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Abstract. Enumeration of cryptographic keys in order of likelihood
based on side-channel leakages has a significant importance in crypt-
analysis. The best optimal-order key enumeration algorithms have a huge
space complexity of Ω(nd/2) when there are d subkeys and n candidate
values per subkey. In this paper, we present a parallelizable algorithm
that enumerates the keys in near-optimal order but enjoys a much better
space complexity of O(d2w + dn) for a design parameter w which can be
tuned to available RAM.

Before presenting our algorithm, we provide lower and upper bounds
on the guessing entropy of the full key in terms of the easy-to-compute
guessing entropies of the individual subkeys. We use these results to
quantify the near-optimality of our algorithm’s ranking, and to bound
its guessing entropy. Finally, we evaluate our algorithm through extensive
simulations, to show the advantages of our new algorithm in practice, on
realistic SCA scenarios. We show that our algorithm continues its near-
optimal-order enumeration far beyond the rank at which the optimal
algorithm fails due to insufficient memory.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosystem
based on leakage information gained from physical implementation of the cryp-
tosystem on different devices. Information provided by sources such as timing [13],
power consumption [12], electromagnetic emulation [20], electromagnetic radia-
tion [1,9] and other sources, can be exploited by SCA to break cryptosystems.

Most of the attacks that have been published in the literature are based on a
“divide-and-conquer” strategy. In the first “divide” part, the cryptanalyst recov-
ers multi-dimensional information about different parts of the key, usually called
subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In the “con-
quer” part the cryptanalyst combines the information all together in an efficient
way. In the attacks we consider in this paper, the information that the SCA pro-
vides for each subkey is a probability distribution over the n candidate values for
that subkey.
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Much attention has been paid to the “divide” part of side channel analysis,
aiming to optimize its performance: Kocher et al.’s Differential Power Analysis
(DPA) [12], Brier et al.’s Correlation Power Analysis (CPA) [5] and Chari et al.’s
Template Attacks [6] are some examples. In contrast, less attention has been paid
to the “conquer” part.

1.2 Related Work

The problem of merging two lists of subkey candidates was encountered by Junod
and Vaudenay [11]. The simple approach of merging and sorting the subkeys
lists was tractable thanks to the small size of the lists (up to 213). By decreasing
the order of the probabilities, given partial information obtained for each key bit
individually, Dichtl [8] considered a faster enumeration of key candidates. A more
general and challenging problem is enumerating keys from lists that cannot be
merged, exploiting any partial information on subkeys. For this, a probabilistic
algorithm was proposed in [15]. In this work the attacker has no access to the
subkey distributions but is able to generate subkeys according to them. The
proposed solution is to enumerate keys by randomly choosing subkeys according
to these distributions. This implementation requires O(1) memory but keys may
be chosen many times, leading to useless repetitions.

A deterministic enumeration algorithm was described by Pan et al. [17].
It enumerates key candidates in the optimal order, but large memory require-
ments prevent the application of this, when the number of keys to enumerate
increases.

The currently best optimal algorithm was proposed by Veyrat-Charvillon,
Gérard, Renauld and Standaert, [22], which we denote by OKEA. This algorithm
significantly improves the time and memory complexity thanks to clever data
structures and a recursive decomposition of the problem. However, its worst case
space complexity is Ω(nd/2) when d is the number of subkey dimensions and n
is the number of candidates per subkey - and the space complexity is Ω(r) when
enumerating up to a key at rank r ≤ nd/2. Thus its space complexity becomes a
bottleneck on real computers with bounded RAM in realistic SCA attacks.

To tackle this problem, two improved key enumeration algorithms were pro-
posed by Bogdanov et al. [4] and Martin et al. [14]. Similar to us, both papers
improve upon OKEA [22] by suggesting bounded-memory algorithms.

Bogdanov et al. [4] uses a score-based enumeration, rather than the probability-
based enumeration that OKEA and our algorithm use, producing an enumera-
tion that is suboptimal in terms of output order, and can be parallelized. The
algorithm of Martin et al. [14] also uses a score-based enumeration, focuses on
rank estimation via a reduction to counting knapsack and utilizes it to enu-
merate the B keys with the highest scores in a parallel manner, for any B.
Like [4] they also manipulate the side-channel leakages, but into different
weights. Both use additive scoring (the scores of different subkeys are added
to score a full key): [4] suggests scores that are scaled-and-truncated probabil-
ities, whereas [14] skirts this issue. This makes it difficult to compare apples
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with apples: the quality of their order would have been comparable to the opti-
mal (OKEA) order and to our order only if they had used log-probabilities
(whose addition is semantically equivalent to multiplication of probabilities).
Moreover, with scores, standard metrics such as the Guessing Entropy, which
we analyze, cannot be computed, since they require probabilities. Finally, giv-
ing our algorithm more memory greatly improves both its order quality and its
runtime, whereas their algorithms do not enjoy this benefit.

The most similar work to ours was developed in parallel to our technical
report [7] by Poussier et al. [19]. The authors use a very different, histogram-
based method, to enumerate the keys in parallelizable sub-optimal order. Like
us they also use probabilities (technically, log-probabilities). Using our notation,
their algorithm has a Ω(d2Nb + nd) space complexity—when Nb (number of
bins) is a design parameter, i.e., the same asymptotic space complexity as our
method. However, like both [4,14] Poussier et al. [19] did not provide any analyt-
ical bounds on the distance between their rank and the optimum, nor did they
analyze the guessing entropy of their algorithm—they only provide empirical
evidence based on one dataset.

Ye et al. [24] take a different approach: they limit the key enumeration to a
hypercube of the top e candidates for every subkey. Their KSF fails if the true
key is outside this hypercube. This is unlike all previously mentioned papers,
which always find the correct key if given enough time. In some sense KSF is
analogous to the first step of our algorithm: instead of giving up, our algorithm
continues to adjacent volumes wrapping the hypercube, and uses the OKEA
inside the hypercube and in the adjacent volumes, while maintaining a bound
on the memory complexity.

The paper of Poussier et al. [18] is primarily a taxonomy and comparison
of rank estimation algorithms, suggesting new algorithmic combinations. It con-
tinues the work of Veyrat [23], Bernstein [3], Glowacz [10] and also of Martin
et al. [14]. Rank estimation is a closely related, yet different, question, to the
key enumeration we address: It doesn’t necessarily require to enumerate all the
key candidates ranked before the correct key, as it is only necessary to estimate
how many there are.

1.3 Contributions

In this paper, we propose a parallelizable key enumeration algorithm, with
bounded memory requirement of O(d2w + dn) for a design parameter w which
can be tuned to available RAM and allows the enumeration of a large num-
ber of keys without exceeding the available memory. Our algorithm enumerates
in near-optimal order with a bounded ratio between optimal and near-optimal
ranks.

Before presenting our algorithm, we utilize the evaluation framework of [21],
providing lower and upper bounds on the guessing entropy of the full key in
terms of the easy-to-compute guessing entropies of the individual subkeys. We
use these results to quantify the near-optimality of our algorithm’s ranking, and
to bound its guessing entropy.
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Finally, we evaluate our algorithm through extensive simulations, to show
the advantages of our new algorithm in practice, on realistic SCA scenarios. On
our lab environment we found that the optimal algorithm fails due to insufficient
memory when attempting to enumerate beyond rank 233, while our bounded-
space algorithm continued its near-optimal-order enumeration unhindered.

Organization: In Sect. 2 we describe the optimal-order key enumeration algo-
rithm of [22]. In Sect. 3 we introduce some bounds on the guessing entropy of
the full key based on the guessing entropies of the individual subkeys. In Sect. 4
we introduce our w-layer key enumeration algorithm and analyze its properties.
In Sect. 5 we present our performance analysis, and we conclude in Sect. 6.

2 Preliminaries

The key enumeration problem: The cryptanalyst obtains d independent sub-
key spaces k1, ..., kd, each of size n, and their corresponding probability distrib-
utions Pk1 , ..., Pkd

. The problem is to enumerate the full-key space in decreasing
probability order, from the most likely key to the least, when the probability of
a full key is defined as the product of its subkey’s probabilities.

The best key enumeration algorithm so far, in terms of optimal-order, was
presented by Veyrat-Charvillon, Gérard, Renauld and Standaert in [22], which
we denote by OKEA. To explain the algorithm, we will use a graphical represen-
tation of the key space—the case of d = 2 is depicted in Fig. 1. In this figure, we
see two subkeys k1 and k2 along the axes of the graph, both sorted by decreasing
order of probability. The width and the height of the rows and columns corre-
spond to the probability of the corresponding subkey. Let k

(j)
i denote the j’th

likeliest value for the i’th subkey. Then, the intersection of row j1 and column
j2 is a rectangle corresponding to the key (k(j1)

1 , k
(j2)
2 ) whose probability is equal

to the area of the rectangle.

Fig. 1. Left: geometric representation of the key space. Right: geometric representation
of the first two steps of key enumeration.

The algorithm outputs the keys in decreasing order of probability. The algo-
rithm maintains a data structure F of candidates to be the next key in the
sorted order. In each step the algorithm extracts the most likely candidate from
F , (k(j1)

1 , k
(j2)
2 ), and outputs it. F is then updated by inserting the potential

successors of this candidate: (k(j1+1)
1 , k

(j2)
2 ) and (k(j1)

1 , k
(j2+1)
2 ). An important
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observation made by [22] is that F should never include 2 candidates in the
same column, or in the same row: one candidate will clearly dominate the other.
Thus the algorithm maintains auxiliary data structures (“bit vectors”) to indi-
cate which rows and columns currently have a member in F . This observation
has a crucial effect on the size of the data structure, |F |.

We can see in Fig. 1 the first steps of the algorithm: the most likely key is
(k(1)

1 , k
(1)
2 ), therefore this is the key that is output first (represented in dark

gray in step 1). Now, the only possible next key candidates are the successors
(represented in light gray in step 1) (k(2)

1 , k
(1)
2 ) and (k(1)

1 , k
(2)
2 ), which are inserted

into F . Then in step 2, the most likely key is extracted, but this time only one
successor is inserted because there is already a key in column 2.

In general, we need to enumerate over more than two lists of subkeys (d > 2).
For AES, typically d = 16 for byte-level side channels or d = 4 for 32-bit subkeys
as in [16]. To do this, [22] suggested a recursive decomposition of the problem.
The algorithm described above is only used for merging two lists, and its outputs
are used to form larger subkey lists which are in turn merged together. In order
to minimize the storage and the enumeration effort, these lists are generated only
as far as required by the key enumeration. Therefore, whenever a new subkey is
inserted into the candidate set, its value is obtained by applying the enumeration
algorithm to the lower level, (for example 64-bit subkeys obtained by merging
two 32-bit subkeys), and so on.

3 Bounding the Guessing Entropy

An important security metric for the evaluation of a side channel attack [21] is
the Guessing Entropy, which intuitively corresponds to the average number of
keys to test before reaching the correct one, based on the probabilities assigned
to key candidates by the side channel attack.

Definition 1 (Guessing Entropy). For a random variable X with n values,
denote the elements of its probability distribution PX by PX(xi) for xi ∈ X such
that PX(x1) ≥ PX(x2) ≥ ... ≥ PX(xn). The guessing entropy of X is:

G(X) =
n∑

i=1

i · PX(xi).

The case d = 2: Let the key be split into 2 independent subkey spaces X and Y,
each of size n, thus a key is a vector xy s.t. x ∈ X and y ∈ Y . A side channel
attack produces 2 separate distributions PX(xi) for xi ∈ X and PY (yj) for
yj ∈ Y . Assume that the subkey distributions are sorted: PX(x1) ≥ PX(x2) ≥
... ≥ PX(xn) and similarly for PY , then G(X) and G(Y ) are well defined.

Let XY denote the list of (full) keys sorted in decreasing order of proba-
bility, where PXY (xi, yj) = PX(xi)PY (yj) since the subkeys are independent.
Thus G(XY ) is well defined. However, calculating G(XY ) requires a time and
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space complexity of Ω(n2). Therefore bounding G(XY ) in terms of the easy-to-
compute G(X) and G(Y ) is a useful goal. To this end, let rank(xi, yj) be the
position of key (xi, yj) in XY . Clearly, rank(x1, y1) = 1 and rank(xn, yn) = n2.
By definition we get:

G(XY ) =
n∑

i=1

n∑

j=1

rank(xi, yj) · PX(xi)PY (yj). (1)

Theorem 1. The guessing entropy of XY , G(XY ), is bounded by:

G(X)G(Y ) ≤ G(XY ) ≤ n(G(X) + G(Y )) − G(X)G(Y ). (2)

Proof. Appears in the extended version of this paper [7].

We can see that in general G(XY ) is not multiplicative:

Corollary 1. G(X)G(Y ) ≤ G(XY ) ≤ 2n · max
(
G(X), G(Y )

)
.

Proof. Appears in the extended version of this paper [7].

These bounds can be expanded for d > 2. In this case it holds:

d∏

m=1

im ≤ rank(x(1)
i1

, x
(2)
i2

, ..., x
(d)
id

) ≤ nd −
d∏

m=1

(n − im).

Therefore we obtain

Theorem 2. The guessing entropy G(X(1)X(2)...X(d)), is bounded by:

d∏

m=1

G(X(m)) ≤ G(X(1)X(2)...X(d)) ≤ nd −
d∏

m=1

(n − G(X(m))).

As an example of using these bounds, with byte-level SCA on AES we have
d = 16. If the SCA discards 128 values per byte and returns a probability
distribution over the remaining 128 candidates we have n = 128. Assuming that
G(X(m)) = 8 for all 16 subkeys we get that

248 = 816 ≤ G(X(1)X(2)...X(d)) ≤ 12816 − (128 − 8)16 = 2111.36.

Reducing the gap between the lower and the upper bounds is left as an open
question.

4 The Key Enumeration Algorithm

The key enumeration in [22] enumerates the key candidates in optimal order, but
has a significant drawback, its memory requirements may exceed the available
memory. Its worst-case space complexity is Ω(nd/2) since it needs to store the
full sorted distribution of the 2 top-level dimensions (in addition to the data
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structure F ), for each dimension. Moreover, in order to enumerate until a key
of rank r ≤ nd/2 it has a space complexity of Ω(r). In this section, we present
a new key enumeration algorithm with bounded memory requirements, which
therefore allows to enumerate a large number of key candidates.

To achieve the desired memory bound, we relax the “optimal order” require-
ment: our algorithm enumerates the keys in near-optimal order, and we are able
to bound the ratio between the optimal rank of a key and our algorithm’s rank
of that key.

4.1 The Layering Approach

In order to explain our algorithm, we start with the case of two dimensions, d = 2.
We divide the key-space (n×n) into layers of width w, as depicted in Fig. 2. The
first layer contains the keys (k(i)

1 , k
(j)
2 ) such that (i, j) ∈ {1, ..., w} × {1, ..., w}.

The second layer contains the keys (k(i)
1 , k

(j)
2 ) such that (i, j) ∈ {1, ..., 2w} ×

{1, ..., 2w} \ {1, ..., w} × {1, ..., w} and so on. More formally:

Definition 2. Given w > 0 and l > 0, let

layerwl = {(k(i)1 , k
(j)
2 )|(i, j) ∈ {1, ..., l ·w}×{1, ..., l ·w} \ {1, ..., (l− 1) ·w}×{1, ..., (l− 1) ·w}}.

Fig. 2. Left: geometric representation of the key space divided into layers of width
w = 3. The keys in cells (1, 7) and (7, 1) are the algorithm’s seeds for layer

(3)
3 . Right:

geometric representation of the key enumeration at layer33.

A key observation is that we can run the optimal enumeration algorithm of
[22] within a layer: we seed the algorithm data structure F by inserting the two
“corners” (see Fig. 2), and then extract candidates and insert their successors as
usual - limiting ourselves not to exceed the boundaries of the layer. Moreover,
within a layer of width w, we can bound the space used by F :

Proposition 1. For every l > 0 and w > 0, applying the optimal key enumer-
ation of [22] on layerwl , the number of next potential key candidates is bounded
by 2w, i.e., |F | ≤ 2w.

Proof. Appears in the extended version of this paper [7].

Importantly, the bound on |F | is independent of n, and depends only on the
design parameter w which we can tune.
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4.2 The Two-Dimensional Algorithm

Proposition 1 leads us to our w-layer key enumeration algorithm: Divide the
key-space into layers of width w. Then, go over the layerws, one by one, in
increasing order. For each layerwl , enumerate its key candidates, by applying the
optimal key enumeration [22]. Following the proposition, the number of potential
next candidates, F , that our algorithm should store is bounded by 2w.

4.3 Generalization to a Multi-dimensional Algorithm

For d > 2, similarly to [22] we apply a recursive decomposition of the problem.
Whenever a new subkey is inserted into the candidate set, its value is obtained
by applying the enumeration algorithm to the lower level. For example, let’s look
at d = 4. In order to generate the ordered full-key, we need to generate the 2
ordered lists of the lower level L1,2 and L3,4 on the fly as far as required. For
this, we maintain a set of next potential candidates, for each dimension - F1,2

and F3,4, so that each next subkey candidate we get from F1,2 (or F3,4) we store
at L1,2 (or L3,4). The length of these generated subkey lists, L1,2 and L3,4 is
Ω(n2). For general d, the sizes of the data structures F1,...,d/2 and Fd/2+1,...,d

are bounded by 2w, however, we still have a bottleneck of Ω(nd/2) because of
L1,...,d/2 and Ld/2+1,...,d. Therefore, instead of naively storing the full subkey
order of L1,...,d/2 and Ld/2+1,...,d, we only store the O(w) candidates which were
computed “recently”.

To do this, we divide each layerw in the geometrical representation, into
squares of size w × w, as depicted in Fig. 2 (right side). Our algorithm still
enumerates the key candidates in layerw1 first, then in layerw2 and so on, but in
each layerwl the enumeration will be square-by-square.

More specifically, let Sw
x,y be a set of the key candidates in the square Sw

x,y =

{(k(i)
1,...,d/2, k

(j)
d/2+1,...,d)|(x− 1) ·w < i ≤ x ·w and (y − 1) ·w < j ≤ y ·w}. We say

that two squares, Sx,y and Sz,w are in the same row if y = w, and are in the
same column if x = z.

This in-layer split into squares reduces the space complexity, since instead of
storing the full ordered lists of the lower levels, we store only the relevant subkeys
candidates for enumerating the current two squares, i.e., 2w subkey candidates
for each dimension. However, these subkey candidates which are redundant for
enumerating the current squares, might be useful later in the enumeration of the
next layer. In that case we will need to recompute them.

Now let’s describe the enumeration at each layerwl . We know that the most
likely candidate in layerwl is either at S1,l or Sl,1. Therefore, we enumerate first
the key candidates in S1,l∪Sl,1 by applying the key enumeration in [22] on them
(represented in dark gray in step 1 in Fig. 2). Let S denote the set of squares
that contain potential next candidates in this layer. At some point, one of the
two squares is completely enumerated. Without loss of generality, we assume
this is S1,l. At this point, the only square that contains the next key candidates
after S1,l is the successor S2,l (represented in dark gray in step 2 of Fig. 2).
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Algorithm 1. w-Layer Key Enumeration Algorithm.
Input: Subkey distributions {ki}1≤i≤d.
Output: The correct key, if exists, NOT-FOUND otherwise.

1 found = false; initialize(F1,...,d);
2 while (F1,...,d �= ∅) do
3 candidate = nextCandidate(F1,...,d, {ki}1≤i≤d);
4 found = isCorrectKey(candidate);
5 if (found) then
6 return candidate;

7 return NOT-FOUND;

In the general case, the successor of Sx,y is either Sx+1,y or Sx,y+1, only one of
which is in layerwl . Therefore, when one of the squares is completely enumerated,
it is extracted from S, and its successor is inserted, as long as S doesn’t contain
a square in the same row or column.

Notice that only after a square is completed we continue to its successor.
Without loss of generality, we assume that the successor is in the same row as
the current one. Therefore, for all candidates (k(i)

1,...,d/2, k
(j)
d/2+1,...,d) we intend to

check next, the j index is higher than the j index of any candidate in the current
square, therefore these j indexes of the current square are redundant and we do
not need to store them.

It is simple to see that we maintain at most 2 squares of size w × w each
time, therefore we need to maintain sets of next potential candidates and ordered
lists for each square, i.e., F 1

1,...,d/2, L1
1,...,d/2, F 1

d/2+1,...,d, L1
d/2+1,...,d and F 2

1,...,d/2,
L2
1,...,d/2, F 2

d/2+1,...,d, L2
d/2+1,...,d.

4.4 Bounding the Rank and the Guessing Entropy

Let vw denote the vector resulting from enumerating all key candidates, apply-
ing our w-layer key enumeration, for fixed w, and let v denote the vec-
tor resulting from applying the optimal order enumeration. Additionally, let
rankw(i1, i2, .., id) denote the order statistic of key (k(i1)

1 , k
(i2)
2 , ..., k

(id)
d ) in vw,

and rank(i1, i2, .., id) be the order statistic of key (k(i1)
1 , k

(i2)
2 , ..., k

(id)
d ) in v. Now,

we want to bound the rank of the w-layer algorithm, and the guessing entropy
of vw, G(vw), related to G(v).

Theorem 3. Consider a key (k(i1)
1 , ..., k

(id)
d ). Let i∗ = max{i1, ..., id}, and let

αm = im/i∗ for m = 1, ..., d (αm ≤ 1). Then,

rankw(i1, ..., id) ≤
d∏

m=1

( 2
αm

)
· rank(i1, ..., 1d).

Proof. Appears in the extended version of this paper [7].
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Algorithm 2. nextCandidate.
Input: Fp,..,r and subkey distributions {ki}p≤i≤r.
Output: The next key candidate in Fp,..,r.

1 q � �p + r�/2; x � {p, ..., q}; y � {q + 1, ..., r};

2 (k
(i)
x , k

(j)
y ) ← most likely candidate in Fp,...,r;

3 Fp,...,r ← Fp,...,r \ {(k
(i)
x , k

(j)
y )};

4 I � �i�/w; J � �j�/w; t � (I ≥ J) ? 1 : 2; // (k
(i)
x , k

(j)
y ) is in SI,J ;

5 if SI,J is completely enumerated then
6 if I == J then
7 if r − p > 1 then

8 nextCandidate(F 1
x ); k

(i+1)
x ← L1

x[(i + 1)%w];

9 nextCandidate(F 2
y ); k

(j+1)
y ← L2

y[(j + 1)%w];

10 F 2
x ← k

(1)
x ; F 1

y ← k
(1)
y ;

11 Fp,...,r ← {(k
(1)
x , k

(j+1)
y )} ∪ {(k

(i+1)
x , k

(1)
y )};

12 else
13 if no candidates are in same row/column as Successor(SI,J) then
14 Fp,...,r ← Fp,...,r ∪ {most likely candidate in Successor(SI,J)};

15 else

16 if (k
(i+1)
x , k

(j)
y ) ∈ SI,J and no candidate in row i+1 then

17 if r − p > 1 then

18 if k
(i+1)
x is not stored at Lt

x then
19 nextCandidate(F t

x);

20 k
(i+1)
x ← Lt

x[(i + 1)%w];

21 Fp,...,r ← Fp,...,r ∪ {(k
(i+1)
x , k

(j)
y )};

22 if (k
(i)
x , k

(j+1)
y ) ∈ SI,J and no candidate in column j+1 then

23 if r − p > 1 then
24 if I==J then

25 k
(j+1)
y ← L2

y[(j + 1)%w]
26 else

27 if k
(j+1)
y is not stored at Lt

y then
28 nextCandidate(F t

y);

29 k
(j+1)
y ← Lt

y[(j + 1)%w];

30 Fp,...,r ← Fp,...,r ∪ {(k
(i)
x , k

(j+1)
y )};

31 L[(L.size + 1)%w] ← most likely candidate in Fp,...,r;

32 return (k
(i)
x , k

(j)
y ) ;

Theorem 4. The bound of the guessing entropy of vw, G(vw), related to G(v) is:

G(vw) ≤ 2dnd−1 · G(v).

Proof. Appears in the extended version of this paper [7].

It is somewhat counter-intuitive that the bound on the approximation factors
does not depend on the size of the layer w, while, as we will see in Sect. 5, the
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experimental analysis suggests a much better (yet w-dependent) behavior. We
leave for further work to find w-dependent theoretical bounds.

4.5 Parallelization of w-Layer Algorithm

We parallelize our algorithm by parallelizing the OKEA [22] inside each square.
OKEA is an inherently serial algorithm, so by parallelizing it we lose the enu-
meration order’s optimality inside the square. However, our bounds on the rank
(Theorem 3) and the guessing entropy (Theorem 4) are independent of the inter-
nal enumerating order in each layer. Therefore our parallel algorithm retains the
same guaranteed performance.

According to Proposition 1, when enumerating a whole layer, the number of
next potential candidates, |F |, is bounded by 2w, and within a single w×w square
we have |F | ≤ w. Hence, enumerating each square can be parallelized between at
most w cores, protecting the access to the structure F with concurrency controls.
Each core extracts the most likely candidate from F , and let s1 be one of its two
successors. The algorithm inserts s1 back into F only if there is no candidates in
the same row/column as s1, and if all the candidates in the same row/column,
before s1, were already enumerated. For this, we need to replace the simple “bit
vector” implementation of [22] by a “greatest index vector”. This vector stores
for any row/column the greatest enumerated index in that row/column.

4.6 Space Complexity Analysis

The algorithm needs to store the candidates of the 2 top-level dimensions, for
each dimension. However, it doesn’t need to store the whole candidate list, but
only two lists (L) of size w for each dimension. For this, it needs to store 2 sets
of potential candidates (F ) for each dimension, each one of these sets is bounded
by 2w. Moreover, it needs to store 2 data structures (“bit vectors”) for each F
to indicate which rows and columns currently have a member in it. All together,
we get the following recurrence relation for the space complexity:

S(d) = 4S(d/2) + cw,

for some constant c, which sums to O(d2w). Taking into account the input, whose
space is O(dn), we get a total space complexity of O(d2w + dn).

5 Performance Analysis

We evaluated the performance of our w-layer key enumeration algorithm through
an extensive simulation study. We implemented the optimal algorithm [22] and
our algorithm in Java, and ran both algorithms on a 3.07 GHz PC with 24 GB
RAM running Microsoft windows 7, 64 bit. Note that the code of the optimal
algorithm is used as a subroutine in the w-layer algorithm, thus any potential
improvement in the former’s implementation would automatically translate into
an analogous improvement in the latter.
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We used synthetic SCA distributions with d = 8 subkeys and n = 212 candi-
dates per subkey for a total enumeration space of O(nd) = 296. We chose d = 8
and n = 212 since for a key whose rank is ‘deep’, the optimal-order algorithm
takes space of Ω(nd/2) = Ω(248) which exceeds the available memory. We gen-
erated the synthtic SCA distributions according to Pareto distributions, with
α = 0.575 and β = 0.738. The choice of the Pareto distribution and these spe-
cific parameters is based on empirical evidence we discovered, see the extended
version of this paper [7]. For the simulations, we chose two different values of w
to limit our space complexity O(d2w + dn). The first one is w = n which gives
a linear space complexity of O(d2n + dn) and the second one is w = 225 which
gives an O(231) space complexity which is about 1 Gb.

We also evaluated the algorithm’s performance for d = 16 subkeys and n =
26, again for a total enumeration space of 296. The probability distributions were
Pareto distributions with α = 0.3 and β = 1.1197, see the extended version of
this paper [7]. We analyzed our w-layer algorithm for two different values of w:
w = n = 26 and w = 225. The obtained results are similar to those with d = 8.
Graphs are omitted.

We conducted the experiments as follows. We ran the optimal algorithm on
different (optimal) ranks starting from 212, and measured its time and space
consumption. For each optimal rank, 2x, we extracted the key corresponding to
this rank, and ran each of our w-layer key enumeration algorithm variants until
it reached the same key, and measured its rank, time and space. We repeated
this simulation for 64 different ranks near 2x — the graphs below display the
median of the measured values.

Because of time consumption, we decided to stop each w-layer run after 2 h -
if it didn’t find the given key by then. We marked the timed-out runs.

5.1 Runtime Analysis

Figure 3 illustrates the time (in minutes) of the 3 algorithms: OKEA (optimal-
order) (green triangles), w-layer with w = n = 212 (red squares) and w-layer with
w = 225 (blue diamonds) for different ranks. The figure shows that, crucially,
the optimal-order key enumeration stops at 233. This is because of high memory
consumption which exceeds the available memory. The w-layer key enumeration,
in contrast, keeps running.

For ranks beyond 222 we noticed that the w-layer enumeration with w =
n = 212 became significantly slower than the others. The red squares (w = n) in
Fig. 3 are misleadingly low, since as Fig. 4 shows, a large fraction of runs timed-
out at the 2 h mark, and we stopped experimenting with this setting beyond
rank 232. It is important to remark that we chose to stop because of the time
consumption - the algorithm doesn’t stop till it finds the correct key.

For the w-layer algorithm with w = 225, however, we see excellent results. For
small ranks it takes exactly the same time consumption as OKEA, (hidden by
the green triangles in Fig. 3), and for high ranks, its bounded space complexity
enables it to enumerate in reasonable time.
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Fig. 3. Median run time, in minutes, of OKEA (green triangles), w-layer key enumer-
ation with w = 225 (blue diamonds) and w-layer key enumeration with w = n (red
squares) on different ranks. (Color figure online)

Fig. 4. Frequency of the keys whose time consumption applying the w-layer key enu-
meration with w = n is higher than 2 h.

Note that for ranks beyond 233, the optimal algorithm failed to run, so we
could not identify the keys with those ranks. In order to demonstrate the w-layer
algorithm’s ability to continue its enumeration we let it run until it reached
a rank r in its own near-optimal order (for r = 234, .., 237) - and for those
experiments we removed the 2 h time out.

We can see that bigger values of w lead to more candidates in each w-layer
which leads to less recomputing and therefore a lower running time.

5.2 Space Utilization

Figure 5 illustrates the space (in bytes) used by the 3 algorithms’ data structures
for different ranks. As we can see again, OKEA stops at 233 because of memory
shortage, while the w-layer algorithm keeps running. For the w-layer algorithm
with w = n we can clearly see the bounded space consumption leveling at around
1 MB. For the w-layer algorithm with w = 225 we see that its space consumption
levels around 4 GB and remains steady, allowing the algorithm to enumerate
further into the key space, limited only by the time the cryptanalyst is willing
to spend.

5.3 The Difference in Ranks

Figure 6 illustrates the ranks detected by the 3 algorithms as a function of the
optimal rank. By definition the optimal algorithm finds the correct ranks. Despite
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Fig. 5. Median space, counting the data structure elements, of OKEA (green triangles),
w-layer key enumeration with w = 225 (blue diamonds) and w-layer key enumeration
with w = n (red squares) on different ranks. (Color figure online)

the somewhat pessimistic bounds of Theorem 4, the figure shows that with w = n
the ratio between the optimal rank and rankw is approximately 2.32 (again, for
those runs that complete faster than 2 h running time). Beyond 228 too many
runs timed out for meaningful data. For w = 225 the discovered ranks are almost
identical to the optimal ranks (the symbols in the figure overlap) - and beyond
233 the optimal algorithm failed so comparison is not possible.

Fig. 6. Median rank of OKEA (green triangles), w-layer key enumeration with w = 225

(blue diamonds) and w-layer key enumeration with w = n (red squares) on different
ranks. (Color figure online)

5.4 Influence of w on Space Complexity and Enumeration Accuracy

The trade-off between the space complexity and the accuracy of the enumeration
order is summed up in Table 1. As we can see, for w = 212 our enumeration uses
space of 1 MB. We see the maximum rank for which 80% of the simulations take
less than 2 h is 226, and up to this rank the rank accuracy is at most 2.32 times
the optimal rank. For w = 225 our enumeration uses more space (4 GB), but
the maximum rank for which 80% of the simulations take less than 2 h is 233,
and accuracy is at most 1.007 times the optimal rank. As a consequence, we
recommend to increase w as much as possible without exceeding the available
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Table 1. Influence of w on space complexity and enumeration accuracy

w Space Max rank of 80% in 2 h Accuracy

w = 212 1MB 226 ≤ 2.32· OPT

w = 225 4GB 233 ≤ 1.007· OPT

memory. This bounds the space complexity, and therefore enables to enumerate
more keys, with better accuracy.

6 Conclusion

In this paper, we investigated the side channel attack improvement obtained by
adversaries with non-negligible computation power to exploit physical leakage.
For this purpose, we presented a new parallelizable w-layer key enumeration
algorithm, that trades-off the optimal enumeration order in favor of a bounded
memory consumption. We analyzed the algorithm’s space complexity, guessing
entropy, and rank distribution. We also evaluated its performance by exten-
sive simulations. As our simulations show, our w-layer key enumeration allows
stronger attacks than the order-optimal key enumeration [22], whose space com-
plexity grows quickly with the rank of the searched key—and exceeds the avail-
able RAM in realistic scenarios. Since our algorithm can be configured to use as
much RAM as available (but no more) it can continue its near optimal enumer-
ation unhindered.

Along the way, we also provided bounds on the full key guessing entropy in
terms of the guessing entropies of the individual subkeys.

Finally, an open-source Java implementation for both our w-layer key enu-
meration and the order-optimal enumeration [22] are available via the authors’
home pages.
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