
Chapter 7
Reasoning About Process Models: What
Description Logic Offers to Business Process
Model Analysis

Michael Fellmann

Abstract Business process models are important for the design and implementation
of process-aware information systems. Up to now, process models are represented
predominantly as semi-formal models. Such models rely on the natural language to
describe the models content via labels associated to the model elements. Due to the
ambiguities of natural language, the semantics thus is not clear andwell-defined. This
in turn leads to problems when analyzing process models such as misinterpretations
by humans or incomplete answers to queries by machines. In order to tackle this
challenge, description logic-based ontologies provide well-defined semantics and
can be used to represent graph-like knowledge structures such as business process
models. Yet, up to now the capabilities of modern ontology languages are not widely
used to represent, query and reason about process models. Therefore, the chapter
presents an amalgamation of process models with ontologies. This amalgamation
is formed by process models being represented in an ontology and being annotated
with further elements of that ontology. In this way, the process model elements are
augmented by machine processable semantics. By means of a concrete example, it is
illustrated which deductions can be inferred using standard reasoning engines. With
this, “intelligent” answers to queries executed against the knowledge base containing
the process knowledge are possible that advance the model-based design of process
aware information systems. Finally, an existing tool is briefly presented as a proof-
of-concept. It allows creating and querying the ontology-based representation. This
chapter is an excerpt of the introductory part of [1] which has been extended and
revised.

M. Fellmann (B)
Information Systems Research Group, University of Rostock,
Faculty of Computer Science and Electrical Engineering,
Albert-Einstein-Str. 22, 18059 Rostock, Germany
e-mail: Michael.Fellmann@Uni-Rostock.de

© Springer International Publishing AG 2017
G. Grambow et al. (eds.), Advances in Intelligent Process-Aware
Information Systems, Intelligent Systems Reference Library 123,
DOI 10.1007/978-3-319-52181-7_7

171

172 M. Fellmann

7.1 Introduction

For planning, controlling and managing of business processes and in order to handle
the complexity associated with them, semi-formal models have been established.
Typically, semi-formal modelling languages are used for the construction of such
models. These languages try to balance mathematical accuracy with intuitive com-
prehension. Examples are the Business Process Model and Notation (BPMN), the
Event-driven Process Chain (EPC) or the UML Activity Diagram. A characteristic
feature of these languages is that the labels of model elements, e.g. Check order as
a label of a BPMN task or EPC function, are assigned by the modeller with the help
of natural language. Therefore, an essential part of the semantics of a process model
is always bound to natural language. Due to the ambiguities of the natural language
and a lack of (formalized) domain- or background knowledge, the processing of the
models semantics is a challenging task.

The chapter at hand addresses this task. The semantics-related challenges of semi-
formalmodellingwill be examined inmore depth inSect. 7.2. The process representa-
tion based on description logicwhich is the prerequisite for semanticallywell-defined
model elements and machine reasoning is described in Sect. 7.3. How the knowledge
contained in a description logic representation can be accessed via a query language
is presented in Sect. 7.4. The types of inferred facts are characterized in Sect. 7.5. In
order to use the concepts introduced, tool support is presented in Sect. 7.6. Finally,
a conclusion is given in Sect. 7.7. This chapter is a revised and translated version of
the introductory paper of [1] where the approach is described in more detail.

7.2 Semantics-Related Challenges of Semi-formal
Modelling

In the following, some semantics-related challenges in semi-formal modelling are
described. The first two challenges relate to the lack of unambiguous and machine
processable semantics of individual model elements. The third challenge described
is the lack of tools to support the creation and analysis of models with machine
processable semantics at the level of individual model elements.

7.2.1 Ambiguities of the Natural Language

Natural language inevitably entails room for interpretation, which is, in the context of
semi-formal modelling, referred to as a linguistic defect in literature. In this context,
it is possible to distinguish between synonyms, homonyms, equipollence, vagueness
and incorrect designations [2]. Especially models which are collaboratively created
are problematic since agreeing on common terms is difficult in practice [3, 4].

7 Reasoning About Process Models: What Description Logic … 173

The mentioned linguistic defects reduce the benefit of models as a medium of
communication and emerged as one of the biggest problems of semi-formal mod-
elling in practice [5]. For example, a reduced benefit or additional costs can emerge
from synonyms in the labels of model elements. As a result, multiple drafts or multi-
ple implementations of supporting information systems can occur in the subsequent
phases [6]. Conversely, more recent research shows that commonly accepted and
comprehended terminology are a factor of success for the development and imple-
mentation of information systems [7]. Furthermore, they cut costs, improve collabo-
ration and simplify the decision-making for managers [8]. In this respect, projects are
more successfulwhen the actors early agree on a common terminology in comparison
to projects where this is not the case [9].

7.2.2 Lack of Machine Processable Semantics

An inconsistent language used in conjunction with linguistic defects, as they occur in
the current status quo of semi-formal modelling approaches, do not only complicate
the interpretation and processing of models by human beings. They also prevent the
(exact) processing of knowledge represented by the models with machines. How-
ever, this processing is essential in order to enable advanced process modelling tool
features such as construction recommendations for model completion. Also, it is
indispensable for automated process analyses on the level of the semantic model
content concerning their completeness and a consistent degree of abstraction. Partic-
ularly for inexperienced modellers, modelling with a consistent degree of abstraction
is challenging [10, 11]. Further, a problemwhile searching for models or model frag-
ments is that the detection of facts and relations implicitly contained in the models is
impossible although this information is deducible by logical conclusions. One exam-
ple of this is a business process which includes a function that accesses resources
stockpiled in a warehouse. Hence, the process reduces the stock. This deduction
cannot be derived, if these connections are not specified in a machine processable
form.

7.2.3 Lack of Semantics-Based Tool Support

Despite the variety of tools for generation, analysis and administration of models
which were developed in the past, most of these tools do not consider the seman-
tic content of individual model elements. Current advancements—especially in the
commercial sector—mostly improve collaboration and cooperation aspects, but not
the semantic support offered by the tool. This represents a gap in the current state of
science and practice in particular against the background of the already developed
standardized semantics in the form of extensive ontologies such as the MIT Process
Handbook or the PCF taxonomy (Process Classification Framework). These are so

174 M. Fellmann

far rarely used in tools for supporting model construction. Admittedly, in the area of
SemanticWeb Services there has been extensive research work in a scientific context
to improve the transformation of (workflow) models to machine processable models
[12–20]. But this research did barely lead to improved tools regarding the modelling
of business-oriented process models.

Therefore, in the next Sect. 7.3 the fundamentals of an approach are introduced
that enables to build advanced tools improving the machine support for construction
and analysis of process models. This approach consists of a description logic-based
process representation.

7.3 Description Logic-Based Process Representation

For representation purposes of formal ontologies, many languages in the area of
artificial intelligence and especially in the area of the Semantic Web have been
developed. The underlying description logics have been intensively researched for
approximately 30 years. Semantic networks and frames can be thought of as precur-
sors of description logic [21]. They intended a “natural” knowledge representation,
while the efficiency of algorithms did not have priority. Contemporary description
logics are designed with the aim to maintain an efficient computation despite a high
expressiveness. Therefore, machine inference is also made possible within large
knowledge bases (for the evolution of description logics, cf. [21, 22]).

In the past years, there has been a huge progress concerning the expressiveness
and especially the scalability of knowledge bases. In this context, in particular the
results of the “Billion Triple Challenge” are relevant—a contest where different
developers and providers of knowledge base storages make a contest on processing
data sets consistingof onebillion triples (a triple is an elementary statement consisting
of a subject, predicate and object—these terms a borrowed from linguistics). This
mentioned progress has enabled the extension of semi-formal process modelling,
which is described in this chapter.

The Web Ontology Language (OWL) is used for representation purposes within
this research, because it is widespread even beyond the AI-research community.
Further, it is standardized through theW3C [23] and a huge tool support is available.
Specifically description logics based on the OWL-DL profile (“DL” therefore stands
for “Description Logics”) have been selected, because of the high expressiveness
while retaining computational efficiency. There are powerful interference machines
available for OWL-DL like Pellet, FACT++ and Hermit.

In the following subsection, an overview of the approach is given from a concep-
tual view. Following this, an example is presented with an emphasis on representing
the control flow of process models.

7 Reasoning About Process Models: What Description Logic … 175

Fig. 7.1 Approach for semantic business process modeling

7.3.1 Conceptual Overview

The semantic process modelling presented in the context of this chapter is based on
an ontology-based process model representation. The meta-model of the approach
is described in [24]. Figure7.1 illustrates essential elements of the approach for
semantic business process modelling and their interaction.

Themodel-layer is connectedwith the layer ofmetadata by representing themodel
on the layer of metadata (dashed line between the layers). Thereby, the resulting gen-
erated metadata describing the model are stored in the knowledge base (arrow 1).
They enable an interpretation of the model on the layer of ontology (arrow 2). This
interpretation is possible because of the connections of elements from the metadata-
layer with elements of the ontology-layer (lines between themetadata- and ontology-
layer). In the context of this chapter, this connection is also named semantic annota-
tion. On the layer of queries and rules, the possible inferences on the ontology-layer
can be used to answer queries and check correctness conditions (arrow 3). They can
not only relate to explicit represented, but also to logically deductible facts. The
query and rules can both be used by analysts and model constructors (arrow 4 and
5) to retrieve information from the knowledge base and check the correctness. To do
so, a user interface for example in the form of a modelling tool extension is required
(cf. upper right image). The hereby possible insights can lead to a need of revising
the model (arrow 6).

176 M. Fellmann

7.3.2 Ontology-Based Process Model Representation

In order to annotate model elements with a well-defined semantics and to query the
process knowledge on a semantic level, an ontology-based process model represen-
tation is required. It will be explained briefly in this section. To begin with, in order
to represent process models in an ontology, classes (also denoted as “concepts” in
the context of ontologies) such as Function, Event or Gate have to be present in the
ontology scheme. Moreover, properties (also referred to as “relations” or “connec-
tions”) that connect instances (also referred to as “individuals”) of those classes have
to be specified such as connects_to. Fundamentally, the ontology schema in the form
of classes and properties for representation of business process models was already
presented in [25]. Thus in the remainder of this section, emphasis is put on the exten-
sion of this scheme by additional properties. In order to ease behavioural queries, the
ontology schema was extended by a few OWL object properties (hereinafter simpli-
fied referred to as properties), which are used to represent the control flow in terms
of behavioural queries. The following listing demonstrates the hierarchical structure
of all properties of the extended ontology scheme by indentation.

graph_arc

flow

connects_to

has_after_AND

has_after_decision

has_after_OR

has_after_XOR

has_after_event

has_after_function

flow_all

flow_all_strict

flow_strict

flow_all_strict

precedes

precedes_all

is_parallel_to

is_exclusive_to

is_exclusive_to_strict

is_multichoice_to

is_multichoice_to_strict

In the ontology language OWL, the property hierarchy is specified using the
construct rdfs:subPropertyOf inherited from the RDF-schema. The addition of name
space prefixes has been omitted in favour of a better readability. All properties are
derived from the relation graph_arc. The transitive property flow specifies a directed

7 Reasoning About Process Models: What Description Logic … 177

path between model elements. A direct connection between two model elements
is specified by a property connects_to. The type of the element following in the
control flow can be implicitly indicated with semantically more specific properties.
These comprise has_after_AND, has_after_OR, has_after_XOR, has_after_ event
and has_after_function. As the property flow (such as all properties in RDF or OWL)
is directed, a successor relationship is specified between two elements a and b, which
are connected by flow. Predecessor relationships are not separately represented. If
these are required for the specification of graph patterns in queries, they can be
specified by interchanging the elements a and b in the query. Moreover, the terms
of these properties are chosen in such a way so that they closely correspond with
propositional logic operators in order to enable intuitive queries. These propositional
logic operators are also eponymous for control flow operators in the EPC or other
languages such as BPMN.

Moreover, the property is_parallel_to indicates a possible parallel execution. The
properties is_exclusive_to, is_exclusive_to_strict and is is_multichoice_to as well as
is_multichoice_to_strict indicate an exclusiveness relation.

In general, the suffix strict implies that the corresponding path is located outside
of loops. The suffix_all occurring in properties such flow_all and flow_all_strict
indicates that no alternative decisions are located on the path between two nodes.
Paths with the properties precedes and precedes_all are interrupted when branches
caused by alternative decisions aremerged. This is done because from the perspective
of the corresponding join connector, it cannot be specified which elements were
previously executed. The property precedes_all is also interrupted before loops,
because elements can be activated multiple times in loops without the element before
the loop to be executed.

Figure7.2 illustrates the existence of the properties by a process example. In this
example, the node F10 is selected. All other nodes in the model which are connected
to F10 via chains of properties are marked with symbols representing the respective
type of the properties. For example, all tokens that pass node F10 also pass F9, E3
and E2—however, it may be the case that F9 is executed before F10 or vice versa.
A node that is executed strictly after F10 and executed for all tokens that pass F10
is E2.

Hierarchical structuring of the properties for control flow representation enables
queries with different accuracy. This is also requested from Beeri et al. [26] for
an adequate query language. For instance, with the property flow it can be discov-
ered whether a connection between two elements exist. Further, with the property
has_after_XOR only such model elements in the ontology-based representation can
be found which directly follow a logical alternative decision. The featured proper-
ties in queries can be combined arbitrarily. In this way, some parts of queries may
be more precisely while others are coarser enabling a flexible querying of process
knowledge.

The presented ontology-based representation of process models can be generated
using the algorithm described in [1] for so called “structured models” only. That is,
the models must contain balanced splitting and merging connectors whereby each
opening connector is closedwith a connector of the same type so that blocks of nested

178 M. Fellmann

Fig. 7.2 Sample model with ontology properties for control flow representation

connectors occur. However, the models are allowed to contain do-while-loops (such
as in Fig. 7.2 between F6 and E3). If the models are unstructured, a subset of the
properties can be generated. To do so, the behavioural profiles described and imple-
mented by [27] can be used. Using these profiles, three relations can be computed

7 Reasoning About Process Models: What Description Logic … 179

that are strict order, exclusiveness and interleaving order. The first two can be used
to detect the flow_strict and is_exclusive_to_strict properties.

7.4 Querying Process Knowledge

In this Section it is explained how the knowledge captured in the ontology-based
process model representation (cf. Sect. 7.3) can be queried using the standard seman-
tic web query language SPARQL. This language is a standardized query language by
theW3C to query graph structures. It achieved a de facto status especially in the area
of Semantic Web and the Linked Open Data (LOD)-movement [28]. This success
may be caused by the simple basic structure of the queries. SPARQL is meanwhile
supported by major commercial databases of the business environment. These also
offer a scalable storage of large quantities of OWL ontologies or RDF files as well as
manifold inference capabilities. The relevance of this aspect is emphasized by real
world enterprises, which use hundreds of models [29], which achieve a substantial
size (the so-called “process wallpaper”) [30].

A SPARQL query refers to RDF triples, which represent a directed graph. Basi-
cally, the query consists of a pattern matching, a modifier of solutions and a return
part [28]. The function of pattern matching is to compare a graph pattern, which
is composed out of triple patterns, against an RDF-graph. In the context of the
ontology-based process representation, graph patterns can be intuitively understood
as structure or “a way through the graph”. The triple patterns, which determine the
graph pattern, represent the navigation step. At the position of the subject and object
of a pattern, classes of ontology or the instances of the ontology can be specified. At
the position of the predicate, the ontology properties can be specified. Moreover, at
the position of the object, simple data values such as literals (e.g. character strings)
can be specified. A simple query to return all instances in the ontology, which are
connected through a property predicate, can be formulated as follows.
SELECT ?var1 ?var2 WHERE { ?var1 predicate ?var2 }

Within this chapter, this general scheme will be applied to query process models.
Due to the chosen representation of the process models, in which the elements of
the model are represented as instances and the control flow as properties in the
ontology, an intuitive application of SPARQL is possible for searching in process
graphs. The represented elements of the model in the ontology occur in these queries
at the position of the subject or the object in a triple pattern. By combining several
patterns, complex queries can be created. Queries may also contain placeholders, so
called blank- or anonymous nodes. A simple example for this would be to return all
activities being followed by a XOR decision.
SELECT ?decision WHERE { ?decision :has_after_XOR [] }

The graph model of this query defines one single triple pattern; its subject is
the variable ?decision, which is also used for the return, its predicate has the
property :has_after_XOR and its object is an anonymous node [] specified as
a dummy for arbitrary nodes. Due to the integration of behavioral properties like

180 M. Fellmann

:flow_all_strict in the ontological representations, behavioral queries are pos-
sible as well. For example all activities, which in any case will be executed once after
the process is started, can be retrieved by the following query.

SELECT ?mandatory WHERE {

?x a :StartEvent ; :flow_all_strict ?mandatory

}

For queries with complex paths between two nodes, property path expressions
enable a significant gain in expressiveness and likewise a simplified notation. For
example to return such model element pairs, which are on a path connected with at
least one subsequent XOR- or OR-split and after this with at least two sequenced
AND-splits, the following query can be used.

SELECT ?node1 ?node2 WHERE {

?node1 (:has_after_XOR | :has_after_OR)+

/ :has_after_AND{2,}/:connects_to ?node2

}

Path expressions allow the declaration of cardinalities, in short form for arbitrary *,
for at least one + and optional ? or in detail by a min-max-notation {min,max}.
The concatenation of several properties for the navigation through the graph can
be written with a slash / and alternatives are represented in parentheses (opt1 |
opt |...| optN). However, with SPARQL it is not possible to return the spe-
cific pattern, including the nodes, when not only the nodes at the end of a path
are relevant. This can easily be upgraded with extensions like GLEEN [31]. Other
extensions of SPARQL allow more comprehensive restrictions for searching on a
graph. For example, these restrictions can refer to the presence or absence of spe-
cific nodes on a path. With RPL (RDF Path Language) [32] an approach exists for
the navigation in RDF-graphs, similar to XPath expressions in the context of XML-
standards. SPARQ2L supports the subgraph extractions from RDF-data and with
CSPAROL (Constrained SPARQL) [33] an extension for describing path-restrictions
exists, which can be explained in cooperation with the extension PSPARQL (Pattern
SPARQL) [34]. Sometimes also new query languages like RDFPath are developed,
which enable an expressive path-declaration on largeRDFgraphs [35].More research
that could be applied to extend the approach presented here exists in the area of graph
databases [36].

To reflect the semantic annotation in the query, the graph model has to be
extended with corresponding triple patterns, specifying the annotation. For exam-
ple to return all model elements that are annotated with an ontology instance
:notifiy_customer via the annotation property :equivalent_to, the fol-
lowing query can be used.

7 Reasoning About Process Models: What Description Logic … 181

SELECT ?notify WHERE {

?notify :equivalent_to :notify_customer

}

Amore abstract form of a query occurs when the ontology-instance used to anno-
tate a model element is unknown. Therefore an ontology-class will be specified
instead of an ontology-instance. In addition, the annotation can be formulized more
unspecific, by using the super-property :has_annotation instead of the sub-
properties :equivalent_to and :narrower_than. In this way, annotations
that are semantically equivalent as well as more general will be found. For exam-
ple to return all model elements that are annotated with an ontology-instance of the
class :StrategicActivity via the property :has_annotation, the follow-
ing query can be used.

SELECT ?strategic WHERE {

?strategic :has_annotation [a :StrategicActivity]

}

By querying the ontology-instance type with a, which is a short form for
rdf:type, the entire spectrum of conclusions for classifying instances, that mod-
ern description logics like OWL 2 for the classifications of instances provide, can be
used. This machine inferred facts will be included in the result of the query together
with other inferences for example based on transitive properties.

In the next section, the deductions that are added to the ontology-based process
model representation by standard reasoners are described. The deductions result in
additional facts being inferred by machine reasoning procedures. These facts enrich
the results that can be retrieved by queries such as described in this chapter. In the
next chapter, the facts are characterized in further detail.

7.5 Use of Machine Reasoning

In this section, at first an overview on the subject of automatic reasoning is provided.
After this, a characterization of important types of inferences is provided. Inferences
are distinguished first according to whether they relate to type information or rela-
tion information. Second, according to whether they involve the ontology instances
representing the process model or the domain. These distinctions lead to a matrix
of four inference types (cf. Fig. 7.3 bottom). Examples to explain these inference
types are subsequently illustrated by (a) pointing to a coherent annotated sample
process graphically illustrated in Fig. 7.3, (b) by describing the inference type and
its practical value for querying using natural language and (c) by giving an example
in description logics syntax along with explanations.

182 M. Fellmann

ex:f1 ex:x1 ex:f2 ex:f3ex:e1

p:SplitNode

p:ActivityNode

p:ExclusiveChoice

p:StartEvent

p:ProcessGraphNode

p:EventNode p:GateNode

equivalent_to

p:EnterpriseProcess

p:entry_and_
verify_order

s:Objects:Proposition

s:SelfConnectedObject

s:CorpuscularObject

s:ContentBearingObject

s:Physicals:Abstract

s:Entity

p:Activity

p:Event s:Procedure

s:Rule

s:Process

equivalent_to

p:notifi-
cation

equivalent_to

p:database

Legend
Inferred hierarchy
Inferred type

Inferred role instance

 Order entry
and

verification

 Confirm
order

p:reject
_order

p:confirm
_order

p:creates
p:creates

Ontology class

Ontology instance

Class hierarchy

Type
Annotation relationship

Property instance

 Reject
order

TBox
Model Representation

TBox
Domain Representation

ABox
Model
Represen-
tation

ABox
Domain
Represen-
tation

Model Domain

Re
lat

ion
Ty

pe

Control
flow

inference

Object
relation

inference

Construct
type

inference

Object
type

inference

Inference Types

Inference relations

4

32

1

p:has_after_function,
p:flow_strict,

p:precedes_all
p:has_after_function,

p:flow_strict,
p:precedes_all

p:depends

p:requires

p:depends

p:has_after_function,
p:flow_all_strict,
p:precedes_all

p:has_after_XOR,
p:flow_all_strict,
p:precedes_all

p:connects_to,
p:flow,

p:precedes

p:flow,
p:flow_strict,
p:precedes,

p:precedes_all

XOR

p:connects_to,
p:has_after_decision

p:flow,
p:flow_all,

p:flow_strict,
p:precedes

Order is
receipt

p:flow,
p:flow_strict,
p:precedes,

p:precedes_all
p:flow,

p:flow_strict,
p:precedes,

p:precedes_all

p:connects_to,
p:flow,

p:flow_all,
p:flow_strict,
p:precedes

p:connects_to,
p:flow,

p:precedes

p:flow,
p:flow_strict,
p:precedes,

p:precedes_all

p:flow,
p:flow_all,

p:flow_strict,
p:flow_all_strict,

p:precedes,
p:precedes_all

Fig. 7.3 Inference types of the ontology-based process representation

7 Reasoning About Process Models: What Description Logic … 183

7.5.1 Overview

In this section, types of machine inferences will be characterized. The types are
intended and described in terms of their relevance for the business-level interpretation
of process models, not as general categories of inferences possible with description
logics. Figure7.3 illustrates the types that are connected to the respective inferences
depicted by a line with a dot-and-dash-pattern integrated in the sample ontology-
based process representation. In more detail, the classification of an inference to an
inference type follows out of the crossing of such lines through a dark filled rectangle,
which is connected to a corresponding inference type. The namespace p: used in
Fig. 7.3 stands for the extensions of the SUMO-ontology [37], s: for the SUMO-
ontology itself and ex: (example) for any example-namespace. The inferences
presented in Fig. 7.3 represent additions both to the TBox (Terminological Box, also
called ontology scheme) and the ABox (Assertional Box, also called ontology data)
of the ontology. In this contribution, the term ontology includes both TBox andABox.
This use is common in the context of OWL ontologies.

7.5.2 Characterization of the Four Types of Inferences

According to their content, the conclusions can be classified into four inference types
being construct type inference, control flow inference, object relation inference and
object type inference. They will to be characterized in the following.

7.5.2.1 Construct Type Inference

Concerned here are conclusions that relate to the type of ontology instances which
represent the model elements. In queries, the construct type inference enables an
abstraction of the ontology classes which are used to represent the constructs of a
modelling language. For example, the fact that the ontology instance ex:x1 (the
XOR-connector) is inferred to be of type p:GateNode is a construct type inference
since the type of the model element is inferred. In Fig. 7.3, this inference is depicted
by the dotted line between the ontology instance belonging to the ABox model
representation and the corresponding ontology class belonging to the TBox model
representation. In addition to the graphical illustration, this inference is explained in
the following using the DL-syntax common in description logics. The descriptions
are divided into two parts: An inferred fact and its explanation.

184 M. Fellmann

Inferred fact:
p:GateNode(ex : x1)

Explanation:
p: ExclusiveChoice(ex : x1)
p: ExclusiveChoice � p : Spli t Node
p: Spli t Node � p:GateNode

The inferred fact expresses that the individual ex:x1 is a member of the class
p:GateNode. This can be explained by the membership of ex:x1 in the class
p:ExclusiveChoice being a subclass of p:SplitNode which in turn is a
subclass of p:GateNode.

An example for the practical use of the construct type inference in queries is the
search for events, without the need to specify whether it is a start, intermediate or
end event. Without this type of inference, the desired type of event has to be specified
exactly or all sorts have to be enumerated in the query. Hence using construct type
inference, a variable degree of abstraction from the constructs of the modelling
language originally used for constructing the model can be achieved.

7.5.2.2 Control Flow Inference

These are conclusions relating to the properties in the ontology representing the
control flow of the process model. In queries, the control flow inference provides
an abstraction of control flow structures of a process model. For example, the fact
that ex:e1 (Order is receipt) is inferred to be connected via a p:flow-property
with ex:f2 (Confirm order) is a control flow inference since two elements that are
not directly connected are inferred to be connected via properties. In Fig. 7.3, this
inference is depicted by the arrow with a dotted line and a label “p:flow” between
the two ontology instances in the ABox model representation. In DL-Syntax, the
example is described as shown below.

Infered fact:
p: f low(ex : e1, ex : f 2)

Explanation:
p: f low_strict (ex : e1, ex : f 1)
p: f low_strict (ex : f 1, ex : x1)
p: f low_strict (ex : x1, ex : f 2)
p: f low_strict+ ≡ p: f low_strict
p: f low_strict (ex : e1, ex : f 2)
p: f low_strict � p: f low

7 Reasoning About Process Models: What Description Logic … 185

The inferred fact expresses that the individualex:e1has a propertyp:flowwith
a valueex:f2, in otherwords, thatex:e1 andex:f2 are connected by the property
p:flow. This can be explained by the three connections ex:e1 with ex:f1,
ex:f1 with ex:x1 and ex:x1 with ex:f2 via the property p:flow_strict.
Since the property is transitive (which is indicated using the symbol “+” in the
DL-syntax), it follows that ex:e1 is also connected to ex:f2. Since the property
p:flow_strict is a sub-property of p:flow, it follows that ex:e1 is connected
to ex:f2 via p:flow.

The practical use of the control flow inference lies in the abstraction of con-
crete structures in queries, because the inferred properties in the ABox allow to
query “direct connections” between the represented model elements in the ontology.
Moreover, using the property hierarchy in the TBox of the ontology, a variable degree
of abstraction of the control flow can be achieved.

7.5.2.3 Object Relation Inference

Conclusions of this type refer to the relations between ontology instances used for
annotating model elements and the domain representing instances in the ontology.
The object relation inference allows to request more context and information about
annotated model elements that are not explicitly covered in the ontology, but can
be inferred by the inference engine. In particular by transitive properties or property
chains diverse conclusionsmay result which lead to an advanced semantic interpreta-
tion of an annotatedmodel element and thus to new insights. For example, the fact that
the instance p:confirm_order is dependent on the p:database is an object
relation inference since a relation between an annotated model element and another
object from the domain is inferred. The inferred fact is also depicted in Fig. 7.3 by
the arrow with a dotted line and a label “p:depends” between the two instances in
the ABox domain representation. In DL-Syntax, the example is described in more
detail containing the relevant background knowledge as shown below.

Inferred fact:
p: depends(p: con f irm_order, p: database)

Explanation:
p: creates(p: con f irm_order, p: noti f ication)
p: requires(p: noti f ication, p: database)
p: createsorequires → depends

The inferred fact expresses that p:confirm_order has a property
p:dependswith avaluep:database, in otherwords, thatp:confirm_order
is connected to p:database by the property p:depends. This can be explained
by two properties and a property chain. The first property p:creates connects

186 M. Fellmann

p:confirm_order with p:notification, the second property
p:requires connects p:notification with p:database. Since there is
a property chain specified (last line in the explanation-part of the DL-syntax above)
that says that the composition of the properties p:creates and p:requires
constitutes a p:depends-relation, it can be inferred that p:confirm_order
and p:database are connected by the property p:depends.

The practical use of object relation inferences in queries lies for example in dis-
covering dependencies that are imposed on the execution of activities or the detection
of objectives (transitively) supported by an activity.

7.5.2.4 Object Type Inference

Conclusions of this type relate to the type of instances in the ontologywhich represent
domain knowledge and that are used to annotate model elements. In queries, the
object type inference enables the abstraction of these concrete ontology instances
used for annotation. For example, the fact that p:entry_and_verify_order
is of type s:Process is an object type inference since the type of the instance
p:entry_and_verify_order which is used to annotate the activity ex:f1 is
inferred. In Fig. 7.3, this inferred fact is also depicted by the dotted line between the
ontology instance in the ABox domain representation and the respective ontology
class in the TBox domain representation. In DL-Syntax, the example is described as
shown below.

Inferred fact:
s: Process(p: entr y_and_veri f y_order)

Explanation:
p: EnterpriseProcess(p: entr y_and_veri f y_order)
p: EnterpriseProcess � p: Activi t y
p: Activi t y � s: Process

The inferred fact expresses that the individualp:entry_and_verify_order
is a member of the class s:Process. This can be explained by the membership of
this individual in the class p:EnerpriseProcess being a subclass of the more
general class of activities p:Activitywhich in turn is a subclass of s:Process.

A practical example for the application of this type of conclusion in queries
would be the search for all nodes in the process graph that are annotated with an
ontology instance that creates a document type which is an instance of the class
ContentbearingObject. As a result of the query, the exact document type
such as fax, e-mail, or letter, which can be defined as subclasses, are abstracted by
means of the object type inference.

7 Reasoning About Process Models: What Description Logic … 187

Finally, the inferences of the object relation inference and the object type inference
are heavily dependent on the descriptions and richness of the ontology. The scope
and content of the ontology should be determined according to the questions to be
answered,which are also called competence questions in the area of knowledge-based
systems [38]. Examples of competence questionswould be “What organizational unit
is responsible for an activity?”, “Which employee performs which task?”, “What
best practices apply for a job?”, “Which cost causes the execution of an activity?”,
“What guidelines need to be followed?”, “Which national category corresponds to a
process?”, just to mention a few examples. The questions to be answered influence
the design of the ontology.

7.6 Tool Support

In the following, we describe the tool that has been developed for querying the
ontology-bases process model representation. The following description and screen-
shots are based on [39] where the tool is described in more detail in [1]. The tool
is called SemQuu—Semantic Query Utility, since much of the functionality is also
relevant when exploring ontologies in general. SemQuu is implemented using the
Jena library (jena.sourceforge.net), the Pellet inference engine (pellet.owldl.com),
the Tomcat web server and JSP, XSLT, JavaScript, CSS and HTML for the user
interface. Process models can be imported from arbitrary tools in arbitrary formats,
since they can be transformed on the server into the ontology-based representation
which is accomplished by a plugin-converter for each format. As an example, we
have implemented an extension of Visio which can export EPC process models being
annotated with ontology concepts (see Fig. 7.4 for an illustration of the following
procedure). After having been exported from Visio to SemQuu, the model is trans-
formed to an OWL-DL ontology and added to the repository (cf. Fig. 7.4 bottom
right).

An overview of SemQuu is provided by Fig. 7.5 (B). In order to query the repos-
itory of ontology-based process representations with SPARQL, the user can use a
simple form-based query builder (A) for successively constructing a graph pattern.
This is done by insertingmultiple triple patternswith the help of drop-down list boxes
(A) which are aware of rdfs:domain and rdfs:range information so that no
semantically wrong query can be constructed. Moreover, drop-down list boxes are
dynamically updated upon selection of a value in one of the boxes. Alternatively to
the drop-down list boxes, the user can leverage the full expressivity of SPARQL by
using the text area input field. Moreover, when the user modifies the query she or he
is supported by an “intelligent” auto-completion feature (C) which is fully aware of
the ontology schema and instance data and only proposes meaningful suggestions.
When queries are executed in batch mode, the result of the queries can be displayed
as an information, warning or error with respective graphical symbols appearing for
each type (D). The result for each query is initially collapsed but can be unfolded
if the user clicks on the “+” sign symbols. In order to measure the effectiveness of

188 M. Fellmann

Fig. 7.4 SemQuu converter and repository

SPARQL queries for the task of semantic correctness checking, we conducted an
experiment with 21 participants described in [40].

7.7 Discussion and Outlook

Using a description logics-based ontological process representation enables a well-
defined semantics for model elements that at the same time is also machine process-
able. The querying against ontology-based process representations enables a com-
prehensive analysis of process models. Structure-related as well as behavioural
queries can be answered through the control flow representation. Relationships
between processes, as they are possible in BPMN, EPC or other languages e.g.
via process interfaces or sub-processes are currently not taken into account yet,
but in the future, they can be regarded by introducing additional properties such
as starts_subprocess and returns_to_process in the ontology-based
process modeling.

7 Reasoning About Process Models: What Description Logic … 189

Fig. 7.5 Overview of SemQuu

190 M. Fellmann

In contrast to the existing approaches, the approach presented here allows the
integration of the full spectrum of possible deductions with descriptions logics like
OWL-DL in the results of a query, which enables the extensive use of “mechanically”
created conclusions. This spectrum has been described by four classes of inference
types.While the construct type inference and the control flow inference refer to infer-
ences based on the structure of the represented process model, the object relation
inference and the object type inference refer to the domain knowledge formalized in
the ontology.With the presented approach of ontology-based process representation,
it is possible to seamlessly combine these two knowledge areas and to reason about
the process representation using description logics inference engines. Thus, a richer
analysis and interpretation of the organizational process knowledge can be achieved.
Future research in this field can examine a refinement of inference types or a quan-
tification and measurement of its occurrence and usefulness in large process model
repositories. Another direction of research is the automated annotation of process
models (or at least, creating suggestions for annotation in an automatedway). Finally,
evolving the ontology collaboratively and at the same time keeping the annotation
intact is subject to future research.

References

1. Fellmann, M.: Semantic Process Engineering – Konzeption und Realisierung eines Werkzeugs
zur semantischen Prozessmodellierung, PhD thesis. Osnabrück University, Osnabrück (2013)

2. Ortner, E.: Methodenneutraler Fachentwurf: Zu den Grundlagen einer anwendungsorientierten
Informatik. Teubner-Reihe Wirtschaftsinformatik. Teubner, Stuttgart (1997)

3. Scheer, A.W., Klueckmann, J.: BPM 3.0. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A.
(eds.) Proceedings of the Business Process Management 7th International Conference (BPM
2009), 8–10 Sept, Ulm, Germany. LNCS, vol. 5701, pp. 15–27. Springer, Berlin (2009)

4. Hadar, I., Soffer, P.: Variations in conceptual modeling: classification and ontological analysis.
J. Assoc. Inf. Syst. 7(8), 568–592 (2006)

5. Sarshar, K., Weber, M., Loos, P.: Einsatz der Informationsmodellierung bei der Einführung
betrieblicher Standardsoftware: Eine empirische Untersuchung bei Energieversorgerun-
ternehmen. Wirtschaftsinformatik 48(2), 120–127 (2006)

6. Rosemann, M.: Komplexitätsmanagement in Prozessmodellen: Methodenspezifische Gestal-
tungsempfehlungen für die Informationsmodellierung. Schriften zur EDV-orientierten Betrieb-
swirtschaft, Gabler, Wiesbaden (1996)

7. Corvera, M., Rosenkranz, C.: Natural language alignment as a process: applying functional
pragmatics in information systems development. In: Proceedings of the 18th European Con-
ference on Information Systems (ECIS 2010), 6–9 June, Pretoria, South Africa. Paper 5 (2010)

8. Schafermeyer, M., Grgecic, D., Rosenkranz, C.: Factors influencing business process stan-
dardization: a multiple case study. In: Proceedings of 43rd Hawaii International Conference
on System Sciences (HICSS 2010), 5–8 Jan, Poipu, Kauai, Hawaii, pp. 1–10. IEEE (2010)

9. Rosenkranz, C., Räkers, M., Behrmann, W., Holten, R.: Supporting financial data warehouse
development: a communication theory-based approach. In: Proceedings of the Thirty First
International Conference on Information Systems (ICIS 2010), 12–15 Dec, Saint Louis, Mis-
souri, USA. Paper 12 (2011)

10. Nielen, A., Költer, D., Mütze-Niewöhner, S., Karla, J., Schlick, C.: An empirical analysis
of human performance and error in process model development. In: Proceedings of the 30th

7 Reasoning About Process Models: What Description Logic … 191

International Conference on Conceptual Modeling (ER 2011), Brussels, Belgium, pp. 514–523
(2011)

11. Wilmont, I., Brinkkemper, S., Weerd, I., Hoppenbrouwers, S.: Exploring intuitive modelling
behaviour. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor,
R. (eds.) Enterprise, Business-Process and Information Systems Modeling: Proceedings of
the 11th International Workshop, BPMDS 2010 and 15th International Conference, EMM-
SAD 2010 held at CAiSE 2010, 7–8 June, Hammamet, Tunisia. LNBIP vol. 50, pp. 301–313.
Springer, Berlin (2010)

12. Cabral, L., Domingue, J., Motta, E., Payne, T.R., Hakimpour, F.: Approaches to semantic web
services: an overview and comparisons. In: Bussler, C., Davies, J., Fensel, D., Studer, R. (eds.)
The Semantic Web: Research and Applications: Proceedings of the First European Semantic
Web Symposium, ESWS 2004 Heraklion, Crete, Greece, 10–12 May. LNCS, vol. 3053, pp.
225–239. Springer, Berlin (2004)

13. Cardoso, J., Sheth, A.P.: Introduction to semantic web services and web process composition.
In: Cardoso, J., Sheth, A.P. (eds.) Semantic Web Services and Web Process Composition: First
International Workshop, SWSWPC 2004, San Diego, CA, USA, 6 July, pp. 1–13 (2005)

14. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C.,
Bussler, C., Fensel, D.: Web service modeling ontology. Appl. Ontol. 1(1), 77–106 (2005)

15. The OWL Services Coalition (eds.) OWL-S: Semantic Markup for Web Services
16. Farell, J., Lausen, H. (eds.): Semantic Annotations forWSDL:W3CRecommendation, 28 Aug

2007. W3C (2007)
17. Wetzstein, B., Ma, Z., Filipowska, A., Kaczmarek, M., Bhiri, S., Losada, S., Lopez-Cob, J.-M.,

Cicurel, L.: Semantic business process management: a lifecycle based requirements analysis.
In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of
Workshop on Semantic Business Process and Product Lifecycle (SBPM 2007) in conjunction
with the 4th European SemanticWeb Conference (ESWC 2007), 3–7 June, Innsbruck, Austria.
CEUR Workshop Proceedings, vol. 251, pp. 1–11. RWTH, Aachen (2007)

18. Weber, I.M.: Verification of annotated process models. In: Weber, M. (ed.) Semantic Methods
for Execution-level Business Process Modeling, Part 2. LNBIP, vol. 40, pp. 97–148. Springer,
Berlin (2009)

19. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic
business process models. Distrib. Parallel Databases 2010(27), 271–343 (2010)

20. Drumm, C., Filipowska, A., Hoffmann, J., Kaczmarek, M., Kaczmarek, T., Kowalkiewicz,
M., Markovic, I., Scicluna, J., Vanhatalo, J., Völzer, H., Weber, I., Wieloch, K., Zyskowski,
D.: Dynamic Composition Reasoning Framework and Prototype. Project IST 026850 SUPER,
Deliverable 3.2. SAP (2007)

21. Baader, F.: What’s new in description logics. Informatik-Spektrum 34(5), 1–9 (2011)
22. McGuinness, D.L.: Description logics emerge from ivory towers. In: Goble, C.A., McGuiness,

D.L., Möller, R., Patel-Schneider, P.F. (eds.) Proceedings of the International Workshop on
Description Logics, 1–3 Aug, Stanford University, California, USA, pp. 64–68 (2001)

23. OWL Working Group: OWL 2: W3C Recommendation, 11 Dec 2012 (2012)
24. Thomas, O., Fellmann, M.: Semantische Prozessmodellierung – Konzeption und information-

stechnische Unterstützung einer ontologiebasierten Repräsentation von Geschäftsprozessen.
Wirtschaftsinformatik 51(6), 506–518 (2009)

25. Thomas, O., Fellmann, M.: Semantic process modeling—design and implementation of an
ontology-based representation of business processes. Bus. Inf. Syst. Eng. 1(6), 438–451 (2009)

26. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In: Dayal, U.,
Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y.K.
(eds.) Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB
2006), 12–15 Sept, Seoul, Korea, pp. 354–366. VLDB Endowment, ACM (2006)

27. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles—efficient
computation, applications, and evaluation. Fundamenta Informaticae (FI) 113(3–4), 399–435
(2011)

192 M. Fellmann

28. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. (TODS) 34(3), 16 (2009)

29. Awad, A.: BPMN-Q: A language to query business processes. In: Reichert, M., Strecker, S.,
Turowski, K. (eds.) Proceedings of the 2nd International Workshop on Enterprise Modelling
and Information Systems Architectures (EMISA2007), 8–9 Oct, St. Goar, Germany, pp. 115–
128 (2007)

30. Polyvyanyy, A., Smirnov, S., Weske, M.: Business process model abstraction. In: vom Brocke,
J., Rosemann,M. (eds.) Handbook onBusiness ProcessManagement 1: Introduction,Methods,
and Information Systems: Part II Methods. International Handbooks on Information Systems,
pp. 149–166. Springer, Berlin (2010)

31. Detwiler, L.T., Suciu, D., Brinkley, J.F.: Regular paths in SparQL: querying the NCI thesaurus.
In: Proceedings of the American Medical Informatics Association Symposium on Biomedical
and Health Informatics (AIMA 2008), 8–12 Nov, Washington, DC, pp. 161–165 (2008)

32. Zauner, H., Linse, B., Furche, T., Bry, F.: A RPL through RDF: expressive navigation in RDF
graphs. In: Hitzler, P., Lukasiewicz, T. (eds.) Proceedings of the 4th International Conference
onWeb Reasoning and Rule Systems (RR 2010), 22–24 Sept, Bressanone/Brixen, Italy. LNCS,
vol. 6333, pp. 251–257. Springer, Berlin (2010)

33. Alkhateeb, F., Baget, J.F., Euzenat, J.: Constrained regular expressions in SPARQL: Proceed-
ings of the International Conference on SemanticWeb andWeb Services (SWWS), 14–17 July,
Las Vegas, NV US, pp. 91–99 (2008)

34. Alkhateeb, F., Baget, J.F., Euzenat, J.: Extending SPARQL with regular expression patterns
(for querying RDF). Web Semant. Sci. Serv. Agents World Wide Web 7(2), 57–73 (2009)

35. Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., Lausen, G.: RDFPath: path query process-
ing on large RDF graphs with MapReduce. In: Proceedings of the 1st Workshop on High-
Performance Computing for the Semantic Web (HPCSW2011) co-located with the 8th
Extended Semantic Web Conference, ESWC2011, 29 May, Heraklion, Greece (2011)

36. Angles, R., Gutierrez, C.: Querying RDF data from a graph database perspective. In: Gómez-
Pérez, A., Euzenat, J. (eds.) Proceedings of the Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May 29–June 1. LNCS, vol. 3532, pp. 346–360.
Springer, Berlin (2005)

37. Niles, I., Pease, A.: Towards a standard upper ontology. In: Welty, C., Smith, B. (eds.) Pro-
ceedings of the 2nd International Conference on Formal Ontology in Information Systems
(FOIS-2001), 17–19 Oct, Ogunquit, Maine, pp. 2–9 (2001)

38. Gómez-Pérez, A., Fernández-López,M., Corcho, O.: Ontological Engineering:With Examples
from the Areas of Knowledge Management, E-Commerce and the Semantic Web. Springer,
London (2004)

39. Fellmann,M., Thomas,O.: Processmodel verificationwithSemQuu. In:Nüttgens,M., Thomas,
O., Weber, B. (eds.) Enterprise Modelling and Information Systems Architectures (EMISA
2011), 22–23 Sept, Hamburg, Germany. GI LNI P-190, pp. 231–236. Köllen, Bonn (2011)

40. Fellmann, M., Thomas, O., Busch, B.: A query-driven approach for checking the semantic
correctness of ontology-based process representations. In: Abramowicz, W. (ed.) Proceedings
of the 14th International Conference onBusiness Information Systems (BIS 2011), 15–17 June,
Poznan, Poland. LNBIP, vol. 87, pp. 62–73. Springer, Berlin (2011)

	7 Reasoning About Process Models: What Description Logic Offers to Business Process Model Analysis
	7.1 Introduction
	7.2 Semantics-Related Challenges of Semi-formal Modelling
	7.2.1 Ambiguities of the Natural Language
	7.2.2 Lack of Machine Processable Semantics
	7.2.3 Lack of Semantics-Based Tool Support

	7.3 Description Logic-Based Process Representation
	7.3.1 Conceptual Overview
	7.3.2 Ontology-Based Process Model Representation

	7.4 Querying Process Knowledge
	7.5 Use of Machine Reasoning
	7.5.1 Overview
	7.5.2 Characterization of the Four Types of Inferences

	7.6 Tool Support
	7.7 Discussion and Outlook
	References

