nesting relation (cf. below, e.g. parallel assembly)
whilst others do not.

Definition 12 (Nesting relation). Let P be a step, and op an operator on
steps and which is closed.
op is said to induce nesting if, and only if, αl op(P) �= αlP and αlP ⊂
αls op(P): then, we say that op(P) is the parent of P, and is called a nest-
ing step; or equivalently, we say that P is nested into op(P), and is called a
nested step.
Otherwise, i.e. if αl op(P) = αlP, then op does not induce nesting.

The value of αLP may only be given by recursion over the nesting level of P .

Definition 13 (lvk-steps, αL). Let P be a step, then

αLP =̂ αlP ∪ αlsP

where both αlP and αlsP are specified according to the level of the nested pro-
grams in the expression of P, as described subsequently.

We say that a program P is a lv0-step, denoted by P = lv0(P), if, and only
if, P has neither parent nor children, i.e. αlsP = {}. Then

αLP =̂ αlP ∪ αlsP = αlP

Let op be a binary operator that induces nesting. Then:

– if P and Q are both lv0-steps, then we say that op(P ,Q) is a lv1-step and

αl op(P ,Q) =̂ {nn} αls op(P ,Q) =̂ αLP ∪ αLQ = αlP ∪ αlQ

– if either P or Q is a lv1-step, or both are, then we say that op(P ,Q) is a
lv2-step and

αl op(P ,Q) =̂ {nn} αls op(P ,Q) =̂ αLP ∪ αLQ
– if either P or Q is a lvk-step, or both are, then we say that op(P ,Q) is a

lvk+1-step and

αl op(P ,Q) =̂ {nn} αls op(P ,Q) =̂ αLP ∪ αLQ

where op(P ,Q) is a nesting step and may have only one entry point, and only
one exit point, both denoted by nn for convenience.

128 G.E. Ngondi and J. Woodcock

Consequence 1 1. lv0-steps do not induce a nesting relation.
2. lv0-steps are ��-closed. Hence, every operator that may be defined in terms

of �� (such as {� b �,�, ; }) does not induce a nesting relation.

The relation with HH98 steps is obvious:

Theorem 5. HH98 steps are lv0-steps.

Sequential Assembly (2). The sequential assembly is as defined by HH98. We
simply redefine it here to account for the changes introduced.

P �� Q =̂ (P � L ∈ αLP � Q) � L ∈ (αLP ∪ αLQ) � II
αL(P �� Q) =̂ αLP ∪ αLQ

= αlP ∪ αlQ

Parallel Assembly. Traditionally, control enters sequentially into a single step
at any one time. However, when dealing with parallelism, control may enter
sequentially into many steps at any one time. It is therefore possible for a
step, upon exit, to indicate that many steps may be executed in parallel next
(cf. WH02 [8]).

The selection of next parallel steps may be delegated to a dummy step, or
nesting step, which is hence responsible of splitting control. In particular, thanks
to the nesting step, we are able to ‘guarantee by construction’ that none of the
component steps may be jumped into at random, and that all the component
steps are always entered at the same time — it is necessary to enter the nesting
step first.

We define below the parallel composition of steps, called parallel assembly
and denoted by //. It states that the parallel assembly of two steps yields a
third, nesting step. Such a step may have only one entry point, and only one
exit point, both denoted by nn.

Definition 14. (Parallel assembly).

P//Q =̂ (P ‖ Q) � {nn} ∈ L � II
M (L) =̂ L′ = 1.L ∪ 2.L

αL(P//Q) =̂ {nn} ∪ αLP ∪ αLQ

Instructions, Blocks, Program Blocks. In this section, we principally add
more structure to the steps defined in the previous section.

First, we redefine the notion of single instruction.

Definition 15. (Single instruction(2)). Let INST be a lv0-step, i.e.
αlsINST = {}, then

m : INST =̂ INST � L = {m} � II

is a single instruction.

UTP Semantics of Reactive Processes with Continuations 129

We may distinguish two types of machine code blocks, according to the assem-
bly operator used for their composition: (purely) sequential blocks (which we
also call proper blocks) are the sequential assembly of single instructions (called
machine code block in HH98 [1]); and parallel blocks (or nesting blocks) are the
parallel assembly of single instructions.

Definition 16. (Proper-, nesting- block). A proper block, say SeqB, is a
program expressible as a sequential assembly of single instructions i.e.

SeqB =̂m0 : INST0 �� m1 : INST1 �� ... �� mn : INSTn

αl(SeqB) =̂ {mi | 0 ≤ i ≤ n}
αls(SeqB) =̂ {}

A nesting block, say ParB, is a program expressible as a parallel assembly of
single instructions i.e.

ParB =̂m0 : INST0 //m1 : INST1 // ... //mn : INSTn

αl(ParB) =̂ {nn}
αls(ParB) =̂ {mi | 0 ≤ i ≤ n}

We expect any instruction to always pass control via a single exit point that
may lead either to a proper instruction or to a nesting one. The definition of
target code below reflects that expectation.

Definition 17. (Proper-, nesting- target code). Let P be a step. Let S
below denote the set of entry points of all the steps that will be executed in
parallel next, and let F denote the corresponding set of exit points.
If αlsP �= {}, then we say that any step of the form 〈(s,S),P , (F , f)〉 is in
nesting target code, and defined by

〈(s,S),P , (F , f)〉 =̂ (L ∈ {s} ∪ S)� ;P ; (L ∈ F ∪ {f })⊥
= varL := {s} ∪ S ;P ; (L ∈ F ∪ {f })⊥ ; endL

However, if P is a lv0-step i.e. αlsP = {}, then S = {} = F; we say that the
step is in proper target code and we may write simply 〈s,P , f 〉.
Notice above that the entry and exit points of the nesting step are independent
of those of the steps supposed to execute in parallel. Upon entry, L is updated
with the continuation s to ensure normal entry into the nesting step itself, and
also with the set S so that the parallel steps may be entered conjointly after-
wards. Upon exit, the value of L is first determined by a given merge function
(cf. parallel assembly Definition 14) that ensures that L′ ∈ F upon exiting the
parallel assembly, and then L should be updated with the continuation f to
provide normal exit out of the nesting step itself.

In what follows, we define the target code for the parallel composition oper-
ator ‖ only.

The parallel composition of two steps simply yields a third, nesting step,
which has its own distinct entry and exit points from those of the steps that are
to be run in parallel. Each component step may start only when its continuation
has been provided by the nesting step.

130 G.E. Ngondi and J. Woodcock

Definition 18. (Target code for parallel composition).

〈(s1,S1),P , (F1, f1)〉 ‖ 〈(s2,S2),Q , (F2, f2)〉 =̂ ∃(s, f) • 〈(s, {s1, s2}),P//Q , ({f1, f2}, f)〉
αl(P//Q) =̂ {s, f }

αls(P//Q) =̂ ({s1, f1} ∪ S1 ∪ F1) ∪ ({s2, f2} ∪ S2 ∪ F2)

We expect the possibility of jumping into nested parallel steps. However, such
jumps may not be left unguarded. The least requirement we can impose is that
the continuation of the parent must figure in the definition of the jump statement
together with the continuations of the children nodes to jump into.

Definition 19. (Vertical jump). jump(f ,F) =̂ L := {f } ∪ F � L = n � II

Placing a label to multiple steps at the same time for the purpose of running
them in parallel may seem like an interesting feature at first, but it would only
add pointless complications. It is sufficient for us to place labels in each program
individually and then run the result (of each labelling procedure) in parallel.

In sum, in this section, we have defined the semantics of programs which may
contain the control variable L, thus extending the range of programs expressible
using HH98 and WH02 to nested parallel programs. We have not discussed the
case of Higher-order (HO) programs and this should be done, given that the
theory of mobile processes for which we have built the continuations above relies
on HO programming. We postpone such a discussion to Sect. 5.

5 Reactive Process Blocks

In this section we present the construction and semantics of Reactive Process
Blocks (or RPB), based on the results obtained previously. RPB processes are
meant to extend UTP-CSP processes with continuations. Since we are also inter-
ested in Higher-order programming, i.e. the possibility of calling a program
within another program, we shall consider the extension of UTP-CSP with HO
programming defined by Tang and Woodcock [6].

Alphabet. First, let us consider UTP-CSP processes as defined in [6]. The
alphabet of a UTP-CSP process P is defined by

αP =̂VarP ∪ Obs ∪ A
where Obs = {o,o′ | o ∈ {ok , tr , ref }} is the set of observational variables; A the
set of events that P may perform (including communications), and VarP the set
of variables that P may use. We may extend such an alphabet with both αLP ,
the continuations of P , and L, the control variable. This yields the following
alphabet for P

αP =̂VarP ∪ {L} ∪ Obs ∪ A ∪ αLP
Such an extension poses no difficulty at all, remembering that the alphabet of a
predicate is simply a collection of symbols (otherwise meaningless on their own).
We will refer to processes with such an alphabet as reactive steps.

UTP Semantics of Reactive Processes with Continuations 131

Healthiness Conditions. UTP-CSP processes are characterised by a
monotonic and idempotent healthiness condition CSP = R ◦ CSP1 ◦ CSP2.

The latter healthiness condition trivially holds under the extension of the
alphabet proposed precedently. Nonetheless, that is not enough for characterising
reactive steps. In order to achieve such a characterisation, it is necessary to
regard the definition of steps given earlier as an additional healthiness condition
that applies to UTP-CSP processes with {L} in their alphabet. We denote that
healthiness condition by RPB1, i.e. RPB1(P) = P � L ∈ αLP � II .

The following law trivially holds:

RPB1 ◦ CSP(P) = CSP ◦ RPB1(P)

Both the control variable L and the observational variables ok and wait allow
reasoning about termination; in addition, L permits reasoning about control,
while ok and wait permit reasoning about intermediate stable states. We need
to ensure that no contradiction arises from the definitions of each of these vari-
ables. Thus, we may define the following laws to ensure the consistency of the
definitions of L, ok and wait variables.

Laws 1 (Consistency between L, ok and wait). The variables wait and L
must agree on the behaviour of a Step prior to its execution.

A1 P ∧ wait ⇔ P ∧ ¬ (L ∈ αLP)

The variables ok and L must agree on the start of the execution.

A2 P ∧ ok ⇔ P ∧ (L ∈ αLP)

The variables ok and wait, and L must agree on valid intermediate states.

A3 P ∧ ok ′ ∧ wait ′ ⇔ P ∧ (L′ ∈ αLP)

The variables ok and wait, and L must agree on the termination.

A4 P ∧ ok ′ ∧ ¬ wait ′ ⇔ P ∧ ¬ (L′ ∈ αLP)

Definition 20. A =̂A1 ◦ A2 ◦ A3 ◦ A4

We may also define RPB =̂ A ◦ RPB1 ◦ CSP.
We may now define reactive steps formally:

Definition 21 (Reactive steps). Any predicate whose alphabet includes that
for reactive processes, and, additionally, both αL, and L, and that is RPB-
healthy is called a reactive step.

132 G.E. Ngondi and J. Woodcock

Basic Predicates and Operators.

We now give the semantics of some basic predicates and operators. Since we are
building a target language for high-level UTP-CSP processes viz. that do not
contain L, we need to specify our basic instructions. The definition of target
code earlier makes it possible of defining arbitrarily complex predicates even as
single instructions. In what follows, we will consider a language with only two
single instructions: assignment and action prefix.

The notation m : INST may be considered as a predicate transformer, a
function that takes a constant value m and a UTP-CSP process INST , and
returns a reactive step with continuations {m}.

Assignment Instruction.

m : (x := e) =̂ (x := e)+L � L = {m} � IIR

αL(

m : (x := e)
)

=̂ {m}

Simple Action Prefix Instruction.

m : (a → SKIP) =̂ (a → II)+L � L = {m} � SKIP
(a → SKIP) =̂ CSP1(ok ′ ∧ doA(a))

doA(a) =̂ Φ(a /∈ ref ′ � wait ′ � tr ′ = tr � 〈a〉)
Φ =̂ R ◦ andB = andB ◦ R

αL(

m : (a → SKIP)
)

=̂ {m}

where andB =̂B ∧ X , and B =̂ (tr ′ = tr ∧ wait ′) ∨ tr < tr ′, and X denotes any
predicate of a given UTP theory.

We may then define, in an analogue way to HH98, basic (sequential) blocks,
basic parallel blocks, and proper blocks (or reactive process blocks).

Assuming that every other operator is well-defined, we now turn to the case
of higher-order (HO) programming. A HO program or procedure is one that may
be assigned as the value of a HO process variable. {| P |} denotes the procedure
that, when executed, behaves like process P .

HO Variable Declaration. In UTP-CSP, the declaration of a HO variable
h supposes that h may only contain as values procedures that have the same
actions set A. We may follow this idea for continuations too. We assume that
any HO variable h may only receive for value procedures that have the same
continuations. Thus, besides the latter assumption about continuations, there
is no need for modifying the existing definition of variable declaration that was
given for UTP-CSP processes in [6].

6 Conclusion

We have presented continuations for reactive processes, with an emphasis on
the semantics for the parallel composition operator, and we have also defined

UTP Semantics of Reactive Processes with Continuations 133

continuations for HO programs. These results find an immediate application
in the semantics for strong mobility for UTP-CSP which we aim to publish in
the near future. The model presented in this paper does apply to all programs
that may contain parallel operators, and not only to UTP-CSP. An interesting
ongoing work is the study of the healthiness conditions A1 to A4, in view of
their eventual simplification.

Acknowledgments. We are grateful to the anonymous reviewers for their useful
comments.

References

1. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle River (1998)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

3. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper
Saddle River (1998)

4. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in unifying theo-
ries of programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE
2004. LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006). doi:10.1007/
11889229 6

5. Tang, X., Woodcock, J.: Travelling processes. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 381–399. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27764-4 20

6. Tang, X., Woodcock, J.: Towards mobile processes in UTP. In: SEFM 2004, pp.
44–53. IEEE (2004)

7. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. In: TSE 1998,
vol. 24, pp. 342–361. IEEE (1998)

8. Woodcock, J., Hughes, A.: Unifying theories of parallel programming. In: George,
C., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 24–37. Springer, Heidelberg
(2002). doi:10.1007/3-540-36103-0 5

9. Jahnig, N., Gothel, T., Glesner, S.: A denotational semantics for communicating
unstructured code. In: FESCA 2015, EPTCS, vol. 178, pp. 9–21 (2015)

10. Reynolds, J.C.: The discoveries of continuations. LISP Symbolic Comput. 6, 233–
247 (1993)

11. Strachey, C., Wadsworth, C.P.: Continuations: a mathematical semantics for han-
dling full jumps. Higher-Order Symbolic Comput. 13, 135–152 (2000)

12. Danvy, O., Filinski, A.: Representing control: a study of the CPS transformation.
Math. Struct. Comp. Sci. 2, 361–391 (1992)

13. Felleisen, M., Friedman, D.P., Duba, B.F., Merrill, J.: Beyond continuations. Tech-
nical report, Indiana University Computer Science Department (1987)

14. Giorgi, J.F., LeMetayer, D.: Continuation-based parallel implementations of func-
tional languages. In: LFP 1990, pp. 209–217. ACM (1990)

15. Moreau, L., Queinnec, C.: Partial continuations as the difference of continua-
tions a duumvirate of control operators. In: Hermenegildo, M., Penjam, J. (eds.)
PLILP 1994. LNCS, vol. 844, pp. 182–197. Springer, Heidelberg (1994). doi:10.
1007/3-540-58402-1 14

16. Todoran, E., Papaspyrou, N.S.: Continuations for parallel logic programming. In:
PPDP 2000, pp. 257–267. ACM (2000)

http://dx.doi.org/10.1007/11889229_6
http://dx.doi.org/10.1007/11889229_6
http://dx.doi.org/10.1007/978-3-540-27764-4_20
http://dx.doi.org/10.1007/978-3-540-27764-4_20
http://dx.doi.org/10.1007/3-540-36103-0_5
http://dx.doi.org/10.1007/3-540-58402-1_14
http://dx.doi.org/10.1007/3-540-58402-1_14

	UTP Semantics of Reactive Processes with Continuations
	1 Introduction
	2 UTP Background - Continuations for Sequential Programs
	2.1 An Overview of UTP
	2.2 Continuations in UTP

	3 Concepts and Formalisation
	4 Continuations for Programs with Nested Parallelism
	5 Reactive Process Blocks
	6 Conclusion
	References

