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Abstract. Circle and circular arc detection in images have been a long
standing topic in image analysis. It finds numerous applications for both
scanned document images as well as in photographic images. As a result,
circle detection algorithms are published regularly and benchmarking
data sets and contests have been organized on a regular basis over the
last decades. Unfortunately, they have not been able to achieve a very
clear image establishing which approaches perform best and under what
exact conditions.

This paper contributes to circle and arc detection, by providing an
open and fully reproducible framework for benchmarking and evaluat-
ing circle and circular arc detection methods. It builds upon the current
state of the art and commonly used metrics by providing a complemen-
tary approach through the introduction of synthetic evaluation data for
benchmarking versus two noise types at gradually varying noise levels
and new performance metrics that are compatible with previous evalua-
tion approaches.

1 Introduction

Circle and arc detection have been a long standing challenge in the Graphics
Recognition community [18] and beyond. New algorithms and approaches are
still being published on a regular basis without there being a clear knowledge of
their actual performance with respect to the state-of-the-art. This paper is an
attempt to provide an overview of past performance evaluation and benchmark-
ing initiatives, and to initiate a more reproducible and complete way of assessing
circle and arc detection methods.

1.1 GREC Arc Detection Contests

The most consistent and complete series of benchmarking initiatives are the
Circle and Arc Detection Contests that have been held in conjunction with the
TAPR Graphics Recognition Workshops (GREC). These events have been taken
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Fig. 1. Samples from GREC circle and arc detection contests (a) 2003 (b) 2005
(¢) 2007 (d) 2009.

place every other year, and between 2001 and 2013, seven contests have been
organised: [4,5,7,15,16,18,23].

For the purpose of objective benchmarking, each of these contests have con-
tributed to providing annotated reference data. These either consist of synthetic
data subjected to noise models, or of actually manually annotated scanned doc-
uments. The images are sometimes simple circles or parts of circles that do not
touch, circles in patterns deliberately designed to fool the algorithm, or machine
drawing plans showing the needed end application. Some of them are illustrated
in Fig. 1.

While different metrics have been proposed to evaluate the performance, the
general consensus has been to use the one developed by Liu and Dori [17]. This
metric will be detailed further in Sect.4.1.

1.2 Reproducibilty

We are not going to reproduce an extensive overview of the many exiting algo-
rithms for detecting circles, as will be explained further. The only way for eval-
uating performances of these multiple approaches consists of testing them on
unified benchmarks. However, very often, when a circle detection algorithm is
developed, the authors choose some images on which to test it. Often these
images are small and simple and the algorithm performs well. When applied in
real problems, however, the images for which the algorithm is needed, will not be
small and simple. Often they will contain noise from aging while the document
has been in storage, or from the acquisition process. These are specifically the
cases for which circle detection is needed. Therefore the end user will care not
about how the circle detection algorithm performs in the ideal case, but how it
performs when under stress, or will like to use the algorithm best suited for their
operational conditions (speed, precision, image noise. .. ).

The contests described in Sect. 1.1 provide an interesting step in the right
direction, but fail to fully satisfy the actual goals. This is due to the following
reasons:

1. They are time bound, and correspond to snapshots at the time they are run.
Although the contests usually provide open access to their reference data sets,
and therefore allow replay of the data on algorithms that were unavailable
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at the time, this condition is not reversible, in a sense that the competing
algorithms cannot be applied to other reference data.

2. Getting access to published algorithms that have competed in the past, is

very often quite difficult.

Changing metrics is impossible.

4. When human annotated reference data is used, often multiple interpretations
of ground truth are possible [13], and it is difficult to assess whether difference
in precision performance of specific algorithms is due to the quality of the
algorithms or quality of the reference data. ..

@

In this paper we introduce a method for comparing algorithms and to allow
researchers to test their own work using shared and identical experimental con-
ditions. Since the exact quality and quantity of noise is hard to measure on real
scanned data, and the ground truth is hard to extract, we present a synthetic
ground truth generator that is able to provide both realistic noise and drawing
content. The code to create these images and to run the test procedure will be
made available on the DAE platform [12].

2 Technical Background

Five different algorithms were used in this study. The choice of the actual algo-
rithms was quite simple: we took those for which we were able to get a reliable
implementation. This was either because their authors kindly provided us with
their code or binaries, or because the algorithms were sufficiently documented
in the supporting publications. A brief overview of each algorithm is presented
here. Details for each algorithm are available in the referenced work. For a signif-
icant number of published methods, we failed to reach the authors or to correctly
reimplement the algorithms based on the published descriptions only.

2.1 Hough 3D

The most well known and probably oldest method for finding a circle in an image
the Hough Transform [9,21]. It is often also used as a baseline for performance
comparison. It is based on having a circle

('T - xc)z + (y - yc)2 = R2 (1)

with unknown parameters z., y. and R. For every known “on” point (z,y) the
set of the possible z., y. and R that could produce a circle containing that
point are listed. The algorithm creates an accumulator grid for z. and y. center
coordinates and radius R that are candidate parameter values. Then for every
point in the image that is “on”, all the z., y. and R that could correspond to
it are incremented in the accumulator. The parameters corresponding to the
accumulator bins where there is a peak are the parameters that correspond to
circles in the image.
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Implementing this requires a set of loops to map each “on” pixel to all the
appropriate (z., Y., R) accumulator bins. Finding the peaks heavily depends on
the chosen bin resolution and on how many are selected from the accumulator.
The number of peaks selected will determine the number of returned detected
circles, but this needs also to be parametrized, either by setting an accumula-
tor bin threshold level, or specifying the quantity of circles desired. It takes a
fairly high amount of memory to store the accumulator array and also a fair
amount of computational time to fill it. These operational requirements make it
an undesirable algorithm to use in practice.

A number of well documented techniques for computational complexity
reduction exist. Sometimes methods are used to reduce the number of “on”
pixels that are used to fill the accumulator array, like those used in Sects. 2.2
and 2.3. As a comparison baseline, we have implemented a version of the Hough
Transform that uses the basic algorithm with a 3-dimensional accumulator grid.
To make the algorithm run in a reasonable amount of time and memory, we
introduced some algorithmic accelerations, while making sure the final mapping
to the 3D accumulator array from the original points continued as in the original
algorithm.

In the 1000 x 1000 pixel images used in this project, on the order of 20,000
pixels were “on” pixels. For each pixel all eligible (., y., R) must be incremented
within the accumulator. To reduce this loop size, the image was reduced 5x
resulting in a 125x smaller accumulator array. To not lose points because of sub
sampling, the reduced image array was set to “on” if any of the pixels in the
5 x 5 window were “on” in the original image.

All (z¢, Y, R) values that had an accumulation of 90% of the expected circum-
ference at that radius size were identified. For all potential radius sizes identified
in the prefiltering step, the (x., y., R) values were used as a mask to select (and
reduce) “on” points in the original image. The points that satisfied the mask
were processed with the full resolution 3D Hough Transform at each candidate
radius. As per the Nixon implementation [21], the accumulator array was cre-
ated and analyzed for each radius value separately in turn reducing memory
requirements. The list of (2., y., R) values that had an accumulation of 90% of
the expected circumference at this full resolution were stored. A 3D accumulator
again at 5x reduction was used to group these points using a connected compo-
nent algorithm. The original high-resolution (., y., R) values that correspond
with each cluster were then used to identify the circle centers and radii. The
average x., Y. and R values in each cluster were selected as algorithm outputs.
The range of radii in each cluster was used to determine stroke width.

This algorithm was implemented in Matlab and takes between 2 and 4 min for
each 1000 by 1000 image (without pepper noise) on both an older 32 bit laptop
and on a server that for other algorithms provided greater than a 3x speedup.
When pepper noise is introduced, the run-time increases. At a pepper noise level
of P = 6, it was taking 6h per image. The results for P > 6 are therefore not
shown.
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2.2 Hough 2D - Hough Gradient Method

While the Hough 3D algorithm for circles is a standard, there are several varia-
tions to reduce its size and complexity. One algorithm related to Hough 3D and
often called Hough for circles is based on the idea that the gradient of the edges
of a circle will point toward the center of the circle. This algorithm is the one
used in the OpenCV package [22].

The algorithm starts by finding all Canny edges. This reduces the search
space from the original Hough algorithm. The gradient for each line in the image
is calculated. At each “on” pixel location, a line in drawn in the direction of
the gradient in a 2D accumulator space. Peaks in this accumulator space are
designated as circle centers. Then the Ly distance from each point to each circle
center is calculated. If it is within the allowable radius range, an accumulator is
incremented.

2.3 Hough Gradients - Jia

This algorithm [10,11] is very similar to the Hough Gradient algorithm. The
source code for it written in Matlab was provided by its authors. The gradient
is used to find the intersection of lines and candidate circle centers. Then radii
are tried consecutively to see if within a small distance from the radius there are
many points with a high gradient. All radii that exceed a threshold are saved.
Then the list is parsed to eliminate radii that are consecutive.

The original algorithm was designed for use on small natural scene images.
We modified the source code provided by the authors to take advantage of Mat-
lab vector processing accelerations. We also modified the algorithm that searches
for the circle’s radius to indicate at which radii a large percentage of the circum-
ference contains black pixels, instead of just a high gradient. This also reduced
the number of false concentric circles found.

2.4 QGAR Algorithm

This method was published in [14]. It being our own work, access to the source
code was straightforward. It is constructed around a robust estimator determin-
ing whether there is a circular arc close to a given center (z.,y.) and radius o.
However, it needs some initial guess on where to search. It proceeds in three
main phases:

1. Generate a high number of possible arc candidates, without consideration of
uniqueness, overlapping or exact localization. The arc candidates are obtained
by operating a line extraction algorithm on the data, and by considering the
circular arc defined by two connected line segments.

2. Verify the quality of each candidate using the approach described below. The
output of this verification is a list of genuine arcs, correctly fitted on the
image data.

3. Detect and merge multiple and/or partial detections of the same curves as to
obtain a set of unique, disjoint arcs.
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In order to evaluate the quality of an initial arc guess, the approach is to find
a set P = {p;} of all image pixels p; radially closest to the theoretical discrete
circular arc Ag at iteration 0. P is then used for updating the estimate of the arc
parameters, resulting in a new arc estimate A; for which the process is iterated
until convergence. At convergence a fitness measure, based on a threshold of
image pixels lying on the arc determines whether the estimate is to be rejected
or not.

2.5 ED Circles Algorithm

The ED Circles algorithm [2] is based on an edge segment detector (ED)
algorithm [1] that joins sets of identified edge points into edge segments. This
results in an edge map that is not a set of points, but a set of edge segments or
pixel chains. Sets of consecutive line segments are evaluated to determine if they
are candidates to be parts of lines, circles/arcs, or other. If the angle between
the segments is less than 6° they are a considered colinear; if it is greater than
60°, then a corner is likely present, and the segments are separated. Consecutive
line segments with an angle between 6 and 60° that turn in the same direction
and have consistent angles values are defined as forming a circular arc.

Points corresponding to sets of segments that are candidates for a circle or
arc are tested for a good least squares fit. If the fit is adequate, the next segment
is a tried for addition of a following segment, otherwise the process stops and
what is there is saved. Sets of arcs with calculated radii within constraints and
close physical proximity are evaluated to see if they collectively form a circle.

As a final step the candidate lines, circles and arcs are validated with the
Helmbholz principle [8]. This looks at the probability that any mismatches (false
alarms) occurred by chance.

Since EDCircles is designed to work on natural scene images, the edge detec-
tor will find both the interior and exterior edge on document images. We there-
fore modified the output such that, when two concentric circles (circles with
center positions having an Ly distance less than 10 pixels) were found with radii
differing by less than 10 pixels, we averaged the center pixel coordinates and
radii were averaged. The difference in the radii determines the stroke width.

The authors did not provide the source code for this algorithm, but they have
a web portal [3] where images can be tested. They only output detected circles,
even though their published algorithm is capable of detecting arcs and lines.

3 Data and Experimental Protocol

In order to provide a perfectly controlled, yet realistic experimental data set,
we create images that contain a mixture of circles, arcs and straight lines with
known positions and stroke thicknesses, as well as genuine noise. We want to
create a large number of synthetic images with several noise levels and type.
Two types of noise were added to the images: edge noise and impulsive or
pepper noise. While in physical documents both noise types can occur in the
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same image samples, the two types of noise are treated separately here to see
the effect that each type of noise has on the circle and arc detection algorithms.

3.1 Edge Noise

The edge noise is based on image degradations produced by the Baird degrada-
tion model [6]. This models the bilevel image acquisition process, which contains
blurring from the optics and additive Gaussian noise from the sensors. This
is then thresholded with a global threshold to form a bilevel image. With a
threshold at 50%, the position of the edge will not change, but corners (e.g. at
intersections) will round slightly. In the gray-scale image before thresholding,
the blurring smooths the transition of the amplitude from white to black. The
additive noise on this sloped surface will at times be above the threshold and
at times below the threshold. Therefore the noise will cause a variation in the
pixels at the edge. The distance from the edge where the noise has this transi-
tion effect is called the Noise Spread (NS) [20]. We use 0.5, 1.0, 1.5 and 2.0 pixel
NS (c¢f. Fig.2). At larger values, the noise can exceed the threshold and cause
isolated or impulsive noise. To separate the effects of the different noise types,
all isolated pixels are filtered to white.

Fig. 2. Samples of images with varying levels of Noise Spread. (a) Original image
without noise, (b) NS=0.5, (c) NS=1.0, (d) NS=1.5, () NS=2.0.

3.2 Impulsive Noise

The second type of noise is impulsive or pepper noise in which each pixel 7 is
transformed into 7; with a probability

P (Zt = black\izwhite) = Ppepper (2)
P (Zt = white'i:black) = Psan.

This is the noise that is more easy to see and is the type of noise used for
the arc detection contest of GREC 2005. The physical source of this noise is
the same as the source of the edge noise. It usually appears in systems where
the sensor noise or the paper texture is great, and the binarization threshold is
low. Edge noise will accompany it in physical systems. For this paper, the noise
was added without blurring, as was the case in GREC 2005 and [19]. There-
fore the edges have no transition zone between black and white (i.e. NS=0).
In this paper we use only pepper noise so the strokes are not affected directly.
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Fig. 3. Samples of images with varying levels of pepper noise. (a) Original image with-
out noise, (b)—(1) Ppepper =0.0005, 0.005, 0.026, 0.045, 0.073, 0.11, 0.125, 0.16.

We empirically estimated Ppepper from the GREC 2005 dataset and determined
eight levels: {0.0005,0.005,0.026,0.045,0.073,0.11,0.125,0.16}. These are refer-
enced as pepper noise levels P = 1..8 in the remainder of the paper (c¢f. Fig. 3).

3.3 Image Data

Images generated for this study all contain 5 circles, 5 arcs and 25 line segments.
The circles have a random center and radius, drawn from a uniform distribu-
tion U[100,900] for the center coordinates, and U[50,200] for their radius. The
arcs have a supplementary starting angle within UJ[0,360] and a span within
U[30,180] degrees. The line segment end points were drawn from a random
distribution U[1,1000]. Each component has a randomly chosen stroke width
between 2 and 7 pixels. To generate a line with a thickness, the object was cre-
ated with a one pixel thickness and then morphologically dilated by a circle of
the appropriate diameter.

Fig. 4. Sample test images. (a) without noise (b) NS=2.0 (c¢) Pepper =0.045%.
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We created 10 different randomly generated line drawings of size 1000 x 1000
(¢f. Fig.4). They were created initially at 4x the resolution so the blurring
process that creates the edge noise could be done with discrete convolution,
and then downsampled to return the images to the “original” resolution. 10
instances of noise were added to each of the edge noise images at each noise
level. 5 instances of noise were added to each of the impulse noise images. This
produced a total of 100 noisy images for each noise level for edge noise and 50
for each impulse noise level. There were 400 total noisy images for each type of
noise. There were 10 images without noise used as reference.

4 Experiments and Results

We compared the performance of five circle detection algorithms versus two
types of noise at varying noise levels. We used two metrics to quantify their
performance. We next discuss the metrics, and then show the performance of
the algorithms.

4.1 Performance Metrics

Two performance metrics were used to evaluate the quality of the circle detec-
tion. The first is ArcEval by Liu and Dori [17], which is the one used in past
GREC arc detection contests. It contains measurements of the amount of positive
match between the estimated circles and the negative or false alarm mismatch
between the two images. While the original paper includes multiple metrics we
only consider the vector performance metrics, D,,, F,, and V RI. The implemen-
tation we are using is the executable from the 2009 GREC contest.
The detection rate is

> gev, Qu(9)l(g)
Prev, ll9)

The quantity @Q,(g) is the vector detection quantity and is made from a combi-
nation of the quality of the match in the endpoints, overlap distance, line width,
line style and line shape. It can take values from 0 to 1, and a value of 1 is
desired. Vj is the set of ground truth vec objects, and Vj is the set of detected
vec objects. I() is the length of the vec object stroke. The false alarm rate

b Sicy, BRIK)
YT e [®)

is the length-weighted sum of the false alarm factors F, (k) = 1—Q,(k), meaning
one minus the match of a line to the image that shouldn’t have been there, or
a 100% match to the background. We desire F, to be zero. Similar to the F-
measure in retrieval, the detection and false alarm rates are combined, but in a
weighted arithmetic mean

D, =

3)

(4)

VRI = 8D, + (1 - §)(1 - F,). (5)
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The weight factor 3 is set to 0.5. We also want V RI to be 1.

The Liu-Dori metrics rely on the percent overlap of the detected strokes
with the ground truth strokes. Some of the circle detection algorithms produce
a list of circles that are plausible indicating the algorithm did indeed find real
circles and not random noise, but have a one or two pixel error in the circle center
position and/or the radius length. This can result in zero stroke overlap and thus
a score of 0 for V), 1 for V¢, and 0 for VRI. This does not accurately reflect
the algorithms’ performance. Thus a second evaluation metric was created. This
metric looks at the percent overlap of the circle area. To liken it to the Liu—Dori
metric, a version for positive overlap, Cy4, and false-alarm non-overlap, C, were
created and then averaged. This starts with the overlap percentage calculated by

CiNCs

O C ,C == e
v(Cr, C2) maz(Cy, Co)

(6)
which is the area of the overlap between circle 1, Cy, and circle 2, C5, divided
by the maximum area of the circles individually. The overlap area is calculated
algebraically [24] based on the vec data.

C4 measures for each ground truth circle, whether there is a detected circle
that strongly overlaps (>50%) it and if so, their average overlap metric:

Ca= Y_ Ov(C4,Cyt)/Ng. (7)

gEVgt

Cf measures the percentage of detected circles that do not have a match
>507%) with a ground truth circle
50%) with a g d h circl

Cr=1-Y_ 0v(Ca,Cy)/Na. (8)

deVy

For each circle this requires finding which ground truth circle is the best match to
it, so it will only be used once in the match calculations. For instance, we do not
want several circle overlapping one ground truth circle to all count as positive
matches. The excess ones are false alarms and should penalize the algorithm. As
in Eq. 5 the detection and false alarm rates are averaged

VRIC :ﬁDv‘i‘(l_ﬁ)(l_Fv)' (9)

This metric is currently implemented only for circles. Detected arcs are ignored,
and lack of properly detected arcs is not penalized.

4.2 Results

The 10 original and 800 noisy images were processed by each of the five circle
detection algorithms. The match between the estimated results and the ground
truth was calculated with the two methods described in Sect.4.1. For each
noise level and image combination the average across the noise instances was
calculated.
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Effect of noise instances on VRI measure

Effect of noise instances on VRI measure
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Fig. 5. The standard deviation of V RI across the (a) 10 edge spread instances and
(b) 5 pepper noise instance averaged over 10 images.

Multiple noise instances were used for each image and noise level (10 instances
for edge noise and 5 instances for pepper noise) to reduce the chance of specific
noise pixels significantly affecting the results. Figure 5 shows the standard devia-
tion measured across the noise instances and then averaged across the 10 different
images. The standard deviation of the performance measurements was very low
between noise instances. The different noise instances have a smaller effect for
the pepper noise.

Edge noise results: The average V RI for both metrics across the 10 instances
and 10 images for each algorithm was calculated for each noise level. The results
are shown in Fig. 6. As expected, the performance of the algorithms decreased
as the amount of noise was increased, but for most algorithms not in as extreme
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Fig.6. The average V RI across the 10 instances and 10 images for edge noise
(a) Liu—Dori metric (b) Circle overlap metric. The legend is as in Fig. 5.
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Fig.7. The average VRI across the 5 instances and 10 images for pepper noise
(a) Liu-Dori metric (b) Circle overlap metric. The legend is as in Fig.5. In Figure
(a) the dashed line with square symbols is results from paper [19]

a fashion as expected. The Hough 3D algorithm was overall the best performer
even though it did not detect arcs. The Qgar circle detection algorithm had
the highest performance scores at low noise levels. The EDCircles algorithm was
least sensitive to the noise, maintaining a VRI score of 0.7 for the ArcEval metric
and a VRI score of 0.9 with the circle overlap method. The OpenCV Hough and
the Jia algorithm scored very low with the Liu—Dori metrics because of small
radius estimate errors resulting in strokes not physically overlapping. While they
did not perform strongly with the circle overlap metric, it can be seen that they
do detect some circles with reasonable accuracy.
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Fig. 8. The average Liu—Dori V RI across the 10 images for (a) edge and (b) pepper
noise when arcs are eliminated from the ground truth. The legend is as in Fig. 5.
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Pepper noise results: The average VRI across the 5 pepper noise instances
and 10 images is shown in Fig.7. A similar trend is seen relative to increased
pepper noise level as was seen for edge noise. Hough 3D is the strongest and
Qgar is most affected by noise. The algorithms were not affected as much by the
pepper noise as they were by the edge noise.

Figure 7(a) also includes the results for the Liu-Dori VRI metric from their
paper [19]. It has the same pepper noise levels, but also includes salt noise and is
on different image content. It gives some level of comparison as their algorithm
is not available to test here.

Full circles only: The OpenCV Hough and the Jia method were only designed
to detect full circles. While EDCircles is capable of detecting arcs, their online
service only returns circles and ellipses. Therefore to evaluate their performance,
all the arcs were removed from the ground truth vec files for consideration by
the Liu-Dori evaluation metric. Those results are shown in Fig.8. The results
have the same shape with and without the arcs. The arcs would have added a
false alarm quantity to all images the same across all noise levels appearing as
a bias. Their removal reduced that in those algorithms.

Samples of detection results: In Fig.9 the arcs and circles identified by two
of the algorithms can be seen. The Qgar algorithm is the only one that detects
arcs. The Jia algorithm sometimes detects arcs as circles, but has many false
alarms. Thus the difference in the VRI scores for the Liu—Dori metric versus the
circle overlap metrics can be better understood.

Fig. 9. The original image and the detected results for (a) Qgar and (b) Jia. Image 8,
NS =0.5, noise instance 2.
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5 Conclusion

We have expanded the existing generally admitted framework for evaluating the
robustness of circle and arc detection algorithms to different types of noise and
have introduced a complementary performance metric based on circle overlap.

The main contribution of this paper is that it provides a finer way to compare
algorithms, or to evaluate an individual individually to assess its suitability under
well defined operational conditions, without the cost of manually annotating
scanned documents.

We have provided two data sets, one for edge noise and one for pepper noise,
and the source code for generating new sets is equally publicly available.

From our experiments on various state-of-the-art circle detection algorithms
we can conclude that:

— Our noise model produces very consistent performance behaviours over all
evaluated models.

— Our new evaluation metric, based on circle overlap surfaces, provides perfor-
mance readings that are consistent with the usual Liu-Dori metrics. However,
results are not identical, and underscore that the choice of metrics is important
in regard to the application context.

— Reproducibility and traceability of published results remains a difficult issue.
Not all contacted authors were willing or capable of providing source code or
binaries of their published work. Sometimes provided code was not consistent
with the claimed results, or needed debugging. Reprogramming from the pub-
lished algorithm description was also, in one case, challenging.

As a result, there are only 2 cases where we are certain to test against the
actual, previously published algorithms.

6 Future Work

Future work could include variations in the image deformations. Elongation of
the circles to gradually make them more elliptical will show the robustness of the
algorithm, but introduces an interpretative bias, as it will require us to define
the “best” circle fitting an ellipse.

The number of extraneous lines can be varied. There are currently 25 lines
interfering with the circles and arcs. For some algorithms this is not a problem.
For other algorithms, intersecting lines significantly reduce performance. Ana-
lyzing how the performance is degraded by extraneous lines is interesting, as is
the detection of filled circles versus the current non-filled circles.

Furthermore, in some of our experiments we have observed unexpected
behaviour of the Liu—Dori metric. We will investigate this matter further to
determine whether this is an inherent shortcoming of the method, or has some
other cause.

Integrating the image generation and the performance evaluation software
into the DAE [12] platform will allow all researchers to evaluate their algorithms
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under this framework and will allow them to duplicate the results in this paper
relative to those algorithms.
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