
Chapter 3
Towards Executable Specifications
for Case Management Processes

Irina Rychkova, Bénédicte Le Grand and Carine Souveyet

Abstract Explicit process specifications play an important role in process-aware
information systems (PAIS). Whereas methodologies for modeling structured,
activity-oriented processes are well established, modeling formalisms for unstruc-
tured processes such as case management processes (CMP) are lagging. In this
chapter, we define a state-oriented formalism that allows for executable specifi-
cations of CMP and paves the road for predictive analysis and recommendations
support intended to case managers. This formalism is grounded on statecharts devel-
oped by D. Harel in 1987. We adopt the main concepts defined by statecharts and
demonstrate how they can be used to specify a case management process. We also
propose adaptations and potential extensions of the statecharts formalism that could
address CMP specifics and complexity.

Keywords Case management · Simulation-based testing · Automated process
analysis · Recommendations · State machines · Statecharts

3.1 Introduction

A Process-Aware Information System (PAIS) is a software system that manages and
executes operational processes involving people, applications, and/or information
sources on the basis of process models [16]. Workflow management systems and
BPM systems are classic examples of PAIS.

I. Rychkova (B) · B. Le Grand · C. Souveyet
Université Paris 1 Panthéon-Sorbonne, 12, Place du Panthéon, 75005 Paris, France
e-mail: irina.rychkova@univ-paris1.fr
URL:http://www.univ-paris1.fr/centres-de-recherche/cri/

B. Le Grand
e-mail: benedicte.le-grand@univ-paris1.fr

C. Souveyet
e-mail: carine.souveyet@univ-paris1.fr

© Springer International Publishing AG 2017
G. Grambow et al. (eds.), Advances in Intelligent Process-Aware
Information Systems, Intelligent Systems Reference Library 123,
DOI 10.1007/978-3-319-52181-7_3

49

50 I. Rychkova et al.

Started by F. Taylor and H. Ford, a pursuit of process optimization and automation
resulted in the creation of workflow concepts, where a process is specified with a
(predefined) flow of tasks [55]. Workflows provide a powerful formalism for the
design, simulation, analysis as well as management and execution of structured,
activity-oriented processes.

Today, practitioners express the increasing need for information systems sup-
porting unstructured, data-oriented processes such as case management processes
(CMP). The Object Management Group (OMG) defines case management as “a
coordinative and goal-oriented discipline, to handle cases from opening to closure,
interactively between persons involved with the subject of the case and a case man-
ager or case team” [34]. Davenport [12] defines a case management process as a
process that is not predefined or repeatable, but instead, depends on its evolving
circumstances and on decisions regarding a particular situation, i.e., a case. Claim
processing, residence permit issuing, crisis management, and organization of events
are examples of CMP.

PAIS supporting case management are gaining momentum nowadays. Among
successful solutions the IBM Advanced Case Manager,1 ISIS Papyrus,2 Computas3

or IBM Intelligent Operations Center4 can be cited. Many solutions supporting case
management are nowbeingdeveloped and reported by the community of practitioners
promoting Adaptive Case Management (ACM) [49].

Explicit process specifications play an important role in PAIS: they allow for
better communication between stakeholders, enable process analysis and support
redesign efforts [2]. Methodologies, specification languages and environments for
workflowmodeling and analysis are widely presented in the literature and recognised
by practitioners. In contrast, current CMP supporting solutions are mostly focused
on process configuration and execution. Very little support for CMP modeling and
analysis is provided.

In this chapter, we define a state-oriented formalism for the incremental and inter-
active modeling and simulation of CMP. Our formalism is grounded on statecharts
developed by D. Harel in 1987 [19]. In particular, we explain (a) why statecharts
is a suitable formalism for CMP, (b) how statecharts can be adOpted and adApted
for specifying CMP; we also show (c) how executable statecharts specifications can
be used for CMP simulation and (d) how they can enable predictive analysis and
recommendation support for a case manager.

Statecharts were originally created as a visual, fully executable formalism for
the specification, design and analysis of complex discrete-event systems. Case man-
agement processes share a number of characteristics with complex discrete-event
systems [19, 20, 23]: they continuously interact with their environment, respond to

1http://www-03.ibm.com/software/products/en/category/advanced-case-management.
2http://www.isis-papyrus.com/.
3http://www.computas.com/.
4http://www-03.ibm.com/software/products/en/intelligent-operations-center.

http://www-03.ibm.com/software/products/en/category/advanced-case-management
http://www.isis-papyrus.com/
http://www.computas.com/
http://www-03.ibm.com/software/products/en/intelligent-operations-center

3 Towards Executable Specifications for Case Management Processes 51

unexpected events (interrupts) and have many possible operation scenarios. In par-
ticular, a CMP can be compared to a reactive system, for which the main challenge
is to identify the appropriate activity or group of activities to perform in reaction to a
given internal or external stimulus in a given situation (context). However, contrary to
conventional reactive systems, CMP has a goal that can be reached by several alter-
native scenarios. Moreover, decisions about these scenarios in CMP are typically
made by a human actor (the case manager). Therefore, a CMP supporting system
can seldom automatically execute the activities but it can enable or recommend them
for execution.

The statecharts formalism combines an intuitive and concise visual notation with
precise semantics [21, 31]. Rhapsody [20] (now IBM Rational Rhapsody5) and the
open source YAKINDU Statechart Tools (SCT)6 are examples of statecharts model-
ing environments,where visual statecharts specifications canbe created and executed.

Following the points stated above, we adopt the main concepts of statecharts,
such as states and state hierarchies, transitions, triggering events, concurrency and
broadcast communication for CMP specification. In order to address CMP specific
features, we extend the statecharts formalism with the notions of goal and path; we
also revisit the semantics behind triggering events and introduce the concept of event
duration.

The advantages of statecharts specifications can be perceived both during the
design of CMP and during their execution. As we will explain in this chapter:

• Statecharts specifications allow for incremental CMP design;
• Executable statecharts specification can be used for the simulation-based testing
of CMP scenarios;

• Executable statechart specifications pave the road for automated recommendations
for CMP.

We apply the proposed formalism to specify an example of CMP: a crisis (flood)
management process defined for Hauts-de-Seine department of France.

The remainder of this chapter is organized as follows. In Sect. 3.2, we intro-
duce our example and provide the terminology that will be used in this chapter.
This terminology spans across two domains: complex systems and case manage-
ment. In Sect. 3.3, we present and discuss the related work in CMP management and
modeling. In Sect. 3.4, we introduce the statecharts formalism and draw the parallels
between complex discrete-event systems and CMP. In Sect. 3.5, we demonstrate how
the statecharts formalism can be adopted and extended in order to provide fully exe-
cutable specifications of CMP. In Sect. 3.6, we discuss the prospective added value
of executable CMP specifications, trace a roadmap for future research and draw our
conclusions.

5http://www-03.ibm.com/software/products/en/ratirhapfami.
6http://statecharts.org/index.html.

http://www-03.ibm.com/software/products/en/ratirhapfami
http://statecharts.org/index.html

52 I. Rychkova et al.

Fig. 3.1 The scope the flood management process

3.2 Case Management Process Example and Terminology

In this section we provide an example of CMP—a crisis management process
designed to handle floods (we will call it flood management process) in a French
department Hauts-de-Seine. We also briefly introduce the terminology used in this
chapter and illustrate it on our example. Figure3.1 shows the scope of the flood
management process.

3.2.1 Crisis Management in Cases of Flood

A flood is an overflow of water that submerges a land. It happens, for example,
because of an increase in the flow of a river provoked by significant rainfalls. The
risk of a “major flood” is themain natural risk in the Ile-de-France region, particularly
during thewinter period fromNovember toMarch. Cities like Paris7 are confronted to
this risk: if a flood occurs, important damages can be expected, affecting thousands
of people. Floods are considered harmful when the water level of the Seine river

7See http://cartorisque.prim.net/dpt/75/75_ip.html.

http://cartorisque.prim.net/dpt/75/75_ip.html

3 Towards Executable Specifications for Case Management Processes 53

exceeds 5.50m according to the scale on the Austerlitz bridge in Paris. In the Hauts-
de-Seine department, the risk of flood is considered as particularly important since
1910.8

The goal of the flood management process is to maintain the proper operation of
city infrastructure (water supply, electricity, telecommunication, road networks, pub-
lic transport and so on) and to protect people and facilities from flood consequences.
This process is a typical example of CMP:

• it demands interaction between multiple actors (government, public services, vol-
unteers, etc.).

• it is driven by the dynamic context of the case (i.e., flood development, current
status of vulnerable areas and of rescuing operations) rather than by a predefined
sequence of activities.

Flood Emergency begins when the water level rises above 5.5m at the Austerlitz
Bridge and is supposed to keep rising (according to weather forecasts). At this stage,
the centers for crisis management are set up and the Emergency Plan Specialized
on Floods (EPSF) is triggered. The city services (rescue, fire fighters, police, etc.)
therefore carry out specific activities accordingly.

The regional authorities monitor the crisis situation and coordinate the operation
procedures in the following major areas: evacuation of population and facilities,
temporary accommodation, public transport, road traffic, water supply, electricity
supply and telecommunications.

According to the flood severity, the EPSF identifies different phases of flood
emergency for each of these seven areas and specifies the procedures to control the
situation and to protect the population and facilities.

For example, when the water level exceeds 6.25m, the drinking water supply is
reduced for the towns of Saint-Cloud, Garches, Vaucresson, Marnes la Coquette and
Ville d’Avray. When the water level reaches 6.7m, the drinking water supply for
these towns is completely disrupted. Therefore, the provisioning and distribution of
bottled drinking water should start as soon as the water level at Austerlitz Bridge
reaches 6.25m. In case of limited supply, prioritized water provisioning has to be
organized.

Along those lines, depending on the water level, various procedures are launched:
a partial or complete interruption of public transport (SNCF Paris Rive Gauche,
RER C, RATP), deviation and blocking of main highways (A86, A14, N14, etc.),
evacuation of people, health care and childcare facilities.

Resources available for crisis management also need to be constantly monitored.
In case of deficiencies in equipment, manpower or other problems that can compro-
mise the crisis handling in one or several areas, specific measures such as mobiliza-
tion of volunteers or federal alert raising can be taken. We model the resources as a
specific area of the EPSF.

8Source: Préfecture des Hauts-de-Seine: Plan de secours spécialisé sur les inondations Hauts-de-
Seine, SIDPC 21/11/2005, (2005), Available at: http://www.ville-neuillysurseine.fr/files/neuilly/
mairie/services_techniques/plan-secours-inondation.pdf.

http://www.ville-neuillysurseine.fr/files/neuilly/mairie/services_techniques/plan-secours-inondation.pdf
http://www.ville-neuillysurseine.fr/files/neuilly/mairie/services_techniques/plan-secours-inondation.pdf

54 I. Rychkova et al.

3.2.2 Terminology Used in This Chapter

A case is a situation (e.g., a flood crisis), which requires resolution. It is described
by a set of elements that are relevant to or involved in a CMP. Within the case, we
define the system boundary and distinguish between so-called system elements and
context elements (that belong to the environment):

Case = System under description + Environment
The System Under Description (SUD) is described by the set of elements that can

be controlledduring the casemanagement: public services, equipment, infrastructure,
administration etc. It also includes a Case Management Supporting System (CMSS)
and a case manager.

The SUD reacts to various stimuli (events) produced by the environment (e.g.,
change in temperature, water level, incidents) and performs activities in order to
maintain the functioning of city infrastructure and to protect people and facilities
from flood consequences.

The SUD produces internal events such as messages, reports and alerts sent by
the agents via radio or mobile network. They can indicate the success or failure of a
mission, resource deficiencies, emergency situations and so on.

The environment is described by the set of elements that interact with the SUD.
It cannot be controlled but only monitored using specific equipment (e.g., meteo
stations for monitoring weather, embedded sensors for measuring water level, video
cameras for measuring traffic, social networks for collecting information about areas
affected by the flood). The environment’s behavior is unpredictable and brings uncer-
tainty in the CMP.

The environment produces external events such as accidents, traffic jams, electric
outages, malfunctioning of telecommunication.

The Case Management Process (CMP) describes the behavior of the SUD and
defines what it has to do in order to achieve some objectives, i.e., to ensure safety
and security for people and goods during the flood, until the emergency is over.

The case management element in Fig. 3.1 depicts a subsystem of the SUD which
is responsible for the coordination of SUDs activities. It includes the case manager
and the case management supporting system (CMSS):

The Case Management Supporting System (CMSS) is a PAIS for case manage-
ment. The case manager is a human actor who uses the CMSS in order to monitor
the case, to take decisions regarding the case handling scenario and to coordinate the
activities of the SUD.

3.3 Related Work

In this section,we discussAdaptiveCaseManagement—for now, themost prominent
paradigm for CMP support. We also review the existing modeling paradigms and
formalisms for process specification and their capacity to model CMP.

3 Towards Executable Specifications for Case Management Processes 55

3.3.1 Adaptive Case Management

The concept of Adaptive Case Management (ACM) has been defined as an “infor-
mation technology that exposes structured and unstructured business information
(business data and content) and allows structured (business) and unstructured (social)
organizations to execute work (routine and emergent processes) in a secure but trans-
parent manner”.9

One of the major challenges identified by the ACM community, is the attempt to
deal with CMP in the industry the same way as with regular business process—i.e.,
representing a case management by a workflow and focusing on the (predefined)
sequence of tasks. This view implies that the data emerges and evolves within a
process according to a predefined control flow similarly to a product evolving on a
conveyor belt.

According to ACM [52], CMP must be organized around a collection of data
artifacts about the case; the tasks and their ordering shall be adapted at run time,
according to the evolution of the case circumstances and case-related data [41].

The body of knowledge on ACM has been extensively developed by practition-
ers; the best solutions are regularly reported in the book series on WfMC Global
Awards for Excellence in Case Management [53, 54]. However, methodologies and
formalisms for CMP modeling are rarely discussed.

3.3.2 Modeling Paradigms for CMP Specification

The important role of modeling in PAIS is discussed in [2]. The following general
process modeling paradigms are identified in the literature [10, 11, 15]: activity-
oriented, product (or state)-oriented and decision (or goal)-oriented.

The choice of a modeling paradigm depends on the conceptual properties of the
process (e.g., flexibility vs. control).

According to the literature, casemanagement processes (CMP) have the following
conceptual properties:

1. CMP are unstructured, with non-repeatable execution scenarios [9, 52];
2. CMP are data-centered and are organized around a collection of data artifacts

about the case [6, 52];
3. CMP are reactive and event-driven: activities should be carried out in reaction to

a given internal or external event;
4. CMP must be considered within their context and the boundary between the

system and its environment and the scope of the process must be clearly specified
[6, 27, 48];

5. CMP are goal-oriented and flexible: goals are set and can be modified, added or
removed during the execution [48];

9http://www.xpdl.org/nugen/p/adaptive-case-management/public.htm.

http://www.xpdl.org/nugen/p/adaptive-case-management/public.htm

56 I. Rychkova et al.

6. CMP are knowledge-intensive: decisions about the process scenario aremade by a
human actor—a knowledgeworker—and are based on her knowledge, experience
and intuition [25, 41];

7. CMP are unpredictable—they have to deal with events and handle the situations
that were not planned or even imagined before [52].

In this section,we discuss the capacity of activity, product (state) and goal-oriented
paradigms to express these conceptual properties of CMP.

Within the activity-oriented paradigm, the process is specified as an ordered set of
activities that the system has to carry out. Examples of activity-oriented formalisms
include BPMN [35], YAWL [3], activity diagrams in UML [46] and other languages
based on workflow concepts.

Activity-oriented process modeling implies that data emerges and evolves within
a process according to a predefined control flow. Events are supposed to occur (or
be processed) at specific moments of the execution predefined by the model. This
paradigm suits predictable and highly repeatable processes. CMP are unpredictable
processes [52]: events and process inputs can occur at any time during execution; the
order of activities cannot be predefined and depends on the current situation. Such
behavior can therefore not be captured by the workflow formalism.

In order to increase process flexibility and to better address unstructured and
knowledge-intensive processes like CMP, activity-oriented formalisms are extended
with declarative parts, such as constraints [5], business rules [7] or configurable
elements [45]. These formalisms can handle process variability within a potentially
large number of configurations or scenarios. However, either such scenarios must be
well identified upfront or the set of business rules (or configuration elements) must
be regularly maintained by an expert. This can be seen as a limitation for CMP.

Techniques and frameworks for the analysis of activity-oriented process models
are widely presented in the literature [57]. To provide automated process analysis,
activity-oriented modeling languages are often annotated with or translated to some
formal specification languages. The Declare framework [37] is a constraint-based
system that uses a declarative language grounded on temporal logics. In [1], the state-
oriented formalism of Petri Nets is used for workflow specification and analysis. In
[14], the Petri Nets semantics for BPMN is presented. In [28], a business process
model is mapped into a nondeterministic state machine for further analysis.

According to the product-oriented (or state-oriented) paradigm, a process is seen
as a product life cycle (a set of product states and transitions between these states).
Examples of product-oriented modeling formalisms include statemachines in UML
[20], generic state-transition systems or state machines, such as FSM [38] or Petri
Nets [32], and statecharts by D. Harel [19] created for the specification and analysis
of complex discrete-event systems.

Within this paradigm, carried out activities depend on the current state of the
product and the process scenario is adapted at run time, according to the evolution
of the product. This paradigm suits well reactive systems specification [23] since the
system’s response to an event shall be defined not only by the type of this event but
also by the current situation of the system i.e., its state.

3 Towards Executable Specifications for Case Management Processes 57

Several research groups are reporting on approaches to design and specification of
unstructured, knowledge-intensive processes (including CMP) based on the product-
oriented paradigm.

In [9], process instances are represented as moving through a state space, and the
process model is represented as a set of formal rules describing valid trajectories.
Compared to our proposal based on statecharts, this approach is grounded on the
theory of automated control systems. In [24], a group of researchers from IBM
incorporates process- and data-centered perspectives; their approach is based on
the concept of business artifacts. The Case Management Model and Notation is
presented in [36]. This specification “is intended to capture the common elements
that Case management products use, while also taking into account current research
contributions on Case management.” In [42], the Product-BasedWorkflowDesign is
presented. This approach explores the interaction between a product data model that
reflects the product design and the process to manufacture this product represented
by a workflow. The authors of [6] present case handling as a paradigm for supporting
knowledge-intensive business processes. They recognise the lack of flexibility of
workflow management systems and acknowledge the important role played by the
“product”—the case—in the case handling. Their view on the case, however, remains
activity-oriented: the proposed case definition explicitly includes the list of activities
and their precedence relation assuming that they are known in advance.

Formalisms based on state machines are suitable for automated analysis including
simulation, formal validation and model checking. Algorithms from graph theory
can be used in order to analyse states reachability, “dead” states, path search and
optimisation (where the path represents a process execution scenario).

In [24], the operational semantics of Guard-Stage-Milestone is presented. This
semantics explains the interactions between business artifacts which are formalized
following declarative principles. In our earlier work [47], we define formal semantics
for CMP using the Alloy specification language. The Alloy Analyzer tool allows us
to simulate and validate a CMP model; it also provides visual diagrams. Compared
to statecharts, however, Alloy model is difficult to construct.

The product-oriented paradigm seems to be a good choice for specifying CMP.
However, it does not support decision making since it does not define a notion of
objective or goal.

The decision or goal-oriented paradigm extends the product-oriented view on
the process: the successive transformations of the product are looked upon as con-
sequences of decisions leading to some goal [33].

Goal-oriented modeling formalisms support decision making by specifying goal
hierarchies and tracing each decision within these hierarchies. The examples include
i * [58], KAOS [30], MAP [43].

Goal-oriented formalisms extended with the notion of context are presented in
[40, 44, 51]. These formalisms link a decision (expressed as a goal) to the situation
in which this decision is taken (product state): for each state, a set of achievable and
non-achievable goals can be identified and vice versa, each goal can be expressed in
terms of states that the product has to reach. These formalisms can also connect the
goals and the activities that must/can be carried out in order to achieve these goals.

58 I. Rychkova et al.

The Generic Process Model (GPM) [51] is an example of context-driven goal-
oriented formalism. It captures the process context and allows for reasoning about
process goals. It is also suitable for automated process analysis.

Context-driven goal-oriented process models support automated recommenda-
tions and user guidance, providing that for each goal all the situations (states) in
which this goal is achievable are known. Due to unpredictable sequences of events
and non-repeatable execution scenarios in CMP, however, it will be hard if at all
possible to model relations between various process situations, goals and activities
that must/can be executed in order to achieve these goals. Such relations can be,
though, discovered using process mining techniques (this is an interesting subject
that lies behind the scope of this work).

Our analysis of existing modeling paradigms and their corresponding formalisms
shows that the activity-oriented paradigm can hardly provide the flexibility required
by CMP as expressed by their conceptual properties 1–3 and 5–7 listed above. Con-
figurable specifications and business rules can be used to overcome the rigidity of
traditional workflow-based formalisms, addressing properties 5 and 1–3 respectively.
Nevertheless, they support the variability of process scenarios only within some
boundaries defined by a number of business rules or configurable elements. Thus,
they fail to address properties 6 and 7 of CMP.

The goal-oriented paradigm offers flexibility and supports knowledge workers.
However, goal-modeling formalisms are typically suitable for an early phase of
system modeling (abstract system design); formal analysis, simulation and testing
are not their priorities. Addressing properties 1 and 7 of CMP would lead to an
extremely complex model.

The product-oriented (or state-oriented) paradigm addresses all conceptual prop-
erties of CMP except the 5th one—goal orientation—as this paradigmdoes not define
the notion of goal. On the other hand, compared to goal-oriented formalisms, state-
oriented modeling formalisms typically focus on concrete system design followed
by validation and testing. They are supported by a plethora of techniques and tools
for model simulation and formal analysis. Therefore, for modeling CMP, we adhere
to the product-oriented paradigm.

3.4 Finite State Machines, Hierarchical State Machines
and Statecharts

As explained above, we have chosen the product-oriented paradigm for modeling
CMP. According to this paradigm, a state transition system (or state machine) rep-
resents our knowledge about the case and its evolution.

The choice of a concrete modeling formalism within the selected paradigm is
related to the purpose of modeling (e.g., communication support, high-level design,
simulation, formal validation and verification [18], diagnostics and improvement,
recommendation and optimisation of process behaviour [8, 13]).

3 Towards Executable Specifications for Case Management Processes 59

In this section we discuss a selection of existing formalisms based on state
machines and focus on statecharts for CMP specification.

3.4.1 CMP Versus Complex Discrete-Event Systems

A CMP shares the following characteristics of complex reactive systems behavior
defined in [19, 22]:

1. It continuously interacts with its environment. Its inputs and outputs are often
asynchronous: they may occur or evolve unpredictably, at any time;

2. It must be able to respond to high-priority events (interrupts);
3. It has to operate and to react to inputs with respect to strict time regulations;
4. It has many possible operation scenarios, depending on its current mode of oper-

ation, current values of data as well as its past behavior;
5. It is very often based on interacting processes that operate in parallel.

As in a reactive system, the main challenge for the case manager is to identify the
appropriate activities to perform in reaction to a given internal or external stimulus
in a given situation (context).

State machines are a popular choice for specifying the behavior of reactive soft-
ware systems. We will therefore consider them further.

3.4.2 Finite State Machines

A finite state machine (FSM) [38] specifies a machine that can be at one state at a
time and can perform a state transition as a result of a triggering event (or a group
of events guarded by a condition). It is defined by a (finite) set of states and a set
of triggering events for each transition. To trigger a state transition, the execution of
some activities and/or the observation of some contextual events can be required.

Traditional FSMs and their corresponding state-transition diagrams are very effi-
cient for tackling small problems. However, the complexity of a FSM model tends
to grow much faster than the complexity of the problem it represents. This makes
the simulation or automated reasoning about the model extremely difficult. This
phenomenon is called the state explosion problem [56].

3.4.3 Hierarchical State Machines and Statecharts

The state explosion problem can be overcome by the introduction of multiple hier-
archical levels for states and transitions. Indeed, this hierarchy gives a possibility to
reuse some common behaviors across many states and, thus, to reduce the model

60 I. Rychkova et al.

complexity. This idea is explored in the formalism of statecharts, invented by David
Harel in the 1980s [19].

The statecharts formalism specifies a hierarchical statemachine (HSM); it extends
classical FSM by providing:

(i) depth—the possibility to model states at multiple hierarchical levels, with the
notion of abstraction/refinement between levels;

(ii) orthogonality—the possibility to model concurrent or independent subma-
chines within one state machine;

(iii) broadcast communication—the possibility to synchronize multiple concurrent
submachines via events. Each internal (produced by the system) of external
(produced by the environment) event is instantaneously broadcasted.

statecharts = FSM + Abstraction + Orthogonality + Broadcast-
communication

Some state-oriented approaches (e.g., Petri Nets) associate a transition with the
execution of one concrete activity (or a group of activities). On the contrary, with
statecharts we associate a state transition with the occurrence of a triggering event
(or combinations of events) allowing for a deferred activity binding. Thanks to the
deferred binding, at design-time, the process scenario can be seen as a sequence
of events; the concrete activities that will produce these events can be selected or
invented in run-time. The process enactment can be seen as a dynamic selection of
activities to produce some outcomes (events) that make the process progress towards
its (desired) final state.

Visual notation. In the statechart notation, states are depicted with rectangular boxes
with rounded corners. Figure3.2 illustrates a high level diagram for our flood man-
agement process example. The substate–superstate relation is depicted by boxes
encapsulation. Activation of Crisis Centers and EPSF are exclusive substates of the
Flood Emergency state: when in the Flood Emergency state, the case can be either in
one or in the other of these substates. While entering the Flood Emergency state for
the first time, the Activation of Crisis Centers substate is entered “by default”—this
is depicted by the arrow with a black circle pointing at this substate.

Figure3.3 shows a detailed diagram of the EPSF state from Fig. 3.2. The areas
separated by the dashed lines represent the concurrent substates of their EPSF super-
state:when in theEPSF state, the case is simultaneously in eight concurrent substates.
Each of them can be seen as a separate statechart with its own state hierarchy. Thus,

Fig. 3.2 High-level view of the Flood management process

3 Towards Executable Specifications for Case Management Processes 61

F
ig
.3
.3

St
at
ec
ha
rt
di
ag
ra
m

sp
ec
if
yi
ng

th
e
cr
is
is
m
an
ag
em

en
tp

ro
ce
ss

on
ce

th
e
E
PS

F
is
ac
tiv

at
ed

62 I. Rychkova et al.

the introduction of concurrent substates is a convenient mechanism to specify logi-
cally different areas of the case management (Public Transport management, Water
Supply management, Road Traffic management etc.).

The set of active states of all concurrent substates is called the active configuration
of a statechart. It replaces the term of “current state” in conventional (flat) FSM.

The transition that terminates with a circle with “H” stands for “entering the state
by history”. The transition from PT1 to PT2 in Fig. 3.3, for example, specifies that
once the case recovers from the PT2: Public Transport is Not insured state and
re-enters the PT1:Emergent Functioning state—the last active configuration of the
latter is selected (and not the default one).

The transitions between states in statecharts are depicted by arrows labeled with
expressions that specify the triggering events and (optionally) the actions that are
carried out while the transition is triggered. In our example, the triggering events
mostly represent external and internal events.

More details on the statecharts notation can be found in [23]. The semantics of
statecharts for CMP will be presented in more details in Sect. 3.5.

Execution of statecharts specifications. The operational semantics of statecharts
was originally implemented in the STATEMATE system and described in [21, 31].
The statecharts formalism was also adopted by the UML community in the form of
UML statemachine diagrams [46].

Rhapsody [20] (now IBM Rational Rhapsody) and open source YAKINDU Stat-
echart Tools (SCT) are examples of statecharts modeling environments, where the
statecharts specifications can be created and executed in an intuitive and interactive
way.

3.5 Statecharts Semantics for Case Management Processes

Asexplained above,we adopt the formalismof statecharts for the specification of case
management processes (Sect. 3.5.1). We also propose some extensions of statecharts
in Sect. 3.5.2.

We create the statecharts specification for the flood management process based
on the description provided by the Emergency Plan Specialized on Floods (EPSF)
and on some practical knowledge about resource management during floods. The
resulting diagrams are shown in Figs. 3.2 and 3.3.

We start with a high-level view of the process described by two states—Flood
Emergency and Stabilization—and transitions between them (Fig. 3.2). The Flood
Emergency state is entered when the water level at Austerlitz Bridge raises above
5.5m. It contains two substates:Activation ofCrisisCenters andEPSF. The transition
to Stabilization state is triggered once specific conditions identified as “end of crisis”
are met.

The diagram in Fig. 3.3 specifies the main areas of crisis management as concur-
rent substates of the EPSF state. For the purpose of this work, we show only a few of

3 Towards Executable Specifications for Case Management Processes 63

these substates in detail:Water supply, Public transport, Road traffic and Resources.
This model can be refined providing further details on the crisis management sce-
narios and operation procedures.

3.5.1 Statecharts Semantics for CMP Specification

Below, we explain how the following concepts defined by the statecharts formalism
[23] can be adopted for the specification of CMP:

• State, state hierarchy and state decomposition;
• Abstraction and refinement;
• AND, OR and basic states;
• Entering a state by default and by history;
• State configuration;
• Internal, external and triggering events;
• Activity;
• Broadcast communication;
• Inter-level transition.

State, state hierarchy and state decomposition. A CMP state can be seen as a
specific situation in the case management process that requires reaction.

On the abstract level, states can be compared to business milestones. The defi-
nition of the right set of states for the process is subjective: it reflects our current
understanding of the process and evolves over time. In this work, the states of the
flood crisis management process are characterized by the level of water h. These
states represent the critical points for different management areas defined by EPSF
(Sect. 3.2).

While being in a given state, some work has to be done in order to maintain this
state or in order to leave this state and enter another state. Note that statecharts do not
specify how exactly this work will be performed or which activities will be executed
and in which order. Another means for modeling activities is needed: statecharts, for
example, can be complemented with activity charts [23]. In this paper, we do not
discuss activity modeling in detail.

In Fig. 3.3, three states RT0, RT1 and RT2 specify the main phases of the road
traffic control after the emergency plan (EPSF) is triggered.

• RT0: Normal functioning is the default state upon triggering the EPSF. The water
level of 5.5m does not disrupt the road infrastructure of the region and normal
functioning is maintained.

• RT1: Emergency traffic control—this state is attained at 6.1m; here the flood is
affecting the road traffic. Specific measures must be continuously taken in this
state in order to maintain road safety.

64 I. Rychkova et al.

• RT2: Heavy Traffic!—this state is reached when the road traffic degrades (due to
accidents, traffic jams) to the point where the crisis management itself becomes
compromised (e.g., the rescue teams cannot arrive to the endangered areas, etc.).

A state s consists of a (possibly empty) hierarchy of substates, representing (possibly
concurrent) state machines. These substates provide details about their parent state
(or superstate).

In Fig. 3.3, four different substates (from RT1.1 to RT1.4) are defined based on the
flood severity: upon entering each of these states, the city executes some scenario:
deploying equipment, marking deviations, blocking roads, informing drivers, etc.
Each substate belongs to one superstate (its surrounding state) that is also its nearest
ancestor in the state hierarchy. We call the relations between the superstate and its
substates abstraction/refinement relations.

Abstraction and refinement. State abstraction consists in clustering states into
a superstate according to some similarity criteria. This mechanism allows one to
describe the problem at multiple abstraction levels, hiding or introducing details
when necessary. Refinement is the opposite of abstraction, it consists in decompos-
ing a state into substates according to some discrimination criteria.

More formally, refinement is a XOR decomposition of a state, where being in a
superstate means being in exactly one of its (exclusive) component substates.

One substate can be marked as default so that this state is visited each time its
parent state is entered.

Public Transport Emergent Functioning state (PT1) in Fig. 3.3 is specified with
three exclusive substates corresponding to three different management scenarios that
are activated based on the water level h. PT1.1 is the default scenario.

Fromavisualization standpoint, clustering states allows for a very economical rep-
resentation. It avoids duplicating transitions and the model logical structure appears
clearly.

The AND decomposition results in the specification of orthogonal (or concurrent)
components of the parent state. The AND decomposition models the situation when
being in the state means being in one of the combinations of its components. All
possible combinations make an orthogonal product.

AND, OR and basic states. The statecharts formalism defines three types of states:
AND, OR and basic states. The AND-state is a state that contains two or more
orthogonal substates; the OR-state is a state that contains one or more exclusive
substates. A state is basic if it does not have any substates.

Consider theWater Supply in Fig. 3.3:WS1:Emergency water supply is an AND-
state that contains two concurrent substates Damage and Reaction. These substates
model the damage due to the flood and the reaction to it, i.e., emergency water
provisioning. Once WS1 is entered both of its concurrent substates are activated.

The Damage state is an OR-state; it contains two exclusive substates that specify
its details: WS1.1, where the water supply of some towns is reduced; WS1.2, where
the water supply is totally disrupted.

TheReaction state is an OR-state; it contains two exclusive substates:WS2:Water
provisioning and WS3: Suspended Water supply!

3 Towards Executable Specifications for Case Management Processes 65

Once WS1 is entered,WS1.1, WS2 and its substateWS2.1 are entered by default.
Emergent water provisioning (WS2) defines specific measures to provide areas

with drinking water: normal provisioning (WS2.1) and prioritized provisioning
(WS2.2) in case of limited stock of drinking water (event E1). The state WS3:
Suspended Water Supply! has no substates—it is a basic state. It refers to the sit-
uation when the emergent water provisioning can no longer be guaranteed. This,
for instance, can result from severe road conditions or insufficient stock of bottled
drinking water while no other supply is available (i.e., when the case is in WS1.2
state). This is indicated by the transition label: E2 or E3 or E4 or E1 [in WS1.2]].

Entering a state by default and by history. The default indicator is used to identify
which substate will be visited when its parent state is entered. Alternatively, in many
cases it can be useful to enter the superstate by history, i.e., to enter its most recently
visited substates (or configuration of substates). The examples include the transition
fromWS3 back toWS2 in Fig. 3.3: once the problem is solved, the emergency water
supply is restored at its latest visited substate (which is not necessarilyWS2.1).

State configuration. Compared to conventional (flat) FSM, in hierarchical state
machines depicted by statecharts, multiple states can be activated at the same time.
Statecharts define the term configuration (of a state or of a system):

The active configuration of a state s is the set of basic substates of s that are
activated at the current moment. Intuitively, active configuration replaces the con-
ventional term of current state defined in FSM.

For the state WS1 in Fig. 3.3, consider that h = 7m and the water provisioning
functions normally; this would correspond to the following active configuration of
WS1: c f (WS1) = WS1.2,WS2.1

The sequenceof active configurations resulting from the executionof the statechart
specification represents a trace of the CMP.

Internal, external and triggering events. Internal events are produced by the system
(Fig. 3.1); they are the results of carried out activities.

In Fig. 3.3, event E1 specifies an insufficient stock of drinking water. It is an
internal event that can result from the water distribution activity or can be generated
by some other activity like stock verification.

External events are produced by the environment (context) of the case. The case
context consists of various objects that influence the case and affect its handling
(Fig. 3.1). Water level, weather forecast, current situation on the roads, incident
reports are examples of contextual parameters sensed by a system during a flood.

In Fig. 3.3,WS0–WS1 orWS1.1–WS1.2 state transitions are taken if a certain value
of h (water level) is reached or exceeded. We consider that the change in the water
level is an external (contextual) event.

The triggering event e[c] (interpreted as e occurs and c holds) of a transition t is
an event that must occur in order for t to take place. Here e ∈ E is the event (or a
logical combination of events) that triggers the transition; c ∈ C is a condition that
needs to be true for the transition to be taken when e occurs.

In Fig. 3.3, the triggering event for the transition fromWS2 toWS3 is described by
an expression: E2 or E4 or E1[in(WS1.2)]. This transition is taken if no more tracks

66 I. Rychkova et al.

for transporting bottled water are available or if the road to the concerned area is
blocked or if the stock of drinking water on place is insufficient while some towns no
longer have regular water supply. The operational information about the resources or
traffic conditions corresponds to contextual or internal events. Condition in(WS1.2)
specifies that WS1.2 substate is active.

To specify some work to be done, statecharts use the concept of activity.

Activity. The statecharts formalism defines state-dependent activities that are linked
directly to a state s and can be carried out throughout or within s. In the first case,
an activity starts when entering the state s and terminates when leaving it. In the
second case, an activity starts when entering s; when exiting s, if the activity it is not
terminated yet, it is stopped by the system.

This is a valid interpretation for a case management process too: in our example,
upon entering the stateWS2.1 (in Fig. 3.3) an activity for water provisioning must be
started and must continue within this state. Upon entering PT1, activities for closing
the concerned stations must be carried out throughout this state.

Relations between activities and states defined by statecharts can be characterized
as mandatory: if activity A is linked to state s by a throughout or a within relation
it must be carried out at this state. Therefore, each state s can be associated with a
(possibly empty) set of mandatory activities.

Broadcast communication. Broadcasting allows for communication and synchro-
nization between concurrent sub-machines. According to statecharts, both internal
and external events are broadcasted, meaning that one single event can trigger tran-
sitions at multiple orthogonal substates.

Broadcast communication allows for coordination between different management
areas in CMP. For example, Road Traffic and Resources substates of EPSF can both
react to an (external) event reporting on the hard traffic in a particular road section.
Along those lines, blocked roads or insufficient water supply (internal events) may
trigger evacuation of people and facilities from the concerned area.

Inter-level transitions. The transitions that cross state boundaries are called inter-
level transitions in statecharts. Their purpose is to model the interruptions or the
situations when the process has to react, no matter its state or the activity it performs.
For example, if the End of crisis event occurs (Fig. 3.3), no matter what the configu-
ration of EPSF substates is and what activities are executed in all its areas, they will
be terminated and the new state (presumably Stabilization) will be entered by the
process.

3 Towards Executable Specifications for Case Management Processes 67

3.5.2 Adaptation and Extension of the Statecharts Formalism
for CMP Specification

Below, we discuss the specific features of CMP that cannot be captured by the
original statecharts concepts and we therefore propose adaptations and extensions to
the statecharts formalism.

What kinds of extensions are needed? Why? Despite the similarities identified
in Sect. 3.4, there exists a number of characteristics that makes a CMP significantly
different from a conventional reactive system:

1. A CMP has a goal. In reaction to given stimuli in a given situation, the case
manager searches for scenarios that could steer the case towards its goal. Thus,
compared to a reactive system where the next state (or active configuration) is
defined by its current state and a given situation, the next state in CMP is also
defined by the process goal.

2. CMP is a knowledge-intensive process where decisions (e.g., scenario planning,
task assignment) are typically made by the case manager. As a consequence:

3. CMSS can be compared to business-intelligence systems (BI) rather than auto-
mated control systems: for the latter, once the preconditions are satisfied for an
activity a, a is automatically executed. For CMSS, once the preconditions of a are
satisfied, a is enabled for execution and (unless explicitly stated as mandatory)
the case manager decides weather it will be carried out or not.

4. Whereas some events are relevant only immediately after they occur (e.g., button
pressed), other events, once they occur, remain relevant or valid for some period
of time or for the whole execution of a CMP (e.g., document received; permission
granted).

In order to faithfully represent the complexity of a CMP, we propose to extend the
statecharts formalism with the following concepts:

1. Final configuration;
2. Path, path selection and path reinforcement;
3. Relevance and validity interval for events;
4. Mandatory versus optional activities.

We briefly describe these concepts in the remainder of this section.

Final configuration. Similarly to [51],we express the process goal in terms of “target
state” (or configuration) that the state transition system has to reach or to maintain;
strategies (possible scenarios) for achieving this goal can be seen as sequences of
states to visit (or state transitions to fire) between the “current” and the “target” states.

By analogy with the active configuration defined by statecharts, we define a final
configuration for CMP:

The final configuration of a state s is the set of basic substates of s that we want
to enter and/or maintain upon the CMP termination.

In our example, the goal of the process is to support the areas affected by the
flood and to protect the population from the flood consequences. For the statechart

68 I. Rychkova et al.

in Fig. 3.3, any configuration where the critical statesWS3, PT2, RT2, CC2, CC3 are
not active can be considered as a final configuration (i.e., it should be maintained
until the crisis is over).

Path, path selection and path reinforcement. We define a path in statecharts as
any sequence of active configurations that terminates with the final configuration.

In our example, if one of the concurrent submachines has entered a critical state,
the path is the sequence of configurations that would lead this submachine back to
one of its non-critical states. For example, if the state CC2: Insufficient resources of
the Resources substate is active, there are two paths for this submachine to bring it
back to CC1: CC2 −→ CC1 or CC2 −→ CC3 −→ CC1.

In any given active configuration, a path towards the final configuration can be
calculated. The optimal path can be selected using some criterion (e.g., the cheapest
path, the shortest path, the path with the highest probability to be realized).

Consider the optimal path p from the current active configuration to the final
configuration. Enforcing path p means executing some activities in order to enable
and then to take some state transition t that will lead to the next active configuration
in p.

Consider that the state CC2: Insufficient resources of the Resources submachine
is active and that the path CC2 −→ CC1 is the optimal path. Enforcing this path
means here enabling the transition from CC2 to CC1. This transition will be taken if
at least one of the eventsE11 (addedmanpower),E12 (added supplies) orE13 (added
equipment) occurs. We can enforce the path by mobilizing volunteers or relocating
supplies, manpower or equipment, considering that these activities can generate E11,
E12 or E13 as a result.

Relevance and validity interval for events. To take some transition t, the execution
of process activities and/or observation of contextual events can be required.

Most process formalisms including statecharts define a triggering event as a single
event, or a group of events that occur simultaneously and instantly trigger a state
transition. In particular, statecharts specify that events are only available in the step
directly succeeding their generation [19]. We call such events instantaneous events
and distinguish them from continuous events that, once observed, remain valid and
can be reacted upon asynchronously, during multiple steps.

We define the validity interval tv for event e as a period of time between the
moment when this event is first observed and the moment when it becomes irrelevant
for the process.

To define the validity interval for an event e, we associate it with the time the
system resides in some state or with the occurrence of another event ê that cancels e:

If the validity interval tv of event e is some state s: tv(e) = s, this means that, after
being sensed for the first time in s (or one of its substates), e will be valid until the
system leaves s. The higher the state in the state hierarchy, the longer the validity
interval.

If the validity interval tv of event e is some event ê: tv(e) = ê, this means that,
after being sensed, e will be valid until ê occurs.

3 Towards Executable Specifications for Case Management Processes 69

For example, the approval received event for starting the evacuation procedure
(not shown in the statechart in Fig. 3.3) is valid as long as the Flood Emergency is
active; E6 (traffic jam) event is valid until Ê6 (fluid traffic) event is received.

If no validity interval is specified for an event, this event is an instantaneous event.
We extend the definition of triggering event as follows: the triggering event e[c]

of a transition t is an event that must occur for t to take place. Here e ∈ E is a
combination of events and/or absence of events observed during some period of time
(validity interval) that triggers the transition; c ∈ C is a condition that needs to be
true in order the transition to be taken when e occurs.

This definition allows us to take into account not only immediate events but also
relevant events observed in the past (email received, approval obtained, etc.).

Mandatory versus optional activities. In the statecharts formalism, activities can
be considered as state-dependent [56] (i.e., each state s is associated with a list of
activities to be carried out in this state). These activities are alsomandatory: they are
automatically executed once their preconditions are met.

To relax the coupling between a situation and a reaction and to allow for more
flexibility in process execution, we propose to define state-independent activities for
statecharts—activities, that can be executed in any configuration if their preconditions
are met (unless explicitly stated otherwise).

Thus, each state s can be associated with two (possibly empty) sets of activities:
the set of mandatory activities that must be carried out in s and are state-dependent
and the set of optional or enabled activities that are defined dynamically, based on
the statechart status. Optional activities can be executed within or throughout the
state in order to ensure the right progression of the case towards its goal.

The specification of activities is beyond the scope of this chapter.

3.6 Perspectives and Roadmap for Future Research

Thebenefits of the proposed formalismare numerous forCMP: executable statecharts
specifications allow for interactive design, simulation-based testing and simulation-
based recommendations. In the future, these features could be integrated as a part of
CMP-supporting PAIS in order to provide intelligent decision-support functionalities
for casemanagers. To conclude this chapter we discuss these perspectives and outline
the directions for future work.

3.6.1 Design and Simulation-Based Testing

Interactive design of CMP. A statecharts specification can be created based on
some a priori knowledge about theCMP (e.g., norms, regulations, best practices, etc.)
(Fig. 3.4a). Thanks to the concept of hierarchical state, this model can be extended

70 I. Rychkova et al.

Fig. 3.4 Incremental design
of CMP

and refined by integrating the experience of the case manager: new states and state
transitions can be specified reflecting new situations and the way to deal with them
(Fig. 3.4b); concurrent substates can be added in order to increase the scope of the
process (Fig. 3.4c). IBM Rational Rhapsody10) and open source YAKINDU State-
chart Tools (SCT)11 are examples of statecharts modeling environments, where the
statecharts specifications can be created and executed in an intuitive and interactive
way. However, creating a detailed statecharts specification for a real-life CMP is a
challenging task, as explained below.

Using clustering techniques for statecharts improvement. Although statecharts
have been designed to represent states in a hierarchical way, this formalism does not
specify how states should be organized into abstraction levels. In most cases this
clustering of states is performed manually by a process designer.

Clustering algorithms gather entities (e.g., the states of a state machine) into clus-
ters according to some similarity criteria that can include complex sets of parameters.
Formal Concept Analysis (FCA) [17] is a well-known clustering technique that is
successfully used in many areas including knowledge discovery, representation and
sharing [39]. In FCA, the obtained clusters are organised into a lattice using gen-
eralisation and specialisation relationships, which could be used to identify state
hierarchy in statecharts. A significant advantage of FCA is that the resulting clusters
may overlap, whereas many traditional clustering techniques build partitions.

FCA can therefore be used for clustering states and helping to define the hierar-
chical structure within a statecharts specification. Various attributes may be chosen
to describe states: pre-conditions, post-conditions, contextual parameters, and any
combination of them. As a result, each FCA concept (cluster) is explicitly labelled
by the set of attributes that characterize the objects of the cluster. This can be
considered as a starting point for further model analysis and improvement: detection
of “missing” states or state transitions, identification of “similar” states or activities
etc.

Simulation of CMP specifications. Statecharts combine an intuitive and concise
visual notation with precise semantics. Thanks to these semantics, the statecharts

10http://www-03.ibm.com/software/products/en/ratirhapfami.
11http://statecharts.org/index.html.

http://www-03.ibm.com/software/products/en/ratirhapfami
http://statecharts.org/index.html

3 Towards Executable Specifications for Case Management Processes 71

Fig. 3.5 Simulation-based testing of CMP scenarios

specifications can already be simulated at the early design stages, providing an instant
visual feedback. At the later design stages, they can serve as a basis for simulation-
based testing as explained below.

Astatecharts specification canbe executedwith a test event log (i.e., a pre-recorded
sequence of events defining some flood development scenario) allowing for the sim-
ulation and testing of various handling scenarios. Two simulation modes can be
defined:

• A fully automated mode (Fig. 3.5a), where the statecharts specification is executed
with a test event log that includes both contextual events (e.g., raise of water level,
traffic jam) and system events (e.g., successful deployment of equipment, empty
stock of drinking water). The events from the event log are processed by a stat-
echarts simulation environment12 triggering the state transitions. The simulation
result is a sequence of visited states.

• In an interactive mode (Fig. 3.5b), the test event log contains only contextual
(external) events and emulates the environment. A case manager reacts to external
events by executing enabled activities (e.g., deploying equipment, making task
assignments)—these activities represent the steps of case handling scenarios.

Similarly to computer simulator games, the interactive statecharts simulation is an
iterative process, where the case response is simulated after each step taken by the
case manager: pre-recorded external events and internal events resulting from the
case manager’s decisions trigger state transitions in statecharts specification and
once the (new) current state Sx is entered a new step starts. The simulation result is
the sequence of visited states, executed activities and received events.

In the case of a crisis management process, multiple scenarios can be “played”
automatically or interactively and used as a basis for trainings, drills and improvement
of formal operation procedures (e.g., procedures described by EPSF).

12Development of modeling and simulation environment for CMP will be addressed in our future
work.

72 I. Rychkova et al.

Conversely, possible case development scenarios can be calculated as sequences
of events acceptable by the state machine representing the CMP. This could help to
analyse the process and reveal scenarios that were not considered before.

3.6.2 Simulation-Based Recommendations

Gartner’s Hype Cycle for Emerging Technologies report provides a cross-industry
perspective on technologies and trends,with an assessment of theirmaturity, adoption
and business benefit. According to the reports from 2013 and 2014,13 Predictive
Analytics technologies have already reached their plateau of productivity and are
currently becoming the mainstream technology, whereas Complex-Event Processing
(CEP), Big Data and Content Analytics are currently rolling down from their peak
of inflated expectations and will reach their maturity (the plateau) in 5 to 10 years.
This makes run-time situation analysis and recommendations for case managers the
next challenge for the CMP-supporting PAIS.

Some recommendation systems supporting process modeling and process man-
agement are presented in the literature [29, 50]. Processmining is awidely recognised
technique for predicting a best process scenario based on the analysis of past exe-
cution logs [4]. The approach reported in [8] uses constraint-based programming to
generate recommendations on process execution strategies.

An example of CMP solution integrating intelligent support for the case manager
is reported in [26]. Here the authors introduce the concept of User-Trained Agent
(UTA),which recommends the best next actions based on the actions takenby the case
managers in previous similar situations. The proposed recommendation technique is
based on pattern recognition and is integrated as a part of ISIS Papyrus platform.

Whereas all the approaches for recommendations mentioned above are based on
“past experience” or process logs, we propose an alternative technique that is based
on the execution of a CMP specification in the simulated process environment:

In our vision, the “a priory” statecharts specification of a CMP can be analysed
using graph theory algorithms. The objective of the analysis is to search and optimize
a path from some current state of the statecharts model to its target state, representing
the goal of the process. As a result, the “best next state to visit”, “best next transition
to fire” and, consequently, “possible activities to execute” are recommended to the
case manager. The main advantage of this analysis is that recommendations can be
provided based on:

• our current knowledge about the process represented by its executable statecharts
specification and

• our current knowledge about the process environment, represented by a real-time
event buffer (or event log).

13Gartner, http://www.gartner.com/newsroom/id/2575515, http://www.gartner.com/newsroom/id/
2819918.

http://www.gartner.com/newsroom/id/2575515
http://www.gartner.com/newsroom/id/2819918
http://www.gartner.com/newsroom/id/2819918

3 Towards Executable Specifications for Case Management Processes 73

Fig. 3.6 Run-time recommendations on the CMP activity planning

No “past experience” represented by a log of the past process executions is
required. This makes “cold starts” possible.

A statecharts specification could be initialized and then executed using a real-time
event log (i.e., where both contextual (external) and system (internal) events occur in
real time). Given a current state Sx of the statecharts and the desired (target) state St,
possible case management scenarios can be calculated as alternative paths from Sx
to St on the statecharts diagram. Each scenario can be seen as a sequence of “correct”
state transitions resulting from the execution of corresponding activities (Fig. 3.6).

The alternative scenarios and activities that need to be executed in order to rein-
force these scenarios could then be recommended to the case manager.

The integration of CMP executable specifications and analysis tools as a part of
CMP-supporting PAIS could provide an intelligent support for case managers, as
explained below.

3.6.3 Enhancing the CMP-supporting PAIS with
Recommendations for Agile Activity Planning

Figure3.7 illustrates our vision of the intelligent CMSS introduced in our earlier
works [48, 49]. We describe below the main components of this system: Dynamic
context manager (DCM), Navigation manager (NM), Activity/Resource repository,
Log and History.

The role of the Dynamic context manager is to select, measure and monitor rele-
vant contextual variables of the CMP. Internal and external events are collected and
stored in the Event log. The Activity/Resource repository stores the definitions of
activities that can be performed during the case handling and resources that can be
used. The Log and History component registers the ongoing process scenario (i.e.,
the sequence of executed activities, received events and visited states).

The Navigation Manager is the “heart” of the system, it provides intelligent
support for the case manager by recommending the best scenario(s) for handling
the case. It contains the Executable statecharts specification of the CMP and the
Recommendation component that uses graph theory, process mining and clustering
algorithms in order to provide recommendations for the case manager.

74 I. Rychkova et al.

Fig. 3.7 Intelligent CMSS. The Navigation Manager provides recommendations about the best
scenario based on the current state of the process and the list of valid events

TheExecutable statecharts specification of CMPmodels the behavior of the SUD
and its Environment. It can be executed with the collected real-time events. Possible
casemanagement scenarios are described by the sequences of states of the statecharts
model that lead from the current state to some target state that represents the CMP
objective.

The Recommendation component can provide the case manager with an insight
about how the situation might develop and about the possible strategies (paths in
statecharts, activities, groups of activities to carry out) to bring the situation under
control. The recommendation mechanism uses the Activity/Resource repository to
define the list of activities enabled at a given situation identified with the current
configuration (state) of the statecharts model. Since activities are independent from
states, new activities can be added to the Activity/Resource repository at run time
and further used by the Recommendation component without needing to change the
model.

The intelligent CMSS sketched above will be grounded on the statecharts spec-
ifications enabling incremental interactive process design, simulation-based testing
and recommendations. According to the statecharts formalism, a case management
process is represented by a hierarchical state machine, where the process scenario
can be seen as a dynamic choice of activities with an objective to trigger a “good”
state transition that would move the case from its “current state” towards its “target
state” representing the case management goal.

The development of a prototype of the intelligent CMSS is our future work.

3 Towards Executable Specifications for Case Management Processes 75

References

1. van der Aalst,W.: The application of petri nets to workflowmanagement. J. Circ. Syst. Comput.
8(01), 21–66 (1998)

2. van der Aalst, W.: Process-aware information systems: lessons to be learned from process
mining. In: Jensen, K., van der Aalst, W. (eds.) Transactions on Petri Nets and Other Models
of Concurrency II. LNCS, vol. 5460, pp. 1–26. Springer (2009)

3. van der Aalst, W., Ter Hofstede, A.H.: Yawl: yet another workflow language. Inf. Syst. 30(4),
245–275 (2005)

4. van derAalst,W.,Weijters,A.: Processmining: a research agenda.Comput. Ind. 53(3), 231–244
(2004)

5. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between
flexibility and support. Comput. Sci. Res. Dev. 23(2), 99–113 (2009)

6. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business
process support. Data Knowl. Eng. 53(2), 129–162 (2005)

7. Bajec, M., Krisper, M.: A methodology and tool support for managing business rules in organ-
isations. Inf. Syst. 30(6), 423–443 (2005)

8. Barba, I., Weber, B., Del Valle, C.: Supporting the optimized execution of business processes
through recommendations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) Business Process
Management Workshops. LNBIP, vol. 99, pp. 135–140. Springer, Berlin (2012)

9. Bider, I.: Towards a non-workflow theory of business processes. In: La Rosa, M., Soffer, P.
(eds.) Business Process Management Workshops. LNBIP, vol. 132, pp. 1–2. Springer, Berlin
(2013)

10. Bubenko, J., Rolland, C., Loucopoulos, P., DeAntonellis, V.: Facilitating fuzzy to formal
requirements modelling. In: Proceedings of the First International Conference on Require-
ments Engineering, 1994, pp. 154–157. IEEE (1994)

11. Cauvet, C.:Modélisation des processus d’ingénierie des systèmes d’information. Encyclopédie
de l’Informatique et des Systèmes d’Information, pp. 1412–1425 (2006)

12. Davenport, T.: Thinking for a Living: How to Get Better Performances and Results from
Knowledge Workers. Harvard Business Press (2005)

13. Dijkman, R., Dumas, M., Garca-Bauelos, L.: Graph matching algorithms for business process
model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H. (eds.) Business Process
Management. LNCS, vol. 5701, pp. 48–63. Springer, Berlin (2009)

14. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

15. Dowson, M.: Iteration in the software process; review of the 3rd international software process
workshop. In: Proceedings of the 9th International Conference on Software Engineering, ICSE
’87, pp. 36–41. IEEE Computer Society Press, Los Alamitos, CA, USA (1987)

16. Dumas, M., van der Aalst, W.M., Ter Hofstede, A.H.: Process-Aware Information Systems:
Bridging People and Software Through Process Technology. Wiley (2005)

17. Ganter, B., Wille, R., Wille, R.: Formal Concept Analysis, vol. 284. Springer, Berlin (1999)
18. Groefsema, H., Bucur, D.: A survey of formal business process verification: from soundness to

variability. In: Proceedings of International Symposium on Business Modeling and Software
Design (BMSD) (2013)

19. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

20. Harel, D., Gery, E.: Executable object modeling with statecharts. In: Proceedings of the 18th
International Conference on Software Engineering, ICSE ’96, pp. 246–257. IEEE Computer
Society, Washington, DC, USA (1996)

21. Harel, D., Naamad, A.: The statemate semantics of statecharts. ACM Trans. Softw. Eng.
Methodol. 5(4), 293–333 (1996)

22. Harel, D., Pnueli, A.: On the development of reactive systems. Springer (1985)
23. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The STATEMATE

Approach. McGraw-Hill, Inc. (1998)

76 I. Rychkova et al.

24. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath, III, F.T., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculin, R.: Business artifacts with
guard-stage-milestone lifecycles: managing artifact interactions with conditions and events.
In: Proceedings of the 5th ACM International Conference on Distributed Event-Based System,
DEBS ’11, pp. 51–62. ACM, New York, NY, USA (2011)

25. Kemsley, S.: The changing nature of work: from structured to unstructured, from controlled
to social. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) Business Process Management.
LNCS, vol. 6896, pp. 2–2. Springer, Berlin (2011)

26. Kim, T.T.T., Ruhsam, C., Pucher, M.J., Kobler, M., Mendling, J.: Towards a pattern recognition
approach for transferring knowledge in ACM. In: Enterprise Distributed Object Computing
Conference Workshops and Demonstrations (EDOCW), pp. 134–138 (2014)

27. Kirsch-Pinheiro, M., Rychkova, I.: Dynamic context modeling for agile case management.
In: Demey, Y., Panetto, H. (eds.) On the Move to Meaningful Internet Systems: OTM 2013
Workshops. LNCS, vol. 8186, pp. 144–154. Springer, Berlin (2013)

28. Koehler, J., Tirenni, G., Kumaran, S.: From business process model to consistent implemen-
tation: a case for formal verification methods. In: Enterprise Distributed Object Computing
Conference, 2002, EDOC ’02. Proceedings, pp. 96–106 (2002)

29. Koschmider, A., Oberweis, A.: Designing business processes with a recommendation-based
editor. In: Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1.
International Handbooks on Information Systems, pp. 299–312. Springer, Berlin (2010)

30. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: 2001. Pro-
ceedings. Fifth IEEE International Symposium on Requirements Engineering, pp. 249–262
(2001)

31. Mikk, E., Lakhnech, Y., Petersohn, C., Siegel, M.: On formal semantics of statecharts as
supported by statemate. In: Workshop, Ilkleym, vol. 14, p. 15 (1997)

32. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
33. Nurcan, S., Edme, M.H.: Intention-driven modeling for flexible workflow applications. Softw.

Process: Improv. Pract. 10(4), 363–377 (2005)
34. OMG: Case management process modeling (CMPM) request for proposal. http://www.omg.

org/cgi-bin/doc?bmi/09-09-23 (2009)
35. OMG: Business process model and notation (BPMN). http://www.omg.org/spec (2011)
36. OMG: Case management model and notation. http://www.omg.org/spec/CMMN/1.0/PDF/

(2014). document number formal/2014-05-05
37. Pesic, M., Schonenberg, H., van der Aalst, W.: Declare: full support for loosely-structured

processes. In: Enterprise Distributed Object Computing Conference, 2007, EDOC 2007. 11th
IEEE International, pp. 287–287. IEEE (2007)

38. Plotkin, G.: A structural approach to operational semantics (1981)
39. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal concept analysis in knowledge dis-

covery: a survey. In: Conceptual Structures: From Information to Intelligence, pp. 139–153.
Springer (2010)

40. Pohl, K., Weidenhaupt, K.: A contextual approach for process-integrated tools. In: Jazayeri,
M., Schauer, H. (eds.) Software Engineering ESEC/FSE’97. LNCS, vol. 1301, pp. 176–192.
Springer, Berlin (1997)

41. Pucher, M.: The elements of adaptive case management. In: Mastering the Unpredictable, pp.
89–134 (2010)

42. Reijers, H.A., Limam, S., Van Der Aalst, W.: Product-based workflow design. J. Manag. Inf.
Syst. 20(1), 229–262 (2003)

43. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling. Requir.
Eng. 4(4), 169–187 (1999)

44. Rolland,C., Souveyet,C.,Moreno,M.:Anapproach for definingways-of-working. Information
Systems 20(4), 337–359 (1995)

45. Rosemann, M., van der Aalst, W.: A configurable reference modelling language. Inf. Syst.
32(1), 1–23 (2007)

http://www.omg.org/cgi-bin/doc?bmi/09-09-23
http://www.omg.org/cgi-bin/doc?bmi/09-09-23
http://www.omg.org/spec
http://www.omg.org/spec/CMMN/1.0/PDF/

3 Towards Executable Specifications for Case Management Processes 77

46. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, 2nd
edn. Pearson Higher Education (2004)

47. Rychkova, I.: Exploring the alloy operational semantics for case management process model-
ing. In: 2013 IEEE Seventh International Conference on Research Challenges in Information
Science (RCIS), pp. 1–12 (2013)

48. Rychkova, I., Kirsch-Pinheiro, M., Le Grand, B.: Context-aware agile business process engine:
foundations and architecture. In: Nurcan, S., Proper, H., Soffer, P., Krogstie, J., Schmidt, R.,
Halpin, T., Bider, I. (eds.) Enterprise, Business-Process and Information Systems Modeling.
Lecture Notes in Business Information Processing, vol. 147, pp. 32–47. Springer, Berlin Hei-
delberg (2013)

49. Rychkova, I., Le Grand, B., Kirsch-Pinheiro, M.: Adaptive case management: supporting
knowledge intensive processes with it systems. In: Fischer, L. (ed.) Empowering Knowledge
Workers. BPM and Workflow Handbook Series. Future Strategies Inc. (2013)

50. Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W.: Supporting flexible processes
through recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.C. (eds.)
Business Process Management. LNCS, vol. 5240, pp. 51–66. Springer, Berlin (2008)

51. Soffer, P., Yehezkel, T.: A state-based context-aware declarative process model. In: Enterprise,
Business-Process and Information Systems Modeling, pp. 148–162. Springer (2011)

52. Swenson, K.: Mastering The Unpredictable: How Adaptive Case Management Will Revolu-
tionize the Way That Knowledge Workers Get Things Do. Meghan-Kiffer Press (2010)

53. Swenson, K., Palmer, N., Manuel, A., Carlsen, S.: Empowering Knowledge Workers. BPM
and Workflow Handbook Series. Future Strategies Inc. (2013)

54. Swenson, K., Palmer, N., Pucher, M., Manuel, A., Webster, C.: How Knowledge Workers Get
Things Done. Future Strategies Inc. (2012)

55. Taylor, F.W.: The principles of scientific management. Harper (1914)
56. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling software with finite state

machines: a practical approach. CRC Press (2006)
57. Weske, M.: Business Process Management: Concepts, Languages, 2nd edn. Architectures.

Springer, Berlin (2012)
58. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements engineering.

In: Requirements Engineering, 1997., Proceedings of the Third IEEE International Symposium
on. pp. 226–235. IEEE (1997)

	3 Towards Executable Specifications for Case Management Processes
	3.1 Introduction
	3.2 Case Management Process Example and Terminology
	3.2.1 Crisis Management in Cases of Flood
	3.2.2 Terminology Used in This Chapter

	3.3 Related Work
	3.3.1 Adaptive Case Management
	3.3.2 Modeling Paradigms for CMP Specification

	3.4 Finite State Machines, Hierarchical State Machines and Statecharts
	3.4.1 CMP Versus Complex Discrete-Event Systems
	3.4.2 Finite State Machines
	3.4.3 Hierarchical State Machines and Statecharts

	3.5 Statecharts Semantics for Case Management Processes
	3.5.1 Statecharts Semantics for CMP Specification
	3.5.2 Adaptation and Extension of the Statecharts Formalism for CMP Specification

	3.6 Perspectives and Roadmap for Future Research
	3.6.1 Design and Simulation-Based Testing
	3.6.2 Simulation-Based Recommendations
	3.6.3 Enhancing the CMP-supporting PAIS with Recommendations for Agile Activity Planning

	References

