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Preface

Interest in the fundamental problem of the combination of formal notations and theories
of programming has grown consistently in recent decades. The theories define, in
various different ways, many common notions, such as abstraction, refinement, choice,
termination, feasibility, locality, concurrency, and communication. Despite these dif-
ferences, such theories may be unified in a way that greatly facilitates their study and
comparison. Moreover, such a unification offers a means of combining different lan-
guages describing various facets and artifacts of software development in a seamless
and logically consistent manner.

C.A.R. Hoare and Jifeng He’s Unifying Theories of Programming (UTP) is widely
acknowledged as one of the most significant such unification approaches. Based on
their pioneering work, the aims of the UTP Symposium series are to reaffirm the
significance of ongoing UTP research efforts and to stimulate advancement of the state
of the art in the field. The symposium provides a focus for the sharing of results by
those already actively contributing, as well as raising awareness of the benefits of such
unifying theoretical frameworks among the wider computer science and software
engineering communities.

The UTP 2016 Symposium was held over two days (June 4–5, 2016) in conjunction
with the Integrated Formal Methods (iFM) 2016 Conference in the capital city of
Reykjavik, Iceland, on the campus of Reykjavik University. The iFM 2016 general
chair, Marjan Sirjani, and the workshop chair, Marcel Kyas, both of Reykjavik
University, were especially helpful in the organization of the UTP Symposium.

UTP 2016 was co-sponsored by Reykjavik University itself and also East China
Normal University. It was the sixth symposium in the UTP series. Previous, UTP
symposia have been held successfully every two years in Durham, UK (2006), Dublin,
Republic of Ireland (2008), Shanghai, China (2010), Paris, France (2012), and
Singapore (2014).

A pleasing feature of the UTP 2016 Symposium was the presence for the first time
of both of the founding fathers of UTP, Prof. Sir Tony Hoare (Microsoft Research
Laboratory, Cambridge, UK) and Prof. Jifeng He (East China Normal University,
Shanghai, China). They previously worked together at the Programming Research
Group within the Oxford University Computing Laboratory in the UK, where they
developed their ideas that led to their co-authored foundational book on UTP, pub-
lished in 1998. Both gave keynote talks that added considerably to the UTP 2016
program.

In addition, a panel discussion chaired by Prof. Jonathan Bowen on “UTP Past,
Present and Future Directions” was held at the end of the first day, with contributions
by panelists Tony Hoare, Andrew Butterfield (Trinity College Dublin, Republic of
Ireland), Ana Cavalcanti, and Jim Woodcock (both of University of York, UK). The
panelists discussed how they first became involved and interested in UTP, gave an
overview of their current work in UTP, and provided their thoughts on where they saw



UTP going in the future. Later, Andrew Butterfield delivered an entertaining and
apposite after-dinner speech at the symposium dinner, held in a historic building at a
lakeside location in central Reykjavik.

As well as the keynote talks and panel discussion, eight peer-reviewed papers were
presented at the UTP 2016 Symposium. Drafts of the papers were given to symposium
attendees on USB sticks and revised version of the papers are included in these
proceedings.

In summary, we hope that you enjoy this volume, providing a selection of recent
research developments and perspectives in the area of Unifying Theories of Pro-
gramming (UTP). Further information related to the UTP 2016 Symposium can be
found online under: http://utp2016.ecnu.edu.cn

November 2016 Jonathan P. Bowen
Huibiao Zhu
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A Discrete Geometric Model of Concurrent
Program Execution

Bernhard Möller1(B), Tony Hoare2, Martin E. Müller1, and Georg Struth3

1 Institut für Informatik, Universität Augsburg, Augsburg, Germany
bernhard.moeller@informatik.uni-augsburg.de

2 Microsoft Research, Cambridge, UK
3 Department of Computer Science, The University of Sheffield, Sheffield, UK

Abstract. A trace of the execution of a concurrent object-oriented pro-
gram can be displayed in two-dimensions as a diagram of a non-metric
finite geometry. The actions of a programs are represented by points,
its objects and threads by vertical lines, its transactions by horizontal
lines, its communications and resource sharing by sloping arrows, and its
partial traces by rectangular figures.

We prove informally that the geometry satisfies the laws of Concur-
rent Kleene Algebra (CKA); these describe and justify the interleaved
implementation of multithreaded programs on computer systems with a
lesser number of concurrent processors. More familiar forms of semantics
(e.g., verification-oriented and operational) can be derived from CKA.

Programs are represented as sets of all their possible traces of exe-
cution, and non-determinism is introduced as union of these sets. The
geometry is extended to multiple levels of abstraction and granularity; a
method call at a higher level can be modelled by a specification of the
method body, which is implemented at a lower level.

The final section describes how the axioms and definitions of the geom-
etry have been encoded in the interactive proof tool Isabelle, and reports
on progress towards automatic checking of the proofs in the paper.

Keywords: Concurrent Kleene Algebra · Laws of programming · Trace
algebra · Semantic models · Refinement · Unifying theories

1 Introduction

The intent of this paper is to make a modest but seminal contribution towards an
ambitious long-term goal. The goal is to provide a secure conceptual foundation
for the design, implementation and effective use of future program debugging
tools. They will assist in unit testing, component integration, and evolution of
concurrent and distributed systems software on an enterprise scale. Such tools
will provide differential analysis of changed code, generation of effective test
cases, run-time detection of errors, and assistance in their location, diagnosis
and correction. The errors will include generic errors defined by the programming
language (e.g., overflows), violation of properties explicitly defined as assertions
c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 1–25, 2017.
DOI: 10.1007/978-3-319-52228-9 1



2 B. Möller et al.

or assumptions in the program, as well as violations of behavioural design pat-
terns originally laid down by the system architect. The tools will communicate
with the programming teams by displaying a navigable trace of events leading
up to the suspected anomalies – a technology known as “time-travel debugging”.

Our modest contribution is to formalise a discrete geometry governing dia-
grams of program behaviour. The diagrams will include actions of the program
that are relevant to an anomaly, as well as communications and other causal
dependencies between the actions.

We provide an example of the application of the geometry to a concurrent
object-oriented program. The set of all possible traces of execution of a particular
program is a mathematical formalisation (model) of its meaning. Technically, it
is known as a denotational semantics. We prove that this semantics satisfies the
star-free laws of a Concurrent Kleene Algebra (CKA); this gives an algebraic
semantics that justifies program transformation rules applied in optimisation.
From the algebraic semantics it is possible to derive other familiar and widely
applied forms of semantics (e.g., operational and verification-oriented). We offer
this as evidence of the potential applicability of geometry to current and future
programming practice.

Further evidence is provided by quoting the many sources of ideas that have
been amalgamated into our theories. Our geometric foundation is inspired by
graphical research tools developed and applied to the analysis of relaxed mem-
ory models, [1,19]. The pattern of horizontal and vertical lines in our diagrams
is taken from Message Sequence Charts (MSC) [8] which are widely used to plan
and record the architecture of a large-scale computer application. Our concept
of a transaction matches the transition of a Petri Net, [23]. Our assertion lan-
guage for specification of traces is Concurrent Separation Logic [6,22], widely
used by seekers of proofs for concurrent programs. Finally, our motivation and
methodology are those of past and current research into Unifying Theories of
Programming [14].

Summary

In Sect. 2 the primitive concepts of our geometry are enumerated as points,
lines and figures, drawn on a two-dimensional surface. The vertical dimension
represents time, the horizontal one space. Actions of a program are represented
by points, objects by vertical lines, and transactions by horizontal lines. Points
occur only at the intersection of a vertical with a horizontal line. Arrows are
defined as segments of lines between two neighbouring points on a line. A figure
contains a subset of points, and its perimeter is the set of arrows which connect
its internal points to points in its external environment.

A figure (called a tracelet) is a trace of execution of some component of a
structured program. It may be decomposed into two disjoint but neighbouring
subsets p and q in two ways: one of them (p; q) represents sequential composition,
and the other (p|q) represents concurrent composition. The arrows between p
and q form the common part of the perimeter that separates them. A tracelet
containing a single transaction cannot be further decomposed.
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Section 3 introduces the concept of a tracelet as a figure representing the exe-
cution of some nested component of the program structure. Typical components
are (p; q) or (p|q), standing for sequential or concurrent composition of subordi-
nate components p and q. The actions of the original (bracketed) tracelet may
then be split disjointly into separate tracelets for p and for q, which therefore
share no actions. The arrows between them form a shared part of the perimeter
of both of them. A line that passes through all the shared arrows can be drawn
horizontally in the case of sequentiality or vertically in the case of concurrency.
The splitting process may be continued until every tracelet contains only a single
transaction, which cannot be further decomposed. The empty tracelet represents
execution of a null command of the program, which of course does nothing.

Section 4 defines a pre-ordering relation p ≤ q between tracelets. It means
that p is a possibly more interleaved version of q. If the converse relation also
holds, the two tracelets are regarded as equal. From the definition of the order-
ing we prove informally all the laws of CKA whose variables range over single
tracelets. They are as follows:

1. The operators ; and | are both associative, and both have the null command
as unit.

2. Both operators are monotonic, for example p ≤ q implies p; r ≤ q; r and
r; p ≤ r; q.

3. Finally, an “interchange” law expresses a characteristic property of interleav-
ing: (p|q); (p′|q′) ≤ (p; p′)|(q; q′).

In an example proof we use a combination of all these laws to derive a fully
interleaved version of an example tracelet.

Section 5 defines a program as the family of all its possible executions. The
family is therefore downward closed, in that it contains all the more interleaved
versions of any tracelet that it contains. A non-deterministic choice between
programs is simply the set union of their two families. This disjunction has all
the usual algebraic properties: associativity, commutativity, and idempotence; in
addition, both ; and | distribute through it. The unit of disjunction is the empty
family of traces, denoting a program which has no executions. This is the fate
of a program containing a syntax error or a type error, or other errors which
the language definition requires to be detected at compile time. Section 6 gives a
simpler (more abstract) model of CKA. It abstracts from the intricate network
of internal actions and arrows of a tracelet, and defines the two composition
operators solely in terms of the perimeters of the operands. The common part
of their perimeters is removed, and the rest forms the perimeter of the result
of the composition. The function which maps a tracelet to its perimeter is a
homomorphism w.r.t. ; and |, and therefore preserves all the star-free algebraic
properties of the CKA. For some purposes, this perimeter model is an over-
simplification, because it fails to model the phenomenon of deadlock resulting
from a cyclic chain of causation. Cyclicity is a programming error that halts
a group of threads, when each of them is waiting for occurrence of actions of
other members of the cycle. This problem is solved by a second model, which
retains the internal causal connectivity between the arrows of the perimeter. This
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model enables absence of deadlock to be proved, or at least detected. Section 7
reports early steps towards a formalisation of the geometric model in Isabelle.
So far it provides the concepts and mechanical proofs of most concepts of the
previous section. It gives a summary of the remaining steps towards a complete
formalisation.

2 Primitive Concepts

We model a concurrent computer program as the set of all its possible execu-
tions on any computer system that offers an implementation of its programming
language. Each execution is modelled by a discrete geometric diagram called a
trace, which is drawn on a two-dimensional surface. The horizontal axis repre-
sents spatial distribution of locations in the memory of the computer system.
The vertical axis represents the interval of time during which the program is
executed.

The primitive components of our discrete geometry include analogues of the
points, the lines and the figures familiar from Euclidean geometry. We have no
concept of measurement of time or of distance in space. We maintain a distinction
between horizontal and vertical coordinates; but whenever convenient, they are
not drawn straight. Labels may be attached to a component: they describe its
interpretation in the actual program execution.

A point represents a primitive action performed inside or in the immediate
vicinity of the computer system during a single execution of the complete pro-
gram. Every point is the unique member of the intersection of a horizontal and
a vertical coordinate; all other such intersections are empty.

A vertical line is a non-empty sequence of points along a vertical coordinate
that represent the sequential behaviour of an object stored at a particular loca-
tion of the computer memory. This location number or name serves as a label
unique to the line. Typical objects are threads or (possibly structured) variables.
The topmost point of the line represents the primitive action of allocation of the
object (or forking of a thread), and its bottommost point represents its disposal
(or join of a thread). The intermediate points represent the temporal sequence
of actions in which the object engages while it exists.

A horizontal line is a non-empty sequence of points along a horizontal coor-
dinate whose actions appear to take place simultaneously as a single transaction.
It is labelled by a reference to the basic command in the program which called
for its execution. Apparent simultaneity will be ensured by disallowing any state
of memory which records the performance of only some of the actions of a trans-
action, while omitting the rest. This follows the familiar definition of atomicity,
without placing any constraint on how it is implemented.

A frequent type of transaction contains just two actions, one from the thread
issuing the instruction that triggered the action, and the other from an object
(usually owned by that thread) which performs the action required by the
instruction. A transaction containing just a single action of a single object rep-
resents an autonomous behaviour of the object. Other transactions involve more
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than two objects. For example, a communication on a synchronised channel
requires simultaneous actions of six objects: two threads, an output port and an
input port for the channel, and finally two variables which supply and receive
the communicated value.

A pair of consecutive points on the same line is called an arrow. On a vertical
line, the higher point is called the source, and the lower one is the target. On a
horizontal line, an arrow may point either to the left or to the right. A vertical
arrow is labelled by the value stored in its location of memory during the interval
between its source action and its target action.

A subset of horizontal and vertical arrows represent buffered communications
between threads. A horizontal communication arrow is labelled by the value of
the message communicated. A vertical communication arrow conveys ownership
of the object from one thread to another. It is convenient to draw communication
arrows sloping at a slight angle from their nominal orientation.

A tracelet contains, surrounded by a rectangle, the subset of the points of
a trace which occurred during execution of a single syntactic component of a
structured program, i.e., a node in its abstract syntax tree (AST). This means
that the complete trace is an execution of the root of the AST; and a typical
leaf of the AST is a basic command of the program whose execution is a tracelet
containing a single transaction. An empty tracelet (which we will call 1) is an
execution of the null command, which of course does nothing.

To summarise the basic concepts of our discrete geometry, we introduce
names for infinite mathematical universes, containing all conceivable instances
of the primitive concepts of our geometry. Let Pt be the set of all conceivable
points; let Vert be the universe of all pairs of points that might feature as the
tail or the head of an arrow in a vertical line. Let Hor be the set of all pairs
of points that might feature as tail and head of a horizontal arrow. Let Comm
be the set of all communication arrows (often drawn diagonally); they are also
either in Vert or in Hor. Define Dep = Vert+Hor, where + denotes the union of

Fig. 1. A sample tracelet
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disjoint sets. Its pairs are called arrows or dependences, because it is impossible
for the tail action of an arrow to be performed before its head action.

Example 2.1. Figure 1 shows a typical small tracelet. Its points are enclosed
in a rectangular perimeter. There are six vertical lines, carrying the labels
c?, t, x, u, y and d!. Each label stands for the name or location of the object
whose behaviour is recorded in the labelled line. All the vertical lines (except x,
which is local to this tracelet) extend beyond the rectangle, both above it and
below it. The lines t and u stand for threads, x and y are variables, c? is the
input port of a channel, and d! is the output port of a different channel.

There are also seven horizontal lines. Two of them extend beyond the perime-
ter of the tracelet, one on the left and the other on the right. The three lines
on the left each contain an action of the thread t, which issues the command
for the transaction to occur. Similarly, the four lines on the right are executions
of commands from the thread u. The other actions in each transaction are per-
formed by objects (variables) owned by the threads: x is owned by t on the left
and by u on the right.

The diagonal arrow in the middle of the diagram is a vertical arrow repre-
senting transfer of ownership of the variable x from the thread t to the thread
u. The diagonal arrows entering and leaving the perimeter on the left and on
the right are inputs and outputs of values on the buffered channels c and d,
respectively.

The example shows a trace of the life history of the variable x. It begins with
the allocation by its initial owner, the thread t. The next action is the allocation
of an initial value to the new object. The value is acquired by input from channel
c. The next two actions are a release of ownership by t, and its acquisition by the
other thread u. This thread then outputs on channel d the value of the variable
y, incremented by the current value of x. Finally, the variable x is disposed by
its current owner. ��

3 The Geometry of Tracelets

In this section, all tracelets will be subsets of the points of one single overall
trace. Recall that each point is uniquely labelled by its coordinates. We can
therefore identify a tracelet uniquely within its trace by the set of its points. All
arrows that begin or end in a point of a tracelet are considered as part of that
tracelet as well. For tracelets we use variables p, q, r, . . .. The exterior −p of p is
defined as its relative complement Pt − p, containing all points not in p.

Let × denote the Cartesian product operator between sets, i.e. the set of
pairs (the relation) which contains all members of its first operand paired with
all members of its second operand. By convention × binds tighter than union
and intersection. The input arrows of p are input(p) =df −p×p ∩ Dep, and the
output arrows are output(p) =df p×−p ∩ Dep. We define the perimeter of p as
the set of arrows which have one end in p and the other end outside it; or more
formally, perimeter(p) = input(p) + output(p).
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As mentioned in Example 2.1, a tracelet p is drawn as a rectangle which
encloses all the points in p, and excludes all points in −p. That rectangle does
not pass through any of these points; it passes just once through each of the
perimeter arrows.

Note (for interest) that the bounding rectangle is a closed curve that satisfies
an analogue of the Jordan Curve theorem. Define a continuous line as a finite
non-repeating sequence of arrows, in which the source or target of each arrow is
also the target or source of one of its pair of neighbours within the sequence, or
of its only neighbour in the case of endpoint of the chain. Every chain of arrows
from one endpoint inside the rectangle to another endpoint outside it must cross
at least one rectangle edge. This is proved by a simple induction on the length
of the chain.

The perimeter of a rectangle is partitioned into its four edges. A horizontal
edge does not contain any horizontal arrows, unless they are (sloping) commu-
nication arrows. Similarly, a vertical edge does not contain any vertical arrows
unless they are transfers of ownership (also sloping). In drawing a perimeter, the
top and bottom edges are horizontal and the left and right edges are vertical.

Each horizontal edge of the perimeter defines the state of part of the memory
of the computer system at the relevant time coordinate. It is known in separation
logic as a statelet. The top edge defines the initial state that is passed to the
tracelet when it starts, and the bottom edge is passed as the final state on
completion of execution.

The content of the memory at each horizontal edge is defined by the labels
on the arrows that pass through the edge. It is defined in the standard way as
a partial function which maps the location of each arrow crossing the edge (say
l1, l2, . . .) to the value (say v1, v2, . . .) which labels that arrow. The function is
written in the notation of separation logic. The infix binary operator ∗ stands
for the disjoint union of the functions on either side of it. The function (l �→ v)
is a singleton function, whose whole domain is the singleton {l} and which maps
l to v. The value of the whole statelet is written in the form

(l1 �→ v1) ∗ (l2 �→ v2) ∗ · · ·
In separation logic, this formula is interpreted as an assertion that the value of
l1 is v1, and the value of l2 is v2, etc.

The content of a vertical edge of a tracelet is defined similarly. But first,
we must supply distinct names for all the messages that cross the edge. In the
case of a communication channel, we use the channel name subscripted by the
index of the message in the sequence of all messages passed on the channel, for
example: (c4 �→ 12).

The specification of a tracelet contains the formula for all four edges of its
perimeter. The formula for Fig. 1 is written on separate lines for each edge.

(y �→ 3) ∗ (c?, d!, t, u �→ ) at the Top
(d27 �→ 12) on the Right
(y′ �→ 4) ∗ (c?, d!, t, u �→ ) on the Bottom
(c9 �→ 8) on the Left
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The first line states that the initial value of y is 3, and that the other named
objects have been allocated. The second line says that (say) the 27th message
sent on channel d was 12. The third line gives the final value of y, and states
that the other objects are still allocated. The fourth line states that channel c
received the value 8 as the 9th message.

3.1 Sequential and Concurrent Composition

Our definition of the ; and | operators will be unconventional. Instead of defining
how two tracelets can be composed to give the required result, we describe how
the result can be decomposed to give the tracelets of its parts. It seems to be
easier to learn first how to take something apart, and how to put it together
later.

Fig. 2. Sequential composition

Consider a node of the program AST labeled by the operator of sequential
composition. Let r be the tracelet for the considered node, and let p and q be the
tracelets for its two immediate offspring in the corresponding AST. We describe
this situation by the equation r = p;q. Now draw a horizontal coordinate internal
to the rectangle for r, with all points in p above it, and all points in q below it.
The diagram (see Fig. 2) makes it clear that the rectangle for p shares its top
edge with r, and its bottom edge with q; similarly, the bottom edge of q is shared
with that of r. The left and right edges of r are split into two disjoint parts, and
the two top parts are assigned to p and the lower parts to q.

A defining feature of sequential composition is that an implementation can
execute it by completing the execution of it first operand before starting execu-
tion of the second operand. This would be impossible if any action of the first
operand were dependent on any action of the second operand. So the drawing
of a horizontal edge is subject to the constraint that no arrow should point from
its second operand to its first. That is assured by the fact that a horizontal
edge contains only vertical and sloping horizontal arrows, and they all point
downwards.

The practical consequence of this constraint is that is impossible to violate
the atomicity of a transaction, except at one of its sloping arrows. Memory is
represented by a horizontal edge; so any memory that records the result of the
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action at one end of a non-sloping horizontal arrow must also record the action
at the other end. Otherwise the constraint is violated.

Fig. 3. Concurrent composition

A similar diagram can be drawn for concurrent composition (see Fig. 3), with
a new vertical edge instead of a horizontal one. It leads to a similar pattern of
sharing of left and right vertical edges, and a similar splitting of the top and
bottom horizontal edges. Again, the vertical edge can contain only horizontal
and sloping arrows pointing from left to right.

The practical consequence of this constraint is that no object can be owned
by more than one thread at any one time. The only way that an object can be
shared between two threads is by passing ownership between them by means a
sloping vertical arrow. In a conventional view of sharing, ownership is passed
between every pair of its actions. Such an object is represented geometrically by
a vertical line, all of whose arrows are sloping.

If any of the constraints described above are violated, we simply say that the
diagram for p; q or for p|q is undefined; it is just not a tracelet. A composition is
also undefined if the values which label any arrow in the edge differ in the two
operands. Further reasons for the undefinedness of transactions that executed
basic commands are given in the definition of these commands, which should be
given in the definition of any particular programming language. Further pursuit
of this topic is beyond the scope of this paper.

Summary. To summarise and complement our decompositional definitions of
the operators, we give a bottom-up formal presentation of some of the details.
We start with a diagrammatic presentation. Figures 2 and 3 show explicitly the
pattern of arrows that cross the internal and external edges of a tracelet split
horizontally or vertically. Each arrow of the figures represents a (maybe empty)
set of arrows in a diagram. Arrow sets that must be empty are simply not shown.
We use the convention that horizontal arrows leave their rectangle through the
right edge, and enter it through the left edge.

The equations given below are derived by studying the figures. Let T (p) be
the set of arrows crossing the top edge of p, and let B(p), L(p), and R(p) be
defined similarly as the bottom, left and right edges. Then Fig. 3 shows that
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T (p | q) = T (p) + T (q), B(p | q) = B(p) + B(q).

The disjoint union is the separating conjunction that defines the initial and
the final states of p | q: we have B(p) ∩ T (q) = {} = T (p) ∩ B(q). There are no
vertical arrows between p and q. This means that no state of memory is passed
between them:

L(p | q) = (L(p) − R(q)) + (L(q) − R(p)).

The horizontal inputs of p are taken either from the horizontal inputs of q or
from the environment of p | q (but not both); and similarly for the horizontal
inputs of q. The equation for R(p | q) is similar, with L and R interchanged.

Note the dashed curved arrow from R(q) to L(p). Since p is on the left of
q, the arrow from p to q cannot be drawn as a straight line in two dimensions
while observing the above convention. One could imagine that it was drawn on
the back of the paper on which the diagram is drawn. Or one could maintain
a uniform left-to-right direction of horizontal arrows by imagining the whole
diagram drawn on the curved surface of a cylinder.

Figure 2 shows the graph for sequential composition. It differs from Fig. 3
in two ways. Firstly, the curved arrow is removed, because it would violate
our intended meaning of sequential composition. It would actually prevent an
implementation of sequential composition from executing the whole of p before
starting the execution of q. Secondly, a new internal arrow is introduced to stand
for the transmission of the state of memory on termination of p and initiation
of q. That is surely another part of our intention when using semicolon.

Derivation of the equations for sequential composition from this diagram is
left as an exercise.

3.2 Quadrangulation

We now describe a process for splitting a complete trace or tracelet into all its
component tracelets, so that it matches the AST of the program whose execution
it represents. The splitting described above for p;q or p|q is repeated on p and on
q, and then repeatedly on the smaller tracelets that result from earlier splittings.
Once a tracelet has been split it cannot be split again as a whole — only its
parts might be split further. Therefore no arrow can be split more than once
by a horizontal or a vertical edge. By analogy with the familiar triangulation of
figures in Euclidean geometry, we call the process quadrangulation. The process
is complete when all splittable arrows have been split exactly once.

The completely quadrangulated tracelet is a tree which exactly matches the
AST of its program. The points of each tracelet in it are the disjoint union of
the points of each of its offspring. So any tracelet includes all points of any
of its descendants, and is included among the points of all its ancestors. It is
helpful to use the text of the program itself as a linear representation for the
whole quadrangulated tracelet. Typical examples of such terms are p | (q | r)
and (p | q) ; (p′ | q′), where p, q, . . . are variables standing for further descendant
tracelets, or (in the case of a leaf) the corresponding basic command of the
program.
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Example 3.1. Figures 4 and 5 show the result of the first three steps in two
different quadrangulations of the tracelet shown in Fig. 1. To avoid distraction,
the labels that are irrelevant to our current purposes have been removed. The
titles on the figures are the formulae that describe the quadrangulations. They
use bracketing to indicate the order in which the splits were made.

Fig. 4. Tracelet from Fig. 1 split as (p|q); (p′; q′)

In Fig. 4 the first split is horizontal and the next two are vertical, whereas in
Fig. 5 this order is reversed.

Fig. 5. Tracelet from Fig. 1 split as (p; p′)|(q′; q′)

Otherwise, the figures are very similar. All the points and arrows internal to
each of the rectangles p, p′, q, q′ are identical on both figures, and all the internal
arrows and splits within them are the same. The only difference is at the centre
of the diagram, where the sloping communication arrow is split horizontally in
Fig. 4, whereas it has been split vertically in Fig. 5. ��

4 Algebra of Tracelets

In this section, we will continue to use the single word tracelet for a quadran-
gulated tracelet. Our algebra is a pre-order algebra, in the sense that it uses a
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pre-order relation ≤ (i.e., a reflexive and transitive relation), in place of the more
usual equality symbol = between the left and right hand sides of an equation.
In an order algebra, an analogue of equality is re-introduced as an equivalence,
again written as = , defined as the conjunction of ≤ and its converse. In our
geometry, the ordering p ≤ q between tracelets p, q has an informally expressed
meaning that p represents a more sequential execution than the one represented
by q or equivalently that q is more concurrent than p.

To formalise this intuitive definition, we define V (p) as the set of all sloping
arrows crossing a vertical edge internal to p. Then

V (1) = {},
V (p ; q) = V (p) + V (q)
V (p | q) = V (p) + V (q) + (p × q + q × p) ∩ Hor.

Similar equations are satisfied by H(p), the set of all sloping arrows crossing
horizontal edges in p:

H(1) = {}
H(p ; q) = H(p) + H(q) + p × q ∩ Vert
H(p | q) = H(p) + H(q)

Every internal sloping arrow of p may be in V (p) or H(p), but never in both. If
p is completely quadrangulated then the sets V (p) and H(q) are complements of
each other relative to the set Comm ∩ p×p of all sloping arrows within p. Hence,
if p and q are complete quadrangulations with identical underlying tracelets then
by contraposition it follows that

V (p) ⊆ V (q) ⇐⇒ H(q) ⊆ H(p).

For an unsplit tracelet, V and H return {}.
We define the relation p ≤ q in two clauses. The first requires that p and

q are entirely equal as tracelets; only their quadrangulations can differ. Hence
the two tracelets have the same actions, and the same internal arrows, with the
same orientations and the same labels. In particular, all the arrows not split by
the quadrangulations match exactly in p and q. The second clause requires that
V (p) is contained in V (q) and H(q) is contained in H(p). By the above remark,
if V (p) and H(p) as well as V (q) and H(q) are relative complements (which
holds, in particular, for complete quadrangulations p, q) then we may use either
alternative at convenience. The definition allows a sloping arrow that crosses a
horizontal edge in p to cross a vertical edge in q. Because set inclusion is a partial
order, so is the relation ≤.

Example 4.1. Let r and r′ be the quadrangulations in Figs. 4 and 5, respec-
tively, and let a be the only diagonal arrow there. Then we have V (r) = {} and
H(r) = {a}, whereas V (r′) = {a} and H(r′) = {}. Since there is exacly the
communication arrow a in both r and r′, V (r) and H(r) as well as V (r′) and
H(r′) are relative complements of each other. According to the remarks above
and in Example 3.1 therefore r ≤ r′. Below we will see that this is a special
instance of a general law. ��
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From the definition we will now derive a set of algebraic laws governing
sequential and concurrent composition; they are the basic laws of a Concurrent
Kleene Algebra (CKA) [17]. For simplicity, we restrict ourselves here to com-
plete quadrangulations. This allows us in each case to choose the simpler of the
equations for V and H. There is a treatment of the general case which will be
presented in a follow-up paper.

Theorem 4.2 (example). p ; q ≤ p | q and q ; p ≤ p | q.

Proof. V (p ; q) = V (q ; p) = V (p) + V (q) ⊆ V (p | q), by the definition of V . ��
This theorem justifies the implementation of the concurrent composition by

executing the operands in either order. However the justification is void in the
case that the left hand side is undefined. The existence of dependences between
one operand and the other will make one or both of the interleavings void.

Note that both interleavings of p | q are below it in the ordering, but that | is
not itself commutative. Thus our model does not satisfy the standard definition
of sequential consistency, that concurrency is a non-deterministic choice of all
its possible interleavings. An asymmetric example of concurrency is the chaining
operator >> of CSP which allows communication only from left to right.

Theorem 4.3 (unit). p | 1 = p = 1 | p (and the same for ;).

Proof. V (p | 1) = V (p) + V (1) + p × {} ∩ Hor ∩ Comm = V (p). The second and
third terms on the rhs are both empty. In words: there are no points in 1, and
therefore no arrow can cross its (invisible) perimeter. ��
Theorem 4.4 (association). p | (q | r) = (p | q) | r (and the same for ;).

Proof. H(rhs) = H(p | q) + H(r) = H(p) + H(q) + H(r) =
H(p) + H(q | r) = H(lhs).

The proof for ; is similar, using V instead of H. ��
Theorem 4.5 (monotonicity). If p ≤ q then p ; r ≤ q ; r (and the same for |).
Proof. Assume V (p) ⊆ V (q). Then, by monotonicity of + and the hypothesis,

V (p ; r) = V (p) + V (r) ⊆ V (q) + V (r).

The proof for | uses H instead of V . ��
Theorem 4.6 (interchange). (p | q) ; (p′ | q′) ≤ (p ; p′) | (q ; q′).

Proof. Let K = V (p) + V (q) + V (p′) + V (q′). Then

V (lhs) = K + (p × q + p′ × q′) ∩ Hor ∩ Comm ⊆
K + (p + p′) × (q + q′) ∩ Hor ∩ Comm = V (rhs),

because × distributes through +. ��
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Corollary 4.7 (frame). (p | q) ; p′ ≤ (p ; p′) | q and p ; (p′ | q′) ≤ (p ; p′) | q′.

Proof. For the first law substitute 1 for q′. By the unit law, the occurrences of
1 can be cancelled. The second law follows symmetrically. ��

Note that Theorem 4.2 follows by setting p′ = 1 and substituting q for q′ in
the second law and by setting p = 1 and substituting p for p′ in the first law.

The purpose of algebraic laws is to permit an implementation to replace
the text of a submitted program by another text derived from it by algebraic
reasoning. The hope is that the executed code will be better adapted to the
structure and the detail of the capabilities of the executing hardware. Such
transformations may be made by a compiler or by an instruction pipeline in the
hardware of a computer chip.

For example, suppose the executing computer system has less processors than
the number of threads initiated by the running program. In this case, concur-
rency has to be replaced by interleaving (time-sharing), in which an execution
of several threads may be an interleaving of their separate sequential traces. In
fact, repeated application of all the laws proved above can generate arbitrary
interleaved executions of any pair (or group) of concurrent program.

This is demonstrated by an example of a fully algebraic proof. To avoid
clutter, semicolons are omitted except when they are necessary to indicate how
the interchange law is to be applied. Also, the use of monotonicity remains tacit.

abcd | xyzw

= {[ (assoc ;) ]}
(a ; bcd) | (xy ; zw)

≥ {[ (interchange) ]}
(a | xy) ; (bcd | zw)

≥ {[ (assoc ;) ]}
a | (x ; y) ; (b ; cd | zw)

≥ {[ (frame) ]}
(a | x) ; y ; (b | zw) ; cd

≥ {[ (Theorem 4.2) ]}
axybzwcd.

Interleaving is introduced by each step that uses the interchange law or its
corollary. The position of the semicolon indicates a scheduling decision that
the two semicolons on the rhs of the law will be reached simultaneously by both
threads, at exactly the moment when the lhs reaches its single semicolon. Dif-
ferent scheduling decisions would use different associations at each step, and
thereby generate all possible different interleavings.

5 From Tracelets to Programs: Lifting

So far we have dealt with single tracelets. A program is identified by and with
the set of all possible tracelets of its execution, which is what we will explore
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next. This section explains how all the operators defined on tracelets can be
lifted to sets of tracelets in such a way that all the laws proven for operators on
tracelets are preserved.

5.1 Elementwise Lifting

We do not consider arbitrary sets of tracelets. Rather, we adopt a downward
closure condition which ensures that a relation ≤ between programs can be
defined as simple set inclusion. A set P of tracelets is downward closed w.r.t. the
pre-order ≤ if p ∈ P and p′ ≤ p imply p′ ∈ P as well. Downward closure codifies
our intention that any program that can validly be executed concurrently can
also be validly executed more sequentially.

If ◦ is a binary, possibly partial, operator on tracelets then its elementwise
lifting to programs P, P ′ is defined as the downward closure of the set of all
defined compositions between P and P ′, i.e., the set of all tracelets q such there
are p ∈ P and p′ ∈ P ′ with defined p ◦ p′ and q ≤ p ◦ p′.

Since we do not only use equational laws but also inequational ones, we have
to define a relation ≤ between programs if we want to lift laws to programs.
While it is clear what equality means for sets, there are several ways to extend
a pre-order like ≤ to sets. We choose the following definition: P ≤ P ′ holds iff
every tracelet in P is below some tracelet in P ′. For downward closed sets (and
hence programs) ≤ coincides with inclusion ⊆. This means that we can use ordi-
nary union to introduce non-deterministic choice into our algebra of programs,
and define it as set union. Furthermore, it means that an implementation can
make an arbitrary choice from any non-deterministic variants allowed by the pro-
gram under execution, giving our intended interpretation of non-determinism a
demonic flavour.

Let T, T ′ be terms involving variables and operators on tracelets, and consider
the inequational law T ≤ T ′. A sufficient condition for lifting this law from
tracelets to programs is linearity, viz. that every variable occurs at most once
on both sides of the law and that all variables in the left hand side T also
occur in the right hand side T ′. Examples are the frame and exchange laws. For
equations a sufficient condition is bilinearity, meaning that both inequations that
constitute an equation are linear. Examples are associativity, commutativity and
neutrality; a counterexample is distributivity. The main result is as follows.

Theorem 5.1. If a linear law T ≤ T ′ holds for tracelets then it also holds when
all variables in T, T ′ are interpreted as variables for programs and the operators
are interpreted as the elementwise liftings of the corresponding trace operators.

A detailed proof for general pre-orders can be found in [18]. The technique
is classical in mathematics; for related results see among others [10,11] (and
also [4] for a survey).

We illustrate the gist of the proof for the case of the law P ; P ′ ≤ P | P ′

lifted from Theorem4.2. Assume r ∈ P ; P ′. By the above definition there are
p ∈ P, p′ ∈ P ′ such that r ≤ p ; p′. Since the frame law holds at the trace level,
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we have p ; p′ ≤ p | p′. Moreover, p | p′ is in the set of all |-combinations of traces
from P with traces from P ′ and hence also in its downward closure P | P ′, so
that we are done.

5.2 Errors, Recursion and Iteration

There are further useful consequences of our definition of programs. The set
P of all programs forms a complete lattice w.r.t. the inclusion ordering; it has
been called the Hoare power domain in the theory of denotational semantics
(e.g. [5,20,24]).

The least element of P is the empty program ∅ which can also serve as an error
element, modelling a completely faulty module without any sensible tracelet. A
more detailed, elementwise, error handling is already contained in the definition
of the elementwise lifting of operators: all erroneous, undefined combinations of
tracelets are ruled out from the combination of the containing programs. This
was already stated in Sect. 3.1.

The greatest element of P is the program U consisting of all tracelets. Infi-
mum and supremum in P coincide with intersection and union, since downward
closed sets are also closed under these operations.

Therefore we can define (unbounded) choice between a set Q ⊆ P of programs
as

�� Q =df ∪Q
with binary choice as the special case

P �� P ′ =df P ∪ P ′.

The lifted versions of monotonic tracelet operators are monotonic again
(see [18]), but even distribute through arbitrary choices between programs.

Monotonicity of the lifted operators, together with completeness of the lattice
of programs and the Tarski-Knaster fixed point theorem, guarantees that recur-
sion equations have least and greatest solutions. More precisely, let f : P → P
be a monotonic function. Then f has a least fixed point μf and a greatest fixed
point νf , given by the following formulas:

μf = ∩{P | f(P ) ⊆ P}, νf = ∪{P |P ⊆ f(P )}.

With our operator ; this can be used to define the Kleene star (see e.g. [7]), i.e.,
unbounded finite sequential iteration, of a program P as P ∗ =df μfP , where

fP (X) =df skip �� (P ; X),

where skip =df {1} is the idle program. Since fP , by the above remark, dis-
tributes through arbitrary choices between programs, it is even continuous and
Kleene’s fixed point theorem tells us that P ∗ = μfP has the iterative represen-
tation

P ∗ = ∪{f i
P (∅) | i ∈ IN}, (1)
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which transforms into the well known representation of star, viz.

P ∗ = ∪{P i | i ∈ IN}
with P 0 =df skip and P i+1 =df P ; P i.

Infinite iteration Pω can be defined as the greatest fixed point νgP where

gP (X) =df P ; X.

Along the same lines, unbounded finite and infinite concurrent iteration of a
program can be defined. For further forms of iteration we refer to [18].

We conclude this section with a brief description how pre-post-condition
semantics can be integrated into our approach. As in [17] one can define, for
programs P, P ′ and Q, the Hoare triple

P {{Q}} P ′ ⇐⇒df P ; Q ⊆ P ′.

It expresses that, after any tracelet in “pre-history” P , execution of Q is guar-
anteed to yield an overall tracelet in P ′. From this one can derive the stan-
dard properties of Hoare logic and separation logic; for further details we refer
to [15,17].

6 Interfaces and Specifications

We now deal with specifications that abstract, to a certain extent, from the
interior arrows of tracelets but preserve their interfaces, i.e., their perimeters. For
this analysis the distinction between horizontal and vertical arrows is inessential;
we only reason about the overall dependence relation Dep.

6.1 Two Types of Specifications

A first, quite radical, abstraction reduces a tracelet just to its perimeter that
describes the interaction of the tracelet with its environment. It presents a pure
black-box view of the tracelet.

This abstraction can be formalised as follows. The input points in(p) of p are
the end points of the input arrows to p, while the output points out(p) of p are
the starting points of the output arrows of p. Now the set of points of perspec(p)
is in(p) ∪ out(p), while its arrow set is given by perimeter(p). This implies

perimeter(perspec(p)) = perimeter(p). (2)

A second, more refined, abstraction connspec(p) of p records connections in
the form of dependences between input and output points of p. It can be drawn
as a tracelet containing only chains with at most three arrows, namely an input,
an output and possibly an intermediate arrow. If present, the latter records the
existence of a direct or indirect dependence between its source and target within
p; however, the whole chain of intermediate internal points is omitted.
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This abstraction allows an analysis which of the input arrows are actually use-
ful in that they “contribute” to the outputs. Input arrows that are not connected
to any output arrows could, together with the internal arrow chains emanating
from them, be safely removed without affecting the observable behaviour of the
tracelet. They will, inside p, lead to end points or, in the case of deadlock, to
cycles of points that do not have outgoing arrows to points outside the cycles;
therefore they cannot contribute to values in labels of output arrows from p.

The set of points of connspec(p) is again in(p) ∪ out(p). The arrows of
connspec(p) are the input and output arrows of p plus a set Dep′

p of fresh arrows
for each pair in in(p) × out(p) ∩ Dep+p , where Depp =df p × p ∩ Dep is the
local dependence relation for p. Using transitive rather than reflexive transitive
closure ensures that a point e in in(p) ∩ out(p) does not receive an extra arrow
(e, e) in connspec(p). This takes care of singleton tracelets of the form −→[ • −→]
(where the brackets indicate the rectangle around the tracelet).

For tracelet p we have the decomposition

arrows(p) = perimeter(p) + Dep′
p,

where again + denotes disjoint union.
Both specification functions s ∈ {perspec, connspec} are idempotent, i.e.,

satisfy s(s(p)) = s(p).

6.2 Specification and (De-)Composition

To make such abstractions useful for the analysis of larger tracelets, they have to
behave well w.r.t. composition or decomposition of tracelets. We will now show
that this is indeed the case.

For this we use a generic (de)composition operator ◦ like in [18]. For tracelets
p, p′ with disjoint point sets,

p ◦ p′ =df (p + p′, arrows(p) ∪ arrows(p′)).

Both operators | and ; from Sect. 3.1 can be seen as instances of ◦, since they
administer the arrows involved in precisely that way.

Theorem 6.1. For both specification functions s ∈ {perspec, connspec} we have
the homomorphic equation

s(p ◦ q) = s(s(p) ◦ s(q)).

The equation is homomorphic in the following sense. One can define a new
operator ◦′ on specification tracelets r, t by r ◦′ t =df s(r ◦ t). Then s(p ◦ q) =
s(p) ◦′ s(q).

We present the gist of the proof; full details can be found in the technical
report [16]. Automated proofs of some parts are under way, see Sect. 7.
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First we establish the behaviour of perimeter and local dependence on com-
posed tracelets:

perimeter(p ◦ p′) = (perimeter(p) ∪ perimeter(p′)) − intf (p, p′),
Depp◦p′ = Depp ∪ Depp′ ∪ intf (p, p′),

}
(3)

where intf (p, p′) =df arrows(p) ∩ arrows(p′) is the interface between p and p′.
Using (2) we obtain, moreover,

intf (perspec(p), perspec(p′)) = intf (p, p′). (4)

With the help of these properties easy calculations show that s = perspec satisfies
the homomorphic equation of Theorem6.1.

For the specification operator connspec it suffices to consider the local depen-
dence relations of the tracelets on both sides of the homomorphic equations, since
their perimeters coincide by the homomorphic property of perspec anyway. This
also implies that the analogue of (4) holds for connspec as well:

intf (connspec(p), connspec(p′)) = intf (p, p′).

For the local dependences we proceed in two steps. First, we have the follow-
ing properties.

Lemma 6.2. Set p̂ =df connspec(p) and likewise for p′.

1. Depp̂◦p̂′ = Depp̂ ∪ Depp̂′ ∪ intf (p, p′).
2. Depconnspec(p̂◦p̂′) ⊆ Depconnspec(p◦p′).

The calculations are not too hard. However, showing the reverse inclusion

Depconnspec(p◦p′) ⊆ Depconnspec(p̂◦p̂′)

is much more laborious. Using the definitions this spells out to

(Depp ∪ Depp′ ∪ C)+ ∩ in × out ⊆ (Depp̂ ∪ Depp̂′ ∪ C)+ ∩ in × out , (5)

where in =df in(p) ∪ in(p′), out =df out(p) ∪ out(p′) and C =df intf (p, p′).
Let us first give an intuitive idea why (5) holds. Consider event-disjoint

tracelets p, p′ and events e ∈ in(p), e′ ∈ out(p′) such that (e, e′) ∈ (Depp ∪
Depp′ ∪C)+. Consider an arbitrary path P from e to e′ within p + p′. According
to (3) we can group P into maximal pieces whose arrows are purely within Depp,
purely within Depp′ or consist only of “bridging” arrows in C. In Fig. 6, pieces of
the first kind are indicated by dotted arrows, while interface and bridging arrows
have solid lines.

The reason is that arrows from Depp cannot connect directly with those from
Depp′ , because their end points lie in disjoint event sets. They can only connect
via “bridges” in C. Now each of the maximal pieces within Depp or Depp′ can be
contracted to a single Dep+p or Dep+p′ edge, as is done by connspec. By maximality
they have to start and end in events in in(p) ∪ out(p) or in(p′) ∪ out(p′), resp.,
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e

e′p p′

Fig. 6. Connection paths in a composition

which makes their contractions belong to Depp̂ or Depp̂′ , resp. Therefore it does
not matter if we contract a composition tracelet directly or first contract the
maximal path pieces in its components and then contract the result further.

The formal proof uses regular algebra to good advantage; we denote relational
composition by juxtaposition. We have to deal with the subexpression (Depp ∪
Depp′ ∪ C)+ occurring in the left hand side of (5), where we know from the
definitions of Depp,Depp′ and E ∩ E′ = ∅ that DeppDepp′ = ∅ = Depp′Depp. We
abstract a bit and show the following properties.

Lemma 6.3. Consider relations R,S, T .

1. (R ∪ S)+ = R+ ∪ R∗(SR∗)+.
2. If RS = ∅ = SR then (R ∪ S)+ = R+ ∪ S+ and (R ∪ S)∗ = R∗ ∪ S∗.
3. If RS = ∅ = SR then (R ∪ S ∪ T )+ = R+ ∪ S+ ∪ D(TD)+, where

D =df R∗ ∪ S∗.

For the expression occurring in the left hand side of (5) we obtain from Part 3

(Depp ∪ Depp′ ∪ C)+ = Dep+p ∪ Dep′+
p′ ∪ D(CD)+, (6)

where D = Dep∗
p ∪ Dep′∗

p′ . This is the formal counterpart of the above-mentioned
path decomposition.

From this, further intensive use of regular algebra finally leads to a proof of
(5), which establishes Theorem 6.1 for s = connspec.

7 Verification Tool Development

For practical uses of the geometric model in verifying concurrent programs, tool
support is mandatory. This section outlines exemplarily how this can be achieved
by formalising the CKAs exhibited in Sect. 4 together with the model of Sect. 6
in an interactive theorem prover. Isabelle/HOL [21] is used as an example.
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We have already built mathematical components for variants of Kleene alge-
bras, regular algebras and relation algebras in Isabelle and integrated some of
them into verification components for sequential programs [3,12,13], local rea-
soning with separation logic [9] and the rely-guarantee calculus [2]. In all of
them, an abstract algebraic layer has been linked via formal soundness proofs
with concrete computational models, e.g. for the program store. The use of alge-
bra makes the resulting components small and allows us to carry out large parts
of the development by automated theorem proving. Here we follow the same
approach. The underlying Isabelle theories can be found online1.

7.1 Formalising CKA

A first step towards a verification component based on the geometric model
consists in formalising CKA as an axiomatic type class in Isabelle.

class cka = kleene-algebra +
fixes pcomp :: ′a ⇒ ′a ⇒ ′a (infixl ‖ 70 )
assumes pcomp-assoc: x ‖ (y ‖ z ) = (x ‖ y) ‖ z
and pcomp-comm: x ‖ y = y ‖ x
and pcomp-oner [simp]: x ‖ 1 = x
and pcomp-annir [simp]: x ‖ 0 = 0
and pcomp-distribl : x ‖ (y + z ) = x ‖ y + x ‖ z
and interchange: (w ‖ x ) · (y ‖ z ) ≤ (w · y) ‖ (x · z )

This class extends the operators and axioms of Kleene algebra by the con-
current composition operator and six further axioms. A concurrent iteration
operator can be added along these lines. The extension brings all facts proved
for Kleene algebras automatically into scope. It is easy, for instance, to derive the
small interchange laws or the laws in Lemma 6.3 by automated theorem prov-
ing with Isabelle’s Sledgehammer tool. Sledgehammer calls external automated
theorem provers and SMT solvers and reconstructs their outputs by internally
verified tools. This validates them relative to Isabelle’s small trustworthy core.

7.2 Formalising Tracelets and Specifications

A second step is the formalisation of the tracelet model. We restrict our attention
to the generic model from Sect. 6, which uses the dependency relation from
Sect. 3. A refinement to models with several kinds of arrows is straightforward.

type-synonym ′a graph = ′a rel

abbreviation vertices g ≡ Field g

definition tracelets g = Pow (vertices g)

1 http://staffwww.dcs.shef.ac.uk/people/G.Struth/isa/GCKA/GCKA.thy.

http://staffwww.dcs.shef.ac.uk/people/G.Struth/isa/GCKA/GCKA.thy
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definition str τ g ≡ τ ∈ tracelets g

definition A τ g = (if str τ g then �τ� ; g ∪ g ; �τ� else undefined)

A graph is formalised as a binary relation of type α, hence as the set of its
arrows. Its set of points or vertices is thus the field of the relation; the union of
its domain and range elements. Following Sect. 2, the set of tracelets of a graph
is the power set of its vertex set. The subtracelet relation str τ g is defined next
in the obvious way. It is generally used as a proviso on definitions and theorems
(a tracelet type would have to depend on the graph). Finally, the set A τ g of
arrows of τ in g consists of those arrows of g that have at least one point in τ ,
provided that τ is a subtracelet of g. It is undefined otherwise. In this definition,
the function � � lifts the set V to the subidentity relation {(v, v) | v ∈ V } to
support relation-algebraic reasoning.

Additional notions such as input and output arrows or vertices of tracelets
can now be defined as partial functions relative to an underlying graph as well.

definition iA τ g = (if str τ g then �−τ� ; A τ g else undefined)

definition oA τ g = (if str τ g then A τ g ; �−τ� else undefined)

definition iV τ g = (if str τ g then Range (iA τ g) else undefined)

definition oV τ g = (if str τ g then Domain (oA τ g) else undefined)

The function − denotes set complementation. Various laws relating these vertices
and arrows could then be derived easily be automated theorem proving. These
enable automated proofs of some more intricate facts from Sect. 6. In addition,
they allow us to define the perimeter, abbreviated as ioA, as iA τ g ∪ oA τ g,
and the associated specification perspec, for which we write S .

definition S τ g = (if str τ g then iV τ g ∪ oV τ g else undefined)

By contrast to previous sections, S τ g is thus a set of vertices, and not a
pair. In fact, the specifications from previous sections are neither subtraces
of the underlying graph nor graphs themselves. This leads to complications
in Isabelle’s strongly typed setting. Instead, in the case of perspec, specifica-
tions are tracelets with respect to the perimeter of the underlying tracelet:
str (S τ g) (ioA τ g) holds whenever τ is a tracelet in g. Obviously, connspec
of a tracelet has the same vertex set as perspec, but is a tracelet with respect
to a different set of arrows. We therefore do not distinguish between the two
in the above definition. Analogues of property (2) and idempotency of the
specification function can be proved fully automatically for perspec, that is,
ioA (S τ g) (ioA τ g) = ioA τ g and S (S τ g) (ioA τ g) = S τ g, whenever τ is a
subtracelet of g. For connspec, the arrow sets in formulas must be adapted. Addi-
tional facts can be found online.
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Another essential ingredient of the graph model is the generic (de)composition
operation from Sect. 6.2. We have formalised it as a partial function in Isabelle.

partial-function (tailrec) tcomp :: ′a set ⇒ ′a set ⇒ ′a graph ⇒ ′a set where
tcomp σ τ g = (if str σ g ∧ str τ g ∧ σ ∩ τ = {} then σ ∪ τ else undefined)

The sequential and concurrent compositions from Sect. 3.1 can be defined like-
wise. It is easy to prove the commutative monoidal properties of composition,
subject to definedness. A variant of Theorem6.1 for perspec is more tedious.

lemma pS-tcomp:
assumes str σ g and str τ g and σ ∩ τ = {}
shows pS (tcomp (pS σ g) (pS τ g) g) (ioA σ g ∪ ioA τ g) = pS (tcomp σ τ g) g

7.3 Further Formalisation Steps

The following steps are needed for completing the verification component. They
follow the design of our previous verification components [3,13] closely.

Enriching the Model. Various kinds of edges, sequential and concurrent com-
positions, labels for programming concepts such as actions or transactions, and
notions of memory location must be added to the extant tracelet model to obtain
the full-fledged geometric model outlined in Sect. 2.

Tracelet and Powerset Algebra. The interchange laws for tracelets (Sect. 4) must
be derived. The enriched tracelet model must be lifted to the powerset level and
the CKA structure must be established at this level.

Formal Soundness Proof. An interpretation statement is needed to formalise
soundness of the enriched tracelet model with respect to CKA within Isabelle’s
type class framework. All statements proved for CKA are then available within
the model. This is important for verification condition generation with the Hoare
logic outlined in Sect. 5.2 and for program refinement.

This completes the development of a verification component prototype based
on the geometric tracelet model. Program verification is possible by using a
shallow embedding of an appropriate programming syntax into the graph model.
Alternatively, program syntax could be mapped into the model as usual.

One merit of the approach outlined is that the resulting verification com-
ponent is correct by construction relative to Isabelle’s small trustworthy core.
Due to the link with CKA and the genericity of the tracelet formalisation used,
the approach should also be robust to minor changes to the model, which has
undergone a considerable evolution over time. Beyond a proof of concept and the
formal verification of the results in this article, the component could therefore
serve as a reference that can be refined and modified easily by other researchers.
Because of its simplicity and declarative nature it may also be useful as a tem-
plate for implementing practical verification tools.
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Abstract. Formal methods advocate the crucial role played by the alge-
braic approach in specification and implementation of programs. Tradi-
tionally, a top-down approach (with denotational model as its origin)
links the algebra of programs with the denotational representation by
establishment of the soundness and completeness of the algebra against
the given model, while a bottom-up approach (a journey started from
operational model) introduces a variety of bisimulations to establish the
equivalence relation among programs, and then presents a set of alge-
braic laws in support of program analysis and verification. This paper
proposes a new roadmap for linking theories of programming. Our app-
roach takes an algebra of programs as its foundation, and generates both
denotational and operational representations from the algebraic refine-
ment relation.

1 Introduction

Formal methods advocate the crucial role played by the algebra of programs
in specification and implementation of programs. Study leads to the conclusion
that both the top-down approach (with denotational model as its origin) and
the bottom-up approach (a journey started from operational model) can meet
in the middle:

– Top-down approach usually begins with construction of a specification-
oriented model [1,2,4,10,15], then links the algebra of programs with the
denotational framework by establishment of the soundness and completeness
of the algebra [8,13] against the given model.

– Bottom-up approach starts with an operational semantics [12] and introduces
a rich variety of bisimulations [5,11] to identify the equivalence relation among
programs, and then presents a set of algebraic laws in support of program
analysis and verification.

This paper proposes a new roadmap for linking theories of programming.
Our framework takes an algebra of programs as its basis, and generates both
denotational and operational representations from the algebraic refinement rela-
tion. This new strategy consists of the following steps:
c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 26–43, 2017.
DOI: 10.1007/978-3-319-52228-9 2
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Step 1: Within a given program algebra (P, �A), investigate the algebraic
properties of the test operator T which has test case tc and testing program P
as its arguments

T (tc, P )

In case of the Guarded Command Language [3], tc is represented by a total
constant assignment x, y, .., z := a, b, .., c and the test operator T composes tc
and P in sequence:

T (tc, P ) =df (tc;P )

For CSP [7,14], a test case has the same alphabet as the testing process, and
takes the form of a generalised prefix process s → Φ where s is a sequence of
events in the alphabet of the process P , and Φ a choice construct x : X → Stop
which is added to test the status of P after its engagement in the events of
sequence s. The test T (tc, P ) behaves like the system composed of processes tc
and P interacting in lock-step synchronisation

T (tc, P ) =df (tc ‖ P )

Step 2: Explore the dependency between the test outcome with the test case in
the following form

T (tc, P ) =A �Obs

where Obs denotes the set of visible observations one can record during the
execution of the test and � means the non-deterministic choices.

For the Guarded Command Language, an observation can be either a total
constant assignment or the chaotic program ⊥ which represents the worst out-
come. In case of CSP an observation has a very similar form as test case.
Step 3: Based on the algebra of test, identify a program P as a binary relation
[P ] which relates the test case with the final observation

[P ] =df {(tc, obs) | T (tc, P ) �A obs}
and select the set inclusion as the refinement relation �rel

P �rel Q =df ([P ] ⊇ [Q])

Based on the algebra of programs, we can prove

�rel =�A

Step 4: Propose an algebraic definition of the consistency of step relation of
the transition system of programs such that any consistent transition system
(O, �O) satisfies

�O =�A

Furthermore, our approach shows how to generates the transition rules for CSP
combinators directly from the closure properties of the canonical processes pre-
sented in the consistent criterion of the step relation.

The paper is organised in the following way:
Section 2 adopts this new roadmap to re-establish the semantical models of the
Guarded Command Language, where
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– Section 2.1 provides an algebraic representation of machine state and exmaines
its properties.

– Section 2.2 introduces the notion of test cases.
– Section 2.3 presents a test-based model, where each program is identified as a

binary relation between test case and visible observation recorded during the
execution of the test. It is shown that the refinement relation �rel in the test
model is equivalent to the algebraic refinement �A.

– Section 2.4 reconstructs the double predicate model with a simplified version
of the refinement relation �dp satisfying �dp =�A.

– Section 2.5 revisits the predicate transformer model with the refinement rela-
tion �wp, and presents its link with the algebra of programs by showing
�wp =�A.

– Section 2.6 links Hoare triple proof system with the test-based model of
Sect. 2.3.

Section 3 proposes a formal definition for the consistency of step relation of tran-
sition system against the algebra of programs. Moreover, it provides a transition
system for the Guarded Command Language, and establishes its correctness.

The paper ends with a short summary in Sect. 4. We leave the proof of some
theorems in the appendix. We will extends the paper by adopting this new
approach on CSP and probabilistic programming languages in the near future.

2 Guarded Command Language

This section investigates how to rediscover a variety of well-established semanti-
cal models from the program algebra presented in [9] for the Guarded Command
Language:

P ::= ⊥
| var := exp
| P � bexp � P
| P ; P
| P � P
| μX • P (X)

where the notation bexp stands for a Boolean expression.
Rather than following up an inductive approach to assign meaning to pro-

grams, this section develops a new mathematical framework where the behav-
iours of a program are described by those observations one can make during
the testing of a program. To achieve this goal, we first introduce an algebra of
tests and then deduce a simplified version of refinement relation in this alge-
bra. Later we are going to derive a family of well-known denotational models
[3,4,6,9,10] from the algebra of tests, and revalidate those familiar properties of
programming operators.
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2.1 Machine State

An operational approach usually defines the relationship between a program and
its possible execution by machine. In an abstract way, a computation consists of
a sequence of individual steps with the following features

– each step takes the machine from one state to a closely similar state
– each step is drawn from a very limited repertoire.

In a stored program computer, the machine states are represented as pairs

(s, P )

where

(1) s is a text, defining the data state as an assignment of constants to all
variables of the alphabet

x, y, ..., z := a, b, ..., c

(2) P is a program text, representing the rest of the program that remains to
be executed. When P becomes the empty text ε, there is no more program
to be executed. The machine state (t, ε) is the last state of any execution
sequence that contains it, and t presents the final value of the variables in
the end of execution.

The following lemma indicates that data states are the best programs.

Lemma 2.1

(s �A P ) implies (s =A P ).

Algebraic refinment relation on data state sets is the same as set inclusion.

Lemma 2.2

�{si | 1 ≤ i ≤ n} �A t iff t ∈ {si | 1 ≤ i ≤ n}
Corollary

�{si | 1 ≤ i ≤ m} �A �{tj | 1 ≤ j ≤ n} iff {si | 1 ≤ i ≤ m} ⊇ {tj | 1 ≤ j ≤ n}

2.2 Test

The execution of program (s;P ) can be seen as a test on P with the test case s.
The result of such a testing gives rise to a set of possible outcomes obs. We are
then able to compare the behaviours of two programs based on testing.
Formally, the test operator for the Guarded Command Language is defined by

T (s, P ) =df (s;P )

When ⊥ is taken as the test case, we obtain

T (⊥, P ) =A ⊥
A test may end with delivery of a set of data states, or fail to produce any
meaningful result.
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Theorem 2.1
For any test T (s, P ), either there exists a finite nonempty set {ti | 1 ≤ i ≤ n}
of total constant assignments such that

T (s, P ) =A �{ti | 1 ≤ i ≤ n}
or T (s, P ) =A ⊥
Proof. Any finite program P can be converted into the finite normal form [9]

⊥ � b � Q

where Q is a nondeterministic choice on a finite nonempty set of total assign-
ments

Q = �{(v := ei) | 1 ≤ i ≤ m}
In this case, we conclude that

(v := c);P =A

{⊥ if b[c/v] = true
�{v := ei[c/v] | 1 ≤ i ≤ m} if b[c/v] = false

where b[c/v] stands for result of substituting all free occurrences of variables v
in the Boolean expression b by constants c.

The behaviour of an infinite program can be represented as an infinite
sequence of expressions [9]

S = {Sn | n ∈ Nat}
where each Sn is a finite normal form, and each Sn+1 is stronger than its prede-
cessor Sn:

(Sn+1 
A Sn) for all n ∈ Nat

This is called the descending chain condition. It allows the later members of
the sequence to exclude more and more of impossible behaviours. The exact
behaviour of the program is captured by the least upper bound of the whole
sequence, written

�{Sn | n ∈ Nat}
In fact, the desending chain {(⊥ � bn � Qn) |n ∈ Nat} satisfies the following
stronger order

(⊥ � bn � Qn) =A (⊥ � bn � Qn+k)

for all n, k. That is once n is high enough for bn to be false, all assignments Qm

remain the same as Qn for all m greater than n. The conclusion of the theorem
follows from the continuity of sequential composition:

((v := c);�{Sn | n ∈ Nat} =A

{⊥ if ∀n ∈ Nat • (bn[c/v] = true)
(v := c);Qm if bm[c/v] = false

The following theorem reveals the compositionality of the testing process by
demonstrating how to derive the test outcome of a composite program from
those of its components.
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Theorem 2.2

(1) T (s, (P � Q)) = T (s, P ) � T (s, Q)
(2) T (s, (P � b�Q)) = T (s, P )� (s; b)�T (s, Q) where (v := c); b =df b[c/v]
(3) T (s, (P ;Q)) =A �{T (t, Q) | T (s, P ) �A t}
(4) T (s, μX • P (X)) =A �{T (s, Pn(⊥)) | n ∈ Nat} where

P 0(⊥) =df ⊥ and Pn+1(⊥) =df P (Pn(⊥))

Proof of (3). From Theorem 2.1 we only need to consider two cases:
Case 1: T (s, P ) =A �{ti | 1 ≤ i ≤ n}.

T (s, (P ;Q)) {assumption}
=A � {ti | 1 ≤ i ≤ n};Q {(U � V );W =A (U ;W ) � (V ;W )}
=A � {T (ti, Q) | 1 ≤ i ≤ n} {Lemma 2.2}
=A � {T (t, Q) | T (s, P ) �A t}

Case 2: T (s, P ) =A ⊥. The conclusion follows from the fact

T (⊥, Q) =A ⊥
Theorem 2.3. P =A Q iff for every data state s, T (s, P ) =A T (s, Q)

2.3 A Test-Based Model

As described in the previous section, the execution of test T (s, P ) may yield a
finite nonempty set of outcomes. In the worst case, it may end with a chaotic
state. In this sense, each testing program P can be treated as a binary relation
on test cases and final observations. This section is going to construct a relation
model from the test algebra.

Definition 2.1
A program P can be identified as a binary relation [P ] between test case s
with the final data state t it may enter in the end of testing.

[P ] =df {(s, t) | T (s, P ) �A t}
As usual we define the refinement relation �rel on the relational model by the
set inclusion

P �rel Q =df ([P ] ⊇ [Q])

Theorem 2.4

�rel =�A

Proof. Assume that P �rel Q.
Case 1: T (s, Q) =A ⊥

T (s, Q) �A ⊥ {Definition 2.1}
⇒ T (s, P ) �A ⊥ {assumption}
⇒ T (s, P ) �A T (s, Q)
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Case 2: T (s, Q) =A �{ti | 1 ≤ i ≤ n}.
T (s, Q) =A �{ti | 1 ≤ i ≤ n} {Lemma 2.2}

⇒ ∀i ∈ {1, .., n} • (T (s, Q) �A ti) {Definition 2.1}
⇒ ∀i ∈ {1, .., n} • (T (s, P ) �A ti) {monotonicity of �}
⇒ T (s, P ) �A �{ti | 1 ≤ i ≤ n} {assumption}
⇒ T (s, P ) �A T (s, Q)

The conclusion P �A Q follows from Theorem 2.3.
The opposite inequation (�A ⊆�rel) follows from Theorem 2.2(1) and the

definition of �rel.
Moreover, the mapping [ ] is a homomorphism.

Theorem 2.5

(1) [P � Q] = [P ] ∪ [Q]
(2) [P � b � Q] = [P ] � (s; b) � [Q]
(3) [P ;Q] = [P ] ◦ [Q]
(4) [μX • P (X)] =

⋂
n[Pn(⊥)]

Proof of (3)
(s, t) ∈ [P ;Q] {Definition 2.1}

≡ T (s, (P ;Q)) �A t {Theorem 2.2(3)}
≡ �{T (u, Q) | T (s, P ) �A u} �A t {Lemma 2.2}
≡ ∃u • (T (s, P ) �A u) ∧ (T (u, Q) �A t) {Definition 2.1}
≡ ∃u • ((s, u) ∈ [P ]) ∧ ((u, t) ∈ [Q]) {Definition of ◦}
≡ (s, t) ∈ ([P ] ◦ [Q])

2.4 Double Predicates Model

In [6], a precondition is defined as a predicate describing the initial values of
program variables of a program before it is activated, whereas a postcondition
is a predicate only mention of the final values of program variables after the
execution of a program terminates. Following the VDM approach [10] we permit
a postcondition to refer to both initial and final values of program variables in
the following discussion.

Definition 2.2 (Double predicates)

pre(P )(v0) =df ¬(T (v := v0, P ) �A ⊥)
post(P )(v0, v′) =df T (v := v0, P ) �A (v := v′)

where v0 and v′ stand for the initial and final values of the program variables v.
In the above definition, the postcondition meets the following constraint,

which enables us to simplify the definition of refinement in the double predicate
model later.
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Theorem 2.6. post(P ) ≡ (pre(P ) ⇒ post(P ))
The refinement order �dp on the double predicate model is defined by

P �dp Q =df ∀v0 • (pre(P ) ⇒ pre(Q)) ∧ ∀v0, v′ • (post(Q) ⇒ post(P ))

Theorem 2.7

�A =�dp

P �A Q {Theorem 2.3}
≡ ∀v0 • T (v := v0, P ) �A T (v := v0, Q) {Theorem 2.1}

≡ ∀v0 •

⎛
⎜⎜⎜⎜⎝

(
T (v := v0, Q) �A ⊥) ⇒
(T (v := v0, P ) �A ⊥

)
∧

∀v′ •
(

(T (v := v0, Q) �A (v := v′)) ⇒
(T (v := v0, P ) �A (v := v′))

)

⎞
⎟⎟⎟⎟⎠ {Definition 2.2}

≡
(

∀v0 • (pre(P ) ⇒ pre(Q))∧
∀v0, v′ • (post(Q) ⇒ post(P ))

)
{Def of �dp}

≡ P �dp Q

Definition 2.2 enables us to transform the original definition of the program-
ming combinators in the double predicates model [9,10] into a set of the com-
positional laws in our test-generated model:

Theorem 2.8

(1) pre(⊥) ≡ false

(2) pre(P � Q) ≡ pre(P ) ∧ pre(Q)

(3) pre(P � b(v) � Q) ≡ pre(P ) � b(v0) � pre(Q)

(4) pre(P ;Q) ≡ pre(P ) ∧ ¬∃c • (post(P )[c/v′] ∧ ¬pre(Q)[c/v0])

(5) pre(μX • P (X)) =
∨

n pre(P
n(⊥))

Proof of (4)
¬pre(P ;Q)(v0) {Defintion 2.2}

≡ T (v := v0, (P ;Q)) =A ⊥ {Theorem 2.2(3)}
≡ T (v := v0, P ) =A ⊥ ∨

∃t • T (v := v0, P ) �A t ∧ T (t, Q) =A ⊥ {Definition 2.2}
≡ ¬pre(P )(v0) ∨ ∃c • post(P )(v0, c) ∧ ¬pre(Q)(c)
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Theorem 2.9

(1) post(⊥) ≡ true

(2) post(P � Q) ≡ post(P ) ∨ post(Q)

(3) post(P � b(v) � Q) ≡ post(P ) � b(v0) � post(Q)

(4) post(P ;Q) ≡ ∃c • (
post(P )[c/v′] ∧ post(Q)[c/v0]

)

(5) post(μX • P (X)) ≡ ∧
n post(P

n(⊥))

Proof From Theorem 2.2.

2.5 Predicate Transformer

Given a postcondition r and a proposed design of a final program segment Q, it
is possible to deduce the weakest precondition under which the execution of Q
will end with the states that satisfy the postcondition r. This precondition can
often be strengthening, and then taken as the postcondition in the design of the
next preceding segment of the program. In this method, a program is identified
as a predicate transformer mapping the given postcondition to the corresponding
weakest precondition [3]. Based on the algebra of tests, this section redefines the
predicate transformer as follows:

Definition 2.3 (Weakest precondition)
Define

wp(Q, r)(v0) =df T (v := v0, Q) 
A �{v := c | r(c)}
In our method, the refinement relation �wp is defined by

P �wp Q =df ∀r, ∀v0 • (wp(P, r)(v0) ⇒ wp(Q, r)(v0))

Theorem 2.10

�wp =�A

Proof
P �A Q {Theorem 2.3}

≡ ∀v0 • (T (v := v0, P ) �A T (v := v0, Q)) {Transitivity of �A}
≡ ∀r, ∀v0•(

T (v := v0, P ) �A �{v := c | r(c)} ⇒
T (v := v0, Q) �A �{v := c | r(c)}

)
{Definition 2.3}

≡ ∀r, ∀v0 • (wp(P, r)(v0) ⇒ wp(Q, r)(v0)) {Definition of �wp}
≡ P �wp Q
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Like in Sects. 2.3 and 2.4, the new definition of the predicate transformer enables
us to verify the following family of so called healthiness conditions presented
in [3].

Theorem 2.11

(1) wp(Q, false) = false

(2) wp(Q, r1 ∧ r2) = wp(Q, r1) ∧ wp(Q, r2)

Proof of (2)
wp(Q, r1) ∧ wp(Q, r2) {Definition 2.3}

≡
(

T (v := v0, Q) �A �{v := c | r1(c)} ∧
T (v := v0, Q) �A �{v := c | r2(c)}

)
{Corollary of Lemma 2.2}

≡ T (v := v0, Q) �A �{v := c | (r1 ∧ r2)(c)} {Definition 2.3}
≡ wp(Q, r1 ∧ r2)

The next theorem links the double predicates model with the predicate trans-
former model.

Theorem 2.12
wp(Q, r(v)) ≡ pre(Q) ∧ ¬∃c • (post(Q)[c/v′] ∧ ¬r(c))

Proof

wp(Q, r(v)) {Definition 2.3}
≡ T (v := v0, Q) �A �{v := c | r(c)} {Theorem 2.1}

≡
(

(T (v := v0, Q) �=A ⊥) ∧
∀t • (T (v := v0, Q) �A t) ⇒ (t ∈ {v := c | r(c))}

)
{Definition 2.2}

≡ pre(Q) ∧ ∀c • (post(Q)[c/v′] ⇒ r(c)) {calculation}
≡ pre(Q) ∧ ¬∃c • (post(Q)[c/v′] ∧ ¬r(c))

Corollary

(1) pre(P ) ≡ wp(P, true)

(2) post(P ) ≡ ¬wp(P, v �= v′)

The following theorem validates the original definition of the predicate trans-
former given in [3].

Theorem 2.13

(1) wp(⊥, r) ≡ false
(2) wp(P � Q, r) ≡ wp(P, r) ∧ wp(Q, r)
(3) wp(P � b(v) � Q, r) ≡ wp(P, r) � b(v0) � wp(Q, r)
(4) wp(P ;Q, r) ≡ wp(P, wp(Q, r)))
(5) wp(μX • P (X)) ≡ ∨

n wp(Pn(⊥), r)
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Proof of (4)
wp(P, wp(Q, r)) {Theorem 2.12}

≡ pre(P ) ∧ ¬∃c •
(

post(P )[c/v′] ∧
¬wp(Q, r)[c/v0]

)
{Theorem 2.12}

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pre(P ) ∧

¬∃c •

⎛
⎜⎜⎜⎜⎝

post(P )[c/v′]∧⎛
⎜⎜⎝

¬pre(Q)[c/v0]∨

∃d •
(

post(Q)[c, d/v0, v′]∧
¬r(d)

)
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

{calculation}

≡

⎛
⎜⎜⎜⎜⎜⎜⎝

pre(P ) ∧ ¬∃c •
(

post(P )∧
¬pre(Q)[c/v0]

)
∧

¬∃d •

⎛
⎜⎝∃c •

(
post(P )[c/v0]∧
post(Q)[c, d/v0, v′]

)
∧

¬r(d)

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

{Theorem 2.8 and 2.9}

≡ pre(P ;Q) ∧ ¬∃d • (post(P ;Q)[d/v′] ∧ ¬r(d)) {Theorem 2.12}

≡ wp(P ;Q, r)

2.6 Hoare Triple

In [6], the correctness of a program was interpreted as the triple

precondition {program} postcondition

known as a Hoare triple, where the postcondition only refers to the final values
of program variables.

Definition 2.4 (Hoare triple)
Define

p{Q}r =df ∀v0 • (p(v0) ⇒ (T (v := v0, Q) 
A �{v := c | r(c)}
Theorem 2.14

p{Q}r ≡ ∀v0 • (p(v0) ⇒ wp(Q, r(v)))

Proof. From Definitions 2.3 and 2.4.

Based on the new definition of Hoare triple we are able to reestablish the sound-
ness of Hoare logic used for verification of programs.

Theorem 2.15 (Hoare triple proof rules)

(1) If p{Q}r1 and p{Q}r2 then p{Q}(r1 ∧ r2)
(2) If p{Q}r and q{Q}r then (p ∨ q){Q}r
(3) If p{Q}r then p{Q}(q ∨ r)
(4) r(e){v := e}r(v)
(5) If (p ∧ b){Q1}r and (p ∧ ¬b){Q2}r then p{Q1 � b � Q2}r
(6) If p{Q1}q and q{Q2}r then p{Q1;Q2}r
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(7) If p{Q1}r and p{Q2}r then p{Q1 � Q2}r
(8) false{Q}r

Proof of (6)
p{Q1;Q2}r {Theorem 2.14}

≡ ∀v0 • (p(v0) ⇒ wp(Q1;Q2, r)) {Theorem 2.13(4)}
≡ ∀v0 • (p(v0) ⇒ wp(Q1, wp(Q2, r))) {Theorem 2.11(2) and q{Q2}r}
⇐ ∀v0 • (p(v0) ⇒ wp(Q1, q)) {p{Q1}q}
≡ true

3 Operational Approach

Let → be a step relation on machine states. Its reflexive transitive closure is
defined by

→∗ =df νX • (id ∨ (→;X))

where νX.G(X) stands for the greatest fixed point of function G.
We define the concept of divergence, being a machine state that can lead to an
infinite execution

(s, P ) ↑ =df ∀n, ∃t, Q • ((s, P ) →n (t, Q))

where →1 =df →
and →n+1 =df (→1;→n)

Definition 3.1
A step relation is consistent with the algebraic semantics if for any machine
state (s, P )

(1) T (s, P ) =A � {T (t, Q) | (s, P ) → (t, Q)}, and
(2) (s, P ) ↑ implies T (s, P ) =A ⊥
In the following discussion we will extend the definition of the test operator to
cope with the empty program text

T (s, ε) =df s

Theorem 3.1
If → is consistent then

T (s, P ) =A ⊥ � (s, P ) ↑ � � {t | (s, P ) →∗ (t, ε)}
Proof. First we show that T (s, P ) =A ⊥ ⇒ (s, P ) ↑
From Theorem 2.2 and the condition (1) of Definition 3.1 it follows that there
exists machine state (t, Q) such that

(s, P ) → (t, Q) and T (t, Q) =A ⊥
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With induction we conclude that for all n ≥ 0 there exists a machine state
(tn, Qn) satisfying

T (tn, Qn) =A ⊥ and (s, P ) →n (tn, Qn)

which leads to the conclusion (s, P ) ↑
If (s, P ) is not divergent, then from the condition (1) of Definition 3.1 we can
show by induction

T (s, P ) =A � {t | (s, P ) →∗ (t, ε)}
Definition 3.1 explores the following correspondence between the step relation
of the operational semantics with the refinement relation of algebraic semantics

(1) Whenever a machine state (s, P ) is divergent, then the execution of test
T (s, P ) will end with a chaotic state.

(2) If (s, P ) is not divergent, then the final states that it can reach via step
transitions are exactly those delivered by the execution of the test T (s, P ).

Definition 3.2 (Operational Refinement)
Let → be a consistent step relation. Define

P �O Q =df

⎛
⎜⎝

∀s • ((s, Q) ↑⇒ (s, P ) ↑) ∧

∀t • ((s, Q) →∗ (t, ε)) ⇒
(

(s, P ) ↑ ∨
((s, P ) →∗ (t, ε))

)
⎞
⎟⎠

Theorem 3.2

�O =�A

Proof
P �A Q {Theorem 2.3}

≡ ∀s • (T (s, P ) �A T (s, Q)) {Theorem 2.1}

≡ ∀s •

⎛
⎜⎝

(T (s, Q) =A ⊥) ⇒ (T (s, P ) =A ⊥)

∧
∀t • (T (s, Q) �A t) ⇒ (T (s, P ) �A t)

⎞
⎟⎠ {Lemma 2.2 and Theorem 3.1}

≡ ∀s •

⎛
⎜⎜⎜⎜⎝

((s, Q) ↑⇒ (s, P ) ↑) ∧
∀t • ((s, Q) →∗ (t, ε)) ⇒(

(s;P ) ↑ ∨
((s, P ) →∗ (t, ε))

)
⎞
⎟⎟⎟⎟⎠ {Definition 3.2}

≡ P �O Q

If (s, P ) is not divergent, then from the condition (1) of Definition 3.1 we
can show by induction

T (s, P ) =A � {t | (s, P ) →∗ (t, ε)}
Definition 3.1 explores the following correspondance between the step relation
of the operational semantics with the refinement relation of algebraic semantics
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(1) Whenever a machine state (s, P ) is divergent, then the execution of test
T (s, P ) will end with a chaotic state.

(2) If (s, P ) is not divergent, then the final states that it can reach via step
transitions are exactly those delivered by the execution of the test T (s, P ).

Definition 3.3
In [9], the following transition system was given to the Guarded Command Lan-
guage:

(1) Assignment
(s, v := e) → (s; (v := e), ε), where (v := c); (v := e) = (v := e[c/v])

(2) Choice
(a) ((s, P � Q) → (s, P )
(b) ((s, P � Q) → (s, Q)

(3) Conditional
(a) (s, P � b � Q) → (s, P ) if (s; b) = true
(b) (s, P � b � Q) → (s, Q) if (s; b) = false

(4) Composition
(a) (s, P ;Q) → (t, R;Q) if (s, P ) → (t, R)

(b) (s, P ;Q) → (t, Q) if (s, P ) → (t, ε)

(5) Recursion
(s, μX • P (X)) → (s, P (μX • P (X)))

(6) Chaos
(s, ⊥) → (s, ⊥)

In the following we are going to establish the consistency of the step relation of
Definition 3.3 with respect to the algebra of programs.

First, we show that the step relation of Definition 3.3 meets the condition (1) of
Definition 3.1.

Theorem 3.3
T (s, P ) =A �{T (t, Q) | (s, P ) → (t, Q)}

Proof: Direct from Theorem 2.2 and the rule (1)–(7) of Definition 3.3.

Theorem 3.4
If P is a finite program, then

(s, P ) ↑⇒ T (s, P ) =A ⊥
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Proof: We give an induction proof based on the structure of program text P :

Base case: Clearly the conclusion holds for the case P = v := e and P = ⊥
Inductive step:

(s, P1 � P2) ↑ {Rule (2) in Definition 3.3}
⇒ (s, P1) ↑ � (s, P2) ↑ {Induction hypothesis}
⇒ (T (s, P1) =A ⊥) ∨ (T (s, P2) =A ⊥) {Theorem 2.2(1)}
⇒ T (s, P1 � P2) =A ⊥

(s, P1 � b � P2) ↑ {Rule (3) in Definition 3.3}
⇒ (s, P1) ↑ �s; b � (s, P2) ↑ {Induction hypothesis}
⇒ (T (s, P1) =A ⊥) � s; b � (T (s, P2) =A ⊥) {Theorem 2.2(2)}
⇒ T (s, P1 � b � P2) =A ⊥

(s, P1;P2) ↑ {Rule (4) in Definition 3.3}

⇒ (s, P1) ↑ ∨ ∃t •
(

(s, P1) → (t, ε) ∧
(t, P2) ↑

)
{Induction hypothesis}

⇒ T (s, P1) =A ⊥ ∨
∃t • (T (s, P1) �A t ∧ T (t, P2) =A ⊥) {Theorem 2.2(3)}

⇒ T (s, P1;P2) =A ⊥
Finally we are going to tackle infinite programs.

Lemma 3.1
If (s, G(Q)) →∗ (t, ε), then either (s, G(⊥)) ↑ or (s, G(⊥)) →∗ (t, ε).

Proof: See Appendix.

Lemma 3.2

(1) (s, F (P )) ↑⇒ (s, F(⊥)) ↑ for any program P .
(2) (s, F (μX • P (X)) ↑⇒ (s, F (P (μX • P (X)))) ↑
Proof: See Appendix.

Theorem 3.5
(s, F (μX • P (X)) ↑⇒ T (s, F (μX • P (X))) =A ⊥
Proof:

(s, F (μX • P (X))) ↑ {Lemma 3.2(2)}
⇒ ∀n • (s, F (Pn(μX • P (X)))) ↑ {Lemma 3.2(1)}
⇒ ∀n • (s, F (Pn(⊥))) ↑ {Theorem 3.4}
⇒ ∀n • T (s, F (Pn(⊥))) =A ⊥ {Continuity of F}
⇒ T (s, F (μX • P (X))) =A ⊥

Combining Theorems 3.3, 3.4 and 3.5 we conclude
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Theorem 3.6
The step relation defined in Definition 3.3 is consistent.

4 Conclusion

This paper proposes a new roadmap for linking theories of programming. From
the investigation of the Guarded Command Language it becomes clear that
algebraic refinement relation plays a key role in building varies denotational
models and their links. Our work also shows that the formalisation of consistency
of operational semantics can be simplified by separation progress requirement
(condition (1) in Definition 3.2) from livelock-free constraint (condition (2)):

– The first requirement excludes the error of omission of a transition. Validation
of the consistent condition (1) is quite straightforward, because it only needs
to examine one step transition.

– the second requirement avoids the inclusion of too many transitions. To handle
this type of livelock free properties, this paper adopts quite tedious structural
induction because it has to deal with recursion and multiple step transition.

We will extend this paper by applying this algebraic approach to build the
mathematical framework for CSP and probabilistic programming languages in
the near future.
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Appendix

Lemma 3.1
If (s, G(Q)) →∗ (t, ε), then either (s, G(⊥)) ↑ or (s, G(⊥)) →∗ (t, ε).

Proof: Induction on the structure of G.

Base case: G(Q) = Q. The conclusion follows from From Rule (6)

(s, ⊥) → (s, ⊥)

in Definition 3.2.

Inductive step:

(1) G(Q) = G1(Q) � G2(Q).
(s, G(Q)) →∗ (t, ε) {Role (2) in Def 3.2}

⇒
(

(s, G1(Q)) →∗ (t, ε) ∨
(s, G2(Q)) →∗ (t, ε)

)
{Induction hypothesis}

⇒
(

(s, G1(⊥)) ↑ ∨ (s, G1(⊥)) →∗ (t, ε) ∨
(s, G2(⊥)) ↑ ∨ (s, G2(⊥)) →∗ (t, ε)

)
{Role (2) in Def 3.2}

⇒ (s. G(⊥)) ↑ ∨ (s, G(⊥)) →ast (t, ε)
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(2) G(Q) = G1(Q) � b � G2(X)
(s, G(Q)) →∗ (t, ε) {Role (3) in Def 3.2}

⇒

⎛
⎜⎝

(s, G1(Q)) →∗ (t, ε)

�(s; b)�

(s, G2(Q)) →∗ (t, ε)

⎞
⎟⎠ {Induction hypothesis}

⇒

⎛
⎜⎝

(s, G1(⊥)) ↑ ∨ (s, G1(⊥)) →∗ (t, ε)

�(s; b)�

(s, G2(⊥)) ↑ ∨ (s, G2(⊥)) →∗ (t, ε)

⎞
⎟⎠ {Role (3) in Def 3.2}

⇒ (s. G(⊥)) ↑ ∨ (s, G(⊥)) →ast (t, ε)

(3) G(Q) = G1(Q);G2(Q)
(s, G(Q)) →∗ (t, ε) {Role (4) in Def 3.2}

⇒ ∃u •
(

(s, G1(Q)) →∗ (u, ε) ∨
(u, G2(Q)) →∗ (t, ε)

)
{Induction hypothesis}

⇒ ∃u •
(

(s, G1(⊥)) ↑ ∨ (s, G1(⊥)) →∗ (u, ε) ∨
(u, G2(⊥)) ↑ ∨ (u, G2(⊥)) →∗ (t, ε)

)
{Role (4) in Def 3.2}

⇒ (s. G(⊥)) ↑ ∨ (s, G(⊥)) →ast (t, ε)

(4) G(Q) = μX • P (Q, X)
(s, μX • P (G, X)) → (t, ε) {Role (5) in Def 3.2}

⇒ (s, P (G, μX • P (G, X))) → (t, ε) {Induction hypothesis}

⇒
(

(s, P (⊥, μX • P (⊥, X))) ↑ ∨
(s, P (⊥, μX • P (⊥, X))) → (t, ε)

)
{Role (5) in Def 3.2}

⇒
(

(s, μX • P (⊥, X)) ↑ ∨
(s, μX • P (⊥, X)) → (t, ε)

)

Lemma 3.2

(1) (s, F (P )) ↑⇒ (s, F(⊥)) ↑
(2) (s, F (μX • P (X)) ↑⇒ (s, F (P (μX • P (X)))) ↑
Proof (1). Based on induction on the structure of F .

Base case: F (X) = X. The conclusion follows from the rule (6).
Inductive Step:

(s, F1(Q) � F2(Q)) ↑ {rule (2)}
⇒ (s, F1(Q)) ↑ ∨ (s, F2(Q)) ↑ {induction hypothesis}
⇒ (s, F1(⊥)) ↑ ∨ (s, F2(⊥)) ↑ {rule (2)}
⇒ (s, (F1(⊥) � F2(⊥))) ↑

(s, F1(Q) � b � F2(Q)) ↑ {rule (3)}
⇒ (s, F1(Q)) ↑ �(s; b) � (s, F2(Q)) ↑ {induction hypothesis}
⇒ (s, F1(⊥)) ↑ �(s; b) � (s, F2(⊥)) ↑ {rule (3)}
⇒ (s, (F1(⊥) � b � F2(⊥))) ↑
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(s, F1(Q);F2(Q)) ↑ {rule (4)}
⇒ (s, F1(Q)) ↑ ∨

∃t • (s, F1(Q)) →∗ (t, ε) ∧ (t, F2(Q)) ↑ {Lemma 3.1}
⇒ (s, F1(⊥)) ↑ ∨ (s, F1(⊥)) →∗ (t, ε) ∧ (t, F2(⊥)) ↑ {rule (4)}
⇒ (s, F1(⊥);F2(⊥)) ↑

Proof of (2): Similar to (1).
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Abstract. We describe our work on a UTP semantics for the dynamic
systems modelling language Modelica. This is a language for modelling
a system’s continuous behaviour using a combination of differential-
algebraic equations and an event-handling system. We develop a novel
UTP theory of hybrid relations, inspired by Hybrid CSP and Duration
Calculus, that is purely relational and provides uniform handling of con-
tinuous and discrete variables. This theory is mechanised in our Isabelle
implementation of the UTP, Isabelle/UTP, with which we verify some
algebraic properties. Finally, we show how a subset of Modelica mod-
els can be given semantics using our theory. When combined with the
wealth of existing UTP theories for discrete system modelling, our work
enables a sound approach to heterogeneous semantics for Cyber-Physical
systems by leveraging the theory linking facilities of the UTP.

1 Introduction

Cyber-Physical Systems (CPS) are a class of computerised system that inte-
grate discrete computation with continuous physical processes. CPS are typi-
cally developed using a combination of discrete and continuous models, often
in differing heterogeneous languages. This makes verification of trustworthiness
challenging. There is a need for unifying semantic models to allow the inte-
gration of heterogeneous system components, whilst ensuring that a given set
of safety properties is supported. Hoare and He’s Unifying Theories of Pro-
gramming (UTP) has been designed as a framework in which the integration of
languages, through the common semantic domain of the alphabetised relation
calculus, can be achieved. Semantic models for discrete modelling languages in
UTP are already numerous [13,26,30,36], and, therefore, in this paper we focus
on semantics of continuous models in the Modelica language.

Modelica [22] is a widely used language for description and modelling
of hybrid dynamical systems that compose a continuously evolving physical
plant with a discrete controller. Such systems are described using a mixture
of differential-algebraic equations (DAEs), and event guards that trigger dis-
continuous jumps in system behaviour by execution of discrete equations and
algorithms – so called “hybrid DAEs”. Modelica has a number of commercial

c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 44–64, 2017.
DOI: 10.1007/978-3-319-52228-9 3



Towards a UTP Semantics for Modelica 45

implementations including Dymola1, Wolfram SystemModeler2, MapleSim3 and
the open-source implementation, OpenModelica4. However, the Modelica lan-
guage has an incomplete formal semantics; though the semantics of DAEs is
well known, the event iteration system currently does not have a formal seman-
tics. Here we give a denotational semantics to a fragment of Modelica using
a UTP theory of hybrid relations. Additionally to clarifying the semantics of
Modelica, this allows us to consider the combination of continuous and discrete
models through common theoretical factors and theory linking.

Our approach to giving a semantics to Modelica is three-fold. Firstly, we
create a UTP theory of hybrid relations, building on the work of He [14,15],
Zhou [32,33], Zhan [21], and others. This theory extends the alphabet of UTP
predicates with continuous variables c ∈ conα and is defined by novel healthiness
conditions that characterise these variables as piecewise continuous functions.

Secondly, we define the operators of our hybrid relational calculus, which is
similar to the imperative subset of HCSP [34], but extended with an interval
operator [33] that provides a continuous specification statement. In particular
we provide support for semi-explicit DAEs and continous variable preemption.
As with Hybrid CSP, we base the denotational semantics around the Duration
Calculus [33], though the semantics is purely relational. Moreover, we provide a
uniform account of both discrete and continuous variables by linking the latter
to discrete “copy” variables that give the valuation at the beginning and end
of a continuous evolution. Thus, both discrete and continuous variables can be
manipulated with the same operators; in the latter case this provides initial value
constraints. Our model of hybrid relations has also mechanised in our UTP proof
assistant, Isabelle/UTP [10], that provides theorem proving facilities.

Thirdly, we define a preliminary denotational semantics for Modelica through
a mapping into the hybrid relational calculus. This mapping primarily consid-
ers the event-handling mechanism of Modelica, whereby specific conditions on
continuous variables can lead to both discontinuous jumps in variables, and also
changes to the equations active in the DAE system.

The remainder of our paper is structured as follows. In Sect. 2, we provide
background on hybrid systems by briefly surveying the literature, with particular
emphasis on works related to the UTP. In Sect. 3 we briefly describe the UTP,
and in Sect. 4 we introduce the Modelica language. In Sect. 5, we describe our
UTP theory of hybrid relations. In Sect. 6, we use our UTP theory to build a
hybrid relational calculus, including operators for specifying continuous invari-
ants, differential equations, and preemption. In Sect. 7, we outline our mecha-
nisation of the hybrid relational calculus in Isabelle [10,23]. In Sect. 8, we use
our hybrid relational calculus to give a high-level denotational semantics to the
Modelica language, focusing principally on the interaction between evolution of
DAEs and the event handling system. Finally in Sect. 9, we draw conclusions.

1 http://www.3ds.com/products-services/catia/products/dymola.
2 http://www.wolfram.com/system-modeler/.
3 http://www.maplesoft.com/products/maplesim/.
4 https://www.openmodelica.org/.

http://www.3ds.com/products-services/catia/products/dymola
http://www.wolfram.com/system-modeler/
http://www.maplesoft.com/products/maplesim/
https://www.openmodelica.org/


46 S. Foster et al.

2 Related Work: Hybrid Systems

The majority of the work on hybrid systems takes inspiration from Hybrid
Automata [16], an extension of finite state automata that allows the specifi-
cation of continuous behaviour. A hybrid automaton consists of a finite set of
states labelled by ODEs, a state invariant, and initial conditions. The states
(or “modes”) are connected by transitions that are labelled with jump conditions
and (optionally) events. Whilst in a state the continuous variables evolve accord-
ing to the system of ODEs and the given invariant; this is known as a flow as
the variable values continuously flow from one value to another. When one of
the jump conditions of an outgoing edge is satisfied, the event, if present, can
instantaneously execute, potentially resulting in a discontinuity, and the targeted
hybrid state is activated. Thus a hybrid automata is characterised by behaviour
that includes both continuous flows also discrete jumps. Hybrid automata are
given a denotational semantics in terms of piecewise continuous functions [16]
R → R

n , also called trajectories, that are continuous except for in a finite number
of places.

Verification of hybrid systems was made possible through the seminal work
of Platzer [27]. This work develops a logic called Differential Dynamic Logic (dL)
that allows us to specify invariants over both discrete and continuous variables.
Hybrid systems are modelled using a language of hybrid programs, that combines
the usual operators of an imperative language with continuous behaviour spec-
ified by differential equations. Hybrid programs are equipped with a relational
semantics, and a proof calculus for dL allows reasoning about hybrid programs.
An implementation of dL called KeYmaera [27] allows the automated verifica-
tion of systems modelled as hybrid programs. Our notion of hybrid relation is
inspired by Platzer’s hybrid programs, though we focus on a UTP denotational
semantics as opposed to an operational semantics. Our own setting of the Dura-
tion Calculus [33] provides us with the necessary machinery to similarly justify a
dynamic logic. Moreover, we observe that, with a UTP model, we are in a strong
position to extend the work to deal with concurrent hybrid programs, a notion
that dL does not consider.

Concurrency is considered in Hybrid CSP [14,34] (HCSP), an extension of
Hoare’s process calculus CSP [17] that adds support for continuous variables
as described by differential equations and modelled by standard trajectories, in
a similar manner to hybrid automata. HCSP [14] extends CSP with continu-
ous variables whose behaviour is described by differential equations of the form
F(ṡ, s) = 0. Interaction between discrete and continuous behaviour takes the
form of preemption conditions on continuous variables, timeouts, and interrup-
tion of a continuous evolution through CSP events. HCSP has a denotational
semantics that is presented in a predicative style similar to the UTP [18].

Further work on HCSP [34] enriches the language to allow explicit interaction
between discrete and continuous variables. This is achieved through a novel
denotational semantics in terms of the Extended Duration Calculus [35], which
treats variables as piecewise continuous functions. This allows a more precise
semantics for operators like preemption that are defined in terms of suitable
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variable limits. A Hoare logic for this calculus is presented in [21], through the
adoption of Platzer’s differential invariants, along with an operational semantics.
Our work is heavily influenced by HCSP, though we focus on formalising the
sequential aspects of hybrid systems, and so formalise a subset of the operators
with refined definitions. Our operators formalise continuous after variables by
explicitly considering left-limits which is important for Modelica event iteration.

A theorem prover for HCSP called, HHL Prover [37], has also been devel-
oped and applied to verification of Simulink diagrams through a mapping into
HCSP [31]. More recently the fundamentals of hybrid system modelling have
been studied in a purely UTP relational setting [15]. This work has produced a
language called the Hybrid Relational Modelling Language [15] (HRML), which
draws on HCSP, but uses signals rather than CSP’s events as the main com-
munication abstraction. Our notation is agnostic in this respect, and could be
extended either to support the event or signal paradigm.

Duration Calculus [33] (DC) provides specification of invariants over the con-
tinuous time domain, in order to facilitate verification real-time systems. For
example, we can write

⌈
x 2 > 7

⌉
, which specifies all possible intervals of over

which x2 > 7 is invariant. The chop operator P ◦Q specifies that an interval
may be broken into two subsequent intervals, over which P and then Q hold,
respectively. DC has been extended to provide a semantics for hybrid real-time
systems modelling [35], which is then used to give semantics to HCSP [34]. DC
can also be used to give an account to typical operators of modal and temporal
logics. Thus, grounding our semantics in DC enables us to form continuous spec-
ifications about hybrid systems. Different to DC we provide a purely relational
UTP semantics, and also explictly distinguish continuous and discrete variables,
instead of modelling the latter as step functions. This distinction allows us to
retain standard relational definitions of the majority of discrete UTP operators.

3 Unifying Theories of Programming

Unifying Theories of Programming [4,18] (UTP) is a framework for the specifi-
cation of formal semantics. It is based on the idea that any temporal model can
be expressed as an alphabetised predicate that describes how variables change
over time. This idea of “programs-as-predicates” means that the duality of pro-
grams and specifications all but disappea,rs, as programs are just a subclass of
specifications. This powerful idea provides a strong basis for unification of hetero-
geneous languages and semantic models, since many different shapes of models
can be given a uniform view. The UTP further allows that different semantic
presentations, such as denotational, algebraic, axiomatic, and operational, can
be formally linked through mutual embeddings. This ensures that consistency is
maintained between semantic models and that tools that implement them can
be combined for multi-pronged analysis and verification of models [10].

Concretely, an alphabetised relation is a pair (αP ,P) where αP is the alpha-
bet and P is a predicate all of whose free variables belong to αP . The alpha-
bet can in turn be subdivided α(P) = inα(P) ∪ outα(P), with input variables
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x , y ∈ inα(P) and output variables x ′, y ′ ∈ outα(P). The calculus provides the
operators typical of first order logic. UTP predicates are ordered by a refine-
ment partial order P � Q that also defines a complete lattice. Imperative pro-
grams can be described using relational operators, such as sequential composition
P ; Q , if-then-else conditional P � b �Q , assignment x :=A v (for expression v
and alphabet A), and skip IIA, all of which are given predicative interpretations.

More sophisticated language constructs can be expressed by enriching the
theory of alphabetised relations to create UTP theories. A UTP theory consists
of (i) a set of observational variables, (ii) a signature, and (iii) a set of healthiness
conditions. The observational variables record behavioural semantic information
about a particular program. For example, we may have an observational vari-
able for recording the current time called clock : R. The signature uses these
operational variables to encode the main operators of the target ht language.

The domain of a UTP theory can be constrained through healthiness condi-
tions, which act as invariants over the observational variables. For example, it is
intuitively the case that time only moves forward, and so a relational obser-
vation like C � clock = 3 ∧ clock ′ = 1 ought not to be possible. We can
eliminate this kind of behaviour description with an invariant clock ≤ clock ′.
In the UTP such conditions are expressed as idempotent functions, for exam-
ple HT (P) = P ∧ clock ≤ clock ′, so that healthiness of a predicate P can be
expressed as a fixed point equation: P = HT (P). If we apply HT to C , the result
is miraculous predicate false and thus C is excluded from the theory signature.

UTP theories can be used to describe a domain useful for modelling partic-
ular problems – for instance, we can add further conditions to HT to provide
a theory of real-time programs. UTP theories can also be composed to produce
modelling domains that combine different language aspects. Put more simply,
UTP theories provide the building blocks for a heterogeneous language’s denota-
tional semantics [9]. Such a denotational semantics provides the “gold standard”
for the meaning of language constructs and can then be used to derive other
presentations, such as operational and, very often, algebraic.

4 Modelica

Modelica is an equation-based object-oriented language for describing the
dynamic behaviour of CPS, standardised by the Modelica Language Specification
(MLS) [22]. The MLS is described using English; therefore, its semantics is to
some extent subject to interpretation. Quoting from [22, Sect. 1.2]: “The seman-
tics of the Modelica language is specified by means of a set of rules for translating
any class described in the Modelica language to a flat Modelica structure. A class
must have additional properties in order that its flat Modelica structure can be
further transformed into a set of differential, algebraic and discrete equations (=
flat hybrid DAE). Such classes are called simulation models.”

Figure 1 illustrates the basic idea. The squiggle arrow denotes a degree of
fuzziness — a simulation result is an approximation to the, in general, inac-
cessible exact solution of the equation system and the specification does not
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prescribe a particular solution approach. A classical model for a hybrid systems
is the bouncing ball. A possible Modelica implementation for a ball with mass
1 kg and an impact coefficient of 0.8 that falls from an initial height of h = 1m
is given in Fig. 2. When the ball hits the ground, it changes its velocity v discon-
tinuously and bounces back. der(h) and der(v) denote the time derivatives ḣ
and v̇ of variables h and v , respectively. The acceleration to the ground is deter-
mined by earth’s gravitational acceleration g = 9.81m/s2. The discontinuous
change of variable v is modelled using a conditionally activated reinitialization
equation. The ball hits the ground when condition h < 0 becomes true. The
reinit() operator is used for reinitializing v with the negative value of v (times
the impact coefficient) just before condition h < 0 becomes true (pre(v) returns
the left limit of variable v at the event instant).

Fig. 1. From model to simulation
result.

Fig. 2. Bouncing ball in Modelica.

Several formal specification approaches have been used to give semantics to
subsets of the Modelica language. Most of the approaches describe the instantia-
tion and flattening of Modelica models (i.e., the static semantics, corresponding
to the first stage in Fig. 1) [1,20,28] while others are restricted to discrete-time
language subsets [29].

Flat Modelica can be conceptually mapped to a set of differential, algebraic
and discrete equations of the following form [22, Appendix C]:

1. Continuous-time behaviour. The system behaviour between events is described
by a system of differential and algebraic equations (DAEs):

f
(
x (t), ẋ (t), y(t), t ,m(te),mpre(te), p, c(te)

)
= 0 (1a)

g
(
x (t), y(t), t ,m(te),mpre(te), p, c(te)

)
= 0, (1b)

where t denotes time; p is a vector of parameters and constants; x (t) is a
vector of dynamic variables of type Real and ẋ (t) is the vector of its deriva-
tives; y(t) is a vector of algebraic variables of type Real; m(te) is a vector of
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discrete-time variables of type discrete Real, Boolean, Integer, or String
which changes only at event instants te ; mpre(te) are the values of m imme-
diately before the current event at event instant te ; and c(te) is a vector
containing all Boolean condition expressions, e.g., if-expressions.

2. Discrete-time behaviour. The behaviour at an event at time te is described
by following discrete equations:

m(te) := fm
(
x (te), ẋ (te), y(te),mpre(te), p, c(te)

)
(2)

c(te) := fe
(
mB(te),mB

pre(te), p
B, rel(v(te))

)
. (3)

An event fires if any of the conditions c(te) change from false to true.
The vector-valued function fm specifies new values for the discrete variables
m(te). The vector c(te) is defined by the vector-valued function fe , which con-
tains all Boolean condition expressions evaluated at the most recent event te ;
rel(v(te)) = rel([x (t); ẋ (t); y(t); t ; m(te); mpre(te); p]) is a Boolean-typed
vector-valued function containing variables vi , e.g., v1 > v2, v3 ≥ 0; mB(te)
is a vector of discrete-time variables of type Boolean, mB(te) ⊆ m(te), and
mB

pre(te) are the values of mB immediately before the current event at event
instant te ; pB are parameters and constants of type Boolean, pB ⊆ p.

Simulation means that an initial value problem (IVP) is solved. The equations
define a DAE which may have discontinuities and a variable structure and may
be controlled by a discrete-event system.

5 Theory of Hybrid Relations

We now proceed to describe our theory of hybrid relations to enable the def-
inition of a relational calculus for modelling sequential hybrid processes. Our
model unifies the treatment of discrete and continuous variables so that the
same operators may be used for manipulating both. In Modelica, DAEs are used
to describe continuously evolving dynamic behaviour of a system. Thus, in the
UTP, we first introduce a theory of continuous time processes that embeds tra-
jectories into alphabetised predicates and shows how continuous variables evolve
over a given interval. These intervals are used to divide up the evolution of a
system into piecewise continuous segments.

Our theory is based on vanilla UTP alphabetised relations, and so is insen-
sitive to termination and stability of continuous processes. Following the UTP
philosophy, we consider hybrid behaviour in isolation, and then later augment
it with additional structure to allow the finer expression of such properties. Our
theory can, for instance, be embedded into timed reactive designs [13,30].

Alphabet. Our model of continuous time introduces observational variables
ti, ti′ : R≥0 that define the start and end time of the current computation inter-
val, as in DC [35]. We also introduce the expression � to denote the duration of
the current interval, where � � ti′ − ti.

As already said, the alphabetised relational calculus divides the alphabet into
input inα(P) and output variables outα(P). Inspired by [15], we add a further
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subdivision x , y , z ∈ conα(P), the set of continuous variables, that is orthogonal
to the discrete program variables, that is conα(P) ∩ (inα(P) ∪ outα(P)) = ∅.
The elements of conα(P) are the variables to be used in differential equations
and other continuous constructs.

We assume that all variables consist of a name, type, and optional deco-
ration. For example, the name in the variables x , x ′, and x is the same – x
– but the decorations differ. We introduce the distinguished continuous vari-
able t that denotes the current instant in an algebraic or differential equa-
tion. An alphabetised predicate P whose alphabet can be so partitioned, i.e.
α(P) = inα(P) ∪ outα(P) ∪ conα(P), is called a hybrid relation.

Continuous variables come in two varieties that allows us to talk about a
particular instant or about the whole time continuum:

– instant variables – these are continuous variables of type R that refer to the
value at a particular instant;

– trajectory variables – these are time-dependent variables of type R≥0 → R

and give the values over a whole trajectory.

Trajectory variables are total rather than partial functions. This has the advan-
tage that composition operators need not consider explicit combination of trajec-
tories through overriding. Instead, composition further constrains the trajectory
functions, potentially over disjoint time domains (as is the case for;). Valuations
of the trajectory exist outside [ti, ti′), but they have no relevance.

We require that each trajectory variable x : R≥0 → R is accompanied by
discrete before and after “copy” variables with the same name – x , x ′ : R – that
record the values at the start and limit of the current interval. This, crucially,
allows us to use the standard operators of relational calculus for manipulating
continuous variables via discrete copies. This allows us to consider the set of
purely discrete variables that are not discrete copies of a continuous variable:

disα(P) = {x ∈ inα(P) | x /∈ conα(P)} ∪ {x ′ ∈ outα(P) | x /∈ conα(P)}
We introduce the following @ operator borrowed from [6] that lifts a predicate

in instant variables to one in trajectory variables.

Definition 1. Continuous variable lifting

P @ τ � {x 
→ x (τ) | x ∈ conα(P) \ {t}} † P
The dagger (†) operator is a nominal substitution operator. It applies the given
partial function, which maps variables to expressions, as a substitution to the
given predicate, so that P [v/x ] = {x 
→ v}†P . We construct a substitution that
maps every flat continuous variable (other than the distinguished time variable
t ∈ [ti..ti′)) to a corresponding variable lifted over the time domain. The effect
of this is to state that the predicate holds for values of continuous variables at a
particular instant τ , a variable that is potentially free in P . Each flat continuous
variable x : T is thus transformed to have a time-dependent function x : R → T
type. This operator is used to lift time predicates over intervals.
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Table 1. Signature of hybrid relational calculus

Healthiness conditions. We introduce two healthiness conditions:

HCT1(P) � P ∧ ti ≤ ti′

HCT2(P) � P ∧

⎛
⎜⎜⎝ti < ti′ ⇒

∧
v∈conα(P)

⎛
⎜⎜⎝

∃ I : Roseq • ran(I ) ⊆ {ti . . . ti′}
∧ {ti, ti′} ⊆ ran(I )∧
∧ (∀n < #I − 1 •

v cont-on [In , In+1))

⎞
⎟⎟⎠

⎞
⎟⎟⎠

where
Roseq � {x : seqR | ∀n < #x − 1 • xn < xn+1}
f cont-on [m,n) � ∀ t ∈ [m,n) • lim

x→t
f (x ) = f (t)

HCT1 states that

time may only ever go forward, as should be the case, and thus the time interval is
well-defined. HCT2 states that every continuous variable v should be piecewise
continuous, that is, that for non-empty intervals there exists a finite number of
points (range of I ) between ti and ti′ where discontinuities occur. We define the
set of totally ordered sequences Roseq that captures this set of discontinuities,
and the continuity of f is defined in the usual way by requiring that at each
point in [ti, ti′), the limit correctly predicts where the function goes.

HCT1 and HCT2 are idempotent, monotone, and commutative as they are
both conjunctive. We then have that HCT = HCT2 ◦ HCT1 also satisfies all
these properties. Furthermore it defines a complete lattice.

Theorem 1. HCT predicates form a complete lattice under
�

and
⊔
, with

�H = HCT(true) and ⊥H = false.

Proof. By conjunctivity of HCT . Properties of conjunctive healthiness condi-
tions are proved in [12]. ��

6 Hybrid Relational Calculus

The signature of our theory is given in Table 1. It consists of the standard oper-
ators of the alphabetised relational calculus together with operators to specify
intervals ��P��, differential algebraic equations 〈Fn | b 〉, and preemption P [ b ]Q .
Using this calculus, we can describe the bouncing ball example from Fig. 2:

Example 1. Bouncing ball in hybrid relational calculus

h, v := 1, 0 ;
(〈

ḣ = v ; v̇ = −9.81
〉
[ h < 0 ] v := −v · 0.8)

)ω
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This hybrid program has two continuous variables for height h and velocity v .
Initially we set these two variables to 1 and 0, and then initiate the system
of ODEs. The system evolves until h < 0, at which point a discrete command
is executed that assigns −v · 0.8 to v , that is, the velocity is reversed with a
dampening factor. The system infinitely iterates, allowing the system dynamics
to continue evolving, but with new initial values. Such a system only requires an
ODE with no algebraic equations; to illustrate DAEs we give another example.

Example 2. Cartesian pendulum in hybrid relational calculus
〈
ẋ = u; u̇ = λ · x ; ẏ = v ; v̇ = λ · y − 9.81

∣∣∣ x 2 + y2 = l2
〉

This system consists of four differential and one algebraic equation in terms of
the position (x , y), horizontal and vertical velocities u and v , and the length l
of the pendulum cable. The differential equations describe the horizontal and
vertical components of the pendulum’s movement vector, governed by the laws
of conservation of energy and gravity using a constant λ previously defined.
The algebraic equation ties x and y together through the Pythagorean theorem,
ensuring that the length of the cable must be respected by the movement. ��

We note that many of the standard operators of the alphabetised relational
calculus retain their standard denotational semantics [18] in this setting, but
over the expanded alphabet. Indeed, an alphabetised relation is simply a hybrid
relation with the degenerate alphabet conα(P) = ∅. For continuous variables,
sequential composition behaves like conjunction. In particular, if we have P ; Q ,
with P and Q representing evolutions over disjoint intervals, then their sequential
composition combines the corresponding trajectories when they agree on variable
valuations. Put another way, the final condition of P also defines the initial
condition for Q as in the Z schema composition operator.

Similarly, other operators like the Kleene star and Omega iteration operators
P

∗
and Pω, being defined solely in terms of sequential composition, disjunction

(internal choice), II, and fixed point operators, also remain valid in this context.
Thus we already have the core operators of an imperative programming language
at our disposal. We prove that these core operators satisfy our two healthiness
conditions in Isabelle (cf. Sect. 7), but for now we state the following theorem.

Theorem 2. The following operators of relational calculus P ; Q, P � b �Q,
P

∗
, II, x := v, and false are HCT closed.

The maximally nondeterministic relation true is of course not HCT healthy, and
so we supplement our theory with trueH � HCT (true). We define the interval
operator from DC [33] and our own variant.

Definition 2. Interval operators

�P� � HCT2(� > 0 ∧ (∀ t ∈ [ti, ti′) • P @ t))

��P�� � �P� ∧
∧

v∈conα(P)

(v = v(ti) ∧ v ′ = lim
t→ti′

(v(t))) ∧ IIdisα(P)
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�P� is a continuous specification statement that P holds at every instant over
all non-empty right-open intervals from ti to ti′; it corresponds to the standard
DC operator. We apply HCT2 to ensure that all variables are also piecewise
continuous. In this setting we can use sequential composition P ; Q to express
the DC chop operator (P ◦ Q) to decompose an interval. Our additional interval
operator ��P�� pairs continuous variables with discrete variables at the start and
limit of the interval, whilst holding other discrete variables constant. The initial
condition of each continuous variable x in the interval is constrained by the
valuation of the corresponding discrete copy x . Likewise, the condition at the
limit of the interval is recorded in the corresponding discrete after variable x ′.

Crucially, this provides a uniform view of discrete and continuous variables
when handled over an interval, and allows the use of standard relational opera-
tors for their manipulation. Moreover, by taking the limit rather than the final
value of a continuous variable we do not constrain the trajectory valuation at ti′

meaning it can be defined by a suitable discontinuous discrete assignment at this
instant. Following [14] we ground our definition of differential equation systems
in this interval operator. This will, for example, allow us to formally refine a
DAE, under given initial conditions, to a suitable solution expressed using the
interval operator. Intervals satisfy a number of standard laws of DC illustrated
in Table 2, which we prove in Sect. 7.

Table 2. Algebraic laws of durations

We next introduce an operator, adapted from HCSP [21,34], to describe the
evolution of a system of differential-algebraic equations.

Definition 3. DAE system in semi-explicit form

〈 v̇1 = f1; · · · ; v̇n = fn | 0 = b1; · · · ; 0 = bm 〉
� ��(∀ i ∈ 1..n,∀ j ∈ 1..m • v̇ i(t) = fi(t , v1(t), · · · , vn(t),w1(t), · · · ,wm(t)))

∧ 0 = bj (t , v1(t), · · · , vn(t),w1(t), · · · ,wm(t))��

A DAE 〈Fn |Bm 〉 consists of a set of n functions fi : R × R
n × R

m → R each
of which defines the derivative of variable v i in terms of the independent time
variable t and n +m dependent variables. It also contains algebraic constraints
bj : R × R

n × R
m → R that must be invariant for any solution and do not

refer to derivatives. For m = 0 the DAE corresponds to an ODE, which we
write as 〈Fn 〉. The DAE operator is defined using the interval operator to be
all non-empty intervals over which a solution satisfying both the ODEs and
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algebraic constraint exists. Non-emptiness is important as it means that a DAE
must make progress: it cannot simply take zero time since � > 0, and so a DAE
cannot directly cause “chattering Zeno” effects when placed in the context of a
loop, though normal Zeno effects remain a possibility.

As previously explained, at the initial time (ti) each continuous variable v i of
the system is equated to the value of the corresponding discrete input variable vi .
To obtain a well defined problem description, we require the following conditions
to hold [2]: (i) the system of equations is consistent and neither underdetermined
nor overdetermined; (ii) the discrete input variables vi provide consistent initial
conditions (ICs5); (iii) the equations are specific enough to define a unique solu-
tion during the interval �. The system is then allowed to evolve from this point in
the interval between ti and ti′ according to the DAEs. At the end of the interval,
the corresponding output discrete variables are assigned. During the evolution
all discrete variables and unconstrained continuous variables are held constant.

Finally, we define the preemption operator, adapted from HCSP.

Definition 4. Preemption operator

P [B ]Q � (Q �B @ ti�(P ∧ �¬B�)) ∨ ((�¬B� ∧ B @ ti′ ∧ P) ; Q)

Intuitively, P is a continuous process that evolves until the predicate B is sat-
isfied, at which point Q is activated. This operator is used to capture events
in Modelica. The semantics is defined as a disjunction of two predicates. The
first predicate states that, if B holds in the initial state of ti, then Q is acti-
vated immediately. Otherwise, P is activated and can evolve while B remains
false (potentially indefinitely). The second predicate states that ¬B holds on the
interval [ti, ti′) until instant ti′, when B switches to a true valuation; during that
inverval P is executing. Following this, P is terminated and Q is activated.

7 Mechanisation in Isabelle/UTP

Our Isabelle [23] mechanisation serves two purposes: firstly it validates the model
by enabling us to prove algebraic laws, and secondly it enables theorem proving
for hybrid programs. It is based in a shallow embedding of the UTP6, which
provides direct proof automation through a combination of Isabelle/Circus [5]
and our own deep model [10]. UTP relations are represented by predicates over
bindings, and bindings over a given alphabet are represented using record types,
where each field corresponds to a variable. The model is based on a UTP expres-
sion type ( ′a, ′α) uexpr ranging over alphabet type ′α and with return type ′a.

5 Notice that in the general case ICs for DAE systems may actually involve derivatives
v̇ i of v i [25]. Modelica supports the general case and sophisticated algorithms for
finding consistent ICs from “guess” values exist [2,24]. However, numerical/symbolic
methods for solving IVPs is not within the scope of our current work. Hence, we
only consider less general ICs and presume that consistent ICs are provided.

6 See https://github.com/isabelle-utp/utp-main/tree/shallow.

https://github.com/isabelle-utp/utp-main/tree/shallow
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Alphabetised predicates ′α upred are expressions with a boolean return type,
and relations are predicates over a product type ( ′α × ′β) upred.

We mimic the syntax of UTP predicates as given in most standard publi-
cations (e.g. [4,18]). Where this is not possible, we supplement the same syn-
tax with an added subscript u. For example, equality in Isabelle “=” denotes
HOL equality, so we use =u for UTP equality. Input variable and output
variable expressions are written $x and $x´ respectively. We also make use
of Isabelle’s implementation of Cauchy real numbers and analysis [7,11]. Our
proofs make heavy use of Isabelle’s automated proof facilities like auto and
sledgehammer [3]. This has allowed us to use Isabelle to validate the healthiness
conditions and definitions given in the previous sections. We prove that they
respect appropriate laws, which increases confidence in the correctness of our
UTP theory. This section has been compiled using Isabelle’s document prepa-
ration system: all definitions and theorems have been mechanically verified7.

A hybrid state ( ′d , ′c) hyst represents the alphabet, or equivalently the state of
the hybrid relation, at a particular instant. We represent this using a record with
three fields: stateu denoting the state variables, timeu denoting the time, and
traj u denoting the trajectory of continuous variables. The record type is para-
metrised by the discrete portion of the alphabet, denoted by type ′d and the
continuous portion denoted by type ′c. The state field’s type is a product of the
discrete and continuous state, whilst the trajectory refers only to the continuous
state. Intuitively, this encodes the distinction between discrete and continuous
variables. A hybrid relation is then a homogeneous relation (hrelation) over the
hybrid state. We next give the healthiness conditions of our theory.

HCT1 is broadly the same as in Sect. 6, though we additionally require that the
initial time be no less than zero; this is due to our use of the standard type real
that also encompasses negative numbers.

HCT2 also explicitly requires that the trajectory sequence I is both sorted and
distinct, which equates to it being linearly sorted as required.

7 Our Isabelle/UTP theory development, including all omitted proofs, is available at
http://www.cs.york.ac.uk/~simonf/utp2016.

http://www.cs.york.ac.uk/~simonf/utp2016
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We also have to add an auxiliary healthiness condition HTRAJ. This allows us
to use standard HOL binary relations, where there is only inputs and outputs,
to represent hybrid relations. Specifically, we have two copies of the trajectory,
a before version and an after version and so this healthiness condition ensures
the trajectory remains constant throughout. Monotonicity and idempotence of
the healthiness conditions is proved by our automated relational calculus tactic.

With our healthiness conditions defined, we can proceed to define the opera-
tors. The basic operators, such as II and @ are elided here, and we instead focus
on the continuous operators. We first define the two interval operators.

Definition hInt corresponds to the interval operator �P�, and has an almost
identical definition. In our mechanisation, an interval can be written as �P�H
where P is a predicate with the time variable τ free.

Our modified interval operator ��P��, represented here by hDisInt conjoins the
standard interval operator with predicates that ensure that discrete variables
remain const and that continuous variable copies match the initial value in the
trajectory, and the left limit of the trajectory at the end. Here πn is a function
that returns the nth element of a product, f �x �u represents function applica-
tion, and limu(x → t−) denotes the left-limit. This interval operator is written
�| P |�H , again with τ free.

Next we define the operators for ODEs and DAEs. The first step is to for-
mally mechanise the notion of time derivatives (ẋ ). Thus we define a predicate
hasDerivAt that relates ODEs to solution functions using the lifting package [19].

An explicit system of ODEs ( ′c ODE ) is encoded as a function real × ′c ⇒ ′c,
where the real is the time parameter, and ′c is a vector of real variables.
We require that ′c be within the type class real-normed-vector of real vector
spaces. Isabelle’s Multivariate Analysis library contains a function has-vector-
derivative that relates a solution function F : R → R

n with its derivatives
Ḟ : Rn at instant τ within a particular range. It represents the Fréchet deriva-
tive of differential equations in a vector space. We use this to define a construct
F has−deriv F ′ at τ where F is a solution function, F ′ is the system of ODEs.
This predicate is accompanied by a large number of rules that can be used to
certify derivatives of polynomial functions. We now use these to encode operators
for ODEs, DAEs, and ODEs under an initial condition.
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We choose to implement ODEs and DAEs as separate constructs, as the defin-
itions are simpler, though equivalent to those in the previous section. An ODE
〈F ′〉H specifies that a solution function F to the given ODE must exist and that
at each point of the interval the values of all continuous variables (conα) track
this solution function. A DAE 〈F ′|B〉H is then simply an ODE constrained with
the algebraic predicate throughout the interval. We also provide a representation
of ODEs as explicit initial value problems by I |= 〈F ′〉H where I gives initial
values to all continuous variables.

Finally, we prove some key laws about our hybrid relational calculus. Firstly
we show that sequential composition is HCT closed, which partly validates our
healthiness conditions with respect to the standard relational calculus. This is
proved by an apply-style Isabelle proof which is omitted.

In order to demonstrate the use of ODEs in this framework, we take the ODE
from the bouncing ball example, and show how its solution can be expressed as
a refinement statement.

As in Example 1, we specify the ODE with two variables, v and h that
will give the velocity and height about the ground of the ball. We refine this
in the window time = 0 as it makes the solution simpler via an appropriate
conjunction. Given initial conditions of v0 and h0 for the respective variables,
solutions to the ODE equations are v0−g ·τ and (v0 ·τ−g ·τ2)/2+h0, respectively.
The solutions are proved correct in Isabelle automatically by application of our
relational calculus tactic rel-tac, followed by existential introduction (exI ) to
introduce the ODE solution, application of the auto tactic, and then finally
application of our own tactic vderiv-tac. This tactic recursively applies the set
of introduction for differentiation in an effort to show that a given ODE is the
derivative of a given solution. This example serves to demonstrate how a theorem
prover can reason about differential equations in terms of their solution intervals
making use of refinement and the Duration Calculus.

8 Modelica Semantics

In this section we give a semantics for flat Modelica whose models are given by a
set of conditional differential, algebraic, and discrete equations. More specifically,
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we assume that a Modelica model consists of a set of dynamic variables x ,
algebraic variables y , and discrete variables q , and

– a set of k ∈ N>0 conditional DAEs, consisting of:
• differential equations ẋ = Fi(x , y , q) for i ∈ 1..k ;
• algebraic equations y = Bi(x , y , q) for i ∈ 1..k ;
• boolean DAE guards Gi(x , y , q) for i ∈ 1..k − 1, that give the conditions

under which the corresponding set of differential and algebraic equations
is active in terms of the values of discrete and continuous variables at
initialisation or the previous event. We assume that at least one set of
equations is active at any time;

– a set of l ∈ N boolean event conditions Ci(x , y , q) for i ∈ 1..l , that trigger
an event when changing value. These must be specified in terms of the core
Modelica relational operators, namely ≤, <, =, and �=;

– a set of m ∈ N conditional discrete equation blocks, consisting of:
• n boolean discrete-event guards Hi,j (x , y , q , qpre) for i ∈ 1..m, j ∈ 1..n;
• n discrete equations/algorithms Pi,j (x , y , q , qpre) for i ∈ 1..m, j ∈ 1..n.

We assume the discrete equations are sorted into a suitable sequence.

Each conditional DAE describes a possible continuous behaviour using a col-
lection of differential and algebraic equations. The particular behaviour to be
executed is chosen based on the evaluation of the guards, which take as input
the valuations of the discrete and continuous variables at the (re)start of the
continuous evolution. The possible events that can occur are described by a
collection of boolean event conditions, which act as guards that can stop the
continuous evolution. Once one or more of these guards changes value an event
is fired, and possible discrete behaviour is executed. Usually such guards are
implemented in terms of a zero crossing function, though our semantics specifies
them abstractly. The appropriate discrete behaviours are then chosen through a
collection of discrete event guards, and the resulting behaviour by an appropriate
discrete equation that may be specified by a suitable algorithm.

We give the semantics for such a Modelica model M, which is shown in Fig. 3,
in terms of four main definitions.

Init denotes the initialisation phase of a Modelica model, where initial values
are assigned to the discrete and continuous variables. For now, we assume that
initial values u, v , and w can be unambiguously assigned to each. Following
initialisation, an infinite loop is entered representing the main body of behaviour.

DAE denotes the conditional system of differential and algebraic equations
active during the continuous evolution of the model. It is represented by a con-
ditional predicate that selects an appropriate set of differential and algebraic
equations based on initial values of discrete and continuous variables.

Events denotes the event preemption condition, and is a disjunction of all
possible event conditions (“relations” in Modelica terminology) in the Modelica
model. In this way, the DAE remains active until one of the event conditions
changes from its initial value, at which point it is preempted.

Finally, Discr describes possible discrete behaviour to be executed during
event iteration; a finite event loop adapted from the pseudo code given on page
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Fig. 3. Overall semantics of a Modelica model M

263 of [22]. The initial value of all discrete variables is first copied by creation of
a local variable qpre that holds the initial value of q . Each conditional discrete
equation is then evaluated, which may lead to updates to q , and then the pro-
cedure iterates. The event iteration terminates when no more updates to q are
made: a fixed point is reached. In Modelica the existence of a fixed point is not
guaranteed and event iteration can potentially lead to an infinite loop.

To illustrate, we use the bouncing ball Modelica example from Fig. 2. It has
continuous variables representing the height of the ball above the ground h and
the velocity of the ball v . For giving a semantics to this we convert the when
expression to an if expression, so we need only consider semantics of the latter,
using the conceptual mapping in Sect. 8.3.5.1 of [22], which will yield:

c = h<0;
if (c and not(pre(c))) then

reinit(v, -0.8* pre(v));
end if;

An additional variable c of type Boolean is added, and assigned the condition
of the when statement. The when equation itself is replaced by an if equation
whose condition is that c is true now, and was not true previously – i.e. it has
become true at the current instant. We can now give the semantics of this model.
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Example 3. Bouncing ball semantics in hybrid relational calculus

h, v , c := 1, 0, false ;
(
〈
v̇ = −9.81; ḣ = v

〉
[(h < 0) �= (h < 0)]
var cpre •
until (cpre = c)do

cpre := c ; c := h < 0 ;
v := −0.8 · v � c ∧ ¬cpre � II

od )ω

We assign initial values for the three variables, and assume that the condition c is
false initially. The DAE is then activated and evolves until the valuation of the if
guard h < 0 at time t is different from the initial value, that is (h < 0) �= (h < 0).
We note that h and h are two different variables: h denotes h at time t , whilst h
denotes its value at the beginning of the present DAE evolution, so the inequality
corresponds to the value of this boolean guard changing. At this point, the
event iteration begins. We create a variable to denote the previous value of c,
and then enter into the event loop. We then assign c to cpre, and evaluate the
discrete equations. First of all, we evaluate the new value of c, which is the
event condition. Secondly, if c is true and different from its previous value, we
also update v , otherwise we skip. The loop terminates once the value of c has
stablised (which it has in the second iteration). Following this, we iterate the
whole loop and restart the DAE with the new initial values.

This example serves to illustrate the behaviour of a Modelica model in the
hybrid relational calculus. Our preliminary semantics considers a fragment of
the event handling mechanism, excluding practical problems of initialization
and numerical integration of DAEs. Present limitations include the separation
of continuous and discrete equations during the event handling mechanism. More
complete Modelica semantics require to solve a mixed system of the discrete and
continuous equations during events. We will consider these in future iterations
of this semantics, define a more complete translation, and apply it to more
substantive examples.

9 Conclusions

We have presented a denotational semantics for the dynamical systems mod-
elling language Modelica, in terms of a hybrid relational calculus that has been
mechanised in Isabelle. The semantics elaborates the event iteration system,
showing how continuous evolution transitions to discrete behaviour and vice-
versa. Nevertheless, our translation is currently relatively informal and thus in
future work we will define a comprehensive mapping from Modelica to hybrid
relations, including its expression language and collection of imperative language
constructs. We will also combine our theory of hybrid relations with timed reac-
tive designs [13] to provide a rich semantic model providing termination, stability,
and concurrency in the form of CSP.
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This work supports the goals of a large EU project called INTO-CPS8, which
aims at building an integrated tool-chain for model based development of Cyber-
Physical Systems. This tool-chain will support the integration of heterogeneous
discrete and continuous system models through the Functional Mockup Inter-
face [8] (FMI), a language that allows the composition of continuous time and
discrete event models, and their concurrent simulation to support empirical eval-
uation. We will use our UTP theory of hybrid relations combined with timed
reactive designs to develop a common semantic domain into which all these
language can be mapped and verified.

We also plan to further experiment with theorem proving in Isabelle, for
example through a mechanisation of Hybrid Hoare Logic [37]. As stated in
Sect. 8, Modelica does not guarantee that event iteration terminates and so we
could use such a prover, in the context of reactive designs, to verify termination.
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Abstract. It is well known that informal simulation-based design of
embedded systems has a low initial cost and delivers early results; yet
it cannot guarantee the correctness and reliability of the system to be
developed. In contrast, the correctness and reliability of the system can
be thoroughly investigated with formal design, but it requires a larger
effort, which increases the development cost. Therefore, it is desirable
for a designer to move between formal and informal design. This paper
describes how to translate Hybrid CSP (HCSP) formal models into
Simulink graphical models, so that the models can be simulated and
tested using a MATLAB platform, thus avoiding expensive formal veri-
fication if the development is at a stage where it is considered unneces-
sary. Together with our previous work on encoding Simulink/Stateflow
diagrams into HCSP, it provides a two-way path in the design of embed-
ded systems, so that the designer can flexibly shift between formal and
informal models. The translation from HCSP into Simulink diagrams is
implemented as a fully automatic tool, and the correctness of the trans-
lation is justified using Unifying Theories of Programming (UTP).

Keywords: Simulink · HCSP · UTP · Verification · Hybrid systems

1 Introduction

Correct and efficient design of complex embedded systems is a grand challenge
for computer science and control theory. Model-based design (MBD) is thought
to be an effective solution. This approach begins with an abstract model of
the system to be developed. Extensive analysis and verification of the abstract
model are then performed so that errors can be identified and corrected at a
very early stage. Then the higher-level abstract model is refined to step by step
to more detailed models till a level where the system can be built with existing
components or a few newly developed ones.

Many MBD approaches targeting embedded systems have been proposed
and used in industry and academia. These approaches can be simulation-
based informal ones such as Simulink/Stateflow [1,2], Modelica [3], SysML [4],
c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 65–92, 2017.
DOI: 10.1007/978-3-319-52228-9 4
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MARTE [5], or they can be verification based like Metropolis [6], Ptolemy [7],
hybrid automata [8], CHARON [9], HCSP [10,11], Differential Dynamic Logic
[12], Hybrid Hoare Logic [13]. It is evident that informal design of embedded
systems has a low initial cost and is intuitively appealing, because simulations
give results early on, but it cannot fully guarantee the correctness and reliability
of the system to be developed; in contrast, the correctness and reliability of the
system can be thoroughly investigated with formal design, but the cost is higher
and it requires specialized skills. Therefore, it is desirable to provide a two-way
path between formal and informal approaches for a designer.

The first contribution of this paper is to provide one lane of this path. It
takes a formal model and translates it automatically to a Simulink model. The
other lane has been developed in previous work [14,15]. The translation from the
formal to informal model presented here, is implemented as a fully automatic
tool. Another contribution of this paper is to provide a justification of the cor-
rectness of the translation. To this end, we define a UTP semantics for Simulink
and a UTP semantics for HCSP, and then establish a correspondence between
the two. Due to lack of space, the implementation and a case study on a lunar
lander have been omitted and can be found in [16].

1.1 Related Work

There has been a range of works on translating Simulink/Stateflow into mod-
elling formalisms supported by analysis and verification tools. Mathworks itself
released a tool named Simulink Design Verifier [17] (SDV) for formal analysis of
Simulink/Stateflow models. However, currently, SDV can only be used to detect
low-level errors such as integer overflow, dead logic, array access violation, divi-
sion by zero, and so on, in blocks of a model, but not system-level properties
of the complete model with the physical and environmental aspects taken into
account.

Simulation-based verification [18] can be used to verify system-level proper-
ties in a bounded time, but cannot be applied for unbounded verification. Thus
there is work on translating Simulink into other modelling formalisms, for which
analysis and verification tools are developed. Tripakis et al. [19] presented an
algorithm of translating discrete-time Simulink models to Lustre, a synchronous
language developed with formal semantics and a number of tools for validation
and analysis, and later extended the work by incorporating a subset of State-
flow [20]. Cavalcanti et al. [21] presented a semantics for discrete-time Simulink
diagrams using Circus [22], a combination of Z and CSP. Meenakshi et al. [23]
gave an algorithm that translates a subset of Simulink intothe input language
of model checker NuSMV. Sifakis et al. proposed a translation into BIP in [24].
BIP [25] stands for Behaviour, Interaction and Priority, which is a component-
based formal model for real-time concurrent systems. These works do not con-
sider continuous time models of Simulink. This is considered in the follpwing
works. Yang and Vyatkin [26] translate Simulink into Function Blocks. Zhou
and Kumar investigated how to translate Simulink into Input/Output Hybrid
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Automata [27], while the translation of both discrete and continuous time frag-
ments of Simulink into SpacEx Hybrid Automata was considered in [28]. In [29],
Chen et al. translates Simulink models to a real-time specification language
Timed Interval Calculus (TIC). In this, continuous Simulink diagrams can be
analyzed by a theorem prover. However, the translation is limited as it handles
only continuous blocks whose outputs can be represented explicitly by a math-
ematical relation on inputs. In contrast, in [14] is a translation from Simulink
into HCSP which handles all continuous blocks using the notion of differential
equations and invariants.

Contract-based frameworks for Simulink are described in [30,31]. In [30],
Simulink diagrams are represented by SDF graphs, and discrete-time blocks are
specified by contracts with pre/post-conditions. Then sequential code is gener-
ated from the SDF graph, and the code is verified using traditional refinement-
based techniques. In [31], Simulink blocks are annotated with rich types, then
the SimCheck tool extracts verification conditions from the Simulink model and
the annotations, and submits them to an SMT solver for verification. While in
our approach, all Simulink/Stateflow models can be specified and verified using
Hybrid Hoare Logic and its deductive verification techniques.

In [32], a compositional formal semantics built on predicate transformers
was proposed for Simulink, based on which, a tool for verification of Simulink
blocks was reported in [33], consisting of two components: a translator from
Simulink hierarchical block diagrams into predicate transformers and an imple-
mentation of the theory of predicate transformers in Isabelle. The UTP semantics
of Simulink/Stateflow defined here is quite similar to the one given in [32].

There have been several formal semantics defined for HCSP. In He’s original
work on HCSP [10], an algebraic semantics of HCSP was given. Subsequently, a
Duration Calculus (DC) based semantics for HCSP was presented in [11]. These
two original formal semantics of HCSP are very restrictive and incomplete, for
example, it is unclear whether the set of algebraic rules defined in [10] is com-
plete, and super-dense computations and recursion are not well handled in [11].
In [13,34–36], operational, axiomatic and DC-based denotational semantics for
HCSP are proposed, and the relations among them are discussed. In this paper,
we re-investigate the semantics of HCSP by defining its simulation semantics
using Simulink and its UTP-based denotational semantics, and study the corre-
spondence between the two semantics.

The rest of this paper introduces HCSP and Simulink in Sect. 2, Sect. 3
presents the translation from HCSP into Simulink. Section 4 presents a jus-
tification of the translation by proving consistency of the UTP semantics. A
conclusion is in Sect. 5.

2 Preliminaries

HCSP [10,11,34] is a language for describing hybrid systems. It extends the
well-known language of Communicating Sequential Processes (CSP) with tim-
ing constructs, interrupts, and differential equations for modelling continuous
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evolution. Data exchange among processes is confined to instantaneous synchro-
nous communication, avoiding shared variables between parallel processes.

Simulink [1] is an interactive platform for modelling, simulating and ana-
lyzing multidomain dynamic and embedded systems. It provides a graphical
block diagramming tool and a customizable set of block libraries for building
executable models.

2.1 Hybrid CSP (HCSP)

The syntax of HCSP processes is given below:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)
S ::=P | S‖S

Here x and s stand for variables, B and e are conventional Boolean and arith-
metic expressions. P,Q,Qi are sequential processes; and ioi stands for a commu-
nication event, which is either ch?x or ch!e, and ch for a channel name. A system
S is either a sequential process, or a parallel composition of several sequential
processes.

The processes taken from CSP, skip, x := e (assignment), ch?x (input), ch!e
(output), P ;Q (sequential composition), B → P (conditional statement), P ∗

(repetition), P � Q (internal choice), and S‖S (parallel composition) have their
standard meaning.

The evolution statement is 〈F (ṡ, s) = 0&B〉, where s represents a vector
of real variables and ṡ the first-order time derivative of s. It forces s to evolve
according to the differential equations defined by the functional F as long as B
holds, and it terminates immediately when B becomes false.

The process 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) behaves like 〈F (ṡ, s) = 0&B〉,
except that the evolution is preempted as soon as one of the communications ioi

occurs. That is followed by the respective Qi. However, if the evolution state-
ment terminates before a communication occurs, then the process terminates
immediately.

2.2 Simulink

A Simulink model contains a set of blocks, subsystems, and wires, where blocks
and subsystems cooperate by setting values on the wires between them. An
elementary block gets input signals and computes the output signals. However, to
make Simulink more useful, almost every block in Simulink contains some user-
defined parameters to alter its functionality. One typical parameter is sample
time which defines how frequently the computation is. done. Two special values,
0 and −1, may be set for sample time, where the sample time 0 indicates that
the block is used for simulating the physical environment and hence computes
continuously, and −1 signifies that the sample time of the block is not set, it
will be determined by the sample times of the in-going wires to the block. Thus,
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Fig. 1. v̇ = 1, ṡ = v + 2 Fig. 2. skip statement

blocks are classified into two categories, i.e. continuous and discrete, according
to their sample times.

Blocks and subsystems in a Simulink model receive inputs and compute out-
puts in parallel, and wires specify the data flow between blocks and subsystems.
Computation in a block takes no time and the output is delivered immediately
to its receiver.

As a convention, in the sequel, when describing Simulink diagrams, we use x
to stand for the input signal on in-port In x, x′ for the output signal on out-port
Out x, possibly with a subscript to indicate which subsystem the signal belongs
to. For instance, x′

P indicates an output signal on Out x inside a subsystem P.

3 From HCSP to Simulink

The translation from HCSP processes into graphical Simulink models starts from
the most basic ingredients, i.e. expressions, to primitive statements and then is
followed by compositional components.

3.1 Expressions

Arithmetic expressions in HCSP are translated to a normal subsystem in
Simulink. A variable x is encoded into an input block of the subsystem, a con-
stant c into a constant block with corresponding value, and parentheses deter-
mine priority of the computation. As for the operations over reals, a sequence
of + and − (or ∗ and /) is shrunk into a sum (or product) block with multiple
input signals in Simulink. In the example for assignment in Fig. 3 is included
the Simulink subsystem for the expression x + y ∗ z. Boolean expressions are
translated similarly.

3.2 Differential Equations

The syntax of differential equations in HCSP is F =̂ ṡ = e | F, F , where s stands
for a continuous variable, ṡ is the time derivative of s, and F, F indicates a group
of differential equations that evolve simultaneously over time.

Each single differential equation is encoded into a continuous integrator block
with an input signal of the value of e and an output signal of s; equations in the
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same group are a normal subsystem in Simulink. For example, v̇ = 1, ṡ = v + 2,
becomes the block in Fig. 1, the integrator block of s takes the value of v+2 and
an internal initial value s0 to calculate the integral and then generate a signal
of s, i.e. s(t) =

∫ t

t0
(v(t) + 2)dt + s0.

3.3 skip Statement

In HCSP, skip terminates immediately with no effect on the process, and thus
there is intuitively no need to draw anything in Simulink diagrams. However,
blocks and subsystems in a Simulink model are running inherently in parallel,
but processes in HCSP can be executed sequentially, thus we need a mechanism
to specify sequential execution in a Simulink diagram. Inspired by UTP [37], we
introduce Boolean signals ok and ok′ into each subsystem to represent initiation
and termination. Whenever ok′ is false, the process has not terminated and the
final values of the process variables are unobservable. Similarly, when ok is false,
the process has not started and even the initial values are unobservable. These
conventions permit translation of sequential composition. Both ok and ok′ are
local to each HCSP process, and they never occur in expressions.

In a Simulink subsystem ok and ok′ are given by an in-port In ok and an out-
port Out ok respectively. Since skip does nothing and terminates instantly, the
subsystem for skip in Simulink in Fig. 2 has ok′ = ok, indicating that whenever
skip starts, it terminates immediately without any effect.

3.4 Assignment

Figure 3 illustrates the subsystem in Simulink with an example of assignment
x := x + y ∗ z, where for ease of understanding, we unpack the subsystem
of arithmetic expression e. The output signals are computed by the following
equations:

ok′ = ok x′ =

⎧⎨
⎩

x′
new, ok ∧ ¬d(ok)

x, ¬ok ∧ ¬d(ok)
d(x′), d(ok)

u′ = u

Here, u stands for the set of signals that are not processed by the current sub-
system, i.e. y and z in this example. x′

new represents the newly computed signal,
here produced by block Add1. Moreover, we use d(x) to denote the value of x in
the previous period. It is kept through a unit delay block that holds its input
for one period of the sample time.

3.5 Continuous Evolution

The Simulink diagram translated from an evolution in HCSP is shown in Fig. 4,
where the group of differential equations F and the Boolean condition B are
encapsulated into a single subsystem respectively. The enabled subsystem F
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Fig. 3. x := x + y ∗ z Fig. 4. Continuous evolution

contains a set of integrator blocks corresponding to the vector s of continu-
ous variables, and executes continuously whenever the value of the input signal,
abbreviated as en, on the enable-port is positive. Intuitively, subsystem B guards
the evolution of subsystem F by taking the output signals of F as its inputs, i.e.
sB = s′

F , and partially controlling the enable signal of F via its output Boolean
signal, denoted by B. As a consequence, an algebraic loop occurs between subsys-
tem B and F which is not allowed in Simulink, the simple solution is to introduce
a unit delay block with an initial value 1 inserted after subsystem B. Thus the
boundary condition is evaluated after completion of an integrator step. Formally,
given inputs, the output signals are computed by the following equations:

en = ok ∧ d(B) ok′ = ok ∧ ¬d(B) s′ =
{

s′
F , ok

s, ¬ok

3.6 Conditional Statement

Figure 5 illustrates the translation from a conditional statement of HCSP into
a Simulink diagram. In most cases, subsystem B and P share the same group of
input signals x, and for those distinct input signals, we add corresponding in-
ports for B or P, which is not presented in Fig. 5. Accordingly, the output signals
are computed according to

okP = ok ∧ B ok′ =
{
ok′

P , B
ok, ¬B

x′ = x′
P .

3.7 Internal Choice

Given an internal choice P � Q, we use outSigs(P) and outSigs(Q) to represent
the set of output signals (including ok′) of subsystem P and Q respectively, and
encode the random choice according to the following two situations.

– For each x′ ∈ outSigs(P)∩outSigs(Q), we introduce a switch block in Simulink
diagrams for signal routing, which switches x′ between x′

P from P and x′
Q from

Q based on the value of the second input.
– For each y′ ∈ outSigs(P) − outSigs(Q), we directly output the signal y′

P from
P as the final value of y′, because in case that P is not chosen by the system,
y′ stays unchanged. For each z′ ∈ outSigs(Q) − outSigs(P), analogously.



72 M. Chen et al.

Fig. 5. Conditional statement Fig. 6. Internal choice

Figure 6 illustrates a pattern to implement the above two cases. In order
to guarantee that only one process in the internal choice is switched on, every
switch block here needs to share exactly the same switching condition. As shown
in Fig. 6, the two switch blocks share a common criteria (> 0) for passing first
input as well as an identical second input signal, abbreviated as Ran, generated
by an oracle that provides a non-deterministic signal1. The computation of signal
ok and ok′ can be formalized as{

okP = ok ∧ Ran
okQ = ok ∧ ¬Ran

ok′ =
{
ok′

P , Ran
ok′

Q, ¬Ran

3.8 Sequential Composition

An essential work in translating sequential composition into Simulink models, is
to construct the initiation and termination of a process, which has already been
done by introducing ok and ok′ signals in connection with the skip process.

Fig. 7. Sequential composition

Figure 7 illustrates a straightforward encoding of sequential composition into
Simulink diagrams. For exclusive signals y and z, we draw corresponding ports
independently for subsystem P and Q. The set of common signals x processed by

1 An oracle that interprets non-determinism is none of the blocks in Simulink library,
inasmuch as the random block provided by Simulink generates pseudo random num-
bers, which is in itself deterministic.
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both P and Q is linked sequentially from P to Q, and the same happens for ok and
ok′.

okP = ok okQ = ok′
P ok′ = ok′

Q xP = x xQ = x′
P x′ = x′

Q

3.9 Repetition

The basic idea in encoding repetition is to link the outputs of subsystem P back
into its in-ports, and we need to specify a finite random number N to control
the number of times that P executes.

Fig. 8. Repetition

The integrated pattern to encode repetition p∗ into Simulink diagrams is
elaborated in Fig. 8. Here, a unit delay block with an initial value of 0 is intro-
duced to break the algebraic loop that occurs when we link the outputs of P

back. Besides, we introduce an oracle carrying a non-negative random number
N to specify the number of repetitions of subsystem P. The update of variables
is formulated as the following equations:

n = ok × (d(n) + d(ok′
P ∧ ¬d(ok′

P ))) ok′ = ok ∧ ok′
P ∧ (n ≥ N)

okP = ok ∧ (n == d(n) ∨ n ≥ N) xP =
{

d(x′
P ), n > 0

x, n == 0

3.10 Communication Events

For each communication event, either a sender (ch!e) or a receiver (ch?x), we
construct a subsystem in Simulink to deliver the message along ch for the match-
ing pair of events. In order to synchronise the interaction, we introduce another
pair of Boolean signals re and re′ (re is short for ready) into each subsystem that
corresponds to a communication event. re indicates whether the matching event
is ready for the communication, while re′ indicates whether the event itself is
ready for the communication.
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A communication along channel ch takes place as soon as both rech and re′
ch

are true, then both the sending and the receiving parties are ready, otherwise
one or both sides must wait. Additionally, re and re′ are local signals, which
never occur in the process statements. Furthermore, re and re′ in a Simulink
subsystem are constructed as an in-port signal named In re and an out-port
signal named Out re respectively. Figure 9 illustrates the Simulink diagrams that
interpret communication events, which can be elaborated in the following two
parts.

Fig. 9. Communication events

– For a sender ch!e, the output signals are computed according to

re′ = ok ∧ ¬ok′ ok′ = f(d(re ∧ re′)) e′ =
{

e, ¬d(ok)
d(e′), d(ok) ,

where the keep pattern f(s(t)) = ok(t)∧ (s(t)∨f(s(t−1))) for t > cnow, with
f(s(t)) = 0 for t ∈ [cnow, cnow + 1), here cnow is the current time. This is to
keep ok′ true since the communication is finished, i.e., since both re and re′

turn true.
– For a receiver ch?x, the output signals are computed according to

re′ = ok ∧ ¬ok′ ok′ = f(d(re ∧ re′))

x′ =
{

x, if ¬ok′

¬d(ok′) × ch + d(ok′) × d(x′), otherwise

3.11 Parallel

For P‖Q, we consider the following two cases:

Without communications. This is a trivial case that we draw a subsystem encap-
sulating the two subsystems in terms of P and Q, but without any wires (except
those carrying ok, ok′) between the two subsystems, as shared variables are not
allowed in HCSP. Specifically, we set okP = okQ = ok, and ok′ = ok′

P ∧ ok′
Q.
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With communications. As for a parallel process P‖Q with inter-communications
along a set of common channels comChan(P,Q), we draw a subsystem containing
the subsystems corresponding to P and Q, as well as some additional wires to
bind all channels in comChan(P,Q) and deliver messages along them.

Fig. 10. Parallel e := 0; ch!e; < ė = 1&e < 2 >; ch!e‖x := 3; ch?x; ch?x

We elaborate the above idea by showing a Simulink diagram corresponding
to a parallel process in Fig. 10, where the signals relevant to communications
are attached with subscripts to specify the name of the common channel and
the distinctive events corresponding to the same channel. Suppose that there
are m and n events relevant to ch in subsystem P and Q respectively, then the
computation in Fig. 10 is done by

okP = okQ = ok ok′ = ok′
P ∧ ok′

Q rech P =
∨n

i=1
re′

ch i Q rech Q =
∨m

j=1
re′

ch j P

indicating that the two subsystems in parallel are activated simultaneously when
the system starts, and the parallel process terminates when both P and Q termi-
nate. Furthermore, the channel ch on one side claims ready to the other side if
either of its involved events is ready, which means that the communication events
on different parties of a common channel are matched dynamically during the
execution. Moreover, the value that Q receives along channel ch is computed as
chQ =

∑m
j=1 re

′
ch j P × ch′

j P .

3.12 External Choice by Communications

As a subcomponent of interruption in HCSP, the external choice �i∈I(ioi → Qi)
waits until one of the communications ioi takes place, and then it is followed
by the respective Qi, where I is a non-empty finite set of indices, and {ioi}i∈I

are communication events, i.e. either ch!e or ch?x. In addition, if more than
one among {ioi}i∈I are ready simultaneously, only one of them executes, this
is determined randomly by the system. Thus, if the matching side of every ioi

involved is ready for communication, then the external choice degenerates to
internal choice. Besides, the syntax (ioi → Qi) actually indicates a sequential
composition (ioi → skip ;Qi), to which the translation approach already has
been introduced above.
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Taking P � R as an example, where P =̂io1;Q1 and R=̂io2;Q2, then the ok
signal of P can be computed by okP = f(ok ∧ reP ∧ (¬reR ∨ (Ran < 0))). This
means that when the external choice starts (ok = 1) and the matching event of
io1 is ready (reP = 1), P is chosen to execute if either the matching event of
io2 is not ready (reR = 0), or the random number Ran, where Ran ∈ [−1, 1),
occurs to be negative (Ran < 0) when both of the matching event are ready.
A keep pattern f(s) is used here to keep the signal okP true, otherwise it may
jump back to false after that the communication terminates. The subsystem R

is handled analogously. Thus, the output signals of the subsystem of P � R are

given by ok′ = ok′
P ∨ ok′

R, x′ =

⎧⎨
⎩

x′
P , ok′

P

x′
R, ok′

R

x, ¬ok′
P ∧ ¬ok′

R

.

3.13 Interruption

Obviously, 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) is equivalent
to 〈F (ṡ, s) = 0&(B ∧ ¬re′

R)〉; re′
R → �i∈I(ioi → Qi), where re′

R = f
(∨

i∈I re
′
oii

)
,

and the translation rules can be composed in a semantic-preserving way (see
Sect. 4). Hence, translating an interruption into a Simulink diagram becomes
a composition of translating various components that have been illustrated in
previous subsections.

4 Correctness of the Translation

In this section, we define UTP semantics both for HCSP constructs and the
corresponding Simulink diagrams; proving the consistency of the two semantics
is then a justification of the correctness of the translation from HCSP processes
to Simulink diagrams.

UTP is a relational calculus based on first-order logic, which is intended
for unifying different programming paradigms. In UTP, a sequential program
(possibly nondeterministic) is represented by a design D = (α, P ), where α
denotes the set of state variables (called observables). Each state variable comes
in an unprimed and a primed version, denoting respectively the pre- and the
post-state value of the execution of the program. In addition to the program
variables and their primed versions such as x and x′, the set of observables
includes two designated Boolean variables, ok and ok′, denoting termination and
stability of the program, respectively. P stands for the construct, p(x) 
 R(x, x′),
which is defined as

(ok∧p(x)) ⇒ (ok′∧R(x, x′)).

It means that if the program is activated in a stable state, ok, where the pre-
condition p(x) holds, the execution will terminate, ok′, in a state where the
postcondition R holds; thus the post-state x′ and the initial state x are related
by relation R. We use pre.D and post.D to denote the pre- and post-conditions
of D, respectively. If p(x) is true, then P is shortened as 
 R(x, x′).
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Refinement

Let D1 = (α, P1) and D2 = (α, P2) be two designs with the same alphabet. D2

is a refinement of D1, denoted by D1 � D2, if ∀x, x′, ok, ok′. (P2 ⇒ P1). Aslo, let
D1 = (α1, P1) and D2 = (α2, P2) be two designs with possible different alphabets
α1 = {x, x′} and α2 = {y, y′}. D2 is a data refinement of D1 over α1×α2, denoted
by D1 �d D2, if there is a relation ρ(y, x′) s.t. ρ(y, x′);D1 � D2; ρ(y, x′).

In UTP the domain of designs forms a complete lattice with the refinement
partial order, and true corresponding to abort (false corresponding to miracle)
is the smallest (largest) element of the lattice. Furthermore, this lattice is closed
under the classical programming constructs. These fundamental mathematical
properties ensure that the domain of designs is a proper semantic domain for
sequential programming languages.

Concurrent and Reactive Designs

Semantics of concurrent and reactive programs is defined by the notion of reactive
designs with an additional Boolean observable wait that denotes suspension of a
program. A design P is a reactive design if it is a fixed point of H′, i.e. H′(P ) = P ,
where

H′(p 
 R)=̂(
 ∧x∈α(P ) x′ = x ∧ wait′ = wait) � wait � (p 
 R). (1)

P1�b�P2 is a conditional statement, which means if b holds then P1 else P2,
where b is a Boolean expression and P1 and P2 are designs. Informally, Eq. (1)
says that if a reactive system (a reactive design) waits for a response from the
environment (i.e., wait holds), it will keep waiting and do nothing (i.e., keep
program variables unchanged), otherwise its function (p 
 R) will be executed.

Adaptation to Dynamical Systems

Obviously, hybrid systems are concurrent and reactive systems, so the UTP
semantics of a hybrid system should satisfy the UTP healthiness condition. On
the other hand, hybrid systems show some additional features, like real-time
and the mixture of discrete and continuous dynamics. For specifying these addi-
tional features, we have to extend the notion of reactive design in UTP to admit
function variables, and quantifications over functions, as in a real-time setting,
program variables and channels are interpreted as functions over time. For spec-
ifying locality, higher-order quantifications are inevitable. So, UTP will become
higher-order, rather than first-order. In addition, the derivative of a variable
is allowed in a predicate. Therefore, strictly speaking, we extend the relational
calculus of UTP to the combined theory of ordinary differential equations and
timed traces with higher-order quantification.

In order to deal with real-time, a system variable now is introduced, which
stands for the starting time. Correspondingly, now′ stands for the ending time
of a process.
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Another point is that synchronization can only block discrete dynamics and
keep discrete variable unchanged, it cannot block the evolution of continuous
dynamics; time does not stop. So, given a hybrid system S, say p 
 P , with
continuous variables s and discrete variables x, whose continuous dynamics is
modeled as 〈F (ṡ, s) = 0&B〉, written SC

2, then the healthiness condition of
reactive designs should be changed to

H(S) = S, where (2)
H(S) =̂(
 x′ = x ∧ wait′ = wait ∧ SC) � wait � S. (3)

A design that meets the healthiness condition (2) is called a hybrid design. For
simplicity, we will denote the left side of wait in Eq. (3) by ΠH in the sequel.

For convenience, for each channel ch, we introduce two Boolean functions
over time ch! and ch?. ch!(t) means that ch is ready for sending at time t,
similarly, ch?(t) means that ch is ready for receiving at time t. In addition,
Periodic(ch*, st) denotes ∀n ∈ N. t = n ∗ st ⇒ ch*(t), which means that the
communication event ch* is ready periodically with period st. Also, maximal
synchronization semantics is adopted, i.e.,

∀t ≥ 0. (ch?(t) ∧ ch!(t)) ⇒ (¬ch?′(t) ∧ ¬ch!′(t)), (4)

which means that when a synchronization is ready, it takes place immediately.

4.1 UTP Semantics for Simulink

For each Simulink construct C, the observables of C include the inputs in, out-
puts out, the user defined parameters, and some auxiliary variables that are
introduced for defining the semantics. Some output(s) may be also input(s),
i.e. outi = in′

j , but we will uniformly use outi instead of in′
j as output in the

semantics. Also, we use cnow to denote the current time. Now the semantics is
a predicate denoted by [[C]].

Blocks. As pointed out in [38], it is natural to interpret each block of a Simulink
diagram as a predicate relating its inputs to the outputs. The behavior of a
block can be divided into a set of sub-behaviors, each guarded by a condition.
Moreover, these guards are exclusive and complete, i.e., the conjunction of any
two of them is unsatisfiable and the disjunction of all of them is valid. So,
each sub-behavior can be further specified as a predicate over input and output
signals. Additionally, for each discrete block (diagram), it is assumed that its
input signals from outside are available at each sampling point. So, it can be
represented by a UTP formula of the form:

[[B(ps, in, out)]]

=̂H(Ass 
 out(0) = ps.init ∧
m∧

k=1

(Bk(ps, in) ⇒ Pk(ps, in, out))), (5)

2 We always assume time evolution is modeled in SC , i.e., it contains ˙now = 1.
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which means that in case the environment satisfies Ass (the precondition), the
behaviour of a block is specified by the formula at the right side of 
 (the
postcondition). We use ps to denote a family of user-set parameters that may
change the functionality of the block. As explained previously,

∨m
k=1 Bk(ps, in),

and ¬(Bi(ps, in) ∧ Bj(ps, in)) for any i �= j, always hold.
Thus the UTP semantics of a continuous block has the following form:

[[CB(ps, in, out)]] =̂ H(in! 
 out(0) = ps.init ∧
(
(

B1(in, ps) ⇒ F1( ˙out, out, in, ps) = 0 ∧ · · · ∧
Bm(in, ps) ⇒ Fm( ˙out, out, in, ps) = 0

)
∧ out!)),

where Fi( ˙out, out, in, ps) = 0 models the continuous evolution if Bi holds. In this
case, wait =̂¬out? , which means that the continuous evolution will be inter-
rupted by outputting to the environment. Thus, Eq. (2) holds with the maximal
synchronization assumption in Eq. (4).

Correspondingly, the UTP semantics of a discrete block is

[[DB(ps, in, out)]] =̂ H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) � out(0) = ps.init ∧
Periodic(out!, ps.st) ∧ (∃n ∈ N. cnow = n ∗ st) ⇒

(

B1(in, ps) ⇒ [[Pcomp1(in, out, ps)]] ∧ · · · ∧
Bm(in, ps) ⇒ [[Pcompm(in, out, ps)]]

)

),

where [[Pcompi
(in, out, ps)]] stands for the UTP semantics of the i-th discrete

computation, which can be obtained in a standard way (see [37]). The precon-
dition says that the environment should periodically input to and output from
the block. In this case, wait is set as ¬∃n ∈ N. cnow = n ∗ st and its continuous
is ˙cnow = 1, meaning that the block keeps waiting (idle) except for the periodic
points at which discrete jumps happen.

Example 1. As an illustration, we show how to concretize the UTP semantics for
some basic Simulink blocks including Constant, Divide, Not, Or, Relational,
Switch, Delay and Integrator. We treat Constant and Delay as continuous
blocks, although they can also be treated as discrete blocks in a similar way.

A Constant block generates a scalar constant value:

[[Constant(ps.c, out)]] =̂ H(
 out(0) = c ∧ ˙out = 0 ∧ out!).

The design inside H is equivalent to 
 out = c ∧ out!, which is 
 out(cnow) =
c ∧ out!(cnow). Analogous remarks apply for the following.

Similarly, the UTP semantics for the Divide block is as follows:

[[Divide(ps.I, ps.{sni}i∈I , {ini}i∈I , out)]]
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) 
 Periodic(out!, ps.st) ∧

((∃n ∈ N. cnow = n ∗ ps.st) ⇒ out =
∏

i∈I
sini) ∧

(sni =′∗′ ⇒ sini = ini) ∧ (sni =′/′ ⇒ sini = 1/ini)).
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The logical operator blocks Not and Or respectively perform the specified
logical operations on their inputs, whose UTP semantics are given by

[[Not(in, out)]] =̂ H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) � Periodic(out!, ps.st) ∧
∃n ∈ N. cnow = n ∗ ps.st ⇒ out = ¬in),

[[Or(ps, {ini}i∈I , out)]]
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) 
 Periodic(out!, ps.st) ∧

∃n ∈ N. cnow = n ∗ ps.st ⇒ out =
∨

i∈I
ini),

The Relational operator block compares two inputs using the relational
operator parameter ps.op, and outputs either 1 (true) or 0 (false); its UTP
semantics is given by

[[Relational(ps.op, in1, in2, out)]]
=̂ H(Periodic(in1!, ps.st) ∧ Periodic(in2!, ps.st) ∧ Periodic(out?, ps.st) 


Periodic(out!, ps.st) ∧ ∃n ∈ N. cnow = n ∗ ps.st ⇒ out = ps.op(in1, in2)).

The Switch block passes through the first input or the third input based on
the value of the second input, thus its UTP semantics is:

[[Switch(ps, in1, in2, in3, out)]]
=̂ H(∧3

i=1Periodic(ini !, ps.st) ∧ Periodic(out?, ps.st) 
 Periodic(out!, ps.st) ∧
(∃n ∈ N. cnow = n ∗ ps.st) ⇒

(
ps.op(in2, ps.c) ⇒ out = in1∧
¬ps.op(in2, ps.c) ⇒ out = in3

)
).

A Delay block holds and delays its input by one sample period, therefore its
UTP semantics is:

[[Delay(ps, in, out)]]=̂H(in! �
(
cnow < ps.st ⇒ out(cnow) = ps.init∧
cnow ≥ ps.st ⇒ out(cnow) = in(cnow − ps.st)

)
∧ out!).

An Integrator block outputs the value of the integral of its input signal
with respect to time, so its UTP semantics is given by

[[Integrator(ps, in, out)]] =̂ H(in! 
 out(0) = ps.init ∧ ( ˙out = in ∧ out!)).

Diagrams. A diagram is a set of blocks with connecting wires. W.l.o.g.,
consider a diagram D consisting of m continuous blocks and n discrete
blocks, which are connected via a set of wires. The UTP semantics for blocks
were defined above. Let therefore the semantics for the continuous blocks
be [[CBi(psi, {ini}i∈Ii , outi)]] for i = 1, . . . ,m, and for the discrete blocks be
[[DBj(ps′j , {in′

i}j∈Jj
, out′j)]] for j = 1, . . . , n.
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Then the UTP semantics of D can be represented by

[[D(ps∗, {in∗
i }i∈I , {out∗i }i∈J )]]

=̂ ∃ ∪m
i=1 {ini}i∈Ii − {in∗

i }i∈IC , ∃ ∪n
j=1 {in′

j}j∈Jj
− {in∗

i }i∈ID ,

∃{out1, . . . outm} − {out∗i }i∈JC
, ∃{out′1, . . . , out′n} − {out∗i }i∈JD

.

H(∧k∈IDPeriodic(in∗
k !, ps

∗.st) ∧ ∧k∈IC in∗
k! ∧ ∧k∈JD

Periodic(out∗k?, ps
∗
k .st)

� ∧ ∧k∈J out∗k(0) = ps∗
k.init ∧ ∧k∈JC

out∗k!

∧ ∧m
i=1 [[CBi(psi, {ini}i∈Ii , outi)]] ∧ ∧n

j=1(out
′
j(0) = ps′

j .init)[σ, ρ] ∧
(∃n ∈ N. cnow = n ∗ GCD(ps′

1.st, · · · , ps′
n.st)) ⇒ (∧n

j=1ps
′
j .st | cnow ⇒(

Bj1({in′
i}j∈Jj

, ps′
j)[σ, ρ] ⇒ [[Pcompj1(ps

′
j , {in′

i}j∈Jj
, out′j)]][σ, ρ] ∧ · · · ∧

Bjm({in′
i}j∈Jj

, ps′
j)[σ, ρ] ⇒ [[Pcompjm(ps′

j , {in′
i}j∈Jj

, out′j)]][σ, ρ]

)
)),

where GCD computes the greatest common divisor, and

{in∗
i }i∈IC = ∪m

i=1{ini}i∈Ii − ({out1, . . . outm} ∪ {out′1, . . . , out′n}),
{in∗

i }i∈ID = ∪n
j=1{in′

j}j∈Jj
− ({out1, . . . outm} ∪ {out′1, . . . , out′n}),

{out∗i }i∈JC
= {out1, . . . outm} − (∪m

i=1{ini}i∈Ii ∪ ∪n
j=1{in′

j}j∈Jj
),

{out∗i }i∈JD
= {out′1, . . . , out′n} − (∪m

i=1{ini}i∈Ii ∪ ∪n
j=1{in′

j}j∈Jj
);

IC and ID stand for the dangling inputs for continuous and discrete blocks
after the composition, thus I = IC ∪ ID is the set of inputs of D; JC and
JD stand for the dangling outputs for continuous and discrete blocks after the
composition, thus J = JC ∪ JD is the set of outputs of D; and σ and ρ stand
for the substitutions that replace the local input signals and input channels by
the corresponding output signals and channels with the common names among
these blocks (continuous and discrete) in each block, respectively. Furthermore,
we set in this case

wait=̂ ∧m
i=1 ¬outi? ∧ ¬∃n ∈ N. cnow = n ∗ GCD(ps′1.st, · · · , ps′n.st).

Example 2. Consider the diagram Diag performing out = in + c . According to
the above discussion, its UTP semantics can be given as

[[Diag(ps, in, out)]]
=̂∃out′.H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) 
 ([[Constant(ps, out′]]]∧

[[Add(ps, {+1,+1}, {in1, in2}, out)]][in/in1, out′/in2]).

Subsystems

Normal Subsystems. A normal subsystem has a set of blocks and wires that
specify the signal connections. Actually, a normal subsystem can be seen as a
diagram by flattening, i.e., connecting the external inputs of the inside blocks
with the inputs of the subsystem and the external outputs of the inside blocks
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with the outputs of the subsystem. Suppose a normal subsystem NSub with a
set of inputs {ini}i∈I and a set of outputs {outj}j∈J , and its inside blocks form
a diagram Diag with a set of external inputs {in′

i}i∈I′ and {out′j}j∈J ′ . Let σ be
the mapping to relate {ini}i∈I with {in′

i}i∈I′ , and {out′j}j∈J ′ with {outj}j∈J ,
then the UTP semantics of it can be easily defined as

[[NSub(ps, {ini}i∈I , {outj}j∈J ]] =̂ [[Diag(ps, {in′
i}i∈I′ , {out′j}j∈J ′ ]][σ].

Enabled Subsystems. A normal subsystem is enabled by adding an enabled block.
It executes each simulation step when the enabling signal has a positive value,
otherwise holds the states so they keep their most recent values. So, its UTP
semantics can be defined as follows:

[[ESub(ps, {ini}i∈I , en, {outj}j∈J )]]
=̂ en(now) > 0 ⇒ [[NSub(ps, {ini}i∈I , en, {outj}j∈J)]]∧

en(now) ≤ 0 ⇒ out(now) = out(now − ps.st).

Theorem 1. Given a Simulink diagram C, its UTP semantics [[C]] satisfies the
healthiness condition in Eq. (2), that is

H([[C]]) = [[C]].

Proof. It is straightforward by the definition of [[C]]. ��

4.2 UTP Semantics for HCSP

As advocated by Hoare and He [37], a reactive system can be identified by the
set of all possible observations of that system. As usual, an alphabet is attached
to a system P (and its with the following constituents: V(P ): the set of both
continuous and discrete variable names, which is arranged as a vector v, iΣ(P ):
the set of input channel names, and oΣ(P ): the set of output channel names.
Together the latter two form Σ(P )=̂iΣ(P ) ∪ oΣ(P ), which is arranged as a
vector chP .

Given a hybrid system, its timed observation is the tuple 〈now,v, fv, rech∗,
msgch〉. Here now is the start point and now′ the end point of a time interval of an
observation i. The initial values of variables are v, and v′ are the final values at
termination. The vector fv contains of real-valued functions over the time interval
[now,now′] that record the values of v, evidently with fv(now) = v, fv(now′) =
v′. The vector rech∗ of {0, 1}-valued Boolean functions over [now,now′], indicates
whether communication events ch∗ are ready for communication. The vector
msgch, of real-valued functions over [now,now′] records the values passed along
channels ch. We further define

const(f ,b, t1, t2)=̂∀t ∈ [t1, t2]. f(t) = b,

constl(f ,b, t1, t2)=̂∀t ∈ [t1, t2). f(t) = b,

constr(f ,b, t1, t2)=̂∀t ∈ (t1, t2]. f(t) = b.
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Using the UTP timed observations, the HCSP constructs can be defined as
follows.

The skip statement, which does not alter the program state, is the relational
identity:

[[skip]]=̂H(
 now′ = now ∧ v′ = v ∧ const(fv,v,now,now′)∧
const(rech∗,0,now,now′) ∧ const(msgch,msgch(now),now,now′)).

As skip terminates immediately, wait is equivalent to false in this case. Hereafter,
let

RE =̂ const(rech∗,0,now,now′) ∧ const(msgch,msgch(now),now,now′).

The assignment of e to a variable x is modelled as setting x to e and keeping all
other variables (denoted by u) constant:

[[x := e]]=̂H(
 now′ = now ∧ x′ = e ∧ u′ = u ∧ const(fx, e,now,now′)∧
const(fu,u,now,now′) ∧ RE).

As an assignment process terminates immediately, wait is equivalent to false
here.

An evolution process says that the system waits, while it is evolving until the
domain constraint becomes false. So, the UTP semantics is the following hybrid
design

[[〈F (ṡ, s) = 0&B〉]] =̂ (
 F (ṡ, s = 0) ∧ ṫ = 1) � B � [[skip]].

Obviously, in this case wait is equivalent to B.

The conditional statement behaves according to whether the condition holds
or not: [[B → P ]] =̂ [[P ]] � B � [[skip]], and internal choice is interpreted as a
non-deterministic selection between two operands: [[P � Q]] =̂ ([[P ]] ∨ [[Q]]).

In order to define sequential and parallel composition, we introduce two
semantic operators.

Let H1 and H2 be two hybrid designs with

H1=̂(
 ∧x∈V(H1) x′ = x ∧ wait′H1
= waitH1 ∧ SH1) � waitH1 � (pH1 
 RH1),

H2=̂(
 ∧x∈V(H2) x′ = x ∧ wait′H2
= waitH2 ∧ SH2) � waitH2 � (pH2 
 RH2),

which satisfy the healthiness condition in Eq. (2). The sequential composition of
H1 and H2, denoted by H1 � H2 is defined by

H1 � H2 =̂ ∃waitH1 ,waitH2 . ∃vH1 ,nowH1 , okH1 .

∃fvH1
, rechH1∗,msgchH1

, fvH2
, rechH2∗,msgchH2

.

(
 (waitH1 ⇒ ΠH1) ∧ (waitH2 ⇒ ΠH2) ∧ wait′ = wait) � wait �
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(¬waitH1 ∧ waitH2 ∧ rH1 
 RH1)σH1 ∧
(¬waitH1 ∧ ¬waitH2 ∧ rH2 
 RH2)σH2 ∧

∀t ∈ [now,nowH1). wait(t) = waitH1(t) ∧
fv(t) = fvH1

(t) ∧ rech∗(t) = rechH1∗(t) ∧ msgch(t) = msgchH1
(t) ∧

∀t ∈ [nowH1 ,now
′]. wait(t) = waitH2(t) ∧

fv(t) = fvH2
(t) ∧ rech∗(t) = rechH2∗(t) ∧ msgch(t) = msgchH2

(t).

where

σH1 = [vH1/v
′,nowH1/now

′, okH1/ok
′][fvH1

/fv, rechH1∗/rech∗,msgchH1
/msgch],

σH2 = [vH1/v,nowH1/now, okH1/ok][fvH2
/fv, rechH2∗/rech∗,msgchH2

/msgch].

In the above,

∃vH1 ,nowH1 , okH1 . ∃fH1
v , rechH1∗,msgchH1

, fH2
v , rechH2∗,msgchH2

.

(¬waitH1 ∧ waitH2 ∧ rH1 
 RH1)σH1 ∧ (¬waitH1 ∧ ¬waitH2 ∧ rH2 
 RH2)σH2

is essentially equivalent to the sequential composition of the two designs
(¬waitH1 ∧ waitH2 ∧ rH1 
 RH1) and (¬waitH1 ∧ ¬waitH2 ∧ rH2 
 RH2) by
the theory of UTP [37].

It is easy to see that if H1 and H2 satisfy the healthiness condition of hybrid
designs, so does H1 � H2. Hence, H1 � H2 is still a hybrid design, which implies
that hybrid designs are closed under sequential composition.

The parallel composition of H1 and H2, denoted by H1 ‖ H2 is defined

H1‖H2 =̂∃nowH1 ,nowH2 , okH1 , okH2 . H1[ok/okH1 ] ∧ H2[ok/okH2 ]∧
now′ = max{now′

H1
,now′

H2
} ∧ (ok′ = ok′

H1
∧ ok′

H2
)∧

(∀t ∈ (now′
H1

,now′]. fvH1
(t) = fvH1

(now′
H1

)∧
rechH1∗(t) = rechH1∗(now

′
H1

) ∧ msgchH2
(t) = msgchH2

(now′
H2

))∧
(∀t ∈ (now′

H2
,now′]. fvH2

(t) = fvH2
(now′

H2
)∧

rechH2∗(t) = rechH2∗(now
′
H2

) ∧ msgchH2∗(t) = msgchH2∗(now
′
H2

)).

It can be further be proved that

H1‖H2 ⇔ ∃nowH1 ,nowH2 , okH1 , okH2 .



(
waitH1 ⇒ ΠH1∧
waitH2 ⇒ ΠH2

)
� waitH1 ∧ waitH2 �

(
(pH1 
 RH1)[ok/okH1 ]∧
(pH2 
 RH2)[ok/okH2 ]

)
∧

now′ = max{now′
H1

,now′
H2

} ∧ (ok′ = ok′
H1

∧ ok′
H2

)∧
(∀t ∈ (now′

H1
,now′]. fvH1

(t) = fvH1
(now′

H1
)∧

rechH1∗(t) = rechH1∗(now
′
H1

) ∧ msgchH2
(t) = msgchH2

(now′
H2

))∧
(∀t ∈ (now′

H2
,now′]. fvH2

(t) = fvH2
(now′

H2
)∧

rechH2∗(t) = rechH2∗(now
′
H2

) ∧ msgchH2∗(t) = msgchH2∗(now
′
H2

)).
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Therefore,also H1 ‖ H2 satisfies the healthiness condition of hybrid designs.
Hence, H1 ‖ H2 is a hybrid design, which implies that hybrid designs are closed
under parallel composition.

Now, given two HCSP processes P and Q, their sequential composition is
defined [[P ;Q]] =̂ [[P ]] � [[Q]], and their parallel composition by [[P ‖ Q]] =̂ [[P ]] ‖
[[Q]].

A process variable X is interpreted as a predicate variable. Without confusion
in the context, we use X to represent the predicate variable corresponding to
process variable X, i.e. [[X]] =̂ X.

The semantics for recursion is defined as the least fixed point of the corre-
sponding recursive predicate by [[recX.P ]] =̂ μX.[[P ]]. An HCSP process P ∗ is
thus defined as P ∗ ⇔ rec X.(skip � (P ; X)). As discussed above, its semantics
is given by [[P ∗]] ⇔ ∃N.[[PN ]], where P 0 =̂ skip.

A receiving event can be modelled by [[ch?x]] =̂ 
 LHS � rech? ∧ ¬rech! � RHS,
where LHS=̂ ˙now = 1 ∧ x′ = x ∧ u′ = u, and

RHS=̂now′ = now + d ∧ re′
ch? = 0 ∧ re′

ch! = 0 ∧ u′ = u ∧ x′ = msgch(now
′)∧

constl(rech?, 1,now,now′) ∧ constl(rech!, 0,now,now′).

Here, wait =̂ rech? ∧ ¬rech!, i.e., the process waits until its dual event becomes
ready. The sending event [[ch!e]] can be defined similarly.

The communication interruption can be defined as

[[〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)]] =̂ [[〈F (ṡ, s) = 0&(B ∧ ¬Γ )〉;
Γ → �i∈I(ioi → Qi)]]

where Γ =̂
∨

i∈I re
′
ioi

, and ioi stands for the dual communication event with
respect to ioi, for instance ch? = ch!.

To prove whether the UTP semantics of other HCSP constructs satisfies the
healthiness condition is mathematically straightforward and thus omitted here.
It can be further deduced that the domain of hybrid designs forms a complete
lattice with a refinement partial order, on which the classical programming oper-
ations are closed.

4.3 Justification of Correctness

Having defined a UTP semantics respectively for the HCSP components and the
Simulink diagrams, we justify the translation by checking the semantic equiva-
lence of a Simulink diagram with its corresponding HCSP construct (Theorem2).
Here are several remarks to be noted during the proofs:

1. We set the sample times of all discrete blocks to −1 in the translation, that
is, all the generated discrete blocks share a globally identical sample time gst,
which will be configured by the user before triggering the simulation.
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2. It is assumed that the In ok signal in a subsystem firstly turns true at
the first sample point, i.e. min{t|In ok(t) = 1} = gst. Similarly, we use τ
to denote the earliest time at which the Out ok signal becomes true, i.e.
τ =̂min{t|Out ok(t) = 1}.

3. Hereafter we use [[Wires]] to indicate implicitly the entire group of variable
substitutions within a subsystem, and blocks are referred to as their abbre-
viated names with potential identifiers, for instance, Swt1 in the assignment
structure stands for the block Switch1 in Fig. 3.

4. Unless otherwise stated, the parameters of a block will be elided in the seman-
tic function for simplicity. Besides, to distinguish the input/output signals of
blocks, the leading characters of input/output signals of a subsystem are cap-
italized.

Theorem 2. Given an HCSP process P , denote the translated Simulink dia-
gram by H2S(P ). Suppose there is a correspondence (denoted by EA) between [[P ]]
and [[H2S(P )]], i.e., now = gst, now′ = τ , ok = In ok(gst) = �, ok′ = Out ok(τ),
v = In v(gst), v′ = Out v(τ), fv = Out v|[gst,τ ], rech∗ = Out rech∗|[gst,τ ], and
msgch = Out rech|[gst,τ ], then

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ (
[[P ]] ⇔ [[H2S(P )]]|[gst,τ ]

)
(6)

as gst → 0.

Proof. By induction on the structure of HCSP components. For simplicity, we
use ch∗ to denote the local communication events inside of H2S(P ) in what
follows.

skip: It is easy to see that under the assumptions,

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ ([[skip]] ⇔ [[H2S(skip)]]|[gst,τ ]
)

.

Assignment: Without loss of generality, we use [[Diage]] to denote the semantics
of the diagram which computes the right-hand side of the assignment.

[[H2S(x := e)]]

=̂ ∃ch∗.[[Wires]] ∧ [[Diage]] ∧ [[Del1]] ∧ [[Del2]] ∧ [[Swt1]] ∧ [[Swt2]]

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) � Periodic(out!, ps.gst)∧
∀t ≥ 0. (t < gst ⇒ out Del1(t) = 0) ∧ (t ≥ gst ⇒ out Del1(t) = In ok(t − gst))∧

(t < gst ⇒ out Del2(t) = 0) ∧ (t ≥ gst ⇒ out Del2(t) = Out x(t − gst))∧
(∃n ∈ N. cnow = n ∗ ps.gst ⇒

(In ok(cnow) > 0 ⇒ out Swt1(cnow) = out Diage(cnow))∧
(In ok(cnow) ≤ 0 ⇒ out Swt1(cnow) = In x(cnow))∧
(out Del1(cnow) > 0 ⇒ out Swt2(cnow) = out Del2(cnow))∧
(out Del1(cnow) ≤ 0 ⇒ out Swt2(cnow) = out Swt1(cnow))∧
Out x(cnow) = out Swt2(cnow) ∧ Out ok(cnow) = In ok(cnow)
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Using the left-hand side of (6) and restricting the time interval, we get the
desired result.

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ [[H2S(x := e)]]|[gst,τ ]
⇔ (∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒ (Out ok(cnow) = In ok(cnow)∧

Out x(cnow) = out Diage(cnow))

⇔ ok′ ∧ τ = now ∧ x′ = e ∧ const(fx, e,now, τ)∧
u′ = u ∧ const(fu,u,now, τ) ∧ RE (gst → 0, EA)

Evolution statement: By the defined UTP semantics, it follows

[[H2S(〈F (ṡ, s) = 0&B〉)]]=̂ ∃ch∗.[[Wires]] ∧ [[NSubB]] ∧ [[ESubF]] ∧ [[Del]]∧
[[Not]] ∧ [[And1]] ∧ [[And2]] ∧ [[Swt]]

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) � Periodic(out!, ps.gst)∧
∀t ≥ 0. (out And1(t) > 0 ⇒ out ESubF(t) = S(t))∧

(out And1(t) ≤ 0 ⇒ out ESubF(t) = out ESubF(t − gst))∧
(t < gst ⇒ out Del(t) = 1) ∧ (t ≥ gst ⇒ out Del(t) = out NSubB(t − gst))∧

(∃n ∈ N. cnow = n ∗ ps.gst) ⇒
out NSubB(cnow) = B(cnow) ∧ out Not(cnow) = ¬out Del(cnow)∧
out And1(t) = (In ok(cnow) ∧ out Del(t)) ∧ out And2(t) = (In ok(cnow)∧
out Not(cnow)) ∧ (In ok(cnow) > 0 ⇒ out Swt(cnow) = out ESubF(cnow))∧
(In ok(cnow) ≤ 0 ⇒ out Swt(cnow) = In s(cnow))∧
Out s(cnow) = out Swt(cnow) ∧ Out ok(cnow) = out And2(cnow)

Using the left-hand side of (6) and restricting the time interval, we have

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ ok ∧ [[H2S(〈F (ṡ, s) = 0&B〉)]]|[gst,τ−gst]

⇔ Out ok(τ) = � ∧ τ − gst = gst + (τ − 2 ∗ gst) ∧ Out s(τ − gst) = S(τ − 2 ∗ gst)∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ)) ⇒ out NSubB(cnow − gst)∧

fs(cnow) = S(cnow − gst)) ∧ ¬out NSubB(τ − gst)∧
out ESubF(cnow) = out ESubF(cnow − gst)

⇔ ok′ ∧ u′ = u ∧ const(fu,u,now, τ) ∧ RE∧
(B ∧ τ = now + d ∧ s′ = S(d) ∧ ∀t ∈ [now, τ ]. fs(t) = S(t − now)∨

¬B ∧ s′ = s) (gst → 0, EA)

⇔ ([[F (ṡ, s) = 0]] � B � [[skip]])

Thereby the semantics can be proved consistent on the interval [gst, τ −gst],
moreover, when the user-defined sample time gst → 0, we have the desired
result.
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Conditional: By the definition of H2S and the UTP semantics of Simulink:

[[H2S(B → P )]] =̂ ∃ch∗.[[Wires]] ∧ [[NSubB]] ∧ [[NSubP]] ∧ [[And]] ∧ [[Swt]]

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) � Periodic(out!, ps.gst)∧
(∃n ∈ N. cnow = n ∗ ps.gst) ⇒

out NSubB(cnow) = B(cnow) ∧ [[NSubP(inok = out And(cnow))]]∧
out And(cnow) = (In ok(cnow) ∧ out NSubB(cnow))∧
(out NSubB(cnow) > 0 ⇒ out Swt(cnow) = out NSubP ok(cnow))∧
(out NSubB(cnow) ≤ 0 ⇒ out Swt(cnow) = In ok(cnow))∧
Out x(cnow) = out NSubP x(cnow) ∧ Out ok(cnow) = out Swt(cnow)

It follows

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ [[H2S(B → P )]]|[gst,τ ]
⇔ (B ∧ [[P ]]) ∨ (¬B ∧ ok′ ∧ τ = now ∧ v′ = v ∧ const(fv, v, now, τ) ∧ RE)∧

u′ = u ∧ const(fu,u,now, τ) ∧ RE (gst → 0, EA)

⇔ [[P ]] � B � [[skip]]

Thus we have the desired result.
Internal choice: This is proved as for the conditional process.
Sequential composition: As shown in Fig. 7, x are the set of common signals

processed by both P and Q, while y and z are the respective exclusive signals.

[[H2S(P ;Q)]]|[gst,τ ] =̂ ∃ch∗.[[Wires]]|[gst,τ ] ∧ [[NSubP]]|[gst,τ ] ∧ [[NSubQ]]|[gst,τ ]
⇔ [[NSubP(inok = In ok(cnow), inx = In x(cnow), iny = In y(cnow))]]|[gst,τ ]∧

[[NSubQ(inok = out NSubP ok(t), inx = out NSubP x(t), inz = In z(t))]]|[gst,τ ]∧

(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒

Out ok(cnow) = out NSubQ ok(cnow) ∧ Out x(cnow) = out NSubQ x(cnow)∧

Out y(cnow) = out NSubP y(cnow) ∧ Out z(cnow) = out NSubQ z(cnow)

⇔ (∃xm,nowm, okm. (out NSubP ok(nowm) ⇔ ok)∧

[[NSubP]][xm/x′, okm/ok′] ∧ [[NSubQ]][xm/x, okm/ok]∧

∀t ≥ 0.y(t) = out NSubP y(t) ∧ x(t) = out NSubQ x(t)∧

z(t) = out NSubQ z(t)) (gst → 0, EA and Induction Hypothesis)

This gives the desired result.
Recursion: We only consider tail recursion, i.e., repetition. General recursion

can be proved similarly. As shown in Fig. 8, a random number N , generated
by an oracle, is used in the Simulink diagram as the number of iterations
of subsystem P. Since [[P ∗]] is defined by the least fixed point, it is clear
that the inverse direction holds: Periodic(in!, ps.gst)∧Periodic(out?, ps.gst) ⇒(
[[P ∗]] ⇐ [[H2S(P ∗)]]|[gst,τ ]

)
. For the other direction, suppose [[P ∗]] holds, then

according to the semantics, there must exist N such that [[PN ]] holds. We then
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apply the oracle, to generate the same number N , to control the execution
of the Simulink diagram H2S(P ∗), to execute for N times. The fact is thus
proved, i.e.

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ ([[P ∗]] ⇒ [[H2S(P ∗)]]|[gst,τ ]
)

.

Communication events: By the definition of H2S and the UTP semantics of
Simulink given in Sect. 4.1, it follows

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ [[H2S(ch?x)]]|[gst,τ ]
⇔ (∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒

Out re(cnow) = (In ok(cnow) ∧ ¬Out ok(cnow))∧

Out ok(cnow) = f(In re(cnow − gst) ∧ Out re(cnow − gst))∧

(¬Out ok(cnow) ⇒ Out x(cnow) = In x(cnow))∧

(Out ok(cnow) ⇒ Out x(cnow) = (¬Out ok(cnow − gst)) ∗ In ch(cnow))

⇔ Out ok(τ) = �∧

(∃n ∈ N. cnow = n ∗ ps.gst) ⇒

cnow ∈ [gst, τ − gst] ⇒ Out re(cnow) = 1 ∧ In re(t) = 0 ∧ In re(τ − gst) = 1∧

cnow ∈ (τ − gst, τ ] ⇒ Out re(cnow) = 0 ∧ In re(cnow) = 0∧

cnow ∈ [gst, τ) ⇒ Out x(cnow) = In x(cnow) ∧ Out x(τ) = In ch(τ)

⇔ ok′ ∧ now′ = now+ d ∧ const(rech?, 1,now,now′)∧

constl(rech!, 0,now,now′) ∧ rech!(now
′) = 1 ∧ re′

ch?(now
′) = 0 ∧ re′

ch!(now
′) = 0∧

constl(fx, x,now,now′) ∧ fx(now
′) = msgch(now

′)∧

const(fu,u,now,now′) ∧ u′ = u ∧ x′ = msgch(now
′) (gst → 0, EA)

⇔ (LHS � rech? ∧ ¬rech! �RHS)

Therefore, we get

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ ([[ch?x]] ⇔ [[H2S(ch?x)]]|[gst,τ ]
)

.

The equivalence for sending events can be proved similarly.
Interruption: It is trivial to prove that Theorem2 holds for communication

interruption, inasmuch as it can be interpreted by the sequential composition
and conditional statement, for which we have already proved validation of
Theorem 2.

Parallel: As shared variables are not allowed in HCSP, we use y and z to denote
the set of exclusive signals (including re and msg) respectively for P and Q.
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Let τP=̂min{t|out NSubP ok(t) = 1}, and τQ=̂min{t|out NSubQ ok(t) = 1}.
Then, according to the definitions, we have

[[H2S(P‖Q)]]|[gst,τ ] =̂ ∃ch∗.[[Wires]]|[gst,τ ] ∧ [[NSubP]]|[gst,τ ] ∧ [[NSubQ]]|[gst,τ ]
⇔ [[NSubP(inok = In ok(cnow), iny = In y(cnow))]]|[gst,τ ]∧

[[NSubQ(inok = In ok(cnow), inz = In z(cnow))]]|[gst,τ ]∧

(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒

(τP = τ ∨ τQ = τ) ∧ (Out ok(cnow) = out NSubP ok(cnow) ∨ out NSubQ ok(cnow))∧

(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [τP , τ ]) ⇒ Out y(cnow) = out NSubP y(τP )∧

(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [τQ, τ ]) ⇒ Out z(cnow) = out NSubQ z(τQ)∧

⇔ [[P‖Q]] (gst → 0, EA and Induction Hypothesis)

It thus follows immediately that Theorem2 holds for the parallel composi-
tion. ��

5 Conclusion

In this paper, we presented a translation from HCSP formal models into Simulink
graphical models, so that the models can be simulated and tested using a MAT-
LAB platform, thus avoiding expensive formal verification if the development is
at a stage where it is considered unnecessary. Together with our previous work
on encoding Simulink/Stateflow diagrams into HCSP, it provides a two-way path
in the design of embedded systems. In addition, we proposed a justification of
the translation, which uses UTP as a main vehicle for arguing formally for the
correspondence between the two semantics.
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Abstract. Parameterised Networks of Synchronised Automata (pNets)
is a machine-oriented semantic formalism used for specifying and veri-
fying the behaviour of distributed components or systems. In addition,
it can be used to define the semantics of languages in the parallel and
distributed computation area. Unlike other traditional process calculi,
pNets only own one pNet node as an operator which composes all subnets
running in parallel. Using this single synchronisation artifact, it is capa-
ble of expressing many operators or synchronisation mechanisms. In this
paper, we explore a denotational semantics for parameterised networks.
The denotational semantics of parameterised networks we investigate is
based on the behaviours of their subnets. The behaviour of a subnet is
determined by both its state and the actions it executes. Based on the
traces of a set of subnets, the behaviour of a pNet consisting of those
subnets can be deduced. A set of algebraic laws is also explored based
on the denotational semantics.

1 Introduction

With the rapid development of network technology, a number of software envi-
ronments or middlewares emerge for facilitating the development of applications
distributed over networks. These tools can be used in a variety of contexts, rang-
ing from multiprocessors or clusters of machines, to local or wide area networks,
to pervasive and mobile computing. In order to describe the behaviour of distrib-
uted systems and to verify properties of such systems, several formal languages
and process calculi have been proposed in [3,9,11].

Parameterised Networks of Synchronised Automata, abbreviated as pNets, is
an element of a pragmatic approach based on graphical specifications for commu-
nicating and synchronised distributed objects, in which both events (messages)
and agents (distributed objects) can be parameterised. In this framework, pNets
is a low level semantic model used for expressing the operational semantics of
dedicated programming languages or high-level formalisms for distributed sys-
tems. The pNet model is based on the general notion of labelled transition sys-
tems, and on hierarchical networks of communicating systems (synchronisation
networks), with explicit handling of data parameters in communication events
and in the topology of processes. The agents in pNets can also be parameterised
c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 93–113, 2017.
DOI: 10.1007/978-3-319-52228-9 5
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to encode sets of equivalent agents running in parallel. In order to realize com-
munications and synchronisation among the agents in the networks, we use a
notion of synchronisation vectors inherited from Arnold [1], but augmented with
explicit data values. It provides a general and flexible way to compose any num-
ber of components, which matches the expressiveness of many different usual
process algebras [2]. Recently we have extended the model towards open pNets,
that contain Holes playing the role of process variables. Open pNets are able
to express operators of process algebras or distributed systems, and provides us
with a methodology to prove properties of program skeletons, or generic algo-
rithms where we don’t care about the details of some parts of the system. They
are endowed with an operational semantics and a bisimulation based symbolic
equivalence [5].

The concept of pNets was targeted towards the behavioural specification of
distributed systems. In the last decade, (closed) pNets have been used to model
the behaviours of a number of distributed systems featuring queues, futures,
component systems, one-to-many communications, or fault-tolerance protocols
Also, the pNets model offers good properties as a formalism for defining the
semantics of distributed and heterogeneous systems: it provides a compact hier-
archical format, easy to produce from source code. It can also be transformed
using abstract interpretation of data domains, and the authors use this approach
to construct finite pNets that can be analysed by model-checking [2].

Some research has been done on the formal semantics for distributed com-
puting in order to provide a strong theoretical foundation for those languages
or frameworks used in this area. Koymans proposed a denotational semantics
for a real-time distributed language called Mini CSP-R in [7]. A formal seman-
tics was developed for a distributed programming language named LIPS using
Dijkstra’s weakest preconditions [10]. Both of the works focus on the parallel
execution of the processes but put little emphasis on the hierarchy. As for the
pNets model, the study on formalism has just started. An operational semantics
and a bisimulation theory for closed pNets are proposed in [4]. Their work also
employs some examples to illustrate the expressiveness of pNets. Based on these
discussions on formal semantics for pNets, the model checking technology that
has been applied to verify the correctness of distributed applications or systems
can be improved. Also, it becomes more persuasive and reasonable to be used
on safety-critical systems.

This paper proposes a denotational semantics for pNets using UTP theory [6],
which can provide another understanding of the formalism complementing the
operational approach, and help deduce interesting algebraic properties of para-
meterised networks. A process (a subnet) in pNets is formalized by a predicate
with structured traces and process states. Similar to traditional programming
languages, the execution state of a pNet has completed state, waiting state and
divergent state to represent the current status and control of the behaviour.
A trace is introduced to record the interactions among subnets in the pNets
system. The behaviour of a pNets system can be deduced by merging the behav-
iours of all subnets together. Besides, we investigate the behaviours of pNets
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composition with sub-pNets filling some holes by merging the traces of the sub-
pNet into the upper-level pNet. Based on the formalized denotational semantics,
a set of algebraic laws is obtained.

The rest of this paper is organized as follows. Section 2 recalls the formal defi-
nition of pNets with the explanation on the notations and term algebra. Section 3
presents the semantic model of parameterised networks. Section 4 explores a
denotational semantics defined structurally on the different elements of the pNet
model. Section 5 investigates a set of algebraic laws, including a set of laws
concerning parallel composition and pNets composition. Also, we show how we
prove properties of various constructs from other languages that we encode using
pNets.

2 Parameterised Networks (pNets)

In this section, we recall the formal definition of pNets and the notations that
are used in the definition. pNets are tree-like structures. Nodes of the tree (pNet
nodes) are synchronising artifacts, using a set of synchronisation vectors that
express the possible synchronisation between the parameterised actions of a
subset of the sub-trees. The leaves of the tree are either pLTSs or Holes. pLTSs
(parameterised labelled transition systems), are transition graphs with explicite
data values and assignments. Holes are placeholders for unknown processes, only
specified by their set of possible actions, named the sort. A pNet tree with at
least one hole is called an open pNet.

Notations. In the following definitions, indexed structures are extensively used
over some countable sets, which are equivalent to mapping over the countable
set. We use ai∈I

i to denote a family of elements ai indexed over the set I. ai∈I
i

defines both I the set over which the family is indexed (called range), and ai the
elements of the family. An empty family is denoted ∅. � is the disjoint union on
indexed sets (meaning both indices and elements should be distinct).

Term Algebra. The pNets model relies on the notion of parameterised actions,
that are symbolic expressions using data types and variables. We leave unspeci-
fied the constructors of the algebra that will allow building actions and expres-
sions. Moreover, we use a generic action interaction mechanism, based on (some
sort of) unification between two or more action expressions, to express various
kinds of communication or synchronisation mechanisms. We denote P the set
of variables and TP the term algebra over the set of variables P. Within TP ,
we distinguish a set of action terms (parameterised actions) AP and a set of
expression terms EP including a set of Boolean expressions (guards) denoted as
BP (with: EP ∩ AP = ∅ ∧ BP ⊆ EP ∧ AP ∪ EP = TP). Naturally action terms
will use data expressions as subterms. To be able to reason about the data flow
between pLTSs, we distinguish input variables of the form ?x within terms. The
function vars(t) identifies the set of variables in a term t ∈ T , and iv(t) returns
its input variables.
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Fig. 1. Two pNets encodings for Enable Fig. 2. Composed pNet for ‘‘P>>(Q>>R)’’

pNets can encode naturally the notion of input actions in value-passing CCS
[8] or of usual point-to-point message passing calculi, but it also allows for more
general mechanisms, like gate negotiation in Lotos, or broadcast communica-
tions. Using our notations, value-passing actions à la CCS would be encoded as
a(?x1, ..., ?xn) for inputs, a(v1, .., vn) for outputs (in which vi are action terms
containing no input variables). Our action algebras also include a notion of local
actions, that cannot be further synchronised; to simplify the notations in this
paper we shall simply denote them as τ as in CCS.

Example 1. As a running example, we use pNets representing the Enable oper-
ator of the Lotos specification language. In the Lotos expression “P	Q”, an
exit(x) statement within process P terminates P, carrying a value x that is
captured by the accept(x) statement of Q. In Fig. 1 we show two possible pNet
encodings for the Lotos operator in a graphical format. Figure 2 show a hier-
archical pNet representing the expression “P	(Q	R)”. A pNet is graphically
represented by a box, containing circles with a process name, empty circles con-
nected to a subnet and triangles with a line pointing to a box containing a
pLTS.

We use a simple action algebra, containing two constructors δ(x) and acc(x),
for any possible value of the variable x, corresponding to the statements exit(x)
and accept(x). Both δ(x) and acc(x) actions are implicitely included in the sorts
of all processes. The rest of the graphical elements will be explained below.

To begin with, we present the definition of pLTS: a pLTS is a labelled tran-
sition system with variables; variables can be manipulated, defined, or accessed
inside states, actions, guards, and assignments. Without loss of generality and to
simplify the formalisation, we suppose here that variables are local to each state:
each state has its set of variables disjoint from the others, denoted vars(s). Trans-
mitting variable values from one state to the other is done by explicit assignment.
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Note that we make no assumption on finiteness of the set of states nor on finite
branching of the transition relation.

We first define the set of actions a pLTS can use, let a range over action
labels, op are operators, and xi range over variable names. Action terms are:

α ∈ A :: = a(p1, . . . , pn) action terms
pi :: = ?x | Exp parameters (input variable or expression)

Exp :: = Value | x | op(Exp∗) Expressions

We suppose that each input variable does not appear somewhere else in the
same action term: pi =?x ⇒ ∀j �= i. x /∈ vars(pj). Input variables are only used
as binders local to a pLTS, capturing data values coming from synchronisation
with other pNets. They will not appear in the action alphabets of pLTSs and
pNets, nor in the synchronisation mechanism.

Definition 1 (pLTS). A pLTS is a tuple pLTS � 〈〈S, s0,→〉〉 where:

• S is a set of states.
• s0 ∈ S is the initial state.
• →⊆ S × L × S is the transition relation and L is the set of labels of the

form 〈α, eb, (xj := ej)j∈J〉, where α ∈ A is a parameterised action, eb ∈ B
is a guard, and the variables xj ∈ P are assigned the expressions ej ∈ E.
If s

〈α, eb, (xj:=ej)
j∈J〉−−−−−−−−−−−−−→ s′ ∈→ then iv(α) ⊆ vars(s′), vars(α)\iv(α) ⊆ vars(s),

vars(eb)⊆vars(s), and ∀j ∈J. vars(ej)⊆vars(s) ∧ xj ∈vars(s′).

Example 2. Both pNets in Fig. 1 have a pLTS acting as a controller, in a state-
oriented style at the top, and a data-oriented style at the bottom. In a pLTS,
states have names, and transitions have labels, written as "action [guard]
assignment∗". The initial state can also have an initial assignment, marked
with an arrow. Variables assigned are those of the target state, while variables
used in guards or expressions are those of the source state, and input variables
of the action. For example the pLTS C2 has a single state, with a state variable
s0, its transitions include guards (e.g. [s0 = 0]) and assignments (e.g. s0 := 1).

Remark that the conditions on variable sets imply that the local variables of
a state s include all input variables received in incoming transitions of s, as well
as all local variables explicitely assigned in incoming transitions of s. We denote
Trans(s) the set of outgoing transitions of s and tgt(t) the target state of t.

Hierarchy and Synchronisation: Now we define the hierarchical operator, called
pNet node that is the only constructor required for building complex pNets. A
pNet node has a set of sub-pNets that can be either pNets or pLTSs, and a set
of Holes, playing the role of process parameters. The synchronisation between
action of sub-nets is given by a set of synchronisation vectors: a synchronisation
vector synchronises one or several internal actions, and exposes a single resulting
global action. Communication of data between the partners of a synchronisation
is done by unification. This synchronisation method is very flexible and generic.
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It allows to model classical synchronous communication The selection of specific
vectors in the set (depending on the actions offered by subnets) models nonde-
terminism and interleaving. Channels or queues are not handled directly, they
have to be modelled using a pLTS, that will be synchronised with the subnets
involved. This is a very versatile and expressive schema, as shown in [4].

Action terms for pNets are simpler than for pLTSs, and defined as follows:

α ∈ AS ::= a(Expr1, . . . , Exprn)

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs and holes:
pNet � pLTS | 〈〈pNeti∈I

i , Sj∈J
j ,SVk∈K

k 〉〉 where

• I ∈ I is the set over which sub-pNets are indexed.
• pNeti∈I

i is the family of sub-pNets.
• J ∈ IP is the set over which holes are indexed. I and J are disjoint: I ∩J = ∅,

I ∪ J �= ∅
• Sj ⊆ AS is a set of action terms, denoting the Sort of hole j.
• SVk∈K

k is a set of synchronisation vectors (K ∈ IP). ∀k ∈ K,SVk =
αl∈Ik�Jk

l → α′
k where α′

k ∈ AP , Ik ⊆ I, Jk ⊆ J , ∀i ∈ Ik. αi ∈ Sort(pNeti),
and ∀j ∈Jk. αj ∈Sj. The global action of a vector SVk is Label(SVk) = α′

k.

Definition 3 (Sorts and Holes of pNets).

– The sort of a pNet is its signature: the set of actions it can perform. For a
pLTS we do not need to distinguish input variables. More formally1:

Sort(〈〈S, s0,→〉〉) = {α{{x ←?x|x ∈ iv(α)}}|s 〈α, eb, (xj:=ej)
j∈J〉−−−−−−−−−−−−−→ s′ ∈→}

Sort(〈〈pNet,S,SV〉〉) = {α′
k|αj∈Jk

j → α′
k ∈ SV}

– The set of holes of a pNet is defined inductively; the sets of holes in a pNet
node and its subnets are all disjoint:

Holes(〈〈S, s0,→〉〉)=∅
Holes(〈〈pNeti∈I

i , Sj∈J
j ,SV〉〉) = J ∪

⋃
i∈I

Holes(pNeti)

∀i ∈ I. Holes(pNeti) ∩ J = ∅
∀i1, i2 ∈ I. i1 �= i2 ⇒ Holes(pNeti1) ∩ Holes(pNeti2) = ∅

A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said to be open.

Graphical Syntax: When describing examples, we usually deal with pNets with
finitely many sub-pNets and holes, and it is convenient to have a more concrete
syntax for synchronisation vectors. When I∪J =[0..n] we denote synchronisation
vectors as < α1, .., αn >→α, and elements not taking part in the synchronisation
are denoted − as in: < −,−, α,−,− >→α.
1 {{xk ← ek}}k∈K is the parallel substitution operation.
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Example 3. Back to Fig. 1, the first synchronisation vector of pNet Enable1
means: for every action a1 in the sort of P with a1 �= δ(x1) for some x1, this a1

action can synchronise with the l action of the controller, and this synchronisa-
tion is seen as a global action a1 of Enable1. Vectors are defined in a parame-
terised manner, using variables universally quantified, and local to each vector.

More examples can be found in [4].

Composition Operator: Open pNets can be composed by replacing one hole (at
some arbitrary position in the tree) by a pNet with a compatible sort:

Definition 4 (pNet Composition). Let N1 =� pNeti∈I
i , Sj∈J

j , SV 	 and
N2 be two pNets, ho a hole of N1 such that Sort(N2) ⊆ Sh0, their composition
denoted N1[N2]ho is:

if ho ∈ J then N1[N2]ho =� (pNeti)i∈I � N2, S
j∈J\{ho}
j , SV 	

else ∃i0 ∈ I.ho ∈ Holes(pNeti0)
and N1[N2]ho =� (pNeti)i∈I [pNeti0 ← pNeti0[N2]ho] , S

j∈J
j , SV 	

Remark that the composition operation does not change synchronisation vec-
tors at any level in the pNet structure: only the hole involved is replaced by a
subnet, and the sort inclusion condition ensures the actions of the subnets are
properly taken into account by the synchronisation vectors. This is essential for
keeping the compositional features of the model.

Example 4. Fig. 2 shows that the hole Q in the pNet Enable1 in Fig. 1 is instanti-
ated by another instance of Enable1 where Sort(Enable1) ⊆ Sort(Q). The com-
posed pNet represents the Lotos process expression “P 	 (Q 	 R)”, denoted
as Enable(P,P’)[Enable(Q,R)]P ′ . Both C3 and C4 contain instances of the con-
troller pLTS. Here a3, a4, b3 and b4 in the synchronisation vectors are variables
that can take any value in the sort of their corresponding holes.

3 The Semantic Model

Now we define the denotational semantic model for pNets based on the UTP
theory [6] in this section. UTP uses relational calculus as a unifying basis to
define denotational semantics for programs across different programming para-
digms. In the semantic models, different programming paradigms are equipped
with different alphabets and a selection of laws called healthiness conditions. An
alphabet is a set of observational variables recording external observations of the
program behaviour. The healthiness conditions are kind of invariants, imposing
constraints on the values and evolution of variables. The observational variables
are defined in a structural manner, using relational predicates relating the pos-
sible values of the variables of a given program construct with those of its parts.

In our semantic model, we use the notion of process, which is widely used in a
number of process algebra and calculus, to denote the various forms of processes
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in the pNet formalism, namely pLTS, sub-pNets, holes and even a whole pNet
system. We say that a process fires a transition, that means a transition of a
pLTS, an action of a hole, or a “global action” generated by the execution of a
synchronisation vector in the case of a pNet node.

The predecessor of a pNet process is a process executed just before the current
execution step. This process may either have terminated successfully so that the
current process can start, or it may have not terminated and its final values are
unobservable.

With the understanding of the specific meaning of these notions, we introduce
the following variables defined for the alphabet to observe the behaviours of
pNets processes.

– Status st, st′: express the execution state of a process before and after a
transition is fired, with values in {comp,wait, div}.

• completed state: A process may complete all its execution and terminate
successfully. “st = comp” means that the predecessor of the process has
terminated successfully and the control passes into the process for activa-
tion. “st′ = comp” means that the process itself terminates successfully.

• waiting state: A process may wait for receiving messages from its envi-
ronment. “st = wait” indicates that the predecessor of the process is at
waiting state. Hence the considered process itself cannot be scheduled.
“st′ = wait” indicates that the current process is at waiting state.

• divergent state: A process may perform an infinite computation and enter
into a divergent state. “st = div” indicates that the predecessor of the
process has entered into a divergent state, whereas “st′ = div” indicates
that the process itself has entered into a divergent state.

– Current state cs, cs′: denote the state (corresponding to the set of states
in pLTS) where the current execution begins and terminates. This is used to
help relate all the transitions and figure out which transition should be fired.

– Data store ds(s)s∈S , ds(s)′s∈S : record the values of the local variables of the
state s in the set S before and after an observation. We will use the notations
ds and ds

′
to denote the full set of Stores for simplicity.

– Trace tr, tr′: record a sequence of observations on the interaction among the
subnets. The elements in the trace variable are in the form of α(v1, . . . , vn)
where n ≥ 1 or just a value v. Here, v1, . . . , vn can be values either recorded
directly from the message transmission or computed from the expressions.

Notations for Traces. In the following, t[i] is the ith element in the trace t;
t1 � t2 denotes that sequence t1 is a prefix of sequence t2; 〈lk〉 is the trace where
the element l is repeated k times; 〈l∗〉 the trace where l is repeated in any finite
number of times; t�t′ the concatenation of traces t and t′; and s � A means trace
s is restricted to the elements in set A.

Before we present the denotational semantics of each process in pNets, we will
define some healthiness conditions that a pNet process should satisfy. The first
point is that the trace variable introduced to our semantics cannot be shortened:
an execution step can only add an event to the trace. This is encoded as the
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H1 law below: a predicate P defining the semantics of any pNet process must
satisfy:

(H1) P = P ∧ Inv(tr)whereInv(tr) =df tr � tr′.

The next point deals with divergent processes: “st = div” means that the
predecessor process has entered the divergent state and the current process will
never start. Therefore, a pNets process P has to meet the healthiness condition
below:

(H2) P = P ∨ (st = div ∧ Inv(tr))

A process may wait for receiving message from other subnets or the envi-
ronment. If the subsequent process is asked to start in a waiting state of its
predecessor, it leaves all the states unchanged, including the trace and all its
other observational variables. It should satisfy the following healthiness condi-
tion:

(H3) P = II � (st = wait) � P

where we denote the logical choice: P � b � Q =df b ∧ P ∨ ¬b ∧ Q,

the II relation: II =df Inv(tr) � st = div � Id.

and the identity relation: Id =df (st′ = st) ∧ (tr′ = tr) ∧ (cs′ = cs) ∧ (ds
′
= ds).

Now we give the definition for H-function:

H(X) =df (X ∧ Inv(tr)) � st = comp � (Inv(tr) � st = div � II)

From the definition of H-function, we know that H(X) satisfies all the health-
iness conditions. This function can be used in defining the denotational semantics
for pNets model.

The definitions here are similar to the one in [6], with the following correspon-
dance with the variables ok and wait from the original UTP theory: st = comp
corresponding to the situation that ok ∧ ¬wait, st = wait corresponding to
ok ∧ wait and st = div corresponding ¬ok.

4 Denotational Semantics

In this section, we present the denotational semantics for the four constructs
of pNets: pLTSs, Holes, pNet nodes and pNet composition. We use beh(P ) to
describe the behaviour of a pNet process after it is activated. Here P can be any
type of pNet or a transition of a pLTS.

4.1 Parameterised Labelled Transition System

The order of execution in a pLTS relies on the relations between states and
transitions, encoded in its transition relation. The variable cs is used to keep
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tracking the execution of the pNets processes so that we know at which step the
execution will continue. The denotational semantics of a pLTS is given below.

beh(〈〈S, s0,→〉〉) =df beh(Init((xj := ej)j∈J), s0) � beh(〈〈S, s0,→〉〉s0)

beh(〈〈S, s0,→〉〉cs) =df

∨
t∈Trans(cs)

(
beh(t) � beh(〈〈S, s0,→〉〉tgt(t))

)

where P �Q denotes the sequential composition in the form of relational calculus,
meaning that P �Q = ∃obs0.P [obs0/obs′]∧Q[obs0/obs]. The term obs (resp. obs0,
obs′) represents the set of variables st, cs, ds and tr.

The behaviour of a pLTS is the set of traces computed from its initial state.
The set of traces computed from an arbitrary state cs is the union of all traces
obtained using its set of outgoing transitions Trans(cs), followed by the traces
of their target states.

beh(Init((xj := ej)j∈J ), s0) =df

H (
st′ = comp ∧ ds(s0)′ = {xj := ej}j∈J) ∧ tr′ = 〈 〉 ∧ cs′ = s0

)

The above semantics deals with the initialisation on the local variables of the
initial state as well as other observational variables.

Now we look into the details of the execution of a transition. For the actions,
as we defined in the action terms, we will mainly use action algebras in this form:
α(?x1, . . . , ?xn1 , e1, . . . , en2). For simplicity, we will use the notation α(?x, e)
instead when giving our semantics. Note that the forms of the actions are not
limited to this, but are out of the scope of this paper. The execution of one single
transition is atomic without interruption by the other processes. If the guard
evaluates to false, then the trace remains unchanged and the variables stay in
the initial state. Otherwise there will be two stages. One stage is the waiting
state, at which the process is waiting for input values and all other observational
variables stay unchanged. The other stage is the terminating state. If there are
input variables in the action, they will be assigned input values. Then, the values
of the local variables in the assignments will be updated accordingly.

beh(t)=beh(s
〈α(?x,e),eb,(xj :=ej)

j∈J〉−−−−−−−−−−−−−−−−→ s′) =df

H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

st′ = wait ∧ tr′ = tr ∧ cs′ = cs ∧ ds(s′)′ = ds(s′)
∨
st′ = comp ∧ ∃m ∈ Value.(

tr′ = tr�〈α(m, e)〉 ∧ cs′ = s′∧
ds(s′)′ = ds(s′)[m/x, (ej/xj)j∈J ]

)

⎞
⎟⎟⎟⎟⎠

� eb �
st′ = comp ∧ tr′ = tr ∧ cs′ = cs ∧ ds(s′)′ = ds(s′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, Value stands for all possible values which can be transmitted by sub-
nets in the whole pNet. In the action α(?x, e), there is an input variable x, an



A Denotational Semantics for Parameterised Networks 103

expression e whose value will be sent. It is obvious that a value (denoted m here)
is assigned to x, thus we have α(m, e) recorded in the trace and the value of x
changed in the local variables of the target state s′. Each transition produces a
single action, and a single step in the relational semantics. After the execution of
the transition, the pLTS moves to the target state at which the next execution
will start.

Example 5. Recall the pLTS C1 from Fig. 1. There are three transitions in the
pLTS and we would like to show how its semantics is obtained.
We start unfolding the definitions for Initialization,

beh(C1) = H (st′ = comp ∧ ∅ ∧ tr′ = 〈 〉 ∧ cs′ = 0) � beh((C1)0)
Then the definition for states:

beh((C1)0) = beh(0 l−→ 0) � beh((C1)0) ∨ beh(0 δ−→ 1) � beh((C1)1)
beh((C1)1) = beh(1 r−→ 1) � beh((C1)1)

and for each transition, e.g.:
beh(0 l−→ 0) = H(st′ = comp ∧ tr′ = tr�〈l〉 ∧ cs′ = 0)

Now we apply the semantics of the sequence (�) operator, producing recursive
equations on the value of the observational variables:

beh((C1)0) = H(B) such that
B = ∃st1, tr1, cs1. (st1 = comp ∧ tr1 = tr�〈l〉 ∧ cs1 = 0) ∧ B[st1/st, tr1/tr,

cs1/cs]

Unfolding this equation k times, eliminating intermediate variables, and adding
the initialisation step finally gives us:

B = ∃st0, st1, ..., stk, trk, csk. ∨ (stk = comp ∧ trk = tr�〈lk〉 ∧ csk = 0) ∧
B[stk/st, trk/tr, csk/cs].

Building now the semantics of the full C1 pLTS yields to a set of mutually
recursive equations on predicate variables, with one such variable for each state
of the pLTS. Here the solution is {tr, cs}, where:
tr = 〈l∗〉, cs = s0 ∨ tr = 〈l∗〉�〈δ〉, cs = s1 ∨ tr = 〈l∗〉�〈δ〉�〈r∗〉, cs = s1.

Example 6. Consider now the pLTS C2 in Fig. 1, who has a state variable s0.
The initialization gives:

beh(C2)=H (st′ = comp ∧ ds′ = {s0 := 0} ∧ tr′ = 〈 〉 ∧ cs′ = 0)�beh((C2)0)
Its semantics is {tr, ds, cs}, where:

tr = 〈l∗〉, ds = {s0 := 0}, cs = 0.

∨ tr = 〈l∗〉�〈δ〉, ds = {s0 := 1}, cs = 0

∨ tr = 〈l∗〉�〈δ〉�〈r∗〉, ds = {s0 := 1}, cs = 0.

Example 7. Finally we give an example of a pLTS with value-passing, that is
using an input variable.
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The set of solutions is {tr, ds, cs}, where traces a
formed by a sequence of i/o actions a finite number
of times, eventually followed by a single i action
(when moving to state 1). Naturally in each cycle
the value carried can be different:

tr = Cycles(l), ds = ∅, cs = 0

∨ tr = Cycles(l)�〈i(vl+1)〉, ds = {x := vl+1}, cs = 1, ∀vl+1 ∈ Value.

in which Cycles(l) = 〈(i(vk), o(vk))∗〉 with ∀k ∈ [1..l].vk ∈ Value

4.2 Holes

Now we investigate the semantics for the holes, where we benefit from the seman-
tics of transitions in pLTSs. For a hole H with sort Sort(H), we define the max-
imum behaviour of H by building a single state pLTS, being able to perform any
sequence of actions of the sort.

MaxLTS(H) = 〈〈{s0}, s0,→〉〉, with ∀a ∈ Sort(H).s0
〈a〉−−→ s0

beh(H) =df beh(MaxLTS(H))

4.3 Parallel Composition

This section investigates the behaviour of a pNets system composed of a set of
subnets running in parallel. Let pNet =� pNeti∈I

i , Sj∈J
j , SV 	. Its behaviour

is the composition of the behaviours of all the subnets by merging the traces
together.

We do not put any constraint on the finiteness of the pNets model - a pNets
system is able to compose an unbounded number of subnets. But for readabil-
ity we assume here I ∪ J = [1, n], thus n pairs of (st, tr) are used to observe
each subnet, working concurrently to contribute to the composition result. Also
remark that the internal states and stores (cs, ds) of subnets are not observed.
The composition is described by the following definition:

beh(� pNeti∈I
i , Sj∈J

j , SV 	) =df⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∃ st1, st
′
1, . . . , stn, st′n, tr1, tr

′
1, . . . , trn, tr′

n, ds1, ds1
′
, . . . , dsn, dsn

′
.

tr1 = . . . = trn = tr ∧ st1 = . . . = stn = st∧
∀i ∈ I.beh(pNeti)[sti, st′i, dsi, dsi

′
, tri, tr

′
i/st, st′, ds, ds

′
, tr, tr′]∧

∀j ∈ J.beh(Sj)[stj , st′j , dsj , dsj
′
, trj , tr

′
j/st, st′, ds, ds

′
, tr, tr′]∧

Merge

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

in which the Merge predicate captures the behaviours of a parallel composition:
Merge =df
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⎛
⎜⎜⎜⎜⎜⎜⎝

(∀i ∈ [1, n]. st′i = comp) ⇒ st′ = comp∧
(∃i ∈ [1, n]. st′i = div) ⇒ st′ = div ∧(

∃i ∈ [1, n] ·
(

st′i = wait∧
∀j ∈ [1, n] · st′j �= div

))
⇒ st′ = wait∧

ds
′
=

⋃
i∈[1,n] dsi

′ ∧
∃u ∈ (tr′

1 − tr1‖ . . . ‖tr′
n − trn). tr′ = tr�u

⎞
⎟⎟⎟⎟⎟⎟⎠

The status of the composed behaviour is determined by the n parallel com-
ponents together. The composition terminates if all the processes terminate and
diverges as long as one of the processes diverges. Then the composition stays
at waiting state if one of the processes waits and none of the others diverges.
Finally, the composition of these n traces is produced by the trace synchronisa-
tion operator ‖:

Trace Synchronisation. This operator takes n arguments tr′
i − tri, each being

a subsequence of arbitrary length of actions of the corresponding subnet. It
computes a set of subtraces that Merge will append to the traces of the composed
pNet.
case-1. If all the input traces are empty, the result is a set of an empty sequence:

〈 〉|| . . . ||〈 〉 = {〈 〉}
case-2. If there is a synchronised action (τ in this paper) in the head of one of
the input traces, it is automatically visible at the upper level of the pNet, so we
directly record this action in the merged traces.

= ∃k ∈ [1..n]. ek = τ =⇒
〈e1〉�t1|| . . . ‖〈en〉�tn =

{〈ek〉� l | l ∈ 〈e1〉�t1|| . . . ‖ tk ‖〈ek+1〉�tk+1 ‖ . . . ‖〈en〉�tn
}

case-3. In all other situations, we need to select one synchronisation vector
matching an event group within the set of the first observations of all the n
input traces (Definition 5) and then figure out a synchronised event. Remember
that a synchronisation vector concerns any (non-empty) subset of the subnets of
the current pNet node. Let us denote as Value the set of all possible values which
can be transmitted by subnets in the whole pNet and vars(SV ) the variables of
a synchronisation vector SV .

Definition 5 (Events Match). Given a set of events {eo, ep, ..., eq} ⊆
{e1, e2, ..., en}, we say that they match if there exists a synchronisation vector
SV = αl∈L

l → α′ ∈ SV and a valuation function φ = {x → Value|x ∈ var(SV )}
that lets both (αl)l∈Lφ = {eo, ep, . . . eq} and L = {o, p, . . . , q} satisfied. We write
EMatch(SV, α′, φ, eo, ep, . . . , eq).

With this definition, we can complete the definition of trace synchronisation:
EMatch(SV, α′, φ, eo, ep, . . . , eq) =⇒
〈e1〉�t1|| . . . ‖〈en〉�tn =

{〈α′φ〉�l | l ∈ 〈e1〉�t1‖ . . . ‖ to ‖〈eo+1〉�to+1 ‖
. . . ‖ tp ‖〈ep+1〉�tp+1 ‖ . . . ‖ tq ‖〈eq+1〉�tq+1 ‖ . . . ‖〈en〉�tn

}



106 S. Li and E. Madelaine

Fig. 3. A pNet showing data flow

Example 8. Now we use the pNets example in Fig. 3 with explicit data trans-
mission to present how its denotational semantics is computed by using our
definition. In this 2-places buffer, you can see two pLTSs with identical transi-
tions. It is easy to obtain one possible trace for P1, with an arbitrary number of
i/o cycles:

tP1 = 〈i(e1), o(e1), i(e2), o(e2), i(e3)〉.
And below is a corresponding trace of P2.
tP2 = 〈i(e′

1), o(e
′
1), i(e

′
2)〉.

From the set of synchronisation vectors defined, we can figure out that on
the first execution step, P1 receives some value e1 assigned to its input variable
x1. This uses the first synchronisation vector of the Buffer pNet, and generates
the global action gi(e1). In the next step, P1 emits e1 of x1, synchronised with
action i(x2) of P2, thus the x2 in P2 is assigned the value e1, using the second
vector, and generating action τ(e1).

Then we can obtain one trace for the whole pNets by using the trace syn-
chronisation operator. We have omitted the values of variables st and ds, that
the reader will easily guess.

tP1 || tP2 = 〈gi(e1)〉�l1.
where l1 ∈ 〈o(e1), i(e2), o(e2), i(e3)〉||〈i(e′

1), o(e
′
1), i(e

′
2)〉.

There is only one choice in l1, matching the 2nd vector of the Buffer pNet:
tP1||tP2 = 〈gi(e1), τ(e1)〉�l2.

where l2 ∈ 〈i(e2), o(e2), i(e3)〉||〈o(e′
1), i(e

′
2)〉. Now there are two possible choices,

either use the first vector with event i(e2) (yielding gi(e2)), or the third one with
o(e′

1) (yielding go(e1)).
Finally the full composition is given by the following regular expression:

tP1 || tP2 = 〈gi(e1), τ(e1), gi(e2), go(e1), τ(e2), gi(e3)〉
∨ 〈gi(e1), τ(e1), go(e1), gi(e2), τ(e2), gi(e3)〉,

after which both traces tP1 and tP2 are exhausted.

4.4 Composition Operator

This section explores the behaviour of the composition of two pNets. In order
to simplify the notation, we only consider here a composition operator that
replaces a hole at the first (top) level of a pNet tree, that is less general than
the composition operator in Definition 4.
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Let N1 =� pNeti∈I1
i , Sj∈J1

j , SV1 	, N2 =� pNeti∈I2
i , Sj∈J2

j , SV2 	. The
pNet composition N1[N2]ho indicates that a pNet N2 fills a hole indexed ho in
N1.

Now we describe the behaviour of N1[N2]ho:
beh(N1[N2]ho) =df⎛

⎜⎜⎜⎜⎜⎝

∃st1, st
′
1, st2, st

′
2, tr1, tr

′
1, tr2, tr

′
2, ds1, ds

′
1, ds2, ds

′
2.

st1 = st2 = st ∧ tr1 = tr2 = tr ∧
beh(N1)[st1, st′1, tr1, tr

′
1, ds1, ds

′
1/st, st′, tr, tr′, ds, ds

′
]∧

beh(N2)[st2, st′2, tr2, tr
′
2, ds2, ds

′
2/st, st′, tr, tr′, ds, ds

′
]∧

NM(ho)

⎞
⎟⎟⎟⎟⎟⎠

The first four predicates describe the two independent behaviours of pNets
N1 and N2 being composed (running in parallel in essence). The last predicate
NM(ho) mainly does the merging of the contributed traces of the two behaviour
branches for recording the communication, which is defined below.

NM(ho) =df⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

st′1 = comp ∧ st′2 = comp ⇒ st′ = comp∧
st′1 = div ∨ st′2 = div ⇒ st′ = div ∧
st′1 = wait ∧ st′2 �= div ⇒ st′ = wait∧
st′2 = wait ∧ st′1 �= div ⇒ st′ = wait∧
ds

′
= ds

′
1 ∪ ds

′
2 ∧

∃u ∈ (tr′
1 − tr1)[tr′

2 − tr2]ho. tr
′ = tr�u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The control state of the composed behaviour of the pNet is determined by
the combination of the status of the two pNets, which is similar to parallel
composition. The trace of the composition is a member of the set of traces
produced by trace composition operator [ ]ho.

Trace Composition. Operator [ ]ho models how to merge two individual traces
(under some constraints) of pNets N1 and N2 into a set of traces of N1[N2]ho.

case-1. If both input traces are empty, the result is a set of an empty sequence:

〈 〉[〈 〉]ho = {〈 〉}
case-2. If the trace of the subnet is empty, the result is determined by the first
observation of the non-empty trace:

〈e〉�t[〈 〉]ho = {〈e〉�l | l ∈ {〈 〉}} = {〈e〉}
case-3. In the situation where the inner input trace is not empty, we need to
check first whether these two traces match (see Definition 7). Only two matching
traces can be merged. Then we find out the first pair of matching events (see Def-
inition 6) from the matched traces respectively and compute the corresponding
action for the merged trace.

Let t1 and t2 be two traces of N1 and N2 respectively.
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Definition 6 (Events Match for pNets Composition). Given a pair of
events e1 and e2, we say that they are matched for pNets composition if there
exists a synchronisation vector SV = αl∈L

l → α′ ∈ SV1, with ho ∈ L, and a
valuation function that lets αhoφho = e2. We have α′φ = e1 and we define an
updated valuation function φ′ = φ+φho which replaces some of the values defined
in φ by the ones in φho. We write < α′, φ′ >= CEMatch(e1, e2, ho).

Definition 7 (Traces Match). We say that the two traces t1 and t2 are
matched (denoted as TMatch(t1, t2, ho)) if they satisfy such conditions:

(1) For each element e2 except synchronised action τ in t2, there exists an ele-
ment e1 in t1 (where e1 can be τ) that satisfies CEMatch(e1, e2, ho);

(2) Matching pairs of events are ordered consistently: given two such pairs
(t1[i] = e1, t2[i′] = e2) and (t1[j] = e3, t2[j′] = e4) such that CEMatch(e1,
e2, ho) and CEMatch(e3, e4, ho) are satisfied, then i < j =⇒ i′ < j′.

Now we present how the [ ]ho operator works under the third case.
Let t1 = s �

1 〈e1〉 �r1 and t2 = s �
2 〈e2〉 �r2, where we have TMatch(t1, t2),

¬TMatch(s1, s2) and < α′, φ′ >= CEMatch(e1, e2) all satisfied. Then:

s �
1 〈e1〉�r1[s

�
2 〈e2〉�r2]ho = {l �

1 〈α′φ′〉�l2 | l1 ∈ s1 ||| s2 ∧ l2 ∈ r1[r2]ho}
where the shuffle operator ||| is defined as:

〈 〉 ||| 〈 〉 = {〈 〉}; 〈 〉 ||| 〈e2〉�t2 = {〈e2〉�l | l ∈ 〈 〉 ||| t2}
〈e1〉�t1 ||| 〈e2〉�t2 = {〈e1〉�l | l ∈ t1 ||| 〈e2〉�t2} ∪ {〈e2〉�l | l ∈ 〈e1〉�t1 ||| t2}

Example 9. Now we consider the semantics for Enable(P,P’)[Enable(Q,R)]P ′

expressing P 	 (Q 	 R) that we mentioned in Example 4. The behaviours
of the composed pNet is computed from the behaviours of two pNets, which
may contain a large number of observations. In order to make the illustration
more readable, we select single traces from the sets to show the merging of the
traces.

Let t1 and t2 be two traces of Enable(P,P’) and Enable(Q,R) respectively
where t1 = 〈α1, τ, α2, α3〉, t2 = 〈α2, τ, α3〉. We have here α1 ∈ Sort(P ), α2 ∈
Sort(Q) and α3 ∈ Sort(R).

According to Definition 6, < α2, {a4 	→α2} >= CEMatch(α2, α2, P
′) and

< α3, {a4 	→α3} >= CEMatch(α3, α3, P
′) are satisfied, both firing the synchroni-

sation vector {< −, a4, r >→ a4} in Fig. 2. Also, a2 and a3 are well ordered in t1
and t2 conforming with Definition 7. Then we can obtain one trace of the newly
constructed pNet by merging the two traces above:

t1[t2]P ′ = 〈α1, τ, α2, α3〉[〈α2, τ, α3〉]P ′

= 〈α1, τ〉�〈α2〉�〈α3〉[〈 〉�〈α2〉�〈τ, α3〉]P ′ = 〈l1, α2, l2〉
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where l1 ∈ 〈α1, τ〉|||〈 〉 and l2 ∈ 〈α3〉[〈τ, α3〉]P ′ = 〈τ, α3〉.

So we get one trace for Enable(P,P’)[Enable(Q,R)]P ′ : 〈α1, τ, α2, τ, α3〉.

5 Algebraic Properties

The main purpose of the formalisation of a programming language is to prove
its interesting properties. Most of them are elegantly expressed in the form of
algebraic laws and equations. In this section, we explore a set of basic algebraic
laws for pNets, based on standard trace semantics: 2 pNets are equivalent if
they have same (potentially infinite) set of (finite) traces. pNets being a low
level model used to express the semantics of high level languages, we have two
categories of properties: general properties about pNets themselves, and specific
properties about operators encoded using pNets. We start with a property of
the Enable operator of Lotos encoded in Fig. 1.

Associativity of Enable. Consider the two pNets expressing (P 	 Q) 	 R
(in Fig. 4(a)), built as Enable(P’,R)[Enable(P,Q)]P ′ , and P 	 (Q 	 R) (in
Fig. 4(b)), built as Enable(P,P’)[Enable(Q,R)]P ′ respectively. We would like to
prove the associativity law: (P 	 Q) 	 R = P 	 (Q 	 R).

Sketch of the Proof: On the left we have traces of Enable(P,Q) and Enable(P’,R)
whose traces are given below, denoted as t1 and t2 respectively.

t1 = 〈an1
1 〉 ∨ t1 = 〈an1

1 〉�〈τ〉�〈an2
2 〉,∀n1, n2 ∈ N

t2 = 〈an2
2 〉 ∨ t2 = 〈an2

2 〉�〈τ〉�〈an3
3 〉,∀n2, n3 ∈ N.

Here, we can see that the traces from each set to be merged complying with
the form s �

1 〈a2〉�t1[〈a2〉�t2], where < α2, {a4 	→α2} >= CEMatch(α2, α2, P
′) is

satisfied. Also, TMatch(t1, t2, P ′) is satisfied if n2 = n3. Then we deduce the
traces for Enable(P’,R)[Enable(P,Q)]P ′ :

tPQ−R = 〈an1
1 〉 ∨ tPQ−R = 〈an1

1 〉�〈τ〉�〈an2
2 〉 ∨ tPQ−R = 〈an1

1 〉�〈τ〉�〈an2
2 〉�〈τ〉�〈an3

3 〉

and symmetrically for Enable(P,P’)[Enable(Q,R)]P ′ :

Fig. 4. Two pNets expressing Enable operators
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tP−QR = 〈an1
1 〉 ∨ tP−QR = 〈an1

1 〉�〈τ〉�〈an2
2 〉 ∨ tP−QR = 〈an1

1 〉�〈τ〉�〈an2
2 〉�〈τ〉�〈an3

3 〉
Thus, we can say that the behaviours of (P 	 Q) 	 R) and (P 	 (Q 	 R)) are
equivalent based on traces, and conclude that (P 	 Q) 	 R = P 	 (Q 	 R)
is satisfied. ��

Now we list a small number of typical laws that can be proved in a similar
manner. For most of them, the proofs are straightforward, but long and tedious.
Writing them formally requires a lot of notations that we have not introduced
in the paper, and we will not do it here.

Symmetry/Permutation of pNet Nodes. The pNet node as a general parallel
operator is symmetric.

For a pNet � pNeti∈I
i , Sj∈J

j , SV k∈K
k 	, we assume that I ∪ J = [1, n]

and we abstract each subnet as a process P . Then we alter the pNet node
as:� P1, . . . , Pn, SV k∈K

k 	. It is easy to get

� P1, . . . , Pn, SV k∈K
k 	=� Pπ(1), . . . , Pπ(n), SV ′

k
k∈K 	

where the structure for each SVk is < P1, . . . , Pn >, the structure for each SV ′
k

is < Pπ(1), . . . , Pπ(n) >, and π is a permutation on [1, n].

Guarded Choice. We introduce a concept of guarded choice, which enriches the
language to support the algebraic laws. The guarded choice is expressed in the
form:

{h1 → P1}[] . . . []{hn → Pn}.

Each element h → P of the guarded choice is a guarded component, where h can
be a guard in the form of either α(?x, e) or τ . After one of the hi is performed
or fired, the subsequent process is Pi.

(par-2) Let Pg = {ag → P ′
g}[][]i∈Ig{τ → P ′

ig},

where g ∈ [1, n] and ag is the action that will be synchronised with others accord-
ing to the synchronisation vectors while τig cannot be further synchronised. We
here put an index to τ to make it easy to be extended to be in a more flexible
form. Then we have:


 P1, . . . , Pg, Pg+1, . . . , Pn, SV �
= {� (ax1 , ay1 , ..., az1)

SV1 →
 P1, ..., P
′
x1 , ..., P ′

y1 , . . . , P ′
z1 , ..., Pn, SV �}

. . .

[]{� (axm , aym , ..., azm)SVm →
 P1, ..., P
′
xm

, ..., P ′
ym , ..., P ′

zm , ..., Pn, SV �}
[][]i∈I1{τi1 →
 P ′

i1, P2..., Pn, SV �}
. . .

[][]i∈In{τin →
 P1, ..., Pi(n−1), P
′
in, SV �}

where Card({x1, y1, ..., z1})2+...+Card({xm, ym, ..., zm}) = n and {x1, y1, . . . , z1}∩
. . .∩{xm, ym, . . . , zm} = ∅. The notation � (ax, ay, . . . , az)SV is used to indicate

2 Card(A) returns the number of elements in the set A.
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that the parallel execution of all the actions ax, ay, . . . , az can trigger a syn-
chronisation presented by SV , of which the result can be either an action to be
synchronised or one that cannot be further synchronised.

Identity Operator. A pNet with only one hole indexed 0 of sort S is the identity
of pNet composition:

(ncomp-1) Is[N ]0 = N where Is :=� ∅, (0	→S), {(0	→a) → a|a ∈ S} 	
Composition Operator. If N2 and N3 instantiate two holes in N1 respectively
meaning that Sort(N2) ⊆ Sort(Sho1) and Sort(N3) ⊆ Sort(Sho2) are satisfied,
then we have:

(ncomp-2) (N1[N2]ho1)[N3]ho2 = (N1[N3]ho2)[N2]ho1

Proof. Sketch: expanding the definition of beh((N1[N2]h0), and removing parts
that are trivialy equal, the equation boils down to (here, obs stands for the set
of observational variables we defined for our semantics: {st, tr, ds}):

LHS =

∃obs1, obs
′
1, obs2, obs

′
2. obs1 = obs2 = obs∧⎛

⎜⎜⎝
∃obs1, obs

′
1, obs2, obs

′
2.

beh(N1)[obs1, obs′
1/obs, obs′]∧

beh(N2)[obs2, obs′
2/obs, obs′]∧

∃u ∈ (tr′
1 − tr1)[tr′

2 − tr2]ho1 . tr
′ = tr�u

⎞
⎟⎟⎠ [obs1, obs′

1/obs, obs′]∧

beh(N3)[obs2, obs′
2/obs, obs′]∧

∃u ∈ (tr′
1 − tr1)[tr′

2 − tr2]ho2 . tr
′ = tr�u

We suppose that any two traces we select to merge are matched according
to Definition 7, thus we can always find pairs of events that are matched. If the
two pairs of matched events (e, e2) and (e′, e3) (e2 and e3 are events in the trace
of N2 and N3 respectively, and e and e′ are events in the trace they are to be
merged.) does not fire the same synchronisation vector, it does not matter which
trace merge with the trace of N1 first. Otherwise, the event α′φ′ recorded in the
composed the trace is determined by both e2 and e3. Then we have the variables
commuted:

=

∃obs1, obs
′
1, obs2, obs

′
2. obs1 = obs2 = obs∧⎛

⎜⎜⎝
∃obs1, obs

′
1, obs2, obs

′
2.

beh(N1)[obs1, obs′
1/obs, obs′]∧

beh(N3)[obs2, obs′
2/obs, obs′]∧

∃u ∈ (tr′
1 − tr1)[tr′

2 − tr2]ho2 . tr
′ = tr�u

⎞
⎟⎟⎠ [obs1, obs′

1/obs, obs′]∧

beh(N2)[obs2, obs′
2/obs, obs′]∧

∃u ∈ (tr′
1 − tr1)[tr′

2 − tr2]ho1 . tr
′ = tr�u

= RHS

In a similar way, if N2 instantiates one hole in N1 and one of the holes in
N2 is instantiated by N3 indicating that Sort(N3) ⊆ Sort(Sho2) ⊆ Sort(Sho1)
is satisfied, then:

(ncomp-3) N1[N2[N3]ho2 ]ho1 = (N1[N2]ho1)[N3]ho2
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6 Conclusions

In this paper we have formalized a denotational semantics for Parameterised
Networks of Processes. A pNet node is considered as an operator composing
a number of subnets running in parallel, which ensures the model’s flexibility
in expressing various operators, and we do not introduce any specific parallel
operator to weaken this feature in pNets model. In our semantics, the subnets
in the pNets are viewed as processes and the behaviours of each process are
investigated by the execution of a subnet. A trace has been introduced to record
the interactions among all the subnets in a pNets system. We have investigated
the behaviours of subnets including holes. Then the behaviour of a pNet system
can be achieved by merging the behaviours of a set of subnets. A set of algebraic
laws on both parallel composition and pNet composition has been achieved based
on the denotational semantics.

For the future, we plan to continue our formalisation of pNet systems. One
aspect of our future work is to explore the algebraic semantics of the pNets
model and study the relations among the three semantics: denotational seman-
tics, operational semantics and algebraic semantics. Moreover, the pNets model
can be extended by adding other features such as time issues or probabilities.
And it is challenging to explore the semantics with these features.
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Abstract. Based on the Unifying Theories of Programming (UTP)
semantic framework, Hoare and He have defined (a means for construct-
ing) a high-level language with labels and jumps, using the concept of
continuations. The language permits placing labels at given points within
a program and making jumps to these labels when desired. In their work,
Hoare and He have limited themselves to the definition of continuations
for sequential programs. This paper is concerned with the extension of
that work to reactive programs. We first extend their results to include
parallelism and Higher Order programs. This is achieved by designing a
new control variable L whose value follows the parallel structure of pro-
grams. We then proceed to define reactive (CSP) processes that contain
the new control variable L, resulting in the theory of Reactive (Process)
Blocks. The encapsulation operator defined by Hoare and He and which
may also be used for hiding the control variable L does readily provide a
(functional) link between both UTP theories of Reactive Processes and
of Reactive Blocks. The semantics are denotational.

Keywords: Continuations · Denotational semantics · UTP · CSP ·
Reactive processes

1 Introduction

Implementing a program consists of adding details related to the program’s exe-
cution on a given platform: the result is called an implementation. A detail of
particular importance relates to control flow, or the order of the execution of the
instructions in the program. A device called the program counter normally com-
putes and stores the value of the address of the next instruction to be executed.
When executing a program, the processor always refers to the program counter.

The method of continuations [10,11] has been devised for giving semantics to
programming languages with labels and jumps. As it also allows giving semantics
to other programming constructs than jumps, it has resulted in a programming
paradigm called continuation-passing style or CPS.

Continuations naturally permit to localise the instructions of a program
amongst other instructions. Locations are unique and are ordered according to the
order of execution within a given program. Since locations are explicit, a program

c© Springer International Publishing AG 2017
J.P. Bowen and H. Zhu (Eds.): UTP 2016, LNCS 10134, pp. 114–133, 2017.
DOI: 10.1007/978-3-319-52228-9 6
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must always provide the location of the next program, which is properly called the
continuations of its predecessor. High-level programs do not rely on continuations
for defining control flow, which is rather associated with the order of evaluation
of the instructions of the program.

Process mobility [7] refers to any model or theory that describes the movement
of a process from its initial computational environment (or source) to another com-
putational environment (or target). It has two variants: weak mobility, in which
only the code of the process moves; and strong mobility, in which a program is
first interrupted, then its code and interrupt state are migrated to a remote tar-
get where its execution is to be resumed. Denotational semantics for weak mobility
have been defined on the basis of UTP-CSP by Tang and Woodcock [5,6]. We plan
to extend their results with semantics for strong mobility.

The resume operation on the remote machine requires the capacity to tell
what instruction to execute next, and also to jump to that instruction. However,
UTP-CSP [1,4]may rightly be called a high-level language and hence does not
provide any jump instruction. The concept of continuations naturally comes to
mind for reasoning about control flow in process algebra, and we are not aware
of any other model for achieving that. Although some may argue that jumps
are a harmful feature at an implementation level, such is not the case as far as
semantics are concerned, given that simple elegant models are to be preferred. In
sum, we need to extend UTP-CSP with jump features in order to define strong
mobility, and we propose using continuations as a solution.

Much work is dedicated to continuation-passing style, e.g. [12–16]. However
their approach is not directly relevant to our work. In [9], Jahnig et al. provide a
denotational semantics for a CSP-like language. Hence, they do not deal directly
with CSP either. In the context of UTP, two pieces of work deal with continu-
ations. [1, Chap. 6] provides semantics for sequential programs in general. This
work may be used for giving semantics to UTP-CSP processes that have no par-
allel operator, only. In [8], the authors also use continuations, although they are
interested in verifying shared-memory programs. It is not clear from their work
why they use continuations. Notwithstanding, their semantics deal with parallel
programs in general, hence their work may be used for giving semantics to all
UTP-CSP processes. Unfortunately this latter extension is not straightforward
and leads us to design a new control variable.

In Sect. 2 we present the UTP semantics for continuations defined in
[1, Chap. 6]. They will notably serve as a basis for the formalisation of con-
tinuations for parallel programs in general (including the design of the new con-
trol variable), discussed in Sect. 3. The corresponding denotational semantics are
then presented in Sect. 4. The continuations semantics for UTP-CSP processes
are then obtained by applying CSP healthiness conditions to parallel programs
(with continuations), thus yielding reactive process blocks, presented in Sect. 5.
We then conclude.
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2 UTP Background - Continuations for Sequential
Programs

2.1 An Overview of UTP

UTP [1] is a formal semantics framework for reasoning about programs, pro-
gramming theories and the links between theories. The semantics of a program
are given by a relation between the initial (undecorated) and final (decorated)
observations that can be made of the variables that characterise the program
behaviour. Relations are themselves represented as alphabetised predicates, i.e.
predicates of the form (αP ,P). αP is called the alphabet of the predicate P ,
and determines what variables P may mention. αP may be partitioned into
two subsets: inαP , which represents the initial observations, and outαP , which
represents the final observations.

Programming languages and paradigms are formalised as UTP theories.
A UTP theory is just a collection of predicates, and consists of three elements: an
alphabet, containing only those variables that the predicates of the theory may
mention; a signature, which contains the operators of the theory, and healthiness
conditions which are laws constricting the set of legal predicates to those that
obey the properties expressed by the conditions.

Healthiness conditions generally have the form: NAME P = f (P), for
some idempotent function f (i.e. f ◦ f (x ) = f (x )). NAME stands for the
name of the healthiness condition and is also used as an alias for f i.e. we write
P = NAME(P) and we say that P is NAME-healthy.

Specifications are also expressible in UTP, and a theory of refinement permits
us to ensure the correctness of a program with regard to a given specification.

The most basic of all UTP theories is the theory of Relations, on top of which
every other UTP is built. We define below some program constructs.

Assignment. x :=A e denotes the assignment of an expression e to a variable x .
The meaning of assignment is thus equality: that between x and e after the assign-
ment.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ .. ∧ z ′ = z )
α(x := e) =̂A ∪ A′

Skip. IIA denotes the command that does nothing; it is equivalent to the assign-
ment x := x .

IIA =̂ (x ′ = x ) where A = {x , x ′}
αIIA =̂A

Conditional. P �b�Q stands for ‘if b then P else Q ’, where b is some testable
condition. Formally, a condition is defined as a predicate not containing dashed
variables.

P � b � Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ
α(P � b � Q) =̂ αP
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Variable Declaration, Undeclaration. var x denotes the declaration of a
new program variable x and end x its undeclaration. Let A be an alphabet
which includes x and x ′. Then:

var x =̂ ∃ x • IIA α(var x ) =̂A \ {x}
end x =̂ ∃ x ′ • IIA′ α(end x ) =̂A \ {x ′}

Alphabet Extension. The scope of x lies between var x and end x ; beyond,
the variable is undefined and cannot be observed. Let x , x ′ ∈ αR, then:

R+x =̂R ∧ x ′ = x
αR+x = αR ∪ {x , x ′}

Floyd Assertion and Assumption. An assertion is the statement that a con-
dition, c say, is expected to be true at the point at which it is written; otherwise,
the program behaves in a totally unpredictable, chaotic way, i.e. like ⊥. We also
say that the failure is caused by the programmer. An assertion captures the intent
of the programmer, that something is meant to be true.

c⊥ =̂ II � c � ⊥

On the other hand, an assumption is the statement that a condition is true at the
point at which it is written; otherwise the program behaves in an impossible, mirac-
ulous way, i.e. like 
. We also say that the failure is caused by the program. An
assumption captures the confidence of the programmer, that something is true.

c� =̂ II � c � 


Reactive Processes

The theory of Relations is too general and may be restricted accordingly by
means of healthiness conditions. Here, we give a brief overview of the theory of
reactive processes, which permits reasoning about communicating programs.

The alphabet of a reactive process consists of the following:

– A, the set of authorised events; tr , tr ′ : A∗, the trace; ref , ref ′ : PA, the refusal
set

– ok , ok ′ : B, stability and termination; wait ,wait ′ : B, waiting states
– v , v ′, other variables

The above alphabet alone is not enough to characterise reactive processes. Predi-
cates with such an alphabet must also satisfy the following healthiness conditions.

R1 P = P ∧ tr ≤ tr ′

R2 P = �{P [s, s � (tr ′ − tr)/tr , tr ′] | s ∈ A∗}
R3 P = IIR � wait � P
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where IIR =̂ (ok ′ = ok ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref ∧ v ′ = v) � ok �
(tr ≤ tr ′).

R1 states that the occurrence of an event cannot be undone viz. the trace can
only get longer. R2 states that the initial value of tr may not affect the current
observation. R3 states that a process behaves like IIR when its predecessor has
not yet terminated.

Alternatively, we may use the single healthiness conditionR = R1 ◦ R2 ◦ R3.
A particular model of reactive processes is provided by the CSP process alge-

bra ([2,3]) whose semantics in UTP are presented subsequently. CSP processes
are reactive processes that obey the following additional healthiness conditions:

CSP1 P = P � ok � tr ≤ tr ′

CSP2 P = P ; J

where J =̂ (ok ⇒ ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref ∧ v ′ = v)
CSP1 states that if a process has not started (ok = false) then nothing except

for trace expansion can be said about its behaviour. Otherwise the behaviour of
the process is determined by its definition.CSP2 states that a process may always
terminate. It characterises the fact that divergence may never be enforced.

Alternatively, we may use the single healthiness condition CSP = R ◦
CSP1 ◦ CSP2.

We present the semantics of some CSP processes subsequently. Some defini-
tions are similar to the ones presented earlier, with some changes. For example,
the definitions mention new alphabet elements, and certain healthiness condi-
tions are applied directly, as in assignment below.

Assignment (2). Denoted by x := e, is the process that sets the value of the
variable x to e on termination, but does not modify the other variables. It does
not interact with the environment, always terminates, and never diverges.

(x := e) =̂R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ x ′ = e ∧ v ′ = v)

A particular kind of assignment is one that leaves everything unchanged, and
has already been seen above viz. IIR.

Skip (2). Denoted by SKIP , is the process that refuses to engage in any event,
terminates immediately and does not diverge. It is a special instance of IIR.

SKIP =̂ ∃ ref • IIR

Parallel Composition. Denoted by P ‖ Q , is the process that behaves like
both P and Q and terminates when both have terminated. P and Q may not
share any variable other than the observational variables (ok ,wait , ...). P and
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Q modify separate copies of the shared observational variables which are then
merged at the end using the merge predicate M , as defined below.

A(P ‖ Q) =̂ AP ∪ AQ
P ‖ Q =̂P(o, 1.o′) ∧ Q(o, 2.o′) ;M (1.o, 2.o,o′)

M =̂

⎛
⎜⎜⎜⎝

ok ′ = (1.ok ∧ 2.ok) ∧
wait ′ = (1.wait ∨ 2.wait) ∧
ref ′ = (1.ref ∪ 2.ref ) ∧
(tr ′ − tr) =

(
(1.tr − tr) ‖ (2.tr − tr)

)

⎞
⎟⎟⎟⎠ ;SKIP

2.2 Continuations in UTP

In UTP [1, Chap. 6], the program counter is represented by a variable, denoted
l , and referred to as the control variable. The set of possible values which l can
take is called continuations set or simply continuations, and is denoted by αl
(αlP , the continuations of a predicate P). The instructions of the program are
represented by steps, which are themselves predicates. An implementation may
consist of a ‘single’ step or of an assembly of such steps.

First, we define programs that may be represented as the sequential repetition
of a single step. The value of l is tested before each repetition of the step and
determines if the execution of the step starts, continues or ends. Hence, l does
also specify termination.

Definition 1 (Continuations and execution).

P∗ =̂ (l ∈ αlP) ∗ P

αlP denotes the set of continuations of P; l ∈ αlP denotes the control variable
for its execution; and P∗ denotes the execution of P, defined as a loop, which
iterates the step as long as l remains in the continuations set.

For a step P , the value of l determines the start and termination of its
execution. When l is outside the continuations of P , P may not be started.
Although the behaviour of P in such case may be anything, it is safe to assume
that it does nothing, i.e. that its behaviour is II . This is a sound assumption
when we consider the execution of P in conjunction with that of other steps.

Definition 2 (Step). A predicate P is a step if l ∈ αlP and

P = P � l ∈ αlP � II

As a consequence,

((l /∈ αlP)⊥ ;P) = (l /∈ αlP)⊥



120 G.E. Ngondi and J. Woodcock

The following theorem gives the closure property of some operators.

Theorem 1 (Step closure). If P and Q are steps, then

1. P ;Q is a step.
2. P � Q and P � b � Q are also steps whenever αlP = αlQ.
3. The set of steps is a complete lattice.

Programs may occupy disjoint storage areas, in which case they are said to
be disjoint. This means that two steps which have disjoint continuations are
disjoint. It is possible to assemble them into a single program, by using the
assembly operator defined below.

Definition 3 (Assembly). Let P and Q be disjoint steps, i.e. αlP ∩ αlQ = {}.
P �� Q =̂ (P � l ∈ αlP � Q) � (l ∈ αlP ∪ αlQ) � II
αl(P �� Q) =̂ αlP ∪ αlQ

There are two known ways of implementing a program: compilation and
interpretation. In what follows we present the former only.

Compilation. Compilation is the transformation of the program into a target
program expressed in the machine code of the processor that is to execute it.
Compilation conserves the meaning of the source program. The semantics of the
target language (or machine code) may equally be given in UTP. Each instruction
in the language may be given a meaning as a step.

A single instruction is a step with a single continuation given by the singleton
set {m}.

Definition 4 (Single instruction). If INST is a machine code instruction
then

m : INST =̂ INST � l = m � II

is a single instruction.

Single instructions may be assembled together using the assembly operator (��).

Definition 5 (Machine code block). A machine code block is a program
expressed as an assembly of single instructions.

S0 �� S1 �� ... �� Sn

Using the preceding definition, it is possible to enter a machine code block at
any of its constituent continuation points. In practice, it is common to define a
normal starting point, denoted by s, and a normal finishing point, denoted by f .
They relate respectively to the first and last single instructions of the program.
s is the value of l when control enters sequentially into the program; any other
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point should be entered by a jump. f is the value of l when control leaves sequen-
tially through the last instruction. Respectively in each case, we will also talk
about normal start or entry and normal termination or exit. The assumption of
normal entry is expressed by the predicate (l = s)�. The obligation to terminate
normally is expressed by the predicate (l = f )⊥. Machine code blocks that have
these pre- and post-condition are called structured.

Definition 6 (Structured block). A structured block is a program of the
form

(l = s)� ;P∗ ; (l = f )⊥

where P is a machine code block. The value of s is called its starting point and
the value of f its finishing point.

Let P̂ denote the target program into which a source program P has been
compiled by a compiler. P̂ should have the same effect (or behaviour) as P .
l ∈ αP̂ but l /∈ αP (since P is not a step).

P�(var l ; P̂ ; end l)

Definition 7 (Target code). A program is in target code if it is expressed in
the form

〈s,P , f 〉 =̂var l ; (l = s)� ;P∗ ; (l = f )⊥ ; end l

where P is a machine code block. An equivalent formulation is:

〈s,P , f 〉 =̂var l := s ;P∗ ; (l = f )⊥ ; end l

According to the fundamental theorem of compilation [1, Chap. 6, Theorem
6.2.10], every program can be expressed in target code.

Theorem 2 (Fundamental theorem of compilation). Every program can
be expressed in target code.

It is possible to combine low-level language features, such as jumps and labels,
with high-level language features. Such a facility was provided by many early
programming languages.
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High-Level Language with Jumps and Labels. For the combination of a
high-level language with jumps and labels to be possible, it is necessary to con-
sider, in addition to s and f , other continuation points viz. those corresponding
to entry and exit by a jump. A special value, denoted by n, will be used for
both s and f . αl0P will denote the set of all entry points; αl ′P will denote the
set of all exit points; and neither may contain n. If l takes its value in either of
these sets, it will signify that the program has been entered or exited by a jump
respectively, in contrast to normal entry and exit through n.

Definition 8 (Blocks and proper blocks). Let S and F be sets of labels
(continuation points), and n /∈ S, and n /∈ F.

(P : S ⇒ F ) =̂P = (P ; (l ∈ F ∪ {n})⊥) � l ∈ S ∪ {n} � II )

A program is a block if it satisfies P : αl0P ⇒ αl ′P; a block is called a proper
block if αl0P ∩ αl ′P = {}.

The construction label s permits placing a label within the program at the
point intended to be the destination of a jump. label s may be entered normally
or by a jump, but it always exits normally. The construction jump f permits
jump-ing to the location indicated by the label f . jump f may be entered nor-
mally or by a jump, but it always exits by a jump.

Definition 9 (Labels and jumps).

label s =̂ (l := n) � l ∈ {s,n} � II αl0label s =̂ {s} αl ′label s =̂ {}
jump f =̂ (l := f ) � l = n � II αl0jump f =̂ {} αl ′jump f =̂ {f }

The following theorem gives the permitted operators for blocks having the same
alphabets of entry and exit points.

Theorem 3 (Block closure) The set of blocks {P | P : S ⇒ F} is a complete
lattice, and closed with respect to non-deterministic choice and conditional. The
same applies to proper blocks.

Before giving the closure for sequential composition, we first give its continuations.
A sequential composition P ;Q may be entered normally through n, or by a jump.
In the second case, the entry point may belong to either P or Q . Similarly, it may
be exited normally through n, or by a jump from either P or Q .

Definition 10 (Continuations for sequential composition).

αl0(P ;Q) =̂ αl0P ∪ αl0Q
αl ′(P ;Q) =̂ (αl ′P \ αl0Q) ∪ αl ′Q

Theorem 4 (Sequential composition closure) If P : S ⇒ F and Q : T ⇒
G, then

(P ;Q) : S ∪ T ⇒ ((F \ T ) ∪ G)
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3 Concepts and Formalisation

Note. For ease, we will refer to the work presented in the previous section as
HH98 steps or simply HH98. Similarly, we will refer to the work in [8] as WH02
steps or simply WH02.

The CPS transformation (or compiler) is inherently sequential [10,11]. UTP-
CSP processes also permit the representation of sequential programs, which form
a subset of the class of reactive programs. This suggests that HH98 may be
applied at least to sequential UTP-CSP. All that is needed is to extend the
alphabet of UTP-CSP sequential processes, and point-wise extend the definition
of sequential composition to the control variable l , as suggested in HH98. How-
ever, l is not expressive enough for reasoning about control flow in the presence
of parallelism.

The problem actually lies with the design of the control variable as single-
valued. We need a mathematical model that follows more tightly the computation
model. For example, using l in the presence of interrupt, it would be as if a single
program was interrupted at a time whereas we should be able to say that many
programs may be interrupted at a time. The solution is to design a value of the
control variable that follows more tightly the structure of processes. This is what
is done in [8].

In [8] (hereafter also WH02), Woodcock and Hughes use a set-valued control
variable, denoted ls instead, and that contains the continuations of all the steps
that may be executed in parallel next. Using WH02, we may point-wise extend
the UTP-CSP parallel composition operator. However, a number of changes must
first be considered. Unlike HH98 steps, a WH02 step may now exit at many points
at any one time, implying that a step may be entered simultaneously at multiple
entry points. This is a little counter-intuitive but poses no great difficulties. Yet,
ls is not sufficient for our purpose. To see this, consider the following illustration.

Let P = 〈s,P1, h〉 ; 〈h,P2, f 〉, and let ls = {s, h}. The value of ls is valid, but
does not reflect the structure of P . If the programmer was expecting parallel
composition, sequential composition will be performed instead, which is an error
and will not be detected. Let Q = 〈s,Q1, f 〉 ‖ 〈t ,Q2, g〉, and let ls = {s}. Then
Q will behave like Q1, since Q2 behaves like SKIP (by definition). Again, if
parallel composition was expected then only one step will be executed instead
of two in parallel, which is an error and will not be detected.

In sum, we have to design a new value for the control variable seeing that
neither HH98 variable l nor WH02 variable ls are adequate. L will denote the
new control variable, and we discuss its formalisation subsequently.

Design of the Control Variable L
Parallel composition may be seen as a single block such that when entered
sequentially, the steps that compose the block are executed in parallel, and
when they have all exited, then the block is also exited. That is, entry into
(resp. exit from) a block of parallel steps is identical to entry into (resp. exit
from) a sequential block. Sequential and parallel blocks would hence differ in
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their respective execution order: for the first, only one step may be executed
at a single (observation) time, whilst multiple steps may be executed at a sin-
gle time for the second. In other words, parallel composition acts as an envelop
w.r.t. its components. It has its own continuations, that differ from those of its
constituents. Let P = P1 ‖ P2, then the block denoted by P differs from its
component blocks P1 and P2. P has its own entry and exit points that differ
from those of P1 and P2.

A control flow graph (CFG) is a standard representation of programs with no
parallel constructs, using a graph. A CFG and related concepts are appropriate
for discussing the structure of UTP-CSP processes. Note that we are not inter-
ested in a graphical formalism, but only to use graphs as an adequate means for
discussion. In what follows, we sketch what such a graph might look like.

A CFG for Reactive Processes. Figure 1(a) shows an example of such a
graph read in a left-right, then top-down, iterative manner, thus indicating the
flow of control. Pi nodes may denote either single instructions, sequential blocks,
or nested (parallel) blocks. Both the root node (P) and initial nodes (e.g. P31,
P32, P33) are indicated by empty circles. A nesting node (e.g. P3) is indicated
by a vertical line starting from the node downwards, as shown in (b). An empty
square indicates termination for a horizontal line, whereas it simply serves as a
visual aid to indicate the end of a vertical line. A flattened graph (c) shows how
control goes through P3, and then again through P312. More information could
have been added for loops, and jumps, and bigger graphs may be conceived, but
such are not our main interest. Rather, we may also annotate nodes with their
continuations. The annotation procedure would then show how to evaluate the
control variable.

Fig. 1. Example of a CFG for reactive processes
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Value of L
Let L denote the control variable whose value we will be discussing. Then αLP
denotes the continuations of a step P .

To formalise the nesting relation between a parent and its children, we may
partition the continuations set of every node into two subsets: αl , the contin-
uations of the parent, and αls, the continuations of its children. We make the
following restriction: the parent-child relation does not extend beyond two adja-
cent levels. Hence, αls contains the continuations of nodes at the lower adjacent
level only; e.g. for sequential blocks, αls = {}. In what follows, we describe
in detail the procedure for attributing continuations to nodes. That is also the
procedure for computing the value of αL for a given block.

Continuations may be attributed hierarchically, in a bottom-up fashion.

1. We make no difference between nodes denoting either single instructions or
sequential blocks, and we will refer to them commonly as lv0 (read level-0)
nodes. Such nodes do not introduce nesting, hence they have no children, i.e.
αls = {}.

2. We then put in parallel lv0 nodes, exclusively, to form lv1 nodes. Such
nodes correspond to the nesting nodes mentioned earlier. The value of αls
is given by the union of continuations αl of its constituents. e.g. αlsP3 =
{αlP31, αlP32, αlP33}.

3. Again, putting exclusively lv1 nodes in parallel, or together with lv0 nodes,
we obtain lv2 nodes. αls is the union of all the continuations of adjacent
lv1 (and lv0) nodes, only. Hence the value of αls for a lv2 node does
not contain the continuations of those lv0 nodes that are nested to lv1

nodes. e.g. αlP312x � αlsP3, although αlP312 ⊆ αlP31 ⊂ αlsP3 &αlsP312 =
{..., αlP312x , ...}. This illustrates what we said earlier about αls: it contains
only the continuations of the lower adjacent levels. We reiterate this construc-
tion procedure for higher-levelled nodes.

The value of αL may be obtained by iteration on the level of a node considered
as the root (of the graph), as follows:

lv0 root, no children: αlP &αlsP = {}&αLP = αlP
lv1 root or parent, lv0 children only: αlsP =

⋃
i αlPi &αLP = αlP ∪ αlsP

lv2 root or parent, at least one lv1 child: αlsP =
⋃

i αlPi &αLP = αlP ∪
(
⋃

i αLPi)
lvn root or parent, at least one lvn−1 child: αlsP =

⋃
i αlPi &αLP = αlP ∪

(
⋃

i αLPi)

Note. The introduction of a nesting step is what distinguishes the value of L from
that of WH02’ control variable ls [8]. Its effect is to delegate the instantiation of
parallel (nested) nodes to the nesting node, which is a dummy. Thanks to that,
control flows as in sequential programs, since the dummy node hides away the
parallel structure of programs. It is also thanks to the nesting node that we solve
the limitations of ls discussed earlier. Indeed, using WH02 steps, it is possible
to jump to a step without care for its nesting level. The presence of the dummy
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step resolves this by imposing that control must enter into the dummy step first
before it can then enter into the parallel steps.

In what follows we describe the semantics of L formally.

4 Continuations for Programs with Nested Parallelism

HH98 steps (Sect. 2) are programs that compute the control variable l . By anal-
ogy, we present programs that compute the control variable L instead. We
follow the same methodology of Hoare and He [1, Chap. 6] that consists of start-
ing with unstructured predicates (i.e. steps) and then adding more structure
to obtain in turn target code programs, and then program blocks. In our case,
after (re)defining steps, we shall restrict our programs to Reactive Processes and
obtain, as a result, the theory of Reactive Process Blocks (Sect. 5) i.e. reactive
processes that contain the control variable L.

We now describe predicates whose alphabet include a set of continuations
denoted by αL. αL is partitioned into two subsets: αl , which contains the con-
tinuations at the current level of execution, and αls, which contains the contin-
uations at the adjacent lower level of execution, w.r.t. nesting.

At first, each level of execution may be considered without regard for nest-
ing. Then, every step is entered horizontally, and exits horizontally. In a graph,
a level corresponds to a single horizontal line that links nodes arranged from left
to right, according to their execution order. There is a node which has no hori-
zontal predecessor, called the root of the level. Each node on a line is adjoined
a continuation. We say that a node is entered horizontally if we can draw a
line from the root leading to it viz. the value of L corresponds to the node’s
continuation.

In the case of nesting, in a graph, there is a vertical line linking the higher
level, at the top, with its adjacent lower levels, all arranged as parallel horizontal
lines. The root of the graph has neither vertical nor horizontal predecessors (i.e.
there is no vertical/horizontal line leading to the graph-root); the root of a
lower level has no horizontal predecessor and should have at least one vertical
predecessor. A lower level (or child) node may be entered only if its parent has
been entered first. That is, we can draw a vertical line from the parent node to
the lower level line that contains the given child node, when traversing the graph
of the step from its root to the given node. In other words, the value of L must
hold both the parent and the child nodes continuations.

Definition 11. Let P be a predicate describing a step. Let αLP denote its set
of continuations, and let L be the control variable for its execution. We may
partition the set αLP into two subsets αlP and αlsP such that:

– αlP denotes the set of all the continuations of P at a single level of execution.
– αlsP denotes the set of all the continuations of P at the adjacent lower level

of execution.
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Control may enter into a step horizontally with regard to its own execution level,
or vertically with regard to nesting. In either case, a step may be entered only
when the value of L coincides with one of the step’s entry points. Otherwise the
step does nothing. Formally,

P = P � L ∈ αLP � II

Some operators induce/embed a nesting relation (cf. below, e.g. parallel assembly)
whilst others do not.

Definition 12 (Nesting relation). Let P be a step, and op an operator on
steps and which is closed.
op is said to induce nesting if, and only if, αl op(P) �= αlP and αlP ⊂
αls op(P): then, we say that op(P) is the parent of P, and is called a nest-
ing step; or equivalently, we say that P is nested into op(P), and is called a
nested step.
Otherwise, i.e. if αl op(P) = αlP, then op does not induce nesting.

The value of αLP may only be given by recursion over the nesting level of P .

Definition 13 (lvk-steps, αL). Let P be a step, then

αLP =̂ αlP ∪ αlsP

where both αlP and αlsP are specified according to the level of the nested pro-
grams in the expression of P, as described subsequently.

We say that a program P is a lv0-step, denoted by P = lv0(P), if, and only
if, P has neither parent nor children, i.e. αlsP = {}. Then

αLP =̂ αlP ∪ αlsP = αlP

Let op be a binary operator that induces nesting. Then:

– if P and Q are both lv0-steps, then we say that op(P ,Q) is a lv1-step and

αl op(P ,Q) =̂ {nn} αls op(P ,Q) =̂ αLP ∪ αLQ = αlP ∪ αlQ

– if either P or Q is a lv1-step, or both are, then we say that op(P ,Q) is a
lv2-step and

αl op(P ,Q) =̂ {nn} αls op(P ,Q) =̂ αLP ∪ αLQ
– if either P or Q is a lvk-step, or both are, then we say that op(P ,Q) is a

lvk+1-step and

αl op(P ,Q) =̂ {nn} αls op(P ,Q) =̂ αLP ∪ αLQ

where op(P ,Q) is a nesting step and may have only one entry point, and only
one exit point, both denoted by nn for convenience.
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Consequence 1 1. lv0-steps do not induce a nesting relation.
2. lv0-steps are ��-closed. Hence, every operator that may be defined in terms

of �� (such as {� b �,�, ; }) does not induce a nesting relation.

The relation with HH98 steps is obvious:

Theorem 5. HH98 steps are lv0-steps.

Sequential Assembly (2). The sequential assembly is as defined by HH98. We
simply redefine it here to account for the changes introduced.

P �� Q =̂ (P � L ∈ αLP � Q) � L ∈ (αLP ∪ αLQ) � II
αL(P �� Q) =̂ αLP ∪ αLQ

= αlP ∪ αlQ

Parallel Assembly. Traditionally, control enters sequentially into a single step
at any one time. However, when dealing with parallelism, control may enter
sequentially into many steps at any one time. It is therefore possible for a
step, upon exit, to indicate that many steps may be executed in parallel next
(cf. WH02 [8]).

The selection of next parallel steps may be delegated to a dummy step, or
nesting step, which is hence responsible of splitting control. In particular, thanks
to the nesting step, we are able to ‘guarantee by construction’ that none of the
component steps may be jumped into at random, and that all the component
steps are always entered at the same time — it is necessary to enter the nesting
step first.

We define below the parallel composition of steps, called parallel assembly
and denoted by //. It states that the parallel assembly of two steps yields a
third, nesting step. Such a step may have only one entry point, and only one
exit point, both denoted by nn.

Definition 14. (Parallel assembly).

P//Q =̂ (P ‖ Q) � {nn} ∈ L � II
M (L) =̂ L′ = 1.L ∪ 2.L

αL(P//Q) =̂ {nn} ∪ αLP ∪ αLQ

Instructions, Blocks, Program Blocks. In this section, we principally add
more structure to the steps defined in the previous section.

First, we redefine the notion of single instruction.

Definition 15. (Single instruction(2)). Let INST be a lv0-step, i.e.
αlsINST = {}, then

m : INST =̂ INST � L = {m} � II

is a single instruction.
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We may distinguish two types of machine code blocks, according to the assem-
bly operator used for their composition: (purely) sequential blocks (which we
also call proper blocks) are the sequential assembly of single instructions (called
machine code block in HH98 [1]); and parallel blocks (or nesting blocks) are the
parallel assembly of single instructions.

Definition 16. (Proper-, nesting- block). A proper block, say SeqB, is a
program expressible as a sequential assembly of single instructions i.e.

SeqB =̂m0 : INST0 �� m1 : INST1 �� ... �� mn : INSTn

αl(SeqB) =̂ {mi | 0 ≤ i ≤ n}
αls(SeqB) =̂ {}

A nesting block, say ParB, is a program expressible as a parallel assembly of
single instructions i.e.

ParB =̂m0 : INST0 //m1 : INST1 // ... //mn : INSTn

αl(ParB) =̂ {nn}
αls(ParB) =̂ {mi | 0 ≤ i ≤ n}

We expect any instruction to always pass control via a single exit point that
may lead either to a proper instruction or to a nesting one. The definition of
target code below reflects that expectation.

Definition 17. (Proper-, nesting- target code). Let P be a step. Let S
below denote the set of entry points of all the steps that will be executed in
parallel next, and let F denote the corresponding set of exit points.
If αlsP �= {}, then we say that any step of the form 〈(s,S ),P , (F , f )〉 is in
nesting target code, and defined by

〈(s,S ),P , (F , f )〉 =̂ (L ∈ {s} ∪ S )� ;P ; (L ∈ F ∪ {f })⊥
= varL := {s} ∪ S ;P ; (L ∈ F ∪ {f })⊥ ; endL

However, if P is a lv0-step i.e. αlsP = {}, then S = {} = F; we say that the
step is in proper target code and we may write simply 〈s,P , f 〉.
Notice above that the entry and exit points of the nesting step are independent
of those of the steps supposed to execute in parallel. Upon entry, L is updated
with the continuation s to ensure normal entry into the nesting step itself, and
also with the set S so that the parallel steps may be entered conjointly after-
wards. Upon exit, the value of L is first determined by a given merge function
(cf. parallel assembly Definition 14) that ensures that L′ ∈ F upon exiting the
parallel assembly, and then L should be updated with the continuation f to
provide normal exit out of the nesting step itself.

In what follows, we define the target code for the parallel composition oper-
ator ‖ only.

The parallel composition of two steps simply yields a third, nesting step,
which has its own distinct entry and exit points from those of the steps that are
to be run in parallel. Each component step may start only when its continuation
has been provided by the nesting step.
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Definition 18. (Target code for parallel composition).

〈(s1,S1),P , (F1, f1)〉 ‖ 〈(s2,S2),Q , (F2, f2)〉 =̂ ∃(s, f ) • 〈(s, {s1, s2}),P//Q , ({f1, f2}, f )〉
αl(P//Q) =̂ {s, f }

αls(P//Q) =̂ ({s1, f1} ∪ S1 ∪ F1) ∪ ({s2, f2} ∪ S2 ∪ F2)

We expect the possibility of jumping into nested parallel steps. However, such
jumps may not be left unguarded. The least requirement we can impose is that
the continuation of the parent must figure in the definition of the jump statement
together with the continuations of the children nodes to jump into.

Definition 19. (Vertical jump). jump(f ,F ) =̂ L := {f } ∪ F � L = n � II

Placing a label to multiple steps at the same time for the purpose of running
them in parallel may seem like an interesting feature at first, but it would only
add pointless complications. It is sufficient for us to place labels in each program
individually and then run the result (of each labelling procedure) in parallel.

In sum, in this section, we have defined the semantics of programs which may
contain the control variable L, thus extending the range of programs expressible
using HH98 and WH02 to nested parallel programs. We have not discussed the
case of Higher-order (HO) programs and this should be done, given that the
theory of mobile processes for which we have built the continuations above relies
on HO programming. We postpone such a discussion to Sect. 5.

5 Reactive Process Blocks

In this section we present the construction and semantics of Reactive Process
Blocks (or RPB), based on the results obtained previously. RPB processes are
meant to extend UTP-CSP processes with continuations. Since we are also inter-
ested in Higher-order programming, i.e. the possibility of calling a program
within another program, we shall consider the extension of UTP-CSP with HO
programming defined by Tang and Woodcock [6].

Alphabet. First, let us consider UTP-CSP processes as defined in [6]. The
alphabet of a UTP-CSP process P is defined by

αP =̂VarP ∪ Obs ∪ A
where Obs = {o,o′ | o ∈ {ok , tr , ref }} is the set of observational variables; A the
set of events that P may perform (including communications), and VarP the set
of variables that P may use. We may extend such an alphabet with both αLP ,
the continuations of P , and L, the control variable. This yields the following
alphabet for P

αP =̂VarP ∪ {L} ∪ Obs ∪ A ∪ αLP
Such an extension poses no difficulty at all, remembering that the alphabet of a
predicate is simply a collection of symbols (otherwise meaningless on their own).
We will refer to processes with such an alphabet as reactive steps.
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Healthiness Conditions. UTP-CSP processes are characterised by a
monotonic and idempotent healthiness condition CSP = R ◦ CSP1 ◦ CSP2.

The latter healthiness condition trivially holds under the extension of the
alphabet proposed precedently. Nonetheless, that is not enough for characterising
reactive steps. In order to achieve such a characterisation, it is necessary to
regard the definition of steps given earlier as an additional healthiness condition
that applies to UTP-CSP processes with {L} in their alphabet. We denote that
healthiness condition by RPB1, i.e. RPB1(P) = P � L ∈ αLP � II .

The following law trivially holds:

RPB1 ◦ CSP(P) = CSP ◦ RPB1(P)

Both the control variable L and the observational variables ok and wait allow
reasoning about termination; in addition, L permits reasoning about control,
while ok and wait permit reasoning about intermediate stable states. We need
to ensure that no contradiction arises from the definitions of each of these vari-
ables. Thus, we may define the following laws to ensure the consistency of the
definitions of L, ok and wait variables.

Laws 1 (Consistency between L, ok and wait). The variables wait and L
must agree on the behaviour of a Step prior to its execution.

A1 P ∧ wait ⇔ P ∧ ¬ (L ∈ αLP)

The variables ok and L must agree on the start of the execution.

A2 P ∧ ok ⇔ P ∧ (L ∈ αLP)

The variables ok and wait, and L must agree on valid intermediate states.

A3 P ∧ ok ′ ∧ wait ′ ⇔ P ∧ (L′ ∈ αLP)

The variables ok and wait, and L must agree on the termination.

A4 P ∧ ok ′ ∧ ¬ wait ′ ⇔ P ∧ ¬ (L′ ∈ αLP)

Definition 20. A =̂A1 ◦ A2 ◦ A3 ◦ A4

We may also define RPB =̂ A ◦ RPB1 ◦ CSP.
We may now define reactive steps formally:

Definition 21 (Reactive steps). Any predicate whose alphabet includes that
for reactive processes, and, additionally, both αL, and L, and that is RPB-
healthy is called a reactive step.
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Basic Predicates and Operators.

We now give the semantics of some basic predicates and operators. Since we are
building a target language for high-level UTP-CSP processes viz. that do not
contain L, we need to specify our basic instructions. The definition of target
code earlier makes it possible of defining arbitrarily complex predicates even as
single instructions. In what follows, we will consider a language with only two
single instructions: assignment and action prefix.

The notation m : INST may be considered as a predicate transformer, a
function that takes a constant value m and a UTP-CSP process INST , and
returns a reactive step with continuations {m}.

Assignment Instruction.

m : (x := e) =̂ (x := e)+L � L = {m} � IIR

αL(
m : (x := e)

)
=̂ {m}

Simple Action Prefix Instruction.

m : (a → SKIP) =̂ (a → II )+L � L = {m} � SKIP
(a → SKIP) =̂ CSP1(ok ′ ∧ doA(a))

doA(a) =̂ Φ(a /∈ ref ′ � wait ′ � tr ′ = tr � 〈a〉)
Φ =̂ R ◦ andB = andB ◦ R

αL(
m : (a → SKIP)

)
=̂ {m}

where andB =̂B ∧ X , and B =̂ (tr ′ = tr ∧ wait ′) ∨ tr < tr ′, and X denotes any
predicate of a given UTP theory.

We may then define, in an analogue way to HH98, basic (sequential) blocks,
basic parallel blocks, and proper blocks (or reactive process blocks).

Assuming that every other operator is well-defined, we now turn to the case
of higher-order (HO) programming. A HO program or procedure is one that may
be assigned as the value of a HO process variable. {| P |} denotes the procedure
that, when executed, behaves like process P .

HO Variable Declaration. In UTP-CSP, the declaration of a HO variable
h supposes that h may only contain as values procedures that have the same
actions set A. We may follow this idea for continuations too. We assume that
any HO variable h may only receive for value procedures that have the same
continuations. Thus, besides the latter assumption about continuations, there
is no need for modifying the existing definition of variable declaration that was
given for UTP-CSP processes in [6].

6 Conclusion

We have presented continuations for reactive processes, with an emphasis on
the semantics for the parallel composition operator, and we have also defined
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continuations for HO programs. These results find an immediate application
in the semantics for strong mobility for UTP-CSP which we aim to publish in
the near future. The model presented in this paper does apply to all programs
that may contain parallel operators, and not only to UTP-CSP. An interesting
ongoing work is the study of the healthiness conditions A1 to A4, in view of
their eventual simplification.

Acknowledgments. We are grateful to the anonymous reviewers for their useful
comments.
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Abstract. Formal modelling of complex systems requires catering for
a variety of aspects. The Unifying Theories of Programming (UTP) dis-
tinguishes itself as a semantic framework that promotes unification of
results across different modelling paradigms via linking functions. The
naive composition of theories, however, may yield unexpected or unde-
sirable semantic models. Here, we propose a stepwise approach to link-
ing theories where we deal separately with the definition of the relation
between the variables in the different theories and the identification of
healthiness conditions. We explore this approach by deriving healthiness
conditions for Circus Time via calculation, based on the healthiness con-
ditions of CSP and a small set of principles underlying the timed model.

Keywords: Theory engineering · Circus · CSP · UTP

1 Introduction

Systems exhibit several aspects of interest, including, for instance, state, behav-
iour, concurrency, object-orientation, time, and others. Several modelling para-
digms capture one or a few of these aspects. The UTP of Hoare and He [1] is
distinctive as a relational semantic framework that supports unification of results
across different paradigms. Individual models can be studied in isolation using
different UTP theories, while their combinations can be studied by composing
theories. Of central importance to composition of theories are: a standard notion
of refinement across the theories, and the definition of pairs of monotonic linking
functions between them, usually Galois connections.

For example, in the UTP, functional total correctness is characterised by
the theory of designs, while reactive behaviour is captured using the theory of
reactive processes. Their combination yields a theory for the process algebra
Communicating Sequential Processes (CSP) [2]. Additions to that theory yield
theories in the Circus [3] family, where not only can state and behaviour be
captured together, but also time [4,5], object-orientation [6], and so on [7].

Combining paradigms is not trivial as their naive combination may produce
unexpected or undesirable semantic models. For example, it is often desirable
for the operators of the combined theory to preserve the semantics of the cor-
responding operators of the original theories, in the sense that, when they are
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applied to predicates that correspond to those of the original theory, their behav-
iours are also in correspondence. To establish such a result, we need to identify
Galois connections between the original and the combined theories.

We consider, for example, the theory of Circus Time [4], a discrete-time ver-
sion of Circus that combines Z [8] and Timed CSP [9]. In Circus Time, data oper-
ations are instantaneous, and so every time property is explicitly specified: this
is crucial to facilitate modelling and reasoning. It is not clear how to establish
that the Circus Time theory preserves the semantics of the CSP operators, so
that, when Circus Time operators are applied to (untimed) CSP processes, the
resulting behaviour is consistent with that of the corresponding CSP operators.

Identifying a Galois connection that supports the proof that the operators in
the Circus Time and CSP theories are consistent with each other is important,
for example, to study external choice. The current definition [4] is not satis-
factory: as pointed out in [10], external choice in Circus Time does not handle
termination appropriately. We consider, for instance, Wait d � Wait (d +m), a
choice between terminating after d or after d +m time units. Since, like in CSP,
termination is not under the control of the environment, the choice should be
resolved in favour of Wait d . However, this is not the case with the definition
proposed in [4]. Finding an appropriate definition is challenging [11,12].

A Galois connection (L,R) is defined in [4]. L maps Circus Time processes
to untimed Circus processes, while R is defined as the weakest inverse of L. For
example, the application of L to Wait d yields Skip � Stop, a process that may
choose nondeterministically to terminate or deadlock. The results obtained for
operators mapped through this linking function are not satisfactory. It is not
clear how Skip can be mapped into its Circus Time counterpart as a terminating
process taking no time, at the same time that the timed counterpart of Stop
takes any amount of time. These desirable properties of the timed model make
it less than obvious how to define an appropriate Galois connection.

In this paper, we present a general stepwise approach to linking theories that,
by providing for a clear separation of concerns when linking theories, gives guid-
ance as to how theories can be linked. We take inspiration from the calculational
approach to data refinement based on auxiliary variables [13]. Accordingly, we
use an intermediate super-theory with variables of both theories of interest.

In our approach, the link between the source and the super-theory adds the
variables of the target theory. Another important component of a UTP theory
are healthiness conditions, which identify the valid predicates over the theory
variables. In our approach, healthiness conditions that the desired target theory
must satisfy and coupling invariants relating variables of both theories are used
to characterise the super-theory. The target theory is reached by removing the
starting theory’s variables. The opposite links can be constructed similarly.

We have applied our approach to Circus Time to construct a Galois connec-
tion that can justify its healthiness conditions and operators. In this example, we
split the healthiness conditions in two categories: those that refer exclusively to
concerns of the timed model are identified separately from those carried over from
(untimed) CSP. The healthiness conditions of the original Circus Time theory are
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explained as combinations of these. We also justify the relationship between the
observation variables of the two theories by considering separately the removal
and introduction of variables, and the relationship between variables in the dif-
ferent theories. Our super-theory allows us to derive the healthiness conditions
and operators of Circus Time as induced from the untimed model.

The remainder of this paper is organised as follows. In Sect. 2 we introduce
the required UTP theories, including the theory of CSP and Circus Time. In
Sect. 3 we discuss the stepwise linking approach. In Sect. 4 we use the proposed
approach to build a super-theory of timed reactive processes, and ultimately
derive a model for Circus Time. Finally, we conclude in Sect. 5 by summarizing
our findings and discussing future work.

2 Preliminaries

UTP theories include relations defined by predicates P . They are characterised
by three components: an alphabet, a set of healthiness conditions and a set of
operators. The alphabet defines the free variables that can be used in the predi-
cates. Also, the alphabet α(P) of a relation P is split into inα(P), which contains
undashed variables corresponding to the initial observations, and outα(P) con-
taining the dashed counterparts for after or final observations. The healthiness
conditions are defined by monotonic idempotent functions; the theory contains
only the healthy predicates: the fixed points of the healthiness conditions. The
predicates can be defined using the operators of the theory.

Refinement is defined in all theories as universal reverse implication. In the
UTP, total correctness is characterised through the theory of designs [1,14], whose
healthiness conditions are named H1 and H2. Every design P can be expressed
in terms of pre and postcondition pairs, (¬P f � P t), where Po = P [o/ok ′] and t
and f correspond to true and false, respectively.

2.1 CSP

Programs characterised by continuous interactions with their environment are
modelled in the UTP using the theory of reactive processes [1,15]. In addition
to the variables, ok and ok ′ of the theory of designs, this theory includes the
variables wait , tr , ref and their dashed counterparts, that record information
about interactions with the environment.

This is a theory where observations of intermediate states of programs are
recorded. The boolean variable wait records whether the previous process is
waiting for an interaction from the environment or, alternatively, has terminated.
Similarly, wait ′ ascertains this for the current process. The boolean variable ok
indicates whether the previous process is in a stable state, while ok ′ records this
information for the current process. If a process is not in a stable state, it is said
to have diverged. A process starts executing only in states where ok and ¬wait
are true. Successful termination is characterised by ok ′ and ¬wait ′ being true.



A Stepwise Approach to Linking Theories 137

The actual interactions with the environment are represented using sequences
of events, recorded by tr and tr ′. The variable tr records the sequence of events
that took place before the current process started, while tr ′ records the inter-
mediate or final sequence of events that can be observed. Finally, ref and ref ′

record the set of events that may be refused by the process. Refusal sets allow
the appropriate modelling of deadlock and nondeterminism [2].

The theory of reactive processes R is characterised by the functional compo-
sition (◦) of three healthiness conditions [1,15] below, where function application
binds stronger than function composition.

Definition 1 (Healthiness Conditions of Reactive Processes).

R1(P) =̂ P ∧ tr ≤ tr ′ R2(P) =̂ P [〈〉, (tr ′−tr)/tr , tr ′]
R3(P) =̂ IIrea � wait � P R(P) =̂ R3 ◦ R1 ◦ R2(P)

R1 requires that in all circumstances the only change that can be observed in
the final trace of events tr ′ is an extension of the initial sequence tr , while R2
requires that a process must not impose any restriction on the initial value of tr .
Finally, R3 requires that if the previous process is waiting for an interaction with
the environment, that is, wait is true, then the process behaves as the identity
of the theory IIrea [1,15].

The theory of CSP can be described by reactive processes that in addition
satisfy the healthiness conditions CSP1 and CSP2 reproduced below [1,15].

Definition 2 (CSP).

CSP1(P) =̂ P ∨ R1(¬ok)
CSP2(P) =̂ P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait)

The first healthiness condition CSP1 requires that if the previous process has
diverged, that is, ok is false, then extension of the trace is the only guarantee.
CSP2 is H2 restated with the extended alphabet of reactive processes.

A process that is R, CSP1 and CSP2-healthy can be described in terms of
a design [1,15]. We reproduce this result below, where Po

w = P [o,w/ok ′,wait ].

Theorem 1 (Reactive Design). For every CSP process P,R(¬P f
f � P t

f ) = P

This result is important as it allows CSP processes to be specified in terms of
pre and postconditions, such as is the case for sequential programs, while the
healthiness condition R enforces the required reactive behaviour.

2.2 Circus Time

Circus is a combination of Z, CSP and Dijkstra’s language of guarded com-
mands. Its semantics is also defined using reactive designs. The timed version
Circus Time [4,5] provides facilities to explicitly model and reason about discrete
time state-rich reactive systems. Observations are timed, so the trace of events
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Fig. 1. A timed sequence.

and the set of refusals are recorded as pairs in a non-empty timed sequence trT ,
whose dashed counterpart is tr ′

T , and where Σ is the set of all possible events.
This is analogous to untimed CSP where tr and tr ′ are defined as sequences
whose elements are drawn from Σ.

Definition 3. trT , tr ′
T : seq1(seq Σ × PΣ)

Here we use seq1 following the Z notation [16] to denote a finite non-empty
sequence. The variables ok , ok ′, wait and wait ′ retain the same meaning as in
the untimed theory, and in that of CSP. For the purpose of our discussion, we
adopt a model based on that of [4], but without considering state directly.

An illustration of a timed sequence consisting of three time slots is presented
in Fig. 1. Each slot contains a pair, whose first component is a sequence of events,
such as a followed by b, and whose second component is a refusal set (shaded in
Fig. 1) such as R. This is useful to illustrate the intuition behind the healthiness
conditions that we discuss in the sequel.

Healthiness Conditions. The first healthiness condition R1T of the
Circus Time theory ensures that the trace of events across time cannot be undone.
It is the counterpart to R1 and is defined as follows.

Definition 4. R1T(P) =̂ P ∧ E(trT , tr ′
T )

It is a conjunctive healthiness condition [7] defined using the predicate E .

Definition 5. E(s, t) =̂ (front(s) < t) ∧ fst ◦ last(s) ≤ fst ◦ head(t−front(s))

Given two timed traces s and t , E requires the front (which for a given sequence
yields all the elements except the last) of s to be a strict prefix of t , and in
addition that the first component (as given by fst) of the last pair of s is a prefix
of the first component of the head of the difference between t and front(s). If
we consider s and t to be trT and tr ′

T , respectively, then the strict prefixing
front(trT ) < tr ′

T requires that not only are the traces of previous time slots kept
unchanged, but also the refusal sets. In addition, the difference tr ′

T − front(trT )
yields the timed sequence corresponding to the current and future observations,
and so the head corresponds to the first after observation in the current time
slot. A pair of sequences satisfying R1T is illustrated in Fig. 2. The functions
front , last , head , fst and snd are those of Z [16] with expected meanings.

The counterpart to R2 is R2T, which requires processes to be insensitive to
events in the initial timed sequence trT .
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Fig. 2. Example of a pair of sequences trT and tr ′
T satisfying R1T.

Fig. 3. Example application of difT .

Definition 6. R2T(P) =̂ P [〈(〈〉, snd ◦ last(trT ))〉, difT (tr ′
T , trT )/trT , tr ′

T ]

It is defined by considering the substitution of trT by the timed sequence whose
only element is a pair, where the trace is empty and the refusal set is the last
observed in trT . The sequence tr ′

T is substituted by the application of the func-
tion difT that captures the difference in events during the current time slot.

The function difT takes two timed traces tr ′
T and trT , and yields a sequence

whose first element is a pair containing the trace actually observed during that
time slot, and the refusal set observed at the end of the time slot.

Definition 7.

difT (tr ′
T , trT ) =̂

⎛
⎜⎜⎝

〈
(
fst ◦ head(tr ′

T − front(trT )) − fst ◦ last(trT )),
snd ◦ head(tr ′

T − front(trT ))

)
〉

�
tail(tr ′

T − front(trT ))

⎞
⎟⎟⎠

The current sequence of time slots is obtained by the difference tr ′
T − front(trT ).

The actual events occurring during the first of those slots are obtained by the



140 P. Ribeiro et al.

Fig. 4. Linking between theories.

difference between fst ◦ head(tr ′
T − front(trT )) and fst ◦ last(trT ). An illustra-

tion of an application of difT to timed traces satisfying R1T is shown in Fig. 3.
The counterpart to R3 is R3T below. Instead of IIrea , the identity of the

theory of reactive processes, IIT , the identify of the timed theory is employed.

Definition 8.

R3T(P) =̂ IIT � wait � P
IIT =̂ R1T(¬ok) ∨ (ok ′ ∧ tr ′

T = trT ∧ wait ′ = wait)

If the process is in an unstable state, that is, ok is false, then expansion of the
timed sequence trT is the only guarantee. Otherwise, the process is stable, that
is, ok is true, the timed sequence trT is kept intact and so is the value of wait .
The functional composition of R1T, R2T and R3T is RT.

This concludes the overview of Circus Time. We next explore an approach to
find Galois connections between theories, which leads to the definition of a new
Galois connection between Circus and Circus Time.

3 Linking Theories via Super-Theories

The definition of linking functions between UTP theories with different alphabets
involves introduction of variables of the target theory and removal of variables of
the source theory (essentially a data refinement), while at the same time enforc-
ing the healthiness conditions of the target theory. In other words, in addition
to a data refinement, there is an application of the healthiness condition of the
target theory. This is illustrated for two arbitrary theories A and C in Fig. 4,
where a pair of linking functions a2c and c2a is shown.

When defining a2c and c2a, a problem arises if the complete set of health-
iness conditions of the target theory C is not known a priori. This is often the
case when developing a new theory. An appealing approach is to calculate the
healthiness conditions via application of a2c to healthy predicates of A. If, how-
ever, finding a Galois connection, that is, defining a2c and c2a in the first place,
is not immediately obvious, then this is not a solution.

For example, in the case of the link from Circus to Circus Time two choices
arise naturally: every trace of events takes place in a single time slot, and so
no time is actually added; or any amount of time can pass for any given trace.
The latter violates R1T, while the former does not capture an interesting cor-
respondence between the models. The right approach lies between these two
extremes.
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Fig. 5. Stepwise linking between theories.

We propose that, instead of exploring the links between the theories directly,
we break down the linking functions into a series of functions that, when com-
posed, achieve the same goal. We consider again the arbitrary theories depicted
in Fig. 4, and suppose that we know only partially the set of healthiness condi-
tions of the theory C , denoted by the function HC. To calculate those induced
from theory A, we can proceed as depicted in Fig. 5.

The theories A and C are related through an intermediate super-theory B .
The alphabet of B is the union of the alphabets of A and C : αB = αA∪αC . To
relate the values of variables in αA and αC we introduce a coupling invariant
CI, which is applied after HC, the known healthiness condition of the theory C
that must be satisfied irrespective of those induced from A.

In what follows we define coupling invariants and characterise the properties
required of HC to ensure that a2c and c2a form a Galois connection between
the theories of interest. Finally, we present formal definitions for a2c and c2a,
and show that they form a Galois connection.

A coupling invariant is a monotonic and idempotent function CI defined by
the general form below, where Q is a predicate relating variables.

Definition 9 (Coupling Invariant). CI(P) =̂ P ∧ Q

If Q does not depend on P , then CI is a conjunctive healthiness condition [7].
A coupling invariant and the identity function II form a Galois connection as
established by the following Lemma 1, following the result of Lemma 4.2.3 in [1].

Lemma 1. CI and II form a Galois connection in the domain of CI-healthy
predicates.

Proof. II ◦ CI(P) � P {By definition of II and CI and predicate calculus}
and CI ◦ II(Q) 
 Q {By definition of II and predicate calculus, Q satisfies CI} ��
We observe that in the proof of Lemma 1, we assume that II is applied to a
CI-healthy predicate. This is because the Galois connection is established with
the subset of interest of theory B that is CI-healthy.

Similarly, links related to the data refinement, in which one function intro-
duces variables, and another function hides them, also form a Galois connection
as established by the following Lemma 2. We use the operator +C , an alphabet
extension with no particular value specified for variables in the set C .
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Definition 10. P+C =̂ P ,with α(P+C ) = α(P) ∪ C

In words, the alphabet of P+C is augmented with the variables in C , but the
values of these new variables are not restricted.

Lemma 2. Provided variables in αC are not free in P, ∃αC • P and Q+C

form a Galois connection.

Proof.

∃ αC • (P+C ) {Theory alphabet extension}
= ∃αC • (P) {Assumption: c and c′ not free in P}
= P

(∃ αC • Q)+C {Theory alphabet extension}
= (∃ αC • Q) {Predicate calculus}

 Q

��
The remaining Galois connection to be established lies between the theory with
variables of both A and B (depicted as A+ αC in Fig. 5), and the theory whose
predicates satisfy HC (depicted as A + B in Fig. 5).

Lemma 3. HC and II form a Galois connection in the domain of HC-healthy
predicates, provided HC is a monotonic and idempotent function, and, for all
P, either HC(P) � P (strengthening) or HC(P) 
 P (weakening), or both.

Proof. HC ◦ II(Q) = Q {Def. of II, and assumption: Q is HC-healthy}
(Case: HC is strengthening)

II ◦ HC(P) {Definition of II}
= HC(P) {Assumption: HC(P) � P}
� P

(Case: HC is weakening)

II ◦ HC(P) {Definition of II}
= HC(P) {Assumption: HC(P) 
 P}

 P

��
When HC is applied to a predicate P that is HC-healthy, then HC(P) = P ,
and the proviso of Lemma 3 requiring strengthening or weakening is trivially
satisfied. In the context of our approach, however, the proviso must also be
satisfied when HC is applied to a predicate P that results from the application of
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P+C , that is, when the variables of set C are allowed to take arbitrary values by
P . For example, we consider the case where HC is defined by a function like R2.
This function is neither strengthening nor weakening when applied to unhealthy-
predicates. We consider the following counter-example: R2(tr = 〈〉) = true and
R2(tr �= 〈〉) = false. However, the application of R2(P) to a predicate P where
tr and tr ′ take arbitrary values yields an equality.

As illustrated in Fig. 5 the linking function a2c from A to C is the com-
position of several functions: a function that introduces the variables of C ; the
healthiness condition HC; the coupling invariant CI; followed by two applica-
tions of the identity function, and an existential quantification over all variables
in A. We have a similar composition for c2a. Formally, we can describe a2c and
c2a as follows: the identities do not need to be included in the composition.

Definition 11.

a2c(P) =̂ ∃αA • CI ◦ HC(P+C ) c2a(P) =̂ ∃ αC • CI ◦ HC(P+A)

For variables that are simply aliases, the existential quantification at either end
of the link is over the subset of those variables not present in the target theory.
The relation established between variables could alternatively be defined using
the data refinement approach of the UTP. However, to satisfy HC the invariants
would need to be strengthened, and it is not clear how functions like R2 could be
justified purely by data refinement. Here we deal with these concerns piecewise.

The functions a2c and c2a form a Galois connection. This is our main result
in this paper, established by the following Theorem 2.

Theorem 2. a2c and c2a form a Galois connection, provided HC is idempotent
and monotonic, and HC is either strengthening or weakening, or both.

Proof. Follows from Lemmas 1 to 3 and Theorem 4.2.5 in [1] (Galois connections
compose).

Our approach provides for a systematic way of studying the relationship
between theories. As long as the known healthiness condition HC is weakening
or strengthening, or both, then a Galois connection can be established. The cou-
pling invariant can be tweaked as required to yield different Galois connections.
Links between theories can be non-trivial due to the underlying differences in
paradigm. The intermediate super-theory enables constructs from multiple theo-
ries to be considered together within the same alphabetized relation space, while
still providing a Galois connection with the constituent theories.

This concludes our discussion on building super-theories. In the next section,
we illustrate our approach by discussing how it can be used to build a model for
Circus Time starting with the (untimed) CSP theory.

4 A Stepwise Approach Towards Circus Time

Here, we build a super-theory of timed reactive processes based on the CSP
theory. Section 4.1 defines the alphabet and healthiness conditions of the super-
theory, and coupling invariants that characterise the valid timed traces. The
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instance of HC in this example is the composition of the healthiness conditions
we identify; similarly, the instance of CI is the composition of the coupling
invariants. Defining HC and CI by composition of simpler functions gives a
piecewise characterisation of properties of interest. This method is suggested by
Theorem 2 and is an illustration the main feature of our stepwise approach to
connecting theories. In Sect. 4.2 we calculate an explicit description of the linking
function from (untimed) CSP to Circus Time, using Definition 11, and present
the results obtained with our Galois connection.

4.1 Constructing the Super-Theory

The alphabet of the super-theory includes the union of alphabets of the theories
of CSP and Circus Time, defined in Sect. 2; ok and ok ′ are common to both
theories. Furthermore, we also add auxiliary variables trC and tr ′

C to the super-
theory to facilitate reasoning about traces in the current time slot.

Definition 12 (Alphabet).

tr , tr ′ : seq Σ trT , tr ′
T : seq(seq Σ × PΣ)

wait ,wait ′, ok , ok ′ : Boolean waitT ,wait ′
T : Boolean

ref , ref ′ : PΣ trC , tr ′
C : seq Σ

In contrast with the treatment in [4], we require timed traces not to be empty
by using a healthiness condition, defined in the sequel, rather than using the
type system directly. This obviates the need to check intermediate calculations
for type correctness with regards to this property.

Healthiness Conditions. Here, we identify minimal restrictions that are later
used to justify the original healthiness conditions of Circus Time. With this app-
roach, we consider issues related to time in isolation from those already captured
by the healthiness condition of CSP.

TR0. The first condition of the super-theory requires that no sequence of events
is empty: the length #trT of the initial trace trT is greater than zero.

Definition 13. TR0(P) =̂ P ∧ #trT > 0

This makes operations on traces, such as front , well-defined. The corresponding
restriction on tr ′

T arises as a consequence of TR0 and TR1 defined next.

TR1. The second healthiness condition requires that time increases monoton-
ically, that is, the length of the after timed trace tr ′

T must be greater than or
equal to the length of the current timed trace trT .

Definition 14. TR1(P) =̂ P ∧ #trT ≤ #tr ′
T

In the original Circus Time model [4], TR0 and TR1 are implicit.
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Fig. 6. Example of applying R2locT.

TR2. The third healthiness condition requires that previous observations across
time cannot be changed and is defined as follows.

Definition 15. TR2(P) =̂ P ∧ front(trT ) ≤ tr ′
T

In words, the front of the current timed sequence trT must be a prefix of tr ′
T .

In [4], this requirement is part of R1T, but here it is studied in isolation.
An example of a relation that is TR0, TR1 and TR2-healthy is depicted

in Fig. 2. The healthiness conditions considered so far guarantee preservation of
history before the current time slot, however, they are not sufficient to guarantee
that R1 is observed within the current time slot. Later in this section, we tackle
this aspect by using coupling invariants related to trC and tr ′

C .

TR3. The next healthiness condition defines for waitT part of what is estab-
lished by R3 for wait . It states that if the previous process is waiting in a stable
state, then no explicit time is added and it continues waiting.

Definition 16. TR3(P) =̂ P ∧ ((ok ∧ waitT ) ⇒ (#tr ′
T = #trT ∧ wait ′

T ))

This healthiness condition is essential to justify the definition of the timed iden-
tity IIT . Further aspects of R3, including behaviour in the presence of divergence
of the previous process are considered separately.

R2locT. The following healthiness condition captures part of R2, in that, if we
ignore time and the events that happened in the previous time slot, then the
counterpart to applying R2 in the current time slot is R2locT.

Definition 17. R2locT(P) = P
[
front(trT ) � 〈(〈〉, snd ◦ last(trT ))〉/trT
front(trT ) � difT (tr ′

T , trT )/tr ′
T

]

A pictorial description of the application of R2locT is shown in Fig. 6. In the
current time slot, the front of trT is maintained, while the last sequence of events
is replaced by the empty sequence. Similarly, the subsequent observation of tr ′

T

is replaced with front of trT (front(trT ) is guaranteed to be a prefix of tr ′
T when

we consider relations that satisfy TR0 and TR1) followed by the corresponding
difference in events observed during the current time slots as given by difT .

For difT to be well-defined fst(last(trT )) must be a prefix of the sequence
fst(head(tr ′

T−front(trT ))). This is not an issue in the original Circus Time theory
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Fig. 7. Example of applying TR4.

as it includes R1T, but the healthiness conditions above do not address this
issue. One option is to consider this as a requirement for difT to be well-defined.
Another option, which we choose to follow, is to enforce the counterpart to R1
in the current time slot with the following healthiness condition.

Definition 18. R1C(P) =̂ trC ≤ tr ′
C

This is a modelling decision: both options can justify R1T. Later, a coupling
invariant relates the values of trC and tr ′

C with those of tr ′
T and tr ′

T .

TR4. The second requirement of R2T is captured by the following healthiness
condition TR4 that requires processes not to depend on the time elapsed before
them, irrespective of events that have happened. R2locT above captures insen-
sitivity to events, whereas TR4 captures insensitivity to time. A fixed point of
TR4 must allow the timed traces trT and tr ′

T to be replaced with traces whose
first time slots contain all events that have happened before, concatenated with
any current events. In other words, the behaviour of a fixed point must be the
same, even if no time had elapsed before.

Definition 19.

TR4(P) =̂ P

⎡
⎢⎢⎢⎢⎣

〈(Flat(trT ), snd ◦ last(trT ))〉/trT⎛
⎜⎜⎝

〈
(
Flat(front(trT ) � head(tr ′

T − front(trT ))),
snd ◦ head(tr ′

T − front(trT ))

)
〉

�
tail(tr ′

T − front(trT ))

⎞
⎟⎟⎠ /tr ′

T

⎤
⎥⎥⎥⎥⎦

The sequence trT is replaced by a sequence with only one element: a pair whose
first component is Flat(trT ), a projection on trT that yields the sequence of
events in every first component of the pairs in trT , that is, all events that hap-
pened by the beginning of the current observation. Similarly, tr ′

T is replaced by a
sequence whose first pair has as first component the sequence of events observed
up until the end of the current time slot. This includes the events in front(trT )
concatenated with those in the current time slot, given by head(tr ′

T −front(trT )).
An example of applying TR4 is shown in Fig. 7.

The combination of R2locT and TR4 corresponds to R2T as established
by the following Lemma 4. Proof of this and other results to follow that are not
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included in this paper are available in [17], with essential results having been
checked using Isabelle/UTP [18].

Lemma 4. Provided #trT > 0, TR4 ◦ R2locT(P) = R2T(P).

This equality with R2T holds only when TR4 is applied after R2locT. Although
this may seem counter-intuitive, this requirement is a consequence of the order
in which the substitutions of TR4 and R2locT are applied.

TR. The healthiness condition corresponding to the functional composition of
all the previous healthiness conditions is TR.

Definition 20.

TR(P) =̂ TR0 ◦ TR1 ◦ TR2 ◦ TR3 ◦ TR4 ◦ R2locT ◦ R1C(P)

This function is strengthening as established by the following Theorem 3.

Theorem 3. Provided trT and tr ′
T are not free in P, TR(P) � P.

Proof.

TR(P) {Definition of TR}
= TR0123 ◦ TR4 ◦ R2locT ◦ R1C(P) {Lemma 4}
= TR0123 ◦ R2T ◦ R1C(P) {Assumption: trT and tr ′

T not free in P}
= TR0123 ◦ R1C(P) {Definition of TR0 to TR3, predicate calculus}
� R1C(P) {Definition of R1C and predicate calculus}
� P

Following the approach outlined in Sect. 3, this result ensures that a linking
function including TR as healthiness condition, yields a Galois connection.

This concludes the discussion of the healthiness conditions governing the
timed aspects of the super-theory and Circus Time.

Coupling Invariants. In this section we define the coupling invariants that
relate the value of variables in the super-theory.

CI0. The first coupling invariant relates the timed traces, trT and tr ′
T , with

their untimed counterparts, tr and tr ′. The difference in traces in the untimed
model tr ′ − tr must be in agreement with the difference in events observed over
all time units as given by the difference Flat(tr ′

T ) − Flat(trT ).

Definition 21.

CI0(P) =̂
P ∧ (tr ′−tr) = Flat(tr ′

T )−Flat(trT ) ∧ Flat(trT ) ≤ Flat(tr ′
T ) ∧ tr ≤ tr ′
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For the differences to be well-defined we require Flat(trT ) to be a prefix of
Flat(tr ′

T ), and tr of tr ′. While a direct equality could be used, rather than an
equality between differences, it poses problems if R2 were applied to CI0 as it
forbids insisting on a particular value for tr . Therefore, here we only consider
the relationship between differences, an approach also followed in [19].

CI1. The second invariant requires refusals in the untimed ref variables and
the timed traces variables trT to be in agreement.
Definition 22. CI1(P) =̂ P ∧ ref = snd ◦ last(trT ) ∧ ref ′ = snd ◦ last(tr ′

T )
The value of ref must be the same as the refusal in the last time slot last(trT )
of trT , as given by the second component of last(trT ), whereas ref ′ must be
the refusal in the last time slot last(tr ′

T ), as given by the second component of
last(tr ′

T ), which may or may not be the same time slot as last(trT ).

CI2. The next invariant requires that termination without visible events in a
stable state in the untimed model does not allow any time to pass.
Definition 23.

CI2(P) =̂ P ∧ ((¬wait ′ ∧ ¬P f
f ∧ ok ∧ ok ′ ∧ tr ′ = tr) ⇒ #tr ′

T = #trT )

That is, when wait ′ is false, the precondition ¬P f
f of P is satisfied, and stability

is preserved with ok and ok ′, and no event is observed tr ′ = tr , then no time
must pass. Consequently, the CSP process Skip in the context of the super-theory
allows no time to pass. As previously indicated, this is required in Circus Time
to ensure that time passage is explicitly modelled. We note that data operations
in Circus Time, like Skip, do not engage in events, and so, if not divergent, are
instantaneous. So, time budgets and deadlines need to be explicitly defined.

CI3. The next invariant relates termination of interactions in both theories.
Definition 24. CI3(P) =̂ P ∧ waitT = wait ∧ (¬wait ′ ⇒ ¬wait ′

T )
It requires that termination, or not, of the previous process is the same in both
models as waitT is equal to wait . On the other hand, termination of interactions
in the untimed model, for the current process, implies termination in the timed
model, but not vice-versa. If we were to admit wait ′ = wait ′

T , then it would
be impossible to define a process such as Wait d , since, when it terminates,
CI2 requires no time to pass, and thus d could never be greater than zero.
On the negative side, if we consider the CSP process Stop in the context of
the super-theory, then it does not necessarily wait forever in the timed model.
This is, however, unavoidable: if we were to admit wait ′ ⇒ wait ′

T , then in the
context of the super-theory Stop would require non-termination appropriately,
but Skip would no longer require termination, and similarly Wait d could still
never terminate with d greater than zero due to CI2. We, therefore, need to
provide a new definition of Stop in the super-theory, which is not related to the
CSP process Stop by our Galois connection. It was the study of the super-theory,
including both the wait and waitT variables, that revealed the difficulties.
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CI4. The final coupling invariant CI4 relates the values of trC and tr ′
C , and

the values of trT and tr ′
T , respectively.

Definition 25.

CI4(P) =̂

⎛
⎝ fst ◦ head(tr ′

T − front(trT )) − fst ◦ last(trT ) = tr ′
C − trC ∧

P ∧
trC ≤ tr ′

C ∧ fst ◦ last(trT ) ≤ fst ◦ head(tr ′
T − front(trT ))

⎞
⎠

The difference in traces between the variables tr ′
C and trC , and the difference

in events observed in the timed traces during the current time slot, as given by
fst ◦ head(tr ′

T − front(trT )) and fst ◦ last(trT ), must be in agreement. Finally
trC must be a prefix of tr ′

C in order for the difference to be well-defined. Similarly,
we also require the differences in the timed model to be prefixes. As discussed
before, this aspect is part of R1T in the original Circus Time theory.

CI. The complete relationship between timed and untimed variables is estab-
lished by the coupling invariant CI, the composition of the previous invariants.

Definition 26. CI(P) = CI0 ◦ CI1 ◦ CI3 ◦ CI2 ◦ CI4(P)

We observe that CI3 needs to be applied before CI2 as the functions are not
commutative; the others commute with each other.

Having defined both the healthiness condition TR and the coupling invari-
ant CI of the super-theory, we now define the resulting Galois connection as
described in Sect. 3. We have a pair of functions csp2t , mapping from untimed
CSP to Circus Time, and t2csp mapping in the opposite direction.

Definition 27.

csp2t(P) =̂ ∃Uα • CI ◦ TR(P+T ) t2csp(P) =̂ ∃Tα • CI ◦ TR(P+U )
whereT = {trT , tr ′

T , trC , tr ′
C}, U = {tr , tr ′, ref , ref ′,wait ,wait ′, trC , tr ′

C}

That we have a Galois connection follows from Theorem 3 and Lemma 3.
This concludes the construction of the super-theory. In the following

we explore the mapping of CSP operators into the super-theory and into
Circus Time.

4.2 Using the Super-Theory

In this section we use the super-theory to relate CSP processes and their
Circus Time counterparts. To that end, we first observe that the application
of TR and CI to a reactive design yields a timed reactive process in the context
of the super-theory of the form established by the following Theorem 4, where
the function S, defined below, is used instead of R.

Definition 28. S(P) = R012T ◦ CI0134 ◦ R3T ◦ R2(P)
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The function S is the result of composing the healthiness conditions of the orig-
inal Circus Time theory (R0T to R2T, and R3T), together with our coupling
invariants and R2. In the resulting design of Theorem 4, the conjunction in the
postcondition is due to CI2: if the process terminates successfully in the untimed
model, and without communicating any event, then time must not pass.

Theorem 4. Provided ok ′ and wait are not free in P,

CI ◦ TR ◦ R(P � Q) = S(P � ((¬wait ′ ∧ tr ′ = tr) ⇒ #tr ′
T = #trT ) ∧ Q)

We recall that all predicates of the CSP theory can be described as reactive
designs, and so Theorem 4 describes all predicates of the super-theory. Simi-
larly to CSP processes, they are the image of a design through a healthiness
function. We observe that the proviso is standard for CSP processes, since their
preconditions do not depend on the value of wait as a result of R3.

Using Theorem 4, we can give a general characterisation of the result of
applying csp2t to a reactive design as established by the following Theorem 5,
where φ =̂ (Flat(tr ′

T ) = Flat(trT )) and f = false and t = true.

Theorem 5. Provided trC and tr ′
C are not free in P and Q, and ok ′ and wait

are not free in P,

csp2t ◦ R(P � Q) =

RT

⎛
⎝ (ψ(P)[f /wait ′] ∨ wait ′

T ) ∧ ψ(P)[t/wait ′]
�
((φ ⇒ #tr ′

T = #trT ) ∧ ¬wait ′
T ∧ ψ(Q)[f /wait ′]) ∨ ψ(Q)[t/wait ′]

⎞
⎠

The proviso is satisfied by CSP processes as trC and tr ′
C are not free in a reactive

design. We obtain a timed reactive design with RT applied. The design mentions
the original pre and postconditions, P and Q , with ψ applied to them.

Definition 29. ψ(P) =̂ P
[ 〈〉,Flat(tr ′

T ) − Flat(trT ),waitT/tr ′, tr ′,wait
snd ◦ last(trT ), snd ◦ last(tr ′

T )/ref , ref ′

]

These substitutions are a consequence of the definition of the coupling invariants
and the healthiness condition R2 of the original reactive design.

In a CSP process R(P � Q), we expect wait ′ not to be constrained, or even
free, in P . In this case, the precondition of csp2t ◦ R(P � Q) is simply ψ(P).
We do not have, however, a healthiness condition that ensures that wait ′ is not
free in P . So, the actual precondition of csp2t ◦ R(P � Q) requires that wait ′

T

must hold if P requires wait ′ to be true.
The postcondition considers two cases. The second case is simpler: wait ′ is

admitted to be true in Q , and so the postcondition is Q with the appropriate
substitutions of ψ. The first case is when wait ′ is admitted to be false: if no
events are observed, that is, Flat(trT ) = Flat(tr ′

T ), then no time can pass, and
termination also occurs in the timed model, with wait ′

T being false.
Having established the general results of mapping (untimed) CSP processes

into the super-theory, and into Circus Time, in the remainder of this section we
discuss the mapping of Skip, Stop and external choice.
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Skip. The result of mapping Skip into the timed theory is established by the
following Theorem 6.

Theorem 6. csp2t(Skip) = RT(true � #tr ′
T = #trT ∧ φ ∧ ¬wait ′

T )

The precondition is also true, while the postcondition requires termination in
the timed model ¬wait ′

T , that no events are observed, and that no time must
pass. This is the original definition of Skip in Circus Time [4].

Stop. The result of mapping Stop through csp2t is established by Theorem 7.

Theorem 7. csp2t(Stop) = RT(true � Flat(tr ′
T ) = Flat(trT ))

Like in CSP the precondition is true, while the postcondition is rather different: it
only states that no events are observed, but termination is not guaranteed. This
is unlike the definition of timed StopT [4] reproduced below.

Definition 30. StopT =̂ RT(true � Flat(tr ′
T ) = Flat(trT ) ∧ wait ′

T )

The application of t2csp to StopT , however, yields the Stop of CSP as required,
since wait ′

T ⇒ wait ′ is enforced by CI3.

External Choice. Following from the result of Theorem 4, the next Theorem 8
establishes the induced definition of external choice in the super-theory.

Theorem 8. Provided ok ′ and wait are not free in P and Q,

TR ◦ CI ◦ R((P � R) �CSP (Q � S )) =

S

⎛
⎝ (P ∧ Q) �

⎛
⎝ ((R ∧ S ) � tr ′ = tr ∧ wait ′ � (R ∨ S ))

∧
((¬wait ′ ∧ tr ′ = tr) ⇒ #tr ′

T = #trT )

⎞
⎠

⎞
⎠

The precondition is the conjunction of both preconditions just like in CSP,
whereas the postcondition requires, in addition to that of CSP, immediate ter-
mination in the untimed model to become instantaneous. For example, in the
case of the untimed process Skip � a → Skip, there is no agreement on waiting,
so either Skip terminates instantaneously, or the prefixing on the event a termi-
nates at any time, without any waiting period observed. So, we have unexpected
behaviour in a timed setting: although Skip terminates immediately, it does not
resolve the choice, and although a → Skip can take time, we cannot observe its
stable waiting states. We note that, in (untimed) CSP, termination also does not
resolve a choice, and the above is the definition in the super-theory. We consider
next the result of mapping external choice through the super-theory into the
timed model is established by the following Theorem 9.
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Theorem 9. Provided trC and tr ′
C , and ok ′ and wait, are not free in P and Q,

csp2t(R(P � S ) �CSP R(Q � R)) =

RT

⎛
⎜⎜⎜⎜⎝

(ψ(P ∧ Q)[f /wait ′] ∨ wait ′
T ) ∧ ψ(P ∧ Q)[t/wait ′]

�⎛
⎝ψ(R ∧ S )[t/wait ′] � φ � ψ(R ∨ S )[t/wait ′])

∨
((φ ⇒ #tr ′

T = #trT ) ∧ ψ(R ∨ S )[f /wait ′] ∧ ¬wait ′
T )

⎞
⎠

⎞
⎟⎟⎟⎟⎠

This result closely follows that of Theorems 5 and 8. The precondition retains
the conjunction of the original reactive design with appropriate substitutions.

In the postcondition there is a disjunction between, roughly, the usual con-
ditional that characterises the choice, and an extra disjunct that stems from CI.
It covers the possibility that one of the processes terminates, with wait ′ being
false in R or S , and termination also takes place in the timed theory, with wait ′

T

being false, but it is instantaneous if no event is observed. The conditional con-
siders the cases where R and S agree on waiting in the untimed model and,
either no event is observed (φ) and R and S agree, or either process performs
some visible event (¬φ). In any case, waiting in the untimed model does not
lead to waiting in the timed model because of CI3. For example, the process
Skip � Wait 1 has only one possible behaviour: immediate and instantaneous
termination. We note that Skip = Wait 0, and so Skip � Wait 1 is a process of
the form Wait d � Wait (d + m) mentioned in Sect. 1.

We consider another example: Wait 1 � Wait 2. In this case, the only possible
agreement between the processes is to wait 1 time unit. Termination of either
process with no visible events cannot be instantaneous and so the behaviour after
1 time unit is miraculous. Finally, we consider Wait 1 � (Wait 2 ; a → Skip),
where there is a choice between terminating after 1 time unit, or performing the
event a after 2 time units. In this case, and following Theorem 9, the processes
can only agree on waiting for 1 time unit. After 2 time units, the event a can
still be observed, but between 1 and 2 time units the process is miraculous.

Ultimately the definition of external choice induced from (untimed) CSP does
not satisfy the timed properties of interest, namely, that early termination of one
of the processes leads to termination. The definition considered in [4] does not
correspond to this induced definition either. The approach we propose allows
the study of different timed models, and, consequently, different definitions of
timed external choice, through Galois connections which preserve the properties
of untimed CSP. These variations can be obtained by adjusting the coupling
variants piecewise. Further work is necessary to explore other possibilities.

5 Conclusion

The composition of theories is crucial for the unification of results in the UTP.
Galois connections are an essential tool for the theory engineer as part of study-
ing multiple aspects and relating definitions amongst different models.



A Stepwise Approach to Linking Theories 153

The approach we propose promotes separation of concerns: healthiness con-
ditions are defined separately to the relation between variables of the theories.
The coupling invariants can be adjusted to yield models satisfying different prop-
erties, and provided the healthiness conditions are strengthening or weakening,
or both, then Galois connections can be established. Although, we have used
this technique to study only Circus and Circus Time, we expect it to be of more
general use because it is based on general ideas of data refinement. Confirmation
of this generality, however, is still to be established.

We have applied our approach to find a Galois connection between CSP and
Circus Time that can justify the definition of the healthiness conditions and oper-
ators of Circus Time. This is different to that proposed in [4]. Our construction
relies on a set of principles underlying the timed model and the appropriate defi-
nition of coupling invariants. This approach provides a way to study the induced
definitions of operators, such as Skip, Stop and external choice.

The definition obtained for timed external choice is not entirely satisfactory
in light of desired properties. Different versions of this operator are considered
in [11,12]. In pursuit of a suitable treatment of external choice, it remains for
us to study the relationship between untimed CSP and those models through a
super-theory construction that preserves the semantics of untimed CSP.
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Abstract. The Unifying Theories of Programming (UTP) is a math-
ematical framework to define, examine and link program semantics for
a large variety of computational paradigms. Several mechanisations of
the UTP in HOL theorem provers have been developed. All of them,
however, succumb to a trade off in how they encode the value model of
UTP theories. A deep and unified value model via a universal (data)type
incurs restrictions on permissible value types and adds complexity; a
value model directly instantiating HOL types for UTP values retains
simplicity, but sacrifices expressiveness, since we lose the ability to com-
positionally reason about alphabets and theories. We here propose an
alternative solution that axiomatises the value model and retains the
advantages of both approaches. We carefully craft a definitional mecha-
nism in the Isabelle/HOL prover that guarantees soundness.

1 Introduction

Much work has already been done in developing semantic models of partic-
ular programming languages and modelling notations. The Unifying Theories
of Programming (UTP) [10] put forward an agenda of relating and combin-
ing such models in order to facilitate the development of sound foundations for
highly-integrated languages that incorporate multiple paradigms, such as con-
currency [16], object orientation [20], and time [21], to name a few only.

The importance of the UTP is to justify verification techniques that involve a
heterogeneous set of notations, methods and tools. This is becoming an integral
part of certification standards such as DO-178C in avionics [19], and motivated
work in mechanising the UTP in theorem provers. Machine-checked proofs about
the formalism(s) in use may thus become part of the certification evidence, in
addition to verification proofs of actual systems and software components.

Several mechanisations of the UTP are currently available [3,6,7,17,25]. The
majority of them uses HOL-based provers, namely ProofPower-Z [17,25] and
Isabelle/HOL [6,7]. Only [3] develops a proof system and tool from scratch. The
use of Isabelle/HOL in the aforementioned works is motivated by the high level
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of adaptability and automation afforded by this prover. This is, for instance, due
to its ability to interface with external tools such as powerful SMT solvers [1].

Although Isabelle/HOL appears to be an attractive choice for a proof tool,
its type system forces us into a compromise when encoding the binding and
predicate model of UTP theories. UTP theories are, in essence, characterised by
subsets of predicates over some alphabet of variables. Predicates are typically
encoded by sets of bindings, namely those that render the predicate true. Bind-
ings associate alphabet variables with values. A fundamental part of any UTP
reasoning framework is hence the representation of bindings and values.

Where the existing works on UTP mechanisation most notably differ is in how
they encode the binding and value model of UTP theories. We here distinguish
a deep and a shallow approach. In a deep approach as adopted by [14,17,25], a
monomorphic value type with a fixed representation is introduced, typically as a
datatype. This leads to a monomorphic binding model, and thereby, a monomor-
phic predicate model. It permits a high level of expressiveness by allowing us to
define operators that inspect and modify the alphabets of predicates. A downside
is that the value model must be a priori fixed and therefore cannot be extended.
Moreover, certain constructions, such as arbitrary sets and functions, are difficult
to support as they are not permissible in recursive datatype definitions.

In a shallow approach, as adopted by [5,6], the binding type is kept abstract
by using a HOL type variable in place of it. This leads to a polymorphic (type-
parametric) binding and predicate model. Therein, variables can only have an
abstract representation, and we cannot prove properties about them until the
binding model is (at least partially) instantiated — typically, using extensible
record types to retain a degree of modularity. Doing so, however, forfeits the
ability to compositionally reason about predicate alphabets. A crucial advantage
of the shallow model is that UTP values can be drawn from any HOL type, and
reasoning is much simplified since we are able to directly employ HOL theorems
and tactics; the shallow model is moreover naturally extensible.

We here present an alternative and novel approach that uses an axiomatic
value model. It combines the advantages of the deep and shallow approach, with
no added complexity for the user. Our contribution here is not only relevant to
mechanised proof support for the UTP, but indeed any kind of semantic language
embedding in HOL. The choice of Isabelle/HOL is a pragmatic one: we benefit
from an adaptable and open architecture, as well as powerful external proof tools
that we can readily interface with. While dependently-typed logics and provers
may tackle the issue we address in other ways, we nonetheless believe there is
important scientific benefit in solving it in the context of HOL, too.

Our terminology of a deep and shallow approach ought not be confused with
the terminology of a deep or shallow embedding. Whereas an embedding is
classified as deep if it encodes the syntax of the embedded language, this paper
is only concerned with the nature of semantic models. We remark that at the
core, the UTP can in fact be viewed as a shallow embedding of program logic.

The structure of the paper is as follows. In Sect. 2, we review the UTP and
Isabelle/HOL. Section 3 surveys the existing UTP mechanisations, comparing
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their encoding approaches for values and bindings in detail. Section 4 introduces
our axiomatic value model in mathematical terms, and Sect. 5 describes its sound
implementation in Isabelle/HOL. Lastly, in Sect. 6 we give an example of its use,
and conclude and discuss future work in Sect. 7.

2 Preliminaries

In this section, we discuss preliminary material: the UTP in Sect. 2.1, and
Isabelle/HOL in Sect. 2.2.

2.1 Unifying Theories of Programming

The Unifying Theories of Programming (UTP) [10] is a mathematical framework
for describing and unifying the formal semantics of programming and modelling
languages within the same descriptive environment of the alphabetised relational
calculus. A UTP theory consists of an alphabet of variable names, a signature
of language constructs, and a set of constraints (called healthiness conditions).
Relations are encoded by alphabetised predicates: that is, predicates that contain
additional information about the relation’s alphabet.

Alphabets identify observational variables whose values are relevant to char-
acterise system behaviour within a given paradigm. We use undecorated vari-
ables for initial, and dashed variables for intermediate or final observations. The
alphabet of each theory contains variables relevant to the description of its pro-
grams, as well as auxiliary variables used to record aspects of the paradigm. For
instance, the UTP theory of designs uses a boolean variable ok to record the
program has started, and ok ′ to record that the program has terminated. The
seminal book [10] on UTP is not precise on typing, but it is generally acknowl-
edged that we operate in a typed language and logic setting, with common
mathematical structures being available, such as sets, functions and sequences.

Through appropriate choice of variables and mathematical structures, it is
possible to express the desired features of a programming notation in an elegant
and concise way. The underlying UTP theory must select the appropriate and
relevant subset of variables to represent intended behaviours. The signature of
a theory is the language syntax, and the meaning of every program is given as
a predicate restricted to the selected alphabet and signature.

Healthiness conditions formalise constraints on the semantic model: we only
consider predicates that satisfy the healthiness conditions of a theory as valid
models of computations within that theory. Importantly, healthiness conditions
sometimes depend in their definition on the alphabet of the theory in which they
reside. For instance, the theory of methods in [24] adds one constraint for each
method variable m that is present in the theory’s alphabet. This illustrates the
nominal character of the UTP logic: variables are treated as first-class objects,
with the αP operator yielding the alphabet of a predicate P as a set.

One can think of the UTP as a ‘theory supermarket’: whatever theoretical
mechanisms are needed for a particular application, pick the appropriate UTP



158 F. Zeyda et al.

theories and link them to provide the laws and compositional refinement notion
to verify specifications all the way down to code. The use of Galois connec-
tions is pervasive within UTP theories as a means to enable the description
of formal links between a variety of paradigms, justifying the use of the same
(formal) universe of discourse. In this utopian view of programming, the under-
lying mathematics are often challenging and profit from a mechanised reasoning
framework, where the customer of the theory supermarket can be assured that
the ingredients she picks soundly combine when preparing her theory.

Having said that, when it comes to making use of such theories in an indus-
trial setting, or on examples beyond the blackboard, a suitable arrangement of
technical details is required in order to use proof assistants. That is, before we
can focus on any proof obligations born from modelling, we first need to shape
and polish models to fit the needs of a mechanical theorem prover. The most
fundamental problem tackled in this paper is therefore the description of an
extensible and (expressively) rich value model. We claim this is as much part of
UTP theory engineering as defining operators and healthiness conditions.

Our key objective here is to free the language designer from any restrictions
that may be imposed by the embedding of the UTP logic in a HOL theorem
prover; that is, without having to compromise on expressivity elsewhere.

2.2 Isabelle/HOL

Isabelle/HOL [13] is a popular theorem prover for Higher-Order Logic (HOL).
It follows the design of LCF [9] in protecting the user from unsound deduc-
tions: theorems can only be generated through valid inferences that, ultimately,
rely on the consistency of a small logic kernel of axiomatic rules only.

The Isabelle framework itself is agnostic to the logic being used. There exist,
for instance, instantiations of it for First-Order Logic and Zermelo-Fraenkel set
theory. Isabelle provides natural-deduction-style proof rules and an underlying
proof engine to conveniently perform backward and forward inferences. In addi-
tion, several powerful external provers can be easily invoked from within Isabelle.
A structured proof language called ISAR is also part of the system.

Types in Isabelle/HOL can be defined in various ways. The most basic type
declaration is via a typedecl (’t1, ’t2, . . . )Tnew , which introduces a new given
type Tnew without any constructor functions. The ’t1, ’t2, and so on, are possible
parameters of the type. All we know about such types is that they are non-empty.

Type definitions are supported by way of:

typedef (’t1, ’t2, . . . )Tnew = S :: (’t1, ’t2, . . . )Texists set

where S is some (non-empty) subset of values of some existing type Texists to
which the newly-defined type is deemed to be isomorphic. We thus obtain a pair
of abstraction and representation functions which are internally axiomatised to
provide a bijection from S into the carrier set of Tnew .

More sophisticated type definitions can be achieved with the datatype com-
mand for (co)inductive datatypes and record command to introduce extensible
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record types, although underneath the HOL system reformulates both in terms
of plain typedefs. This definitional style of implementing high-level features
guarantees that soundness is necessarily preserved.

Isabelle additionally supports type classes. They can be viewed as contractual
specifications on types. A type may instantiate a particular type class C , and
such can be formulated as a requirement ’a :: C on some type ’a. We note that
the symbol ‘::’ in HOL is used for both, typing and type-class membership.

3 UTP Embedding Approaches

In this section, we survey the existing mechanisations of the UTP and their
approaches to encoding values, bindings and predicates. A complete list of cur-
rent works is presented in Table 1. We note that there are three mechanisations
that target ProofPower-Z, but they are very similar in how they encode the pred-
icate and value model. All works except for U ·(TP)2 are definitional, meaning
that they extend HOL conservatively; this guarantees consistency of the embed-
dings. As U ·(TP)2 uses its own logic, consistency must be argued by other
means.

Table 1. Existing works that mechanise the UTP framework.

Name Developers Proof System

UTP in ProofPower-Z Nuka [14], Oliviera [17], and Zeyda [25] ProofPower-Z

Isabelle/Circus Feliachi et al. [5,6] Isabelle/HOL

Isabelle/UTP Foster and Zeyda [7] Isabelle/HOL

U ·(TP)2 (Saoith́ın) Butterfield [2,3] Custom

All HOL-based embeddings create some type P for alphabetised predicates,
either as a type synonym — in some cases with associated constraints, or HOL
type definition. The model of P is typically the set of bindings P(B) over some
binding type B. In all works except Isabelle/Circus, P also includes explicit infor-
mation about the predicate’s alphabet. We note that Isabelle/Circus represents
predicates as characteristic functions B ⇒ bool , but this does not limit generality
of our discussion, as being equivalent to a set-based encoding.

3.1 A Shallow Predicate Model

A shallow predicate model is adopted by Isabelle/Circus [5,6]. The binding notion
is kept abstract, using a HOL type variable such as ’s for it. UTP variables are
likewise modelled abstractly, by way of pairs consisting of a getter and update
function. The types of these functions are recaptured below.

get :: ’s ⇒ ’a and update :: ’s ⇒ ’a ⇒ ’s
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Above, ’a determines the HOL type of the variable. The get function extracts
the value of the variable from a binding, and the update function modifies the
binding to assign a new value to the variable. Variables hence do not have a
symbolic identity that is, for instance, formalised by an encoding of names.

A key advantage of this approach is that UTP variables can range over arbi-
trary HOL types ’a; a downside is that we cannot prove anything about them
unless the binding type ’s is concretised, so that the get and update functions
may be concretely defined. In Isabelle/Circus, instantiation of the binding type
accompanies UTP theory development. It is done partially and incrementally,
by way of extensible records. For instance, to encode the UTP theory of designs,
we have to create a record type � ok :: bool , ’more � to encode the variable ok .
The type ’more here corresponds to the open extension of the record type and
allows us to subsequently add further variables to that theory.

The use of extensible records retains a certain degree of modularity in defin-
ing generic connectives that apply to predicates with different alphabets. These
connectives are typically encoded by operations on the binding sets. Unifica-
tion of the binding types is therefore needed to apply these operators. As an
example, we may unify the following binding types � ok :: bool , ’more � and
� ok :: bool , x :: nat � by instantiating ’more with � x :: nat �. The first corre-
sponds to the (extensible) design alphabet {ok :: bool , . . . }, and the second to
the closed design alphabet {ok :: bool , x :: nat} including a program variable x .

A ramification of this approach is that each time we introduce a variable,
we effectively have to create a host-logic record type for it. It is therefore non-
compositional in the treatment of alphabets. Variables, despite their abstract
representation, are not first-class citizens in this treatment: we cannot create
them on-the-fly or collect them in sets.

In a shallow model, the value universe U may potentially include any
Isabelle/HOL type. The binding type B is equated with open and closed record
types; this makes the predicate type P parametric in the extension type of (open)
records. New record types are created through Isabelle’s declarative mechanism,
ensuring soundness. In this approach, complexity arises as record types have to
be created as UTP theory development unfolds; complexity is, however, allevi-
ated by a thin layer between object and host-logic value models.

3.2 A Deep Predicate Model

The ProofPower-Z works [14,17,25] use a deep predicate model by creating a
fixed value universe U as an inductive datatype that supports the construction
of various basic and composite values. Below, F(S ) yields the finite subsets of S .

VALUE ::= Nat(N) | Bool(B) | Pair(VALUE × VALUE) | Set(F(VALUE)) | . . .

This approach leads to a monomorphic predicate type P, because bindings B
can be equated with the function space VAR ⇒ VALUE , where both the domain
and range types are monomorphic. UTP variables (type VAR) are encoded sym-
bolically as strings, with some added information for dashes and subscripts.
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The work [25] adds to this a (monomorphic) model of types to formalise well-
typed constructions. In that model, variables are encoded by name and type
pairs.

In a deep predicate model, we are able to introspect and reason about the
alphabets of predicates since variables are treated as first-class objects. This
provides more expressivity to mechanise UTP theories, since functions can be
formalised that manipulate predicates and their alphabets in any conceivable
manner. We discuss an example where this is needed in Sect. 6.

A downside of the deep approach is that the value model is not extensible,
since the VALUE type (universe) must be defined upfront. The use of datatypes
imposes further restrictions. For instance, we cannot support general set-valued
constructions as to avoid well-known inconsistencies [22], which is why the argu-
ment of Set( ) above must be a finite set. Recent advances in using categorical
foundations for datatypes in Isabelle/HOL [23] have relaxed that restriction to
furthermore permit infinite sets with bounded cardinalities, but this is still more
restrictive than HOL sets in general.

The use of a deep model is often inevitable if we perform a deep embedding,
since it enables us to formalise the mapping from syntax to semantics within
the host logic. While a deep model offers more expressiveness at the level of
predicates and UTP theories, it incurs restrictions with regards to what kind
of values can be supported. Moreover, operators and theorems about (HOL)
value types need to be ‘lifted’ into the unified VALUE type, resulting in a larger
number of definitions and underlying proof infrastructure to burden the user.

3.3 A Hybrid Predicate Model

Isabelle/UTP [7] adopts a hybrid approach to alleviate some of the downsides
of a deep predicate model while retaining its expressivity. Rather than using a
polymorphic type ’s for bindings, it introduces an abstract type ’a for the values
themselves. This type, unlike in Isabelle/Circus, does not need to be instantiated
as the UTP theory hierarchy unfolds. Instead, we create type classes to inject
particular desired HOL types into it. The type classes introduce the abstraction
and representation function for the respective value. An example follows.

class INT_SORT =

fixes MkInt :: "int ⇒ ’a::TYPED_VALUE"

fixes DestInt :: "’a::TYPED_VALUE ⇒ int"

assumes MkInt_inv : "DestInt(MkInt x) = x"

assumes DestInt_inv : "y :u IntType =⇒ MkInt(DestInt y) = y"

The constant IntType and the operator :u are provided by the TYPED VALUE

type class, whose definition we omit for brevity. We can indeed think of the
classes as type definitions that ‘reuse’ the target type to be defined. To prove
consistency, we have to show that an aggregation of type classes (one for each
value notion used by a UTP theory) can be instantiated. Logically, this corre-
sponds to showing that the abstract value type has a model that satisfies the
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assumptions of all aggregated type classes. Yet in practice, such a proof has to
be carried out for every UTP theory, based on what value notions are used by
the theory.

With the above, we can formalise constraints on the value model of particular
UTP theories through class constraints on ’a. For instance, the theory of designs
requires the presence of a value type to encode booleans for its auxiliary variables
ok and ok ′, and this can be captured by a class constraint ’a :: BOOL SORT on all
definitional entities that play a part in the encoding of that UTP theory.

In this approach, the universe U need not be fixed upfront. We can inject new
types into it as we go along. To prove consistency, which now becomes a ‘proof
obligation’ to be discharged by the user, we are, however, still restricted to value
notions that have a model within HOL. We note that the hybrid approach can
be ‘abused’ as an axiomatic treatment, for instance, to support general sets and
functions as UTP values but in doing so, we introduce the possibility of localised
inconsistencies into the value model. This is not safe since the consistency issue
then rests with the user rather than the mechanised framework.

In conclusion, it seems we cannot have our cake and eat it: none of the existing
mechanised UTP systems gives us an unconstrained and provably-sound value
model and an expressive (compositional) predicate model. In the remainder, we
propose a new axiomatic approach that satisfies both desiderata.

4 An Axiomatic Value Model

We next describe our value model in general mathematical terms. Section 4.1
examines the HOL universe, and Sect. 4.2 our axiomatic UTP universe.

4.1 The HOL Universe

The standard set-theoretic semantics of HOL prescribes the von Neumann uni-
verse Vω+ω \ {∅} (without the empty set) as a minimal model for its possible
type constructions [18]. The von Neumann universe Vi is inductively defined for
some index i by repeated application of the power-set for ordinal indices β, and
generalised union for limit ordinals λ.

V0 =̂ ∅ Vβ+1 =̂ P(Vβ) Vλ =̂
⋃

β<λ
Vβ

Each limit ordinal index corresponds to the union of all sets constructed up to
that level. In HOL, every finite type is representable by some Vn (for n ∈ N>0),
and every infinite type by some Vω+n . For example, nat and int correspond
to Vω, and real and nat set correspond to Vω+1. In Isabelle/HOL specifically,
types can be constructed either by composition of existing parametric types, or
by definition of new types through identification of a suitable non-empty subset
of some existing type [11,12]. The built-in types of Isabelle/HOL are:

– the boolean type bool containing the elements True and False;
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– the infinite type ind whose cardinality is that of the naturals;
– the parametric function type σ ⇒ τ for HOL types σ and τ .

From these three types, all standard HOL types can be produced, including the
power type σ set ( =̂ σ ⇒ bool), the product type σ × τ , and the sum type
σ + τ . The constructions are performed via the typedef command, though the
σ set type is technically axiomatised in Isabelle/HOL. This, however, is merely
for convenience — its definition as a function type is equally feasible. It shows
though, in defence of our solution, that Isabelle/HOL itself does not shy away
from axiomatisations where we can provide strong evidence for consistency.

We conclude that all types in Isabelle/HOL of higher cardinality than |N|
must be constructed by a (finite) repeated application of the power-type con-
structor σ set, with their cardinality being bounded by Vω+n for some n ∈ N.
Thus it is impossible to define a type as large as Vω+ω within HOL itself, when
using only the standard mechanisms for type definition.

The above implies that it is not possible to define a universal type U in HOL
into which all HOL types are injectable. The existence of such a type in HOL
would moreover lead to inconsistency, since there would then have to exist an
injection U set into U itself, which Cantor’s theorem forbids. In introducing U
axiomatically, namely for UTP value and type models, it is, in essence, the latter
that we have to protect ourselves from.

There have been several attempts to formalise a larger universe in HOL
than the standard definitional mechanisms allow. HOL-ST [8] is an experimental
combination of HOL and set theory that axiomatises a universe consisting of
ZFC set constructions. HOL-ST was later adapted to create Isabelle/HOLZF [15]
which axiomatises the ZFC universe as a type ZF alongside other HOL types; the
motivation of that work was to formalise the notion of Partisan Games [15] as
they cannot be captured through permissible datatype constructions in HOL.

Our approach here has the same aim as HOL-ST in using an axiomatization
to provide a type that is ‘larger’ than any type definable in HOL, but unlike
HOL-ST we want to make it possible to directly inject existing HOL types in
our new (axiomatic) type. For this, it is sufficient to declare a type UVal and
postulate three axioms that provide injectivity and type reflection from HOL
into UVal. The next section discusses the axiomatisation in general terms.

4.2 The UTP Universe

In this section, we give a semi-formal exposition of our axiomatic UTP universe,
which will be formally mechanised in Sect. 5. We presuppose the existence of a
class Type of HOL types, and also a universe HOL of HOL values. We recall that
the latter cannot be defined in HOL as a set, and we therefore refer to it here as
a (proper) class. For simplicity, we do not directly consider polymorphism and
treat each type σ ∈ Type as a fully-instantiated monomorphic type. Hence, no
two types can possess a common element. Our objectives are:

– The creation of a universe type UVal into which the values of a suitable subset
of permissible HOL types can be soundly injected;
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Fig. 1. Relation between the HOL and UVal universes.

– reflection of the HOL typing relation v :: t into UVal, also allowing us to
explicitly reason about typing within UVal.

Our universe will be implemented through monomorphic types. This enables
us to form definitions and theorems that effectively quantify over HOL types.
Each objective is characterised by an additional axiom that we will describe.
These axioms are conceptual, and do not correspond precisely to the Isabelle
axioms which cannot, for instance, have typing statements like x :: σ as caveats
or talk explicitly about the HOL universe of values. The axioms will therefore
require some refinement before their implementation into Isabelle/HOL, which
we describe in Sect. 5. We will also prove some necessary theorems implied by
these axioms, which our implementation satisfies.

Our UTP universe is characterised by a declared Isabelle type UVal, together
with a polymorphic injection function InjU : HOL ⇒ UVal, a projection function
ProjU : UVal ⇒ HOL, and a type mapping UTYPE : Type ⇒ UType. The appli-
cation UTYPE (σ) encodes a HOL type σ as a suitable value of a monomorphic
type UType that represents HOL types. We also have a reflected typing relation
x :u t , for x ∈ UVal and t ∈ UType. We visualise the behaviour of these func-
tions in Fig. 1. Every HOL type σ ∈ Type can be injected into a corresponding
subset of UVal, by application of InjU . Moreover, all values within UVal can be
projected back to their corresponding HOL type.

We now formally specify the behaviour of these functions through three
axioms that augment the axioms of HOL:

1. AxValBij. For any σ ∈ Type, InjU is a bijection between the values of σ
and those of UTYPE (σ), with ProjU being its inverse.

2. AxTypeRefl. The reflected typing relation is sound and complete with
respect to HOL typing, such that InjU (x ) :u UTYPE (σ) if and only if x :: σ.

3. AxTypeNonempty. For any t ∈ UType, there exists a value v ∈ UVal such
that v :u t .

Axiom AxValBij indirectly ensures that the cardinality of any HOL type is less
or equal than that of UVal, as stated by the following theorem.
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Theorem 1. For any σ ∈ Type, the cardinality of σ is no greater than that of
UVal, that is |σ| ≤ |UVal|.
Proof. InjU , by AxValBij, is an injection from σ to UVal. This is sufficient to
demonstrate the required cardinality relationship. ��
Furthermore, we can show that UVal has a strictly greater cardinality than any
HOL type.

Theorem 2. The cardinality of any HOL type σ ∈ Type is strictly less than the
cardinality of UVal, that is |σ| < |UVal|.
Proof. We prove this by contradiction. Assume that |σ| ≥ |UVal|, then either
|σ| > |UVal| or |σ| = |UVal|.
– If |σ| > |UVal|, we obtain a contradiction by Theorem 1.
– If |σ| = |UVal|, from σ ∈ Type we also have that σ set ∈ Type. By Cantor’s

theorem we have that |σ set| > |σ|, and hence |σ set| > |UVal|. Again, by
Theorem 1 this leads to a contradiction. ��

A corollary of Theorem 2 is that neither UVal nor any type with a cardinality
equal to or greater than UVal can be a HOL type.

Corollary 1. ∀ t • |UVal| ≤ |t | ⇒ t 	∈ Type

Proof. By Theorem 2 we have |t | < |UVal|, and by transitivity of < thus follows
the contradiction |UVal| < |UVal|. ��
It is therefore essential to ensure that UVal cannot be made an element of Type for
our logic to remain consistent. We can also demonstrate a number of necessary
consequences of the type reflection axiom AxTypeRefl. Firstly, we require that
each reflected type identify a unique HOL type.

Theorem 3. The type mapping function UTYPE is injective for σ, τ ∈ Type.
That is, UTYPE (σ) = UTYPE (τ) implies that σ = τ for all σ, τ ∈ Type.

Proof. Assume UTYPE (σ) = UTYPE (τ) for σ, τ ∈ Type. By non-emptiness of
σ, there exists some value x with x ::σ. Thus InjU (x ) :u UTYPE (σ) by axiom
AxTypeRefl, and InjU (x ) :u UTYPE (τ) since UTYPE (σ) = UTYPE (τ).
Converse application of AxTypeRefl finally yields x :: τ . Because of disjoint-
ness of types in HOL, it follows that σ = τ . ��

Note that we cannot show from the axioms that all reflected types possess
a witness. Namely, that for any t ∈ UType, there exists a value x ∈ UVal such
that x :u t . To show this, a sufficient condition is that every element in UType is
the image of some permissible HOL type σ ∈ Type. In practice, this turns out to
be too strong since, clearly, not all HOL types are permissible. The third axiom
AxTypeNonempty thus guarantees non-emptiness of all reflected types.

For those types that are not in the image of UTYPE , non-emptiness is all
that we know about their values. For other types, which are in the image of
UTYPE , the axiom does not add any new knowledge, since for those types we
can already prove from the axioms AxValBij and AxTypeRefl that they are
non-empty. Hence this additional axiom does not pose a risk to consistency.
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5 Implementation in Isabelle/HOL

In this section, we describe our implementation in Isabelle/HOL of the axiomatic
value model that was proposed in the previous section.

5.1 UTP Values and Types

UTP Types. Our goal is to associate UTP model types directly with (a subset
of) the HOL types. HOL, in general, is not expressive enough to treat HOL types
as values. However, the type-class mechanism is used in Isabelle/HOL to define
an operator TYPEREP(’a) that converts a HOL type ’a into a representation of
that type as a HOL value. The representation is in terms of a datatype typerep,
which is part of the standard HOL library and recaptured below.

datatype typerep = Typerep String.literal "typerep list"

It has a single constructor Typerep that takes both a string literal for the
type’s name, and a list of typerep objects corresponding to the arguments of a
parametric type. The datatype encodes the structure of any monomorphic HOL
type as a value, and is generally used as a limited facility to support reasoning
about types in HOL. We effectively reuse it here to encode UTP model types,
and for uniformity introduce a syntax abbreviation utype for it.

In order to apply the TYPEREP(’a) operator to some type ’a, the type ’a must
instantiate the type class typerep that defines how ’a is to be represented. That
type class is typically instantiated automatically by Isabelle when new types are
created with typedef . We may hence reasonably assume that all HOL types we
like to use in UTP theories instantiate typerep.

We proceed by introducing a polymorphic typing operator. We note that an
implicit default sort constraint was placed on ’a to be of class typerep.

definition p_type_rel :: "’a ⇒ utype ⇒ bool" (infix ":" 50) where
"x : t ←→ TYPEREP(’a) = t"

Above, x : t holds if the (HOL) value x is of UTP model type t. For instance,
we can prove (1 :: nat) : TYPEREP(nat) but not 1 : TYPEREP(nat) since numbers
in HOL are polymorphic objects. This means that the type of 1 corresponds to
some type variable ’a of sort typerep. For such types, TYPEREP(’a) cannot be
simplified but we can still perform reasoning using unification. For this reason,
our model in fact supports polymorphic types.

To facilitate proofs about typing, we provide a theorem attribute typing that
collects all relevant theorems about typing, including the definitional theorem
of p type rel. Simplification with added typing theorems typically discharges
any kind of type conjecture, or otherwise reduces it to false. We implemented a
hook into Isabelle/HOL’s type definition packages that automatically collects the
required theorems. This kind of proof engineering plays a crucial part in theory
usability and proof automation, and is often overlooked in mechanisations.

We next examine the UTP value model. This is the core contribution of the
novel mechanisation of the UTP in Isabelle/HOL that we developed.
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UTP Values. In agreement with both Sect. 4.2 and the earlier ProofPower-Z
works, we introduce a monomorphic type uval for our UTP value model. We
thus are able to retain all of the expressiveness of a deep binding and predicate
model as in the works [7,17,25]. However, rather than giving uval a concrete
definition, for instance, by virtue of a datatype, we leave it uninterpreted.

typedecl uval

In languages like Z, the above corresponds to the definition of a given type.
As explained in Sect. 2.2, such types are not equipped with an abstraction or
representation function. All we know about them is that they are non-empty.

Construction, destruction and typing of values in uval are axiomatised by
three polymorphic functions: InjU, ProjU and utype rel. For the third, we intro-
duce the infix notation v :u t. The following axiomatization introduces these
constants as well as their defining axioms. This formalises our earlier axioms in
Sect. 4.2 and is all that is needed to reason about UTP model values.

axiomatization
— Universal abstraction, representation and model typing relation.

InjU :: "’a::injectable ⇒ uval" and
ProjU :: "uval ⇒ ’a::injectable" and
utype_rel :: "uval ⇒ utype ⇒ bool" (infix ":u" 50) where

— Axioms that determine the semantics of the above functions.
InjU_inverse: "ProjU (InjU x) = x" and
ProjU_inverse: "y :u TYPEREP(’a) =⇒ InjU (ProjU y) = y" and
utype_rel_def: "(InjU x) :u t ←→ x : t" and
utypes_non_empty: "∃ y. y :u t"

The axioms have similarities with the standard axioms for type definitions [13].
First, we have a pair of injection theorems: InjU inverse and ProjU inverse.
The first one is for the abstraction function (InjU), and the second one for the
representation function (ProjU). An important difference to HOL type definitions
is, however, that we do not merely inject the values of a single existing HOL type
into the new type, but a universe of the values belonging to a collection of HOL
types (HOL in Fig. 1). That universe is identified by the type class injectable,
whose purpose is explained later on in Sect. 5.2. It usually includes values of
infinitely many HOL types because of type parametricity.

Since we here inject the entire carrier (UNIV) of a HOL type ’a, contrary
to typedefs there is no caveat present in the InjU inverse injection theorem.
Both injection theorems together implement the axiom AxValBij in Sect. 4.2.
The sort constraint ’a::injectable in the definition of the constants InjU and
ProjU ensures that we cannot write any term InjU x where the argument x is not
an injectable HOL type — Isabelle/HOL otherwise flags a type error. Likewise,
the result of ProjU must always be chosen as to have an injectable type. The
caveat of ProjU inverse moreover ensures that the value we are projecting out
of the UTP model and back into HOL has the correct type for the projection
to be valid. Model typing x :u t is formalised by lifting polymorphic typing into
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uval. Our third axiom utype rel def hence corresponds to AxTypeRefl and
ensures completeness and soundness of the reflective typing relation.

The fourth axiom utypes non empty encodes AxTypeNonempty, capturing
that all UTP model types are non-empty. If all utype elements corresponded to
injectable HOL types, this would follow automatically. However, since there are
some HOL types that are inherently not injectable, the axiom requires that even
those types have at least one value, though we do not know anything else about
such types. The need for the axiom is technical: we want to ensure that there is
a well-typed ‘total’ binding whose variables must range over any HOL type.

The axiomatisation gives us the ability to control what HOL types we like
to inject into the UTP value model. This is crucial as the injection of certain
types can lead to inconsistencies. We next discuss this issue and explain how we
ensure that unsoundness cannot emerge from inappropriate use of our axioms.

5.2 Controlling Injectability

The quintessential example that leads to inconsistency is injecting uval itself into
the value model. Depending on the injection of other HOL types, in particular
’a set, we are then able to derive a contradiction. Since InjU of (injectable!)
type (uval set) ⇒ uval cannot be injective due to Cantor’s theorem, the axiom
InjU inverse above clearly is violated in that case.

We could naively have implemented a mechanism that prevents the user
from instantiating uval as injectable but this is not enough: a clever user might
circumvent that mechanism by defining a new HOL type (via a typedef) that
is equipotent to uval or even larger, and then the same problem arises if that
new type is made permissible for injection into uval.

To solve this problem in a universal and robust manner, we first mechanise
a notion of type dependency. We recall a type definition generally has the form:

typedef (’a, ’b, . . . ) new type = S :: (’a, ’b, . . . )T set

where the type term (’a, ’b, . . . )T only involves currently existing HOL types
and S is a non-empty subset of the values of (’a, ’b, . . . )T . We observe that
(’a, ’b, . . . ) new type depends on the types occurring in T and the type variables
’a, ’b, and so on. We formalise this dependency via a new type class typedep.

class typedep = typerep +

fixes typedep :: "’a itself ⇒ typerep set"

This class extends Isabelle/HOL’s existing class typerep. Any HOL type that
instantiates it must additionally provide a function typedep that, given an ele-
ment of ’a itself, yields a set of type representations of HOL types that ’a

depends upon. The type constructor ’a itself is primitive and conventionally
used when a function is polymorphically parametrised by a HOL type. Poly-
morphism is crucial here since it determines resolution of typedep if applied to a
particular HOL type. To simplify the application of typedep, we introduce a syn-
tactic sugar that allows us to write TYPEDEP(T) for some HOL type T , instead of
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having to construct a corresponding value from ’a itself and then apply typedep

to it. Examples are TYPEDEP(nat), TYPEDEP(nat set) and TYPEDEP(’a set).
A subtle issue is how we ensure that the class typedep is instantiated correctly.

Below we give an example of instantiating typedep for the function type.

instantiation "fun" :: (typedep, typedep) typedep

begin
definition typedep_fun :: "(’a ⇒ ’b) itself ⇒ typerep set" where
"typedep_fun t = TYPEDEP(’a) ∪ TYPEDEP(’b)"

instance by (intro_classes)

end

We first observe that the definition of typedep for the function type ’a ⇒ ’b

involves the recursive application of typedep (via the TYPEDEP( ) syntax) to the
type parameters ’a and ’b, making precise that ’a ⇒ ’b depends on ’a and
’b. We secondly observe that a type representation of the function type does
not itself occur in the right-hand side, namely there is no term such as . . . ∪
{TYPEREP(’a ⇒ ’b)} included. The reason for this is that we are only interested
in dependency to ground types, namely those types that are not defined in terms
of other types and thus form the roots of the dependency hierarchy. This also
ensures efficient evaluation of TYPEDEP( ) as resulting terms may become large.

There are indeed only two genuine ground types in HOL: bool and ind.
Also, any type declaration via a typedecl construct introduces a new ground
type. Therefore, uval, in our formalisation, crucially becomes a ground type,
too. Although HOL’s set type (’a set) and function type (’a ⇒ ’b) are not
introduced by a type definition, we do not consider them as ground types.

For a type definition, such as the one on page 14, we would need to perform
the following instantiation:

instantiation new type :: (typedep, typedep, ...) typedep

begin
definition typedep_new type ::

"(’a, ’b, ...) new type itself ⇒ typerep set" where
"typedep_new type t = TYPEDEP(T)"

instance by (intro_classes)

end

We observe that the dependency of a new type (’a, ’b, . . . ) new type is defined in
terms of the dependency of its model type (’a, ’b, . . . )T . While the instantiation
is uniform and easy to perform, it would constitute a risk to rely on the user to
perform it. Instead, we implemented a hook in Isabelle/HOL that executes such
instantiations automatically and outside the control of the user for each new type
defined via a type definition. Isabelle/HOL provides an interface that allows one
to execute such hooks (see the Typedef.interpretation ML function within
the HOL source code). It, fortunately, even does so retrospectively for existing
types. This again means that the user — just like with typerep — does not have
to be concerned with the instantiation of typedep and precludes any unsoundness
potentially arising from wrongly instantiating that class. For convenience, we
lastly make typedep the default sort for free type variables.
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We are now in a position to define the injectable class in a safe manner.
This class, we endow with two assumptions that have to be discharged upon
instantiation of any HOL type as injectable.

class injectable = typedep + order +

assumes utype_is_not_uval : "TYPEREP(’a) �= TYPEREP(uval)"

assumes utype_not_dep_uval : "TYPEREP(uval) �∈ TYPEDEP(’a)"

The first assumption captures that the type we inject must not be the same as
uval. The second uses the type-dependency mechanism by formalising that uval

must not be in the set of types on which the type we inject depends. If both
proof obligations can be discharged, we have established that injecting T into
the UTP value model uval is safe and sound.

To facilitate the instantiation of HOL types as injectable, we provide an
Isabelle command inject type that discharges the above assumptions automat-
ically. We note that this is for convenience and not for safety reasons — manual
instantiation means that the proof obligations would still need to be discharged.
Their proof is usually not difficult and can be done by rewriting and automatic
reasoning. Again, to facilitate proofs, we introduce an attribute to record theo-
rems that are relevant to reason about type dependency. They are automatically
collected when new types are defined and the class typedep is instantiated.

By default, we inject a useful subset of existing HOL types into the UTP
value model, including unit, bool, nat, int, char, real, fun, set, list, prod, sum
and option. We can, however, inject any custom type definition or datatype in
exactly the same manner, as illustrated in the next section. While our imple-
mentation requires, to a certain degree, low-level ML programming of the proof
system, all of this is done outside the Isabelle/HOL kernel and code — we did not
have to change the prover’s source distribution in any way. We also implemented
useful error reporting to the user when a type cannot be injected as failing the
caveats of the injectable class. Lastly, we note that mutually-recursive datatypes
are implicitly supported since Isabelle/HOL endows such types with a common
model, so that the recursive type dependency disappears when the underlying
(non-recursive) typedefs are constructed under-the-hood by Isabelle/HOL.

We claim that our implementation is LCF-sound: this means that incorrect
use of our tool cannot result in inconsistency of the logic. We deconstruct the
evidence for this through the following reasoning chain.

1. We consider the approach to be ‘mathematically sound’, as a consequence of
restricting injectable types to those that do not depend on uval (Sect. 4);

2. In the mechanisation, we use a type class to restrict injection to permissible
values only, which excludes constructs that attempt to inject invalid types
already at the level of HOL type analysis (Sect. 5.1);

3. The injectability caveat is formalised and enforced by endowing the above
type class with two assumptions (proof obligations) (Sect. 5.2);

4. The proof obligations rely on the correct instantiation of typerep and typedep

classes, but both instantiations reside outside the control of the user.
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Our tool is, thus, not only an Isabelle/UTP extension to enable richer UTP value
models, but also a low-level Isabelle/HOL language extension. A final point to
note is that injectable in our design also imports the type class order, since
we assume that any UTP value model is equipped with an order. This opens
up further possibilities to mechanise High-Order UTP, which adds support for
higher-order programming to UTP. The reason for this is that HO UTP relies
on order relations on values, namely to (re)define common UTP operators such
as skip, assignment and variable blocks in this context (Chapter 9 of [10]).

6 Example: Mechanising a Theory of Object Orientation

As an example, we consider Santos’ UTP theory of object orientation [20].
In what follows, we illustrate how the axiomatic value model enables us to easily
encode that theory, using our tool. The Isabelle 2015 sources and a report are
available from https://www.scm.tees.ac.uk/users/f.zeyda/utp2016/.

The UTP theory of object orientation is an extension of the UTP theory
of designs, and, therefore, includes the auxiliary boolean variables ok and ok ′

to record termination. Besides, it also includes additional auxiliary variables to
capture specific aspects of the object-oriented paradigm. These variables and
their types are explained below.

– cls of type P(CName) to record the names of classes used in the program;
– atts of type CName �→ (AName �→ Type) to record class attributes;
– sc of type CName �→ CName to record the subclass hierarchy;
– an open set {m1,m2, . . . } of procedure variables for method definitions;
– an open set {m1,m2, . . . } of procedure variables for method calls.

Above, CName is the set of all class names, AName is the set of all attribute
names, and Type is defined as CName ∪ prim where the elements in prim rep-
resent primitive types, like the integers or booleans. The functions atts and sc
are partial ( �→) since they only consider classes that are currently declared,
namely those in cls. The function sc maps each class to its immediate super-
class; the subclass relation is obtained via its reflexive and transitive clo-
sure: Csub 
 Csuper =def (Csub ,Csuper ) ∈ sc∗. There also exists a special
class Object ∈ CName that does not have a superclass.

The above description, which was taken from the literature, indeed gives us
a very clear idea of how to design the value encoding for that theory. In doing
so, however, we do not want to be constrained by a mechanised framework. The
axiomatic value model lets us work at the level of HOL, using its definitional
features as needed. Below we introduce the necessary types.

datatype cname = Object | Class "string"

datatype aname = Attr "string"

datatype prim = int | bool

datatype atype = PType "prim" | CType "cname"

Above, cname encodes CName, aname encodes AName, prim encodes prim, and
atype encodes Type. The next step is to inject these types into the universal

https://www.scm.tees.ac.uk/users/f.zeyda/utp2016/
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value type uval. As explained in the previous section, this is easily done with
the following set of commands.

inject type cname

inject type aname

inject type prim

inject type atype

Behind the scene, the implementation of the inject type command discharges
the proof obligations that establish that the injections are sound. Here, this is
the case since uval does not occur in the above datatype definitions.

It is worth noting that in order to support injection of datatypes into uval,
we did not have to interface in any way with Isabelle’s datatype package. This
is because, ultimately, the definitional implementation of datatypes implies that
everything boils down to plain type definitions, and our tool can readily handle
those. For the same reason, record types are also supported out-of-the-box, as
well as any other custom types that are definitional, which is the norm.

Healthiness Conditions. The theory has seven healthiness conditions. They
are characterised by invariants that constrain the permissible values of cls,
atts and sc, as well as the procedure variables for methods. Table 2 sum-
marises the first six constraints, which are related to cls, atts and sc. Intu-
itively, the invariant OO1 requires Object always to be a valid class of the
program. OO2 and OO3 determine the shape of the subclass relation: it
has to be a tree with Object at its root. Attributes have to be defined for
all classes (OO4), they have to be unique (OO5), and their types, if they
are not primitive, must refer to declared classes (OO6). A further health-
iness condition (OO7) not in Table 2 is inherited from the UTP theory
of methods in [24]. Its shape is given below, where the function SIH( ) is part
of the UTP theory of invariants [4] and performs the conversion of invariants
into design predicates over before and after states.

OO7(P) = SIH(∀m m | {m,m} ⊆ αP • [∀ args • m(args) ⇔ m(args)]0)(P)

Table 2. Healthiness conditions for the theory of object orientation.

Name Invariant Description

OO1 Object ∈ cls Object is always a class of the program

OO2 dom sc = cls \ Object Every class except Object has a superclass

OO3 ∀C : dom sc • (C ,Object) ∈ sc+ Object is at the top of the class hierarchy

OO4 dom atts = cls Attributes are defined for all classes

OO5 ∀C1,C2 : dom atts | C1 �= C2 •
dom(atts(C1))∩dom(atts(C2)) = ∅

Attribute names are unique across classes

OO6 ran(
⋃

ran atts) ⊆ prim ∪ cls Attributes have primitive or class types



An Axiomatic Value Model for Isabelle/UTP 173

This healthiness condition establishes a correspondence between procedure vari-
ables that are used for definition (double overbar) and call (single overbar) of meth-
ods. The purpose of OO7(P) is beyond the technical scope of this paper; we, how-
ever, observe that the quantifier above ranges over variables m and m within the
alphabet of predicate P . Encoding this condition may not be possible in a shallow
model that does not allow us to quantify over alphabets.

We lastly present an example that illustrates how we encode the healthiness
conditions. While a deep approach is non-negotiable in this case, the axiomatic
value model enables us to express everything in terms of HOL concepts. This
is done by ‘lifting’ HOL predicates into deeply-encoded UTP predicates. The
lifting is performed by a simple rewrite engine that we implemented as part of
the tool. With it, we may, for example, encode OO5 as follows.

definition OO5 :: "upred" where
"OO5 = (∀ C1 ∈ dom atts .

∀ C2 ∈ dom atts . C1 �= C2 |

dom (atts·C1) ∩ dom (atts·C2) = {})p"

The tool that performs the lifting is invoked via the ( )p construct. Inside the
brackets, we may write plain HOL. The beauty of this is that we do not have to
be concerned with redefining any of the HOL operators that are used, such as ∈,
∩, dom, and so on, for our value model, and neither recast laws and tactics for
proof support. Our approach enables the development of a generic rewrite tool
that circumvents all of this so that the user is able to work exclusively in HOL;
the underlying details of the deep encoding are by and large concealed.

There are some useful aspects of the implementation that we did not discuss.
For instance, we also provide a mechanism for parsing and rewriting HOL vari-
ables into UTP variables, in a way that we can take advantage of type-checking
and unification. Our system is flexible: we can always escape the parser to com-
bine unprocessed HOL with lifted predicate terms.

7 Conclusion

We have presented a novel approach to axiomatically encode value models of
language embeddings. While we applied our work to the problem of mechanising
the UTP framework, it remains applicable to any deep language embedding. The
problem we addressed is to relax common restrictions on deep value models in
HOL to support, for instance, general sets and functions. Our key contribution
is the design of a solution and tool in Isabelle/HOL that is definitionally sound.

Beyond this, we put forward an approach to UTP theory engineering that
enables and advocates working at the level of HOL rather than the formalised
concepts and idioms of a particular mechanised framework. We claim that this
is the crux in attracting academics to use a mechanised framework or theorem
prover for the UTP, as we cannot expect users to acquire detailed knowledge of
a mechanised framework or the nitty-gritty of a proof system. We hope that this
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work will set the future direction for UTP proof support, but accept that there
is a price to pay in the currency of axioms for having our cake and eating it!

Future work will extend our mechanisation to be competitive with the cur-
rently available systems Isabelle/Circus [6] and Isabelle/UTP [7] in terms of the
number of laws and mechanised theories. This work is mostly clerical and should
not take a lot of time and effort. A second future work will isolate those parts
that are independent of the UTP and only concerned with the value model, and
publish this separately for the Isabelle/HOL community as a stand-alone tool.

Acknowledgement. We would like to thank the anonymous reviewers for their help-
ful suggestions and conscientious reading of the paper.
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Abstract. rTiMo is a real-time version of TiMo (Timed Mobility),
which is a process algebra for mobile distributed systems. In this paper,
we investigate the denotational semantics for rTiMo. A trace variable tr
is introduced to record the communications among processes as well as
the location where the communication action takes place. Based on the
formalized model, we study a set of algebraic laws, especially the laws
about the migration and communication with real-time constraints. In
order to facilitate the algebraic reasoning about the parallel expansion
laws, we enrich rTiMo with a form of guarded choice. This enables us
to convert every parallel construct to a guarded choice.

1 Introduction

With the development of cloud computing, mobile applications play an impor-
tant role in modern distributed systems. Analyzing and verifying the ever
increasing complexity of mobile applications effectively is of great significance.

In recent years, some work has been done to explore the formal modeling
and analysis of mobile distributed systems [1–8]. Lakos has used a Petri Net
formalism, called Mobile Petri Nets [1], to model and simulate Mobile IP [3].
Ma et al. [2] have proposed a new formal method called Extended Elementary
Object System (EEOS), and they also have presented a model for a generic secure
mobile-agent system based on EEOS, which supports strong mobility and secure
mobility of a mobile agent. Braghin et al. [4] have introduced a framework for
the modeling and verification of mobile programs, which supports exhaustive
analysis of security policies. The time-related aspects of process migration and
interaction have been studied in [5–8].

Ciobanu et al. [5] have first introduced a process algebra called TiMo (Timed
Mobility) for mobile systems, where it is possible to add timers to the basic
actions in addition to process mobility and interaction. Their model of time is
based on local clocks. Aman et al. [6] have extended the TiMo family [9–11] by
introducing a real-time version named rTiMo in which a global clock is used.
The rTiMo processes can move between different locations of a mobile distributed
system and communicate locally with other processes. Real-time constrains are
used to control migration and communication. In [6], they also have investigated
the operational semantics of rTiMo. However, we can see that their work does
not cover the denotational semantics and algebraic semantics of rTiMo.
c© Springer International Publishing AG 2017
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Hoare and He advocate three different styles of mathematical representations,
including operational semantics, denotational semantics and algebraic semantics
[12,13] in their Unifying Theories of Programming (UTP) [14]. Denotational
semantics provides mathematical meanings to programs. Algebraic semantics
fits well with symbolic calculation of parameters and structures of an optimal
design. The algebraic approach has been successfully applied in provably-correct
compilation [15–17].

This paper considers the denotational semantics for rTiMo, which can pro-
vide the precise understanding of the rTiMo formalism and deduce interesting
properties of programs. In our semantic model, we introduce a variable tr to
record the communications among processes. Based on the formalized denota-
tional semantics, we investigate a set of algebraic laws, which not only comprises
algebraic laws similar to traditional algebraic laws of programming, but also con-
tains algebraic laws about migration and communication with time constraints.
In order to facilitate algebraic reasoning about parallel expansion laws, we enrich
rTiMo with a guarded choice construct which is classified into three types: com-
munication guarded choice, delay guarded choice and hybrid guarded choice.
From a set of parallel expansion laws that we have explored, we are able to show
that every parallel construct can be converted to a guarded choice.

The remainder of this paper is organized as follows. Section 2 introduces the
syntax of rTiMo and the concept of guarded choice which is used to study the
parallel expansion laws. We investigate the semantic model of rTiMo and health-
iness conditions which a program should satisfy in Sect. 2. Section 3 explores the
denotational semantics of rTiMo using the UTP approach. Section 4 presents a
set of algebraic laws, including the basic algebraic laws and the parallel expan-
sion laws which enable us to convert a parallel construct to a guarded choice.
Section 5 concludes the paper.

2 The Semantic Model

In this section, we first introduce the syntax of rTiMo in Sect. 2.1. The denota-
tional semantic model for rTiMo is presented in Sect. 2.2.

2.1 The Syntax of rTiMo

rTiMo is a real-time version of TiMo [5], which is a process algebra for mobile
distributed systems. rTiMo processes can move between different locations in a
distributed environment and communicate locally with other processes, which
means that processes from different locations cannot communicate with each
other. The syntax of rTiMo is given in Table 1 as it has been introduced in [6].
We agree on the following assumptions:

– Loc is a set of locations, l is a location or a location variable.
– Chan is a set of communication channels, a is a communication channel and

hence a ∈ Chan.



178 W. Xie and S. Xiang

– u is a tuple of variables and v is a tuple of expressions built from values,
variables and permissible operations.

– t is a timeout (deadline) of an action and t ∈ R.

In rTiMo, process migration and communication are controlled by using real-
time constraints. Timeouts are specified by a superscript �t.

1. a�t!〈v〉 then P else Q indicates that an output process can send message
v for a period of t time units via channel a. When the message v is sent
successfully within t time units, the next process is P . If the communication
does not happen before the timeout t, the communication attempt is aborted
and the next process is Q.

2. a�t?(u) then P else Q stands for an input process whose waiting time interval
is t time units. When the process receives a message via channel a within t
time units, the control passes to process P . If the communication does not
take place before the deadline t, the waiting process gives up and it switches
to the alternative process Q. The input process binds the variable u within
P (but not within Q).

3. go�tl then P denotes a migration process that moves to location l precisely
after t time units.

4. 0 denotes the process that terminates without taking any time.
5. P | Q stands for parallel composition.
6. l[[P ]] specifies a process P running at location l.
7. L

∣∣ L | N indicates that a network can be a located process or can be built
from its components L | N .

Table 1. rTiMo syntax

Processes P,Q ::= a�t!〈v〉 then P else Q
∣
∣ (output)

a�t?(u) then P else Q
∣
∣ (input)

go�tl then P
∣
∣ (move)

0
∣
∣ (termination)

P | Q (parallel)

Located processes L ::= l[[P ]]

Networks N ::= L
∣
∣ L | N

In order to support our algebraic expansion laws, we enrich rTiMo with a
new concept, called guarded choice, which is classified into three types:

1. []i∈I{gi → Ni} is communication guarded choice where gi is a communication
guard. The guard is instantaneous which means that it happens without any
time delay. The guard can be expressed as a!〈v〉@l, a?(u)@l or a.{v/u}@l,
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where a!〈v〉@l (a?(u)@l) indicates that the output (input) action happens at
location l and uses the channel a, a.{v/u}@l denotes that the communication
over channel a takes place at location l and the variable u is replaced by the
message v.

2. #t → N is delay guarded choice, where #t means delaying t time units.
3. The third guarded choice is hybrid guarded choice, which has the following

form, where the notation N1 ⊕ N2 ⊕ N3 denotes N1 has higher priority than
N2 and N2 has higher priority than N3:

[]i∈I{gi → Ni}
⊕ ∃t′ ∈ (0...t) • (#t′ → ([]i∈I{gi → N ′

i}))

⊕ #t → N ′

2.2 The Semantic Model

In this section, the denotational semantic model for rTiMo is investigated. Our
approach is based on the relational calculus [14]. We introduce a pair of vari-
ables st and st′ into our semantic model in order to denote the execution state
of a program. st represents the initial execution state of a program before its
activation and st′ stands for the final execution state of the program during the
current observation. A program may have two execution states:

1. completed state : A program has reached the completed state when it ter-
minates successfully. “st = completed ” indicates that the previous pro-
gram has terminated successfully and control passes to the current program.
“st′ = completed ” indicates that the current program has terminated suc-
cessfully and control passes to the next program.

2. wait state : A program may wait for communicating with another program via
a specific channel or moving from one location to another after the given time
units. “st = wait ” indicates that the predecessor of the current program is in
a waiting state. Thus, the current program cannot be activated. “st′ = wait ”
indicates that the current program itself is in a waiting state. Thus, the next
program cannot be activated.

We describe the behavior of a process in terms of a trace of snapshots which
record the sequence of the communication actions that the process is able to
engage in. In our semantic model, we introduce a variable tr to denote that
trace. The behavior of a communication action is specified by a snapshot which
can be expressed as a triple (t, κ, l) where:

– t indicates the time when the communication action terminates.
– κ denotes the message transmitted via a specific channel at the termination

of a communication action. And the form of κ is a.v, where a indicates the
communication channel and v is the message transmitted. We define Chan(κ)
to obtain the communication channel and Mess(κ) to obtain the message, i.e.,
if κ = a.v, then Chan(a.v) = a and Mess(a.v) = v.
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– l records the location at which the communication action takes place.

The observations of an rTiMo program can be described by a tuple:

(time, time′, st, st′, tr, tr′)

where,

– time and time′ respectively denote the start point and the end point of the
time interval over which the observation is recorded.

– st represents the initial execution state of the program before its activation
and st′ stands for its final execution state during the current observation.

– tr represents the initial trace of a program over the interval which is passed
by its predecessor. tr′ stands for the final trace of a program over the interval.
tr′ − tr denotes the sequence of snapshots contributed by the program itself
during the interval.

Example 2.1.
Let N1 = l1[[go�3l2 then a�2!〈v1〉 then b�3?(u2) else 0]],

N2 = l2[[a�6?(u1) then b�2!〈v2〉 else 0]].

Above, we use the following shorthand notations:

b�3?(u2) stands for b�3?(u2) then 0 else 0

b�2!〈v2〉 stands for b�2!〈v2〉 then 0 else 0

Consider the trace of N3 = N1 | N2. Assume the activation time of N3 is
at 0.

According to the syntax of rTiMo, the migration process moves to location l2
from location l1 after 3 time units. Thus, the communication action happens at
time 3.
One possible trace of N1 is given as below:

〈(3, a.v1, l2), (3, b.{m/u2}, l2)〉
where m ∈ Type(b) and Type(b) stands for the type of the messages which can
be transformed along channel b.
A possible trace of N2 is shown next:

〈(3, a.{m/u1}, l2), (3, b.v2, l2)〉
where m ∈ Type(a) and Type(a) denotes the type of the messages that channel
a can communicate.
Hence, the one trace of N3 is as follows:

〈(3, a.{v1/u1}, l2), (3, b.{v2/u2}, l2)〉 �
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Next we consider the healthiness conditions rTiMo programs should satisfy.
In our semantics model, the variable tr is used to record the execution trace
of a program, so this variable cannot be shortened. A formula P satisfies the
healthiness condition (H1).

(H1) P = P ∧ Inv(tr),

where Inv(tr) =df tr 	 tr′, which states that tr is a prefix of tr′.

As we have mentioned earlier on, a program may wait for communicating with
another program via a specific channel or moving from one location to another
after a given time delay. For the migration process home[[go�5shop then P ]]
which indicates that process P moves to location shop from location home after
5 time units: if process P is asked to start in a waiting state of go�5shop, then
P keeps itself unchanged; i.e., it satisfies the following healthiness condition.

(H2) P = Π � st = wait � P ,

where Π =df (st′ = st) ∧ (time′ = time) ∧ (tr′ = tr)

and P � b � Q =df (b ∧ P ) ∨ (¬b ∧ Q)

The variable time is used to record the progress of a program, thus, P should
satisfy the following healthiness condition.

(H3) P = P ∧ (time ≤ time′)

The definition of H function can be given as follows:

H(X) =df Π � st = wait � (X ∧ Inv(tr) ∧ time ≤ time′)

From the definition of H function, we know that H(X) satisfies the health-
iness conditions (H1), (H2) and (H3). The H function is used to define the
denotational semantics for the rTiMo model.

3 Denotational Semantics

In this section, we present the denotational semantics for rTiMo. We use
beh(l[[P ]]) to describe the behavior of a process running at location l after
it is activated.

3.1 Basic Commands

We first investigate the behavior of a migration process l[[go�tl′ then P ]], it
indicates that process P moves to location l′ after t time units.
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beh(l[[go�tl′ then P ]]) =df

H

⎛
⎜⎜⎝

⎛
⎜⎜⎝

(st′ = wait ∧ time′ − time < t)

∨
(st′ = completed ∧ time′ = time + t)

⎞
⎟⎟⎠ ∧ tr′ = tr

⎞
⎟⎟⎠ ;beh(l′[[P ]])

For t time units, the migration process is in a waiting state and its trace is
unchanged. After t time units, the migration action terminates successfully and
the trace also remains unchanged. We record the terminal time of the migration
action using time′ = time + t which is also the activation time of the next
action. After the completion of the migration action, the subsequent behavior of
the program is the behavior of process P which runs at location l′.

The input process l[[a�t?(u) then P else Q]] indicates that if the program
successfully receives an input via channel a within t time units, then process
P gets the control. On the other hand, if the communication does not happen
before the deadline t, the waiting process gives up and it switches to the alter-
native process Q. The notation tr1̂tr2 is used to denote the concatenation of
the two traces tr1 and tr2.

beh(l[[a�t?(u) then P else Q]]) =df

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃m ∈ Type(a) •

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(st′ = wait ∧ tr′ = tr ∧
0 < time′ − time < t) ∨

(st′ = completed ∧
append(a?(u)@l) ∧

0 ≤ time′ − time < t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

;beh(l[[{m/u}P ]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∨
H

(
st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(l[[Q]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

append(a?(u)@l) =df

tr′ = tr̂〈(time′, a.m, l)〉 ∧ ¬(∀t′ ∈ (time′,∞) • tr′ = tr̂〈(t′, a.m, l)〉)

Here, Type(a) represents the type of the messages that channel a can com-
municate. There are two alternative behavior branches to describe the execution
of the input process.

– Case 1: within t time units, the input action either waits for receiving a mes-
sage via a specific channel, or communicates with the corresponding output
action successfully. If the input action waits for receiving a message, the exe-
cution state is wait and the trace is unchanged. If the input action happens
successfully, the execution state is completed and the snapshot (time′, a.m, l)
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contributed by the input action is attached to the end of the program trace.
The predicate ¬(∀t′ ∈ (time′,∞)•tr′ = tr̂〈(t′, a.m, l)〉) is used to ensure that
the input action takes place as soon as it is enabled. The subsequent behav-
ior of the program is determined by process P from location l. The notation
{m/u}P denotes P in which all free occurrences of a variable u are replaced
by m.

– Case 2: the input action does not take place before the deadline t, the exe-
cution state is completed and the trace remains unchanged. In this case, the
subsequent behavior of the program is the behavior of the alternative process
Q from location l.

The output process l[[a�t!〈v〉 then P else Q]] means that if the program
sends the message v along channel a within t time units successfully, the control
passes into process P . On the other hand, if the communication does not happen
before the timeout t, the communication gives up and the control passes into
process Q.

beh(l[[a�t!〈v〉 then P else Q]]) =df

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H

⎛
⎜⎝

(st′ = wait ∧ tr′ = tr ∧ 0 < time′ − time < t) ∨
(st′ = completed ∧ append(a!〈v〉@l) ∧

0 ≤ time′ − time < t)

⎞
⎟⎠ ;beh(l[[P ]])

∨
H

(
st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(l[[Q]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

append(a!〈v〉@l) =df

tr′ = tr̂〈(time′, a.v, l)〉 ∧ ¬(∀t′ ∈ (time′,∞) • tr′ = tr̂〈(t′, a.v, l)〉)

3.2 Guarded Choice

As mentioned earlier, the guarded choice has three types: communication
guarded choice, delay guarded choice and hybrid guarded choice. Now we give
the denotational semantics for these three types of guarded choice.

Communication Guarded Choice. We first consider the communication
guarded choice, which is composed of a set of communication guarded com-
ponents. There are three types of the communication guard: a!〈v〉@l, a?(u)@l
and a.{v/u}@l, which all have been described earlier.

beh([]i∈I{gi → Ni}) =df

∨
i∈I beh(gi → Ni), where
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if g = a!〈v〉@l, then

beh(g → N) =df

H
(
st′ = completed ∧ append(a!〈v〉@l) ∧ time′ = time

)
;beh(N)

if g = a?(u)@l, then

beh(g → N) =df

⎛
⎜⎝∃m ∈ Type(a) •

⎛
⎜⎝H

⎛
⎜⎝

st′ = completed ∧
append(a?(u)@l) ∧

time′ = time

⎞
⎟⎠ ;beh({m/u}N)

⎞
⎟⎠

⎞
⎟⎠

if g = a.{v/u}@l, then

beh(g → N) =df

H
(
st′ = completed ∧ append(a.{v/u}@l) ∧ time′ = time

)
;beh({v/u}N)

where

append(a.{v/u}@l) =df

tr′ = tr̂〈(time′, a.v, l)〉 ∧ ¬(∀t′ ∈ (time′,∞) • tr′ = tr̂〈(t′, a.v, l)〉)

Delay Guarded Choice. For the delay guarded choice, it consists of only one
time delay component.

beh(#t → N) =df

H

⎛
⎜⎜⎝

⎛
⎜⎜⎝

(st′ = wait ∧ time′ − time < t)

∨
(st′ = completed ∧ time′ = time + t)

⎞
⎟⎟⎠ ∧ tr′ = tr

⎞
⎟⎟⎠ ;beh(N)

Hybrid Guarded Choice. The hybrid guarded choice has the following form:
N = []i∈I{gi → Ni}

⊕∃t′ ∈ (0...t) • (#t′ → ([]i∈I{gi → N ′
i}))

⊕#t → N ′

where, []i∈I{gi → Ni} is communication guarded choice and #t → N ′ is delay
guarded choice. #t′ → ([]i∈I{gi → N ′

i}) consists of a delay guard followed by a
communication guarded choice where t′ ∈ (0...t).
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beh(N) =df

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∨
i∈I beh(gi → Ni)∨

∨
1≤i≤n

⎛
⎜⎜⎝H

⎛
⎜⎜⎝

(st′ = wait ∧ tr′ = tr ∧
0 < time′ − time < t) ∨

(st′ = completed ∧ append(gi) ∧
0 < time′ − time < t)

⎞
⎟⎟⎠ ;beh(N ′

i)

⎞
⎟⎟⎠

∨
H

(
st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(N ′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.3 Parallel Composition

In this section, we explore the behavior of a network which is composed of a set
of located processes running in parallel. Let P and Q be the processes. The par-
allel composition l[[P ]] | l′[[Q]] performs process P from location l and process Q
from location l′ running in parallel, where l and l′ can be the same or different
locations. Its behavior is the composition of the behaviors of the two parallel
components by merging their traces together. The composition is described by
the following definition.
beh(l[[P ]] | l′[[Q]]) = beh(l[[P ]]) | beh(l′[[Q]])

where,

l[[P1]] | l′[[P2]] =df⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃ st1, st
′
1, st2, st

′
2, tr1, tr

′
1, tr2, tr

′
2, time1, time′

1, time2, time′
2 •

tr1 = tr2 = tr ∧ st1 = st2 = st ∧ time1 = time2 = time ∧
P1[st1, st′1, tr1, tr

′
1, time1, time′

1/st, st
′, tr, tr′, time, time′] ∧

P2[st2, st′2, tr2, tr
′
2, time2, time′

2/st, st
′, tr, tr′, time, time′] ∧

Merge

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first three predicates in the definition l[[P1]] | l′[[P2]] describe the two
independent behaviors of process P1 from location l and P2 from location l′

running in parallel. The last predicate Merge mainly does the merge of the con-
tributed traces of the two behavioral branches for recording the communications,
which is defined as below.

Merge =df

⎛
⎜⎜⎜⎜⎜⎜⎝

(st′1 = completed ∧ st′2 = completed) ⇒ st′ = completed ∧
(st′1 = wait ∨ st′2 = wait) ⇒ st′ = wait ∧
∃s ∈ (tr′

1 − tr) | (tr′
2 − tr) • tr′ = tr̂s ∧

time′ = max{time′
1, time′

2}

⎞
⎟⎟⎟⎟⎟⎟⎠
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The final execution state of the behavior of the parallel composition is deter-
mined by the two parallel components together. The contributed traces of the
two behaviors for recording the communication can be merged. And the terminal
time of the parallel composition is the maximum between the two terminal times
of the parallel components.

We introduce some notations. The notation head(s) is used to denote the
first snapshot of the trace s and tail(s) is used to denote the result of removing
the first snapshot in the trace s. We use the projections to select the components
of a snapshot:

π1((t, κ, l)) =df t π2((t, κ, l)) =df κ π3((t, κ, l)) =df l

The merging of the contributed traces of the two behaviors for recording the
communication can be defined as follows.

ε | ε =df {ε}
s | ε =df {s}
ε | t =df {t}

s | t =df

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

〈(t1, κ1, l1)〉̂(tail(s) | tail(t))
� t1 = t2 �

{ε}

⎞
⎟⎟⎠

� Chan(κ1) = Chan(κ2) �⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
head(s)̂(tail(s) | t) ∪ head(t)̂(s | tail(t)))

� t1 = t2 �⎛
⎜⎜⎜⎝
head(s)̂(tail(s) | t)

� t1 < t2 �

head(t)̂(s | tail(t))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� l1 = l2 �⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
head(s)̂(tail(s) | t) ∪ head(t)̂(s | tail(t)))

� t1 = t2 �⎛
⎜⎜⎜⎝
head(s)̂(tail(s) | t)

� t1 < t2 �

head(t)̂(s | tail(t))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where,

t1 = π1(head(s)), κ1 = π2(head(s)), l1 = π3(head(s)),

t2 = π1(head(t)), κ2 = π2(head(t)), l2 = π3(head(t)).
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The result of merging two empty traces is still empty. For the two traces
which are required to be merged, if one of them is empty and the other is non-
empty, the result of trace merging follows the nonempty one. If both traces are
nonempty, the result of trace merging is obtained according to the fourth trace-
merging definition.

Example 3.1. Consider the network N1 | N2 in Example 2.1, where

N1 = l1[[go�3l2 then a�2!〈v1〉 then b�3?(u2) else 0]],

N2 = l2[[a�6?(u1) then b�2!〈v2〉 else 0]].

And we have the following shorthand notations:

b�3?(u2) stands for b�3?(u2) then 0 else 0

b�2!〈v2〉 stands for b�2!〈v2〉 then 0 else 0

Assume that the activated time of N1 and N2 is at 0. As mentioned earlier, the
trace of N1 is below:

s=〈(3, a.v1, l2), (3, b.{m/u2}, l2)〉
And the trace of N2 is below:

t=〈(3, a.{m/u1}, l2), (3, b.v2, l2)〉
By using the trace merging rules, we can obtain

s | t = 〈(3, a.{v1/u1}, l2)〉̂(s′ | t′)
and s′ | t′ = 〈(3, b.{v2/u2}, l2)〉̂(s′′ | t′′)
and s′′ | t′′ = 〈〉

where

s′ = 〈(3, b.{m/u2}, l2)〉, t′ = 〈(3, b.v2, l2)〉
s′′ = 〈〉, t′′ = 〈〉

Finally, we obtain the trace of the network by merging s and t below:

〈(3, a.{v1/u1}, l2), (3, b.{v2/u2}, l2)〉 �
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4 Algebraic Properties

Our work towards the formalization of rTiMo aims to deduce its interesting
properties, which are usually expressed using algebraic laws and Eq. [14]. In this
section, we explore a set of algebraic laws for rTiMo including basic algebraic
laws and a set of parallel expansion laws.

4.1 Basic Algebraic Laws

If a migration action has a timer which equals to 0, then process P migrates
from location l to l′ without any time delay.

(move-1) l[[go�0l′ then P ]] = l′[[P ]]

A communication action has a timer which equals to 0, the process a�0 ∗
then P else Q continues as the alternative process Q. Here, ∗ ∈ {!〈v〉, ?(u)}.

(output-1) l[[a�0!〈v〉 then P else Q]] = l[[Q]]

(input-1) l[[a�0?(u) then P else Q]] = l[[Q]]

For the located migration process l[[go�tl′ then P ]], it first delays t time units,
then process P moves to location l′.

(move-2) l[[go�tl′ then P ]] = #t → l′[[P ]] where t > 0.

For the output process, if the output action happens at the start of the pro-
gram, the subsequent process is P . On the other hand, the output process needs
to wait for the specific input action trigged. If the waiting time t′ ranges in
(0...t), the subsequent process is still P . The subsequent process is Q when the
output process delays t time units, which means that the communication gives
up and the control passes into the alternative process Q.

(output-2) l[[a�t!〈v〉 then P else Q]]

= a!〈v〉@l → l[[P ]]

⊕ ∃t′ ∈ (0...t) • (#t′ → (a!〈v〉@l → l[[P ]]))

⊕ #t → l[[Q]], where t > 0.
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Proof

RHS

= {Def of Hybrid Guarded Choice}⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(st′ = completed ∧ append(a!〈v〉@l) ∧ time′ = time);beh(l[[P ]])∨

H

⎛
⎜⎝

(st′ = wait ∧ tr′ = tr ∧ 0 < time′ − time < t) ∨
(st′ = completed ∧ append(a!〈v〉@l) ∧

0 < time′ − time < t)

⎞
⎟⎠ ;beh(l[[P ]])

∨
H st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(l[[Q]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= {(H(X1);Y )
∨

(H(X2);Y ) = H(X1 ∨ X2);Y }⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H

⎛
⎜⎜⎜⎜⎝

(st′ = completed ∧ append(a!〈v〉@l) ∧ time′ = time) ∨
(st′ = wait ∧ tr′ = tr ∧ 0 < time′ − time < t) ∨

(st′ = completed ∧ append(a!〈v〉@l) ∧
0 < time′ − time < t)

⎞
⎟⎟⎟⎟⎠ ;beh(l[[P ]])

∨
H st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(l[[Q]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= {Logical Equivalence}⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H

⎛
⎜⎝

(st′ = wait ∧ tr′ = tr ∧ 0 < time′ − time < t) ∨
(st′ = completed ∧ append(a!〈v〉@l) ∧
(time′ = time ∨ 0 < time′ − time < t))

⎞
⎟⎠ ;beh(l[[P ]])

∨
H st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(l[[Q]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= {(time′ = time ∨ 0 < time′ − time < t) = 0 ≤ time′ − time < t}⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H

⎛
⎜⎝

(st′ = wait ∧ tr′ = tr ∧ 0 < time′ − time < t) ∨
(st′ = completed ∧ append(a!〈v〉@l) ∧

0 ≤ time′ − time < t)

⎞
⎟⎠ ;beh(l[[P ]])

∨
H st′ = completed ∧ tr′ = tr ∧ time′ = time + t

)
;beh(l[[Q]])

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= {Def of Output Process}
LHS
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(input-2) l[[a�t?(u) then P else Q]]

= a?(u)@l → l[[P ]]

⊕ ∃t′ ∈ (0...t) • (#t′ → (a?(u)@l → l[[P ]]))

⊕ #t → l[[Q]], where t > 0.

The input process has the similar description with the output process.

4.2 Algebraic Laws for Parallel Composition

Process 0 is the identity of parallel composition.

(para-1) P | 0 = P = 0 | P

The parallel composition | is symmetric and associative.

(para-2) P | Q = Q | P
(para-3) P | ( Q | R ) = ( P | Q ) | R
(para-4) Let N1 = l[[a�t!〈v〉 then P else Q]]

N2 = l[[a�t′
?(u) then P ′ else Q′]]

N3 = N1 | N2, where t > 0 and t′ > 0.

Then, N3 = a.{v/u}@l → (l[[P ]] | l[[{v/u}P ′]])

In the law (para-4), an output process, from location l, succeeds in sending the
message v over channel a to an input process from location l without any time
delay. Both processes continue to execute at location l, the first one as P , the
second one as {v/u}P ′.

(para-5) Let N1 = l[[go�t1 l1 then P1]]

N2 = l[[go�t2 l2 then P2]]

N3 = N1 | N2, where t1 > 0 and t2 > 0.

Then, we have the following two cases:

t1 < t2: N3 = #t1 → (l1[[P1]] | #(t2 − t1) → l2[[P2]])

t1 = t2: N3 = #t1 → (l1[[P1]] | l2[[P2]])

Law (para-5) is about the one for the parallel composition of two migration
processes. N3 delays t1 time units first (we assume t1 is the smaller delay),
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process P1 then moves to location l1 and the second process still needs to wait
t2 − t1 time units. For the case t1 = t2, P2 moves to location l2 after delaying t1
time units.

(para-6) Let N1 = l[[a�t1 !〈v〉 then P else Q]]

N2 = l[[go�t2 l′ then P ′]]

N3 = N1 | N2, where t1 > 0 and t2 > 0.

Then we have three cases for N3:

t1 < t2: N3 = a!〈v〉@l → (l[[P ]] | N2)

⊕∃t′ ∈ (0...t1) • (#t′ → (a!〈v〉@l → l[[P ]] | #(t2 − t′) → l′[[P ′]]))

⊕#t1 → (l[[Q]] | #(t2 − t1) → l′[[P ′]])

t1 = t2: N3 = a!〈v〉@l → (l[[P ]] | N2)

⊕∃t′ ∈ (0...t1) • (#t′ → (a!〈v〉@l → l[[P ]] | #(t2 − t′) → l′[[P ′]]))

⊕#t1 → (l[[Q]] | l′[[P ′]])

t1 > t2: N3 = a!〈v〉@l → (l[[P ]] | N2)

⊕∃t′ ∈ (0...t2) • (#t′ → (a!〈v〉@l → l[[P ]] | #(t2 − t′) → l′[[P ′]]))

⊕#t2 → (l[[a�t1−t2 !〈v〉 then P else Q]] | l′[[P ′]]).

For the parallel composition of an output process and a migration process indi-
cated in law (para-6), we have to consider the three cases: t1 < t2, t1 = t2
and t1 > t2. In the case t1 < t2, i.e., if the output action occurs at the start of
the program, the output process evolves as process P from location l and the
migration process keeps itself unchanged. On the other hand, the output action
enters a waiting state, if the waiting time t′ ranges in (0...t1), N3 delays t′ time
units first, the output action happens and the output process continues as P
from location l, the migration process should still wait t2 − t′ time units. If the
output action does not take place before the timeout t1, N3 delays t1 time units,
the output process continues as the alternative process Q from location l and
the migration process still needs to wait t2 − t1 time units.

(para-7) Let N1 = l[[a�t1 !〈v〉 then P1 else Q1]]

N2 = l[[b�t2?(u) then P2 else Q2]]

N3 = N1 | N2, where 0 < t1 < t2.
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Then, N3 = a!〈v〉@l → (l[[P1]] | N2)[]b?(u)@l → (N1 | l[[P2]])

⊕∃t′ ∈ (0...t1) • (#t′ → (

a!〈v〉@l → (l[[P1]] | l[[b�t2−t′
?(u) then P2 else Q2]])

[]b?(u)@l → (l[[a�t1−t′
!〈v〉 then P1 else Q1]] | l[[P2]])))

⊕#t1 → (l[[Q1]] | l[[b�t2−t1?(u) then P2 else Q2]])

In law (para-7), the output process and the input process do not share the same
communication channel, which means that there is no message communication
between them. The law (para-7) describes the following three cases:

– Case 1: At the start point of the program, at least one of output action
over channel a (a!〈v〉@l) and input action over channel b (b?(u)@l) occurs,
the first action of N3 is either a!〈v〉@l or b?(u)@l. When a!〈v〉@l is the first
action of N3, the output process continues to be process P1 from location l
and the input process remains unchanged. If the first action of N3 is b?(u)@l,
the output process keeps itself unchanged and the input process continues as
process P2 from location l.

– Case 2: N3 enters the waiting state, if the waiting time t′, which denotes the
time a!〈v〉@l or b?(u)@l happens, ranges in (0...t1), N3 delays t′ time units
first and the next action is either a!〈v〉@l or b?(u)@l.

– Case 3: If neither a!〈v〉@l nor b?(u)@l takes place before the timeout t1, then
N3 delays t1 time units first, the output process continues as process Q from
location l and the timer for the input process is �t2−t1 .

(para-8-1) Let N = []i∈I{gi → Ni} and M = []j∈J{hj → Mj}.

Assume that there is no message communication between N and M .

Then, N | M = []i∈I{gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}
Law (para-8-1) reflects the parallel composition of two communication guarded
choices, in which two communication components do not share the same com-
munication channels, which means there is no message communication between
them. The case that two parallel communication components can communicate
with each other is illustrated in law (para-8-2).

(para-8-2) Let N1 = []i∈I{gi → N1i} and M1 = []j∈J{hj → M1j},

N = N1[][]k∈K{ak!〈vk〉@lk → N2k},

M = M1[][]k∈K{ak?(uk)@lk → M2k}.

Assume that there are no communications between N1 and M1.
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Then, N | M = []i∈I{gi → (N1i | M)}
[][]j∈J{hj → (N | M1j)}
[][]k∈K{ak.{vk/uk}@lk → (N2k | M2k)}

(para-9) []i∈I{gi → Ni} | #t → N = []i∈I{gi → (Ni | #t → N)}
Law (para-9) indicates the parallel composition of communication guarded
choice and delay guarded choice, the communication guard gi is executed first,
the subsequent network evolves as (Ni | #t → N).

Law (para-10) stands for the parallel composition of communication guarded
choice and hybrid guarded choice.

(para-10) Let N = []i∈I{gi → Ni},
M = []j∈J{hj → Mj}

⊕∃t′ ∈ (0...t) • (#t′ → ([]j∈J{hj → M ′
j}))

⊕#t → M ′.

Then, N | M = []i∈I{gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}[]N ′

where N ′ = []i∈I{gi → Ni} | []j∈J{hj → Mj}, whose result is able to be obtained
by applying the laws (para-8-1) and (para-8-2).

(para-11-1) #t1 → N1 | #(t1 + t2) → N2 = #t1 → (N1 | #t2 → N2)

(para-11-2) #t1 → N1 | #t1 → N2 = #t1 → (N1 | N2)

Laws (para-11-1) and (para-11-2) represent the parallel composition of two
delay guarded choices.

Law (para-12) stands for the parallel composition of delay guarded choice and
hybrid guarded choice.

(para-12) Let N = []i∈I{gi → Ni}
⊕∃t′ ∈ (0...t1) • (#t′ → ([]i∈I{gi → N ′

i}))

⊕#t1 → N ′,

M = #t2 → M ′.
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Then, N | M has three cases:

t1 < t2: N | M = []i∈I{gi → (Ni | M)}
⊕∃t′ ∈ (0...t1) • (#t′ → ([]i∈I{gi → N ′

i} | #(t2 − t′) → M ′))

⊕#t1 → (N ′ | #(t2 − t1) → M ′)

t1 = t2: N | M = []i∈I{gi → (Ni | M)}
⊕∃t′ ∈ (0...t1) • (#t′ → ([]i∈I{gi → N ′

i} | #(t2 − t′) → M ′))

⊕#t1 → (N ′ | M ′)

t1 > t2: N | M = []i∈I{gi → (Ni | M)}
⊕∃t′ ∈ (0...t2) • (#t′ → ([]i∈I{gi → N ′

i} | #(t2 − t′) → M ′))

⊕#t2 → (N1 | M ′)

where,

N1 = []i∈I{gi → Ni}
⊕∃t′ ∈ (0...t1 − t2) • (#t′ → ([]i∈I{gi → N ′

i}))

⊕#(t1 − t2) → N ′

Law (para-13) stands for the parallel composition of hybrid guarded choice and
hybrid guarded choice.

(para-13) Let N = []i∈I{gi → Ni}
⊕∃t′ ∈ (0...t1) • (#t′ → ([]i∈I{gi → N ′

i}))

⊕#t1 → N ′,

M = []j∈J{hj → Mj}
⊕∃t′ ∈ (0...t2) • (#t′ → ([]j∈J{hj → M ′

j}))

⊕#t2 → M ′, where t1 < t2.

Then, N | M = []i∈I{gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}[]R

⊕∃t′ ∈ (0...t1) •
⎛
⎝#t′ →

⎛
⎝ []i∈I{gi → (N ′

i | M1)}
[][]j∈J{hj → (N1 | M ′

j)}[]R1

⎞
⎠

⎞
⎠

⊕#t1 → (N ′ | M2)

where,
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R = []i∈I{gi → Ni} | []j∈J{hj → Mj},
R1 = []i∈I{gi → N ′

i} | []j∈J{hj → M ′
j},

N1 = []i∈I{gi → Ni}
⊕∃t′′ ∈ (0...t1 − t′) • (#t′′ → ([]i∈I{gi → N ′

i}))

⊕#(t1 − t′) → N ′,

M1 = []j∈J{hj → Mj}
⊕∃t′′ ∈ (0...t2 − t′) • (#t′′ → ([]j∈J{hj → M ′

j}))

⊕#(t2 − t′) → M ′,

M2 = []j∈J{hj → Mj}
⊕∃t′′ ∈ (0...t2 − t1) • (#t′′ → ([]j∈J{hj → M ′

j}))

⊕#(t2 − t1) → M ′

The results of R and R1 can be achieved according to the laws (para-8-1)
and (para-8-2).

5 Conclusion

rTiMo is a real-time version of TiMo, which is a process algebra for mobile
distributed systems. In this paper, we have studied the denotational semantics
for rTiMo via the concept of UTP [14]. In addition, a set of algebraic laws have
been investigated, especially the algebraic laws which can stand for the time-
related features of rTiMo. In order to deal with the parallel expansion laws, we
have introduced the concept of guarded choice. From a set of parallel expansion
laws, we can see every parallel construct can be converted to a guarded choice.

For the future, we want to continue our work on rTiMo. We plan to explore
the linking theories [18–20] between the three semantics of rTiMo. And a proof
system based on Hoare Logic [21] is also planned to be investigated.
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UTPCalc — A Calculator for UTP Predicates

Andrew Butterfield(B)

Trinity College Dublin, Dublin, Ireland
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Abstract. We present the development of the UTP-Calculator: a tool,
written in Haskell, that supports rapid prototyping of new theories in
the Unifying Theories of Programming paradigm, by supporting an easy
way to very quickly perform test calculations. The emphasis during the
calculator development was keeping it simple but effective, and relying
on the user to have the expertise to check its output. It is not intended to
supplant existing theorem prover or language transformation technology.
The tool is designed for someone who is both very familiar with UTP
theory construction, and familiar enough with Haskell to be able to write
pattern-matching code. In this paper we describe how this tool can be
used to assist in theory development, by describing the key components
of the calculator and how various aspects of such a theory might be
encoded. We finish with a discussion of our experience in using the tool.

1 Introduction

1.1 Motivation

The development of a Unifying Theory of Programming (UTP) can involve
a number of false starts, as alphabet variables are chosen and semantics and
healthiness conditions are defined. Typically, some calculations done to check
that everything works end up revealing problems with the theory. So an iter-
ation occurs by revising the basic definitions, and attempting the calculations
again.

We have recently started to explore using UTP to describe shared-variable
concurrency, by adapting the work of the UTP semantics for Unifying Theories
of Parallel Programming (UTPP) [20]. We have reworked it to use a system
for generating unique labels, in order to give a slight improvement to the com-
positionality of the semantics. This we call a Unifying Theory of Concurrent
Programming (UTCP) [6].

We illustrate the calculator here with, as a running example, the definition
of the UTP semantics of an atomic action. We assume basic atomic actions
A,B which modify the shared global state (program variables), represented by
observation variables s, s′. The concurrent flow of control is managed by using
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labels associated with language constructs, which are added to and removed
from a global label-set as execution proceeds. We represent this label-set using
observations ls, ls′. Our main change to the original UTPP theory is to provide
a mechanism to create unique labels, to be associated with both the beginning
and end of each language construct. This results in three static observables: a
generator g; and two labels in and out. So our UTCP theory is based on a
non-homogeneous relation with alphabet s, s′, ls, ls′, g, in, and out. See [6] for
details.

Our running example is the need to calculate the outcome of sequentially
composing (;;) two basic atomic actions (A,B), that are lifted (A( )) to the full
alphabet by adding control-flow, and are then run in order to see their dynamic
behaviour:

run(A(A) ;; A(B))

We hope that the final result would be

(A ; B) ∧ ls′ = {�g:}
We have the standard UTP sequential composition of A and B defined on s, s′,
and an assertion that the termination label �g: is the sole member of the final
label-set.

The theory with its somewhat unusual arrangement of observation variables
did not emerge as an immediate and obvious solution, but as a result of many
trial calculations. These trial calculations exposed two problems: one was the dif-
ficulty in reading very long complex set-based expressions in order to assess their
correctness. The second was the sheer length and drudgery of these calculations,
often involving many repetitions of very similar steps.

To be specific, the calculator described in this paper is intended to be used for
calculation, and not theorem proving. In particular, it is designed to help solve
the problem just described above. Both the starting predicate and the final
result have free variables and are not theorems. That means counter-example
generators like Nitpick or Alloy are not helpful.

If we consider the reasoning processes used in the development and deploy-
ment of a theory, we can see a spectrum ranging from informal, through to fully
mechanised: hand calculation; simulation; proof assistant; and automated the-
orem provers. The level of detail, complexity, and rigour rises as we proceed
along the spectrum. The calculator described here is designed to assist with the
exploratory hand-calculation phase early on, by making it easier to calculate,
and to manually check the outcomes. It is not intended to provide the sound-
ness guarantees that are quite rightly expected from the tools further along the
spectrum.

1.2 Structure of This Paper

In Sect. 2 we discuss related work to justify our decision to develop the calcula-
tor. The key design decisions and tool architecture is then described in Sect. 3.
Three key components of the system are then discussed: Dictionaries (Sect. 4);
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Expressions (Sect. 5); and Predicates (Sect. 6). In Sect. 7 we describe how to
encode laws and then conclude (Sect. 8).

2 Related Work

There are lots of tools for assisting with the kinds of calculations we are trying to
perform, ranging from calculators [3], through rewrite/transformation systems
(CIP-S [1], Stratego [16], ASF+DSF [15]Maude [7] HATS [19]) to full-blown
theorem provers (Isabelle/HOL [12], CoQ [2], PVS [14]) including those that
support equational reasoning (Isabelle/ISAR [18]).

Most of the above have a considerable body of work behind them, both in
terms of theory and tool development, and provide very comprehensive coverage
of their problem domain, be it rewriting, program transformation or theorem
proving. However many are tied to specific languages, or have limited ability
to allow the user to customise the target language. In particular, it is not clear
in any of them, how to achieve the ability to do rapid calculation with a high
degree of ease in proof-reading its output.

Within the UTP community, there has been considerable work using Proof-
Power-Z, such as the deep embedding into Z of an imperative language whose
semantics were given using UTP [13] and re-working the mechanisation of UTP
in order to better support the hierarchical nature of UTP theory building [21].
There is also work on embedding UTP into Isabelle/HOL [9]. This contains
a considerable amount of infrastructure to support UTP’s alphabetised pred-
icates in a general way, with UTP forming a third sub-syntax in addition to
Isabelle/HOL’s inner and outer syntaxes. It continues to undergo continuous
improvement [8].

Like all high-quality state-of-the-art tools, CoQ, Isabelle/HOL, ProofPower-
Z and PVS all have in common that they work best when used in the manner
for which they were designed—in none of these cases does this manner match
the way we wish to work in UTP, as described in the introduction, without at
least a steep learning curve.

We briefly considered using the U ·(TP )2 theorem prover [4,5], which does
support both equational reasoning, plus a mode in which calculations can be
from a starting predicate, as we require. However, it would have required a lot of
setup effort, in particular to build the support theories about sets and labels and
generators. Also, it is currently not in an ideal state, due to difficulties installing
the relevant third-party software libraries on more recent versions of Haskell.

However, as part of other ongoing work, we had developed a parser and
some initial analysis tools in Haskell [11], and this software contained abstract
syntax and support for general predicates. It became really obvious that this
could be quickly adapted, to mechanise the checking calculations, that were
being performed during each attempt. In particular, the key inspiration was the
observation, that the pattern of each calculation was very uniform and similar.
So a decision was taken to construct the calculator described in this paper. It
also has the advantage that it runs on standard Haskell, and hence it is much
easier to future-proof.
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3 Design and Architecture

3.1 Key Design Decisions

Taking into account the repetitive nature of the calculations, and the need for
shorthand notations we very rapidly converged on four initial design decisions:

1. All calculation objects are written directly in Haskell, to avoid having to
implement a parser.

2. The expression and predicate datatype declarations would be very simple,
with only equality being singled out.

3. Provide a good way to pretty-print long predicates that made it easy to see
their overall structure.

4. Rely on a dictionary based system to make it easy to customise how specific
constructs were to be handled.

From our experience with the U · (TP )2 theorem-prover we also decided the
following regarding the calculation steps that would be supported:

– We would not support full propositional calculus or theories of numbers or
sets. Instead we would support the use of hard-coded relevant laws, typically
derived from a handwritten proof.

– We would avoid, at all costs, any use of quantifiers or binding constructs.
– The calculator user interface would be very simple, supporting a few high level

commands such as “simplify” or “reduce”. In particular, no facility would be
provided for the user to identify the relevant sub-part of the current goal to
which any operation should be applied. Instead the tool would use a systematic
sweep through the predicate to find the first applicable calculation step of the
requested kind, and apply that. Our subsequent experience with the calculator
indicates that this was a good choice.

3.2 The Calculator REPL

The way the calculator is designed to be used is that a function implementing a
calculator Read-Execute-Print-Loop (REPL) is given a dictionary and starting
predicate as inputs. Calculator commands include an ability to undo previous
steps (‘u’), request help (‘?’), and to signal an exit from the calculator (‘x’).
However, of most interest are the five calculation commands. The first is a global
simplify command (‘s’), that scans the entire predicate from the bottom-up
looking for simplifiers for each composite and applying them. Simplifiers are
captured as eval or prsimp components in dictionary entries.

The other four commands work by searching top-down, left-to-right for the
first sub-component for which the relevant dictionary calculator function returns
a changed result. Here is where we have a reduced degree of control, which
simplifies the REPL dramatically, but has turned out to be effective in practice.

Here is a sample run obtained when calculating the effect of run(A(A) ;;
A(B)), from the introduction. For convenience we predefined the predicate
A(A) ;; A(B) in Haskell as
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athenb = pseq [patm (PVar"A"),patm (PVar "B")]

Here PVar is a constructor of the predicate datatype Pred (See Sect. 6), while
pseq and patm are convenient functions we wrote to build instances of ;; and
A( ) respectively. We invoked the calculator as follows, where dictUTCP is the
dictionary for this theory:

calcREPL dictUTCP (run athenb)

We then proceeded to interact (the prompt “ ?,d,r,l,s,c,u,x :-” shows the
available commands):

1 run(A(A) ;; A(B))
2 ?,d,r,l,s,c,u,x :- d
3 ="defn. of run .3"
4 (A(A) ;; A(B))[g::,lg,lg,lg:/g,in ,ls ,out]
5 ; ~ls(lg:) * (A(A) ;; A(B))[g::,lg ,lg:/g,in ,out]
6 ?,d,r,l,s,c,u,x :- d
7 = "defn. of ;;"
8 (A(A)[g:1,lg/g,out] \/
9 A(B)[g:2,lg/g,in])[g::,lg ,lg ,lg:/g,in,ls ,out]

10 ; ~ls(lg:) * (A(A) ;; A(B))[g::,lg ,lg:/g,in ,out]
11 ?,d,r,l,s,c,u,x :- s
12 = "simplify"
13 A(A)[g:::1,lg ,lg,lg::/g,in,ls ,out] \/
14 A(B)[g:::2,lg::,lg,lg:/g,in ,ls ,out]
15 ; ~ls(lg:) * (A(A) ;; A(B))[g::,lg ,lg:/g,in ,out]
16 .... 10 more steps
17 A /\ ls ’ = {lg::} ; B /\ ls’ = {lg:}
18 ?,d,r,l,s,c,u,x :- r
19 = "ls ’-cleanup"
20 (A ; B) /\ ls ’ = {lg:}

Lines 2, 6, 11, and 18 show the user entering a single key command at the
prompt. Lines 3, 7, and 19 show a short string identifying the relevant definition
or law. Lines 1, 4–5, 8–10, 17 and 20 show various stages of the calculation.

3.3 Pretty-Printing

For the calculator output, it is very important that it be readable, as many of the
predicates get very large, particularly at intermediate points of the calculation.
For this reason, a lot of effort was put into the development of both good pretty-
printing, and ways to highlight old and new parts of predicates as changes are
made. The key principle was to ensure that whenever a predicate had to split
over multiple lines, that the breaks are always around the top-most operator or
composition symbol, with sub-components indented in, both after and before.
An example of such pretty-printing in action is shown in Fig. 1 The top-level
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Fig. 1. Pretty-printer output

structure of this is D(out) ∨ ((¬ls(out) ∧ . . . );W (. . . )) where the precedence
ordering from tightest to loosest is ∧, ;,∨.
The pretty printing support can be found in PrettyPrint.lhs, which was writ-
ten from scratch, but inspired by writings of Hughes [10] and Wadler [17] on the
subject. In addition to the layout management aspects of pretty-printing there
is also a need for a support for shorthand notations. We illustrate this in Sect. 5.

Display Convention. In the rest of this paper, code that is part of the under-
lying calculator infrastructure is shown as a simple verbatim display, thus:

underlying UTPCalc code

while code supplied by the user to set it up for a particular theory under inves-
tigation is shown enclosed in horizontal lines:

user -supplied theory customisation code

4 Dictionaries

The approach taken is to provide a dictionary that maps names to entries that
supply extra information. The names can be those of expression or predicate
composites, or correspond to variables, and a few other features of note. All
of the main calculator functions are driven by this dictionary, and the correct
definition of dictionary entries is the primary way for users to set up calculations.
The dictionary datatype (Dict s), parameterised with a generic type s, is critical
to the functioning of the calculator.

type Dict s = M.Map String (Entry s)
-- M is the renamed import of Data.Map

It is the basic way in which the user of the calculator describes the alphabet,
definitions and laws associated with their theory.

The dictionary uses the Haskell String datatype for keys, and contains four
different kinds of entries: alphabets, expressions, predicates and laws.

data Entry s = AlfEntry .. | ExprEntry .. | PredEntry .. | LawEntry ..

For simplicity, there is only one namespace involved, and some names are
reserved for special purposes. These are listed in Fig. 2. There are ten names that
describe different (overlapping) parts of the theory alphabet (Fig. 2). While it is
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Fig. 2. Reserved dictionary names

possible to define these individually, this can be quite error-prone, so a function
is provided to construct all these entries from three basic pieces of information:
program variable names (‘script’, Scr); auxiliary variable names (‘model’,Mdl),
e.g. variables like ls that don’t represent variable values, but instead some other
observable program property of interest); and static parameter variable names
(Stc).

stdAlfDictGen :: [String] -> [String] -> [String] -> Dict s

All lists contain undashed names, with dashes added when required by the func-
tion. So, the alphabet entries for the UTCP theory are defined as follows:

dictAlpha = stdAlfDictGen ["s"] ["ls"] ["g","in","out"]

All of these entries will be of kind AlfEntry, i.e., just lists of the relevant vari-
ables.

AlfEntry { avars :: [String ]}

There are two important utility functions, one that builds dictionaries from
lists of string/entry pairs, and another that merges two dictionaries, resolving
conflicts by merging entries if possible, otherwise favouring the second dictionary:

makeDict :: [(String , Entry s)] -> Dict s
dictMrg :: Dict s -> Dict s -> Dict s

5 Expressions

In Fig. 3 we show the Haskell declarations of the datatypes used to represent
expressions and substitution. Both types are parameterised on a generic state
type s, which allows us to be able to reason independently of any particular
notion of state. We provide booleans (B), integers (Z), values of the generic state
type (St), and named function application (App). We also have substitution
(Sub), which pairs an expression with a substitution (Substn), which is a list
of variable/expression pairs. The deriving clause for Expr enables the Haskell
default notions of equality, ordering and display for the type.

5.1 Set Expressions

We shall explore the use of the Expr datatype by indicating how the notions
of sets and some basic operators could be defined with the calculator. We shall
represent sets as instances of App with the name “set”, and the subset relation
as an App with name “subset”, so the set {1, 2} and predicate S ⊆ T would be
represented by App"set" [Z 1,Z 2], and App "subset" [Var "S",Var "T"]
respectively. In practice, we would define constructor functions to build these:
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Fig. 3. Expression and substitution datatypes (CalcTypes.lhs)

set es = App "set" es

subset s1 s2 = App "subset" [s1,s2]

There is a standard interface for defining expression simplifiers: define a function
with the following type:

Dict s -> [Expr s] -> (String, Expr s)

The first argument, of type Dict, is the dictionary currently in use. The second
argument is the list of sub-expressions of the App construct for which the simpli-
fier is intended. The result is a pair consisting of a string and an expression. If
the simplification succeeds, then the string is non-empty and gives some indica-
tion for the user of what was simplified. In this case the expression component is
the simplified result. If the simplification has no effect, then the string is empty,
and the expression returned is not defined.

The following code defines a simplifier for “subset”, which expects it to have
precisely two set components:

evalSubset d [App"set" s1,App "set" s2] = dosubset d s1 s2

evalSubset _ _ = none -- predefined shorthand for ("",Undef)

The two underscores in the second line are pattern matching wildcards, so this
catches all other possibilities. It makes use of the following helper, which gets
the two lists of expressions associated with each set:

dosubset d es1 es2 -- is es1 a subset of es2 ?

| null (es1 \\ es2) = ( "subset", B True )

| all (isGround d) ((es1 \\ es2) ++ es2)

= ( "subset", B False )

| otherwise = none

If the result of removing es2 from es1 is null it then returns true. If not, then if
all elements remaining are “ground”, i.e., contain no variables, it returns false.
Otherwise, we cannot infer anything, so return none.

5.2 Rendering Expressions

The UTCP theory definitions and calculations involve a lot of reasoning about
sets, leading to quite complicated expressions. To avoid complex set expressions
that are hard to parse visually, a number of simplifying notations are desirable,
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so that a singleton set {x} is rendered as x and the very common idiom S ⊆ ls is
rendered as ls(S), so that for example, ls(in) is short for {in} ⊆ ls. This shrinks
the expressions to a much more readable form, mainly by reducing the number
of infix operators and set brackets.

When rendering expressions, if an App construct is found, then its name is
looked up in the dictionary. If an ExprEntry is not found, then the default render-
ing is used, in which App "f" [e1,e2,..,en] is converted into f(e1,e2,..,en).
Otherwise, a function of type Dict s - > [Expr s] - > String, in that entry,
is used to render the construct.

As far as expressions are concerned, they become strings, and so are viewed as
atomic by the predicate pretty-printer (see Sect. 6). So, we could show singleton
sets without enclosing braces by defining:

showSet d [elm] = edshow d elm -- drop {,} from singleton

showSet d elms = "{" ++ dlshow d "," elms ++ "}"

Here edshow (expression-dict-show) displays its elm argument, while dlshow
(dictionary-list-show) displays the expressions in elms separated by the ","
string. Similar tricks are used to code a very compact rendering of a mecha-
nism that involves unique label generator expressions that involve very deep
nesting, such as:

π2(new(π1(new(π2(split(π1(new(g))))))))

This can be displayed as lg:2:, using a very compact shorthand described in
[6] which we do not explain here.

5.3 Expression Equality

In contrast to the way that the subset predicate is captured as an expression
above, the notion of expression equality is hardwired in, as part of the predicate
abstract syntax (see Sect. 6). The simplifier will look at the two expression argu-
ments of that construct, and if they are both instances of App with the same
name, will do a dictionary lookup, to see if there is an entry, from which an
equality checking function can be obtained (isEqual component). This has the
following signature:

Dict s -> [Expr s] -> [Expr s] -> Maybe Bool

The Maybe type constructor is standard Haskell, defined as

data Maybe t = Nothing | Just t

It converts a type t into one which is now “optional”, or equivalently has a
undefined value added.

The equality testing function takes a dictionary and the two expression lists
from the two App instances and either returns Nothing, if it cannot establish the
truth or falsity of the equality, or Just the appropriate result. Suitable code for
"set" is the following
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eqSet d es1 es2

= let ns1 = nub (sort es1)

ns2 = nub (sort es2)

in if all (isGround d) (ns1++ns2)

then Just (ns1==ns2) else Nothing

The standard function nub removes duplicates, which we do after we sort. If
both lists are ground we just do an equality comparison and return Just it.
Otherwise, we return Nothing.

5.4 The Expression Entry

The dictionary entry for expressions has the following form:

ExprEntry

{ ecansub :: [String]

, eprint :: Dict s -> [Expr s] -> String

, eval :: Dict s -> [Expr s] -> (String , Expr s)

, isEqual :: Dict s -> [Expr s] -> [Expr s] -> Maybe Bool}

One big win in using a functional language like Haskell, in which functions
are first class data values, is that we can easily define datatypes that contain
function-valued components. We make full use of this in three of the entry kinds,
for expressions, predicates and laws.

The eprint, eval and isEqual components correspond to the various exam-
ples we have seen above. The ecansub component indicates those variables occur-
ring in the App expression list for which it is safe to replace in substitutions.

To understand the need for ecansub, consider the following shorthand defi-
nition for an expression:

D(L) =̂ L ⊆ ls

in a context where we know that L is a set expression defined only over variables
g, in and out. The variable ls is not free in the lhs, but does occur in the rhs. A
substitution of the form [E/ls] say, would leave the lhs unchanged, but alter the
rhs to L ⊆ E. For this reason the entry for D would need to disallow substitution
for ls. The ecansub entry lists the variables for which substitution is safe with
the expression as-is. With the definition above, the value of this entry should
be ["g","in","out"]. If we want to state that any substitution is safe, then
we use the “wildcard” form: ["*"]. We choose to list the substitutable variables
rather than those that are non-substitutable, because the former is always easy
to determine, whereas the latter can be very open ended.

Given all of the above, we can define dictionary entries for set and subset as

setUTCPDict = makeDict

[ ("set",(ExprEntry ["*"] showSet evalSet eqSet ))

, ("subset",(ExprEntry ["*"] showSubSet evalSubset noEq)) ]

Here noEq is an equality test function that always returns Nothing.
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Fig. 4. Predicate datatype (CalcTypes.lhs)

6 Predicates

In Fig. 4 we show the Haskell declarations of the datatypes to represent pred-
icates. Similar to expressions we have basic values such as true (T) and false
(F), with predicate-valued variables (PVar), and composite predicates (Comp)
which are the predicate equivalent of App (see Sect. 5). We also have two ways to
turn expressions into predicates. One (Atm) lifts an expression, which should be
boolean-valued into an (atomic) predicate, while the other is an explicit repre-
sentation (Equal) for expression equality. We can also substitute over predicates
(PSub).

In many ways, we define our predicates of interest in much the same was as
done for expressions. Basic logic features such as negation, conjunction, etc., are
not built in, but have to be implemented using Comp. A collection of these are
pre-defined as part of the calculator, in the Haskell module StdPredicates.

There are a few ways in which the treatment of predicates differ from expres-
sions:

– The simplifier and some of the infrastructure for handling laws treats PVar in
a special way. It is possible to associate an AlfEntry in the dictionary with
a PVar, so defining its alphabet. This can be useful when reasoning about
atomic state-change actions which only depend on s and s′. Such entries will
be looked up when certain side-conditions are being checked.

– We distinguish between having a definition/expansion associated with a Comp,
and having a way to simplify one.

– Rendering predicates involves the pretty printer so the interface is more com-
plex. We explain this below.

6.1 Coding Atomic Semantics

Formally, using our shorthand notations, we define atomic behaviour as in UTCP
as:

A(A) =̂ ls(in) ∧ A ∧ ls′ = ls � (in, out)

where A and A( ) are as in the introduction, and S � (T, V ) is notation from
[20] that stands for (S \ T ) ∪ V .

Coding a Definition. We want to define a composite, called ”A” (represent-
ing A). We define a function that takes a single predicate argument and applies
A to it

patm pr = Comp "A" [pr] -- we assume pr has only s, s’ free



208 A. Butterfield

We can now code up its definition, which takes a dictionary, and a list of its sub-
components and returns a string/predicate pair, interpreted in the same manner
as the string/expression pair returned by the expression simplifier.

One way to code this is as follows. First define our variables and expressions,
because these get used in a variety of places.

ls = Var "ls" ; ls’ = Var "ls’"

inp = Var "in" -- ’in’ is a Haskell keyword

out = Var "out"

lsinout = App "sswap" [ls,inp ,out]

Here, "sswap" is our name for �, and note that Haskell identifiers can contain
the prime (’) character. We then define our atomic predicates (ls(in) and ls′ =
ls � (in, out))

lsin = Atm (App "subset" [inp ,ls])

ls ’eqlsinout = Equal ls’ lsinout

Finally we can define A(a) as their conjunction, where mkAnd is a smart con-
structor for Comp "And", defined in StdPredicates.lhs.

defnAtomic d [a] = Just ("A",mkAnd [lsin ,a,ls’eqlsinout],True)

Coding for Pretty Printing. For rendering Comp predicates, we are going
to generate an instance of the pretty-printer type PP, using a dictionary and
list of sub-predicates, with two additional arguments: one of type SubCompPrint
which is a function to render sub-components, and one of type Int which gives
a precedence level. The type signature is

SubCompPrint s -> Dict s -> Int -> [Pred s] -> PP

The function type is

type SubCompPrint s = Int -> Int -> Pred s -> PP

It takes two integer arguments to begin. The first is the precedence level to be
used to render the sub-component, while the second should denote the position
of the sub-component in the sub-component list, counting from 1. The third
argument is the sub-predicate to be printed. To render our atomic construct we
can define the pretty-printer as follows:

ppPAtm sCP d p [pr]

= pplist [ ppa "A" , ppbracket "(" (sCP 0 1 pr) ")"]

The functions pplist, ppa and ppbracket build instances of PP that respectively
represent lists of PP, atomic strings, and an occurrence of PP surrounded by the
designated brackets. Note that the SubCompPrint argument (sCP) is applied to
pr, with the precedence set to zero as it is bracketed, and the sub-component
number set to one as pr is the first (and only) sub-component. We will show
how the pretty-printing for sequential composition (;;) in UTCP is defined, to
illustrate the support for infix notation.
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ppPSeq sCP d p [pr1 ,pr2]

= paren p precPSeq

( ppopen (pad ";;") [ sCP precPSeq 1 pr1

, sCP precPSeq 2 pr2 ] )

Here pad puts spaces around its argument, and so its use here is equivalent to
ppa " ;; ", while ppopen uses its first argument as a separator between all the
elements of its second list argument. The paren function takes two precedence
values, and a PP value, and puts parentheses around it if the first precedence
number is greater than the second. The variable precPSeq is the precedence level
of sequential composition, here defined to be tighter than disjunction, but looser
than conjunction, as defined in module StdPrecedences. Note, once more, the
use of sCP, and how the 2nd integer argument corresponds to the position of the
sub-predicate involved.

The Predicate Entry
The dictionary entry for predicates has the following form:

PredEntry
{ pcansub :: [String]
, pprint ::
SubCompPrint s -> Dict s -> Int -> [Pred s] -> PP
, alfa :: [String], pdefn :: Rewrite s, prsimp ::
Rewrite s}

type Rewrite s = Dict s -> [Pred s] -> RWResult s
type RWResult s = Maybe ( String , Pred s, Bool )

Fields pcansub and prsimp are the predicate analogues of ecansub and eval in
the expression entry. Here pprint plays the same role as eprint, but is oriented
towards pretty printing. The alfa component allows a specific alphabet to be
associated with a composite —if empty then the dictionary alphabet entries
apply.

The pdefn component, of the same type as prsimp, is used when the user
invokes the Definition Expansion command from the REPL. The calculator
searches top-down, left-right for the first Comp whose pdefn function returns
a changed outcome.

A RWResult can be Nothing, in which case this definition expansion or sim-
plifier was unable to make any changes. If it was able to change its target then it
returns Just(reason,newPred,isTopLevel). The string reason is used to dis-
play the justification for the calculation step to the user. The isTopLevel flag
is a hint to the change-highlighting facilities of the pretty-printer infrastructure.

The dictionary entry for our atomic semantics is then:

patmEntry=("A",PredEntry [] ppPAtm [] defnAtomic (pNoChg "A"))

The function pNoChg creates a simplifier that returns Nothing.
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7 Laws

In addition to the global simplifier and definition expansion facility, we have three
broad classes of laws that can be invoked from the REPL: Reduce; Conditional
Reduce; and Loop Unroll.

The way the latter three laws are applied is somewhat different to the behav-
iour of either the simplifier or definition expansion. Instead the reserved dictio-
nary key "laws" is used to lookup a special dictionary entry

LawEntry { reduce :: [RWFun s]
, creduce :: [CRWFun s], unroll ::

[String -> RWFun s] }

7.1 Reduce

The reduce component of the LawEntry is a list of RWFun, which are defined as
follows:

type RWFun s = Dict s -> Pred s -> Pred s -> RWResult s

The first predicate argument is used to supply an invariant assertion for those
reduction rules that require one. It is a recent new feature of the calculator, not
required for this UTCP theory, and its use is beyond the scope of this paper.

When asked to do a reduce, the calculator then does a top-down, left-to-
right search, where at each point it tries all the laws in its reduce list, in order,
with the current composite being passed in as the second predicate argument.
It terminates at the point of first success (a non-Nothing outcome). A reduce
law is an equation of the form P = Q, where we search for instances of P
and replace them with the corresponding instance of Q. The idea is that we
pattern-match on predicate syntax with the second predicate argument, to see
if a law is applicable (we have its lefthand side), and if so, we then build an
appropriate instance of the righthand-side. The plan is that we gather all these
pattern/outcome pairs in one function definition, which will try them in order.
This is in direct correspondence with Haskell pattern-matching. So for UTCP
we have a function called reduceUTCP, structured as follows:

reduceUTCP d inv (...1st law pattern...) = 1st-outcome
reduceUTCP d inv (...2nd law pattern...) = 2nd-outcome
...
reduceUTCP _ _ _ = Nothing -- catch-all at end, no change

A simple example of such a pattern is the following encoding of II ;P = P :

reduceUTCP d inv (Comp "Seq" [(Comp "Skip" []), pr])

= Just ( ";-lunit", pr, True )
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The pattern matches a composite called “Seq”, with a argument list containing
two predicates. The first predicate pattern matches a “Skip” composite with
no further sub-arguments. The second argument pattern matches an arbitrary
predicate (P in the law above). The righthand side constructs a RWResult return
value, with the string being a justification note that says a reduction-step using
a law called “;-lunit” was applied, and noting that the top-level composite (the
“Seq”) was modified.

7.2 Conditional Reduce

A CRWResult is a RWResult that has been adapted, so that instead of returning
one result if successful, it returns a list of possible results, each paired with a
side-condition predicate.

type CRWResult s = Maybe ( String, [( Pred s, Pred s, Bool)] )
type CRWFun s = Dict s -> Pred s -> CRWResult s

A conditional reduce law is an equation as per reduce, but with conditional
outcomes, e.g. P = Q1 � C � Q2. Matching an instance of P will return a
list of two pairs, the first being (C,Q1), the second (¬C,Q2). No attempt is
made to evaluate C, but instead the REPL asks the user to choose. This is a
key design decision for the calculator. A general purpose predicate evaluator
requires implementing lots of theories about numbers, sets, lists, and whatever
else might be present. Given the scope and purpose of this calculator it is much
more effective to let the user choose.

For an example, here is one pattern of the conditional reduce function for
UTCP. Given x a list of unique variables, and e a list of the same length of
expressions, with x ⊆ {s, ls} we have:

c[e/x] =⇒ (c ∗ P )[e/x] = P [e/x]; c ∗ P
¬c[e/x] =⇒ (c ∗ P )[e/x] = II [e/x]

creduceUTCP d (PSub w@(Comp"Iter" [c,p]) sub)

| isCondition c && beforeSub d sub

= Just( "loop -substn", [ctrue ,cfalse] )

where

csub = PSub c sub

ctrue = ( csub , mkSeq (PSub p sub) w, diff )

cfalse = ( mkNot csub , PSub mkSkip sub , diff )

Here mkSeq, mkNot and mkSkip build sequential composition, negations and stan-
dard UTP skip (II ) respectively. Both isCondition and beforeSub ensure that
their arguments contain no dashed variables.

7.3 Loop Unroll

Iteration is typically defined in UTP as the least fixed point w.r.t. the refinement
ordering that also involves sequential composition, which itself is defined using
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existential quantification, and II .

c ∗ P =̂ μL • (P ;L) � c � II
P ;Q =̂ ∃sm, lsm • P [sm, lsm/s′, ls′] ∧ Q[sm, lsm/s, ls]

II =̂ s′ = s ∧ ls′ = ls

We do not want to explicitly handle quantifiers, or fixed-points. Instead we
prefer to use the loop unrolling law, as this is much more useful for the kinds of
calculations we encounter.

c ∗ P = (P ; c ∗ P ) � c � II

Even more useful are ones that split the conditional and unroll a number of
times (; binds tighter than ∨ but looser than ∧):

c ∗ P = ¬c ∧ II ∨ c ∧ P ; c ∗ P
= ¬c ∧ II ∨ c ∧ P ; c ∧ II ∨ c ∧ P ; c ∗ P
= . . .

The loop unroll functions are like those for reduce but have an extra string
argument: unroll :: [String -> RWFun s]. When the user enters a com-
mand of the form "lsss", the loop unroll facility is activated, and the string
"sss" is passed as the first argument to the functions above. It is up to the user
to decide how to interpret these strings—but the most useful is to treat them
as specifying the number of unrollings to do. We won’t give an example here of
the use of unrolling.

7.4 Bringing It All Together

We make these two reduction functions “known” to the calculator by adding
them into a dictionary.

lawsUTCPDict

= makeDict [("laws", LawEntry [reduceUTCP] [creduceUTCP] [])]

We then can take a number of partial dictionaries and use various dictionary
functions, defined in CalcPredicates, to merge them together.

dictUTCP = foldl1 dictMrg [ alfUTCPDict , ..., lawsUTCPDict]

The main method of working with dictionaries is to construct small ones focussed
on some specific area of interest. These can then be combined in different ways
to provide a number of complete dictionaries that can vary in the order in which
things are tried.

8 Conclusions

We have presented a description of a calculator written in Haskell, that allows the
encoding of an UTP theory under development, in order to be able to rapidly
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perform test calculations. This helps to check that predictions of the theory
match expectations. The tool was not designed to be a complete and sound
theory development system, but instead to act as a rapid-prototype tool to
help smoke out problems with a developing theory. This approach relies on the
developer to be checking and scrutinising everything.

8.1 Costs vs. Benefits

As far as the development of the UTCP theory is concerned, the costs of devel-
oping and customising the calculator have been well compensated for by the
benefits we encountered. This also applies to ongoing work to develop a fully
compositional UTP theory of shared-state concurrency that does not require
run. We note a few observations based on our experience using the calculator.

The “first-come, first-served” approach used by the calculator is surprisingly
effective. We support a system of equational reasoning where reductions and
definitions replace predicates with ones that are equal. In effect this means that
the order in which most of these steps take place is immaterial. Some care needs
to be taken when several rules apply to one construct, but this can be managed
by re-arranging the order in which various patterns and their side-conditions can
be checked.

The main idea in using the calculator is to find a suitable collection of pat-
terns, in the right order, to be most effective in performing calculations. The
best way to determine this is to start with none, run the calculator and when
it stalls (no change is happening for any command), see what law would help
make progress, and encode it. This leads to an unexpected side-effect of this
calculator, in that we learnt what laws we needed, rather than what we thought
we would need.

Effective use of the calculator results in an inexorable push towards algebras.
By this we do not mean the Kleene algebras, or similar, that might characterise
the language being formalised. Rather we mean that the most effective use of
the calculator results when we define predicate functions that encapsulate some
simple behaviour, and demonstrate, by proofs done without the calculator, some
laws they obey, particularly with respect to sequential composition. In fact,
one of the ‘algebras’ under development for the fully compositional theory, is
so effective, that many of the test calculations can actually be done manually.
However some, most notably involving parallel composition, still require the
calculator in order to be feasible.

8.2 Correctness

An issue that can be raised, given the customisation and lack of soundness
guarantees, is how well has the calculator been tested? The answer is basically
that the process of using it ensures that the whole system is comprehensively
tested. This is because calculations fail repeatedly. Such failures lead to a post-
mortem to identify the reason. Early in the calculator development, the reason
would be traced to a bug in the calculator infrastructure. The next phase has
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failures that can be attributed to bugs in the encoding of laws in Haskell, or poor
ordering in the dictionary. What makes the above tolerable is that the time taken
to identify and fix each code problem is relatively short, often a matter of five to
ten minutes. The final phase is where calculation failures arise because of errors
in the proposed theory—this is the real payback, as this is the intended purpose
of the tool. The outcome of all of this iterative development is a high degree
of confidence in the end result. In the author’s experience, the cost of all the
above failures is considerably outweighed by the cost of trying to do the check
calculations manually.

There are no guarantees of soundness. But working on any theory by hand
faces exactly the same issues — a proof or calculation by hand always raises
the issue of the correctness of a law, or the validity of a “proof-step” that is
really a number of simpler steps all rolled into one. In either case, by hand or by
calculator, the theory developer has a responsibility to carefully check every line.
This is one reason why so much effort was put into pretty-printing and marking.
The calculator’s real benefit, andmain design purpose, is the ease with which it
can produce a calculation and transcript.

In effect, this UTP Calculator is a tool that assists with the validation of
UTP semantic definitions, and is designed for use by someone with expertise in
UTP theory building, and a good working knowledge of Haskell.

8.3 Future Work

We plan a formal release of this calculator as a Haskell package. A key part
of this would be comprehensive user documentation of the key parts of the
calculator API, the standard built-in dictionaries, as well as a complete worked
example of a theory encoding. There are many enhancements that are also being
considered, that include better transcript rendering options (e.g. LATEX) or ways
to customise the REPL (e.g. always do a simplify step after any other REPL
command). Also of interest would be finding a way of connecting the calculator
to either the U ·(TP )2 theorem-prover [4] or the Isabelle/UTP encoding [9] in
order to be able to validate the dictionary entries. All the code described here
is available online at https://bitbucket.org/andrewbutterfield/utp-calculator.git
as Literate Haskell Script files (.lhs) in the src sub-directory.
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2. Bertot, Y., Castéran, P.P.: Interactive Theorem Proving and Program Develop-
ment: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer, Heidelberg (2004)

3. Bird, R.: Thinking Functionally with Haskell. Cambridge University Press,
Cambridge (2014)

https://bitbucket.org/andrewbutterfield/utp-calculator.git
http://dx.doi.org/10.1007/3-540-18779-0


UTPCalc – A Calculator for UTP Predicates 215

4. Butterfield, A.: Saoith́ın: a theorem prover for UTP. In: Proceedings of Unifying
Theories of Programming - Third International Symposium, UTP 2010, Shang-
hai, China, 15–16 November 2010, pp. 137–156 (2010). http://dx.doi.org/10.1007/
978-3-642-16690-7 6

5. Butterfield, A.: The logic of U · (TP )2. In: Unifying Theories of Program-
ming, 4th International Symposium, UTP 2012, Paris, France, 27–28 August
2012, Revised Selected Papers, pp. 124–143 (2012). http://dx.doi.org/10.1007/
978-3-642-35705-3 6

6. Butterfield, A., Mjeda, A., Noll, J.: UTP semantics for shared-state, concurrent,
context-sensitive process models. In: Bonsangue, M., Deng, Y. (eds.) TASE 2016
10th International Symposium on Theoretical Aspects of Software Engineering,
pp. 93–100, IEEE, July 2016

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 7

8. Foster, S., Woodcock, J.: Mechanised theory engineering in isabelle. In: Irlbeck,
M., Peled, D.A., Pretschner, A. (eds.) Dependable Software Systems Engineering,
NATO Science for Peace and Security Series, D: Information and Communica-
tion Security, vol. 40, pp. 246–287. IOS Press (2015). http://dx.doi.org/10.3233/
978-1-61499-495-4-246

9. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-14806-9 2

10. Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 53–96. Springer, Heidelberg (1995). doi:10.1007/
3-540-59451-5 3. http://www.cs.chalmers.se/∼rjmh/Papers/pretty.ps

11. Marlow, S. (ed.): Haskell 2010 Language Report. Haskell Community (2010).
https://www.haskell.org/definition/haskell2010.pdf

12. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assis-
tant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).
http://link.springer.de/link/service/series/0558/tocs/t2283.htm

13. Nuka, G., Woodcock, J.: Mechanising a unifying theory. In: Dunne, S., Stoddart,
B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 217–235. Springer, Heidelberg (2006).
doi:10.1007/11768173 13

14. Shankar, N.: PVS: combining specification, proof checking, and model checking.
In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 257–264.
Springer, Heidelberg (1996). doi:10.1007/BFb0031813

15. Van Den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the ASF+SDF compiler. ACM Trans. Program. Lang. Syst. 24(4),
334–368 (2002)

16. Visser, E.: Stratego: a language for program transformation based on rewrit-
ing strategies system description of stratego 0.5. In: Middeldorp, A. (ed.) RTA
2001. LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001). doi:10.1007/
3-540-45127-7 27

17. Wadler, P.: A prettier printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming (Cornerstones of Computing), Chap. 11, pp. 223–244, Palgrave -
Macmillan, March 2003

18. Wenzel, M.: The Isabelle/Isar reference manual, June 2010. http://www.cl.cam.
ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf

http://dx.doi.org/10.1007/978-3-642-16690-7_6
http://dx.doi.org/10.1007/978-3-642-16690-7_6
http://dx.doi.org/10.1007/978-3-642-35705-3_6
http://dx.doi.org/10.1007/978-3-642-35705-3_6
http://dx.doi.org/10.1007/3-540-44881-0_7
http://dx.doi.org/10.3233/978-1-61499-495-4-246
http://dx.doi.org/10.3233/978-1-61499-495-4-246
http://dx.doi.org/10.1007/978-3-319-14806-9_2
http://dx.doi.org/10.1007/3-540-59451-5_3
http://dx.doi.org/10.1007/3-540-59451-5_3
http://www.cs.chalmers.se/~rjmh/Papers/pretty.ps
https://www.haskell.org/definition/haskell2010.pdf
http://link.springer.de/link/service/series/0558/tocs/t2283.htm
http://dx.doi.org/10.1007/11768173_13
http://dx.doi.org/10.1007/BFb0031813
http://dx.doi.org/10.1007/3-540-45127-7_27
http://dx.doi.org/10.1007/3-540-45127-7_27
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf


216 A. Butterfield

19. Winter, V., Beranek, J.: Program transformation using HATS 1.84. In: Lämmel, R.,
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