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Abstract. This paper proposes an authenticated encryption scheme,
called SIVx, that preserves BBB security also in the case of unlimited
nonce reuses. For this purpose, we propose a single-key BBB-secure mes-
sage authentication code with 2n-bit outputs, called PMAC2x, based on
a tweakable block cipher. PMAC2x is motivated by PMAC TBC1k by
Naito; we revisit its security proof and point out an invalid assumption.
As a remedy, we provide an alternative proof for our construction, and
derive a corrected bound for PMAC TBC1k.
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1 Introduction

Nonce-Based Authenticated Encryption. Authenticated encryption (AE)
schemes aim at protecting both the privacy and the integrity of submitted mes-
sages. Authenticated encryption schemes that allow to authenticate not only the
encrypted message, but also associated data, are commonly known as AEAD
schemes [22]. The common security notions for AE schemes concern the preven-
tion of any leakage about the encrypted messages except for their lengths. Since
stateless schemes would enable adversaries to detect a duplicate encryption of
the same associated data and message under the current key, Rogaway proposed
nonce-based encryption [24], where the user provides an additional nonce for
every message she wants to process. In theory, the concept of nonces is simple.
However, the practice has shown numerous examples of implementation fail-
ures, and settings that render it difficult to almost impossible to prevent nonce
reuse (cf. [8]). Before the CAESAR competition, the majority of widely used AE
schemes protected neither the confidentiality nor the integrity of messages in the
case of nonce repetitions. As a consequence, a considerable number of CAESAR
candidates aimed a certain level of security if nonces repeat (e.g., [1,9,10,15]).

Parallelizable MACs in Authenticated Encryption. Block-cipher-based
message authentication codes (MACs) are important components not only for
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authentication, but also as part of AE schemes, where they are used to derive an
initialization vector (IV) that is then used for encryption. In particular, paral-
lelizable MACs like PMAC [6] allow to process multiple blocks in parallel, which
is beneficial for software performance on current x64 processors. Since PMAC
has several further desirable properties, e. g. being online and incremental, it is
not a surprise that all the CAESAR candidates cited above essentially combine
a variant of PMAC (or its underlying hash function) with a block-cipher-based
mode of operation for efficiently processing associated data and message.

Beyond-Birthday-Bound AE. Besides performance, the quantitative security
guarantees are important aspects for AE schemes. The privacy and authenticity
guarantees of the AE schemes cited above are limited by the birthday bound of
O(�2/2n), where n denotes the state size of the underlying primitive, and � the
number of blocks processed over all queries. Since the schemes above possess an
n-bit state, a state collision that leads to attacks has significant probability after
approximately 2n/2 blocks have been processed under the same key.

To address this issue, Peyrin and Seurin presented Synthetic Counter in
Tweak (SCT) [20], a beyond-birthday-bound (BBB) AE scheme based on a
tweakable block cipher under a single key. Internally, SCT is a MAC-then-
Encrypt composition: the MAC part is a PMAC-like construction, called
EPWC. The encryption part is Counter-in-Tweak (CTRT), an efficient mode of
operation that takes an n-bit nonce and an n-bit IV. Both EPWC and CTRT
guarantee BBB security as long as nonces never repeat. However, the security of
the nonce-IV-based CTRT degrades to the birthday bound with an increasing
number of nonce reuses; even worse, the security of EPWC (and consequently
that of SCT) immediately reduces to the birthday bound if a single nonce repeats
once. In [21, p. 7], the extended version of [20], the authors remarked therefore
(among others) the following open problem: “[...] to construct an AE scheme
which remains BBB-secure even when nonces are arbitrarily repeated. The main
difficulty is to build a deterministic, stateless, BBB-secure MAC, which is known
to be notably hard”. Intuitively, an efficient block-cipher-based BBB-secure MAC
with 2n bit output length could allow to construct such a deterministic AE
scheme.1 Thus, this work will put a large focus on the construction of BBB-
secure MACs.

Previous Work. Naito [17] proposed two MACs with full PRF security based
on a tweakable block cipher: PMAC TBC3k and PMAC TBC1k. While the
former requires three keys, the latter uses tweak-based domain separation to
require only a single key. Extending the latter seemed a well-suited starting point
for our work since such a MAC could be combined in straight-forward manner
with a BBB-secure mode of encryption. Though, during our studies, we found
that the analysis in [17] assumed internal values to be independent, which—as
we will show—cannot always be guaranteed. Since the proof depended largely

1 We stress that BBB-secure AE is not new if one considers schemes with multiple
primitives and keys. For the sake of space limitations, a discussion can be found in
the full version of this work [11].
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Table 1. Previous parallel BBB-secure MACs. (T)BC = (tweakable) block cipher,
q = max. #queries, m = max. #blocks per query, � = max. total #blocks.

Primitive Construction Keys Output size Advantage Reference

BC PMAC+ 3 n O(q3m3/22n + qm/2n) [25]

1k PMAC+ 1 n O(qm2/2n + q3m4/22n) [7]

TBC PMAC TBC3k 3 n O(q2/22n) [17]

PMAC TBC1k 1 n O(q/2n + q2/22n) [17]

PMACx 1 n O(q2/22n + q3/23n) Section 5

PMAC2x 1 2n O(q2/22n + q3/23n) Section 4

on this aspect, we developed an alternative analysis for our construction and
derived a corrected bound for a PMAC TBC1k-like variant with n-bit output.
So, despite the assumption in the original proof, we confirm that Naito’s MAC
is secure for close to 2n−2 blocks processed under the same key.

Contribution. Our contributions are threefold: first, we propose a BBB-secure
parallelizable MAC, called PMAC2x, which produces 2n-bit outputs and bases
on a tweakable block cipher. Figure 1 provides a schematic illustration. Our
MAC differs from PMAC TBC1k mainly in the fact of the extended output,
and minorly in the point that we add support for inputs whose length is not
a multiple of n. As our second contribution, we briefly revisit the analysis by
Naito on PMAC TBC1k and show that we can easily adapt our proof for
PMAC2x and derive a secure variant that we call PMACx which XORs both
its outputs and produces only n-bit tags. Table 1 compares our constructions to
earlier parallelizable BBB-secure MACs. As our third contribution, we combine
PMAC2x with the purely IV-based variant of Counter-in-Tweak to a single-
primitive, single-key deterministic authenticated encryption scheme, which we
call SIVx, and which provides BBB-security without assumptions about nonces.

Earlier Parallelizable MACs. A considerable amount of works considered
parallel MACs; parallel XOR-MACs have already been introduced in 1995 by
Bellare et al. [2]; their constructions fed the message blocks together with a
counter into a primitive to obtain stateful and randomized MACs. Bernstein [5]
published the Protected Counter Sum (PCS), which transformed an XOR-
MAC with an independent PRF into a stateless deterministic MAC. PMAC
was described by Black and Rogaway first in [6], and was slightly modified to
PMAC1 in [23]. Since then, the security of PMAC has been rigorously stud-
ied in various works [12,14,16,18,19]. The first BBB-secure parallelizable MAC
was proposed by Yasuda [25]; His PMAC+ construction is a three-key version
of PMAC which possesses two n-bit state values, which are processed by two
independently keyed PRPs, and are XORed to produce the tag. Datta et al. [7]
derived a single-key version thereof, called 1k PMAC+. While those are rate-1
designs with larger internal state, there also exist slightly less efficient propos-
als with smaller state. Yasuda [26] introduced PMAC with parity (PMAC/P),
which processes each sequence of r consecutive message blocks in PMAC-like
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Fig. 1. Processing an m-block message with a partial final block in PMAC2x. ˜E :
{0, 1}k ×{0, 1}d ×{0, 1}t ×{0, 1}n → {0, 1}n denotes a tweakable block cipher, Conv :
{0, 1}n → {0, 1}t a regular function, and � multiplication in Galois-Field GF(2n).

manner, but inserts the XOR sum of those r blocks as an additional block.
Zhang’s PMACX construction [27] generalized PMAC/P by multiplying the
input with an MDS matrix before authentication. In a similar direction goes
LightMAC [13], a lightweight variant similar to Bernstein’s PCS. However, the
security guarantees of all earlier parallelizable MACs in this paragraph are far
from the optimal PRF bound.

2 Preliminaries

General Notation. We use lowercase letters x, y for indices and integers, upper-
case letters X,Y for binary strings and functions, calligraphic uppercase letters
X ,Y for sets; X ‖Y for the concatenation of binary strings X and Y , and X ⊕Y
for their bitwise XOR. We indicate the length of X in bits by |X|, and write
Xi for the i-th block, X[i] for the i-th most-significant bit of X, and X[i..j]
for the bit sequence X[i], . . . ,X[j]. We denote by X � X that X is chosen
uniformly at random from the set X . We define Func(X ,Y) for the set of all
functions F : X → Y, Perm(X ) for the set of all permutations π : X → X , and
P̃erm(T ,X ) for the set of tweaked permutations over X with tweak space T .
We define by X1, . . . , Xj

x←− X an injective splitting of a string X into blocks of
x-bit such that X = X1 ‖ · · · ‖Xj , |Xi| = x for 1 ≤ i ≤ j − 1, and |Xj | ≤ x. For
two sets X and Y, let X ∪←− Y denote X ← X ∪ Y. A uniform random function
ρ : X → Y is a random variable uniformly distributed over Func(X ,Y). Given
a function F : X → Y, we write domain(F ) for the set of all inputs X ∈ X to
F that occurred before (i.e., excluding) the current query; similarly, we write
range(F ) for the set of all outputs Y ∈ Y that occurred before the current query.
We borrow the notation for a restriction on a set from [8]: let Q ⊆ (X ×Y ×Z)∗,
then we denote by Q|Y,Z = {(Y,Z) | ∃X : (X,Y,Z) ∈ Q} the restriction of Q to
values Y ∈ Y and Z ∈ Z. This generalizes in the obvious way.
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For an event E, we denote by Pr[E] the probability of E. We write 〈x〉n for
the binary representation of an integer x as an n-bit string, or short 〈x〉 if n is
clear from the context, in big-endian manner, e. g., 〈1〉4 would be encoded to
(0001).

Adversaries. An adversary A is an efficient Turing machine that interacts with
a given set of oracles that appear as black boxes to A. We denote by AO the
output of A after interacting with some oracle O. We write ΔA(O1;O2) for the
advantage of A to distinguish between oracles O1 and O2. All probabilities are
defined over the random coins of the oracles and those of the adversary, if any.
We write AdvX

F (q, �, θ) := maxA{AdvX
F (A)} for the maximal advantage over

all X-adversaries A on F that run in time at most θ and pose at most q queries
of at most � blocks in total to its oracles. Wlog., we assume that A never asks
queries to which it already knows the answer.

We will provide pseudocode descriptions of the oracles, which will be referred
to as games, according to the game-playing framework by Bellare and Rogaway
[3]. Each game consists of a set of procedures. We define Pr[G(A) ⇒ x] as the
probability that the game G outputs x when given A as input.

Definition 1 (TPRP Advantage). Let ˜E : K × T × X → X be a tweak-
able block cipher with non-empty key space K and tweak space T . Let A a
computationally bounded adversary with access to an oracle, where K � K
and π̃ � P̃erm(T ,X ). Then, the TPRP advantage of A on ˜E is defined as
AdvTPRP

˜E
(A) := ΔA( ˜EK ; π̃).

A MAC is a tuple of functions F : K × X → Y with non-empty key space K,
and a generic verification function Verify : K × X × Y → {1,⊥}, where for all
K ∈ K and X ∈ X , VerifyK(X,Y ) returns 1 iff FK(X) = Y and ⊥ otherwise.
We use ⊥, when in place of an oracle, to always return the invalid symbol ⊥. It
is well-known that if F is a secure PRF, it is also a secure MAC; however, the
converse statement is not necessarily true.

Definition 2 (PRF Advantage). Let F : K×X → Y be a function with non-
empty key space K, and A a computationally bounded adversary with access to
an oracle, where K � K and ρ � Func(X ,Y). Then, the PRF advantage of A
on F is defined as AdvPRF

F (A) := ΔA(FK ; ρ).

3 Definition of PMAC2x and PHASHx

This section defines the generic PMAC2x construction and its underlying hash
function PHASHx. Fix integers k, n, t, d, with d ≥ 2. Let K = {0, 1}k and T =
{0, 1}t be non-empty sets of keys and tweaks, respectively. Moreover, derive a set
of domains D := {0, 1, 2, 3} = {0, 1}d which are encoded as their respective d-bit
values, and a domain-tweak set T ′ := D×T . Let M ⊆ ({0, 1}n)∗ denote an input
space. Further, let ˜E : K×T ′×{0, 1}n → {0, 1}n denote a tweakable block cipher.
We will often write ˜ED,T

K (·) as short form of ˜E(K,D, T, ·). K ∈ K, D ∈ D, and
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Algorithm 1. Definition of PMAC2x[ ˜E] and its internal hash function
PHASHx[ ˜E] with a tweakable block cipher ˜E : K×{0, 1}d ×{0, 1}t ×{0, 1}n →
{0, 1}n. n, t, and d denote state, tweak and domain sizes, respectively.

11: function PMAC2x[ ˜EK ](M)

12: (Xm, Ym) ← PHASHx[ ˜EK ](M)

13: ̂Xm ← Conv(Xm)

14: ̂Ym ← Conv(Ym)

15: U ← ˜E2,̂Ym
K (Xm)

16: V ← ˜E3, ̂Xm
K (Ym)

17: return (U ‖ V )

21: function Conv(X)
22: if t ≥ n then
23: return X
24: return X[1..t]

31: function ˜ED,T
K (X)

32: ˜T ← 〈D〉d ‖ T [1..t]

33: return ˜E
˜T
K(X)

41: function PHASHx[ ˜EK ](M)
42: X0 ← 0n; Y0 ← 0n

43: (M1, . . . , Mm)
n←− M

44: for i ← 1 to m − 1 do
45: Zi ← ˜E

0,〈i〉
K (Mi)

46: Xi ← Xi−1 ⊕ Zi

47: Yi ← 2 · (Yi−1 ⊕ Zi)

48: if |Mm| = n then

49: Zm ← ˜E
0,〈m〉
K (Mm)

50: else
51: M∗

m ← Mm ‖ 10n−|Mm|−1

52: Zm ← ˜E
1,〈m〉
K (M∗

m)

53: Xm ← Xm−1 ⊕ Zm

54: Ym ← 2 · (Ym−1 ⊕ Zm)
55: return (Xm, Ym)

T ∈ T denote key, domain, and tweak, respectively. Conv : {0, 1}n → {0, 1}t be
a regular function2 which is used to convert the outputs of PHASHx, Xm and
Ym, so they can be used as tweaks of ˜E in the finalization step. We denote by
PMAC2x[ ˜E] and PHASHx[ ˜E] the instantiation of PMAC2x and PHASHx

with ˜E. Both are defined, with a default instantiation of Conv, in Algorithm1.

4 Security Analysis of PMAC2x

Theorem 1. Let ˜E and PMAC2x[ ˜E] be defined as in Sect. 3. Let d + t = n,
and let m < 2t denote the maximum number of n-bit blocks of any query. Then

AdvPRF
PMAC2x[ ˜E]

(q, �, θ) ≤ 22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)

+ AdvTPRP
˜E

(� + 2q,O(θ + � + 2q)).

The final term results from a standard argument after replacing the tweakable
block cipher ˜E by a random tweakable permutation π̃ � P̃erm(T ′, {0, 1}n).
Let A be an adversary that makes at most q queries of at most m blocks each
and of at most � blocks in total. We assume, A does not ask duplicate queries
and has the goal to distinguish between a PMAC2x[π̃] oracle with an internally
sampled tweaked permutations π̃ and a random function ρ : {0, 1}∗ → {0, 1}2n.

We consider the game described in Algorithm 2. The game without the boxed
statements coincides with a random function ρ, whereas the game with them
2 A function is called regular iff all outputs are produced by an equal number of inputs.
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Algorithm 2. Main Game, initialization, finalization, and subroutines. Boxed
statements belong exclusively to the real world.

1: procedure Initialize
2: badU ← false; badV ← false; Q ← ∅
3: X0 ← 0n; Y0 ← 0n; b � {0, 1}

11: function Finalize(b′)
12: bad ← badU ∨ badV
13: return b′ = b ∨ bad

21: function Oracle(M)
22: (Xm, Ym) ← PHASHx[π̃](M)

23: ̂Xm ← Conv(Xm)

24: ̂Ym ← Conv(Ym)
25: U � {0, 1}n

26: V � {0, 1}n

27: if ( ̂Xm, ̂Ym) ∈ Q| ̂Xm,̂Ym
then

28: (U, V ) ← Case1(Xm, Ym, ̂Xm, ̂Ym)

29: else if U ∈ range(π̃2,̂Ym) ∧
30: V ∈ range(π̃3, ̂Xm) then

31: (U, V ) ← Case2(Xm, Ym, ̂Xm, ̂Ym)

32: else if U ∈ range(π̃2,̂Ym) ∧
33: V �∈ range(π̃3, ̂Xm) then

34: (U, V ) ← Case3( ̂Xm, ̂Ym, U, V )

35: else if U �∈ range(π̃2,̂Ym) ∧
36: V ∈ range(π̃3, ̂Xm) then

37: (U, V ) ← Case4( ̂Xm, ̂Ym, U, V )

38: else if U �∈ range(π̃2,̂Ym) ∧
39: V �∈ range(π̃3, ̂Xm) then

40: (U, V ) ← Case5( ̂Xm, ̂Ym, U, V )

41: Q ∪←− {( ̂Xm, ̂Ym, U, V )}
42: π̃2,̂Ym [Xm] ← U

43: π̃3, ̂Xm [Ym] ← V
44: return (U ‖ V )

95: function Case5( ̂Xm, ̂Ym, U, V )
96: return (U, V )

51: function Case1(Xm, Ym, ̂Xm, ̂Ym)

52: if Xm ∈ domain(π̃2,̂Ym) then

53: U ← π̃2,̂Ym [Xm]

54: else

55: U � {0, 1}n \ range(π̃2,̂Ym)

56: if Ym ∈ domain(π̃3, ̂Xm) then

57: V ← π̃3, ̂Xm [Ym]

58: else

59: V � {0, 1}n \ range(π̃3, ̂Xm)

60: badU ← badV ← true
61: return (U, V )

71: function Case2(Xm, Ym, ̂Xm, ̂Ym)

72: U � {0, 1}n \ range(π̃2,̂Ym)

73: V � {0, 1}n \ range(π̃3, ̂Xm)

74: badU ← badV ← true
75: return (U, V )

81: function Case3( ̂Xm, ̂Ym, U, V )

82: U � {0, 1}n \ range(π̃2,̂Ym)

83: badU ← true
84: return (U, V )

91: function Case4( ̂Xm, ̂Ym, U, V )

92: V � {0, 1}n \ range(π̃3, ̂Xm)

93: badV ← true
94: return (U, V )

exactly represents PMAC2x[π̃], performing lazy sampling for the permutations
π̃2,̂Ym(·) and π̃3, ̂Xm(·), for all ̂Xm, ̂Ym ∈ {0, 1}t. Both algorithms differ only when
bad events occur. Hence, by the fundamental lemma of game playing [4], it holds

Pr[APMAC2x[π̃](·) ⇒ 1] − Pr[Aρ(·) ⇒ 1] ≤ Pr[A sets bad].

In the remainder, we consider five cases which cover all possibilities:

– Case1: ( ̂Xm, ̂Ym) ∈ Q| ̂Xm,̂Ym
.
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– Case2: ( ̂Xm, ̂Ym) �∈ Q| ̂Xm,̂Ym
∧ U ∈ range(π̃2,̂Ym) ∧ V ∈ range(π̃3, ̂Xm).

– Case3: ( ̂Xm, ̂Ym) �∈ Q| ̂Xm,̂Ym
∧ U ∈ range(π̃2,̂Ym) ∧ V �∈ range(π̃3, ̂Xm).

– Case4: ( ̂Xm, ̂Ym) �∈ Q| ̂Xm,̂Ym
∧ U �∈ range(π̃2,̂Ym) ∧ V ∈ range(π̃3, ̂Xm).

– Case5: ( ̂Xm, ̂Ym) �∈ Q| ̂Xm,̂Ym
∧ U �∈ range(π̃2,̂Ym) ∧ V �∈ range(π̃3, ̂Xm).

We list Case 5 only for the sake of completeness. It is easy to see that in Case 5,
the output of the game is indistinguishable between the worlds. We use M i, ̂Xi

m,
̂Y i
m, U i, V i to refer to the respective values of the i-th query, where i ∈ [1, q],

and assume it is the current query of the adversary. Additionally, we will use
indices j and k, where j, k ∈ [1, i − 1], to refer to previous queries.

Case1: For this case, we revisit the fact that for two fixed disjoint queries M i

and M j , the values Xm and Ym are results of two random variables. A variant
of the proof is given e.g. in [17, Sect. 3.3], and revisited in the following only
for the sake of completeness. Fix query indices i ∈ [1, q] and j ∈ [1, i − 1]. Let
m and m′ denote the number of blocks of the i-th and j-th query, respectively;
moreover, let Xi

m, Y i
m denote the values Xm and Ym of the i-th query and Xj

m′ ,
Y j

m′ those of the j-th query, respectively. Xi
m, Y i

m, Xj
m, and Y j

m result from:

Xi
m = Ci

1 ⊕ Ci
2 ⊕ · · · ⊕ Ci

m Y i
m = 2mCi

1 ⊕ 2m−1Ci
2 ⊕ · · · ⊕ 2 · Ci

m,

Xi
m′ = Cj

1 ⊕ Cj
2 ⊕ · · · ⊕ Cj

m′ Y j
m′ = 2m′

Cj
1 ⊕ 2m′−1Cj

2 ⊕ · · · ⊕ 2 · Cj
m′ .

So, we want to bound the probability for the following equational system:

Ci
1 ⊕ Ci

2 ⊕ · · · ⊕ Ci
m = Cj

1 ⊕ Cj
2 ⊕ · · · ⊕ Cj

m′

2mCi
1 ⊕ 2m−1Ci

2 ⊕ · · · ⊕ 2 · Ci
m = 2m′

Cj
1 ⊕ 2m′−1Cj

2 ⊕ · · · ⊕ 2 · Cj
m′ .

There exist three distinct subcases which cover all possibilities:

– Subcase 1: m �= m′. In this case, the equations above provide a unique
solution set for two random variables; thus, the probability that the equations
hold for two fixed queries is upper bounded by 1/(2n − (i − 1))2.

– Subcase 2: m = m′ and there exists α ∈ [1,m] s.t. Ci
α �= Cj

α and for
all β ∈ [1,m] with β �= α: Ci

β = Cj
β. In this case, both messages share only

a single different output block. Thus, the equations above never hold.
– Subcase 3: m = m′ and there exist distinct β ∈ [1,m] with β �= α:

Ci
β = Cj

β. In this case, both messages share only a single different output
block. Thus, the equations above can never hold.

So, the probability for two fixed disjoint queries M i and M j that (Xi
m, Y i

m) =
(Xj

m′ , Y
j
m′) holds, is bounded by 1/(2n − q)2. Since ̂Xi

m and ̂Y i
m are derived from

Xi
m and Y i

m, respectively by a regular function (and so are ̂Xj
m and ̂Y j

m derived
from Xj

m′ and Y j
m′ , respectively), it follows that the probability of ( ̂Xi

m, ̂Y i
m) =

( ̂Xj
m′ , ̂Y j

m′) to hold for the i-th and j-th query, with j ∈ [1, i − 1], is at most

(i − 1) · 2d

(2n − q)
· 2d

(2n − q)
=

22d(i − 1)
(2n − q)2

.



266 E. List and M. Nandi

Case2: In this case, there exists some previous query ( ̂Xj
m′ , ̂Y j

m′ , U j , V j) s.t.
U = U j ∧ ̂Ym = ̂Y j

m′ , and a distinct previous query ( ̂Xk
m′′ , ̂Y k

m′′ , Uk, V k) s.t.
V = V k ∧ ̂Xm = ̂Xk

m′′ . From our assumption ( ̂Xm, ̂Ym) �∈ Q| ̂Xm,̂Ym
, it follows

that j �= k; otherwise, the current query would have stepped into Case1 instead.
We can bound the probability by

Pr
[

(U = U j ∧ ̂Ym = ̂Y j
m′) ∧ (V = V k ∧ ̂Xm = ̂Xk

m′′)
]

≤ Pr
[

U = U j ∧ ̂Ym = ̂Y j
m′ ∧ V = V k | ̂Xm = ̂Xk

m′′

]

.

U and V are chosen independently and uniformly at random from {0, 1}n each,
and can collide with at most i− 1 previous values U j and at most i− 1 previous
values V k, respectively. For fixed j and k, the probability for U to collide with
U j is upper bounded by 1/2n, and independently, the probability for V to collide
with V k is also 1/2n. Since the game chooses U and V independently from Ym,
the probability that ̂Ym collides with ̂Y j

m′ is at most 2d/(2n−q) since we assumed
that the adversary poses no duplicate queries, and therefore, Ym and Y j

m′ are
results of two random variables. Since the collision of U = U j already fixes the
colliding query pair, there is no additional factor (i − 1) for the choice of which
pairs of ̂Ym and ̂Y j

m′ to collide. It follows that the probability for this case to
occur at the i-th query is upper bounded by

i − 1
2n

· i − 2
2n

· 2d

2n − q
≤ 2d(i − 1)2

22n(2n − q)
.

Case3: In this case, there exists some previous query ( ̂Xj
m′ , ̂Y j

m′ , U j , V j) s.t.
U = U j ∧ ̂Ym = ̂Y j

m′ . From our assumption ( ̂Xm, ̂Ym) �∈ Q| ̂Xm,̂Ym
and ̂Ym = ̂Y j

m′

follows that ̂Xm �= ̂Xj
m′ holds, like in Case2. We can bound the probability by

Pr
[

U = U j ∧ ̂Ym = ̂Y j
m′ ∧ V �∈ range(π̃3, ̂Xm)

]

≤ Pr
[

U = U j ∧ ̂Ym = ̂Y j
m′ | V �∈ range(π̃3, ̂Xm)

]

.

For a fixed j-th query, the probability that ̂Ym collides with ̂Y j
m′ is at most

2d/(2n − q). Since U is chosen uniformly at random from {0, 1}n and indepen-
dently from Ym, U can collide with U j with probability 1/2n. So, the probability
of this case to occur for the i-th query can be upper bounded by

2d

2n − q
· i − 1

2n
=

2d(i − 1)
2n(2n − q)

.

Case4: In this case, it holds that V = V j ∧ ̂Xm = ̂Xj
m′ . From ( ̂Xm, ̂Ym) �∈

Q| ̂Xm,̂Ym
and ̂Xm = ̂Xj

m′ follows here that ̂Ym �= ̂Y j
m′ holds, analogously to
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Case2 and Case3. We can bound the probability by

Pr
[

V = V j ∧ ̂Xm = ̂Xj
m′ ∧ U �∈ range(π̃2,̂Ym)

]

≤ Pr
[

V = V j ∧ ̂Xm = ̂Xj
m′ | U �∈ range(π̃2,̂Ym)

]

.

Obviously, this case can be handled similarly as Case3. For a fixed j-th query,
the probability that ̂Xm collides with ̂Xj

m′ is at most 2d/(2n − q). Since V is
chosen uniformly at random from {0, 1}n and independently from Xm, V can
collide with V j with probability 1/2n. So, the probability of this case to occur
for the i-th query can also be upper bounded by

2d(i − 1)
2n(2n − q)

.

Taking the terms from all cases and the union bound over at most q queries
gives

Pr [A sets bad] ≤
q

∑

i=1

(

22d(i − 1)
(2n − q)2

+
2d(i − 1)2

22n(2n − q)
+ 2 · 2d(i − 1)

2n(2n − q)

)

≤ 22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)
.

5 Security Analysis of PMACx

This section considers a variant of PMAC2x, PMACx, that adds a final XOR to
produce only an n-bit tag, following the design of PMAC TBC1k. A schematic
illustration is given in Fig. 2. We revisit the assumption by Naito, and show that
our proof of PMAC2x needs only a slight adaption for PMACx.

Previous Analysis. Theorem 2 in [17] proves the security of PMAC TBC1k
with the help of an analysis of multi-collisions of the final chaining values (Xm

and Ym in our notation). Note that our notation differs from [17] to be consistent
to our previous section. Define two monotone events mcoll1 and mcoll2. Let ρ
and ξ denote positive integers and define three sets X , Y, and Q which store the
values ̂Xi

m, ̂Y i
m, and the tuples (Xi

m, ̂Y i
m), respectively, of the queries 1 ≤ i ≤ q.

mcoll1 := (∃ ̂X1
m, . . . , ̂Xρ

m ∈ X s.t. ̂X1
m = . . . = ̂Xρ

m)

∨ (∃ ̂Y 1
m, . . . , ̂Y ρ

m ∈ Y s.t. ̂Y 1
m = . . . = ̂Y ρ

m),

mcoll2 := ∃ (X1
m, ̂Y 1

m), . . . , (Xξ
m, ̂Y ξ

m) ∈ Q s.t. (X1
m, ̂Y 1

m) = . . . = (Xξ
m, ̂Y ξ

m).

The original proof further defined a monotone compound event mcoll := mcoll1∨
mcoll2 and used the fact that

Pr [A sets bad] = Pr [A sets bad ∧ mcoll] + Pr [A sets bad ∧ ¬mcoll]
≤ Pr [mcoll1] + Pr [mcoll2] + Pr [A sets bad|¬mcoll] .
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X0
X1 X2 Xm

Y0
Y1 Y2 Ym

Conv

Conv

Fig. 2. PMACx, the variant of PMAC2x with n-bit output, following the design of
PMAC TBC1k.

The analysis in [17] bounds Pr[mcoll1] as

Pr[mcoll1] ≤ 2 · 2t ·
(

q

ρ

)

·
(

2n−t

2n − q

)ρ

≤ 2t+1 ·
(

2n−t · eq

ρ(2n − q)

)ρ

,

using Stirling’s approximation x! ≥ (x/e)x for any x. Note, in PMAC TBC1k,
the domain size in PMAC2x is fixed to d = 2 bits. The bound above con-
sists of the probability that ρ values are all equal, (2n−t/(2n − q))ρ; the fact
that there are 2t tweak values; and the

(

q
ρ

)

possible ways to choose ρ out of q
values. However, the bound holds only if the ρ colliding tweaks stem from ρ
linearly independent random variables, which is not necessarily the case. Imag-
ine a sequence of 2m queries which combine pair-wise distinct blocks {Mi,M

′
i}

with Mi �= M ′
i , for 1 ≤ i ≤ m position-wise, i. e., we have 2m queries of

m blocks each: Q0 = (M1,M2,M3, . . . ,Mm), Q1 = (M ′
1,M2,M3, . . . ,Mm),

Q2 = (M1,M
′
2,M3, . . . ,Mm), . . . , Q2m−1 = (M ′

1,M
′
2,M

′
3, . . . ,M

′
m). When used

as queries to PMAC TBC1k, the 2m resulting values Xi
m, for 0 ≤ i ≤ 2m − 1,

depend on the linear combination of only 2m random variables. A similar argu-
ment holds for the values Y i

m, as well as for the similarly treated bound of mcoll2.
Thus, the multi-collision bound demands a significantly more detailed analysis.

Fixing the Analysis. From our proof for PMAC2x, we can now derive a
corollary for a similar security bound for PMACx, which again can be easily
transformed into a bound for PMAC TBC1k.

Corollary 1. Let ˜E and PMAC2x[ ˜E] be defined as in Sect. 3. Let d + t = n,
and let m < 2t denote the maximum number of n-bit blocks of any query. Then,
it holds that AdvPRF

PMACx[ ˜E]
(q, �, θ) ≤ AdvPRF

PMAC2x[ ˜E]
(q, �, θ).

The proof can use a game almost identical to that in Algorithm2, where we only
modify Line 44 to return the XOR of U and V . This is shown in Algorithm3.
All further procedures and functions remain identical to those in Algorithm2.

If (U ‖V ) is indistinguishable from outputs of a 2n-bit random function ρ,
then each of the n-bit outputs U and V can be considered random. It follows,
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Algorithm 3. The updated game for the security proof of PMACx. Only the
double-boxed statement changes compared with the game in Algorithm 2.

21: function Oracle(M)
22: . . .
42: π̃2,̂Ym [Xm] ← U

43: π̃3, ̂Xm [Ym] ← V

44: return T ← U ⊕ V

if U is indistinguishable from n-bit values, then the XOR sum of U ⊕ V is also
indistinguishable from a random n-bit value. Hence, the PRF advantage of A
on PMACx is upper bounded by that of an adversary A′ on PMAC2x with an
equal amount of resources as A; hence, the corollary follows.

PMACx and PMAC TBC1k differ in three aspects: (1) PMACx allows
messages whose length is not a multiple of n bits by padding the final block
with 10∗ and using a distinct tweak for it; (2) PMACx defines a generic d-bit
domain encoding and defines a conversion function Conv for deriving the inputs
for the finalization; and (3) PMACx adds a final doubling for a simpler and
consistent description. Clearly, none of the differences affects the distribution of
final chaining values ̂Xm and ̂Ym. Hence, when fixing d = 2, a security result for
PMACx can be easily carried over to a bound for PMAC TBC1k.

6 Definition and Security Analysis of SIVx

Next, we define the deterministic AE scheme SIVx, which combines PMAC2x
and the IV-based Counter-in-Tweak mode IVCTRT. We recall the definitions
of IV-based encryption and Deterministic AE security in the full version of this
work [11]. Note, that it is straight-forward to derive a nonce-based AE scheme
by fixing the nonce length and appending the nonce to the associated data.

IVCTRT. IVCTRT denotes the version of Counter in Tweak [21, Appendix C],
which takes a 2n-bit random IV plus the message for each encryption. Let T =
{0, 1}t, and T ′ = {0, 1}×T . The mode first splits (U, V ) n←− IV , and uses a given
tweakable block cipher ˜E : K × T ′ × {0, 1}n → {0, 1}n in counter mode, with V
as cipher input. Next, it derives T ← Conv′(U) from U with a regular function
Conv′ : {0, 1}n → T and increments T for every call to ˜E using addition
modulo 2t. We denote by IVCTRT[ ˜E] the instantiation of IVCTRT with ˜E;
from Theorem 1 and Appendix C in [21], we recall the following theorem:

Theorem 2 (ivE Security of IVCTRT). Let π̃ � P̃erm(T ′, {0, 1}n) be an
ideal tweakable block cipher. Let A be an adversary which asks at most q queries
of at most 8 ≤ � ≤ |T | blocks in total. Then

AdvivE
IVCTRT[π̃](A) ≤ 1

2n
+

1
|T | +

4� log q

|T | +
� log2(�)

2n
.
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Fig. 3. The deterministic AE scheme SIVx from the composition of PMAC2x[ ˜E]

(top), and the IVCTRT[ ˜E] mode of encryption (bottom) [20]. The figure starts the
message processing in PMAC2x from 0n only to prevent that X0 and Y0 cancel out.

Definition of SIVx. We define the deterministic AE scheme SIVx[ ˜E] as
the composition of PMAC2x[ ˜E] and IVCTRT[ ˜E], as given in Algorithm 4. A
schematic illustration of the encryption process is depicted in Fig. 3. In general,
we denote by SIVx[F,Π] the instantiation of SIVx with a function F and an
IV-based encryption scheme Π in SIVx. To use the same key in all calls to ˜E, we
parametrize PHASHx to separate the domains. We use the domains 2 = (0010)2
and 3 = (0011)2 for the finalization steps, 4 = (0100)2 and 5 = (0101)2 for
processing the associated data, as well as 6 = (0110)2 and 7 = (0111)2 for
processing the message in PMAC2x. We encode them into the d = 4 most sig-
nificant bits of the tweak. Inside IVCTRT, however, we use the single-bit domain
1 in all calls to ˜E for we lose only a single bit from the IV. For concreteness, we
define the initial values in PMAC2x as X0 = Y0 = 0n.
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Algorithm 4. Definition of SIVx[ ˜E]. Note that IVCTRT[ ˜E] and its inverse
IVCTRT−1[ ˜E] are identical operations. Moreover, we define PHASHx[ ˜E]D1,D2

to denote PHASHx[ ˜E] using D1 as domain for processing full blocks, and using
D2 for a potential partial final block of the input to PHASHx.

11: function SIVx[ ˜EK ](A, M)

12: tag ← PMAC2x[ ˜EK ](A, M)
13: (U, V )

n←− tag
14: IV ← Conv′(U) ‖ V

15: C ← IVCTRT[ ˜EK ](IV, M)
16: return (C,tag)

21: function Conv′(U)
22: return T ← U [1..t]

31: function IVCTRT[ ˜EK ](IV, M)
32: (T, V ) ← IV
33: (M1, . . . , Mm)

n←− M
34: for i ← 1 to m − 1 do
35: Ci ← ˜E

1,T+(i−1)
K (V ) ⊕ Mi

36: Sm ← ˜E
1,T+(m−1)
K (V )[1..|Mm|]

37: Cm ← Sm ⊕ Mm

38: return C ← (C1 ‖ . . . ‖ Cm)

41: function SIVx−1[ ˜EK ](A, C,tag)
42: (U, V )

n←− tag
43: IV ← Conv′(U) ‖ V

44: M ← IVCTRT−1[ ˜EK ](IV, C)

45: tag′ ← PMAC2x[ ˜EK ](A, M)
46: if tag = tag′ then
47: return M
48: return ⊥
51: function PMAC2x[ ˜EK ](A, M)

52: (Xa, Ya) ← PHASHx[ ˜EK ]4,5(A)

53: (Xm, Ym) ← PHASHx[ ˜EK ]6,7(M)

54: ̂Xm ← Conv(Xm ⊕ Xa ⊕ X0)

55: ̂Ym ← Conv(Ym ⊕ Ya ⊕ Y0)

56: U ← ˜E2,̂Ym
K (Xm)

57: V ← ˜E3, ̂Xm
K (Ym)

58: return IV ← (U ‖ V )

Theorem 3 (DAE Security of SIVx). Let F : K1 ×A×M → {0, 1}2n, and
let Π = (˜E , ˜D) be an IV-based encryption scheme with key space K2 and IV space
IV. Let K1 � K1 and K2 � K2 be independent. Let Conv′ : {0, 1}n → IV be a
regular function. Let A be a DAE adversary running in time at most θ, asking
at most q queries of at most 8 ≤ � < 2t blocks in total. Then, it holds that

AdvDAE
SIVx[F,Π](A) ≤ AdvivE

Π (θ + O(�), q, �) + AdvPRF
F (θ + O(�), q, �) +

q

2n
.

We defer the proof of Theorem3 to the full version of this work [11]. Inserting the
bounds from Theorems 1 and 2, we obtain the corollary below, where F denotes
PMAC2x[ ˜E] and Π represents IVCTRT[ ˜E].

Corollary 2. Fix positive integers k, n, t and d = 4. Define d + t = n and let
T = {0, 1}t and T ′ = {0, 1}d × {0, 1}t, and IV = {0, 1}n−1. Let ˜E : K × T ′ ×
{0, 1}n → {0, 1}n, and Conv′ : {0, 1}n → IV be a regular function. Let K � K
and A be a DAE adversary that runs in time at most θ, and asks at most q
queries of at most 8 ≤ � < 2t blocks in total. Then

AdvDAE
SIVx[ ˜E]

(A) ≤ 22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)
+

4� log q + 1
2n−1

+

q + 1 + � log2(�)
2n

+ AdvTPRP
˜E

(θ + O(2� + 2q), 2� + 2q).
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7 Conclusion

This work revisited the PMAC TBC1k construction by Naito for construct-
ing a MAC with beyond-birthday-bound (BBB) security and 2n-bit outputs,
called PMAC2x. We identified a critical assumption in the previous analysis of
PMAC TBC1k and circumvented it by a new proof for PMAC2x; moreover,
we could easily derive a proof for PMACx, a variant of our PMAC2x con-
struction with n-bit outputs. So, we also provided a corrected bound for Naito’s
construction. We obtained the positive result that all three constructions provide
PRF security for up to O(q2/22n +q3/23n) queries. With the help of PMAC2x,
we constructed a BBB-secure AE scheme from a tweakable block cipher whose
security is independent of nonces and which depends on a single primitive under
a single key. We are aware that the 2n-bit tag of SIVx requires still as many
bits to be transmitted as for the 2n-bit nonce-IV in SCT; future work could
study how an appropriate truncation could reduce the transmission overhead
while retaining BBB security.

Acknowledgments. The authors would like to thank Yusuke Naito and the anony-
mous reviewers for fruitful comments that helped improve our work.
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