
Helena Handschuh (Ed.)

 123

LN
CS

 1
01

59

The Cryptographers' Track at the RSA Conference 2017
San Francisco, CA, USA, February 14–17, 2017
Proceedings

Topics in Cryptology –
CT-RSA 2017

Lecture Notes in Computer Science 10159

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Helena Handschuh (Ed.)

Topics in Cryptology –

CT-RSA 2017
The Cryptographers’ Track at the RSA Conference 2017
San Francisco, CA, USA, February 14–17, 2017
Proceedings

123

Editor
Helena Handschuh
Cryptography Research Inc.
San Francisco, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-52152-7 ISBN 978-3-319-52153-4 (eBook)
DOI 10.1007/978-3-319-52153-4

Library of Congress Control Number: 2016962026

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The RSA conference has been a major international event for information security
experts since its inception in 1991. It is an annual event that attracts several hundreds of
vendors and close to ten thousand participants from industry, government, and
academia.

Since 2001, the RSA conference has included the Cryptographer’s Track
(CT-RSA), which provides a forum for current research in cryptography.

CT-RSA has become a major publication venue in cryptography. It covers a wide
variety of topics from public-key to symmetric-key cryptography and from crypto-
graphic protocols to primitives and their implementation security. This year selected
topics such as cryptocurrencies and white-box cryptography were added to the call for
papers.

This volume represents the proceedings of the 2017 RSA Conference Cryptogra-
pher’s Track, which was held in San Francisco, during February 14–17, 2017.

A total of 77 full papers were submitted for review, out of which 25 papers were
selected for presentation. As chair of the Program Committee, I deeply thank all the
authors who contributed the results of their innovative research. My appreciation also
goes to the 33 members of the Program Committee and the numerous external
reviewers who carefully reviewed these submissions. Each submission had at least
three independent reviewers, and those co-authored by a member of the Program
Committee had a least four reviewers. Together, Program Committee members and
external reviewers generated close to 250 reviews. The selection process proved to be a
very difficult task, as each contribution had its own merits. It was carried out with great
professionalism and total transparency and generated a number of enthusiastic dis-
cussions among the members of the Program Committee. The submission process as
well as the review process and the editing of the final proceedings were greatly sim-
plified by the software written by Shai Halevi and we thank him for his kind and
immediate support throughout the whole process.

In addition to the contributed talks, the program also included a panel discussion
moderated by Bart Preneel on “Post-Quantum Cryptography: Is Time Running Out ?”
including panelists Dan Boneh, Scott Fluhrer, Michele Mosca, and Adi Shamir.

November 2017 Helena Handschuh

Organization

CT-RSA 2017

RSA Conference Cryptographer’s Track 2017

Moscone Center, San Francisco, California, USA
February 14–17, 2017

The RSA Cryptographer’s Track is an independently managed component of the
annual RSA conference.

Steering Committee

Helena Handschuh Cryptography Research, USA and KU Leuven,
Belgium

Kaisa Nyberg Aalto University (retired), Finland
Ron Rivest Massachusetts Institute of Technology, USA
Kazue Sako NEC, Japan
Moti Yung Snapchat, USA

Program Chair

Helena Handschuh Cryptography Research, USA and KU Leuven,
Belgium

Program Committee

Josh Benaloh Microsoft Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Chen-Mou Cheng Osaka University, Japan
Jeremy Clark Concordia University, Canada
Jean Paul Degabriele Royal Holloway University of London, UK
Orr Dunkelman University of Haifa, Israel
Junfeng Fan Open Security Research, China
Henri Gilbert ANSSI, France
Tim Güneysu University of Bremen and DFKI, Germany
Stanislaw Jarecki University of California at Irvine, USA
Thomas Johansson Lund University, Sweden
Marc Joye NXP Semiconductors, USA
Kwangjo Kim KAIST, Republic of Korea
Susan Langford Hewlett Packard Enterprise, USA
Tancrède Lepoint SRI International, USA
David M’Raïhi Symphony, USA
Stefan Mangard Graz University of Technology, Austria

Mitsuru Matsui Mitsubishi Electric, Japan
María Naya-Plasencia Inria, France
Kaisa Nyberg Aalto University (retired), Finland
Elisabeth Oswald University of Bristol, UK
Raphael C.-W. Phan Multimedia University, Malaysia
David Pointcheval École Normale Supérieure, France
Bart Preneel KU Leuven and iMinds, Belgium
Matt Robshaw Impinj, USA
Reihaneh Safavi-Naini University of Calgary, Canada
Kazue Sako NEC, Japan
Palash Sarkar Indian Statistical Institute, India
Nigel Smart University of Bristol, UK
Marc Stevens CWI, The Netherlands
Willy Susilo University of Wollongong, Australia
Huaxiong Wang Nanyang Technological University, Singapore
Brecht Wyseur Nagra, Switzerland

External Reviewers

Hamza Abusalah
Jacob Alperin-Sheriff
Ralph Ankele
Florian Bache
Timo Bartkewitz
Sébastien Bellon
Fabrice Benhamouda
Elizabeth Berners-Lee
David Bernhard
Marc Blanc-Patin
Olivier Blazy
Céline Blondeau
Christina Brzuska
Zhenfu Cao
Debrup Chakraborty
Jie Chen
Rongmao Chen
Rakyong Choi
Yann Le Corre
Jeroen Delvaux
Daniel Dinu
Leo Ducas
Maria Eichlseder
Ben Fisch
Jean-Bernard Fischer
Jean-Pierre Flori

Paolo Gasti
Romain Gay
Hannes Gross
Fuchun Guo
Patrick Haddad
Qiong Huang
Toshiyuki Isshiki
Chenglu Jin
Antoine Joux
Seny Kamara
Sabyasachi Karati
Pierre Karpman
Takashima Katsuyuki
Marcel Keller
Dmitry Khovratovich
Handan Kilinç
Fuyuki Kitagawa
Thomas Korak
Po-Chun Kuo
Jianchang Lai
Wai-Kong Lee
Fuchun Lin
Aaron Lye
Dan Martin
Takahiro Matsuda
Alexander May

Marcel Medwed
Bart Mennink
Tarik Moataz
Amir Moradi
Fabrice Mouhartem
Michael Naehrig
Toru Nakanishi
Khoa Nguyen
Léo Paul Perrin
Jiaxin Pan
Manuel San Pedro
Hervé Pelletier
Peter Pessl
Duong Hieu Phan
Jérôme Plût
Yogachandran

Rahulamathavan
Somindu C. Ramanna
Oscar Reparaz
Vladimir Rozic
Pascal Sasdrich
Tobias Schneider
Victor Servant
Terence Spies
Douglas Stebila
Ron Steinfeld

VIII Organization

Takeshi Sugawara
Alan Szepieniec
Katsuyuki Takashima
Keisuke Tanaka
Isamu Teranishi
Aleksei Udovenko
Thomas Unterluggauer
Vesselin Velichkov

Frederik Vercauteren
Karine Villegas
Michael Walter
Pengwei Wang
Hoeteck Wee
Mario Werner
Carolyn Whitnall
Friedrich Wiemer

Joanne Woodage
Chang Xu
Guomin Yang
Jiang Zhang
Liangfeng Zhang
Rui Zhang

Organization IX

Contents

Public Key Implementations

Choosing Parameters for NTRUEncrypt . 3
Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman,
William Whyte, and Zhenfei Zhang

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 19
Marc Joye and Benoît Libert

Lattice-Based Cryptanalysis

Gauss Sieve Algorithm on GPUs . 39
Shang-Yi Yang, Po-Chun Kuo, Bo-Yin Yang, and Chen-Mou Cheng

A Tool Kit for Partial Key Exposure Attacks on RSA 58
Atsushi Takayasu and Noboru Kunihiro

Fault and Glitch Resistant Implementations

Feeding Two Cats with One Bowl: On Designing a Fault and Side-Channel
Resistant Software Encoding Scheme. 77

Jakub Breier and Xiaolu Hou

An Efficient Side-Channel Protected AES Implementation
with Arbitrary Protection Order. 95

Hannes Gross, Stefan Mangard, and Thomas Korak

Side-channel Resistant Implementations

Time-Memory Trade-Offs for Side-Channel Resistant Implementations
of Block Ciphers. 115

Praveen Kumar Vadnala

Hiding Higher-Order Side-Channel Leakage: Randomizing Cryptographic
Implementations in Reconfigurable Hardware . 131

Pascal Sasdrich, Amir Moradi, and Tim Güneysu

Digital Signatures and Random Numbers

Surnaming Schemes, Fast Verification, and Applications
to SGX Technology . 149

Dan Boneh and Shay Gueron

http://dx.doi.org/10.1007/978-3-319-52153-4_1
http://dx.doi.org/10.1007/978-3-319-52153-4_2
http://dx.doi.org/10.1007/978-3-319-52153-4_3
http://dx.doi.org/10.1007/978-3-319-52153-4_4
http://dx.doi.org/10.1007/978-3-319-52153-4_5
http://dx.doi.org/10.1007/978-3-319-52153-4_5
http://dx.doi.org/10.1007/978-3-319-52153-4_6
http://dx.doi.org/10.1007/978-3-319-52153-4_6
http://dx.doi.org/10.1007/978-3-319-52153-4_7
http://dx.doi.org/10.1007/978-3-319-52153-4_7
http://dx.doi.org/10.1007/978-3-319-52153-4_8
http://dx.doi.org/10.1007/978-3-319-52153-4_8
http://dx.doi.org/10.1007/978-3-319-52153-4_9
http://dx.doi.org/10.1007/978-3-319-52153-4_9

On the Entropy of Oscillator-Based True Random Number Generators 165
Yuan Ma, Jingqiang Lin, and Jiwu Jing

Post-quantum Cryptography

Provably Secure Password Authenticated Key Exchange Based
on RLWE for the Post-Quantum World . 183

Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV,
and Michael Snook

Symmetric Key Cryptanalysis

Impossible-Differential and Boomerang Cryptanalysis
of Round-Reduced Kiasu-BC . 207

Christoph Dobraunig and Eik List

Weak Keys for AEZ, and the External Key Padding Attack 223
Bart Mennink

Symmetric Key Constructions

Full Disk Encryption: Bridging Theory and Practice 241
Louiza Khati, Nicky Mouha, and Damien Vergnaud

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday
Authenticated Encryption . 258

Eik List and Mridul Nandi

2017 Selected Topics

Publish or Perish: A Backward-Compatible Defense Against Selfish
Mining in Bitcoin . 277

Ren Zhang and Bart Preneel

WEM: A New Family of White-Box Block Ciphers Based
on the Even-Mansour Construction . 293

Jihoon Cho, Kyu Young Choi, Itai Dinur, Orr Dunkelman,
Nathan Keller, Dukjae Moon, and Aviya Veidberg

Improved Key Recovery Algorithms

A Bounded-Space Near-Optimal Key Enumeration Algorithm
for Multi-subkey Side-Channel Attacks . 311

Liron David and Avishai Wool

XII Contents

http://dx.doi.org/10.1007/978-3-319-52153-4_10
http://dx.doi.org/10.1007/978-3-319-52153-4_11
http://dx.doi.org/10.1007/978-3-319-52153-4_11
http://dx.doi.org/10.1007/978-3-319-52153-4_12
http://dx.doi.org/10.1007/978-3-319-52153-4_12
http://dx.doi.org/10.1007/978-3-319-52153-4_13
http://dx.doi.org/10.1007/978-3-319-52153-4_14
http://dx.doi.org/10.1007/978-3-319-52153-4_15
http://dx.doi.org/10.1007/978-3-319-52153-4_15
http://dx.doi.org/10.1007/978-3-319-52153-4_16
http://dx.doi.org/10.1007/978-3-319-52153-4_16
http://dx.doi.org/10.1007/978-3-319-52153-4_17
http://dx.doi.org/10.1007/978-3-319-52153-4_17
http://dx.doi.org/10.1007/978-3-319-52153-4_18
http://dx.doi.org/10.1007/978-3-319-52153-4_18

Improved Key Recovery Algorithms from Noisy RSA Secret Keys
with Analog Noise . 328

Noboru Kunihiro and Yuki Takahashi

Side-channel Analysis

Ridge-Based Profiled Differential Power Analysis . 347
Weijia Wang, Yu Yu, François-Xavier Standaert, Dawu Gu, Xu Sen,
and Chi Zhang

My Traces Learn What You Did in the Dark: Recovering Secret
Signals Without Key Guesses . 363

Si Gao, Hua Chen, Wenling Wu, Limin Fan, Weiqiong Cao,
and Xiangliang Ma

Cryptographic Protocols

Actively Secure 1-out-of-N OT Extension with Application to Private
Set Intersection . 381

Michele Orrù, Emmanuela Orsini, and Peter Scholl

Low-Leakage Secure Search for Boolean Expressions 397
Fernando Krell, Gabriela Ciocarlie, Ashish Gehani,
and Mariana Raykova

Public Key Algorithms

Constructions Secure Against Receiver Selective Opening
and Chosen Ciphertext Attacks . 417

Dingding Jia, Xianhui Lu, and Bao Li

New Revocable IBE in Prime-Order Groups: Adaptively Secure, Decryption
Key Exposure Resistant, and with Short Public Parameters 432

Yohei Watanabe, Keita Emura, and Jae Hong Seo

Author Index . 451

Contents XIII

http://dx.doi.org/10.1007/978-3-319-52153-4_19
http://dx.doi.org/10.1007/978-3-319-52153-4_19
http://dx.doi.org/10.1007/978-3-319-52153-4_20
http://dx.doi.org/10.1007/978-3-319-52153-4_21
http://dx.doi.org/10.1007/978-3-319-52153-4_21
http://dx.doi.org/10.1007/978-3-319-52153-4_22
http://dx.doi.org/10.1007/978-3-319-52153-4_22
http://dx.doi.org/10.1007/978-3-319-52153-4_23
http://dx.doi.org/10.1007/978-3-319-52153-4_24
http://dx.doi.org/10.1007/978-3-319-52153-4_24
http://dx.doi.org/10.1007/978-3-319-52153-4_25
http://dx.doi.org/10.1007/978-3-319-52153-4_25

Public Key Implementations

Choosing Parameters for NTRUEncrypt

Jeff Hoffstein1, Jill Pipher1, John M. Schanck2,3, Joseph H. Silverman1,
William Whyte3, and Zhenfei Zhang3(B)

1 Brown University, Providence, USA
{jhoff,jpipher,jhs}@math.brown.edu

2 University of Waterloo, Waterloo, Canada
3 Security Innovation, Wilmington, USA

{wwhyte,zzhang,jschanck}@securityinnovation.com

Abstract. We describe a method for generating parameter sets, and
calculating security estimates, for NTRUEncrypt. Our security analyses
consider lattice attacks, the hybrid attack, subfield attacks, and quantum
search. Analyses are provided for the IEEE 1363.1-2008 product-form
parameter sets, for the NTRU Challenge parameter sets, and for two
new parameter sets. These new parameter sets are designed to provide
≥ 128-bit post-quantum security.

Keywords: Public-key cryptography/NTRUEncrypt · Cryptanalysis ·
Parameter derivation

1 Introduction and Notation

In this note we will assume some familiarity with the details and notation of
NTRUEncrypt. The reader desiring further background should consult standard
references such as [11,12,16]. The key parameters are summarized in Table 1.
Each is, implicitly, a function of the security parameter λ.

NTRUEncrypt uses a ring of convolution polynomials; a polynomial ring para-
meterized by a prime N , and an integer q, of the form RN,q = (Z/qZ)[X]/
(XN − 1). The subscript will be dropped when discussing generic properties of
such rings. We denote multiplication in R by ∗. An NTRUEncrypt public key is
a generator for a cyclic R-module of rank 2, and is denoted (1, h). The private
key is an element of this module which is “small” with respect to a given norm
and is denoted (f, g). Ring elements are written in the monomial basis. When
an element of Z/qZ is lifted to Z, or reduced modulo p, it is identified with its
unique representative in [−q/2, q/2)∩Z. The aforementioned norm is the 2-norm
on coefficient vectors:

∥
∥
∥
∥
∥

N−1∑

i=0

aix
i

∥
∥
∥
∥
∥

2

=
N−1∑

i=0

a2
i .

An extended version of the paper is available at [10].

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-52153-4 1

4 J. Hoffstein et al.

Table 1.

Primary NTRUEncrypt parameters

N, q Ring parameters RN,q = Zq[X]/(XN − 1).

p Message space modulus.

d1, d2, d3 Non-zero coefficient counts for product form polynomial terms.

dg Non-zero coefficient count for private key component g.

dm Message representative Hamming weight constraint

This norm is extended to elements (a, b) ∈ R ⊕ R as

‖(a, b)‖2 = ‖a‖2 + ‖b‖2.

There is a large degree of freedom in choosing the structure of the private
key. In previous parameter recommendations [9,16] the secret polynomials f
and g have been chosen uniformly from a set of binary or trinary polynomials
with a prescribed number of non-zero coefficients. These are far from the only
choices. The provably secure variant of NTRUEncrypt by Stehlé and Steinfeld
[17], samples f and g from a discrete Gaussian distribution, and the NTRU-like
signature scheme BLISS [6] samples its private keys from a set of polynomials
with a prescribed number of ±1s and ±2s. The reasons for such choices are varied:
binary polynomials were believed to allow for a small q parameter, but the desire
to increase resistance against the hybrid combinatorial attack of [15] motivated
the use of larger sample spaces in both NTRUEncrypt and BLISS. In the provably
secure variant the public key must be computationally indistinguishable from
an invertible ring element chosen uniformly at random. The discrete Gaussian
distribution has several nice analytic properties that simplify the proof of such
a claim, and sampling from such a distribution is reasonably efficient.

Our parameter choices use product-form polynomials for f and for the blind-
ing polynomial, r, used during encryption. First introduced to NTRUEncrypt in
[13], product form polynomials allow for exceptionally fast multiplication in R
without the use of the Fourier transform.

An extended version of the paper is available at [10] which includes the
following:

– a more detailed description of NTRUEncrypt algorithms;
– a survey of other known attacks and the security level against those attacks;
– tables that list suggested q parameter; and parameters for the NTRU chal-

lenge [2];
– some additional analysis for the hybrid attack.

Choosing Parameters for NTRUEncrypt 5

2 General Considerations

2.1 Ring Parameters

The only restrictions on p and q are that they generate coprime ideals of
Z[X]/(XN − 1). In this document we will fix p = 3 and only consider q that are
a power of 2. This choice is motivated by the need for fast arithmetic modulo q,
and by the impact of p on decryption failure probability (see Sect. 6).

For NTRUEncrypt we take N to be prime. Many ideal lattice cryptosystems
use the ring Zq[X]/(X2n + 1) primarily because X2n + 1 is irreducible over the
rationals. Some complications arise from using a reducible ring modulus, but
these are easily remedied.

For prime N the ring modulus factors into irreducibles over Q as

XN − 1 = (X − 1)ΦN (X)

where ΦN (X) is the N th cyclotomic polynomial. To maximize the probability
that a random f is invertible in RN,q we should ensure that ΦN (X) is irreducible
modulo 2, i.e. we should choose N such that (2) is inert in the N th cyclotomic
field. Such a choice of N ensures that f is invertible so long as f(1) �= 0 (mod 2).
It is not strictly necessary that ΦN (X) be irreducible modulo 2, and one may
allow a small number of high degree factors while maintaining a negligible prob-
ability of failure. Reasonable primes is provided in the full version of the paper
[10]. Similar considerations apply for other choices of q.

2.2 Private Key, Blinding Polynomial, and Message Parameters

The analysis below will be considerably simpler if we fix how the values d1, d2, d3,
and dg will be derived given N and q.

We set the notation:

TN = {trinary polynomials}

TN (d, e) =
{

trinary polynomials with exactly
d ones and e minus ones

}

PN (d1, d2, d3) =
{

product form polynomials
A1 ∗ A2 + A3 : Ai ∈ TN (di, di)

}

.

If N is fixed we will write T , T (d, e), and P(d1, d2, d3) instead.
A product form private key is of the form (f, g) = (1 + pF, g) with

F ∈ PN (d1, d2, d3) and g ∈ TN (dg + 1, dg). Note that f must be invertible in
RN,q for the corresponding public key (1, h) = (1, f−1g) to exist. The parame-
ters recommended in this document ensure that, when F is sampled uniformly
from PN (d1, d2, d3), the polynomial 1 + pF will always be invertible. One may
optionally check that g is invertible, although this is similarly unnecessary for
appropriately chosen parameters.

In order to maximize the size of the key space, while keeping a prescribed
number of ±1s in g, we take dg = �N/3	. The expected number of non-zero

6 J. Hoffstein et al.

coefficients in f is 4d1d2 + 2d3. In order to roughly balance the difficulty of the
search problems for f and g (Sect. 4), we take d1 ≈ d2 ≈ d3 with d1 = �α	 where
α is the positive root of 2x2 + x − N/3. This gives us 2d1d2 + d3 ≈ N/3.

A Hamming weight restriction is placed on message representatives to avoid
significant variation in the difficulty of message recovery. Message representatives
are trinary polynomials; we require that the number of +1s, −1s, and 0s each
be greater than dm. The procedure for choosing dm is given in Sect. 5.

3 Review of the Hybrid Attack

We consider the hybrid attack [15] to be the strongest attack against NTRUEn-
crypt, and believe that cost estimates for the hybrid attack give a good indication
of the security of typical NTRUEncrypt parameter sets. Information on other
attacks can be found from the full version of the paper [10].

Suppose one is given an NTRU public key (1, h) along with the relevant
parameter set. This information determines a basis for a lattice L of rank 2N
generated by the rows of

L =
(

qIN 0
H IN

)

(1)

wherein the block H is the circulant matrix corresponding to h, i.e. its rows are
the coefficient vectors of xi∗h for i ∈ [0, N−1]. The map (1, h)RN,q → L/qL that
sends (a, b) �→ (b0, . . . , bN−1, a0, . . . , aN−1) is an additive group isomorphism
that preserves the norm defined in Eq. 1. As such, if one can find short vectors
of L one can find short elements of the corresponding NTRU module.

The determinant of L is Δ = qN , giving us a Gaussian expected shortest
vector of length λ1 ≈

√

qN/πe, though the actual shortest vector will be some-
what smaller than this. A pure lattice reduction attack would attempt to solve
Hermite-SVP1 with factor λ/Δ1/2N =

√

N/πe, which is already impractical for
N around 100. The experiments of [8] support this claim, they were able to
find short vectors in three NTRU lattices with N = 107 and q = 64 that were
generated using binary private keys. Only one of these was broken with BKZ
alone, the other two required a heuristic combination of BKZ on the full lattice
and BKZ on a projected lattice of smaller dimension with block sizes between
35 and 41.

Consequently the best attacks against NTRUEncrypt tend to utilize a com-
bination of lattice reduction and combinatorial search. In this section we will
review one such method from [15], known as the hybrid attack.

The rough idea is as follows. One first chooses N1 < N and extracts a block,
L1, of 2N1 × 2N1 coefficients from the center of the matrix L defined in Eq. 1.

1 In practice q has a strong impact on the effectiveness of pure lattice reduction attacks
as well. For large q the relevant problem becomes Unique-SVP which appears to
be somewhat easier than Hermite-SVP. Conservative parameter generation should
ensure that it is difficult to solve Hermite-SVP to within a factor of q/Δ1/2N =

√
q.

Choosing Parameters for NTRUEncrypt 7

The rows of L1 are taken to generate a lattice L1.
(

qIN 0
H IN

)

=

⎛

⎝

qIr1 0 0
∗ L1 0
∗ ∗ Ir2

⎞

⎠

A lattice reduction algorithm is applied to find a unimodular transformation, U ′,
such that U ′L1 is reduced, and an orthogonal transformation, Y ′, is computed
such that U ′L1Y

′ = T ′ is in lower triangular form. These transformations are
applied to the original basis to produce a basis for an isomorphic lattice:

T = ULY =

⎛

⎝

Ir1 0 0
0 U ′ 0
0 0 Ir2

⎞

⎠

⎛

⎝

qIr1 0 0
∗ L1 0
∗ ∗ Ir2

⎞

⎠

⎛

⎝

Ir1 0 0
0 Y ′ 0
0 0 Ir2

⎞

⎠ =

⎛

⎝

qIr1 0 0
∗ T ′ 0
∗ ∗ Ir2

⎞

⎠ .

Notice that (g, f)Y is a short vector in the resulting lattice.
In general it is not necessary for the extracted block to be the central 2N1 ×

2N1 matrix, and it is sometimes useful to consider blocks shifted s indices to the
top left along the main diagonal. Let r1 = N − N1 − s be the index of the first
column of the extracted block and r2 = N + N1 − s be the index of the final
column. The entries on the diagonal of T will have values {qα1 , qα2 , . . . , qα2N },
where α1 + · · · + α2N = N , and the αi, for i in the range [r1, r2], will come very
close to decreasing linearly. That is to say, L1 will roughly obey the geometric
series assumption (GSA). The rate at which the αi decrease can be predicted
very well based on the root Hermite factor achieved by the lattice reduction
algorithm used.2 Clearly αi = 1 for i < r1 and αi = 0 for i > r2. By the analysis
in [10] we expect

αr1 =
1
2

+
s

2N1
+ 2N1 logq(δ) (2)

αr2 =
1
2

+
s

2N1
− 2N1 logq(δ), (3)

and a linear decrease in-between. The profile of the basis will look like one of
the examples in Fig. 1.

By a lemma of Furst and Kannan (Lemma 1 in [15]), if y = uT + x for
vectors u and x in Z

2N , and −Ti,i/2 < xi ≤ Ti,i/2, then reducing y against T
with Babai’s nearest plane algorithm will yield x exactly. Thus if v is a shortest
vector in L and αr2 > logq(2‖v‖∞), it is guaranteed that v can be found by
enumerating candidates for its final K = 2N −r2 coefficients. Further knowledge
about v can also diminish the search space. For example, if it is known that there
is a trinary vector in L, and αr2 > logq(2), then applying Babai’s nearest plane
algorithm to some vector in the set {(0|v′)T − (0|v′) : v′ ∈ TK} will reveal it.

The optimal approach for the attacker is determined by the balancing the cost
of combinatorial search on K coordinates against the cost of lattice reduction
that results in a sufficiently large α2N−K . Unsurprisingly, näıve enumeration of
the possible v′ is not optimal.
2 A lattice reduction algorithm that achieves root Hermite factor δ returns a basis

with ‖b1‖2 ≈ δn det(Λ)1/n.

8 J. Hoffstein et al.

Fig. 1. Log length of ith Gram-Schmidt vector, logq(‖b∗
i ‖).

4 Meet in the Middle Search

The adaptation of meet-in-the-middle search algorithms to the structure of
binary NTRU keys is due to Odlyzko and described in [14]. Generalizations
to other private key types are described by Howgrave-Graham in [15]; this is the
presentation we follow here. The key idea is to decompose the search space S
as S ⊆ S′ ⊕ S′ for some set S′ such that |S′| ≈

√

|S|. If s1 and s2 are elements
of S′ such that s1 + s2 = f , and (f, g) is an element with small coefficients in
the NTRU module generated by (1, h), then (s1, s1 ∗ h) = (f, g) − (s2, s2 ∗ h). In
particular, when the coefficients of g are trinary, this implies that s1∗h ≈ −s2∗h
coordinate-wise.

Under the assumption that all approximate collisions can be detected, a meet
in the middle search on the full product form NTRUEncrypt key space would
require both time and memory of order O(

√

|PN (d1, d2, d3)|).
A meet in the middle search is also possible on a basis that has been pre-

processed for the hybrid attack as in Eq. 2. The assumption that all approximate
collisions can be detected will turn out to be untenable in this case, however, in
the interest of deriving conservative parameters we will assume that this com-
plication does not arise. Let Π : ZN → Z

K be a projection3 onto K coordinates
of ZN . Let PΠ = {vΠ : v ∈ PN (d1, d2, d3)}. The f component of the private key
is guaranteed to appear in PΠ , so the expected time and memory required for
the attack is O(

√

|PΠ |). That said, estimating the size of PΠ is non-trivial.
We may also consider an adversary who attempts this attack on the lattice

corresponding to (1, h−1) and searches for the g component of the private key
instead. This may in fact be the best strategy for the adversary, because while
|PN (d1, d2, d3)| < |TN (dg + 1, dg)| for parameters of interest to us, the presence

3 We will abuse notation slightly and allow Π to act on elements of R by acting on
their coefficient vectors lifted to Z

N .

Choosing Parameters for NTRUEncrypt 9

of coefficients not in {−1, 0, 1} in product form polynomials leads to a large
increase in the relative size of the projected set.

In either case we assume that it is sufficient for the adversary to search for
trinary vectors, and that they may limit their search to a projection of TN (d, e)
for some (d, e). When targeting g we have d = dg +1, e = dg, and when targeting
f we have that both d and e are approximately 2d1d2+d3. Clearly when d = e =
N/3, and N � K, we should expect that the projection of a uniform random
element of TN (d, e) onto K coordinates will look like a uniform random element
of TK . For such parameters, the size of the set that must be enumerated in the
meet-in-the-middle stage is ≈ 3K/2.

For d �= N/3, or for large K, not all trinary sequences are equally likely, and
the adversary may choose to target a small set of high probability sequences.
Consequently we must estimate the size of the set of elements that are typical
under the projection. Fix N , K, Π, d, and e and let S = TN (d, e). Let p : TK →
R be the probability mass function on TK induced by sampling an element
uniformly at random from S and projecting its coefficient vector onto the set of
K coordinates fixed by Π. We will estimate the size of the search space in the
hybrid attack as, roughly, 2H(p), where H(p) is the Shannon entropy of p.

Let SΠ(a, b) be the subset of S consisting of vectors, v, such that vΠ has
exactly a coefficients equal to +1 and b coefficients equal to −1. By the symmetry
of S under coordinate permutations we have that p(vΠ) = p(v′Π) for all pairs
v, v′ ∈ SΠ(a, b). We choose a fixed representative of each type: va,b = vΠ for
some v ∈ SΠ(a, b), and write

p(va,b) =
1

(
K
a

)(
K−a

b

)
|SΠ(a, b)|

|S| =

(
N−K
d−a

)(
N−K−d+a

d−b

)

(
N
d

)(
N−d

d

) .

As there are exactly
(
K
a

)(
K−a

b

)

distinct choices for va,b this gives us:

H(p) = −
∑

v∈TK

p(v) log2 p(v) = −
∑

0≤a,b≤d

(
K

a

)(
K − a

b

)

p(va,b) log2 p(va,b).

(4)
The size of the search space is further decreased by a factor of N since xi ∗ g

is likely to be a distinct target for each i ∈ [0, N − 1]. Hence in order to resist
the hybrid meet-in-the-middle attack we should ensure

1
2
(H(p) − log2(N)) ≥ λ.

The only variable not fixed by the parameter set itself in Eq. 4 is K. In order to
fix K we must consider the cost of lattice reduction.

The block to be reduced is of size (r2 − r1) × (r2 − r1) where r2 = 2N − K
and r1 = λ. Recall that s = N − (r1 + r2)/2, and N1 = (r2 − r1)/2. Having
fixed these parameters we can use Eq. 3 to determine the strength of the lattice
reduction needed to ensure that αr2 is sufficiently large to permit recovery of a
trinary vector. In particular, we need αr2 = N1+s

2N1
−2N1 logq(δ) ≥ logq(2), which

10 J. Hoffstein et al.

implies that

log2(δ) ≤ N1 + s

4N2
1

log2(q) − 1
2N1

. (5)

Translating the required root Hermite factor, δ, into a concrete bit-security
estimate is notoriously difficult. However there seems to be widespread consensus
on the values that are currently out of reach for common security parameters.
As such one might use the following step function as a first approximation:

δ∗(λ) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.009 if λ ≤ 60
1.008 if 60 < λ ≤ 80
1.007 if 80 < λ ≤ 128
1.005 if 128 < λ ≤ 256
1 otherwise.

A more refined approach involving a BKZ simulator, from [4], is used in Sect. 8.1.
Rewriting Eq. 5 in terms of N , q, r1 and K we define:

log2(η(N, q, r1, K)) =
(N − r1) log2(q)

4N2 − 4N (K + r1) + (K2 + 2r1K + r21)
− 1

2N − (K + r1)
.

Conclusion: A parameter set resists hybrid meet-in-the-middle attacks on pri-
vate keys if Eq. 4 is satisfied and

1 < η(N, q, r1,K) ≤ δ∗(r1). (6)

5 Rejecting Sparse (and Dense) Message Representatives

The parameter sets in this paper specify the exact number of 1’s and −1’s in
each of r1, r2, r3, which reveals the quantity r(1), that is, the polynomial r
evaluated at 1. As an encrypted message has the form e = pr ∗ h + m, the value
m(1) modulo q is revealed by the known quantities r(1), e(1), h(1). The value
m(1) in turn reveals the difference between the number of 1’s and the number
of −1’s in the message representative.

We assume the message representative is uniformly distributed over TN . The
expected value of m(1) is zero, but for large |m(1)|, the size of the search space for
m decreases, making a meet in the middle search for (r,m) easier. We assume
that the adversary observes a very large number of messages and can freely
condition their attack on the value of m(1) regardless of the probability that a
uniform random message representative takes that value.

In addition, we forbid the number of +1s, −1s, or 0s to be less than a given
parameter, dm. The choice of dm depends primarily affects resistance against
hybrid combinatorial attacks, but dm also has an impact on decryption failure
probability, as will be discussed in Sect. 6.

The calculation for determining resistance against hybrid combinatorial
attacks is very similar to that leading up to Eq. 4, but there are two key differ-
ences. First, in Sect. 4 we were primarily concerned with validating the security

Choosing Parameters for NTRUEncrypt 11

of the obvious choice dg = �N/3	. Here we will need to search for dm. Second,
having fixed dm we need to condition the distribution of projected elements on
the value of m(1).

The search space for dm can be constrained by imposing an arbitrary upper
bound on the probability of a failure. Such a failure is roughly as expensive as a
full encryption, so dm should be chosen to ensure that failures are rare.

Let I(dm) = {(i, j) : dm ≤ i < (N − 2dm), dm ≤ j < (N − dm − i)}. We will
only consider dm satisfying:

2−10 ≥ 1 − 3−N

⎛

⎝
∑

(i,j)∈I(dm)

(
N

i

)(
N − i

j

)
⎞

⎠

Let K be the value derived in Sect. 4. Fix Π and let S(e1, e2; a, b) be the set
of projections of elements of T (e1, e2) with a ones and b minus ones. Let M be
the subset of TN satisfying the dm constraint. Let p : TK × Z × Z → R be the
probability mass function given by

p(v, e1, e2) = Probm←$M (mΠ = v and m ∈ TN (e1, e2)) ,

i.e. p(v, e1, e2) is the probability that an m sampled uniformly from M has e1
ones, e2 minus ones, and is equal to v under projection. If the information leakage
from m(1) determined e1 and e2 then we could use essentially the same analysis
as Sect. 4 and our security estimate would be

1
2

min
(e1,e2)∈I(dm)

H(pdm
|e1, e2).

However the adversary only learns m(1) = e1 − e2, so we will account for their
uncertainty about whether m ∈ T (e1, e2) given m(1) = e1 − e2.

The marginal distribution on e1 and e2 conditioned on the event m(1) = y is

q(e1, e2|m(1) = y) =
∑

v∈TK

p(v, e1, e2|m(1) = y)

=
(

N

e1

)(
N − e1

e2

)

⎛

⎜
⎜
⎝

∑

i−j=y
(i,j)∈I(dm)

(
N

i

)(
N − i

j

)

⎞

⎟
⎟
⎠

−1

.

Conclusion: As such we will consider a parameter set secure against hybrid
meet-in-the-middle attacks on messages provided that:

λ ≤ min
y

min
e1−e2=y

(e1,e2)∈I(dm)

1
2
H(p|e1, e2) − log2 q(e1, e2|m(1) = y). (7)

Evaluating this expression is considerably simplified by noting that local minima
will be found at the extremal points: |e1 − e2| = N − 3dm and e1 = e2 ≈ N/3.

Note that unlike the estimate in Sect. 4 we do not include a − log2(N) term
to account for rotations of m.

12 J. Hoffstein et al.

6 Estimating the Probability of Decryption Failure

As remarked earlier, in order for decryption to succeed the coefficients of

a = p ∗ (r ∗ g + m ∗ F) + m

must have absolute value less than q/2.
Assuming p ∈ Z, and trinary g and m, the triangle inequality yields:

‖a‖∞ ≤ p (‖r‖1‖g‖∞ + ‖F‖1‖m‖∞) + 1 = p (‖r‖1 + ‖F‖1) + 1.

Thus with product form r and F decryption failures can be avoided entirely by
ensuring (q − 2)/2p > 8d1d2 + 4d3. However, since ciphertext expansion scales
roughly as N log2(q), it can be advantageous to consider probabilistic bounds as
well. The probability

Prob (a given coefficient of r ∗ g + m ∗ F has absolute value ≥ c)

can be analyzed rather well by an application of the central limit theorem. This
was done for the case of trinary r, g,m, F in [9]. Here we provide a modified
analysis for the case where the polynomials r and F take a product form. In
particular, we assume that r = r1 ∗ r2 + r3, F = F1 ∗ F2 + F3, where each ri

and Fi has exactly di coefficients equal to 1, di coefficients equal to −1, and the
remainder equal to 0.

Let Xk denote a coefficient of r ∗ g + m ∗ F . The spaces from which r and m
are drawn are invariant under permutations of indices, so the probability that
|Xk| > c does not depend on the choice of k.4 Note that Xk has the form

Xk = (r1 ∗ r2 ∗ g)k + (r3 ∗ g)k + (F1 ∗ F2 ∗ m)k + (F3 ∗ m)k,

and each term in the sum is itself a sum of either 4d1d2 or 2d3 (not necessarily dis-
tinct) coefficients of g or m. For instance, (r1∗r2∗g)k =

∑

i,j (r1)i(r2)j(g)(k−i−j)

and only the 4d1d2 pairs of indices corresponding to non-zero coefficients of r1
and r2 contribute to the sum. We can think of each index pair as selecting a sign
ε(i) and an index a(i) and rewrite the sum as (r1 ∗ r2 ∗ g)k =

∑4d1d2
i=1 ε(i)(g)a(i).

While the terms in this sum are not formally independent (since a may have
repeated indices, and g has a prescribed number of non-zero coefficients) exten-
sive experiments show that the variance of (r1 ∗r2 ∗g)k is still well approximated
by treating (g)a(i) as a random coefficient of g, i.e. as taking a non-zero value
with probability (2dg + 1)/N :

E
[

(r1 ∗ r2 ∗ g)2k
]

≈
4d1d2∑

i=1

E
[

(ε(i)(g)a(i))2
]

=
4d1d2∑

i=1

E

[

(g)2a(i)
]

= 4d1d2 · 2dg + 1
N

Nearly identical arguments can be applied to compute the variances of the
other terms of Eq. 6, although some care must be taken with the terms involv-
ing m. While an honest party will choose m uniformly from the set of trinary
4 The Xk for different k have the same distribution, but they are not completely

independent. However, they are so weakly correlated as to not affect our analysis.

Choosing Parameters for NTRUEncrypt 13

polynomials, m could be chosen adversarily to maximize its Hamming weight and
hence the probability of a decryption failure. Due to the dm constraint (Sect. 5),
the number of non-zero coefficients of m cannot exceed N − dm. As such we
model the coefficients of m as taking ±1 each with probability (1 − dm/N) and
0 with probability dm/N .

With these considerations the variance of (r1∗r2∗g)k+(r3∗g)k is found to be
σ2
1 = (4d1d2 +2d3) · 2dg+1

N , and the variance of (F1 ∗F2 ∗m)k +(F3 ∗m)k is found
to be σ2

2 = (4d1d2 + 2d3) · (1 − dm

N). Both terms are modeled as sums of i.i.d.
random variables, and the di are chosen such that 4d1d2 + 2d3 ≈ 2N/3, so for
sufficiently large N the central limit theorem suggests that each term will have
a normal distribution. Finally Xk can be expected to be distributed according
to the convolution of these two normal distributions, which itself is a normal
distribution with variance

σ2 = σ2
1 + σ2

2 = (4d1d2 + 2d3) · N − dm + 2dg + 1
N

.

The probability that a normally distributed random variable with mean 0
and standard deviation σ exceeds c in absolute value is given by the complemen-
tary error function, specifically erfc(c/(

√
2σ)). Applying a union bound, the

probability that any of the N coefficients of r ∗ g + m ∗ f is greater than c is
bounded above by N · erfc(c/(

√
2σ)).

Conclusion: To have negligible probability of decryption failure with respect
to the security parameter, λ, we require

N · erfc((q − 2)/(2
√

2 · p · σ)) < 2−λ (8)

where σ = σ(N, d1, d2, d3, dg, dm) as in Eq. 6.

7 Product Form Combinatorial Strength

The search space for a triple of polynomials F1, F2, F3 where each polynomial
Fi has di 1’s and di −1’s is of size:

|PN (d1, d2, d3)| =
(

N

d1

)(
N − d1

d1

)(
N

d2

)(
N − d2

d2

)(
N

d3

)(
N − d3

d3

)

.

Thus a purely combinatorial meet-in-the-middle search on product form keys can
be performed in time and space O(

√

|PN (d1, d2, d3)| /N), where we have divided
by N to account for the fact that rotations of a given triple are equivalent.

Finally, one could construct a 3N dimensional lattice attack by consid-
ering the lattice generated by linear combinations of the vectors (1, 0, f1 ∗
h), (0, 1, h), (0, 0, q), where each entry corresponds to N entries in the lattice.
The vector (f2, f3, g) will be a very short vector, but the increase of the dimen-
sion of the lattice by N , without any corresponding increase in the determinant
of the lattice, leads to a considerably harder lattice reduction problem. As this
attack also requires a correct guess of f1 we will not consider it further.

14 J. Hoffstein et al.

8 Explicit Algorithm for Computing Parameters

Algorithm 1 determines the smallest recommended N that allows for k bit secu-
rity. Additional details, such as recommendations on how to efficiently perform
the search in Line 16, may be found in our implementation available at [1].

8.1 Sample Parameter Generation

We will ignore the implicit outer loop over security parameters and consider the
case of N = 401 starting from Line 3.

Our recommendations for the key structure suggests taking dg = 134, d1 = 8,
d2 = 8, d3 = 6. Taking dm = 102 satisfies Eq. 5 with a probability of 2−10.4 of
rejecting a message representative due to its coefficient sum. A direct meet-in-
the-middle attack on the product form key space will involve testing approxi-
mately 2145 candidates. As this is an upper bound on the security of the parame-
ter set we will ensure that our decryption failure probability is less than 2−145.
This implores us to take q = 2048, for which there is, by Eq. 8, a decryption
failure probability of 2−217.

In order to finish the parameter derivation we need a tighter estimate on its
security. It may be significantly less than 145, in which case we may be able to
reduce q.

We estimate the security of the parameter set by minimizing the adversary’s
expected cost over choices of the hybrid attack parameter K. Equation 4 spec-
ifies, for each K, the root Hermite factor, δ, that must be reached during the
lattice reduction phase of the hybrid attack in order for the combinatorial stage
to be successful. We use the BKZ-2.0 simulator of [4] to determine the blocksize
and number of rounds of BKZ that will be required to reach root Hermite factor.

To turn the blocksize and iteration count into a concrete security estimate
we need estimates on the number of nodes visited per call to the enumeration
subroutine of BKZ. Table 2 summarizes upper bounds given by Chen and Nguyen
in [4] and in the full version of the same paper [5]. The estimates of the full version
are significantly lower than the original, and have perhaps not recieved the same
scrutiny. In what follows we will consider the implications of both estimates.

Table 2. Upper bounds on log2 number of nodes enumerated in one call to enumeration
subroutine of BKZ-2.0 as reported in the original and full versions of the paper.

β 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

LogNodes(β) [5] 39 44 49 54 60 66 72 78 84 96 99 105 111 120 127 134

To facilitate computer search for parameters we fit curves to the estimates in
Table 2, and following [4] we estimate the per-node cost, as 27 operations. The
resulting predictions for the cost of the lattice reduction stage, in terms of the

Choosing Parameters for NTRUEncrypt 15

Algorithm 1. NTRUEncrypt parameter generation
Input: Desired security level k.
1: Let nj be the jth value, ordered by magnitude, from the list of first 100 primes

> 100 for which ord(Z/NZ)∗(2) = (N − 1), i.e. (2) is inert.
2: Set j = 1.
3: Set N = nj .
4: Set dg =

⌊
N
3

⌉
.

5: Set d1 =

⌈
1
4

(√
1 + 8N

3
− 1

)⌉
{The next integer above the positive root of 2x2 +

x − N/3.}
6: Set d2 =

⌈(
N
3

− d1

)
/(2d1)

⌉
.

7: Set d3 = max
(⌈

d1
2

+ 1
⌉
,
⌈

N
3

− 2d1d2

⌉)
.

8: Set dm to be the largest value satisfying Eq. 5.
9: Set k1 =

⌊
1
2

log2 (|PN (d1, d2, d3)|/N)
⌋
. {Cost of direct combinatorial search gives

an upper bound on the security.}
10: if k1 < k then
11: Increment j.
12: Goto line 3.
13: end if
14: Set σ according to Eq. 6.

σ =

(
(4d1d2 + 2d3) · N − dm + 2dg + 1

N

)1/2

.

15: Set q to be the smallest power of 2 satisfying

N · erfc
(
(q − 2)/(6

√
2σ)
)

< 2−k1 .

{Estimate security}
16: Search for a hybrid parameter K that minimizes the maximum of the cost estimates

for hybrid attacks. Equation 4 gives the cost of the lattice reduction, and Eqs. 4
and 7 give the cost of combinatorial search for key- and message-recovery attacks
respectively. Let k2 be the corresponding security estimate.

17: if k > min(k1, k2) then
18: Increment j.
19: Go to Line 3.
20: end if
21: Let q′ = q/2.
22: if N · erfc ((q′ − 2)/(6

√
2σ)
)

< 2−k then
23: Set q = q′

24: Repeat security estimate (Line 16) with modulus q′ and set k2 equal to the
result.

25: Go to Line 17.
26: end if
Output: [N, q, d1, d2, d3, dg, dm].

16 J. Hoffstein et al.

blocksize, the dimension of the sublattice to be reduced, and number of rounds
are thus:

LogNodes(β) = 0.12081 · β log2(β) − 0.42860 · β

BKZCost(dim, β, rounds) = LogNodes(β) + log2(dimension · rounds) + 7.

Finally our security estimate requires a search over K to balance the cost of
lattice reduction against the cost of combinatorial search given by Eq. 4.

Fixing K = 154 the BKZ-2.0 simulator suggests that 10 rounds of BKZ-197
will achieve to the requisite δ = 1.0064. The BKZCost estimate suggets that this
reduction will require 2116 operations, matching the cost of 2116 given by Eq. 4
for the combinatorial search step.

We find that we cannot decrease q without violating the constraint on the
decryption failure probability, and we are done.

The parameter set we have just (re-)derived originally appeared in the EESS
#1 standard at the 112 bit security level. All four product-form parameter sets
from EESS #1 are reviewed in Table 3 with security estimates following the
above analysis. Note that while the algorithm in Sect. 8 rederives the N = 401
parameter set almost exactly (dg is 133 in EESS #1), this is not true for the
N = 593 and N = 743 parameter sets. In particular, all four of the published
parameter sets take q = 2048, and this does not lead to a formally negligible
probability of decryption failure for N = 593 or N = 743. Note also that the
number of prime ideals lying above (2) is more than recommended for N = 439
and N = 593. Table 3 presents security estimates for the standardized parame-
ters rather than those that would be output by the algorithm of Sect. 8.

Table 3.

EESS #1 Parameter sets and security estimates

Original N q (d1, d2, d3, dg, dm) Hybrid attack parameters Product form log2 dec.

security est Dim β Rounds K Cost search cost fail prob

112 401 2048 (8, 8, 6, 133, 101) 532 197 10 154 116 145 -217

128 439 2048 (9, 8, 5, 146, 112) 571 221 10 174 133 147 -195

192 593 2048 (10, 10, 8, 197, 158) 732 316 8 261 201 193 -139

256 743 2048 (11, 11, 15, 247, 204) 880 407 8 350 272 256 -112

9 New Parameters

The parameter derivations above do not take quantum adversaries into consider-
ation. The time/space tradeoff in the hybrid attack can be replaced (trivially) by
a Grover search to achieve the same asymptotic time complexity as the hybrid
attack with a space complexity that is polynomial in N . One may expect that a
quantum time/space tradeoff could do even better, however this seems unlikely
given the failure of quantum time/space tradeoffs against collision problems in

Choosing Parameters for NTRUEncrypt 17

Table 4.

Post-quantum parameter sets and security estimates

Classical Quantum N q (d1, d2, d3, dg , dm) Hybrid attack parameters Product form log2 dec.

security est security est Dim β Rounds K Cost search cost fail prob

128 128 443 2048 (9, 8, 5, 148, 115) 575 222 11 177 133 147 -196

192 128 587 2048 (10, 10, 8, 196, 157) 723 311 9 258 197 193 -139

256 128 743 2048 (11, 11, 15, 247, 204) 880 407 8 350 272 256 -112

other domains [3]. Several proposals in this direction have been made, such as
[7], however these assume unrealistic models of quantum computation. For now,
it seems that the best quantum attack on NTRUEncrypt is the hybrid attack
with meet-in-the-middle search replaced by Grover search in the Kth projected
lattice.

Fluhrer has noted that there are weaknesses in the EESS #1 parameter sets
assuming worst-case cost models for quantum computation [7]. In particular, if
one Grover iteration is assigned cost equivalent to one classical operation, such as
a multiplication in R, then attacks on the hash functions used in key generation
and encryption can break the EESS #1 parameter sets.

Developing a realistic quantum cost model is outside the scope of this work.
However we can easily provide parameter sets that are secure in Fluhrer’s model.
Since this model is in some sense a worst-case for quantum computation (it
assigns the smallest justifiable cost to quantum operations) the quantum secu-
rity estimates can be assumed to be quite conservative. In addition to using the
parameters in Table 4 one must ensure that pseudorandom polynomial genera-
tion functions are instantiated with SHA-256, and that the message is concate-
nated with a random string b that is at least 256 bits. One should also ensure
that any deterministic random bit generators used in key generation or encryp-
tion are instantiated with at least 256 bits of entropy from a secure random
source.

The parameter sets for N = 443 and N = 587 in Table 4 are new, N = 743
is the same as ees743ep1 from EESS #1.

References

1. NTRU OpenSource Project.online. https://github.com/NTRUOpenSource
Project/ntru-crypto

2. 2015. https://www.ntru.com/ntru-challenge/
3. Bernstein, D.J.: Cost analysis of hash collisions: will quantum computers make-

SHARCS obsolete? (2009). http://cr.yp.to/papers.html#collisioncost
4. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,

D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

5. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates (full version)
(2011). http://www.di.ens.fr/∼ychen/research/Full BKZ.pdf

https://github.com/NTRUOpenSourceProject/ntru-crypto
https://github.com/NTRUOpenSourceProject/ntru-crypto
https://www.ntru.com/ntru-challenge/
http://cr.yp.to/papers.html#collisioncost
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

18 J. Hoffstein et al.

6. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

7. Fluhrer, S.R.: Quantum cryptanalysis of NTRU. IACR Cryptology ePrint Archive,
2015:676 (2015)

8. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78967-3 3

9. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01957-9 27

10. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing Parameters for NTRUEncrypt (full version). IACR Cryptology ePrint
Archive 2015:708 (2015)

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). doi:10.1007/BFb0054868

12. Hoffstein, J., Silverman, J.H.: Optimizations for NTRU (2000)
13. Hoffstein, J., Silverman, J.H.: Random small hamming weight products with appli-

cations to cryptography. Discrete Appl. Math. 130(1), 37–49 (2003)
14. Hoffstein, J., Silverman, J.H., Whyte, W.: Provable Probability Bounds for NTRU-

Encrypt Convolution (2007). http://www.ntru.com
15. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack

against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 9

16. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA
2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-30574-3 10

17. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 4

http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-642-01957-9_27
http://dx.doi.org/10.1007/978-3-642-01957-9_27
http://dx.doi.org/10.1007/BFb0054868
http://www.ntru.com
http://dx.doi.org/10.1007/978-3-540-74143-5_9
http://dx.doi.org/10.1007/978-3-540-30574-3_10
http://dx.doi.org/10.1007/978-3-540-30574-3_10
http://dx.doi.org/10.1007/978-3-642-20465-4_4

Encoding-Free ElGamal-Type Encryption
Schemes on Elliptic Curves

Marc Joye1(B) and Benôıt Libert2

1 NXP Semiconductors (USA), San Jose, USA
marc.joye@nxp.com

2 CNRS, Laboratoire LIP (CNRS, ENSL, U. Lyon, Inria, UCBL),

ENS de Lyon, Lyon, France

Abstract. At PKC 2006, Chevallier-Mames, Paillier, and Pointcheval
proposed a very elegant technique over cyclic subgroups of F∗

p eliminat-
ing the need to encode the message as a group element in the ElGamal
encryption scheme. Unfortunately, it is unclear how to adapt their scheme
over elliptic curves. In a previous attempt, Virat suggested an adapta-
tion of ElGamal to elliptic curves over the ring of dual numbers as a
way to address the message encoding issue. Advantageously the result-
ing cryptosystem does not require encoding messages as points on an
elliptic curve prior to their encryption. Unfortunately, it only provides
one-wayness and, in particular, it is not (and was not claimed to be)
semantically secure.

This paper revisits Virat’s cryptosystem and extends the Chevallier-
Mames et al.’s technique to the elliptic curve setting. We consider elliptic
curves over the ring Z/p2

Z and define the underlying class function. This
yields complexity assumptions whereupon we build new ElGamal-type
encryption schemes. The so-obtained schemes are shown to be semanti-
cally secure and make use of a very simple message encoding: messages
being encrypted are viewed as elements in the range [0, p − 1]. Further,
our schemes come equipped with a partial ring-homomorphism prop-
erty: anyone can add a constant to an encrypted message –or– multiply
an encrypted message by a constant. This can prove helpful as a blinding
method in a number of applications. Finally, in addition to practicability,
the proposed schemes also offer better performance in terms of speed,
memory, and bandwidth.

Keywords: Public-key encryption · ElGamal encryption · Elliptic
curves · Class function · Standard model

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. It allows
parties to exchange data privately. In the asymmetric setting, a (certified) public
encryption key is made publicly available and the matching decryption key is
kept private. Anyone can encrypt messages with the public key but only the
intended recipient (possessing the private key) is able to decrypt ciphertexts.
We refer the reader to Appendix A for background on public-key encryption.
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 19–35, 2017.
DOI: 10.1007/978-3-319-52153-4 2

20 M. Joye and B. Libert

ElGamal Encryption. The classical ElGamal public-key encryption scheme
[12] readily extends to any group G wherein computing discrete logarithms
is assumed to be intractable. In order to avoid sub-group attacks using the
Pohlig-Hellman algorithm [25], the underlying group is usually restricted to a
prime-order group G = 〈g〉; see also [4]. We let q denote the order of G.

The description of G and the generator g are made public. A random ele-
ment y = gx ∈ G is drawn for some randomly chosen x

R← Z/qZ. The public-
key/private-key pair is defined by (pk , sk) with pk = {G, q, g} and sk = {x}; the
message space is M = G. The encryption of a message m ∈ G is given by the
pair (c1, c2) where

c1 = gr and c2 = myr

for a random integer r
R← Z/qZ. Given the ciphertext C = (c1, c2) ∈ G × G,

message m is then recovered thanks to secret key x as m = c2/c1
x.

As described above, the ElGamal scheme is known to meet the IND-CPA secu-
rity notion under the decisional Diffie-Hellman (DDH) assumption [29]. Loosely
speaking, the DDH assumption states that no efficient algorithm can distinguish
between the distributions (g, ga, gb, gab) and (g, ga, gb, gc) where a, b, c

R← Z/qZ.

Message Encoding. Elliptic curve cryptography [22,24] benefits from the absence
of sub-exponential algorithms to solve the underlying hard problem, the elliptic
curve discrete logarithm problem. Elliptic curve cryptosystems therefore fea-
ture smaller key sizes, which results in significant gains in speed and memory.
When applied to elliptic curves over a finite field, ElGamal encryption compels
to express the plaintext message m as a point on an elliptic curve or, more pre-
cisely, as a point on a prime-order subgroup G thereof. This requires an injective
encoding function mapping the message space to G. Such encodings are provided
in [2,14,15] for certain elliptic curves. Unfortunately they do not apply to prime-
order elliptic curves as those recommended in most cryptographic standards.

Another option is to leverage the property that any element w ∈ G = 〈g〉 is
uniquely represented as w = gt for some t ∈ Z/qZ. This leads to the ‘exponent’
ElGamal scheme (see e.g. [10]). A message m ⊆ Z/qZ is encoded as gm. The
corresponding ciphertext then becomes (c1, c2) with c1 = gr and c2 = gm yr for
some r

R← Z/qZ. Unfortunately, decryption now involves the computation of a
discrete logarithm in G: m is the discrete logarithm of c2/c1

x w.r.t. base g. Since
discrete logarithms are supposed to be hard in G, this limits the message space
to a small subset of Z/qZ so that discrete logarithms can be solved through, e.g.,
exhaustive search or Pollard’s lambda method [26].

Yet another option is to modify the scheme by introducing a hash function.
The resulting scheme is referred to as the hash-ElGamal scheme. In more details,
let h : G → {0, 1}�, w �→ h(w) be a hash function that maps group elements to
�-bit strings. The message space is defined as M = {0, 1}�. The encryption
of a message m ∈ M is given by (c1, c2) with c1 = gr and c2 = m ⊕ h(yr).
This variant elegantly solves the encoding problem. On the downside, unless
one is willing to model h as a random oracle, the security analysis requires
either additional assumptions on h – which should behave as a computationally

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 21

secure (a.k.a. entropy-smoothing [27]) key derivation function – or larger key
sizes [3,17,18]. Indeed, as observed in [18, Appendix A], using an information-
theoretically secure key derivation function, the Leftover Hash Lemma [20,21]
would require yr to come from a distribution with about 300 bits of min-entropy
in order to produce a 128-bit symmetric encryption key.

To overcome the message-encoding issue, Virat came with a different app-
roach in [30]. Her idea consists in working with an elliptic curve over the ring
Fp[ε], namely the ring of dual numbers over the prime field Fp. Doing so, the
message space becomes Fp; i.e., messages are now viewed as integers in the set
{0, . . . , p − 1} rather than points on an elliptic curve.

Homomorphism Property. Malleability of ciphertexts is usually seen as an unde-
sirable property. It proves nevertheless very useful in certain applications. Exam-
ples include electronic voting, electronic commerce or, more generally, privacy-
preserving computations. The basic ElGamal scheme satisfies a homomorphism
property with respect to the group law in G. Namely, if · denotes the group
law in G then given the ElGamal encryption of messages m1,m2 ∈ G, any-
one can derive the encryption of m1 · m2. Indeed, letting C1 = (c1,1, c1,2) and
C2 = (c2,1, c2,2) the respective encryption of m1 and m2, with ci,1 = gri and
ci,2 = mi yri (i ∈ {1, 2}), it is easily checked that

C3 = (c1,1 · c2,1, c2,1 · c2,2)

is the encryption of message m3 = m1 · m2 ∈ G. For elliptic-curve ElGamal,
including Virat’s cryptosystem, this translates into the encryption of the (elliptic-
curve) addition of two points. When the exponent variant is used, composing two
ciphertexts yields the encryption of a message m3 = m1 + m2 (mod q), where
messages m1 and m2 are viewed as elements in a small subset of Z/qZ.

Hash ElGamal is only partially homomorphic, w.r.t. the xor operator. Given
the encryption of a message m, anyone can compute the encryption of a message
m′ = m ⊕ K for any chosen value K ∈ {0, 1}�. If C = (c1, c2) with c1 =
gr and c2 = m ⊕ h(yr) then C ′ = (c1, c′

2) with c′
2 = K ⊕ c2 is the hash-

ElGamal encryption of m′. This holds true, regardless of the underlying group.
In particular, this is verified for elliptic curves.

Our Contribution. Compared to the classical elliptic-curve ElGamal encryption
scheme, there are several drawbacks in Virat’s cryptosystem. First it is compu-
tationally more demanding. Second it leads to an increased ciphertext expansion
ratio. This is particularly damaging for elliptic curve cryptosystems as they are
primarily designed to reduce the bandwidth. Third and more importantly, the
security of the scheme is rather weak. It is only shown to be one-way; in partic-
ular, it does not provide semantic security.

We propose in this paper new ElGamal-type cryptosystems that enjoy the
same advantage as Virat’s cryptosystem (namely, no message encoding as points
on elliptic curves) but without its drawbacks. In an earlier work, Chevallier-
Mames et al. [9] astutely observe that certain mathematical properties of inte-
gers modulo p2, where p is a prime number, allow getting rid of the message

22 M. Joye and B. Libert

encoding from the classical ElGamal cryptosystem. Unfortunately, the solution
of [9] is not known to be readily instantiable over elliptic curve subgroups. As a
consequence, the Chevallier-Mames et al. [9] system loses the benefit of shorter
keys enabled by elliptic curve cryptography. In this work, we solve a problem left
open by Chevallier-Mames et al. [9] and provide an adaptation of their scheme [9]
to the elliptic curve setting. The resulting encryption schemes features the same
ciphertext expansion ratio as [9] and retains the partial homomorphism proper-
ties (additive or multiplicative). We prove that they are semantically secure in
the standard model under a natural hardness assumption. We also describe a
chosen-ciphertext secure extension of these schemes.

2 Encoding-Free ElGamal Schemes

2.1 Virat’s Cryptosystem

Let K be a finite field of characteristic p
= 2, 3. The ring of dual numbers of K

is K[ε] with ε2 = 0.
Consider the elliptic curve E over K[ε] given by the Weierstraß equation

E : y2 = x3 + ax + b (1)

with a, b ∈ K[ε] and 4a3+27b2
= 0. The set of points (x, y) ∈ K[ε]×K[ε] satisfying
this equation together with the points at infinity, OOOk = (kε : 1 : 0) with k ∈
K, form an Abelian group under the chord-and-tangent rule. Explicit addition
formulæ are provided in [31, Table 2.1]. This group is denoted by E(K[ε]) and
its order by #E(K[ε]). Since E(K[ε]) contains the p-torsion subgroup formed by
the points at infinity, its order is a multiple of p.

Virat’s cryptosystem relies on elliptic curves over Fp[ε] for some prime p > 3.
Hence let E be an elliptic curve over Fp[ε] as per Eq. (1) of order pq for some
prime q
= p, and let P̂̂P̂P be a generator of E(Fp[ε]).

KeyGen(1λ). On input security parameter λ, generate a cyclic group E(Fp[ε]) =
〈P̂̂P̂P 〉 of order pq as above. Next, choose a random integer x

R← Z/qZ and
compute YYY = [xp]P̂̂P̂P .
The public key is pk = {E(Fp[ε]), q, P̂̂P̂P ,YYY } and the private key is sk = {x}.

Encrypt(pk ,m). The encryption of a message m ∈ Fp is given as follows:
1. Choose a random integer r

R← Z/qZ;
2. Choose a random finite point (x0, y0)

R← E(Fp);
3. Define M̂̂M̂M = (x0+mε, y0+y1ε) where y1 is the unique solution in Fp such

that M̂̂M̂M ∈ E(Fp[ε]);
4. Compute the points C1C1C1 = [rp]P̂̂P̂P and Ĉ2Ĉ2Ĉ2 = M̂̂M̂M + [r]YYY ;
5. Output the ciphertext C = (C1C1C1, Ĉ2Ĉ2Ĉ2).

Decrypt(sk , C). The decryption of C = (C1C1C1, Ĉ2Ĉ2Ĉ2) is obtained as M̂̂M̂M = Ĉ2Ĉ2Ĉ2 − [x]C1C1C1

using secret key x, which in turn yields the value of m.

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 23

In a variant, Virat suggests to define the elliptic curve E over Fp[ε] but with
curve parameters a, b ∈ Fp. It is then shown that the scheme is one-way under
the computational Diffie-Hellman assumption in E(Fp) [30, Theorem 6.4].

Given the x-coordinate of a finite point in E(Fp[ε]), there are two possible
values for its y-coordinate. So 2|p| + 1 bits suffice to represent C1C1C1 or Ĉ2Ĉ2Ĉ2, leading
to a ciphertext expansion ratio of 4 ÷ 1 [30, Sect. 5.2].

Remark 1. When the curve parameters a, b ∈ Fp, Lemma 1 in [1] implies that
for every finite point P̂̂P̂P = (x0 + x1ε, y0 + y1ε) ∈ E(Fp[ε]) there exists a unique
k ∈ Fp such that P̂̂P̂P = PPP + OOOk with PPP = (x0, y0) ∈ E(Fp). It thus turns out
that [p]P̂̂P̂P = [p]PPP + [p](kε : 1 : 0) = [p]PPP ∈ E(Fp). In this case, it is interesting
to define the public key as pk = {E(Fp[ε]), q,QQQ,YYY } where QQQ = [p]P̂̂P̂P ∈ E(Fp)
and to evaluate C1C1C1 as C1C1C1 = [r]QQQ ∈ E(Fp). The ciphertext expansion ratio then
drops to 3 ÷ 1 using a compressed point representation (i.e., C1C1C1 is represented
with |p| + 1 bits and Ĉ2̂C2̂C2 with 2|p| + 1 bits).

2.2 The Chevallier-Mames–Paillier–Pointcheval Scheme

The scheme of Chevallier-Mames et al. [9] is based on the class function over
cyclic subgroups of F∗

p. Specifically, for primes p and q such that q | p − 1, given
a cyclic subgroup 〈g〉 ⊆ F

∗
p of order q, the class of w = ga mod p (w.r.t. ĝ) is

denoted by [[w]] and is defined as the unique integer in Z/pZ such that

ĝCRT([[w]],a) mod p2 = w

for some ĝ ∈ (Z/p2Z)∗ of order pq and such that ĝ ≡ g (mod p), and where
CRT([[w]], a) is an integer such that

CRT([[w]], a) ≡ [[w]] (mod p) and CRT([[w]], a) ≡ a (mod q);

see [9, Sect. 4.1]. For example, if ĝ =
(

1 − k p
)

gp mod p2 with k := (p−1)
q then

[[w]] =
(wq mod p2) − 1

p
mod p.

Proof. Observe that ĝ ≡ gp ≡ g (mod p) as required. Remark also that, as
elements in (Z/p2Z)∗, 1−k p (mod p2) is of order p and gp (mod p2) is of order
q. Hence, it follows that w ≡ ĝCRT([[w]],a) ≡ (1 − k p)[[w]] (gp)a (mod p2) and thus
wq ≡ (1 − k p)[[w]] q ≡ 1 − (k [[w]] q)p ≡ 1 + [[w]] p (mod p2). �

Equipped with such an efficiently computable class function, the encryption
scheme of Chevallier-Mames et al. goes as follows.

KeyGen(1λ). On input security parameter λ, generate a prime p and an element
g ∈ F

∗
p of large prime order q. Next, compute y = gx mod p for some random

integer x
R← Z/qZ. The public key is pk = {F∗

p, q, g, y} and the private key is
sk = {x}.

24 M. Joye and B. Libert

Encrypt(pk ,m). The encryption of m ∈ Z/pZ is given by the following algorithm:
1. Choose a random r

R← Z/qZ. Compute c1 = gr mod p and d = yr mod p;
2. Define c2 = m + [[d]] (mod p);
3. Output the ciphertext C = (c1, c2).

Decrypt(sk , C). C = (c1, c2) is decrypted as m = c2−[[c1x mod p]] (mod p) using
the private key sk = x.

3 New Cryptosystems

Rather than considering elliptic curves over the ring Fp[ε], we work with elliptic
curves defined over the ring Z/p2Z. Borrowing the terminology of [9], this allows
us to define a class function whereupon new ElGamal-type cryptosystems are
derived. See also [16] for another family of cryptosystems making use of elliptic
curves defined over a ring.

3.1 Class Function on Elliptic Curves

Since Fp = Z/pZ ⊂ Z/p2Z, we can view an elliptic curve given by a Weierstraß
equation (with curve parameters a, b ∈ Fp) over the ring Z/p2Z. In order to deal
with the points at infinity, we regard the projective form

Y 2Z = X3 + aXZ2 + bZ3.

The set of points on this elliptic curve over Z/p2Z is denoted by E(Z/p2Z).
The subset of points that reduce to OOO = (0 : 1 : 0) modulo p is denoted by
E1(Z/p2Z); see [28, Sect. 2].

Proposition 1. Using the previous notations, we have

E1(Z/p2Z) = {(αp : 1 : 0) | 0 ≤ α ≤ p − 1}.

Proof. By definition, we have E1(Z/p2Z) = {(X : Y : Z) ∈ E(Z/p2Z) | (X :
Y : Z) ≡ (0 : 1 : 0) (mod p)}. Since Y ≡ 1 (mod p) we obviously have Y
≡ 0
(mod p2) and so we can write E1(Z/p2Z) = {(X

Y : 1 : Z
Y) ∈ E(Z/p2Z) | (X :

Y : Z) ≡ (0 : 1 : 0) (mod p)} = {(αp : 1 : γp) ∈ E(Z/p2Z) | 0 ≤ α, γ ≤ p − 1}.
Plugging (αp : 1 : γp) into the Weierstraß equation yields γp = 0 (mod p2) ⇐⇒
γ = 0 (mod p). We therefore get E1(Z/p2Z) = {(αp : 1 : 0) | 0 ≤ α ≤ p − 1}. �

The theory of formal groups [28, Proposition IV.3.2] implies that E1(Z/p2Z)
is a group isomorphic to the additive group (Z/pZ)+. We have

Γ : E1(Z/p2Z) ∼−→ (Z/pZ)+, (αp : 1 : 0) �−→ α.

Hence, the sum of two elements (α1p : 1 : 0) and (α2p : 1 : 0) in E1(Z/p2Z)
is given by (α3p : 1 : 0) with α3 = (α1 + α2) mod p. This also implies that
E1(Z/p2Z) is a cyclic group of order p. Letting UUU = (p : 1 : 0), we can write
E1(Z/p2Z) = 〈UUU〉.

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 25

Given a finite point PPP = (x, y) ∈ E(Fp), with y
= 0, we define

Δ(PPP) =
(x3 + ax + b − y2) mod p2

p
and ψ(PPP) =

Δ(PPP)
2y

mod p.

[In the definition of Δ(PPP), point PPP is lifted; i.e., its coordinates x and y are
viewed as integers.]

This gives rise to the map

Ψ : E(Fp) → E(Z/p2Z),

{

OOO �→ OOO

(x, y) �→ (x, y + ψ(PPP)p).

To ease the notation, we will sometimes write P̃̃P̃P for Ψ(PPP).
We assume that E is not an anomalous curve (i.e., #E(Fp)
= p) and we let

q = ordE(PPP) denote the order of point PPP ∈ E(Fp). We define VVV = [p]P̃̃P̃P . Clearly,
we have that VVV is of order q.

Consider now the subgroups G = 〈PPP 〉 ⊆ E(Fp) of order q and Ĝ = 〈UUU,VVV 〉 ⊆
E(Z/p2Z) of order pq. Any element QQQ ∈ Ĝ can uniquely be written as

QQQ = [β]UUU + [α]VVV for some α ∈ Z/qZ and β ∈ Z/pZ. (2)

We call integer β the class of QQQ and write β = [[QQQ]]. The crucial observation is
that Ψ(G) ⊆ Ĝ. As a consequence, to any element QQQ ∈ G, we similarly define its
class as [[Q̃̃Q̃Q]]. To ease the notation, we will sometimes omit the tilde and simply
write [[QQQ]].

It is worth noticing that computing the class is easy. By definition, from the
unique decomposition of a point QQQ ∈ Ĝ as QQQ = [β]UUU + [α]VVV with β = [[QQQ]], it
immediately follows that [q]QQQ = [qβ]UUU = (qβp : 1 : 0) and thus

[[QQQ]] =
Γ ([q]QQQ)

q
mod p. (3)

3.2 An Additive Cryptosystem

With the above setting, we can now describe our first cryptosystem. The message
space is Z/pZ for some prime p.

KeyGen(1λ). On input security parameter λ, generate an elliptic curve E over
the prime field Fp and a point PPP ∈ E(Fp) of large prime order q. Next,
compute the point YYY = [x]PPP ∈ E(Fp) for some random integer x

R← Z/qZ.
The public key is pk = {E(Fp), q,PPP ,YYY } and the private key is sk = {x}.

Encrypt(pk ,m). The encryption of a message m ∈ Z/pZ is given by the following
algorithm:
1. Choose a random integer r

R← Z/qZ;
2. Compute in E(Fp) the points C1C1C1 = [r]PPP and C2C2C2 = [r]YYY ;
3. Compute β = [[C̃2C̃2C̃2]];

26 M. Joye and B. Libert

4. Define c2 = m + β (mod p);
5. Output the ciphertext C = (C1C1C1, c2).

Decrypt(sk , C). The decryption of C = (C1C1C1, c2) is obtained as m = c2 −
[[Ψ([x]C1C1C1)]] (mod p) using the secret key x.

The above cryptosystem presents a number of advantages. First, the cipher-
texts are very compact. In their basic version, they feature a 3 ÷ 1 ciphertext
expansion ratio. This ratio can even be reduced to only 2 ÷ 1 by using a com-
pressed representation for C1C1C1. Second, as will be shown in Sect. 4, it meets the
standard IND-CPA security level in the standard model (while Virat’s cryp-
tosystem only satisfies one-wayness). Third, the proposed cryptosystem is to
some extent malleable. More precisely, if (C1C1C1, c2) denotes the [additive] encryp-
tion of a message m then (C1C1C1, c2 + K (mod p)) is the encryption of message
m + K (mod p) for any K ∈ Z/pZ. Fourth, encryption is very fast. In an
on-line/off-line mode [13], the encryption of a message m only requires a mere
addition modulo p. Fifth, in contrast to classical ElGamal on elliptic curves over
Fp, no prior encoding of the message as a point on an elliptic curve is required.

3.3 A Multiplicative Cryptosystem

The previous cryptosystem is additive. As Z/pZ is equipped with both addition
and multiplication, we can define a multiplicative cryptosystem by replacing
Step 3.2 in the encryption process accordingly.

KeyGen(1λ) Idem.
Encrypt(pk ,m). The encryption of a message m ∈ Z/pZ is given by the following

algorithm:
1. Choose a random integer r

R← Z/qZ;
2. Compute in E(Fp) the points C1C1C1 = [r]PPP and C2C2C2 = [r]YYY ;
3. Compute β = [[C̃2C̃2C̃2]];
4. Define c2 = m · β (mod p);
5. Output the ciphertext C = (C1C1C1, c2).

Decrypt(sk , C). The decryption of C = (C1C1C1, c2) is obtained as m = c2/[[Ψ([x]C1C1C1)]]
(mod p) using the secret key x.

This multiplicative variant shares the advantages as its additive counterpart.
The difference resides in that it is partially homomorphic w.r.t. multiplication;
that is, if (C1C1C1, c2) is the [multiplicative] encryption of a message m then (C1C1C1, c2·K
(mod p)) is the encryption of message m · K (mod p).

4 Security Analysis

4.1 Complexity Assumptions

Let E(Fp) be an elliptic curve over the prime field Fp and let G ⊆ E(Fp) a cyclic
subgroup thereof. Let also PPP be a generator of G and P̃̃P̃P = Ψ(PPP) ∈ E(Z/p2Z).

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 27

We remind that the class of a point QQQ ∈ G (w.r.t. PPP), denoted [[QQQ]], is the unique
integer β ∈ Z/pZ such that Ψ(QQQ) = [β]UUU + [α]VVV where UUU = (p : 1 : 0) and
VVV = [p]P̃̃P̃P .

Given PPP and [a]PPP , [b]PPP R← G = 〈PPP 〉 ⊆ E(Fp), the elliptic curve class computa-
tional Diffie-Hellman (Class-CDH) problem is to compute the class of [ab]PPP ; i.e.,
[[[ab]PPP]]. Likewise, the elliptic curve class decisional Diffie-Hellman (Class-DDH)
problem is to distinguish between the two distributions (PPP , [a]PPP , [b]PPP , [[[ab]PPP]])
and (PPP , [a]PPP , [b]PPP , ϑ) for a, b

R← [0,#G) and ϑ
R← Z/pZ. We assume that these

two problems are hard.
More formally, define an instance-generating algorithm G taking as input

a security parameter λ and returning (the description of) a cyclic group G ⊆
E(Fp), its order q = #G, and a generator PPP , as above. We consider the following
experiment for an adversary A.

ClassA,G(λ):
1. Run G(1λ) and obtain (E(Fp), q,PPP);
2. Choose a, b

R← Z/qZ and compute [a]PPP and [b]PPP ;
3. A is given (E(Fp), q,PPP , [a]PPP , [b]PPP) and outputs β′ ∈ Z/pZ;
4. The output of the experiment is 1 if β′ = [[CCC]] where CCC = [ab]PPP ∈

E(Fp), and 0 otherwise.

Definition 1. The Class-CDH assumption says that for any probabilistic poly-
nomial-time adversary A there exists a negligible function negl such that

Pr
[

ClassA,G(λ) = 1
]

≤ negl(λ).

Definition 2. The Class-DDH assumption says that for any probabilistic poly-
nomial-time adversary A there exists a negligible function negl such that

∣
∣
∣
∣
Pr

[

A
(

E(Fp), q,PPP , [a]PPP , [b]PPP , [[[ab]PPP]]
)

= 1
]

−

Pr
[

A
(

E(Fp), q,PPP , [a]PPP , [b]PPP , ϑ
)

= 1
]
∣
∣
∣
∣
≤ negl(λ) ,

where the probabilities are taken over the experiment of running (E(Fp), q,PPP) ←
G(1λ) and choosing a, b

R← Z/qZ and ϑ
R← Z/pZ.

4.2 Semantic Security

Clearly the one-wayness of our cryptosystems is equivalent to the Class-CDH
assumption.

We show below that the proposed cryptosystems are semantically secure
under the Class-DDH assumption. We state:

Theorem 1. The schemes of Sects. 3.2 and 3.3 are IND-CPA under the Class-
DDH assumption.

28 M. Joye and B. Libert

Proof. In order to deal with the two cryptosystems at the same time, we write
the second part of the ciphertext, c2, as c2 = m β (mod p) where stands for
addition modulo p or multiplication modulo p.

The goal is to construct a distinguisher D against the Class-DDH problem
from an IND-CPA attacker A against the scheme. Consider the following algo-
rithm D receiving as challenge the Class Diffie-Hellman triplet ([a]PPP , [b]PPP , β) for
(E(Fp), q,PPP) ← G(1λ), where either β = [[[ab]PPP]] or β = ϑ, with a, b

R← Z/qZ

and ϑ
R← Z/pZ:

1. Set YYY = [a]PPP and define pk = {E(Fp, q,PPP ,YYY };
2. Call A(pk) and receive two messages m0 and m1 in Z/pZ;
3. Choose a bit b at random and define C = ([a]PPP ,mb β);
4. Return ciphertext C to A and obtain its output bit b′;
5. Output 1 if b′ = b, and 0 otherwise.

When β = [[[ab]PPP]], C is a faithful ciphertext for message mb. On the contrary,
when β = ϑ, C appears as a random value, independent of mb. As a result, if
ε(λ) denotes the probability that A wins the IND-CPA game, this means that

Pr
[

D
(

E(Fp), q,PPP , [a]PPP , [b]PPP , [[[ab]PPP]]
)

= 1
]

= ε(λ)

and
Pr

[

D
(

E(Fp), q,PPP , [a]PPP , [b]PPP , ϑ
)

= 1
]

=
1
2
.

But the Class-DDH assumption says that their difference should be a negligible
function in λ, that is,

∣
∣ε(λ) − 1

2

∣
∣ ≤ negl(λ). �

5 Extension

5.1 Chameleon Hash Functions

Chameleon hash functions [23] are hash functions associated with a pair (hk , tk)
of hashing/trapdoor keys. The name chameleon refers to the ability for the owner
of the trapdoor key to modify the input without changing the output.

A chameleon hash function is defined by a tuple of three algorithms: (CMKg,
CMhash,CMswitch). The key-generation algorithm CMKg, given a security para-
meter λ, outputs a key pair (hk , tk) ← CMKg(1λ). The hashing algorithm out-
puts y = CMhash(hk ,m, r) given the public key hk , a message m and random
coins r ∈ Rhash. On input of m, r,m′ and the trapdoor key tk , the switching
algorithm r′ ← CMswitch(tk ,m, r,m′) outputs r′ ∈ Rhash such that

CMhash(hk ,m, r) = CMhash(hk ,m′, r′).

Collision-resistance mandates that it be infeasible to find pairs (m′, r′)
= (m, r)
such that CMhash(hk ,m, r) = CMhash(hk ,m′, r′) without knowing tk . Unifor-
mity guarantees that the distribution of hashes is independent of the message
m, in particular, for all hk and m,m′, the distributions

{r ← Rhash : CMhash(hk ,m, r)} and {r ← Rhash : CMhash(hk ,m′, r)}
are identical.

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 29

5.2 A Chosen-Ciphertext-Secure Construction

In this section, we describe an IND-CCA2-secure extension of our schemes which
builds on the approach of Cash, Kiltz and Shoup [7] in its security analysis. We
present below the additive variant. The multiplicative variant proceeds similarly.

KeyGen(1λ). On input security parameter λ, generate an elliptic curve E over
the prime field Fp and a point PPP ∈ E(Fp) of large prime order q. Then, do
the following.
1. Choose y0, y1, z0, z1

R← Z/qZ and compute points Y0Y0Y0,Y1Y1Y1,Z0Z0Z0,Z1Z1Z1 ∈ E(Fp)
as

Y0Y0Y0 = [y0]PPP , Y1Y1Y1 = [y1]PPP ,

Z0Z0Z0 = [z0]PPP , Z1Z1Z1 = [z1]PPP .

2. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch)
that ranges over Z/qZ, with a key pair (hk , tk) ← CMKg(1λ). We denote
by Rhash the randomness space of the hashing algorithm.

The public key is pk = {E(Fp), q,PPP ,Y0Y0Y0,Y1Y1Y1,Z0Z0Z0,Z1Z1Z1, hk} and the matching
private key is sk = {y0, y1, z0, z1}.

Encrypt(pk ,m). To encrypt a message m ∈ Z/pZ, do the following.
1. Choose r

R← Z/qZ as well as s
R← Rhash;

2. Compute in E(Fp), C0C0C0 = [r]Y0Y0Y0 and C1C1C1 = [r]PPP ;
3. Compute β = [[C̃0̃C0̃C0]] and c0 = m + β (mod p);
4. Compute t = CMhash(hk , (c0,C1C1C1), shash) ∈ Z/qZ;
5. Compute

C2C2C2 = [rt]Y0Y0Y0 + [r]Z0Z0Z0, C3C3C3 = [rt]Y1Y1Y1 + [r]Z1Z1Z1;

6. Output the ciphertext C = (c0,C1C1C1,C2C2C2,C3C3C3, shash).
Decrypt(sk , C). Given the ciphertext C = (c0,C1C1C1,C2C2C2,C3C3C3, shash) and the private

key sk = (y0, y1, z0, z1), conduct the following steps.
1. Compute t = CMhash(hk , (c0,C1C1C1), shash) ∈ Z/qZ;
2. Return ⊥ if C2C2C2
= [ty0 + z0]C1C1C1 or C3C3C3
= [ty1 + z1]C1C1C1;
3. Compute C0C0C0 = [y0]C1C1C1 and return m = c0 − β mod p, where β = [[C̃0̃C0̃C0]].

The above description follows a method suggested in [32] in that it makes use
of a chameleon hash function to authenticate the message-carrying part c0 of the
ciphertext. We note that, instead of a chameleon hash function, the scheme could
also use a strongly unforgeable one-time signature as in the Canetti-Halevi-Katz
methodology [6]. However, this would incur longer ciphertexts. If we want to
minimize the ciphertext overhead, the Boyen-Mei-Waters technique [5] can be
used to eliminate the randomness shash of the chameleon hash function at the
expense of introducing O(λ) additional elliptic curve points in the public key.

Theorem 2. The scheme is IND-CCA2-secure under the Class-DDH assump-
tion, provided that the chameleon hash function is collision-resistant.

30 M. Joye and B. Libert

Proof. The proof proceeds with a sequence of games. For each i, we denote by
Si the event that the adversary wins in Game i.

Game 0: This is the real game. In this game, the adversary A is given the
public key pk and the challenger B answers all decryption queries by faith-
fully running the decryption algorithm. In the challenge phase, A chooses
two distinct messages m0,m1 ∈ Z/pZ and obtains a challenge ciphertext
C� = (c0�,C1C1C1

�,C2C2C2
�,C3C3C3

�, s�
hash) which encrypts md, for some random bit

d
R← {0, 1}. In the second phase, the adversary A is granted further access to

the decryption oracle. At the end of the game, A outputs a bit d′ ∈ {0, 1}
and we denote by S0 the event that d′ = d.

Game 1: This game is identical to Game 0 but the challenger B rejects all pre-
challenge decryption queries C = (c0,C1C1C1,C2C2C2,C3C3C3, shash) such that C1C1C1 = C1C1C1

�.
Since C1C1C1

� is uniformly distributed in 〈PPP 〉 and independent of A’s view before
the challenge phase, the probability that B rejects a ciphertext that would
not have been rejected in Game 0 is at most qdec/q, where qdec is the number
of decryption queries. We have |Pr[S1] − Pr[S0]| ≤ qdec/q.

Game 2: In this game, the challenger B aborts if it realizes that, before or after
the challenge phase, A has made a decryption query C = (c0,C1C1C1,C2C2C2,C3C3C3,
shash) such that

t = CMhash(hk , (c0,C1C1C1), shash) = CMhash(hk , (c0�,C1C1C1
�), s�

hash) = t�.

Clearly, the latter event would contradict the collision-resistance property
of the chameleon hash function. Moreover, Game 2 and Game 1 proceed
identically until the latter event occurs, so that we obtain the inequality
|Pr[S2] − Pr[S1]| ≤ AdvCM-Hash(λ).

Game 3: This game is identical to Game 2 with the sole difference that the
challenger B automatically rejects all post-challenge decryption queries of the
form C = (c0�,C1C1C1

�,C2C2C2,C3C3C3, shash), where (C2C2C2,C3C3C3)
= (C2C2C2
�,C3C3C3

�). This change
is only conceptual since these ciphertexts would be rejected in Game 2 as
well. We thus have Pr[S3] = Pr[S2].

Game 4: In this game, we modify the generation of the public key. At the
outset of the game, B chooses a random value t� ∈ Z/qZ in the range of the
hashing algorithm CMhash, by hashing a random string R′ using a random
s′

hash
R← Rhash. It also picks γ, ω

R← Z/qZ and sets Y1Y1Y1 = [γ]PPP + [ω]Y0Y0Y0. It also
picks γ0, γ1

R← Z/qZ and sets

ZZZ0 = [−t�]Y0Y0Y0 + [γ0]PPP , ZZZ1 = [−t�]YYY 1 + [γ1]PPP ,

which implicitly defines the private key as y1 = γ +ωy0, z0 = −t�y0 + γ0 and
z1 = −t�y1 + γ1. In the challenge phase, B computes the challenge as

C1C1C1
� = [r�]PPP , C2C2C2

� = [γ0]C1C1C1
� , C3C3C3

� = [γ1]CCC�
1

while md is blinded as c0
� = md + β� (mod p), where β� = [[C̃0̃C0̃C0

�]], where
C0C0C0

� = [y0]C1C1C1
�. Finally, B uses the trapdoor key tk of the chameleon hash

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 31

function to obtain s�
hash = CMswitch(tk , (R′, s′

hash), (c0�,C1C1C1
�)) such that t� =

CMhash(hk , (c�
0,C1C1C1

�), s�
hash).

In Game 4, we remark that the public key pk and the challenge ciphertext
C� = (c0�,C1C1C1

�,C2C2C2
�,C3C3C3

�, s�
hash) both have the same distribution as in Game

3, so that A’s view has not changed. We have Pr[S4] = Pr[S3].
Game 5: In this game, we modify the decryption oracle. Namely, at each

decryption query C =
(

c0,C1C1C1,C2C2C2,C3C3C3, shash

)

, the challenger B computes the
chameleon hash value t = CMhash(hk , (c0,C1C1C1), shash) as well as

W1W1W1 = [(t − t�)−1 mod q]
(

C2C2C2 − [γ0]C1C1C1

)

W2W2W2 = [(t − t�)−1 mod q]
(

C3C3C3 − [γ1]C1C1C1

)

At this point, B returns ⊥ if W2W2W2
= [γ]C1C1C1 + [ω]W1W1W1. Otherwise, B computes
W̃1W̃1W̃1 = Ψ(W1W1W1), obtains β = [[W̃1W̃1W̃1]] and returns m = c0 − β (mod p).
It is easy to see that, in the adversary’s view, Game 5 is identical to Game
4 until the event F5 that B fails to reject a ciphertext that would have been
rejected in Game 4. Using the same arguments as in [7,11], we can prove that
Pr[F5] ≤ qdec/q. Specifically, event F5 can only occur for a decryption query
on an invalid ciphertext C = (c0,C1C1C1,C2C2C2,C3C3C3, shash) where

C1C1C1 = [r]PPP , C2C2C2 = [r + r′]([t]Y0Y0Y0 + Z0Z0Z0) , C3C3C3 = [r + r′′]([t]Y1Y1Y1 + Z1Z1Z1)

and either r′
= 0 or r′′
= 0. This implies that W1W1W1 = [r + r1]Y0Y0Y0 and W2W2W2 =
[r + r2]Y1Y1Y1, where r1
= 0 (resp. r2
= 0) if and only if r′
= 0 (resp. r′′
= 0).
It is easy to see that, if r2 = 0 and r1
= 0 or r1 = 0 and r2
= 0, the
equality W2W2W2 = [γ]C1C1C1 + [ω]W1W1W1 never holds and we thus assume that r1
= 0
and r2
= 0. However, in this case [γ]C1C1C1 + [ω]W1W1W1 can be written [r]Y1Y1Y1 +
[ωr1]Y0Y0Y0, which is the sum of an information-theoretically fixed value [r]Y1Y1Y1 and
another term [ωr1]Y0Y0Y0 that is completely undetermined in A’s view: indeed,
for a fixed Y1Y1Y1 = [γ]PPP + [ω]Y0Y0Y0, we have q equally likely candidates for ω
at the first decryption query such that r′
= 0 or r′′
= 0. For this query,
we can only have the equality W2W2W2 = [γ]C1C1C1 + [ω]W1W1W1 by pure chance, with
probability 1/q. Throughout the game, each invalid decryption query allows
an unbounded adversary to eliminate one candidate for ω. Hence, after i
queries, the adversary is left with a probability of 1/(q − i) of inferring the
right ω. In the worst case, this probability is smaller than 1/(q − qdec) for a
given decryption query. A union bound over all decryption queries gives the
inequality |Pr[S5] − Pr[S4]| ≤ Pr[F5] ≤ qdec/(q − qdec). We remark that the
private exponents (y0, y1, z0, z1) are not used any longer in Game 5 and we
thus rely on the Class-DDH assumption to move to Game 6.

Game 6: This game is like Game 5 with the difference that, in the challenge
ciphertext C� = (c0�,C1C1C1

�,C2C2C2
�,C3C3C3

�, s�
hash), c0

� is chosen as a uniformly ran-
dom element of Z/pZ. Under the Class-DDH assumption, this change should
not be noticeable to A and we can write |Pr[S6]−Pr[S5]| ≤ AdvClass-DDH(λ).

In Game 6, we easily see that Pr[S6] = 1/2 since the challenge ciphertext can
be seen as an encryption of a random message of Z/pZ, which is completely inde-
pendent of m0 and m1. When counting probabilities throughout the sequence of

32 M. Joye and B. Libert

games, we find that |Pr[S0] − 1/2| is bounded by a sum of negligible functions
under the aforementioned assumptions. �

Acknowledgments. We thank Frederik Vercauteren for useful discussions and
Antoine Joux for comments on an earlier version of this work. The second author’s
work has been supported in part by the “Programme Avenir Lyon Saint-Etienne de
l’Université de Lyon” in the framework of the programme “Investissements d’Avenir”
(ANR-11-IDEX-0007) and by the French ANR ALAMBIC project (ANR-16-CE39-
0006).

A Appendix

A.1 Public-Key Encryption

A public-key encryption scheme consists of three algorithms: (KeyGen,Encrypt,
Decrypt).

Key generation. The key generation algorithm KeyGen is a randomized algo-
rithm that takes on input some security parameter λ and returns a matching
pair of public key and secret key for some user: (pk , sk) R← KeyGen(1λ).

Encryption. Let M be the message space. The encryption algorithm Encrypt
is a randomized algorithm that takes on input a public key pk and a plaintext
m ∈ M, and returns a ciphertext C. We write C ← Encrypt(pk,m).

Decryption. The decryption algorithm Decrypt takes on input secret key sk
(matching pk) and a ciphertext C, and returns the corresponding plaintext
m or a symbol ⊥ indicating that the ciphertext is invalid. We write m ←
Decrypt(sk , C) if C is a valid ciphertext and ⊥← Decrypt(sk , C) if it is not.

It is required that Decrypt
(

sk ,Encrypt(pk ,m)
)

= m for any message m ∈ M.

A.2 Security Notions

Beyond the basic property of one-wayness, data privacy in a public-key encryp-
tion scheme is captured by the notion of semantic security : An adversary should
not learn any information whatsoever about a plaintext given its encryption
beyond the length of the plaintext. This notion is known to be equivalent to
the (easier to deal with) notion of indistinguishability of encryptions [19]. Fur-
thermore, since the encryption key is public, an adversary can always encrypt
messages of its choice; in other words, the adversary can mount chosen-plaintext
attacks. It is therefore customary to let IND-CPA denote the security notion
achieved by a semantically secure public-key encryption scheme.

The advantage of an adversary A = (A1,A2) in the IND-CPA experiment is
defined as

∣
∣
∣
∣
∣

Pr
b
R←{0,1}

[

(pk , sk) ← KeyGen(1λ), (m0,m1, s) ← A1(pk),
C� ← Encrypt(pk ,mb) : A2(m0,m1, s, C

�) = b

]

− 1
2

∣
∣
∣
∣
∣

(*)

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 33

where the probability is taken over the random coins of the experiment according
to the distribution induced by KeyGen(1λ) as well as the ones of the adversary,
and m0,m1 ∈ M. An encryption is IND-CPA if the advantage of any polynomial-
time adversary A is negligible a a function of λ.

The IND-CPA security notion offers an adequate security level in the presence
of a passive adversary. The “right” security level against active attacks is that of
IND-CCA2 security, or security against chosen-ciphertext attacks. The definition
of the adversary’s advantage as given by (*) extends to the IND-CCA2 model
but the adversary A = (A1,A2) is now given an adaptive access to a decryption
oracle to which it can submit any ciphertext of its choice with the exception that
A2 may not query the decryption oracle on challenge ciphertext C�.

A.3 Consistent Lifting Problem

In this section, we extend the results of [8] to the elliptic curve setting.

Let E(Fp) be an elliptic curve over the prime field Fp and let G ⊆ E(Fp) be
a cyclic subgroup thereof. Let also PPP be a generator of G (i.e., G = 〈PPP 〉) and
P̃̃P̃P = Ψ(PPP) ∈ E(Z/p2Z).

Given PPP and QQQ := [a]PPP R← G, the elliptic curve consistent lifting (ECCL)
problem is to compute Q′Q′Q′ := [a]P̃̃P̃P . It is easily seen that this problem is equivalent
to the discrete logarithm problem in G. Indeed, given access to an ECCL solver,
on input QQQ, we receive Q′Q′Q′ and then can obtain ā := a mod p as ā = [[Q′Q′Q′]]

[[P̃̃P̃P]]
mod p.

From Hasse’s theorem, we know that a = ā or a = ā+p; this can be easily decided
by checking if QQQ = [ā]PPP or QQQ = [ā + p]PPP . The other direction is straightforward.
Given access to an ECDL solver, on input QQQ, we obtain a and then can compute
Q′Q′Q′ = [a]P̃̃P̃P where P̃̃P̃P = Ψ(PPP).

References

1. Belding, J.V.: A Weil pairing on the p-torsion of ordinary elliptic curves over K[ε].
J. Number Theory 128(6), 1874–1888 (2008)

2. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: ACM-CCS 2013, pp.
425–438. ACM Press (2013)

3. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851

4. Boneh, D., Joux, A., Nguyen, P.Q.: Why textbook ElGamal and RSA encryption
are insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 3

5. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity
based techniques. In: ACM-CCS 2005, pp. 320–329. ACM Press (2005)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 13

http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/3-540-44448-3_3
http://dx.doi.org/10.1007/978-3-540-24676-3_13

34 M. Joye and B. Libert

7. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 8

8. Catalano, D., Nguyen, P.Q., Stern, J.: The hardness of hensel lifting: the case of
RSA and discrete logarithm. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 299–310. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 19

9. Chevallier-Mames, B., Paillier, P., Pointcheval, D.: Encoding-free ElGamal encryp-
tion without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 91–104. Springer, Heidelberg (2006). doi:10.1007/
11745853 7

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 9

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

13. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital schemes. J. Cryptol.
9(1), 35–67 (1996)

14. Farashahi, R.R.: Hashing into Hessian curves. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278–289. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21969-6 17

15. Fouque, P.-A., Joux, A., Tibouchi, M.: Injective encodings to elliptic curves. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 203–218. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39059-3 14

16. Galbraith, S.D.: Elliptic curve Paillier schemes. J. Cryptol. 15(2), 129–138 (2002)
17. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over

non-DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 361–381. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 22

18. Gennaro, R., Shoup, V.: A note on an encryption scheme of Kurosawa and
Desmedt. Cryptology ePrint Archive, Report 2004/194 (2004)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

20. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

21. Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-
way function. In STOC 1989, pp. 12–24. ACM Press (1989)

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
23. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet

Society (2000)
24. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 31

25. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978)

26. Pollard, J.M.: Monte Carlo methods for index computation mod p. Math. Comput.
32, 918–924 (1978)

http://dx.doi.org/10.1007/978-3-540-78967-3_8
http://dx.doi.org/10.1007/3-540-36178-2_19
http://dx.doi.org/10.1007/11745853_7
http://dx.doi.org/10.1007/11745853_7
http://dx.doi.org/10.1007/3-540-69053-0_9
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-642-21969-6_17
http://dx.doi.org/10.1007/978-3-642-39059-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_22
http://dx.doi.org/10.1007/978-3-540-24676-3_22
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31

Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 35

27. Shoup, V., Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive Report, 2004/332 (2004)

28. Silverman, J.H.: The Theory of Elliptic Curves, GTM 106. Springer-Verlag, Hei-
delberg (1986)

29. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998). doi:10.1007/BFb0054019

30. Virat, M.: A cryptosystem “à la” ElGamal on an elliptic curve over Fp[ε]. In:
WEWoRC 2005, LNI 74, pp. 32–44. Gesellschaft für Informatik e.V (2005)

31. Virat, M.: Courbes elliptiques sur un anneau et applications cryptographiques.
Ph.D. thesis, Université de Nice-Sophia Antipolis (2009)

32. Zhang, R.: Tweaking TBE/IBE to PKE transforms with chameleon hash functions.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 323–339. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72738-5 21

http://dx.doi.org/10.1007/BFb0054019
http://dx.doi.org/10.1007/978-3-540-72738-5_21

Lattice-based Cryptanalysis

Gauss Sieve Algorithm on GPUs

Shang-Yi Yang1, Po-Chun Kuo1(B), Bo-Yin Yang2, and Chen-Mou Cheng1

1 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
{ilway25,kbj,doug}@crypto.tw

2 Institute of Information Science, Acamedia Sinica, Taipei, Taiwan
by@crypto.tw

Abstract. Lattice-based cryptanalysis is an important field in cryptog-
raphy since lattice problems are among the most robust assumptions,
and have been used to construct most cryptographic primitives. In this
research, we focus on the Gauss Sieve algorithm, a heuristic lattice siev-
ing algorithm proposed by Micciancio and Voulgaris. We propose the
technique of lifting computations in prime-cyclotomic ideals into that in
cyclic ideals. Lifting makes rotations easier to compute and reduces the
complexity of inner products from O(n3) to O(n2). We implemented our
Gauss Sieve on GPUs by adapting the framework of Ishiguro et al. in a
single GPU, and the one of Bos et al. among multiple GPUs. We found
a short vector at dimension 130 in the Darmstadt Ideal SVP Challenge
(currently in first place in the Hall of Fame) using 8 GPUs in 824 h using
our implementation.

Keywords: Lattice-based cryptography · Sieving algorithm · Gauss
Sieve · GPU · Parallelization · Shortest vector problem · SVP · Ideal
lattices

1 Introduction

Over the past two decades, lattice-based cryptosystems have attracted wide-
spread interest. Not only are they among the group of PKCs that will potentially
defend against the quantum threats, but they also provide the first constructions
of many new cryptographic functionalities, e.g. fully-homomorphic encryption
and multilinear maps [Gen09,GGH13]. Furthermore, in 1997 Ajtai and Dwork
proved that some lattice problems possess worst-case to average-case reductions
[AD97], which gives a strong guarantee on the security of lattice-based cryptosys-
tems, and inspired the construction of many cryptographic primitives. Although
many such constructions are in practice infeasible, ideal lattices have made both
the keys shorter and algorithms faster, which brings many more new ideas closer
to practicality.

Many lattice- and ideal-lattice-based schemes claim to base their security on
the shortest vector problem (SVP): if the shortest vector in a lattice could be
found, the lattice-based cryptosystems would be broken. However, it is unclear
how to choose secure yet practical parameters for these schemes, and an accurate
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 39–57, 2017.
DOI: 10.1007/978-3-319-52153-4 3

40 S.-Y. Yang et al.

assessment of their security levels would be indispensable if we are to select
suitable parameters for them.

Several exact or approximate algorithms have been proposed for the SVP
problem. Exact algorithms include enumeration, sieving, and ones based on
Vonoroi cells [MV10]. The Vonoroi cell method, though single exponential both
in time and space, proved to be impractical for dimensions higher than 10. On
the other hand, lattice enumeration is an exhaustive search algorithm. The time
complexity of lattice enumeration is 2O(n2) or 2O(n log n) and space complexity
is polynomial [GNR10,KSD+11]. Lastly, sieving algorithms have 2O(0.52n) time
complexity and 2O(n) space complexity [MV10]. In general, lattice enumeration
has remained the fastest approach to solve SVP so far since almost all the data
could be store in the CPU cache. However, the general approach is ill-suited
for parallelizing on GPUs or similar wide vector architectures. For example, the
speed-up in [KSD+11] is less than a factor of ten. It is also unclear how to make
use of the special structure of ideal lattices when using enumeration.

In contrast, approximate algorithms run in polynomial time but output an
approximate solution. Even though the output short vectors have length expo-
nential in dimension, such vectors are in fact good enough for some applications
or cryptanalysis. For example, the famous LLL algorithm can find, with high
probability, the shortest vector for Goldstein-Mayer random lattices in the SVP
challenge [Lat] for dimensions less than 30. For higher dimensions, however, the
quality of vectors it outputs is insufficient. On the other hand, in the BKZ algo-
rithm, which uses enumeration in sub-lattices as a subroutine, we can trade off
execution time against the approximate factor. Whether sieving algorithms could
be used as a sub-routine in the BKZ algorithm is still an open problem. Another
open problem is whether there exists a poly-time algorithm which outputs a
short vector with a polynomial approximation factor.

Although enumeration seems fastest so far in practice, sieving has a better
complexity upper bound and may yet outperform enumeration in higher dimen-
sions. Moreover, as far as we know sieving is currently the only way to use the
ideal lattice structures. There are several papers on how to parallelize sieving
and how to use the cyclic lattice structure, but how to do this on GPUs and
use other ideal lattice structures is not clear yet. Previous works by Ishiguro et
al. [IKMT14,MDB14] also seem to be limited to cyclic, anti-cyclic and trinomial
ideal lattices. In this paper, we broaden the scope to include prime cyclotomic
ideal lattices, and make the following contributions:

– We propose and implement the first lattice sieving algorithm for a single
machine with multiple GPUs. Our variant includes two carefully designed
layers of parallelism, both inter-GPU and intra-GPU (Sect. 5).

– We show that by lifting lattice vectors generated by the polynomial xn+· · ·+1
into ones generated by xn+1−1, not only do inner products (the critical path of
Gauss Sieve) speed up, some register rotation problems on GPUs are mitigated
(Sect. 4). Moreover, by heuristically applying lazy rotation, the complexity of
reduction between two vectors with all their rotations goes down from O(n3)
to O(n2) (only a constant times slower than the anticyclic lattice, cf. Sect. 4.3).

Gauss Sieve Algorithm on GPUs 41

– We carefully crafted the reduction kernel to exploit both thread- and
instruction-level parallelism (Sect. 6). Special care is taken with the layout
of vectors in the register file, and some kernel-level heuristics are introduced
that use the ideal lattice property.

– Incorporating these improvement into our implementation on GPUs, we were
able to solve challenges of dimension 130 within 6583 GPU-hours. Our GPU
implementation is 21.5 (resp. 55.8) times faster than a single-core CPU for
general (resp. ideal) lattices (Sect. 7.2).

– We provide a lower bound complexity estimation for the SVP compared to
the previous work (Sect. 7.4).

2 Preliminary

2.1 Definition and Notation

A lattice is a discrete additive group of all integer combinations of a basis
v1, v2, ..., vm ∈ R

n, where m ≤ n. In cryptography, integer lattices are often
used, namely, the basis vectors are defined over Z

n. The bases corresponding to
a lattice are not unique, since multiplying a uni-modular matrix to a basis would
not change the lattice spanned by the basis. We use L(B) to denote the lattice
spanned by the basis B.

The first successive minimum λ1(L) is the length of the shortest nonzero
vector of the lattice L. The shortest vector problem (SVP) asks for the short-
est nonzero vector in a given lattice. The SVP is NP-hard under randomized
reduction [Ajt97]. The approximation shortest vector problem (SVPα) asks for
a short vector of length shorter than αλ1(L).

Extending the idea into rings, we have ideal lattices, a special class of lattices.
Consider an ideal of a ring I = 〈g〉 ⊆ Z[x]/f(x), where f is a monic irreducible
polynomial of degree n, an ideal lattice is L(B) ∈ Z

n such that B = {g mod f :
g ∈ I}. The polynomial of a ring affects its structure and computation cost.
Thus, cryptographers are concerned with four type of ideal lattices defined by
the polynomial f(x):

– Cyclic ideal lattice, with fcyclic(x) = xn − 1, are the simplest ones and easy
to compute. However, since the polynomials are always divided by x − 1, this
kind of ideal lattice does not guarantee the worst-case collision resistance.

– Anti-cyclic ideal lattice, with fanti-cyclic(x) = xn + 1, are also eligible for easy
multiplication and convolution. Such polynomials are irreducible over Z if n
is a power of 2. This kind of ideal lattice is commonly used in cryptography.

– Prime-cyclotomic ideal lattices, with fprime-cyclotomic(x) = xn + xn−1 + · · · +
1, are the main type we focus on. If n + 1 is prime, fprime-cyclotomic(x) is
irreducible.

– Trinomial ideal lattices, with ftrinomial(x) = xn + xn/2 + 1 where n/2 is a
power of three, are the ones considered in [IKMT14].

42 S.-Y. Yang et al.

By the definition of an ideal lattice, the vector u = (u0, u1, · · · , un−1) ∈ Z
n

also indicates a polynomial u(x) = u0 + u1x + · · · + un−1x
n−1 ∈ Z[x]/f(x), the

polynomial x · u(x) is still in the ideal. Thus, the vector corresponding to such
polynomial is called the (first) rotation of u, denoted as rot(u). For example,
consider f(x) = xn − 1, the rotation of u = (u0, u1, · · · , un−1) is rot(u) =
(un−1, u0, u1, · · · , un−2).

The central notation of the Gauss Sieve is Gauss reduction. Two vectors
u, v ∈ L(B) satisfying ‖u ± v‖ ≥ max(‖u‖, ‖v‖) are called Gauss-reduced.
Given two arbitrary vectors u and v, we can reduce u with respect to v by
u ← u −
 〈u,v〉

〈v,v〉 �v. Thus, given two arbitrary vectors u and v, we can convert
them into Gauss-reduced ones by repetitively applying the reduction procedure
alternatingly, in a Euclidean algorithm-like manner, until the vectors no longer
change. If any two vectors in a set are Gauss-reduced, it is pairwise-reduced.

Algorithm 1 shows the pseudo-code for reducing the list U with the list V .
Algorithm 2 is the ideal lattice counterpart. In Algorithm2, times represents the
number of possible rotations in the input lattice. In other words, xtimes = ±1.
As concrete examples, for anti-cyclic lattices, times = n; for prime cyclotomic
lattices, times = n + 1.

Algorithm 1. Gauss reduction between two lists for general lattices
Input : Lists U and V
Output: Reduced list U

1 foreach u ∈ U do
2 foreach v ∈ V do
3 if 2 · |〈u, v〉| > 〈v, v〉 then
4 u ← u −
 〈u,v〉

〈v,v〉 �v
5 Mark u as reduced.

Algorithm 2. Gauss reduction between two lists for ideal lattices
Input : Lists U and V

Number of rotations: times
Output: Reduced list U , with all possible rotations

1 foreach u ∈ U do
2 foreach v ∈ V do
3 for i ← 0 to times − 1 do
4 w ← xiv
5 for j ← 0 to times − 1 do
6 (s, t) ← (xju, xjw)
7 m ←
〈s, t〉/〈t, t〉�
8 if m �= 0 then
9 u ← s − mt

10 Mark u as reduced.

Gauss Sieve Algorithm on GPUs 43

2.2 CUDA Programming

Here we provide a minimalist CUDA programming introduction, including only
relevant information that our implementation takes into consideration. For more
details, please refer to the CUDA C Programming Guide [CUD15].

Graphics processing units (GPUs) are high throughput, many-core archi-
tectures. Currently, the most widely used GPU development toolchain is
CUDA by NVIDIA. CUDA supports writing fine-tuned programs for NVIDIA
graphic cards. In this paper, we will especially focus on GPUs of the Maxwell
architecture.

The CUDA programming model requires programmers to think in the single
instruction, multiple thread (SIMT) programming model. The model exposes
three key abstractions to programmers: a hierarchy of thread groups, shared
memories, and barrier synchronization. Threads are first organized in blocks,
and blocks are then organized in grids. A grid of GPU threads must run the
same program (the kernel).

At the system level, blocks are independently dispatched to different proces-
sors. Since each block has a dedicated on-chip cache called the shared memory,
threads within a block can only exchange data through the shared memory. How-
ever, this requires an explicit synchronization barrier that halts all the threads in
a block, and thus can be a huge performance overhead for critical applications.

Fortunately, starting from the Kepler architecture, data exchange within a
warp can be done using the warp shuffle instructions without any explicit syn-
chronization barrier. A warp, consisting of 32 consecutive threads, is the smallest
batch that can be scheduled and issued at once by a processor. For example,
using the warp shuffle instructions, summing different values from threads with
in a warp can be done relatively fast through the parallel reduction paradigm. If
the threads in a warp are executing different instructions – most likely because
of different branch conditions – severe warp divergence can occur, drastically
lowering the warp utilization.

3 Background

3.1 Sieving Algorithms

The first sieving algorithm was proposed by Ajtai et al. in 2001 [AKS01].
They proved that the time/space complexity is 2O(n), which is the first single-
exponential time algorithm solving SVP. Following works either provided tighter
theoretical bounds on the complexity [NV08,MV10,Sch11,Sch13], or improved
the algorithm [MS11,MDB14,MBL15].

3.2 Gauss Sieve

The Gauss Sieve algorithm was proposed by Micciancio and Voulgrais in [MV10]
and is the most practical version of sieving algorithms. The main idea of the
algorithm is to mutually reduce samples with a list of vectors by Gauss reduction.

44 S.-Y. Yang et al.

After Gauss reduction, the angle between any pair of two vectors is larger than
60◦. By the Kabatiansky-Levenshtein theorem, one can bound the number of
such vectors, and thus obtain the time complexity of the algorithm.
The Gauss Sieve algorithm has been implemented on CPU in [IKMT14] and
some improvements have been proposed by Bos et al. in [BNvdP14]. The work
of Ishiquro et al. improved and implemented the parallel version of the Gauss
Sieve algorithm proposed by Schneider [Sch13], and they also adapt to a spe-
cific ideal lattice called negacyclic ideal lattices. However, we promote this into
more general polynomial ring and improve the performance. Later, Bos et al.
proposed a different variant of the parallel Gauss Sieve algorithm which is more
suited for high dimension lattice [BNvdP14]. We will expound on their ideas
in Sect. 5. Moreover, Laarhoven incorporated locality-sensitive hashing into the
algorithm [Laa15,BDGL16,BL16]. Instead of searching all the vector in the list,
they group together near vectors using hash functions. Therefore, vectors are
only reduced with more geometrically possible ones.

Prime Cyclotomic Rotation. First we state a nice property of anti-cyclic
lattices.

Lemma 1 [BNvdP14]. Let a, b ∈ R = Z[x]/(xn + 1) with coefficient vector a, b.
If 2‖〈a, xl · b〉‖ ≤ min{〈a, a〉, 〈b, b〉} for all 0 ≤ l < n, then xi · a and xj · b are
Gauss-reduced for all i, j ∈ Z.

In contrast to the anti-cyclic case described in Lemma 1, prime cyclotomic
lattices do not possess this property. Therefore, all the rotations of two vectors
can contribute to the global status. Thus, the list size might be even smaller.

However, prime cyclotomic lattices may have some disadvantages. To illus-
trate the computational overhead to find the norms of (all the) rotations of a
vector, consider the vector v = (5, 4, 3, 2, 1) in an ideal lattice generated by the
polynomial f(x) = x5 + x4 + x3 + x2 + x + 1. The first rotation of v is

rot(v) = (−1, 5 − 1, 4 − 1, 3 − 1, 2 − 1) = (−1, 4, 3, 2, 1).

Squaring and summing, we have the squared norm for x · v:

‖rot(v)‖2 = (−1)2 + 42 + 32 + 22 + 12 = 31.

Calculating norms like this can be slow, because only when the vector rot(v)
is ready can we calculate the sum of squares. However, the value that is required
in Gauss reduction is just ‖rot(v)‖2, but not rot(v) per se. For processors with
ADD, MUL and FMAD (fused multiply-add) instructions, it takes 2n operations
to calculate the norm of an n-dimensional vector.

In this paper, we will see how to circumvent this by lifting a vector. By doing
this, not only is the computation easier, but it also enables optimizations that
are not possible without lifting.

Gauss Sieve Algorithm on GPUs 45

4 Lifting Ideal Lattices

We now develop the properties for prime cyclic lattices and see how they can
facilitate computation.

4.1 Lifting Prime Cyclotomic Polynomials

The idea behind lifting lattices is to supplement vectors with a bit of redundant
information to ease computation. Specifically, we will express an n-dimensional
vector with an (n + 1)-dimensional one. Let L be a lattice generated by xn +
xn−1 + · · · + 1, and L by xn+1 − 1. We wish to seek a way to connect the two
lattices according to the following criteria:

– The conversion of vectors between the two lattices is simple.
– The rotation of vectors must be preserving, so that the complicated rotation

in L can be done instead cyclically in L.

Technically speaking, we are looking for simple ring homomorphisms between
F[x]/(xn + xn−1 + · · · + 1) and F[x]/(xn+1 − 1).

An intuitive clue to accomplish this comes from the observation that the
polynomial xn+1 − 1 factorizes as

xn+1 − 1 = (x − 1)(xn + xn−1 + · · · + 1).

This suggests we connect u and its lift u by thinking of u as reduced modulo
xn + xn−1 + · · · + 1:

u ≡ u (mod xn + xn−1 + · · · + 1).

Note that this choice also preserves rotation.
As an example, lifting directly u = (1, 2, 3, 4, 5) in a lattice generated by

x4 + x3 + x2 + x + 1 gives u = (1, 2, 3, 4, 5, 0) in a lattice generated by x5 − 1.
This is not the only way to lift u. Another possibility is u′ = (2, 3, 4, 5, 6, 1), since
(2 − 1, 3 − 1, 4 − 1, 5 − 1, 6 − 1) = (1, 2, 3, 4, 5). In general, to lift any u, we can
choose p arbitrarily and lift u as u = (u0 + p, u1 + p, · · · , un + p, p).

From now on, we will write a bar on top of a symbol to indicate that it is
lifted from its underlying form. For example, u is a lift of the vector u and L is
a lift of the lattice L. Whenever we see a lifted vector u, we should keep in mind
that it is merely a surface form representing its underlying original vector.

4.2 Norms and Inner Products

During the Gauss reduction, we are especially interested in the norms and inner
products of rotations of vectors. Let us see how to derive these quantities for the
underlying lattice directly, without converting from the lifted lattice.

46 S.-Y. Yang et al.

Suppose u = (u0, u1, · · · , un−1, un) in L. We first reduce u modulo the poly-
nomial xn + xn−1 + · · · + 1 to get its underlying form:

u = (u0 − un, u1 − un, · · · , un−1 − un)
= (u0 − p, u1 − p, · · · , un−1 − p).

Here, we rewrite un as p interchangeably, since un acts as a pivot for the vector.
We can now calculate the norm of u:

〈u, u〉2 =
n−1∑

i=0

(ui − un)2

=
n∑

i=0

(ui − un)2 since un − un = 0.

=
n∑

i=0

u2
i − 2un

n∑

i=0

ui + (n + 1)u2
n

= 〈u, u〉2 − 2p

n∑

i=0

ui + (n + 1)p2,

where the boxed terms remain constant throughout all cyclic rotations of u, and
thus can be saved beforehand. Note that we do not need to know what u is at
all.

Similarly, the inner product of two vectors u and v is

〈u, v〉2 = 〈u, v〉2 − p

n∑

i=0

vi − q

n∑

i=0

ui + (n + 1)pq,

where q is the pivot of v.

Simplifying Formulae. Although these formulae may look intimidating, we
can always simplify them by choosing the “right” pivot. If we set

∑n
i=0 ui = 0,

and solve for p:

0 = u0 + u1 + · · · + un−1 + p rewrite un as p.

= (u0 + p) + (u1 + p) + · · · + (un−1 + p) + p

= (u0 + u1 + · · · + un−1) + (n + 1)p,

we can choose the pivot as

p = −
∑n−1

i=0 ui

n + 1
.

This is our standard way to lift a vector.

Gauss Sieve Algorithm on GPUs 47

Carrying out the same procedure for v, we can now write the inner product
succinctly:

〈u, v〉2 = 〈u, v〉2 + (n + 1)pq.

Lifting in this manner, we amend Algorithm2 into Algorithm 3. Note that
the underlying vectors s and t are no longer needed on line 12. Since we do not
have to track and update

∑
ui anymore, simplifying in this manner eases some

computational burden and memory overhead in the innermost loop for GPUs.
However, integer vectors are now represented by floating points, which may lead
to error accumulation after several rounds. We choose to rectify these vectors by
unlifting and rounding the numbers when they are taken out from the stack for
later rounds.

We could also eliminate the n + 1 by “normalizing” and dividing vectors by√
n + 1, but this is less intuitive.

Algorithm 3. Gauss reduction between two lists for prime cyclotomic
lattices (lifted)

Input : Lifted lists U and V
Output : Reduced, lifted list U

1 foreach u ∈ U do

2 foreach v ∈ V do
3 for i ← 0 to n do
4 w ← xiv
5 〈w,w〉 ← 〈v, v〉 + (n + 1)v2n−i

6 for j ← 0 to n do
7 Calculate 〈u,w〉.
8 〈s, t〉 ← 〈u,w〉 + (n + 1)un−jwn−j

9 〈t, t〉 ← 〈w,w〉 + (n + 1)w2
n−j

10 m ← �〈s, t〉/〈t, t〉�
11 if m �= 0 then
12 (s, t) ← (xju, xjw)
13 u ← s − mt
14 Mark u as reduced.

4.3 Lazy Rotation

We now address two GPU performance bottlenecks in Algorithm3, and provide
two kernel-level heuristics to solve these problems.

First, on lines 12–14, whenever u is reduced, it is assigned as the difference of
two rotated vectors s and mt. However, such register indexing, unlike on CPUs,
can cause spills on GPUs. Since s − mt = xj(u − mw), we can instead write
u ← u − mw and choose to rotate u back lazily after the kernel finishes. Now

48 S.-Y. Yang et al.

Algorithm 4. Gauss reduction between two lists for prime cyclotomic
lattices (lifted, with lazy rotation)

Input : Lifted lists U and V
Output : Reduced, lifted list U

1 foreach u ∈ U do
2 norm ← 〈u, u〉 + (n + 1)u2

n

3 foreach v ∈ V do
4 for i ← 0 to n do
5 w ← xiv
6 〈w,w〉 ← 〈v, v〉 + (n + 1)v2n−i

7 Calculate 〈u,w〉.
8 for j ← 0 to n do
9 〈s, s〉 ← 〈u, u〉 + (n + 1)u2

n−j

10 〈s, t〉 ← 〈u,w〉 + (n + 1)un−jwn−j

11 〈t, t〉 ← 〈w,w〉 + (n + 1)w2
n−j

12 m ← �〈s, t〉/〈t, t〉�
13 normnew ← 〈s, s〉 − 2m〈s, t〉 + m2〈t, t〉
14 if normnew < norm then
15 mbest ← m
16 norm ← normnew

17 if mbest �= 0 then
18 u ← u − mbestw
19 〈u, u〉 ← 〈u, u〉 − 2mbest〈u,w〉 + m2

best〈w,w〉
20 Mark u as reduced.

the lazy version of u, however, may be representing a vector much longer than it
should. To prevent reducing with a lazy u in later rounds, we need to keep track
of the current correct norm of u. This is done on lines 14–16 in Algorithm 4.

Second, because u may have changed in the previous round, 〈u,w〉 must be
recalculated on line 7. To avoid recalculating 〈u,w〉 repeatedly, observe that the
probability of reducing u more than once is not high in the innermost loop. We
can keep track of the best m so far, moving the entire if statement on lines 11–14
out and after the for loop.

Applying these two heuristics, we now reach Algorithm4. This amended algo-
rithm is more efficient because (1) the body of the most inner loop runs in
constant time, thus reducing the complexity to calculate all inner products of
two vectors from O(n3) to O(n2), and (2) the need to rotate u is completely
eliminated.

4.4 Generalizing Lifting

The regularity of terms in the quotient polynomial f(x) plays a role in the com-
putation of rotations. Consider a cyclotomic polynomial p(x). There might exist

Gauss Sieve Algorithm on GPUs 49

another low degree polynomial r(x) such that p(x)r(x) = xn±1. This suggests we
promote a vector with dimension deg(p(x)) into dimension deg(p(x))+deg(r(x)),
thus lowering the computation cost. The same technique of choosing the right
pivots can be applied as well.

For example, the next unsolved ideal lattice challenge is dimension 132. One
of the ideal lattices in the challenge is generated by the polynomial f(x) =
x132 − x130 + x128 − · · · + x4 − x2 + 1. Since (x2 + 1)f(x) = x134 + 1, we can
convert this lattice into a 134-dimensional anti-cyclic lattice with two pivots, one
for the +1 terms and the other for −1 terms.

5 Parallelization

Let us now look at our parallel variant of Gauss Sieve for a single machine with
multiple GPUs. Two layers of parallelization naturally arise in this setting: the
workload should first be split (1) across different GPUs, then (2) to different
processors within a GPU. These two layers of architectures differ in communica-
tion cost. Broadcasting data from the host memory across all the GPUs through
PCIe is much more expensive than broadcasting data from the on-chip memory
to different processors within a single GPU.

We carefully design these two layers in hope to mitigate communication over-
head. Specifically, we view each GPU as an independent sieve (inner layer), and
all the GPUs cooperate as a complete parallel sieve (outer layer). In the fol-
lowing subsections, we will see (1) how the problem is divided into independent
sub-sieves on different GPUs, so that each sub-sieve acts as a blackbox, ordinary
Gauss Sieve, and (2) how the sub-sieve is designed to maximize GPU power.

5.1 Outer Layer

To distribute the work among the GPUs on a single machine, we first recall the
work by Bos et al. [BNvdP14], which was originally designed for computer clus-
ters. In their work, each node acts as an independent Gauss Sieve, maintaining
its own local list while reducing the same batch of samples broadcast over all
the nodes. These nodes communicate only at the end of each iteration, putting
any sample that is ever reduced in any of the nodes to the stack. The advantage
of this approach is that the long, local lists are never completely moved out of
the nodes; only a limited amount of reduced vectors and samples are involved
in communication. Communication cost is thus small.

Here, we adapt their method to a machine with multiple GPUs using the
following analogy: A cluster is to the machine what a node is to the GPU. As
a result, a GPU now works as if it were a node, having its own local list, and
communication is done on the host. At each iteration, all the GPUs are given
the same batch of samples, either newly generated or from the stack. Each GPU
then first reduces its samples mutually with its local list, using the method
described in Subsect. 5.2. Next, for each sample, if ever reduced in one GPU, the
host compares and chooses the shortest “representative”, putting it to the stack.

50 S.-Y. Yang et al.

Reduced vectors from local lists are also put on the stack. Last, the “surviving”
samples are appended to the shortest local list. The vectors on the stack become
the input for later rounds.

5.2 Inner Layer

The inner layer is a modified version of Ishiguro et al.’s idea. As mentioned in
the previous subsection, each GPU can be thought of as an independent sieve,
reducing its local list with a batch of samples. First, the local list is reduced with
the samples. Then, such samples are mutually reduced with each other. Finally,
the samples are reduced with the local list. If any vector is ever reduced during
any step, it is marked and later collected on the stack. As showed by Ishiguro
et al., any pair of surviving vectors in the local list remains reduced during the
process.

Since these three steps share the same pattern — they all reduce one list with
another, the same GPU kernel can be used. See Algorithm 1 for general lattices
and Algorithm 2 for ideal lattices. To reduce list A with list B, the kernel takes
as inputs list A and list B, and in-place outputs the reduced list A. In the kernel,
list A is sliced into adequate chunks and distributed to different processors, while
list B is broadcast to all processors. The kernel is crafted with care to ensure
high throughput, as will be described in the next section.

6 Implementation Details

In this section, we will first see how common performance tuning techniques can
be applied to our algorithm. This includes thread- and instruction-level paral-
lelism. Next, we point out more kernel optimization tricks. Finally, we describe
two more heuristics that can significantly improve the execution time.

6.1 Vector Layout

On GPUs, each thread has a physical register number limit; depending on how
many resources each thread requires, each processor also has a runtime limit for
thread numbers. For example, consider the kernel for n = 100. On a Maxwell
GPU, each thread can use up to 255 registers. If we put both u and w in one
thread, we need 2 × (100 + 1) = 202 registers. Although fewer than 255, this
is still so much that the processors can only schedule a few threads, limiting
thread-level parallelism. At the other extreme, if we spread a vector across too
many threads, the overhead of parallel reduction to calculate inner products
collectively will take over.

Empirically, we choose to spread a vector across 4 threads. For our target
dimension 130, this means each thread takes �130/4� = 33 elements, with the
extra two elements padded with 0. This choice not only reduces register pressure,
but also makes the vector length a multiple of 4, which is essential for cache
line alignment. To this end, parallel reductions are needed both on line 7 to

Gauss Sieve Algorithm on GPUs 51

collectively sum inner products, and before line 17 (after the for loop) to agree
on the best m. To make the code more readable, we use the CUB library [Mer]
for block load and store in the kernel.

6.2 Instruction-Level Parallelism

Yet another commonly applied trick to increase GPU utilization is to exploit
instruction-level parallelism. The idea is to issue independent instructions at
once to increase the pipeline usage. However, since the algorithm is very much
inherently dependent from line to line, the direct implementation will run very
slowly. We do not overlap two independent copies of kernel at the same time,
because the register usage is immediately multiplied by two. Instead, we unroll
the loop on line 4 with an empirical factor of 8 to facilitate register reuse on
line 7. This technique is possible only if the lattice is lifted, since a lattice point
is represented in its cyclic form.

Next, we identify two new heuristics due to loop unrolling. First, at the end of
each 8th iteration, we choose the best mbest from eight possible mbest’s. Second,
since the prime n is never a multiple of 8, empirically we just omit the remainder
of the unrolled loop.

6.3 More Kernel Optimizations

– The rotation on line 5 is tricky because vectors are padded with zero. There-
fore, the last thread that contains a vector would have to deal with these zeros.
In fact, the padded vector v is first stored in the shared memory, then rotated
one by one at each iteration. More specifically, at the end of one iteration, the
first padded zero is replaced with the next “right” element, and at the start
of the next iteration, the vector w is read at the “right” offset.

– The vectors in the lists U and V are loaded in bulks and put in a shared-
memory buffer to increase global memory throughput.

– In practice, we choose the first element of a lifted vector as its pivot and rotate
reversely. This transforms the index n − j on lines 9–10 to an easier j.

– To ensure high kernel throughput, we empirically tune all the parameters
mentioned in the above sections as well as kernel launch parameters, although
it is not feasible to try all possible combinations.

6.4 On Faster Convolution

The question naturally arises: why not use FFT or the Karatsuba algorithm to
calculate inner products? The reasons are:

– The Karatsuba algorithm reduces the number of multiplications, while adding
a lot more additions. On GPUs, however, FMAD is fastest.

– If on line 5, we use them to produce results for all i’s simultaneously, there
will not be enough register to hold both the results and all the intermediate
values during computation.

52 S.-Y. Yang et al.

– The dimension is not a power of 2, which makes the convolution more difficult
to be designed efficiently.

There are several techniques to convert non-power-of-2 DFT’s into convolu-
tions or FFTs of the same or larger dimensions. The best approach we are aware
of is Devil’s convolution [Cra96], but this is not easily applicable on GPUs.

6.5 Heuristics

Besides the heuristics for kernel optimization, we also applied two heuristics to
speed up in conjunction with the techniques above.

First, as already mentioned in Voulgaris’s implementation [Gau], the lists
in step 1 are sorted so that only longer vectors (before rotation) are reduced
with shorter ones. We also tried to see if this can be applied to steps 2 and 3.
Empirically we found that it is not as effective, probably because vectors are
shorter during steps 2 and 3; they are less likely to be reduced. We also use the
CUB library to sort data on GPUs.

Second, empirically we choose to iterate the innermost loop over only the
first 16 values of j (line 8). This is because the rotations of prime cyclotomic
vectors have larger norms. The expansion factor for prime cyclotomic lattices is
discussed in [Sch13].

7 Experiments

For our experiments, we use a total of eight NVIDIA GeForce GTX TITAN X
graphics cards. Four of these cards are installed on the main machine, while the
other four are installed on a PCIe extension box.

We use the bases from the Ideal Lattice Challenge [Ide]. Since for dimension
n, the prime cyclotomic polynomial has index n+1, as an example, we choose the
basis for dimension 126 from the file ideallatticedim126index127seed0.txt.
The input bases for Gauss Sieve are first reduced by BKZ with block size 30 and
δ = 0.99.

7.1 Parallel Efficiency

Here we show the parallel efficiency of the outer layer of our parallel frame-
work in Fig. 1. The (parallel) efficiency for N GPUs is defined in [BNvdP14] as

E =
runtime forN GPUs

N · runtime for 1 GPU
.

For the dimension 108, the efficiency is 74%, 72%, 55% and 45% for 2, 4, 6 and 8
GPUs, respectively. However, the dimension is so low that the efficiency is quite
low as the number of GPUs exceeds 6.

On the other hand, for dimension 112, the efficiency scales better with the
number of GPUs. However, we do not yet have the running time for one GPU. If
we base the efficiency on 2 GPUs, then the efficiency is the 86%, 81% and 74%
for 4, 6 and 8 GPUs, respectively. We believe that in high enough dimensions,
the efficiency of 8 GPUs will be more than 70%.

Gauss Sieve Algorithm on GPUs 53

1 2 4 6 8

2

4

6

8

10

Fig. 1. Parallel efficiency: the numbers of GPUs versus running time and the exact
running time is labelled below the node

7.2 Ideal Lattices Versus General Lattices

For general lattices, we use the bases from the SVP Challenge [Lat]. Our single-
GPU implementation takes 9.3 h to solve the challenge of dimension 96. In con-
trast, the implementation from [IKMT14] requires 200 CPU-hour. That is, our
single-GPU implementation on general lattices is 21.5 times faster than the CPU
version.

For ideal lattices, our 4-GPU implementation requires 5 min to solve the
challenge of dimension 96 and our single-GPU implementation requires 8.6 min.
In contrast, the implementation from [IKMT14] requires 8 CPU-hours. That is,
our 4-GPU (resp. single-GPU) implementation on general lattices is 96 (resp.
55.8) times faster than the CPU version. Note that the polynomial we use is
prime-cyclotomic (x96 + x95 + · · · + 1), which is more complicated than the
trinomial polynomial (x96 + x48 + 1) used by [IKMT14].

Combining these two cases, the speed-up from using the property of prime-

cyclotomic ideal lattices is
9.3 hrs

8.6 mins
= 64.9 in dimension 96. Applying the com-

plexity estimation from [MV10], we estimate the ratio to be
9.3 hrs · 20.52·30

2734 hrs
=

169 in dimension 126 and
9.3 hrs · 20.52·34

6583 hrs
= 297 in dimension 130.

In contrast, [IKMT14] shows that the speed-up ratio of using the property of
anti-cyclic ideal lattices is around 600 in dimension 128. This gives an evidence
that the SVP over prime-cyclotomic ideal lattices is harder than over anti-cyclic
ideal lattices by a factor of around 2.

7.3 Chronological Behavior

The chronological behavior of the sieving algorithms is studied intensively in
[MV10,Sch11]. We can observe the same behavior in Fig. 2. (a) shows that the

54 S.-Y. Yang et al.

0 1

(a) list size (c) squared norm(b) #collision

2 3

·104

0

1

2

3

4

·106

0 1 2 3

·104

0

1

2

3
·105

0 1 2 3

·104

0.8

1

1.2

1.4

1.6
·107

Fig. 2. Behavior of Gauss Sieve for dimension 126 with 8 GPUs: (a) the list size versus
iteration; (b) the number of collisions versus iteration; (c) the squared norm of current
shortest vector versus iteration

size of the list grows very fast in the beginning, later on it reaches a plateau, and
finally when the shortest vector is found, it grows rapidly again. (b) shows the
number of collision grows almost linearly but goes up very fast after the shortest
vector is found. (c) shows the squared norm of the current shortest vector. The
norm starts to drop half-way, and keeps descending until the shortest vector is
found. One possible improvement is to reduce the basis by the current founded
short vector, as in the work [FK15]. However, since the very first “shorter” vector
only shows up half-way, the speed-up ratio by this method is limited by 2.

Our result in Table 1 is the fastest implementation of the Gauss Sieve algo-
rithm so far. A rough space usage estimation is 2 × 4 × ListSize × Dimension.
The factor 4 is due to the data type, 4-byte float, and the 2 is due to an extra
buffer for sorting on the device. Therefore, it requires around 0.37, 2.59 and
4.35 GB of memory for dimension 112, 126 and 130, respectively.

Table 1. Results of ideal lattice challenge

Dimension 112 126 130

Number of vectors 444,341 2,759,903 4,490,083

Running time (GPU-hours) 32 2,734 6,583

7.4 Hardness Estimation

Finally, Fig. 3 compares our results with previous works. Obviously, our results
are below the estimation of [LP11]. Even more, the slope of ours is flatter than
theirs, which means that there is an exponential speed-up. Some of the data from
the SVP and Ideal SVP Challenge is computed using an accelerated random
sampling algorithm [FK15], but in higher dimensions (say, higher than 136), our

Gauss Sieve Algorithm on GPUs 55

100 110 120 130 140 150

29.97

219.93

229.9

Fig. 3. Comparison of time: the dimension of SVP Challenge versus the running time

fitting curve is also below their results. This might imply that the running time
of the Gauss Sieve algorithm grows quite slowly.

Fitting our data using least-square regression, we have y = 20.435x−31.8, as
depicted in Fig. 3. To resist attacks using super powerful special-purpose hard-
ware, our conservative model of SVP hardness in ideal lattices, with approxima-
tion factor 1.05, is

time(SV P Ideal
α=1.05) = 20.43n−50(seconds)

However, we emphasize that the space complexity of the sieve algorithm is
exponential, but estimation models of [LP11,CN11] are based on BKZ or BKZ
2.0, which requires only polynomial space. More precisely, our implementation
requires 20.19n+7.3 bytes of memory.

8 Conclusion

In this work, we propose the lifting technique for prime-cyclotomic ideal lattices,
which accelerates the Gauss Sieve algorithm. Moreover, by applying a sequence
of transformations described in Sect. 4, the cost to reduce two vectors with all
of their rotations decreases from O(n3) to O(n2). We also designed and imple-
mented a Gauss Sieve that includes these technique both on a single GPU and
on several GPUs. Our implementation is more than 21.5 (resp. 55.8) times faster
than the best prior known result on a single CPU core for general (resp. ideal)
lattice. Finally, we give a reasonable model to estimate the running time of solv-
ing SVP in ideal lattices. Although our model requires an exponential space

56 S.-Y. Yang et al.

usage due to the natural property of sieving algorithms, it suggests a bound
much lower than the previous model [LP11].

We will release the code to the public domain after we finish up with all the
details such as providing a less hostile interface, doing a clean up, and so on.

Acknowledgement. Partially sponsored by MoST projects 105-2923-E-001-003-MY3
and 105-2221-E-001-020-MY3. We would also like to thank Dr. Shinsaku Kiyomoto of
KDDI Research for the fruitful discussion.

References

[AD97] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: STOC 1997, pp. 284–293. ACM, New York (1997)

[Ajt97] Ajtai, M.: The shortest vector problem in l2 is np-hard for random-
ized reductions. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 4, no. 47 (1997)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: STOC 2001, pp. 601–610. ACM, New York
(2001)

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: SODA 2016, pp.
10–24 (2016)

[BL16] Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-
polytope LSH. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 3–23. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-31517-1 1

[BNvdP14] Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in ideal
lattices: a practical perspective. IACR Cryptology ePrint Archive 2014,
880 (2014)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

[Cra96] Crandall, R.E.: Topics in Advanced Scientific Computation. Springer-
Telos, New York (1996)

[CUD15] CUDA C programming guide 7.5 (2015). http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

[FK15] Fukase, M., Kashiwabara, K.: An accelerated algorithm for solving SVP
based on statistical analysis. JIP 23(1), 67–80 (2015)

[Gau] Gauss Sieve implementation by panagiotis voulgaris. https://cseweb.ucsd.
edu/∼pvoulgar/impl.html

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Annual
ACM Symposium on Theory of Computing – STOC, pp. 169–178 (2009)

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 1

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 13

http://dx.doi.org/10.1007/978-3-319-31517-1_1
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://cseweb.ucsd.edu/~pvoulgar/impl.html
https://cseweb.ucsd.edu/~pvoulgar/impl.html
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-13190-5_13

Gauss Sieve Algorithm on GPUs 57

[Ide] Idea Lattice Challenge. http://www.latticechallenge.org/ideallattice-
challenge/

[IKMT14] Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve
algorithm: solving the SVP challenge over a 128-dimensional ideal lattice.
In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 24

[KSD+11] Kuo, P.-C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J.,
Cheng, C.-M., Yang, B.-Y.: Extreme enumeration on GPU and in clouds.
In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 176–
191. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9 12

[Laa15] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 1

[Lat] SVP Challenge. http://www.latticechallenge.org/svp-challenge/
[LP11] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based

encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

[MBL15] Mariano, A., Bischof, C.H., Laarhoven, T.: Parallel (probable) lock-free
hash sieve: a practical sieving algorithm for the SVP. ICPP 2015, 590–599
(2015)

[MDB14] Mariano, A., Dagdelen, Ö., Bischof, C.: A comprehensive empirical com-
parison of parallel ListSieve and GaussSieve. In: Lopes, L., et al. (eds.)
Euro-Par 2014. LNCS, vol. 8805, pp. 48–59. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-14325-5 5

[Mer] Duane (Nvidia Coorporation) Merrill. The CUB Library
[MS11] Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the

shortest vector problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011.
LNCS, vol. 6873, pp. 452–458. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23178-0 40

[MV10] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA 2010, pp. 1468–1480 (2010)

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

[Sch11] Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector
problem in lattices. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011.
LNCS, vol. 6552, pp. 89–97. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19094-0 11

[Sch13] Schneider, M.: Sieving for shortest vectors in ideal lattices. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 375–391. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38553-7 22

http://www.latticechallenge.org/ideallattice-challenge/
http://www.latticechallenge.org/ideallattice-challenge/
http://dx.doi.org/10.1007/978-3-642-54631-0_24
http://dx.doi.org/10.1007/978-3-642-23951-9_12
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://www.latticechallenge.org/svp-challenge/
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-319-14325-5_5
http://dx.doi.org/10.1007/978-3-642-23178-0_40
http://dx.doi.org/10.1007/978-3-642-23178-0_40
http://dx.doi.org/10.1007/978-3-642-19094-0_11
http://dx.doi.org/10.1007/978-3-642-19094-0_11
http://dx.doi.org/10.1007/978-3-642-38553-7_22
http://dx.doi.org/10.1007/978-3-642-38553-7_22

A Tool Kit for Partial Key Exposure
Attacks on RSA

Atsushi Takayasu1,2(B) and Noboru Kunihiro1

1 The University of Tokyo, Tokyo, Japan
a-takayasu@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan

Abstract. Thus far, partial key exposure attacks on RSA have been
intensively studied using lattice based Coppersmith’s methods. In the
context, attackers are given partial information of a secret exponent
and prime factors of (Multi-Prime) RSA where the partial information
is exposed in various ways. Although these attack scenarios are worth
studying, there are several known attacks whose constructions have sim-
ilar flavor. In this paper, we try to formulate general attack scenarios
to capture several existing ones and propose attacks for the scenarios.
Our attacks contain all the state-of-the-art partial key exposure attacks,
e.g., due to Ernst et al. (Eurocrypt’05) and Takayasu-Kunihiro (SAC’14,
ICISC’14), as special cases. As a result, our attacks offer better results
than previous best attacks in some special cases, e.g., Sarkar-Maitra’s
partial key exposure attacks on RSA with the most significant bits of
a prime factor (ICISC’08) and Hinek’s partial key exposure attacks on
Multi-Prime RSA (J. Math. Cryptology ’08). We claim that our contri-
bution is not only generalizations or improvements of the existing results.
Since our attacks capture general exposure scenarios, the results can be
used as a tool kit; the security of some future variants of RSA can be
examined without any knowledge of Coppersmith’s methods.

Keywords: (Multi-Prime) RSA · Partial key exposure · Lattices ·
Coppersmith’s methods

1 Introduction

Background. Let N = pq be a public RSA modulus where p and q are distinct
prime factors with the same bit-size. A public/secret exponent e and d such that
ed = 1 (mod Φ(N)) where Φ(N) is Euler’s totient function. There is a variant of
RSA called Multi-Prime RSA that have a public modulus N =

∏r
i=1 pi where pi’s

are all distinct primes with the same bit-size. A public/secret exponent of Multi-
Prime RSA satisfies the same equation as the standard RSA. Multi-Prime RSA
offers faster decryption/signing by combining with Chinese Remainder Theorem.

From the invention of RSA cryptosystems, hardness of the factorization/RSA
problem have been intensively studied. One well known approach in the litera-
ture is lattice based Coppersmith’s methods [6,7]. The method showed an RSA
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 58–73, 2017.
DOI: 10.1007/978-3-319-52153-4 4

A Tool Kit for Partial Key Exposure Attacks on RSA 59

modulus N = pq can be factorized in polynomial time with half the most signif-
icant bits of a prime factor. Although Coppersmith’s methods requires involved
technical analyses, the method has revealed the vulnerability of RSA in many
papers. One of the most famous result is Boneh and Durfee’s small secret expo-
nent attack on RSA [3] that factorizes an RSA modulus N in polynomial time
when d < N1−1/

√
2 = N0.292···. Ciet et al. [5] extended the attack for Multi-

Prime RSA and their attack works when d < N1−
√

1−1/r.
Boneh et al. [4] proposed several attacks on RSA called partial key expo-

sure attacks that make use of the most/least significant bits (MSBs/LSBs) of
d. Afterwards, the research becomes a hot topic and numerous papers have
been published. Although the original attacks [4] work only for a small e, sev-
eral improvements [1,12,22,26] have been proposed using Coppersmith’s meth-
ods [6,7]. In particular, Ernst et al. [12] revealed that RSA becomes vulnerable
even for a full size e and Takayasu-Kunihiro’s attacks [26] contain Boneh-Durfee’s
small secret exponent attack [3] as a special case. Besides these results, numer-
ous papers have studied partial key exposure attacks for various attack scenarios;
attacks on Multi-Prime RSA with the MSBs/LSBs of d [13], attacks on RSA with
the MSBs of a prime factor [21], attacks on RSA with the MSBs/LSBs of d and
the MSBs of a prime factor [20], attacks on RSA where the prime factors share
the same LSBs [23], attacks on RSA where the prime factors are almost the same
sizes [29], attacks on Multi-Prime RSA where all the prime factors are almost
the same sizes [25,30,31], and more.

Indeed, there are many papers that study partial key exposure attacks on
RSA. However, the situation does not immediately mean that the problem is
worth studying in such many papers. Among the above variants of the attack,
some papers capture almost the same attack scenarios. Hence, essentially the
same algorithms have been proposed in several papers. We do not think the
situation is not desirable for the development of the cryptographic research.

Our Contributions. To resolve the situation, we define a general partial key
exposure scenario. For the purpose, we classify some existing works with respect
to three properties; attackers know partial information of a secret exponent and
prime factors for Multi-Prime RSA. Since there are no results that capture the
three properties simultaneously, we define a general attack scenario as follows.

Definition 1 ((α, β, γ, δ)-Partial Key Exposure Attacks on RSA). Let
N =

∏r
i=1 pi where all p1, . . . , pr are distinct primes of the same bit-size. Let

e = Nα and d = Nβ such that ed = 1 mod Φ(N). Given (N, e, d̃, Φ̃(N)) where
d̃ ≥ Nβ−γ is the MSBs/LSBs of d and |Φ(N) − Φ̃(N)| ≤ N δ, the goal of the
problem is to compute Φ(N).

We parametrize the problem with respect to (α, β, γ, δ). Notice that the num-
ber of prime factors r is independent of the hardness of the problem. Although
partial information of prime factors in previous works are defined in various ways,
the above definition captures several exposure scenarios simultaneously. For
example, let us focus on an attack on RSA with the most significant bits prime

60 A. Takayasu and N. Kunihiro

factors and an attack on Multi-Prime RSA. Given p̃ which is the δ′ log N MSBs
of an RSA prime factor p, then we regard Φ̃(N) = N − p̃N1/2−δ′ −�N/p̃N1/2−δ′�
and an attack on RSA with the most significant bits of prime factors is captured
by δ = 1/2 − δ′ since |Φ(N) − Φ̃(N)| is bounded above by N1/2−δ′

within a
constant factor [20,21]. Similarly, we regard Φ̃(N) = N and an attack on Multi-
Prime RSA is captured by δ = 1 − 1/r since |Φ(N) − N | is bounded above
by N1−1/r within a constant factor [13]. Since we analyze all 0 ≤ γ ≤ β and
0 ≤ δ ≤ 1, our definition covers several existing works simultaneously. More-
over, the definition will cover other unknown variants that will be studied in the
future. Then our results can be viewed as a tool kit to study partial key exposure
attacks as [2]. It means that our results enable even beginners of Coppersmith’s
methods to examine the security of such future variants without understanding
the technical detail of this paper.

We use lattice based Coppersmith’s methods to solve integer/modular equa-
tions as previous works and obtain the following results.

Theorem 1. Given the MSBs/LSBs of d, there are polynomial time algorithms
to solve (α, β, γ, δ)-Partial Key Exposure Attacks on RSA when

– γ <
3−δ−2

√
δ2+3(α+β−1)δ

3 .

Theorem 2. Given the MSBs of d, there are polynomial time algorithms to
solve (1, β, γ, δ)-Partial Key Exposure Attacks on RSA when

1. γ < 1 − 2
3

(

δ +
√

δ(4δ − 3 + 6β)
)

for β < 1 − δ −
√

δ(1−δ)
3 ,

2. γ <
1+β−

√
4δ−3(1−β)2

2 for 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ and 1/3 ≤ δ, and for

1 − δ −
√

δ(1−δ)
3 ≤ β < 1 −

√
δ
3 and δ < 1/3,

3. 3λτ − 3(1 − δ)τ2 + τ3 < (δτ−β+λ)3

δ(1+λ−2β) where λ = max{γ, β + δ − 1} and τ =

1 − β+δ−1
δ−

√
1+λ−2β

for 1 − δ ≤ β < 3(1−δ)(1+δ)
4 and 1/3 ≤ δ < 2/3, and for

1 − δ ≤ β < δ − (2δ−1)2

δ2 and 2/3 ≤ δ,

4. γ ≤ 3(1−δ)2

4 for 3(1−δ)(1+δ)
4 ≤ β < 3(1−δ)2+4(1−δ)

4 and 1/3 ≤ δ < 2/3,

5. γ <
2+β−2δ−2

√
(β+δ−1)(β+4δ−1)

3 for 3(1−δ)2+4(1−δ)
4 ≤ β and 1/3 ≤ δ,

6. γ ≤ 1 − 2
√
3δ
3 for 1 −

√
δ
3 ≤ β and δ < 1/3.

Theorem 3. Given the LSBs of d, there are polynomial time algorithms to solve
(1, β, γ, δ)-Partial Key Exposure Attacks on RSA when

1. γ < 1 − 2
3

(

δ +
√

δ(4δ − 3 + 6β)
)

for β < 1 − δ −
√

δ(1−δ)
3 ,

2. γ <
1+β−

√
4δ−3(1−β)2

2 for 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ

2 −
√

3δ(4−δ)

6 ,

3. γ < 1 − δ+2
√

δ(δ+3β)

3 for 1 − δ
2 −

√
3δ(4−δ)

6 ≤ β.

A Tool Kit for Partial Key Exposure Attacks on RSA 61

First of all, our results cover all the known best attacks as special cases, e.g.,
Theorem 1, the conditions 4–6 of Theorem 2, and the condition 3 of Theorem3
for δ = 1/2 are the same as Ernst et al.’s attack [12]. Extensions of previous
works are not trivial at all. In the context of the algorithm construction of
Coppersmith’s methods, to tackle the equations with the more monomials
requires the more involved analyses. Hence, to extend some attacks with more
partial information and the extended attacks completely cover the original
ones as special cases is challenging in some cases. For example, Ernst et al.’s
(1, β, γ, 1/2)-partial key exposure attack [12] for γ = β do not cover Boneh and
Durfee’s (1, β, β, 1/2)-partial key exposure attack [3]. It takes about ten years
until the desired attacks [26] were proposed. Indeed, in this paper, we have to
analyze eight attacks to obtain the best results for all the cases.

Furthermore, our results offer improved attacks in some special cases. More
concretely, we improve Sarkar and Maitra’s partial key exposure attacks on RSA
with partial information of prime factors [20] for small d and Hinek’s partial
key exposure attacks on Multi-Prime RSA [13]. See Figs. 1 and 2 for detailed
comparisons. Indeed, our attacks require smaller portions of partial information
of d than their attacks.

Fig. 1. Comparisons of partial key exposure attacks on RSA with the ≈ 3
16

log N MSBs
of p, i.e., (1, β, γ, 5/16)-partial key exposure attacks. We compare how much portions
of d should be exposed for β between Sarkar and Maitra’s attack (gray areas) [20] and
our Theorems 2 and 3 (red areas). The left (resp. right) figure represents the attack
with the MSBs (resp. LSBs). (Color figure online)

Technical Overview. To provide better attacks based on Coppersmith’s meth-
ods is equivalent to provide better lattice constructions to solve underlying equa-
tions. There is a well-known strategy for the construction due to Jochemsz and
May [15]. The construction may be simple and easy to understand even for
beginners of the research area. Ernst et al. [12] made use of the strategy for
their attacks. Sarkar-Maitra [20], Hinek [13], and some other papers extended
the attack of Ernst et al. Then, we also follow the strategy and propose extended
attacks in Sect. 3; Theorem 1, the conditions 4–6 of Theorem2, and the condition
3 of Theorem 3. The results based on the strategy are almost naive extensions of

62 A. Takayasu and N. Kunihiro

Fig. 2. Comparisons of partial key exposure attacks on Multi-Prime RSA for the num-
ber of prime factors r = 3, i.e., (1, β, γ, 2/3)-partial key exposure attacks. We compare
how much portions of d should be exposed for β between Hinek’s attack (gray areas)
[13] and our Theorems 2 and 3 (red areas). The left (resp. right) figure represents the
attack with the MSBs (resp. LSBs). (Color figure online)

the previous attacks although there are some improved analyses in our results;
the condition 6 of Theorem2 in Sect. 3.3 improves Sarkar-Maitra’s attack.

Notice that the Jochemsz-May strategy does not always offer the best attacks
and lattice constructions that outperform the strategy require involved analyses.
For example, Boneh and Durfee’s small secret exponent attack [3]; (1, β, β, 1/2)-
partial key exposure attack, does not seem to be captured by the strategy. To
construct better attacks, we make use of Takayasu and Kunihiro’s attacks [25,26]
where the attack in [25] and [26] solved (1, β, β, δ)-partial key exposure attacks
for 0 ≤ δ ≤ 1 and (1, β, γ, 1/2)-partial key exposure attacks for 0 ≤ γ ≤ β,
respectively. Technically, the former and the latter attack constructs a better
lattice with respect to the value of δ and γ, respectively. Moreover, they are the
only existing partial key exposure attacks that outperform the Jochemsz-May
strategy [15] except the Boneh-Durfee attack and its straightforward extension.
As we suggested above, these lattice constructions [25,26] seem to be technically
hard to follow. Indeed, there are only a few papers [27,28] that make use of
these results to obtain better results. In this paper, we fully exploit the spirit
of the lattice constructions [25,26] and propose (1, β, γ, δ)-partial key exposure
attacks for arbitrary 0 ≤ γ ≤ β and 0 ≤ δ ≤ 1. Our attacks cover Takayasu and
Kunihiro’s attacks [25,26] for a fixed γ = β and δ = 1/2, respectively. We study
the attacks with the MSBs and LSBs of d in Sects. 4 and 5, respectively.

2 Preliminaries

In this section, we briefly introduce some basic notions of Coppersmith’s meth-
ods. For more detailed information, see [8,9,18,19].

Let b1, . . . , bn ∈ Z
n′

be linearly independent n′-dimensional vectors. All vec-
tors are row representations. A lattice L(b1, . . . , bn) spanned by the basis vec-
tors b1, . . . , bn is defined as L(b1, . . . , bn) = {

∑n
j=1 cjbj : cj ∈ Z}. We also use

matrix representations B ∈ Z
n×n′

for the bases where each row corresponds to

A Tool Kit for Partial Key Exposure Attacks on RSA 63

basis vectors b1, . . . , bn. Then, a lattice spanned by the basis matrix B is defined
as L(B) = {cB : c ∈ Z

n}. We call n a rank of the lattice, and n′ a dimension of
the lattice. We call the lattice full-rank when n = n′. We define a determinant
of a lattice det(L(B)) as det(L(B)) =

√

det(BBT) where BT is a transpose
of B. By definition, a determinant of a full-rank lattice can be computed as
det(L(B)) = |det(B)|. Moreover, a determinant of a triangular matrix can be
easily computed as the product of all diagonals.

For a cryptanalysis, to find short lattice vectors is a very important problem.
In 1982, Lenstra et al. [16] proposed a polynomial time algorithm to find short
lattice vectors.

Proposition 1 (LLL algorithm [16,17]). Given a matrix B ∈ Z
n×n′

, the
LLL algorithm finds vectors b′

1 and b′
2 in a lattice L(B). Euclidean norms of the

vectors are bounded by

‖b′
1‖ ≤ 2(n−1)/4(det(L(B)))1/n and ‖b′

2‖ ≤ 2n/2(det(L(B)))1/(n−1).

The running time is polynomial time in n, n′, and input length.

Although the outputs of the LLL algorithm are not the shortest lattice vectors
in general, the fact is not the matter in the context of Coppersmith’s methods.

Instead of original Coppersmith’s methods, we introduce Howgrave-
Graham’s reformulation to solve modular equations [14] and Coron’s reformula-
tion to solve integer equations [10]. Although Coron’s method [10] is less efficient
than original Coppersmith’s method [6] and Coron’s other method [11], it is sim-
pler to analyze than the other methods.

For a k-variate polynomial h(x1, . . . , xk) =
∑

hi1,...,ik
xi1
1 · · · xik

k , we define a

norm of a polynomial ‖h(x1, . . . , xk)‖ =
√

∑
h2

i1,...,ik
and ‖h(x1, . . . , xk)‖∞ =

maxi1,...,ik
|hi1,...,ik

|. At first, we show a modular method since an integer method
makes use of the modular method. Coppersmith’s method can find solutions
(x̃1, x̃2) of a bivariate modular equation h(x1, x2) = 0 (mod e) when |x̃1| <
X1, |x̃2| < X2, and X1X2 is reasonably smaller than e. In general, the simpler the
Newton polygon of the polynomial is, the larger solutions can be recovered. Let
m be a positive integer. We construct n polynomials h1(x1, x2), . . . , hn(x1, x2)
that have the root (x̃1, x̃2) modulo em. Then, we construct a matrix B whose
rows consist of coefficients of h1(x1X1, x2X2), . . . , hn(x1X1, x2X2). Applying the
LLL algorithm to B and we obtain two short vectors b′

1 and b′
2, and their cor-

responding polynomials h′(x1, x2) and h′
2(x1, x2). If norms of these polynomials

are small, they have the root (x̃1, x̃2) over the integers. The fact comes from the
following lemma due to Howgrave-Graham [14].

Lemma 1 ([14]). Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial over the
integers that consists of at most n monomials. Let X1, . . . , Xk, and R be positive
integers. If the polynomial h(x1, . . . , xk) satisfies the following two conditions:

1. h(x̃1, . . . , x̃k) = 0 (mod R), where |x̃1| < X1, . . . , |x̃k| < Xk,
2. ‖h(x1X1, . . . , xkXk)‖ < R/

√
n.

Then, h(x̃1, . . . , x̃k) = 0 holds over the integers.

64 A. Takayasu and N. Kunihiro

Therefore, if h′(x1, x2) and h′
2(x1, x2) satisfy Lemma 1, we can compute

Gröbner bases or a resultant of them and easily recover (x̃1, x̃2). By making
use of the unravelled linearization, we only analyze triangular matrices in this
paper. Better lattice constructions for triangular matrices are well analyzed
[18,24] by introducing helpful polynomials. Intuitively, polynomials in lattice
bases are called helpful when their diagonals in the triangular basis matrices are
smaller than the modulus of the equations em. To solve modular equations for
larger roots, as many (resp. less) helpful (resp. unhelpful) polynomials as pos-
sible should be selected as long as the basis matrices are triangular. We follow
the definition from [26] as follows.

Definition 2 (Helpful Polynomials [18,26]). To solve equations modulo e,
consider a basis matrix B. We add a new shift-polynomial h[i′,j′](x, y) and con-
struct a new basis matrix B+. We call h[i′,j′](x, y) a helpful polynomial, provided
that det(B+)/det(B) ≤ em. Conversely, if the inequality does not hold, we call
h[i′,j′](x, y) an unhelpful polynomial.

Next, we show an integer method. Coppersmith’s method can find solu-
tions (x̃1, x̃2, x̃3) of a trivariate integer equation h(x1, x2, x3) = 0 when
|x̃1| < X1, |x̃2| < X2, |x̃3| < X3, and X1X2X3 is reasonably smaller than
‖h(x1X1, x2X2, x3X3)‖∞. Although we omit details of the method, we set a
reasonable integer R and remaining procedures are almost the same as modular
case by solving a modular equation h(x1, x2, x3) = 0 mod R. New polynomials
h′(x1, x2, x3) and h′

2(x1, x2, x3) obtained by outputs of the LLL algorithm are
provably algebraically independent of h(x1, x2, x3). See [10] for the detail. To the
best of our knowledge, there are no algorithms to solve integer equations known
that outperform the algorithm based on the Jochemsz-May strategy [15]. Hence,
we follow the strategy. Let lj denote the largest exponent of xj in the polynomial
h(x1, . . . , xk) =

∑
hi1,...,ik

xi1
1 · · · xik

k . We set an (possibly large) integer W such
that W ≤ ‖h(x1, . . . , xk)‖∞ and an integer R := WX

l1(m−1)+t
1

∏k
u=2 X

lu(m−1)
j

with some positive integers m and t = O(m) such that gcd(R, h0,...,0) = 1. We
compute c = h−1

0,...,0 (mod R) and h′(x1, . . . , xk) := c · h(x1, . . . , xk) (mod R).
We define shift-polynomials g and g′ as

g : xi1
1 · · · xik

k · h(x1, . . . , xk) · X
l1(m−1)+t−i1
1

k∏

u=2

X
lu(m−1)−ij

j for xi1
1 · · · xik

k ∈ S,

g′ : xi1
1 · · · xik

k · R for xi1
1 · · · xik

k ∈ M\S,

for sets of monomials

S :=
⋃

0≤j≤t

{xi1+j
1 · · · xik

k |xi1
1 · · · xik

k is a monomial of h(x1, . . . , xk)m−1},

M :={monomials of xi1
1 · · · xik

k · h(x1, . . . , xk) for xi1
1 · · · xik

k ∈ S}.

All these shift-polynomials g and g′ modulo R have the root (x̃1, . . . , x̃k)
that is the same as h(x1, . . . , xk). We construct a lattice with coefficients of

A Tool Kit for Partial Key Exposure Attacks on RSA 65

g(x1X1, . . . , xkXk) and g′(x1X1, . . . , xkXk) as the bases. The shift-polynomials
generate a triangular basis matrix. Ignoring low order terms of m, LLL out-
puts short vectors that satisfy Lemma 1 when

∏k
j=1 X

sj

j < W |S| for sj =
∑

x
i1
1 ···xik

k ∈M\S
ij . When the condition holds, we can find all the small root.

See [15] for the detail.
We should note that these methods require heuristic argument. There are

no assurance if new polynomials obtained by outputs of the LLL algorithm are
algebraically independent. In this paper, we assume that these polynomials are
always algebraically independent and resultants of polynomials will not vanish
as previous works.

3 Attacks by Solving Integer Equations

In this section, we solve integer equations and propose three attacks, i.e., Attacks
1–3. The Attack 1, 2, and 3 in Sects. 3.1, 3.2, and 3.3 corresponds to Theorem 1
and the condition 3 of Theorem3, the conditions 4 and 5 of Theorem2, and the
condition 6 of Theorem2, respectively. Algorithm constructions in this section
are similar to Ernst et al. [12].

3.1 The Attack 1

In this section, we consider (α, β, γ, δ)-partial key exposure attacks with the
MSBs/LSBs of d. When d̃ which is the MSBs/LSBs of d is given, RSA key
generation can be written as e(d̃M̃ + d′M ′) = 1 + kΦ(N) with some integer
k such that |k| ≤ Nα+β−1. When d̃ is the MSBs (resp. LSBs), d′ denotes the
LSBs (resp. MSBs) of d, and M̃ = 2�γ log N	 and M ′ = 1 (resp. M̃ = 1 and
M ′ = 2�(β−γ) log N). Then, we find the root of the following polynomial over the
integers:

fi1(x, y, z) = c + eM ′x + y(Φ̃ + z)

where c = 1− ed̃M̃ . If we can recover the root (x, y, z) = (−d′, k, Φ(N)− Φ̃(N)),
whole secret information can be computed. By definition, the absolute values of
the root is bounded above by X := Nγ , Y := Nα+β−1, Z := N δ. By solving the
integer equation based on the Jochemsz-May strategy [15], Theorem 1 and the
condition 3 of Theorem 3 can be obtained.

3.2 The Attack 2

In this section, we consider (1, β, γ, δ)-partial key exposure attacks with the
MSBs of d. As in Sect. 3.1, when d̃ which is the MSBs of d is given, RSA key
generation can be written as e(d̃M + d′) = 1 + kΦ(N) with some integer k
such that |k| ≤ Nβ and M = 2�γ log N	. In this section, we use an additional

66 A. Takayasu and N. Kunihiro

information k̃ = �(ed̃ − 1)/Φ̃(N)� which is an approximation to k. Indeed, k̃
satisfies the following condition:

|k̃ − k| < 2Nλ where λ = max{γ, β + δ − 1}. (1)

The approximate value enables us to obtain better results for large β. Since
Sarkar and Maitra [20] used λ = max{γ, β − 1/2} for δ ≤ 1/2, we improve the
bound although the following lattice construction is completely the same. We
find the root of the following polynomial over the integers:

fi2(x, y, z) = c + ex + (k̃ + y)(Φ̃ + z),

where c = 1−ed̃M̃ as in Sect. 3.1. If we can recover the root (x, y, z) = (−d′, k−
k̃, Φ(N)−Φ̃(N)), whole secret information can be computed. The absolute values
of the root are bounded above by X := Nγ , Y := Nλ, Z := N δ where λ =
max{γ, β + δ − 1}. Although the absolute values of solutions become smaller
than those in Sect. 3.1, the result in this section is not always better since the
Newton polygon of the polynomial becomes more complex.

We set an (possibly large) integer W such that W < N1+λ since
‖fi2(xX, yY, zZ)‖∞ ≥ |Φ̃(N)Y | ≈ N1+λ. Next, we set an integer R := WXm−1 ·
Y m+r−1+tZm−1 with some integers m = ω(r) and t = τm where τ ≥ 0 such that
gcd(R, c) = 1. We compute c′ = c−1 mod R and f ′

i2(x, y, z) := c · fi2(x, y, z)
mod R. We define shift-polynomials gi1 and g′

i1 as

gi2 : xiX yiY ziZ · f ′
i2 · Xm−1−iX Y m−1+t−iY Zm+r−1−iZ for xiX yiY ziZ

1 ∈ S,

g′
i2 : xiX yiY ziZ · R for xiX yiY ziZ

1 ∈ M\S,

for sets of monomials

S :=
⋃

0≤j≤t

{

xiX yiY +jziZ

∣
∣
∣
∣
xiX yiY ziZ is a monomial of fi(x, y, z1)m−1

}

,

M :=
{

xiX yiY ziZ

∣
∣
∣
∣

monomials of xi′
X yi′

Y zi′
Z · fi(x, y, z) for xi′

X yi′
Y zi′

Z ∈ S

}

.

By definition of sets of monomials S and M , it follows that

xiX yiyziZ ∈ S ⇔ iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 + t − iX ;
iZ = 0, 1, . . . ,m − 1 − iX ,

xiX yiyziZ ∈ M ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m + t − iX ;
iZ = 0, 1, . . . ,m − iX .

All these shift-polynomials gi2 and g′
i2 modulo R have the root (x, y, z) =

(−d′, k − k̃, Φ(N) − Φ̃(N)) that is the same as fi2(x, y, z). We build a lattice
with these polynomials.

Based on the Jochemsz-May strategy [15], the integer equation fi1(x, y, z) =

0 can be solved when X(1
3+

τ
2)m3

Y

(
1
2+τ+ τ2

2

)
m3

Z(1
2+

τ
2)m3

< W (1
3+

τ
2)m3

. By sub-
stituting τ = 1−γ−δ−λ

2λ , the conditions 4 and 5 of Theorem2 can be obtained.

To follow the definition λ = max{γ, β + δ − 1}, λ = γ when β < 3(1−δ)2+4(1−δ)
4

and λ = β + δ − 1 otherwise.

A Tool Kit for Partial Key Exposure Attacks on RSA 67

3.3 Attack 3

In this section, we propose a better lattice construction than that in Sect. 3.2.
Notice that the Newton polygon of fi2(x, y, z) is symmetric with respect to y and
z. Hence, we should add extra shifts for the smaller variable. From the bound of
the Attack 2, Y = Nλ = N3(1−δ)2/4 ≥ Z = N δ when δ < 1/3. Therefore, we add
extra shifts for z for such small δ. We construct a lattice that is symmetric with
respect to y and z from that in Sect. 3.2 and the integer equation fi2(x, y, z) = 0

can be solved when X(1
3+

τ
2)m3

Y (1
2+

τ
2)m3

Z

(
1
2+τ+ τ2

2

)
m3

< W (1
3+

τ
2)m3

. By sub-
stituting τ = 1−λ−2δ

2δ , the condition 6 of Theorem 2 can be obtained. Notice that
when δ < 1/3, β + δ − 1 < γ ≤ 1 − 2

√
3δ
3 always hold for β < 1.

4 Attacks with the MSBs of d by Solving Modular
Equations

In this section, we solve modular equations and propose three attacks, i.e.,
Attacks 4–6, for (1, β, γ, δ)-partial key exposure attacks with the MSBs of d.
The Attack 4, 5, and 6 in Sects. 4.1, 4.2, and 4.3 correspond to the conditions
2, 3, and 1 of Theorem2, respectively. Algorithm constructions in Sects. 4.1 and
4.2, that in Sect. 4.3 are similar to Takayasu-Kunihiro’s [25,26], respectively.

4.1 The Attack 4

As in Sect. 3.2, when d̃ which is the MSBs of d is given, RSA key generation can
be written as e(d̃M + d′) = 1 + kΦ(N) with some integer k such that |k| ≤ Nβ

and M = 2�γ log N	. Then, we find the root of the following modular polynomial:

fMSBs,m(x, y) = 1 + (k̃ + x)(Φ̃(N) + y) (mod e)

where k̃ = �(ed̃ − 1)/Φ̃(N)� which is an approximation to k as in Sect. 3.2. If
we can recover the root (x, y) = (k − k̃, Φ(N) − Φ̃(N)), whole secret information
can be computed. To obtain better results than integer equations based method
in Sect. 3, we use a linearized variable z = (k̃ + x)y + 1. The absolute values
of the root are bounded above by X := Nλ, Y := N δ, Z := Nβ+δ where λ =
max{γ, β + δ − 1}.

To solve the modular equation fMSBs,m(x, y) = 0, we use the following shift-
polynomials gMSBs.m1

[u,i] (x, y) and gMSBs.m2
[u,i] (x, y):

gMSBs.m1
[u,i] (x, y) := xu−ifMSBs,m(x, y)iem−i and

gMSBs.m2
[u,j] (x, y) := yjfMSBs,m(x, y)uem−u.

All these shift-polynomials gMSBs.m1
[u,i] and gMSBs.m2

[u,j] modulo em have the root

(x, y) = (k − k̃, Φ(N) − Φ̃(N)) that is the same as fMSBs,m(x, y). We build
a lattice with these polynomials. In this section, we show a basic lattice con-
struction to solve the modular equation and the resulting algorithm works when

68 A. Takayasu and N. Kunihiro

1−δ−
√

δ(1−δ)
3 ≤ β < 1−δ and 1/3 ≤ δ, and when 1−δ−

√
δ(1−δ)

3 ≤ β < 1−
√

δ
3

and δ < 1/3. In the lattice construction, we use shift-polynomials gMSBs.m1
[u,i] (x, y)

and gMSBs.m2
[u,i] (x, y) with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,

⌊
β − λ

δ
m +

1 + λ − δ − 2β

δ
u

⌋

,

respectively. Although the selections of shift-polynomials generate non-triangular
basis matrices, we partially apply the linearization z = (k̃+x)y+1 and the basis
matrices can be transformed into triangular as in [25]. We follow the result and
the basis matrices have diagonals

– Xu−
lMSBs(i)�Y i−
lMSBs(i)�Z
lMSBs(i)�em−i for gMSBs.m1
[u,i] (x, y) and

– Xu−
lMSBs(u+j)�Y u+j−
lMSBs(u+j)�Z
lMSBs(u+j)�em−u for gMSBs.m2
[u,j] (x, y)

where lMSBs(j) := max
{

0, δj−(β−λ)m
1+λ−2β

}

.

Notice that the result is valid only when 1+λ−δ−2β
δ ≤ 1, i.e., β ≥ 1+λ−2δ

2 ,
since unravelled linearization does not work well otherwise in the sense that
the diagonals of triangular basis matrices become larger. We define the above
polynomial selections for all the gMSBs.m2

[u,j] (x, y) to be helpful.

Lemma 2. Assume there are shift-polynomials gMSBs.m1
[u,u′+j′] (x, y) for u = u′ +

j′, . . . ,m and gMSBs.m2
[u,u′+j′−u](x, y) for u = u′ + 1, . . . , u′ + j′ − 1 in lattice

bases. Then, shift-polynomials gMSBs.m2
[u′,j′] (x, y)are helpful polynomials when

u′ = 0, 1, . . . ,m; j′ = 1, . . . , �β−λ
δ m + 1+λ−δ−2β

δ u�, whereas shift-polynomials
gMSBs.m2
[u′,j′] (x, y) are unhelpful polynomials when u′ = 0, 1, . . . , m; j′ > β−λ

δ m +
1+λ−δ−2β

δ u.

When m + β−λ
δ m + 1+λ−δ−2β

δ m = 1−β
δ m ≤ 1, i.e., β ≥ 1 − δ, shift-polynomials

gMSBs.m1
[u,j] (x, y) for u ≥ β−λ

2β+δ−λ−1 ; i ≥ β−λ
2β+δ−λ−1 are unhelpful polynomials and

do not contribute for the basis matrices to be triangular. In addition, when
1+λ−δ−2β

δ ≤ 0, i.e., β ≥ 1+λ−δ
2 , not all the gMSBs.m2

[u,j] (x, y) become helpful
polynomials. Hence, we use the above collection of shift-polynomials only when
β < min{1 − δ, 1+λ−δ

2 }.
The above lattice yields the condition 2 of Theorem2. Notice that the bound

is always larger than β + δ − 1. When β ≥ 1 −
√

δ
3 and δ < 1/3, the Attack 3

becomes the best.

4.2 The Attack 5

In this section, we propose an attack for larger β, i.e., β ≥ 1 − δ for 1/3 ≤ δ.
As discussed above, the polynomial selections in Sect. 4.1 have unhelpful poly-
nomials in this case and we should eliminate them to obtain better results.

A Tool Kit for Partial Key Exposure Attacks on RSA 69

For the purpose, in this section, we use shift-polynomials gMSBs.m1
[u,i] (x, y) and

gMSBs.m2
[u,j] (x, y) with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . ,min{u, t} and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,min
{⌊

β − λ

δ
m +

1 + λ − δ − 2β

δ
u

⌋

, t − u

}

,

for some integer t, respectively. The parameter τ = t/m should be optimized
later. The selections of shift-polynomials generate basis matrices that are not
triangular. However, we partially apply the linearization z = (k̃ + x)y + 1 and
the basis matrices can be transformed into triangular as in Sect. 3.3. Moreover,
the diagonals of the basis matrices are the same as those in Sect. 3.3. Hence,
Lemma 2 also holds. We use the above polynomial selections when β−λ

δ m < t and
1+λ−δ−2β

δ > 0 hold, i.e., β < min{δτ + λ, 1+λ−δ
2 }, since all the gMSBs.m2

[u,j] (x, y)
do not become helpful polynomials otherwise.

The above lattice yields the condition 3 of Theorem2. The attack 2 becomes
the best for larger β.

4.3 The Attack 6

In this section, we propose an attack for smaller β, i.e., β < 1 − δ −
√

δ(1−δ)
3 .

As discussed above, the polynomial selections in Sect. 4.1 collect gMSBs.m2
[u,j] (x, y)

where all the shifts are not helpful. The defect follows from the fact that when
1+λ−δ−2β

δ > 1, the unravelled linearization does not work well and the diagonals
of the resulting triangular basis matrices become larger. Hence, in this section,
we use shift-polynomials gMSBs.m1

[u,i] (x, y) and gMSBs.m2
[u,j] (x, y) with indices in Ix

and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and
Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . , t + u,

for some integer t, respectively. The parameter τ = t/m should be optimized
later. The selections of shift-polynomials generate basis matrices that are not
triangular. However, we partially apply the linearization z = (k̃ + x)y + 1 and
the basis matrices can be transformed into triangular as in Sect. 4.1. Moreover,
the diagonals of the basis matrices are the same as those in Sect. 3.3 by modifying
lMSBs(k) := max

{

0, k−τm
2

}

. Hence, Lemma 2 also holds. By substituting τ =
1−2δ−λ

2δ , the above lattice yields the condition 1 of Theorem2.

5 Attacks with the LSBs of d by Solving Modular
Equations

In this section, we solve modular equations and propose two attacks, i.e., Attacks
6 and 7, for (1, β, γ, δ)-partial key exposure attacks with the LSBs of d. The
Attack 7 and 8 in Sects. 5.1 and 5.2 corresponds to the conditions 2 and 1 of
Theorem 3, respectively. Algorithm constructions in Sect. 5.1 and that in Sect. 5.2
is similar to Takayasu-Kunihiro’s [25,26], respectively.

70 A. Takayasu and N. Kunihiro

5.1 The Attack 7

As in Sect. 3.1, when d̃ which is the LSBs of d is given, RSA key generation can be
written as e(d̃ + d′M) = 1 + kΦ(N) with some integer k such that |k| ≤ Nβ and
M = 2�(β−γ) log N	. Then, we find the root of the following modular polynomials:

fLSBs.m1(x, y) := 1 − ed̃ + x(Φ̃(N) + y) (mod eM),

fLSBs.m2(x, y) := 1 + x(Φ̃(N) + y) (mod e).

If we can recover the root (x, y) = (k, Φ(N) − Φ̃(N)), whole secret information
can be computed. To obtain better results than integer equations based method
in Sect. 3, we use a linearized variable z = xy + 1. The absolute values of the
root are bounded above by X := Nβ , Y := N δ, Z := Nβ+δ.

To solve the modular equations fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0,
we use the following shift-polynomials gLSBs.m1

[u,i] (x, y) and gLSBs.m2
[u,j] (x, y):

gLSBs.m1
[u,i] (x, y) :=xu−ifLSBs.m1(x, y)i(eM)m−i and

gLSBs.m2
[u,j] (x, y) :=yjfLSBs.m1(x, y)u−
lLSBs(j)�fLSBs.m2(x, y)
lLSBs(j)�·

em−uMm−(u−
lLSBs(j)�),

where lLSBs(j) = max
{

0, δj−(β−γ)m
1−2β+γ−δ

}

. All these shift-polynomials gLSBs.m1
[u,i]

and gLSBs.m2
[u,j] modulo (eM)m have the root (x, y) = (k, Φ(N) − Φ̃(N)) that is

the same as fLSBs,m1(x, y) and fLSBs,m2(x, y). We build a lattice with these
polynomials. In this section, we show a basic lattice construction to solve the

modular equations and the resulting algorithm works when 1 − δ −
√

δ(1−δ)
3 ≤

β < 1 − δ
2 −

√
3δ(4−δ)

6 . In the lattice construction, we use shift-polynomials
gLSBs.m1
[u,i] (x, y) and gLSBs.m2

[u,j] (x, y) with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,

⌊
β − λ

δ
m +

1 + λ − δ − 2β

δ
u

⌋

,

respectively. Although the selections of shift-polynomials generate non-triangular
basis matrices, we partially apply the linearization z = xy + 1 and the basis
matrices can be transformed into triangular as in [25]. We follow the result and
the basis matrices have diagonals

– XuY i(eM)m−i for gLSBs.m1
[u,i] (x, y) and

– Xu−
lLSBs(u+j)�Y u+j−
lLSBs(u+j)�Z
lLSBs(u+j)�em−uMm−(u−
lLSBs(u+j)�)

for gLSBs.m2
[u,j] (x, y).

Notice that the result is valid only when 1+γ−δ−2β
δ ≤ 1, i.e., β ≥ 1+γ−2δ

2 ,
since unravelled linearization does not work well otherwise. We define the above
polynomial selections for all the gMSBs.m2

[u,j] (x, y) to be helpful.

A Tool Kit for Partial Key Exposure Attacks on RSA 71

Lemma 3. Assume there are shift-polynomials gLSBs.m2
[u′+i,j′+i](x, y) for i =

1, 2, . . . ,m − u′ in lattice bases. Then, shift-polynomials gLSBs.m2
[u′,j′] (x, y)are help-

ful polynomials when u′ = 0, 1, . . . ,m; j′ = 1, . . . , �β−γ
δ m + 1+γ−δ−2β

δ u′�,
whereas shift-polynomials gLSBs.m2

[u′,j′] (x, y)are unhelpful polynomials when u′ =

0, 1, . . . ,m; j′ > β−γ
δ m + 1+γ−δ−2β

δ u′.

When 1+γ−δ−2β
δ ≤ 0, i.e., β ≥ 1+γ−δ

2 , all the shift-polynomials
gLSBs.m2
[u,j] (x, y) in the above selection do not become a helpful polynomial since

the assumption in Lemma 3 fails. Hence, we use the above collection of shift-
polynomials only when β < 1+γ−δ

2 .
The above lattice yields the condition 2 of Theorem3. When 1 − δ

2 −√
3δ(4−δ)

6 ≤ β, Theorem 1 becomes the best.

5.2 The Attack 8

In this section we propose an attack that works when β < 1 − δ −
√

δ(1−δ)
3 .

In the lattice construction, we use the same shift-polynomials gLSBs.m1
[u,i] (x, y)

and gLSBs.m2
[u,j] (x, y) where lLSBs(j) = max {0, j − τm} with indices in Ix and Iy

where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and
Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . , t + u,

respectively. The parameter τ = t/m should be optimized later. Although the
selections of shift-polynomials generate non-triangular basis matrices, we par-
tially apply the linearization z = xy + 1 and the basis matrices can be trans-
formed into triangular as in Sect. 5.1. The basis matrices have the same diagonals
as those in Sect. 5.1 although the function lLSBs(j) is modified.

We set the parameter τ = 1−2δ−γ
2δ and the above lattice yields the condition

1 of Theorem 2.

Acknowledgement. The first author is supported by a JSPS Fellowship for Young
Scientists. This research was supported by CREST, JST, and supported by JSPS
Grant-in-Aid for JSPS Fellows 14J08237 and KAKENHI Grant Number 25280001 and
16H02780.

References

1. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 2

2. Blömer, J., May, A.: A tool kit for finding small roots of bivariate polynomials
over the integers. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
251–267. Springer, Heidelberg (2005). doi:10.1007/11426639 15

http://dx.doi.org/10.1007/978-3-540-45146-4_2
http://dx.doi.org/10.1007/978-3-540-45146-4_2
http://dx.doi.org/10.1007/11426639_15

72 A. Takayasu and N. Kunihiro

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000)

4. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998). doi:10.1007/3-540-49649-1 3

5. Ciet, M., Koeune, F., Laguillaumie, F., Quisquater, J.J.: Short private exponent
attacks on fast variants of RSA. UCL Crypto Group Technical report series CG-
2002/4, University Catholique de Louvain (2002)

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178–189. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 16

7. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996). doi:10.1007/3-540-68339-9 14

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

9. Coppersmith, D.: Finding small solutions to small degree polynomials. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer,
Heidelberg (2001). doi:10.1007/3-540-44670-2 3

10. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 29

11. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: a direct
approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 21

12. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005). doi:10.1007/11426639 22

13. Hinek, M.J.: On the security of multi-prime RSA. J. Math. Cryptol. 2(2), 117–147
(2008)

14. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). doi:10.1007/BFb0024458

15. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
doi:10.1007/11935230 18

16. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Math. Ann. 261, 515–534 (1982)

17. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

18. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications.
Information Security and Cryptography, pp. 315–348. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-02295-1 10

19. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman,
J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001).
doi:10.1007/3-540-44670-2 12

http://dx.doi.org/10.1007/3-540-49649-1_3
http://dx.doi.org/10.1007/3-540-68339-9_16
http://dx.doi.org/10.1007/3-540-68339-9_14
http://dx.doi.org/10.1007/3-540-44670-2_3
http://dx.doi.org/10.1007/978-3-540-24676-3_29
http://dx.doi.org/10.1007/978-3-540-74143-5_21
http://dx.doi.org/10.1007/11426639_22
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/11935230_18
http://dx.doi.org/10.1007/978-3-642-02295-1_10
http://dx.doi.org/10.1007/3-540-44670-2_12

A Tool Kit for Partial Key Exposure Attacks on RSA 73

20. Sarkar, S., Maitra, S.: Improved partial key exposure attacks on RSA by guess-
ing a few bits of one of the prime factors. In: Lee, P.J., Cheon, J.H. (eds.)
ICISC 2008. LNCS, vol. 5461, pp. 37–51. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00730-9 3

21. Sarkar, S., Maitra, S., Sarkar, S.: RSA cryptanalysis with increased bounds on
the secret exponent using less lattice dimension. IACR Cryptology ePrint Archive
2008, 315 (2008)

22. Sarkar, S., Sen Gupta, S., Maitra, S.: Partial key exposure attack on RSA –
improvements for limited lattice dimensions. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-17401-8 2

23. Sun, H.-M., Wu, M.-E., Steinfeld, R., Guo, J., Wang, H.: Cryptanalysis of short
exponent RSA with primes sharing least significant bits. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 49–63. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89641-8 4

24. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate lin-
ear equations modulo unknown divisors. IEICE Trans. 97-A(6), 1259–1272 (2014)

25. Takayasu, A., Kunihiro, N.: General bounds for small inverse problems and its
applications to multi-prime RSA. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS,
vol. 8949, pp. 3–17. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15943-0 1

26. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA: achieving the
Boneh-Durfee bound. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781,
pp. 345–362. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13051-4 21

27. Takayasu, A., Kunihiro, N.: How to generalize RSA cryptanalyses. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9615, pp. 67–97. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8 4

28. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA with multiple
exponent pairs. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723,
pp. 243–257. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40367-0 15

29. de Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra
Eng. Commun. Comput. 13(1), 17–28 (2002)

30. Zhang, H., Takagi, T.: Attacks on multi-prime RSA with small prime difference. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 41–56. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39059-3 4

31. Zhang, H., Takagi, T.: Improved attacks on multi-prime RSA with small prime
difference. IEICE Trans. 97-A(7), 1533–1541 (2014)

http://dx.doi.org/10.1007/978-3-642-00730-9_3
http://dx.doi.org/10.1007/978-3-642-00730-9_3
http://dx.doi.org/10.1007/978-3-642-17401-8_2
http://dx.doi.org/10.1007/978-3-642-17401-8_2
http://dx.doi.org/10.1007/978-3-540-89641-8_4
http://dx.doi.org/10.1007/978-3-319-15943-0_1
http://dx.doi.org/10.1007/978-3-319-13051-4_21
http://dx.doi.org/10.1007/978-3-662-49387-8_4
http://dx.doi.org/10.1007/978-3-319-40367-0_15
http://dx.doi.org/10.1007/978-3-642-39059-3_4

Fault and Glitch Resistant
Implementations

Feeding Two Cats with One Bowl: On Designing
a Fault and Side-Channel Resistant Software

Encoding Scheme

Jakub Breier1(B) and Xiaolu Hou2

1 Physical Analysis and Cryptographic Engineering,
Temasek Laboratories at Nanyang Technological University, Singapore, Singapore

jbreier@ntu.edu.sg
2 Divison of Mathematical Sciences, Nanyang Technological University,

Singapore, Singapore
ho0001lu@e.ntu.edu.sg

Abstract. When it comes to side-channel countermeasures, software
encoding schemes are becoming popular and provide a good level of secu-
rity for general-purpose microcontrollers. However, these schemes are not
designed to be fault resistant, and this property is discussed very rarely.
Therefore, implementers have to pile up two different countermeasures
in order to protect the algorithm against these two popular classes of
attacks.

In our paper, we discuss the fault resistance properties of encoding
schemes in general. We define theoretical bounds that clearly show the
possibilities and limitations of encoding-based countermeasures, together
with trade-offs between side-channel and fault resistance. Moreover, we
simulate several codes with respect to most popular fault models, using
a general-purpose microcontroller assembly implementation. Our algo-
rithm shows how to implement fault resistance to an encoding scheme
that currently has the best side-channel resistant capabilities. As a result,
we are able to design a code by using automated methods, that can pro-
vide the optimal trade-off between side-channel and fault resistance.

Keywords: Software encoding schemes · Side-channel attacks · Fault
attacks · Countermeasures

1 Introduction

When it comes to small, constrained devices, such as the ones designed for
Internet of Things applications, they are usually easy to access and do not con-
tain comprehensive security measures to protect them. Therefore, even though
a strong cryptography is used to protect the communication, hardware attacks
pose a serious threat. Side-channel and fault attacks are among the most popular
means to breach the device security. When designing a cryptographic implemen-
tation, it is necessary to consider countermeasures against these attacks.

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 77–94, 2017.
DOI: 10.1007/978-3-319-52153-4 5

78 J. Breier and X. Hou

There are two main countermeasure classes to protect implementations
against side channel attacks. Masking [8] is a software-level countermeasure
which tries to “mask” the relationship between the intermediate values and
power leakage. Hiding [18] tries to reduce the signal and increase noise by utiliz-
ing various techniques – it “hides” the operations performed by the device. While
masking can make fault attacks more challenging, it does not help to prevent
them. On the other hand, some hiding techniques, such as dual-rail precharge
logic (DPL), help in preventing fault attacks by detecting faults [16].

In 2011, DPL was extended to software by Hoogvorst et al. [9], by using
balanced encoding schemes. Since then, there were several other proposals
[5,12,13,17], all of them using various coding techniques to prevent side-channel
leakage. However, it was shown, that unlike hardware DPL representation, its
software counterpart is not fault resistant by default [2]. Therefore, to prevent
both attack techniques, it is necessary to design the coding scheme from the
beginning with this goal in mind.

In this paper, we introduce a theoretical background necessary for design-
ing software hiding countermeasures that are resistant to both side-channel and
fault attacks. We provide an algorithm for constructing such codes and ranking
them according to required properties. We select optimal codes for various dis-
tances and number of codewords, and evaluate them – by using detection and
correction probabilities and by simulating them in a faulty environment. This
simulation is done by using a general-purpose microcontroller implementation
and an instruction set simulator that is capable of injecting different fault mod-
els into any instruction of the code. Our results show that the codes generated
by our algorithm provide a high security level with respect to both side-channel
and fault attacks.

The rest of the paper is organized as follows. Section 2 provides an overview
of the related work in this field, together with necessary background on coding
theory. Section 3 defines the properties of codes with respect to fault attacks.
Section 4 details our algorithm, and provides estimated and simulated results
on chosen codes. These results are further discussed in Sect. 5. Finally, Sect. 6
concludes this paper and provides a motivation for further work.

2 General Background

In this section we provide a necessary background on software encoding-based
side-channel countermeasures and coding theory for developing a combined coun-
termeasure. Subsect. 2.1 overviews the related work in the field. Subsect. 2.2 pro-
vides basic definitions that are used later in this paper.

2.1 Related Work

After the paper by Hoogvorst et al. [9] presented a method to extend the DPL to
software implementations, several works were published in the area of software
hiding schemes.

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 79

Rauzy et al. [13] developed a scheme that encodes the data by using bit-
slicing, where only one bit of information is processed at a time. They claim
this kind of protection is 250 times more resistant to power analysis attacks
compared to the unprotected implementation, while being 3 times slower. For
testing, they used PRESENT cipher, running on an 8-bit microcontroller.

Chen et al. [5] proposed an encoding scheme that adds a complementary bit
to each bit of the processed data, resulting in a constant Hamming weight code.
Their countermeasure was implemented on a PRINCE cipher, using an 8-bit
microcontroller.

Servant et al. [17] introduced a constant weight implementation for AES,
by using a (3,6)-code. To improve the performance, they split 8-bit variables
into two 4 bit words and encode them separately. This implementation was also
capable of detecting faults with 93.75% probability. Their implementation used
a 16-bit microcontroller.

Maghrebi et al. [12] proposed an encoding scheme that differs from the previ-
ous proposals. For their case, they did not assume the Hamming weight leakage
model for register bits, therefore they concluded that balanced codes might not
be the optimal ones to use. In their method, they first obtain the profile of a
device to get a vector of register bit leakages. Then they estimate leakage values
for each codeword and build a code by using codewords with the lowest leak-
age. Their algorithm selects the optimal code by ranking the codes based on
the difference in power consumption between the codewords and on the power
consumption variance. Our algorithm extends this idea by adding the variance
of register bits in order to achieve better leakage characteristics and by adding
conditions for error detection and correction.

In general, none of the previous schemes have been designed for fault resis-
tance. Schemes proposed in [5,13] have been analyzed with respect to fault
attacks by Breier et al. [2], concluding that without additional modifications
to assembly code, the probability of a successful fault attack is non-negligible.
Therefore, to improve the current state-of-the-art, we focus on designing fault
tolerant and side-channel resistant coding schemes.

When it comes to combined countermeasures, in [15], Schneider et al. pro-
posed a hardware countermeasure based on combining threshold implementation
with linear codes. As stated in the paper, their proposal is not considered for
software targets. In the execution process, there are multiple checking steps that
protect the implementation against faults. However, in software, it would be
easy to overcome such checks by multiple fault injections [19]. Also, it would
be possible to inject faults that are impossible with hardware implementations,
such as instruction skips [3].

Our contributions in this work are:

– We define theoretical bounds for encoding schemes with respect to fault
attacks that are necessary to take into account when designing a fault resistant
scheme.

80 J. Breier and X. Hou

– We show how to design a code that is capable of protecting the implementation
against side-channel and fault attacks and we show trade-offs between these
two resistances.

– We improve the ranking algorithm proposed in [12] (current state-of-the-art)
for constructing side-channel resistant codes with better properties – by rank-
ing the codes according to the codeword with the highest leakage, and by
calculating the register bit variance. Furthermore, we add the conditions for
selecting the codes with the desired error detection/correction capabilities in
an automated way.

– We analyze the codes constructed by our algorithm – we calculate leakages,
fault detection and correction probabilities, and we simulate the assembly code
implementing the codes on a general-purpose microcontroller.

2.2 Coding Theory Background

A binary code, denoted by C, is a subset of the n-dimensional vector space over
F2 − F

n
2 , where n is called the length of the code C. Each element c ∈ C is

called a codeword in C and each element x ∈ F
n
2 is called a word [10, p. 6]. Take

two codewords c, c′ ∈ C, the Hamming distance between c and c′, denoted by
dis (c, c′), is defined to be the number of places at which c and c′ differ [10, p. 9].
More precisely, if c = c1c2 . . . cn and c′ = c′

1c
′
2 . . . c′

n, then

dis (c, c′) =
n∑

i=1

dis (ci, c′
i) ,

where ci and c′
i are treated as binary words of length 1 and hence

dis (ci, c′
i) =

{

1 if ci �= c′
i

0 if ci = c′
i

.

Furthermore, for a binary code C, the (minimum) distance of C, denoted by
dis (C), is [10, p. 11]

dis (C) = min{dis (c, c′) : c, c′ ∈ C, c �= c′}.

Definition 1 [6, p. 75]. For a binary code C of length n with dis (C) = d, let
M = |C| denote the number of codewords in C. Then C is called an (n,M, d)-
binary code.

This minimum distance of a binary code is closely related to the error-detection
and error-correction capabilities of C.

Definition 2 [10, p. 12]. Let u be a positive integer. C is said to be u-error-
detecting if, whenever there is at least one but at most u errors that occur in a
codeword in C, the resulting word is not in C.

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 81

From the definition, it is easy to prove that C is u-error-detecting if and only if
dis (C) ≥ u + 1 [10, p. 12]. A common decoding method that is used is nearest
neighbor decoding, which decodes a word x ∈ F

n
2 to the codeword cx such that

dis (x, cx) = min
c∈C

dis (x, c) . (1)

When there are more codewords cx that satisfy (1), the incomplete decoding
rule requires a retransmission [10, p. 10].

Definition 3 [10, p. 13]. Let v be a positive integer. C is v−error-correcting if
minimum distance decoding with incomplete decoding rule is applied, v or fewer
errors can be corrected.

Remark 1. C is v-error correcting if and only if dis (C) ≥ 2v + 1 [10, p. 13].

Definition 4 [7]. An (n,M, d)-binary code C is called an equidistant code if
∀c, c′ ∈ C, dis (c, c′) = d.

For our purpose, we will use binary code for protecting the underlying imple-
mentation.

We propose two choices of lookup tables:

1. Correction Table: This table will treat a word x ∈ F
n
2 the same as the code-

word cx ∈ C which satisfies dis (cx,x) ≤ �d−1
2 �, where d is the distance of C.

Note that this is equivalent to using bounded distance decoding [11, p. 36] and
taking the bounded distance to be �d−1

2 �. To use this table we require that
dis (C) ≥ 3.

2. Detection Table: This is a normal lookup table that returns a null value when
x /∈ C is accessed.

We will give a theoretical criterion to measure the bit flip fault resistant
capability of a binary code when it is used as an encoding countermeasure against
fault injection attacks in Sect. 3. Afterwards we propose two coding schemes. The
encoding schemes will be simulated (and implemented) and evaluated in Sect. 4.

Let m be a positive integer such that 1 ≤ m ≤ n, where n is the code length.

Definition 5. An m-bit fault is a fault injected in the codeword that flips exactly
m bits. We assume each bit has an equal probability to be flipped.

Definition 6. When the fault is analyzed, we adopt the following terminologies:

– Corrected: fault is detected and corrected.
– Null: fault is detected and results into zero output.
– Invalid: fault is detected and results into an output that is not a codeword.
– Valid: fault is not detected and fault injection is successful, i.e. it results in

the output of a valid but incorrect codeword.

82 J. Breier and X. Hou

3 Theoretical Analysis

In this section we will first give the theoretical analysis for the fault resistant
capabilities of binary code in general. Then we propose two different coding
schemes and analyze the fault resistant properties of codes used under those two
schemes.

3.1 Correction Table

Definition 7. For an (n,M, d)-binary code C such that d ≥ 3, let

Fc,m :=
{

x ∈ F
n
2 : dis (c,x) = mand∃c′ ∈ C such that dis (x, c′) ≤

⌊
d − 1

2

⌋}

.

Then

pm,(e) :=

{

1 m ≤ �d−1
2 �

1 − 1

M(n
m)

∑

c∈C |Fc,m| m > �d−1
2 � (2)

is called the m-bit fault resistance probability with error correction for C.

As mentioned earlier, when a Correction Table is used, it is equivalent to using
bounded distance decoding. When m ≤ �d−1

2 � bits are flipped, by Remark 1, the
error will be corrected and hence pm,(e) = 1. When m > �d−1

2 � bits are flipped,
the fault will be valid if the resulting word is at distance at most �d−1

2 � from
any codeword. Thus by Definition 6, 1 − pm,(e) gives the theoretical probability
of a Valid fault and the bigger pm,(e) is, the more resistant the binary code to
m-bit fault. Furthermore, when m = 1, the fault will be corrected and most of
the cases are expected to return Corrected.

Another interesting fault model is random fault, i.e. assuming there is an
equal probability for m-bits fault to occur ∀1 ≤ m ≤ n. Taking this into account,
we define

Definition 8. For an (n,M, d)-binary code C such that d ≥ 3, let pm,(e) be its
m-bit fault resistance probability with error for 1 ≤ m ≤ n, then

prand,(e) :=
n∑

m=1

1
n

pm,(e)

is called the overall resistance index with error correction for C.

As suggested by the name, the bigger prand,(e) is, the more resistant the code C
is to random faults.

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 83

3.2 Detection Table

Now we consider Detection Table.

Definition 9. For an (n,M, d)-binary code C such that d ≥ 2, let

Sm :=
∑

c∈C
|{c′ ∈ C : dis (c′, c) = m}|.

Then
pm := 1 − Sm

M
(
n
m

) (3)

is called the m-bit fault resistance probability for C.
When an m-bit fault is injected in the codeword, if the resulting word is not

a codeword then the value will be set to Null. The only case when the fault is
valid is when after m bits are flipped, the resulting word is still a codeword.
Thus by Definition 6, 1 − pm gives the theoretical probability of a Valid fault.
Hence the bigger pm is, the better the binary code is m-fault resistant.

Remark 2. When m < d, no codeword is at distance m from each other and
hence pm = 1.

Note that if Sn = M , i.e. for each codeword c ∈ C, there exists a c′ ∈ C such
that dis (c, c′) = n, then we have

pn = 1 − M

M
(
n
n

) = 1 − 1 = 0.

That means, for this code, n-bit fault will always be injected successfully. In view
of this, we exclude these kind of codes from our selection (see Algorithm 1). In
practice, n and M are fixed known values, from Eq. (3), to get bigger pm the goal
of choosing the code C is to make Sm small. There are several ways of achieving
this depending on the preference of the user:

1. For small values of m, make pm = 0: choose code with a bigger minimum
distance d, then pm will be 1 for more values of m. Of course, there is a limit
for the minimum distance that can be achieved (see Table 1). This particular
scheme will be discussed in Sect. 3.3, where it is called Detection Scheme.

2. A certain m0-bit fault resistance is desired: choose code such that Sm0 = 0.
3. Sacrificing one m0-bit fault resistance to achieve m-bit fault resistance for all

other values of m �= m0: this is possible by using equidistant codes. That is,
take code such that |Sm0 | = M . This particular scheme will be discussed in
Sect. 3.3, where it is called Equidistant Detection Scheme.

4. Making all pm almost equally large: choose C such that Sm are similar for all
m > d. Note that

n∑

m=d+1

Sm = M

is always true.

84 J. Breier and X. Hou

Similar to last subsection, considering random fault, we define

Definition 10. For an (n,M, d)-binary code C such that d ≥ 2, let pm be its
m-bit fault resistance probability for 1 ≤ m ≤ n, then

prand :=
n∑

m=1

1
n

pm

is called the overall resistance index for C.

Note that the bigger prand is, the more resistant the code C is to random faults.

Lemma 1. For an (n,M, d)-binary code C, if it is equidistant, then

pm =

{

1 m �= d

1 − M−1

(nd)
m = d

, and prand = 1 − M − 1
(
n
d

)

n
.

3.3 Coding Schemes

Here we propose two different coding schemes:

1. Detection Scheme: using binary code which has minimum distance at least 2.
2. Correction Scheme: using binary code which has minimum distance at least

3 with error correction enabled lookup table.

Furthermore, as will be seen from the rest of this paper, equidistant codes
have different behaviors than codes that are not equidistant. Hence when equidis-
tant codes are used, we emphasize the usage by referring to the schemes as
“Equidistant detection scheme” and “Equidistant correction scheme” respec-
tively.

We will analyze the m-bit fault resistant probability (with error) as well as
overall resistance index (with error) for each of them using (n,M, d) binary codes
for n = 8, 9, 10 and M = 4, 16. We chose M = 4 because it is easy to analyze
and explain, and M = 16 because it can encode one nibble of the data, therefore
it is usable in a practical scenario1.

Firstly, we discuss the possible values of the minimum distance d. As is well
known in coding theory, fixing the length of the code n and minimum distance
d, M is upper bounded by certain value. This upper bound is tight for small
values n and d and still open for a lot of other values [6, p. 247]. In particular,
for n = 8, 9, 10 and different values of d we know the exact possible values of
M . In return, the possible values of d are known when n,M are fixed. In Table 1
we list the possible minimum distances that can be achieved for n = 8, 9, 10 and
M = 4 or 16. Note that the values are taken from [6, pp. 247, 248] and [4].

1 To illustrate the usage of the schemes we refer the readers to the extended version
of this paper (ia.cr/2016/931).

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 85

Table 1. Possible (n, M, d)-binary codes for n = 8, 9, 10, M = 16 and n = 8, M = 4.

n M d

8 4 2, 3, 4, 5

8 16 2, 3, 4

9 16 2, 3, 4

10 16 2, 3, 4

For equidistant binary code, we have the following constraint on d:

Lemma 2. Let C be an (n,M, d) equidistant binary code such that M ≥ 3, then
d is even.

Proof. Recall the Hamming weight of a word x ∈ F
n
2 , denoted by wt(x) is defined

to be the number of nonzero coordinates in x [10, p. 46]. And we have the
following relation (see [10, Corollary 4.3.4 and Lemma 4.3.5])

wt(x) + wt(y) ≡ dis (x,y) mod 2.

Take an (n,M, d) equidistant binary code C and any three distinct codewords
x,y,z ∈ C, we have

dis (x,y) + dis (y,z) + dis (z,x) ≡ 2wt(x) + 2wt(y) + 2wt(z) ≡ 0 mod 2.

Hence, d cannot be odd.

Furthermore we have M ≤ n + 1 [7]. Thus we will only consider (8, 4, 2) and
(8, 4, 4) equidistant binary codes. The fact that such codes exist can be derived
from [7].

4 Evaluation Methodology and Results

In this section, we will utilize the findings stated in Sect. 3 to build the codes
with the optimal side-channel and fault detection properties. First, we construct
an algorithm that finds the codes based on searching criteria in Sect. 4.1. Then
we show properties of the codes that were produced by the algorithm in Sect. 4.2.
To verify our theoretical results, we simulate fault injections into these codes, by
using the fault simulator which will be explained in Sect. 4.3. Finally, we present
and discuss the simulation results in Sect. 4.4.

4.1 Code Generation and Ranking Algorithm

When it comes to device leakage, it normally depends on the processed inter-
mediate values. In [12], they proposed the first encoding scheme that assumed
a stochastic leakage model over the Hamming weight model. In such model,
leakage is formulated as follows:

T (x) = L(x) + ε, (4)

86 J. Breier and X. Hou

where L is the leakage function mapping the deterministic intermediate value (x)
processed in the register to its side-channel leakage, and ε is the (assumed) mean-
free Gaussian noise. For 8-bit microcontroller case, we can specify this function
as L(x) = α0+α1x1+ . . . α8x8, where xi is the i-th bit of the intermediate value,
and αi is the i-th bit weight leakage for specific register [14]. The αi values can
be obtained by using the following equation:

α = (ATA)−1ATT, (5)

where A is a matrix of intermediate values and T is a set of traces. After the
device profiling which obtains the α, we can use our ranking algorithm for select-
ing the optimal code (Algorithm 1). Note that one can still use the Hamming
weight model – for that case, α has to be defined as unity. In the following, we
will explain how the algorithm works.

First, the inputs have to be specified – length (n), number of the codewords
(M), minimum distance (d) and leakages of the register bits (αi). Depending on
these values, the algorithm analyzes every possible set of M codewords that can
be a potential code candidate. Lines 2–3 iterate over every combination of two
codewords. Lines 4–6 test if the minimum distance condition is fulfilled. Then,
lines 7–10 check, whether for each codeword there exists another codeword which
is at distance n from it – if yes, we skip this set. This condition is necessary
in order to get a code resistant against n-bit flip (we will detail such case in
Sect. 5). Lines 11–13 compute the 3 values that are used in order to calculate
the values for the whole code in the later phase: estimated power consumption
for the codeword, stored in table A, estimated variance for bit leakages in the
codeword, stored in table B, and the highest bit leakage value, stored in table
C. Next, the codeword value is stored in the index table I.

Lines 14–16 use the values from tables A,B,C to compute the register leakage
variance (μS[x] denotes the mean leakage for a word S[x]), highest variance for
bit leakages within registers, and value of the highest bit leakage within registers
for the set S. These values are stored in tables D,E, F , respectively, and are
used in the final evaluation.

The final evaluation is the last phase of the algorithm. First, it takes a subset
of D with the best register leakage variance (μS denotes the mean leakage for
codewords in S). It narrows this subset to candidate codes with the lowest value
of the highest bit leakage according to set E. From these, it chooses the code
with the lowest bit leakage variance using table F .

4.2 Estimated Values for Chosen Codes

Codes with the best side-channel and fault resistance properties according to
Algorithm 1 with 4 and 16 codewords and various lengths can be found in Table 2.
Their detailed properties are stated in Table 32.

2 For more codes with cardinality 16 and various distances, please refer to the extended
version of this paper (ia.cr/2016/931).

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 87

Algorithm 1. Ranking algorithm that chooses the code with the optimal
leakage properties.

Input : n: the codeword bit-length, M : number of codewords, d: minimum
distance of the code, αi: the leakage bit weights of the register, where
i in [[1, n]]

Output: An (n, M, d) binary code
1 for Every set S of M words do
2 for x == 0; x < |S|; x++ do
3 for y == x + 1; y < |S|; y++ do
4 Calculate the distance dis (S[x], S[y]);
5 if dis (S[x], S[y]) < d (or dis (S[x], S[y])! = d, depends on

equidistance condition) then
6 continue with a different set S;

7 if dis (S[x], S[y]) == n then
8 ndistance++

9 if ndistance == n then
10 continue with a different set S;

11 Compute the estimated power consumption for codeword S[x] and store
the result in table A: A[S[x]] = Σn

i=1αiS[x][i];
12 Compute the estimated variance for bit leakages in S[x] and store the

result in table B: B[S[x]] = Σn
i=1((αiS[x][i]) − μS[x])

2;
13 Compute the bit with the highest bit leakage in S[x] and store the

result in table C: C[S[x]] = max(αiS[x][i]);

14 Compute the register leakage variance for codewords in S and store the

result in table D: D[S] = Σ
|S|
S[x]=1(A[S[x]] − μS)2;

15 Choose the highest variance for register bit leakages for codewords in S and
store the result in table E: E[S] = max(B);

16 Choose the value of the highest register bit leakage among the codewords in
S and store the result in table F : F [S] = max(C);

17 Get the optimal candidate using the following criteria:
1. Choose the candidates with the lowest register variances from D[S];
2. From this set, choose the candidates with the lowest value of the highest

leakage according to F [S];
3. Finally, choose from the previous set, take the candidate with the lowest bit

leakage variance according to E[S];

return M codewords in case all the conditions are met, or an empty set
otherwise

For calculating the register variance, we follow the similar methodology as
used in [12], together with their generated α values, but we improved their rank-
ing algorithm by calculating the bit variances inside registers and by selecting the
code which has the lowest leakage value for the highest leaking codeword. First
part of Table 3 shows these three values, with the order of preference according
to our ranking algorithm. Second part of the table shows bit fault resistance

88 J. Breier and X. Hou

Table 2. Codes used in evaluation.

Code Distance Denoted by

0x21, 0x22, 0x24, 0x30 = 2 C8,4,eq2

0x17, 0x41, 0x44, 0x94 >= 2 C8,4,min2

0x35, 0x4A, 0x8D, 0x9A >= 3 C8,4,min3

0x3B, 0x52, 0x68, 0xA2 = 4 C8,4,eq4

0x37, 0x4B, 0x70, 0x9E >= 4 C8,4,min4

0x4E, 0x61, 0x9B, 0xB4 >= 5 C8,4,min5

0x2E, 0xFB, 0xFC, 0x76, 0xB7, 0xE1, 0xCE, 0x5F,

0xD2, 0xD5, 0x6D, 0x43, 0xA2, 0x8B, 0x58, 0x44

>= 3 C8,16,min3

0xBC, 0x1FA, 0x1FD, 0xD7, 0x1E1, 0x1B7, 0x167,

0x1CB, 0xEE, 0x15F, 0x1C6, 0x174, 0x7B, 0x1D0,

0xCD, 0x19E

>= 3 C9,16,min3

0x12F, 0x3F7, 0x3F8, 0xFB, 0x1DE, 0x3CD, 0x2EE,

0x1E2, 0x35B, 0x27D, 0x2E1, 0x1D1, 0xF4, 0xC7,

0x2D2, 0x364

>= 4 C10,16,min4

probabilities, denoted by pm for m-bit flips in the codeword, as well as overall
resistance index, denoted by prand for the code. The last part of the table shows
the fault resistance probabilities with error correction, denoted by pm,(e), as well
as overall resistance index with error correction, which is denoted by prand,(e).
We do not consider codes with distance 1 because such codes do not provide pro-
tection against 1-bit flips and therefore the fault protection would be very low.
However, such codes can still be used for minimizing the side-channel leakage.

In general, if we aim for higher distance values, we get better detection and
correction capabilities, but the side-channel leakage is higher as well. That is
because if the distance is higher, it is more likely that the variance of leakage
among the codewords is bigger. Also, we can see that equidistant codes have a
constant detection probability of 1 except the case when number of bit flips is
the same as the code distance. Moreover, if we sum up the probabilities of all
the bit flip faults for non-equidistant codes, the overall detection probability is
lower. However, the side-channel leakage of equidistant codes is more than 10
times higher compared to non-equidistant codes.

4.3 Fault Simulation

The fault simulator we used was customized for the purpose of evaluating a
microcontroller assembly table look-up implementation of the encoding schemes
presented in this paper. More details on this simulator are provided in [1]. This
simulator helps us to extend the theoretical results to real-world results, where
one has to use capabilities of microprocessors for computing the results.

A high-level overview is given in Fig. 1. There are three instructions in total
– the first two LDI load the two operands into registers r0 and r1. Both of the

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 89

Table 3. Side-channel and fault properties of the codes.

α = [0.613331, 0.644584, 0.602531, 0.190986, 0.586268, 0.890951, 1.838814, 1.257943, 0.899922, 0.614699]

Code C8,4,eq2 C8,4,min2 C8,4,min3 C8,4,eq4 C8,4,min4 C8,4,min5 C8,16,min3 C9,16,min3 C10,16,min4

Codeword

variance

4.537 ×
10−4

1.460 ×
10−5

1.045 ×
10−4

9.555 ×
10−3

4.997 ×
10−4

8.032 ×
10−4

0.1190 0.0091 0.0134

Highest

leakage

1.4772 2.4413 2.6648 2.7935 3.2823 3.2769 2.0515 2.0515 3.7101

Bit

variance

0.0232 0.3821 0.4830 0.4560 0.3768 0.3779 0.4560 0.4657 0.3430

p1 1 1 1 1 1 1 1 1 1

p2 0.8929 0.9821 1 1 1 1 1 1 1

p3 1 0.9821 0.9911 1 1 1 0.9040 0.9464 1

p4 1 0.9857 0.9857 0.9571 0.9857 1 0.9161 0.9563 0.9512

p5 1 0.9911 0.9911 1 0.9732 0.9643 0.9687 0.9772 0.9950

p6 1 1 0.9821 1 0.9821 0.9643 0.9598 0.9821 0.9899

p7 1 1 0.9375 1 1 1 0.8906 0.9826 0.9958

p8 1 1 1 1 1 1 1 1 0.9833

p9 - - - - - - - 1 0.9875

p10 - - - - - - - - 1

prand 0.9866 0.9926 0.9859 0.9946 0.9926 0.9911 0.9549 0.9827 0.9903

p1,(e) - - 1 1 1 1 1 1 1

p2,(e) - - 0.9464 1 1 1 0.4241 0.6250 1

p3,(e) - - 0.9196 0.7857 0.9286 1 0.4844 0.6845 0.6583

p4,(e) - - 0.9143 0.9571 0.8786 0.8571 0.4071 0.6280 0.9214

p5,(e) - - 0.8661 0.7857 0.8482 0.8571 0.4286 0.6875 0.7004

p6,(e) - - 0.8036 1 0.8214 0.75 0.5536 0.7932 0.9435

p7,(e) - - 0.8125 1 0.875 0.75 0.6094 0.8576 0.8750

p8,(e) - - 0.5 1 1 1 0.1250 0.86111 0.9250

p9,(e) - - - - - - - 1 0.8375

p10,(e) - - - - - - - - 0.8750

prand,(e) - - 0.8453 0.9410 0.9190 0.9018 0.5040 0.7930 0.8736

operands are already encoded according to one of the coding schemes. The LPM
instruction loads the data from the look-up table stored in the memory by using
the values in r0 and r1, and the result is stored to register r2. This part works
as a standard instruction set simulator. During each execution, a fault is injected
into the code. For each type of fault, we test all the possible combinations of
codewords, and we disturbed all the instructions in our code. We have tested
the following fault models:

– Bit faults: in this fault model, one to n bits in the destination register change
its value to a complementary one.

– Random byte faults: The random byte fault model changes random number
of bits in the destination register.

– Instruction skip: instruction skip is a very powerful model that is capa-
ble of removing some countermeasures completely. We have tested a single
instruction skip on all three instructions in the code.

– Stuck-at fault: in this fault model, the value of the destination register
changes to a certain value, usually to all zeroes. Therefore, we have tested
this value in our simulator.

90 J. Breier and X. Hou

Fig. 1. Fault simulator operation overview.

After the output is produced under a faulty condition, it is analyzed by the out-
put checker, which decides on its classification. Outputs can be of four types
(Corrected, Valid, Invalid, Null), and these types are described in detail in
Sect. 2.2.

4.4 Simulated Results

Figure 2 shows plots for C8,4,min4 and C8,4,eq4, with and without the error correc-
tion. Instruction skip faults and stuck-at faults show zero success when attacking
any of the generated codes. When it comes to bit flips, we can see that for bet-
ter fault tolerance, one should not use the error correction capabilities, since
the properties of such codes allow changing the faulty codeword into another
codeword, depending on the number of bit flips and minimum distance of the
code. When deciding whether to choose an equidistant code or not, situation is
the same as in Table 3 – equidistant codes have slightly better fault detection
properties, but worse side-channel leakage protection. Therefore, it depends on
the implementer to choose a compromise between those two.

5 Discussion

First, we would like to explain the difference between the calculated results
in Table 3 and simulated results in Fig. 2 in equidistant code C8,4,min4. Table 3
shows theoretical results assuming that error happens before using the lookup
table. However, in a real-world setting, fault can be injected at any point of the
execution, including the table look-up, or even after obtaining the result from
the table. That is also why there are Invalid faults, despite the table always
outputs Null in case of being addressed by a word that does not correspond to
any codeword. Because there are three instructions in the assembly code, faulting
the destination register of the last one after returning the value from the table
results into 1/3 of Invalid faults in all the cases except instruction skips.

To explain the condition on lines 7–8 of the Algorithm1, we can take the code
with n = 8, M = 16, and d = 4 as an example. The simulation result for this code

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 91

Fig. 2. Simulation results for C8,4,eq4 with equidistant detection scheme in (a) and with
equidistant correction scheme in (b); C8,4,min4 with detection scheme in (c) and with
correction scheme in (d).

is stated in Fig. 3(a). There are no codes with these parameters that could satisfy
the above mentioned condition – all 480 codes that can be constructed, have the
property that if any codeword is faulted by n bit flip, it will change to other
codeword. Therefore, such codes are not suitable for protecting implementations
against fault attacks. For this reason, it is more suitable to use the C8,16,min3

code, stated in Fig. 3(b), that does not suffer from such property.
To summarize the results, we point out the following findings:

– Correction Scheme is not suitable for fault tolerant implementations – while
it can be helpful in non-adversary environments, where it can be statisti-
cally verified, how many bits are usually faulted, and therefore, a proper error
correction function can be specified, in adversary-based settings, one cannot
estimate the attacker capabilities. In case of correcting 1 bit error for example,
attacker who can flip multiple bits will have a higher probability of producing
Valid faults, compared to using detection scheme with the same code.

– We can design optimal code either from the fault tolerance perspective, or
from side-channel tolerance perspective – if we consider both, a compromise
has to be made, depending on which attack is more likely to happen or how
powerful an attacker can be in either setting. If we sacrifice the fault tolerance,
we will normally get a code with distance 2 (e.g. side-channel resistant codes

92 J. Breier and X. Hou

Fig. 3. Simulation results for the codes: (a) C8,16,min4 and (b) C8,16,min3.

in [12] all have distance 2 and they are not equidistant codes), therefore such
codes will be vulnerable to 2-bit faults. On the other hand, by relaxing the
power consumption variance condition, we will be able to choose codes with
bigger distance, being able to resist higher number of bit faults.

– Both types of resistances can be improved if we sacrifice the memory and
choose codes with greater lengths.

– Equidistant detection schemes is a good option in case the implementation
can be protected against certain number of bit flips – because all the Valid
faults are achieved only if the attacker flips the same number of bits as is
the distance. However, this condition does not hold in case of equidistant
correction schemes.

6 Conclusions

In this paper, we provided a necessary background for constructing side-channel
and fault attack resistant software encoding schemes. Current encoding schemes
only cover side-channel resistance, and either do not discuss fault resistance, or
only state it as a side product of the construction, such as [17]. Our work defines
theoretical bounds for fault detection and correction and provides a way to con-
struct efficient codes that are capable of protecting the underlying computation
against both physical attack classes.

To support our result with a practical case study, we simulated the table
look-up under faulty conditions, by using a microcontroller assembly code. As
expected, the codes constructed by using our algorithm provide noticeably better
fault resistance properties compared to state-of-the-art, while keeping the side-
channel leakage at the minimum.

For the future work, we would like to use our scheme to implement all
the operations in a symmetric cryptographic algorithm and test both the side-
channel leakage and fault tolerance in a real world setting. Also, we would like
to examine the timing leakage implications of the table look-ups with respect to
processed data.

On Designing a Fault and Side-Channel Resistant Software Encoding Scheme 93

Acknowledgments. The authors would like to thank Dr. Punarbasu Purkayastha for
the useful discussions and the anonymous reviewers for their valuable suggestions. The
research of X. Hou is supported by Nanyang President Graduate Scholarship.

References

1. Breier, J.: On analyzing program behavior under fault injection attacks. In: 2016
11th International Conference on Availability, Reliability and Security (ARES),
pp. 1–5. IEEE, August 2016 (to appear)

2. Breier, J., Jap, D., Bhasin, S.: The other side of the coin: analyzing software encod-
ing schemes against fault injection attacks. In: 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 209–216. IEEE (2016)

3. Breier, J., Jap, D., Chen, C.N.: Laser profiling for the back-side fault attacks:
with a practical laser skip instruction attack on AES. In: Proceedings of 1st ACM
Workshop on Cyber-Physical System Security, CPSS 2015, pp. 99–103. ACM,
New York (2015). http://doi.acm.org/10.1145/2732198.2732206

4. Brouwer, A.E., Shearer, L.B., Sloane, N., et al.: A new table of constant weight
codes. In: IEEE Trans Inform Theory. Citeseer (1990)

5. Chen, C., Eisenbarth, T., Shahverdi, A., Ye, X.: Balanced encoding to mitigate
power analysis: a case study. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS,
vol. 8968, pp. 49–63. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3 4

6. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290.
Springer Science & Business Media, Berlin (2013)

7. Fu, F.W., Kløve, T., Luo, Y., Wei, V.K.: On equidistant constant weight codes.
Discret. Appl. Math. 128(1), 157–164 (2003)

8. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

9. Hoogvorst, P., Danger, J.L., Duc, G.: Software implementation of dual-rail repre-
sentation. In: COSADE, Darmstadt, Germany (2011)

10. Ling, S., Xing, C.: Coding Theory: A First Course. Cambridge University Press,
Cambridge (2004)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes.
Elsevier, Amsterdam (1977)

12. Maghrebi, H., Servant, V., Bringer, J.: There is wisdom in harnessing the strengths
of your enemy: customized encoding to thwart side-channel attacks - extended
version. Cryptology ePrint Archive, Report 2016/183 (2016). http://eprint.iacr.
org/

13. Rauzy, P., Guilley, S., Najm, Z.: Formally proved security of assembly code against
leakage. IACR Cryptology ePrint Archive 2013, 554 (2013)

14. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

15. Schneider, T., Moradi, A., Güneysu, T.: ParTI - towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. Cryptology ePrint
Archive, Report 2016/648 (2016). http://eprint.iacr.org/2016/648

16. Selmane, N., Bhasin, S., Guilley, S., Graba, T., Danger, J.L.: WDDL is protected
against setup time violation attacks. In: FDTC, pp. 73–83 (2009)

http://doi.acm.org/10.1145/2732198.2732206
http://dx.doi.org/10.1007/978-3-319-16763-3_4
http://dx.doi.org/10.1007/3-540-48059-5_15
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/11545262_3
http://eprint.iacr.org/2016/648

94 J. Breier and X. Hou

17. Servant, V., Debande, N., Maghrebi, H., Bringer, J.: Study of a novel software con-
stant weight implementation. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS,
vol. 8968, pp. 35–48. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3 3

18. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE 2004, Paris, France, pp. 246–
251 (2004)

19. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected CRT-RSA. In:
2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
75–86, August 2010

http://dx.doi.org/10.1007/978-3-319-16763-3_3

An Efficient Side-Channel Protected AES
Implementation with Arbitrary Protection

Order

Hannes Gross(B), Stefan Mangard, and Thomas Korak

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
{hannes.gross,stefan.mangard,thomas.korak}@iaik.tugraz.at

Abstract. Passive physical attacks, like power analysis, pose a serious
threat to the security of digital circuits. In this work, we introduce an
efficient side-channel protected Advanced Encryption Standard (AES)
hardware design that is completely scalable in terms of protection order.
Therefore, we revisit the private circuits scheme of Ishai et al. [13] which
is known to be vulnerable to glitches. We demonstrate how to achieve
resistance against multivariate higher-order attacks in the presence of
glitches for the same randomness cost as the private circuits scheme.
Although our AES design is scalable, it is smaller, faster, and less ran-
domness demanding than other side-channel protected AES implemen-
tations. Our first-order secure AES design, for example, requires only
18 bits of randomness per S-box operation and 6 kGE of chip area. We
demonstrate the flexibility of our AES implementation by synthesizing
it up to the 15th protection order.

Keywords: Domain-Oriented Masking · Private circuits · Threshold
implementations · ISW · Side-channel analysis · DPA · Hardware secu-
rity · AES

1 Introduction

The increasing number of interconnected devices demand security not only on a
cryptographic level but also on a physical level. Without countermeasures against
physical attacks, devices are defenseless against attackers which have physical
access. An attacker can easily extract device internal secrets by measuring the
power consumption [14] or the electromagnetic emanation [19] of the device
during security critical operations.

The most promising approach to achieve resistance against passive physical
attacks is to make sensitive computations independent from the processed data
by using so-called masking schemes. There exist many masking schemes, the
scheme of Goubin and Patarin [10], or Ishai et al.’s private circuits [13], and the
Trichina gate [22]. However, the aforementioned schemes have been shown to be

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 95–112, 2017.
DOI: 10.1007/978-3-319-52153-4 6

96 H. Gross et al.

vulnerable against glitches and thus rigorous care has to be taken during the
implementation to avoid leakage caused by glitches.

There exist masking schemes that are inherently immune against glitches.
The most popular scheme is the threshold implementation (TI) masking scheme
introduced by Nikova et al. [18]. It has been extensively researched and extended
by Bilgin et al. [1,4] during the last years. There exist many protected hardware
implementations that are based on TI [2,3,17].

Recently, Reparaz et al. introduced the Consolidated Masking Scheme [20]
(CMS). One interesting aspect of the CMS scheme is the possibility to reduce the
number of required input shares of TI from td+ 1 to d+ 1, where d corresponds
to the attack order and t is the algebraic degree of the function that should be
protected. At CHES 2016, De Cnudde et al. [7] demonstrated the suitability of
using only d + 1 shares on an AES hardware design. The design requires less
chip area than related work, but at the cost of an increased randomness demand
compared to td + 1 TI. More specifically, the CMS scheme requires (d + 1)2

random bits for protecting one GF (2n) multiplication as required multiple times
for the AES S-box.

Producing a high amount of random numbers in hardware, however, is not
trivial and goes hand in hand with an increased chip area usage, a higher energy
consumption, and has also a negative influence on the throughput of a design.
Therefore, for the efficiency of masked implementations the randomness demand
is crucial.

Our Contribution. In this work1, we demonstrate how the randomness require-
ments for d + 1 masking can be lowered from (d + 1)2 to only d(d + 1)/2. In
order to achieve this, we revisit the private circuits scheme [13] which is known
to be vulnerable to glitches. We perform a similar approach under the premise
of glitches, and demonstrate how to achieve dth-order protection in the presence
of glitches for the same randomness cost and without losing genericity. We show
the suitability of our approach by implementing a dth-order protected AES-128
encryption-only hardware design. Our first-order AES implementation requires
only 18 fresh random bits per S-box calculation, which is a third of the random
bits of the CMS implementation of De Cnudde et al. [7]. Our AES design is also
very compact in terms of chip area and requires only 6 kGE of chip area and
246 clock cycles per encryption. Furthermore, our approach is generic in terms
of protection order, allowing our AES design to be synthesized for any desired
protection order. The number of required clock cycles per encryption, however, is
independent of the protection order. We demonstrate the genericity of our design
by stating post-synthesis hardware results up to the 15th protection order. The
VHDL source code of the generic AES design is published online [11], which we
hope will help future research and make comparisons easier.

1 An earlier version of this work has been published online [12] under the title
“Domain-Oriented Masking: Compact Masked Hardware Implementations with
Arbitrary Protection Order”.

An Efficient Side-Channel Protected AES Implementation 97

2 Private Circuits and the ISW Transformation

The original idea of Ishai et al. [13] was to build a so-called private circuit
compiler that can transform arbitrary circuits into circuits that resist passive
physical attacks, like chip probing and side-channel analysis, up to a protection
order d. For this purpose, the circuit’s data signals are first split into a num-
ber of shares, which when recombined through addition over GF (2) result in
the original value. The sharing is done based on uniformly distributed random
numbers. A sharing of a signal x can be written as shown in Eq. 1, where the
shares are denoted by capital letters with the name of the shared signal in the
subscript index.

x = Ax + Bx + Cx + . . .
︸ ︷︷ ︸

d+1 shares

(1)

The security of masking schemes is typically shown in the so-called d-probing
model. A masking scheme provides security of order d in this model, if each com-
bination of up to d signals is independent of all unshared intermediate signals.
It was demonstrated by Faust et al. [8] and Rivain and Prouff [21] that there
indeed exists a relation between the number of probed wires in the d-probing
model and the attack order for a differential power analysis (DPA) attack.

The security of the sharing of x in Eq. 1 against a d-probing attacker fol-
lows from the fact that the attacker only gets access to the d + 1 shares of x
(Ax, Bx, . . .) but not to x itself. The circuit is secure against d probes, as long as
no signal in the circuit contains a combination of more than one share of x. To
keep this share independence, also all gates of the circuit are required to fulfill
this requirement.

The basic idea of the ISW transformation in order to achieve this, is therefore
to transform the original circuit in a way that it only consists of protected
NOT and AND gates. While the protected implementation of the NOT gate
is straightforward and only requires the negation of one share (see Eq. 2), the
protected implementation of the AND gate is more difficult and requires the
introduction of fresh randomness to fulfill the independence requirement.

¬x = ¬Ax + Bx + Cx + . . . (2)

AND Gate. For the correct and secure realization of the AND gate in the
ISW scheme (with x and y as the input and q as the output), Eq. 3 needs to be
expanded, securely evaluated, and compressed again to d + 1 output shares.

q = xy = (Ax + Bx + Cx + . . .)(Ay + By + Cy + . . .) (3)

To achieve independence during the compression, some terms need to be
first remasked by using fresh randomness denoted by Z shares in the following.
Equation 4 shows an example for an ISW implementation of an AND gate for
d = 2 in our notation. For a general description of the compression algorithm
see [13], for details. The correctness of the AND gate in Eq. 4 is given because

98 H. Gross et al.

all random Z shares appear exactly twice in additive manner, and the rest of
the terms are the one of the expanded Eq. 3.

Aq = AxAy + Z0 + Z1

Bq = BxBy + (Z0 + AxBy + BxAy) + Z2

Cq = CxCy + (Z1 + AxCy + CxAy) + (Z2 + BxCy + CxBy)
(4)

For the security of Eq. 4, the order in which the terms are summed up is
critical. While the calculation order can be easily controlled for software imple-
mentations, the order in which the terms are summed up cannot so easily be
controlled in the combinatorial logic of hardware implementations.

Like many other masking schemes, the private circuits approach is therefore
considered to be vulnerable to so-called glitches [15]. Glitches are caused in
the combinatorial path of hardware circuits because the electric signals do not
propagate with unlimited speed. Instead signal arrival times and delays at the
logic gates can cause several changes at the output of a gate before the gate
output reaches its final state (for more details see, e.g., [16]). Digital designers
also have only marginal influence on the exact placement of the logic gates,
the signal timings, and the order in which the signals are combined. A secure
masking scheme thus needs to be inherently immune against glitches without
relying on correct placement of the gates and signal timings.

Since there exist secure ISW implementations in software, a straightforward
approach of its implementation in hardware would be to emulate the behavior
of a processor running the ISW transformed software. As a result, the output of
each AND and each XOR operation would be first stored in a register before any
further processing is performed. However, this approach is neither very resource
friendly nor efficient in terms of throughput.

In the next section, we thus introduce a secure construction of a masked AND
gate in hardware and argue its security in the d-probing model for the case that
glitches are taken into account. Our masked AND gate uses the same multipli-
cation terms as the ISW AND gate, and has the same randomness requirements
and a generic structure. However, in contrast to ISW, the introduced masked
AND gate is resistant to glitches and has a balanced gate distribution which
is desirable in order to minimize the delay of a hardware implementation. We
start our construction and security argumentation for a first-order secure masked
AND gate before we generalize the concept to arbitrary protection orders.

3 A Glitch-Resistant Masked AND Gate

The basic idea behind our glitch-resistant masked AND gate, is to split the
calculation of Eq. 3 into independent share domains. Each share of a signal is
associated with one specific domain. This is also reflected in the notation that
is used in this paper. The shares Ax and Bx of a data signal x, for example, are
associated with the domains labeled A and B, respectively.

The AND gate uses d+1 shares per signal in order to achieve dth-order secu-
rity and there are d+1 domains in this case. The intuition behind this approach

An Efficient Side-Channel Protected AES Implementation 99

is to keep the shares of all domains independent from shares of other domains.
This independence ensures dth-order security according to the d-probing model
when considering glitches.

The critical parts of the circuit, are the parts that need to process inputs from
multiple domains. In this case dedicated measures need to be taken before the
terms can be securely served as inputs of a domain. By adding a fresh random
share Z to these terms, the terms can be reassociated to a targeted domain.
Furthermore, the usage of a register in this case prevents that glitches propagate
from one domain to the another domain.

We first start with the introduction of the glitch-resistant AND gate for first-
order security before this approach is extended to arbitrary protection orders.

3.1 1st-Order Secure AND Gate

A first-order secure AND gate (see Fig. 1) consists of two domains labeled A
and B. The inputs x and y are provided to the AND gate by the shares Ax and
Bx, and Ay and By, respectively. The sharings for x and y are required to be
uniformly random and independent of each other. The AND gate returns the
shares Aq and Bq of the output q. The calculations are performed in three steps
in order to map the input shares to the output shares. We refer to these steps
as calculation, resharing and integration.

Calculation: In the first step, the actual calculation of the logic function
(expanded Eq. 3) is performed and the terms AxAy, AxBy, BxAy and BxBy are
calculated. The terms that can be directly associated with one domain (inner-
domain terms) are the terms AxAy and BxBy, respectively. These terms are not
critical from a security point of view. Any computation on inner-domain terms
associated with one specific domain, only lead to outputs that again depend only
on shares associated with this domain.

Fig. 1. First-order secure AND gate (Color figure online)

100 H. Gross et al.

In case of terms that contain different domain labels (cross-domain terms),
there is less freedom. In fact these calculations are only secure for independently
shared input signals. If shares of the same signal would be combined for example,
the independence would be trivially broken. For example, the term AxBx would
leak information about x. However, shares associated with different domains
that correspond to different signals of the unprotected circuit can be combined
without violating the requirement for dth-order security. In fact, there is no
leakage about x or y when calculating AxBy. This results from the requirement
that x and y are independently shared. There is also no leakage caused by BxAy

for an independent sharing of x and y. Cross-domain terms of the AND gate
that can not directly be associated with one domain are plotted red in Fig. 1.

Resharing: The integration of the cross-domain terms into a specific domain is
prepared in the resharing step. By adding a fresh random Z share to these terms,
the term becomes statistically independent from all other shares and can therefore
be associated with any arbitrary domain in the next step. In case of the 1st-order
secure AND gate, the same fresh share Z0 is used for the resharing of the product
terms AxBy and BxAy. This does not lead to any first-order leakage, because a
probing attacker restricted to one probing needle cannot find a single signal in the
AND gate that correlates to the unshared inputs x and y or the output q.

In order to prevent that any glitch propagates through the resharing step, a
register is included as last part of the resharing step. The two registers in grey
dotted lines are optional registers and are only required for pipelining purposes
but not for the security of the AND gate.

Integration: During the integration phase, the reshared cross-domain terms are
added to the inner-domain terms, which concludes the calculation of the AND
gate. Please note that this addition leads to glitches at the XOR gate at the
output of the domain. However, as the resharing step finishes with a register no
glitches can occur that depend on x or y. In terms of correctness, it is important
to point out that the fresh share Z0 becomes part of both domains. Hence, it
holds that q = Aq + Bq.

In summary, the security against a first-order probing attacker is given
because each domain contains either inner-domain terms that contain only shares
that are already associated with one specific domain, or cross-domain terms that
are reshared with a fresh random Z share which is only used once in each domain.
An attacker thus always needs to combine at least two signals to get one signal
that depends on one of the independently shared inputs x or y.

3.2 Higher-Order Secure AND Gate

The first-order AND gate can be extended to arbitrary protection orders. The
generalization requires to first extend the calculation step to produce a correct
sharing with d+1 shares for any given protection order d. In the resharing phase
it needs to be ensured that the fresh random Z shares are distributed over the

An Efficient Side-Channel Protected AES Implementation 101

domains in a way that (1) each cross-domain term is reshared with a Z share that
is unique inside the targeted domain, and (2) none of the signal combinations
created in the integration phase reveals more than the inner-domain terms or
shares of the respective domain.

Calculation: The same rules as for the first-order AND gate apply for the
higher-order generalization. Again, any combination of shares can be safely used
inside their associated domain without any restrictions. Cross-domain terms,
however, require independently shared signals to prevent the case that two shares
of the same sharing are combined. This ensures that by probing a cross-domain
term, the attacker does not learn more about the inputs x and y then when
probing a share of x and y directly.

The calculation step can be generalized for d + 1 input shares as shown in
Eq. 5. Each row of this formula stands for one domain with a dedicated label
calculating one share of the output q. The terms in the diagonal (bold) are the
inner-domain terms containing only shares from one specific domain and hence
only leak about shares of this domain. The cross-domain terms do not leak more
information on the inputs x and y then when probing one share of x and one
share of y directly. Hence, with this formula the sharing for the calculation step
for the AND gate resists a d-probing attacker for an arbitrary numbers of shares.
An example for a second-order AND gate is given in Fig. 2.

Aq︸︷︷︸
Q0

= AxAy︸ ︷︷ ︸
t0,0

+(AxBy + Z0)︸ ︷︷ ︸
t0,1

+(AxCy + Z1)︸ ︷︷ ︸
t0,2

+(AxDy + Z3)︸ ︷︷ ︸
t0,3

+(AxEy + Z6)︸ ︷︷ ︸
t0,4

+ . . .

Bq︸︷︷︸
Q1

= (BxAy + Z0)︸ ︷︷ ︸
t1,0

+ BxBy︸ ︷︷ ︸
t1,1

+(BxCy + Z2)︸ ︷︷ ︸
t1,2

+(BxDy + Z4)︸ ︷︷ ︸
t1,3

+(BxEy + Z7)︸ ︷︷ ︸
t1,4

+ . . .

Cq︸︷︷︸
Q2

= (CxAy + Z1)︸ ︷︷ ︸
t2,0

+(CxBy + Z2)︸ ︷︷ ︸
t2,1

+ CxCy︸ ︷︷ ︸
t2,2

+(CxDy + Z5)︸ ︷︷ ︸
t2,3

+(CxEy + Z8)︸ ︷︷ ︸
t2,4

+ . . .

Dq︸︷︷︸
Q3

= (DxAy + Z3)︸ ︷︷ ︸
t3,0

+(DxBy + Z4)︸ ︷︷ ︸
t3,1

+(DxCy + Z5)︸ ︷︷ ︸
t3,2

+ DxDy︸ ︷︷ ︸
t3,3

+(DxEy + Z9)︸ ︷︷ ︸
t3,4

+ . . .

Eq︸︷︷︸
Q4

= (ExAy + Z6)︸ ︷︷ ︸
t4,0

+(ExBy + Z7)︸ ︷︷ ︸
t4,1

+(ExCy + Z8)︸ ︷︷ ︸
t4,2

+(ExDy + Z9)︸ ︷︷ ︸
t4,3

+ ExEy︸ ︷︷ ︸
t4,4

+ . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

(5)

Resharing: A core property for the generalization of this AND gate implemen-
tation is how the required fresh random Z shares can be efficiently distributed
among the cross-domain terms in a correct manner. From Eq. 5 it can be seen
that there are exactly d(d + 1) cross-domain terms which need to be reshared.
It is also important to note that there are exactly two cross-domain terms that
combine shares from the same two domains. For example shares from domain A
and B are only combined in the terms AxBy and BxAy. We use the same fresh
Z share for cross-domain terms that combine shares from the same two domains.
Hence, we use d(d + 1)/2 fresh shares for a dth-order AND gate, which is the
same amount as in the ISW scheme.

102 H. Gross et al.

Fig. 2. Second-order secure AND gate

Since no probing of any intermediate signal created in the calculation phase
contains more than one share of each input x or y, and in the resharing phase we
add fresh random shares to the cross-domain terms, no advantage to a d-probing
attacker is given during these phases.

Integration: In the integration phase, the terms associated with each domain
are added up at the output of the AND gate. Because a digital designer has no
influence on the sequence in which these terms are added up (without forcing it
through registers), the higher-order secure AND gate needs to provide probing
security for each possible partial sum of these terms. In particular, it has to be
taken care of that each of these possible partial sums an attacker could probe
reveals only the shares of the domains she is probing in. This is ensured by the
resharing shown in Eq. 5, where each Z share is only reused for cross-domain
terms with the same domain association.

In order to exploit the reuse of Z shares, it would be necessary to probe
in the two domains that use the cross-domain terms with the reused Z share.
However, the two cross-domain terms that use the same Z share contain only
the shares of the same domains. Hence, there is no advantage for the attacker
due the reuse.

For example, the share Z0 in Fig. 2 is used on the terms AxBy and BxAy and
these two terms only occur in the domains A and B. An attacker that probes
any partial sum of the terms in A learns only about shares in domain A. When
probing any partial sum of the terms in B, there is only information about shares
associated with B. A second-order attacker that learns about partial sums in A
and B learns about shares from the domains A and B in any case. The fact
that the cross-domain terms AxBy and BxAy reuse Z0 does not provide any
advantage to an attacker.

Based on Eq. 5, the fact that the AND gate fulfills dth-order security can
also be verified visually. In this matrix the diagonal terms are formed by the
inner-domain terms. These inner-domain terms also divide the matrix into an

An Efficient Side-Channel Protected AES Implementation 103

upper and lower triangular matrix in which each of the fresh random Z shares
is used exactly once. The triangle formed by the Z shares is mirrored along the
diagonal. The mirroring of the Z shares ensures that each possible combina-
tion of partial sums from any two domains removes at most one fresh random
share, and reveals only the shares associated with both domains. Because this
applies for all combinations of partial sums of all different domains, an attacker
restricted to d probes obtains at most d shares per signal. However, for this
security argumentation to hold it needs to be always ensured that the sharings
of the inputs x and y are independent.

The domain equations of the matrix in Eq. 5 can also be written in closed
form as shown in Eq. 6.

Qi = ti,i +
d∑

j>i

(ti,j + Z(i+j∗(j−1)/2)) +
d∑

j<i

(ti,j + Z(j+i∗(i−1)/2)) (6)

This equation is also the basis for the scalable AES design in the next section.
Furthermore, we note that the approach can be easily extended to arbitrary finite
fields. Consequently, our glitch-resistant masked AND gate, which equals a mul-
tiplication in GF (2), can be extended to arbitrary large GF (2n) multiplications
by replacing the AND gates in the calculation step by GF multipliers. Opera-
tions that are linear over GF (2n) like XOR or logic negation, on the other hand,
can be applied to the shares without domain crossings. We use this property for
an efficient implementation of the AES S-box in the next section.

4 dth-Order Secure AES Implementation

To compare the efficiency of our approach with existing masked implementa-
tions, we implemented the AES-128 encryption-only design suggested by Moradi
et al. [17]. Moradi’s design was also used and modified by Bilgin et al. [2,3,6] and
recently by De Cnudde et al. [7] for a d + 1 share CMS TI.

The control path of our modified AES design consists of a linear-feedback
shift register (LFSR), the round constant generation module (RCON), and some
additional logic gates to generate the control signals (see [17] for more details).
Our LFSR module has a cycle length of 23. In each round, the first 16 cycles are
spent on AddRoundKey and SubBytes. Then there are four cycles used for Mix-
Columns and to calculate the first four bytes of the next round key. Then there
are two dummy rounds inserted to bring the state register in correct position
for further processing before in the final cycle the ShiftRows transformation is
performed. The datapath mainly consists of the S-box, the key and state reg-
isters which are implemented as shift registers, the MixColumns module, and
some multiplexers.

4.1 AES S-Box

The by far most complex and most security critical part of the AES implemen-
tation is the S-box. Figure 3 shows our design of a 1th-order protected variant of

104 H. Gross et al.

F
ig
.
3
.
F
ir

st
-o

rd
er

m
a
sk

ed
A

E
S

S
-b

ox
w

it
h

se
v
en

p
ip

el
in

e
st

a
g
es

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

An Efficient Side-Channel Protected AES Implementation 105

Canright’s [5] AES S-box design. The S-box consists of many linear operations
like the linear mappings at the input and the output, the square scalers, the
sub-field inverters, and the adders. These are the parts that can be implemented
share-wise for both domains in a straightforward way. The Galois field multipli-
ers with different field order form the non-linear parts of the S-box. Canright’s
S-box makes repeated use of a finite field isomorphism to express GF (28) ele-
ments as multiple elements in lower subfields—down to eight elements in GF (2).
These GF (2n) multipliers are replaced by the generalization of the masked AND
gate of Sect. 3 for GF multipliers. Therefore, the standard-cell library AND cells
used for the calculation step in the masked AND gate are simply replace by the
according GF multipliers.

To maximize the efficiency of the implementation, seven pipelining stages
are added to the S-box. The pipelining registers are marked with circles and
appear along the red and green dotted lines in Fig. 3. Red dotted lines indicate
multiplier related stages which are also labeled Stage 1-5 in order to refer to them
more easily. The green marked registers are required to ensure independence in
the presence of glitches for the inputs of the adjacent GF gates. To make the
S-box secure and efficient at the same time, it is necessary to pinpoint all GF
gates that have related input sharings. These gates need to be treated more
carefully than the one with independent inputs. We now discuss the security of
each multiplication stage individually which reveals that the additional pipeline
stages (plotted in green) are required at multiplication stages 1, 2, and 3, but
not at 4 and 5.

Stage 1. The GF (24) gate in Stage 1 receives its inputs from the linear mapping
at the S-box input. The linear mapping takes the 8-bit input shares Ax and Bx

and linearly combines these eight bits inside their respective domain (see [5] for
more details). Because of the different signal transition times and gate delays, it
is therefore possible that the output of the linear mapping temporarily consists
of bits with related sharing. Applying these bits directly to the GF gate from
Fig. 1—while the linear mapping has not yet settled—would thus violate the
independence in the cross-domain terms associated GF multipliers. To avoid
these glitches, registers are inserted after the linear maps to ensure the signals
are settled before the bits are applied to the GF gate.

Stage 2 and 3. The situation is similar at Stage 2 and Stage 3. At these
stages, glitches can occur from the combination of the square scaler outputs with
the outputs of the GF gate. Again these glitches can be avoided by inserting
pipelining stages at the marked positions in Fig. 2.

Stage 4. For the GF gates in Stage 4, the inputs are the pipelined S-box inputs
and the output of the GF gates of the previous stage. The output of the GF gate
of Stage 3 originate from the inputs of the GF (24) inverter which is remasked
in Stage 1 (the masking is effective at latest at Stage 2). Therefore, the inputs
of the Stage 4 GF gates are clearly independent and so no registers are required
here.

106 H. Gross et al.

Stage 5. The output mapping in this stage is again a linear transformation and
uncritical as long as it is not followed by a nonlinear transformation that is unpre-
pared for related sharing of its inputs. However, in our design of the AES core the
output of the S-box is either stored in the key or state registers before it is used
again, or fed into the S-box which is also uncritical because the input multiplier of
either S-box variant is already prepared to process related input sharings.

The rest of the S-box is implemented according to the original Canright
design but without some of its optimizations that would not be beneficial for our
implementation. Canright’s design, for example, reuses some temporary results
in other parts of the S-box. Storing temporary results would lead to many addi-
tional pipelining registers for our design of the S-box and is therefore not suit-
able. For the generalization of the S-box to higher protection orders, the black
(or blue) parts in Fig. 3 are basically duplicated and the secure GF gates are
generated as described in Sect. 3.

5 Implementation Results

All stated numbers are post-synthesis results for a 90 nm UMC Low-K process
with 1.0 V power supply and 0.1 MHz clock frequency (in accordance with related
work). Our designs are compiled with the Cadence Encounter RTL compiler ver-
sion v08.10-s28 1 and routed with Cadence NanoRoute v08.10-s155. Please note
that in general hardware result for different technologies, compiled and synthesized
with different tool chains are difficult to compare. Furthermore, the functionality
implemented by different modules is not always consistent with other implemen-
tations. The comparison of chip area results with related work should therefore be
seen under this premise. To make comparison with our generic AES design easier
for future work, we therefore decided on publishing the source code online [11].

Anyway, for a masked hardware design the number required fresh random
bits is even more crucial for the efficiency of an implementation than the stated
chip area of the designs. The generation of fresh random bits with high entropy
requires additional hardware and involves, e.g., complex analog circuitry or
pseudo random number generators based on symmetric primitives. Both options
have a critical influence on the chip area requirements, the energy budget, and
on the delay or throughput.

First-Order Secure AES. Table 1 compares our first-order secure AES hard-
ware implementation with existing related work. The d + 1 share designs of [7]
with 6.7 kGE and our design with 6 kGE are smaller than the td+ 1 TI designs.
The size difference mainly comes from the fact that td + 1 TI requires at least
three shares for securely calculating non-linear functions while the first-order
d + 1 share designs require only two shares.

In comparison with d + 1 TI design [7] which requires 54 random bits per
S-box calculation, our design requires with 18 bits only a third of its random
bits. Nevertheless, our design achieves the same throughput as the td + 1 TI
design of Bilgin et al.with 52 Kbps for a 100 kHz clock and requires 14 bits less
fresh randomness.

An Efficient Side-Channel Protected AES Implementation 107

Table 1. First-order secure AES-128 implementation results

Design/module Chip area Randomness Cycles Throughput @0.1 MHz

[%] [kGE] [Bits/S-box] [Kbps.]

Our implementation (90 nm)

This work 100.0 6.0 18 246 52

S-box 37.3 2.2

State registers 34.0 2.0

Key registers 21.0 1.3

Control, et cetera 7.7 0.5

td+1 threshold implementations (180 nm)

Moradi et al. [17] 11.0/10.8a 48 266 48

Bilgin et al. [2] 9.1/8.2a 44 246 52

Bilgin et al. [3] 8.1/7.3a 32 246 52

d+1 threshold implementations (45 nm)

De Cnudde et al. [7] 6.7/6.3a 54 276 46
aThis variant uses the compile ultra flag which is not available in our tool chain.

Second-Order Secure AES. In Table 2, a comparison of our second-order AES
design with other second-order secure designs is given. In case of the td + 1 TI
design the chip area was estimated by De Cnudde et al. [7]. Again, there is a
noticeable gap between the td + 1 share design with about 14.9 kGE and the
d + 1 share designs with about 10 kGE in terms of chip area resulting from the
increased amount of shares (five shares versus three shares). Considering the
randomness demand of the designs, our design requires 54 bits which is more
than two times less than the td+1 design with 126 fresh random bits, and three
times less than the d + 1 TI design with 162 bits. In terms of throughput, our
AES design requires 246 cycles instead of 276 cycles per encryption.

5.1 dth-Order AES Implementation Results

The generic construction of our AES implementation not only allows the calcula-
tion of the number of required fresh random bits of 9d(d+1), but furthermore it
is possible to synthesize the AES implementation for arbitrary protection orders
by just changing one input parameter of our hardware design.

Figure 4 shows the post-synthesis area results for the different components in
relation to the protection order. It can be observed that the state key and control
logic requirements grow linearly with the protection order. The S-box and the
contained GF gates grow quadratically. For the S-box, the size increases from
37.4% for the first-order implementation to about 78.5% for the 15th-order. The
relative size of the state and key register decrease from 34% and 21% to around
12.2% and 7.5%, respectively. The smallest amount of chip area is spent on the
control logic which stays almost constant.

108 H. Gross et al.

Table 2. Second-order secure AES-128 implementation results

Design/module Chip area Randomness Cycles Throughput @0.1 MHz

[%] [kGE] [Bits/S-box] [Kbps]

Our implementation (90 nm)

This work 100.0 10.0 54 246 52

S-box 45.1 4.5

State registers 30.3 3.0

Key registers 18.7 1.9

Control, et cetera 5.9 0.6

td+1 threshold implementation (estimated [7], 45 nm)

De Cnudde et al. [6] 18.6/14.9 a 126 276 46

d+1 Threshold Implementation (45 nm)

De Cnudde et al. [7] 10.5/10.3a 162 276 46
aThis variant uses the compile ultra flag which is not available in our tool chain.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

160

Protection order

A
re
a
[k
G
E
]

Overall area
Control, etc.
Key regs.
State regs.
S-box

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Protection order

A
re
a
[%

]

Control, etc.
Key regs.
State regs.
S-box

Fig. 4. Area requirements absolute (left) and in percent (right) per protection order

6 Side-Channel Evaluation

To show the resistance of our AES design against side-channel analysis attacks,
different instances of the Welch’s t-test are used (see Goodwill et al. [9] for
details). The intention of this test is that for a side-channel secure implementa-
tion, a set of randomly picked (unshared) inputs should not show any statistically
differences in the power traces for a set with constant inputs. For these two sets
the so-called t value is calculated. If the t value is outside the confidence interval
of ±4.5 the null-hypothesis is rejected with confidence greater than 99.999% for
large sizes of N .

Our evaluation approach is quite similar to what is checked in the d-probing
model. Instead of using power trace values of, e.g., an FPGA implementation of
our design, the t values of each individual signal are recorded for a post-synthesis
netlist of our AES design during simulation. In comparison to an FPGA based

An Efficient Side-Channel Protected AES Implementation 109

validation this approach has three advantages: (1) the signals are completely
noise free, (2) if any statistical differences are found, the violating signals can be
directly pin-pointed, (3) if ASIC implementations are targeted, the synthesized
netlist is closer to the final ASIC implementation than an FPGA implementation.

First-Order AES Design. The results of the first-order t-test for our first-
order secure design are shown in Fig. 5 (left) for up to one million traces.
The t-value stays below the ±4.5 border as required by the t-test to succeed.
To demonstrate the soundness of our evaluation setup we also performed a
second-order t-test. However, for the second-order t-test in a bivariate attack
setting, performing individual t-tests for each signal separately is no longer fea-
sible. The evaluation of each signal combined with every other signal for different
points in time would take too long. Therefore, one single trace is calculated that
sums up all signal transitions together. We then combine in each case two trace
points over centered product pre-processing for all points in time within an eight
clock cycles period (the delay of the S-box). As expected the t-tests fail with

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−6

−4

−2

0

2

4

6

+ 4.5

- 4.5

number of traces

t-
va
lu
e

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

0

10

20

30

40

50

+ 4.5

4 5

number of traces

t-
va
lu
e

Fig. 5. First-order t-test (left) and second-order t-test (right) for first-order secure AES
design

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−6

−4

−2

0

2

4

6

+ 4.5

- 4.5

number of traces

t-
va
lu
e

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−6

−4

−2

0

2

4

6

+ 4.5

- 4.5

number of traces

t-
va
lu
e

Fig. 6. First-order t-test (left) and second-order t-test (right) for second-order secure
AES design

110 H. Gross et al.

great confidence with t values clearly above the ±4.5 border even for just a
hundred traces.

Second-Order AES Design. The t-tests for the second-order AES design are
illustrated in Fig. 6. In both cases the t-tests do not indicate any leakage. We thus
conclude that our implementation seems to be correct and secure in a bivariate
second-order attack scenario.

7 Conclusions

In this work we introduced a generic hardware design of the AES. In contrast
to existing implementations, our design is freely scalable in terms of resistance
to side-channel analysis attacks. Because of its d + 1 share design principle it
is also very efficient. With only 6 kGE of chip area, our design is the smallest
published first-order (and beyond) masked AES implementation to this date.

Since the generation of random numbers with high entropy is a very demand-
ing task for hardware implementations, we consider the randomness requirements
to be even more decisive for the efficiency of a masked hardware implementation.
In comparison with the recently published d+1 share AES design [7], our design
requires just d(d + 1)/2 fresh random shares instead of (d + 1)2.

Acknowledgements. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under grant number 845589 (SCALAS). The HECTOR project
has received funding from the European Unions Horizon 2020 research and inno-
vation programme under grant agreement No. 644052. This project has received
funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 681402).

References

1. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.: Efficient and
first-order dpa resistant implementations of Keccak. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-08302-5 13

2. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06734-6 17

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 34(7), 1188–1200 (2015)

http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-319-06734-6_17

An Efficient Side-Channel Protected AES Implementation 111

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementa-
tions of all 3× 3 and 4× 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 5

5. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

6. Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order threshold
implementation of the AES S-box. In: Homma, N., Medwed, M. (eds.) CARDIS
2015. LNCS, vol. 9514, pp. 259–272. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31271-2 16

7. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d + 1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53140-2 10

8. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13190-5 7

9. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)

10. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

11. Gross, H.: DOM Protected Hardware Implementation of AES. https://github.com/
hgrosz/aes-dom (2016)

12. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. Cryptology ePrint
Archive, Report 2016/486 (2016). http://eprint.iacr.org/2016/486

13. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

15. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 24

16. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

17. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

18. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-642-13190-5_7
http://dx.doi.org/10.1007/3-540-48059-5_15
https://github.com/hgrosz/aes-dom
https://github.com/hgrosz/aes-dom
http://eprint.iacr.org/2016/486
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-540-30574-3_24
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/11935308_38

112 H. Gross et al.

19. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7 17

20. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015)

21. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

22. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. IACR Cryptology ePrint Archive, 2003 (2003)

http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/978-3-642-15031-9_28

Side-channel Resistant Implementations

Time-Memory Trade-Offs for Side-Channel
Resistant Implementations of Block Ciphers

Praveen Kumar Vadnala(B)

Riscure, Delft, The Netherlands
vadnala@riscure.com

Abstract. Currently, the most efficient first-order masked implementa-
tions use the classical randomized table countermeasure, which induces a
penalty factor of around 2–3 in execution time compared to an unmasked
implementation. However, an S-box with n-bit input and m-bit out-
put requires 2nm bit memory; for example, AES requires 256 bytes of
RAM. Conversely, generic S-box computation method due to Rivain-
Prouff requires almost no memory, but the penalty factor to achieve
first-order resistance is roughly 30–35. Therefore, we suggest studying
time-memory trade-offs for block-cipher implementations based on an
adaptation of a table compression technique proposed by IBM. We use
the similar approach to study time-memory trade-offs for second-order
masked implementations as well. We show that for the case of AES, rea-
sonably efficient implementations can be obtained with just 40 bytes of
RAM in both the cases and hence they can be used in highly memory
constrained devices.

Keywords: Side-channel attacks · Masking · S-box compression · Time-
memory trade-off · AES-128

1 Introduction

Side-Channel Attacks. Implementations of cryptographic algorithms leak
information about the secret key, which could potentially be exploited by an
attacker. Examples of such leakages include timing [Koc96], power consumption
[KJJ99], and electromagnetic emission [AARR03]. These so-called side-channel
attacks are very powerful in the sense that one can completely break the security
of cryptographic devices with a very inexpensive setup. In particular, Differen-
tial Power Analysis (DPA) attacks have been subjected to extensive research as
they require little knowledge about the implementation details.

Masking. To counteract DPA attacks, several countermeasures have been pro-
posed in the literature. Masking, besides hiding, is one of the most widely
used countermeasures to prevent side-channel attacks [CJRR99]. The basic idea
behind masking is that each sensitive variable (a function of a known variable
and the secret key) used in the algorithm is split into two shares where one is
generated randomly (called mask) and the second share is computed using the
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 115–130, 2017.
DOI: 10.1007/978-3-319-52153-4 7

116 P.K. Vadnala

mask and the sensitive variable. All subsequent operations in the algorithm are
applied separately on the shares, which are subsequently combined at the end
to produce the desired ciphertext (or plaintext).

Higher-Order Masking. The masking scheme described above (called first-
order masking) can be attacked by combining the leakages from both the shares
(called second-order attack) [Mes00,OMHT06]. To thwart that, we divide the
sensitive variable into three shares, among which two are randomly generated,
while the third share is computed from the two random shares and the sensitive
variable (called second-order masking) [RDP08]. In fact, this approach can be
generalized to any number of shares. Namely, a d-th order (also called higher-
order) masking scheme [RP10,Cor14] involving d shares can be attacked by
combining the leakages from d + 1 shares of the sensitive variable.

In general, block ciphers consist of several round transformations, where each
transformation is a combination of linear and non-linear layers. Applying mask-
ing to a linear function is easy since we can evaluate the function on the shares
independently. However, it is not straightforward in the case of non-linear func-
tions such as S-boxes. The non-linear layer of the cipher is often implemented as
a lookup table for performance reasons, which is typically stored in ROM. One
approach widely used to obtain masked implementations here is to randomize
the lookup table for every execution of the cipher. This requires creating a new
table in RAM, which is of equal size as the original lookup table.

1.1 Classical Randomized Table Countermeasure

We recall the classical randomized table countermeasure, which is secure against
first-order attacks only, as suggested in [CJRR99]. An (n,m) S-box table S(u)
is first randomized in RAM by letting

T (u) = S(u ⊕ r) ⊕ s

for all u ∈ {0, 1}n, where r ∈ {0, 1}n is the input mask and s ∈ {0, 1}m is the
output mask.

To evaluate S(x) from the masked value x1 = x ⊕ r, it suffices to compute
y1 = T (x1), as we get y1 = T (x1) = S(x1 ⊕ r) ⊕ s = S(x) ⊕ s; this shows
that y1 is indeed a masked value of S(x). In other words, the randomized table
countermeasure consists of first re-computing in RAM a temporary table with
inputs shifted by r and with masked outputs, so that later it can be evaluated
on a masked value x1 = x ⊕ r to obtain a masked output. In the case of AES,
this method requires a table of 256 bytes in RAM.

1.2 Compression of Lookup Table

In [RRST02] a compression scheme was proposed for lookup tables, which
reduces the RAM requirement. Namely, masking using randomized lookup table
can be implemented for AES using 128 bytes of RAM only. We recall the original
scheme from [RRST02] below.

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 117

For simplicity, let us consider the AES S-box, though the original scheme
can be applied to any S-box. AES S-box (S(u) for all u ∈ {0, 1}8) is an 8-bit
to 8-bit S-box. Let us rewrite S(u) as S(u) = S0(u)‖S1(u) for all u ∈ {0, 1}8,
where S0(u) and S1(u) are 4-bit values. Let the two random input masks be
r1, r2 ∈ {0, 1}8 and the output mask be s ∈ {0, 1}4. The new randomized table
is defined as:

T (u) = S0(u ⊕ r1) ⊕ S1(u ⊕ r2) ⊕ s (1)

This table has 28 entries, each requiring 4 bits of memory thus totaling to 128
bytes. Now let us assume that the sensitive variable x is represented by two
shares (x1 = x ⊕ r, r), where r = r1 ⊕ r2. From (1) we can write:

S0(x) = S0(x1 ⊕ r1 ⊕ r2) = T (x1 ⊕ r2) ⊕ S1(x1) ⊕ s

S1(x) = S1(x1 ⊕ r1 ⊕ r2) = T (x1 ⊕ r1) ⊕ S0(x1) ⊕ s

which gives:

S0(x) ⊕ s = T (x1 ⊕ r2) ⊕ S1(x1) (2)
S1(x) ⊕ s = T (x1 ⊕ r1) ⊕ S0(x1) (3)

By accessing the table T at (x1 ⊕ r1) and (x1 ⊕ r2), and the original S-box
look up table at x1 (which gives S0(x1) and S1(x1)), we can compute the masked
values of S0(x) and S1(x). The masked value of S(x) can then be obtained as
S(x) ⊕ (s‖s) = S0(x) ⊕ s‖S1(x) ⊕ s. We recall below the algorithms for creating
the compressed table (Algorithm 1) and performing the table lookup operation
(Algorithm 2).

Algorithm 1. Table T creation: first-order compression

Require: Two random numbers r1, r2 ∈ {0, 1}n, output mask: s ∈ {0, 1}m/2, an (n, m)
S-box lookup function where S(u) = S0(u)||S1(u) for all u ∈ {0, 1}n

Ensure: Table T
1: for u := 0 to 2n − 1 do
2: T (u) ← S0(u ⊕ r1) ⊕ S1(u ⊕ r2) ⊕ s
3: end for

Algorithm 2. TableLookup
Require: The masked input x1 = x ⊕ r, table T from Algorithm 1, two random

numbers r1, r2 ∈ {0, 1}n, output mask s ∈ {0, 1}m
2 , and an (n, m) S-box lookup

function where S(u) = S0(u)||S1(u) for all u ∈ {0, 1}n

Ensure: Two shares of S(x)
1: t ← rand(m

2
)

2: a ← T (x1 ⊕ r2) ⊕ S1(x1)
3: b ← T (x1 ⊕ r1) ⊕ S0(x1) ⊕ t
4: return (a||b, s||(s ⊕ t))

118 P.K. Vadnala

In step 3 of Algorithm 2, we further randomize the second lookup operation
so as to make it independent of the first lookup in Step 2. We then concatenate
the results from the two table lookups to obtain the first share of the S-box
output: S(x). The second share can then be obtained by concatenating (s ⊕
t) with s. It is easy to see that this scheme is secure against first-order DPA
attacks as all the intermediate variables computed here are uniformly random
and hence are independent of x and S(x). Secondly, this compression scheme can
be generalised to any S-box input and output sizes. Moreover, one can obtain
a better compression factor by splitting S(x) into more shares; for example,
a 8-bit S-box could be split into 8 tables (one for each output bit) and the
resulting randomised table T would be 8 times smaller, at the cost of increasing
the running time for every table look-up.

Our Contribution. The classical randomized table method requires 2nm bit
memory for an (n,m) S-box and induces a penalty of 2–3 in execution time
compared to an unmasked implementation. On another hand, generic S-box
computation method due to Prouff and Rivain (recalled in Algorithm5) needs
almost no memory; however, it requires execution time in the order of 30–35
times more compared an unmasked implementation. In this paper, we study the
time-memory trade-offs for implementing the randomized lookup table by using
the compression scheme recalled above.

We first generalize the compression scheme so that the size of table T can be
reduced further. Here, the table size is determined based on a parameter, which
we call compression level (denoted by l). Then, by applying the Rivain-Prouff
countermeasure to the generic compression scheme, we obtain time-memory
trade-offs for S-box lookup table implementations that are secure against first-
order DPA attacks. Next, we propose a similar compression scheme as well as
time-memory trade-offs for the second-order secure S-box computation scheme
proposed by Rivain et al. [RDP08]. We apply all these schemes to the case
of AES-128 and provide the performance results on a 32-bit ARM Cortex-M3
microcontroller. Our results show that we can obtain relatively efficient imple-
mentations just under 40 bytes of RAM in both cases.

Outline. We first give our generic compression scheme as well as the time-
memory trade-offs for first-order secure lookup table implementations in Sect. 2.
The corresponding schemes for the second-order secure lookup table implemen-
tations are presented in Sect. 3. We provide the implementation results of all our
schemes for the case of AES-128 in Sect. 4. Finally, we conclude the paper in
Sect. 5.

2 First-Order Secure Compression Scheme

The original compression scheme requires working with 4-bit nibbles, which
might be inefficient to implement, as we need to perform bit manipulations.

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 119

To avoid that, we can use a similar approach as in [RDP08] and keep the table
entry size to a byte.

2.1 A Variant of the Compression Scheme

We consider again the case of 8-bit to 8-bit S-box S: ({0, 1}8 → {0, 1}8). We
define functions S0 and S1 ({0, 1}7 → {0, 1}8) for all u ∈ {0, 1}7as follows:

S0(u) = S(u||0), S1(u) = S(u||1) ∀ u ∈ {0, 1}7

Let r1, r2 ∈ {0, 1}7 and s ∈ {0, 1}8 be random masks, and define the randomized
table as:

T1(u) = S0(u ⊕ r1) ⊕ S1(u ⊕ r2) ⊕ s (4)

which is a 7-bit to 8-bit table. Hence it requires only 128 bytes in memory.
Let x1 = x ⊕ (r(1)||r(2)) be a masked data, where r(1) contains the most

significant 7 bits of the mask and r(2), the least significant bit. We write

x = x(1)‖x(2)

x1 = x
(1)
1 ‖x(2)

1

which gives
x
(1)
1 = x(1) ⊕ r(1)

and
x
(2)
1 = x(2) ⊕ r(2)

We then re-share r(1) into two shares r1, r2 ∈ {0, 1}7 so that r1 ⊕ r2 = r(1).
Hence x

(1)
1 is given as:

x
(1)
1 = x(1) ⊕ r1 ⊕ r2

We have from (4):

S0(x(1)) = S0(x
(1)
1 ⊕ r1 ⊕ r2) = T1(x

(1)
1 ⊕ r2) ⊕ S1(x

(1)
1) ⊕ s

S1(x(1)) = S1(x
(1)
1 ⊕ r1 ⊕ r2) = T1(x

(1)
1 ⊕ r1) ⊕ S0(x

(1)
1) ⊕ s

which gives:

S0(x(1)) ⊕ s = T1(x
(1)
1 ⊕ r2) ⊕ S1(x

(1)
1) (5)

S1(x(1)) ⊕ s = T1(x
(1)
1 ⊕ r1) ⊕ S0(x

(1)
1) (6)

In the second step we define a 1-bit to 8-bit table:

U = (S0(x(1)) ⊕ s, S1(x(1)) ⊕ s)

If x(2) = 0 then we have S(x) = S0(x(1)), while if x(2) = 1 we have S(x) =
S1(x(1)), therefore:

U(x(2)) = S(x) ⊕ s

120 P.K. Vadnala

Hence we must evaluate the table U at x(2). However, the bit x(2) cannot be
accessed directly, as it leaks information about the sensitive variable x. We use
the standard randomized table technique to prevent this. We define this ran-
domized table as:

T2(i) = U(i ⊕ r(2))

for i ∈ {0, 1}. We then retrieve the value stored at x(2)
1 from table T2: T2(x

(2)
1) =

U(x(2)) = S(x) ⊕ s, which gives the masked value of S(x).
This variant can easily be generalized to smaller table size in RAM. It suffices

to pack 2� S-box values at the beginning instead of only 2. We describe the
generalized method in the next subsection.

2.2 Generic Compression Scheme

We now present a generic compression scheme for any S-box S : {0, 1}n →
{0, 1}m. With the classical randomized table method such an S-box requires a
table of 2n entries, where each entry is of size m bits. If we want to pack 2l S-box
values, we need two tables T1 and T2 of size 2n−l and 2l entries respectively. Let
L = 2l, N = 2n and P = 2n−l.

Algorithm 3. Table T1 creation: generic first-order compression

Require: An (n, m) S-box lookup function S where Si(u) for all 0 ≤ u ≤ P − 1 is
defined as Si(u) = S(u||i) for 0 ≤ i ≤ L − 1

Ensure: Table T1, L random numbers ri ∈ {0, 1}n−l for 0 ≤ i ≤ L − 1, and output
mask: s ∈ {0, 1}m

1: for i := 0 to L − 1 do
2: ri ← rand (n − l)
3: end for
4: s ← rand (m)
5: for u := 0 to P − 1 do

6: T1(u) ←
((⊕

0≤i≤L−1 Si(u ⊕ ri)
)

⊕ s
)

7: end for

We define the function Si ({0, 1}n−l → {0, 1}m) for 0 ≤ i ≤ L − 1 as follows:

Si(u) = S(u||i) ∀ u ∈ {0, 1}n−l

We generate random numbers for the two tables T1 and T2: ri (for 0 ≤ i ≤ L − 1)
and t as follows:

ri ← {0, 1}n−l

t ← {0, 1}l

Now the table T1 which is of n − l-bit to m-bit is defined as:

T1(u) =

⎛

⎝
⊕

0≤i≤L−1

Si(u ⊕ ri)

⎞

⎠ ⊕ s (7)

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 121

We give the algorithm to generate table T1 in Algorithm 3. Next we describe a
method to compute S(x) ⊕ s from table T1. We divide the variables into two
parts of size n − l and l bits respectively. For example, x is now written as:
x = x(1)||x(2) and r as (r(1)||r(2)) etc.

From (7) we can get Si(x(1)) for 0 ≤ i ≤ L − 1 as follows:

Si(x(1))⊕s = T1((x
(1)
1 ⊕ri)⊕r(1))⊕

⊕

j∈{{0:L−1}−{i}}
(Sj((x

(1)
1 ⊕ri⊕rj)⊕r(1))) (8)

Let us now define table U : {0, 1}l → {0, 1}m for i ∈ {0, L − 1} as follows:

U(i) = Si(x(1)) ⊕ s = S(x(1)||i) ⊕ s

Using the standard randomized table technique, we describe table T2 : {0, 1}l →
{0, 1}m as:

T2(i) = U(i ⊕ t)

for i ∈ {0, L − 1}. We then compute

T2((x
(2)
1 ⊕ t) ⊕ r(2)) = U(x(2))

= S(x(1)‖x(2)) ⊕ s

= S(x) ⊕ s

Algorithm 4. Generic compression scheme for first-order secure S-box computation

Require: Two input shares: (x1 = x⊕r, r) ∈ {0, 1}n, an (n, m) S-box lookup function
S where Si(u) for all u ∈ {0, P − 1} is defined as Si(u) = S(u||i) for 0 ≤ i ≤ L − 1;
table T1, L random numbers ri ∈ {0, 1}n−l for 0 ≤ i ≤ L − 1, and an output mask:
s ∈ {0, 1}m from Algorithm 3

Ensure: S(x) ⊕ s

1: Let x
(1)
1 ||x(2)

1 ← x1 where x
(1)
1 and x

(2)
1 are of size n − l bits and l bits respectively

2: t ← rand (l)

3: t1 ← (x
(2)
1 ⊕ t) ⊕ r(2) � Change the mask to t

4: for i := 0 to L − 1 do � Create table T2

5: k ← i ⊕ t
6: ind1 ← x

(1)
1 ⊕ rk ⊕ r(1) � compute x(1) ⊕ rk

7: ssum ← 0
8: for j := 0 to L − 1 do � Evaluate (8)
9: if k �= j then

10: ind2 ← ind1 ⊕ rj
11: ssum ← ssum ⊕ Sj(ind2)
12: end if
13: end for
14: T2(i) ← T1(ind1) ⊕ ssum � Store the entry in table T2

15: end for
16: return T2(t1) � Return masked S-box output

122 P.K. Vadnala

We give the full algorithm to compute masked S-box output from masked
inputs using our generic compression scheme in Algorithm 4. For each possible
value in {0, L − 1} we compute the corresponding table entry using (8). Note
that the table T2 is shifted by t so as to avoid the leakage of the sensitive variable
x. We finally retrieve the value stored at T2(t1), since i = t1 implies:

k = i ⊕ t

= (x(2)
1 ⊕ t) ⊕ r(2) ⊕ t

= (x(2)
1 ⊕ r(2))

= x(2)

which gives the value S(x) ⊕ x, as required.

Theorem 1. Algorithm4 is secure against first-order DPA attacks.

Proof. The intermediate variables r1, r2, · · · , rL−1 are uniformly distributed in
{0, 1}n−l and hence are independent of the sensitive variables x and S(x). Sim-
ilarly, the intermediate variables t, t1, ind1, and ind2 are uniformly distributed
in {0, 1}l and are independent of the sensitive variables x and S(x). As ind2 is
uniformly distributed in {0, 1}l and j ∈ {{0 : L− 1} − {k}} so that ind2 	= x(1),
S(ind2||j) and ssum are also independent of x and S(x). Finally, as ind1 is
uniformly distributed in {0, 1}n−l and ssum is independent of the sensitive vari-
ables, T1(ind1) ⊕ ssum (and as a result T2(t1)) is also independent of x and
S(x). As all the intermediate variables present in Algorithm 4 are independent
of the sensitive variables, we can conclude that it is secure against first-order
DPA attacks.
�

Application to AES. It is known that a straightforward implementation of
randomized lookup table for AES takes 256 bytes (n = 8, l = 0). When we apply
our generic compression method, we get implementations with varying memory
requirements depending on the value of l as shown in Table 1. It can be seen
that the memory required for table T1 reduces exponentially as l increases. On
another hand, the memory required for table T2 increases at the same rate. The
best case scenario occurs when l = 4, since we need only 32 bytes overall.

2.3 Time-Memory Trade-Offs for First-Order Masking

We now present a method to obtain time-memory trade-offs for implementing
block ciphers secure against first-order DPA attacks. Our method essentially is
a combination of the generic compression scheme presented in Sect. 2.2 and the
generic secure S-box computation method proposed by Prouff and Rivain [PR07].
We recall in Algorithm 5, the first-order secure method to compute masked S-box
output from masked input due to Prouff and Rivain.

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 123

Table 1. Memory requirement for tables T1, T2 (in bytes) and number of calls to the
random number generator for masked implementation of AES for different values of l

l T1 T2 Rand

1 128 2 3

2 64 4 5

3 32 8 9

4 16 16 17

5 8 32 33

6 4 64 65

7 2 128 129

Algorithm 5. Sec1O-masking

Require: Two input shares: (x1 = x ⊕ r, r) ∈ {0, 1}n, output mask: s ∈ {0, 1}m, and
an (n, m) S-box lookup function S

Ensure: Masked S-box output: S(x) ⊕ s
1: for a := 0 to 2n − 1 do
2: cmp ← compare(a, r)
3: Rcmp ← (S(x1 ⊕ a) ⊕ s)
4: end for
5: return R1

Algorithm 5 takes two input shares of x (x1 = x ⊕ r, r), an output mask
s, the (n, m) lookup table S and computes S(x) ⊕ s without any first-order
leakage corresponding to the sensitive variable x. For all the possible values of
a ∈ {0, 1}n, it computes S(x1 ⊕ a) ⊕ s and stores it in one of the two registers
R0 and R1 based on the result from the comparison. Namely, if a = r, the
comparison returns true and the result is stored in R1; otherwise it is stored in
R0. When a = r, the value stored at R1 is S(x1 ⊕ a) ⊕ s = S(x) ⊕ s, which is
returned at the end.

This technique clearly requires O(1) memory, whereas the time complexity
is O(2n). By applying this technique to table T2 in Algorithm 4 for different
values of l, we can obtain time-memory trade-offs for first-order secure S-box
implementations. Namely, we do not store the table T2 anymore. Instead, we
apply the similar technique as in Algorithm5 for computing the entries in table
T2 and hence require only two registers irrespective of the size l. In this case, we
need to replace Step 14 of Algorithm 4 with two steps:

cmp ← compare(i, t1)
Rcmp ← T1(ind1) ⊕ ssum

Then we return the value stored at R1, which is S(x) ⊕ s, as required. The
memory requirements for table T1 with this technique are similar to that of

124 P.K. Vadnala

Algorithm 4 (given in Table 1). However, we do not need any memory for lookup
table T2 as we make use of two registers R0 and R1 to achieve the same.

3 Second-Order Secure Compression Scheme

In this section we show that we can apply the compression mechanism to second-
order secure implementations in [RDP08] as well. For simplicity, let us take the
example of AES S-box S: ({0, 1}8 → {0, 1}8) and define functions S0 and S1

({0, 1}7 → {0, 1}8) as earlier:

S0(u) = S(u||0), S1(y) = S(u||1) ∀ u ∈ {0, 1}7

We are given three input shares of x: x1, x2, x
′ = x ⊕ x1 ⊕ x2 and we need to

compute three output shares of S(x). Let us divide the shares into two parts:
x = y‖b, x1 = y1‖b1, x2 = y2‖b2 and x′ = y′‖b′. Let r0, r1 ∈ {0, 1}7 and
s1, s2 ∈ {0, 1}8 be random masks, and let us define the randomized table:

T1(a′) = S0(y′ ⊕ a ⊕ r0) ⊕ S1(y′ ⊕ a ⊕ r1) ⊕ s1 ⊕ s2 (9)

where y′ = y⊕y1 ⊕y2, a′ = a⊕ ((y1 ⊕y3)⊕y2) for every a ∈ {0, 1}7 and random
y3 ∈ {0, 1}7. When a′ = y3 ⊕ r0, we have:

a = y3 ⊕ r0 ⊕ y1 ⊕ y3 ⊕ y2 = y1 ⊕ y2 ⊕ r0

T1(y3 ⊕ r0) = S0(y) ⊕ S1(y ⊕ r0 ⊕ r1) ⊕ s1 ⊕ s2

S0(y) ⊕ s1 ⊕ s2 = T1(y3 ⊕ r0) ⊕ S1(ỹ)

where ỹ = y ⊕ r0 ⊕ r1. Similarly when a′ = y3 ⊕ r1 we have:

a = y3 ⊕ r1 ⊕ y1 ⊕ y3 ⊕ y2 = y1 ⊕ y2 ⊕ r1

T1(y3 ⊕ r1) = S0(y ⊕ r0 ⊕ r1) ⊕ S1(y) ⊕ s1 ⊕ s2

S1(y) ⊕ s1 ⊕ s2 = T1(y3 ⊕ r1) ⊕ S0(ỹ)

Once we have masked values of S0(y) and S1(y), we can find S(x) = S(y||b)
using a 1-bit to 8-bit table U , which is defined as:

U(b) = S(y||b) = S(b)(y) = T1(y3 ⊕ r(b)) ⊕ S(b⊕1)(ỹ) ⊕ s1 ⊕ s2

If we store the table U directly, this could leak information about the bit b. Hence
we use a randomized table T2 created using the generic second-order scheme from
[RDP08]. Let x′ = y′||b′ and b′ = b ⊕ b1 ⊕ b2. For random b3 ∈ {0, 1} we define:

T2(a′) = S(b′⊕a)(y) ⊕ s1 ⊕ s2 = T1(y3 ⊕ r(b′⊕a)) ⊕ S(b′⊕a⊕1)(ỹ)

where a′ = a ⊕ ((b3 ⊕ b1) ⊕ b2) for a ∈ {0, 1}. When a′ = b3 we have:

a = b3 ⊕ (b3 ⊕ b1 ⊕ b2) = b1 ⊕ b2

T2(b3) = T1(y3 ⊕ r(b)) ⊕ S(b⊕1)(ỹ)

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 125

which gives the masked value of S(y||b): S(x) ⊕ s1 ⊕ s2.
We now give the generic compression scheme for second-order secure look-up

table. Let the S-box be S : {0, 1}n → {0, 1}m. Assume that we want to pack 2l

values in T1. Hence, the size of tables T1 and T2 become 2n−l and 2l respectively.
Let L = 2l, N = 2n,M = 2m, P = 2n−l and let Si ({0, 1}n−l → {0, 1}m) be:

Si(y) = S(y||i) ∀ y ∈ {0, 1}n−l

We define the first randomized table T1 for all a ∈ {0, 1}n−l as:

T1(a′) =

⎛

⎝

⎛

⎝
⊕

0≤i≤L−1

Si(y′ ⊕ a ⊕ ri)

⎞

⎠ ⊕ s1

⎞

⎠ ⊕ s2 (10)

where a′ = a⊕((y1⊕y3)⊕y2) for a random y3. We give the algorithm to compute
the table entries of T1 in Algorithm 6.

Algorithm 6. Table T1 creation: generic second-order compression

Require: Three input shares: (y′ = y ⊕ y1 ⊕ y2, y1, y2) ∈ {0, 1}n−l, output masks:
s1, s2 ∈ {0, 1}m, ri ∈ {0, 1}n−l for 0 ≤ i ≤ L − 1, an (n, m) S-box lookup function
S and Si for 0 ≤ i ≤ L − 1 where Si(y) = S(y||i)

Ensure: Table T1, y3

1: y3 ← rand(n − l)
2: y′′ ← (y1 ⊕ y3) ⊕ y2

3: for a := 0 to P − 1 do
4: a′ ← a ⊕ y′′

5: T1(a
′) ←

((⊕
0≤i≤L−1 Si(y

′ ⊕ a ⊕ ri)
)

⊕ s1
)

⊕ s2

6: end for

Next we describe a method to compute table T2. When a′ = y3 ⊕ r0, we
have:

a = y3 ⊕ r0 ⊕ y1 ⊕ y3 ⊕ y2 = y1 ⊕ y2 ⊕ r0

T1(y3 ⊕ r0) = S0(y) ⊕

⎛

⎝
⊕

1≤i≤L−1

Si(y ⊕ r0 ⊕ ri)

⎞

⎠ ⊕ s1 ⊕ s2

S0(y) ⊕ s1 ⊕ s2 = T1(y3 ⊕ r0) ⊕
⊕

1≤i≤L−1

Si (y ⊕ r0 ⊕ ri)

In general, for 0 ≤ j ≤ L − 1 and a′ = y3 ⊕ rj , we have:

Sj(y) ⊕ s1 ⊕ s2 = T1(y3 ⊕ rj) ⊕
⊕

i∈{0:L−1}−{j}
Si(y ⊕ rj ⊕ ri)

126 P.K. Vadnala

Algorithm 7. Table T2 creation: generic second-order compression

Require: Three input shares: (b′ = b ⊕ b1 ⊕ b2, b1, b2) ∈ {0, 1}l, ri ∈ {0, 1}n−l for
0 ≤ i ≤ L − 1, an (n, m) S-box lookup function S and Si for 0 ≤ i ≤ L − 1 where
Si(y) = S(y||i), table T1, y3, y′, y1, y2

Ensure: Table T2, b3
1: b3 ← rand(l); b′′ ← (b1 ⊕ b3) ⊕ b2
2: for a := 0 to L − 1 do
3: a′ ← a ⊕ b′′

4: t1 ← T1(y3 ⊕ r(b′⊕a))

5: T2(a
′) ← t1 ⊕

(⊕
i∈{{0:L−1}−{a}}(S(b′⊕i)(((y

′ ⊕ r(b′⊕a) ⊕ r(b′⊕i)) ⊕ y1) ⊕ y2))
)

6: end for

We subsequently store each of these values in table T2 without any second-
order leakage from the sensitive variable x. We formally describe our technique
to compute the entries of table T2 in Algorithm 7. Finally, Algorithm 8 gives our
generic compression scheme for second-order secure S-box computation.

Algorithm 8. Generic compression scheme for second-order secure S-box compu-
tation
Require: Three input shares: (x′ = x ⊕ x1 ⊕ x2, x1, x2) ∈ {0, 1}n, output masks:

s1, s2 ∈ {0, 1}m, an (n, m) S-box lookup function S and Si for 0 ≤ i ≤ L− 1 where
Si(y) = S(y||i)

Ensure: S(x) ⊕ s1 ⊕ s2
1: Let y′||b′ ← x′ where y′ is of size n − l bits and b′ l-bits
2: for i := 0 to L − 1 do
3: ri ← rand (n − l)
4: end for
5: Create table T1 using Algorithm 6
6: Create table T2 using Algorithm 7
7: return T2(b3)

Security Analysis. It is easy to prove the security of our generic compression
scheme against second-order DPA attacks. The security of Algorithms 6 and
7 follow directly from the proofs given in [RDP08]. Let us denote the sets of
intermediate variables from Algorithms 6 and 7 by I1 and I2 respectively. We
already know that I1 × I1 and I2 × I2 are secure against second-order attacks.
We can use the similar arguments as in [RDP08] to show that I1 × I2 is also
independent of the sensitive variables, which essentially proves the security of
Algorithm 8.

Second-Order Time-Memory Trade-Offs. Rivain et al. also presented a
technique to perform second-order secure S-box computation using only two
registers and 2n bits of memory for an (n,m) S-box (Algorithm 3 in [RDP08]).

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 127

Hence, we can obtain time-memory trade-offs for second-order secure S-box com-
putation similar to the first-order case given in Sect. 2.3.

Initially, we proceed as in the case of generic compression scheme and create
table T1 of P entries. However, instead of creating table T2, we work with two
registers R0 and R1. The correct output is stored in one of these two registers,
which is based on a random bit c. We iterate over all possible values of a ∈ {0, 1}l

as in the case of Algorithm 7. Instead of storing all the entries in table T2, we
store the value of (S(b′⊕a)(y) ⊕ s1) ⊕ s2 in one of the two registers based on the
comparison between (b1 ⊕ a, b2). When b1 ⊕ a = b2:

a = b1 ⊕ b2

Rc = (Sb′⊕b1⊕b2(y) ⊕ s1) ⊕ s2

= (Sb(y) ⊕ s1) ⊕ s2

Hence the correct value is stored in Rc and the wrong value in Rc. Finally,
we return the value stored in Rc which is (S(y||b)⊕s1)⊕s2 = (S(x)⊕s1)⊕s2, as
required. Here, we need to ensure that the comparison function does not leak any
information about x, for which we use the first-order secure compare function
described in Appendix A of [RDP08]1.

4 Implementation Results

We applied both our proposed schemes (compression as well as time-memory
trade-off) to AES-128 so as to obtain implementations that are secure against
first and second-order DPA attacks. For simplicity, we only considered the case of
using the same mask for all the 16 S-boxes in our first-order masking. However,
our schemes can also be easily applied to multi-mask implementations [OS05].
We implemented these masking schemes for all possible values of compression
levels l i.e., for l = (0, 1, 2, 3, 4, 5, 6, 7). We give here the performance results of
our implementations on NXP-LPC1769, a 32-bit ARM Cortex-M3 based micro-
controller. We only consider the classical randomized lookup table method and
second-order masking scheme from Rivain et al. for comparison as rest of the
schemes incur significantly higher penalty. For example, penalty factor for first
and second-order secure implementations using Rivain-Prouff higher-order mask-
ing scheme [RP10] are 50 and 96 respectively (from [Cor14]).

Our implementation results for first-order masking are given in Table 2. On
the left, we can see the results for AES-128 for different values of l when we
apply our generic compression scheme. The columns in the table denote the
compression level l, execution time in milliseconds, penalty factor compared
to an unmasked implementation, and the required number of bytes in RAM
respectively. On the right we show our results for time-memory trade-offs for
different values of l. We see that in both the cases, for l > 4 the penally factor is
significantly high. This is due to the fact that the number of required randoms
1 Note that this particular scheme has a flaw if the device leaks in the Hamming

distance model [CGP+12].

128 P.K. Vadnala

and size of the table T2 (or the number of comparisons in case of time-memory
trade-offs) increase exponentially with the compression level l. Secondly, the
penalty factor in both the cases for l > 3 is actually higher than that of no
memory case i.e., for l = 0 on the right side of the table. Hence, for AES-128,
we can conclude that compression level greater than 3 is not useful in practice.
Another interesting observation here is that the penalty factor for l = 2, which
requires almost four times less memory compared to the classical randomized
table method (l = 0) is around three times only.

We give the results for our implementation of second-order masking in
Table 3. We can see that the results are identical to that of first-order mask-
ing. Namely, for l > 4 the penalty is very high and for l > 3 the penalty is higher
than the no memory case. Note also that the penalty factor for l = 3 is only
twice that of l = 0, while requiring only one fourth of the memory.

Table 2. Running time in milliseconds and penalty factor for first-order generic com-
pression scheme (left) and time-memory trade-offs (right).

� Time PF Mem

0 54 1.8 256

1 81 2.7 130

2 168 5.6 68

3 380 12.6 40

4 1100 36.6 32

5 3800 126.6 40

6 13900 463.3 68

7 51900 1730 130

� Time PF Mem

0 1054 35.1 0

1 94 3.1 128

2 182 6.1 64

3 418 13.9 32

4 1300 43.3 16

5 4400 146.6 8

6 15800 526.6 4

7 57600 1920 2

Table 3. Running time in milliseconds and penalty factor for second-order generic
compression scheme (left) and time-memory trade-offs (right).

� Time PF Mem

0 914 30.4 256

1 1006 33.5 130

2 1560 52 68

3 1870 62.4 40

4 3560 118.6 32

5 10340 344.6 40

6 36990 1233 68

7 141210 4707 130

� Time PF Mem

0 2214 73.8 32

1 1177 39.2 129

2 1730 57.6 65

3 2030 67.6 33

4 3680 122.6 18

5 10310 343.6 12

6 36140 1204.6 12

7 136730 4556.6 18

Time-Memory Trade-Offs for Side-Channel Resistant Implementations 129

5 Conclusion

In this paper, we studied the time-memory trade-offs for implementations of
block ciphers secure against first and second-order DPA attacks. We first gen-
eralized the compression scheme for lookup tables so that it works for any com-
pression level. We then applied Rivain-Prouff countermeasure to the generic
compression scheme and obtained time-memory trade-offs for first-order secure
implementations. Similarly, we also obtained generic compression scheme and
time-memory trade-offs for second-order secure implementations as well. We
implemented AES-128 on a 32-bit ARM based microcntroller using our pro-
posed schemes. Our results show that one can obtain relatively efficient imple-
mentations for only 40 bytes of RAM, which can be useful for highly memory
constrained devices. Moreover, reasonably efficient implementations that use
multi-mask method (i.e. 16 different tables used for 16 S-boxes) can also be
obtained with 620 bytes of RAM compared to 4KB RAM required in straightfor-
ward implementations. This improvement allows one to implement multi-mask
method efficiently even on microcontrollers with 8KB RAM (e.g. Cortex-M0).

We describe two directions for future work. Firstly, it would be interesting to
perform similar analysis on higher-order lookup table method proposed by Coron
[Cor14] to obtain time-memory trade-offs there as well. Secondly, it is possible
to improve the implementation results for second-order masking on devices with
large sized registers (for e.g. AES on 32-bit devices) using improved algorithm
from [RDP08]. However, note that such a reduction would be applicable to all
the cases and hence it will not change the relative performance of the results
given here.

Acknowledgments. I would like to thank Jean-Sébastien Coron for introducing me
to this problem and Debdeep Mukhopadhyay for hosting me at IIT Kharagpur, India
during this work. I would also like to thank Srinivas Vivek and Sikhar Patranabis for
helpful discussions.

References

[AARR03] Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—
channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002.
LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). doi:10.1007/
3-540-36400-5 4

[CGP+12] Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.:
Conversion of security proofs from one leakage model to another: a new
issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275,
pp. 69–81. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29912-4 6

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 26

[Cor14] Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 25

http://dx.doi.org/10.1007/3-540-36400-5_4
http://dx.doi.org/10.1007/3-540-36400-5_4
http://dx.doi.org/10.1007/978-3-642-29912-4_6
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/978-3-642-55220-5_25

130 P.K. Vadnala

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). doi:10.1007/3-540-48405-1 25

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/
3-540-68697-5 9

[Mes00] Messerges, T.S.: Using second-order power analysis to attack DPA resis-
tant software. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 238–251. Springer, Heidelberg (2000). doi:10.1007/3-540-44499-8 19

[OMHT06] Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order
DPA attacks for masked smart card implementations of block ciphers.
In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207.
Springer, Heidelberg (2006). doi:10.1007/11605805 13

[OS05] Oswald, E., Schramm, K.: An efficient masking scheme for AES software
implementations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005.
LNCS, vol. 3786, pp. 292–305. Springer, Heidelberg (2006). doi:10.1007/
11604938 23

[PR07] Prouff, E., Rivain, M.: A generic method for secure SBox implementation.
In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp.
227–244. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77535-5 17

[RDP08] Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably
secure against second order side channel analysis. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71039-4 8

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

[RRST02] Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S.: Partitioning attacks: or
how to rapidly clone some GSM cards. In: IEEE Symposium on Security
and Privacy, pp. 31–41. IEEE Computer Society (2002)

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-44499-8_19
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/11604938_23
http://dx.doi.org/10.1007/11604938_23
http://dx.doi.org/10.1007/978-3-540-77535-5_17
http://dx.doi.org/10.1007/978-3-540-71039-4_8
http://dx.doi.org/10.1007/978-3-540-71039-4_8
http://dx.doi.org/10.1007/978-3-642-15031-9_28

Hiding Higher-Order Side-Channel Leakage

Randomizing Cryptographic Implementations
in Reconfigurable Hardware

Pascal Sasdrich1(B), Amir Moradi1, and Tim Güneysu2

1 Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum,
Bochum, Germany

{pascal.sasdrich,amir.moradi}@rub.de
2 University of Bremen & DFKI, Bremen, Germany

tim.gueneysu@uni-bremen.de

Abstract. First-order secure Threshold Implementations (TI) of sym-
metric cryptosystems provide provable security at a moderate overhead;
yet attacks using higher-order statistical moments are still feasible. Cryp-
tographic instances compliant to Higher-Order Threshold Implementa-
tion (HO-TI) can prevent such attacks, however, usually at unacceptable
implementation costs. As an alternative concept we investigate in this
work the idea of dynamic hardware modification, i.e., random changes
and transformations of cryptographic implementations in order to ren-
der higher-order attacks on first-order TI impractical. In a first step, we
present a generic methodology which can be applied to (almost) every
cryptographic implementation. In order to investigate the effectiveness
of our proposed strategy, we use an instantiation of our methodology
that adapts ideas from White-Box Cryptography and applies this con-
struction to a first-order secure TI. Further, we show that dynamically
updating cryptographic implementations during operation provides the
ability to avoid higher-order leakages to be practically exploitable.

1 Introduction

Side-channel analysis (SCA) uses information leakage by measuring physical
device internals, e.g., timing [9], power consumption [10] or electromagnetic
emanations [2], to extract cryptographic secrets. Modern side-channel counter-
measures are classified either as hiding or masking [11]. While hiding coun-
termeasures aim to decrease the Signal-to-Noise ratio (SNR) in order to hide
information leakage in random noise, masking countermeasures tackle informa-
tion leakage using secret sharing and multi-party computation techniques. The
idea of Threshold implementation (TI) has been developed based on Boolean
masking in particular to target hardware implementations [15]. However, the
initial concept of TI was only suitable to counteract first-order side-channel
leakages, still allowing attacks using higher-order statistical moments to success-
fully recover cryptographic secrets. Naturally, higher-order Threshold Implemen-
tations (HO-TI) have been proposed to solve this problem [4]. Despite, HO-TI
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 131–146, 2017.
DOI: 10.1007/978-3-319-52153-4 8

132 P. Sasdrich et al.

might be limited to uni-variate scenarios [18] as well as they come with increased
time overhead and area demands due to the ever increasing number of mini-
mum shares for higher-order protection. Therefore, combining first-order secure
TI with hiding countermeasures to achieve (practical) higher-order protection
might be an alternative solution.

Previous Work: Although the threat of side-channel attacks is well known,
many cryptographic devices are vulnerable to side-channel analysis due to their
static design and behavior which allows attacks based on statistical and dif-
ferential analysis. Introducing dynamic behavior in terms of ever-changing and
morphing implementations and circuits could help to overcome these problems.
However, this is not a trivial task and poses big challenges to designers of cryp-
tographic implementations in particular using static hardware devices. In recent
years, several research into this direction has been performed and published but
still existing solutions are at an early stage and have to face many difficulties. In
2008, Mentens et al. [12] introduced a first work for using dynamic reconfigura-
tion of modern FPGAs as countermeasure against power and fault attacks. How-
ever, their solution had to struggle with slow reconfiguration times as well as too
small complexity which still allowed efficient analysis and attacks. Besides, their
solution specifically targeted reconfigurable hardware which provides dynamic
reconfiguration features. Moradi and Mischke [13] examined the opportunities
of using dual ciphers as alternative representations (in particular for AES) in
order to achieve protection against side-channel attacks. Though, dual ciphers
maintain structural properties of the original representation which again could
be exploited using statistical analysis. Recently, Sasdrich et al. [19] proposed
the application of affine equivalence representations of cryptographic S-boxes to
change the cipher implementation dynamically during runtime. Although the
complexity of this approach is quite high, it exploits very specific properties
of the cryptographic components, so that this approach cannot be generically
applied to cryptographic implementations.

Contribution: Our contribution in this work is twofold: First, we present a
generic approach to change the representations of cryptographic implementations
dynamically in order to introduce non-static behavior. Our methodology can be
applied to (almost) every cryptographic implementation and circuit independent
of the cryptographic algorithm or scheme. Our approach uses random substitu-
tion of basic elements along with random encoding of intermediate connections
and offers high flexibility and scalability of attack complexities depending of the
used level of abstraction and granularity of the underlying circuit. Second, we
investigate and analyze a specific instantiation of our approach to randomize
a TI. In particular, we are going to examine a first-order PRESENT TI as a
case study which is implemented in reconfigurable hardware. The randomiza-
tion of intermediate signals, in terms of random non-linear 4-bit encodings, is
chosen dynamically during runtime and injected into each implemented look-up
table in order to substitute them by different representations. In particular, this

Hiding Higher-Order Side-Channel Leakage 133

approach adapts ideas and techniques from the area of White-Box Cryptography
(WBC), although we want to emphasize that we do not aim to achieve resistance
against attacks in the white-box adversary model. Eventually, we conduct prac-
tical side-channel measurements for our case study. Using a leakage assessment
methodology, we focus on effects of our countermeasure on higher-order sta-
tistical properties and moments and show that our approach can increase the
protection against higher-order side-channel attacks from a practical point of
view.

Outline: The remainder of this article is organized as follows: Sect. 2 sum-
marizes and provides important background information on directed graphs,
Threshold Implementations and White-Box Cryptography. In Sect. 3 we present
a description of our generic approach to dynamically update and randomize
cryptographic implementations which is applied in a case study in Sect. 4 using
a specific instantiation based on a PRESENT TI and 4-bit non-linear encod-
ings (as proposed for WBC). Section 5 provides side-channel evaluation results
using power measurements and state-of-the-art leakage assessment methodolo-
gies. Eventually, our work concludes in Sect. 6.

2 Background

This section briefly introduces the theory of directed graphs before we reca-
pitulate the background of Threshold Implementations (TI) and White-Box
Cryptography (WBC).

2.1 Notations

We denote single-bit random variables using lower-case characters, bold ones for
multi-bit vectors, bars for shared representations, lowering indices for elements
within a vector and raising indices for elements of a shared vector.

Furthermore, let us denote any element x ∈ GF(2m) as vector of m single bit
elements 〈x1, . . . , xm〉. The shared representation x̄ of a vector x using Boolean
masking with s shares is given as x̄ = (x 1, . . . ,x s), where

x =
s⊕

i=1

x̄ =
s⊕

i=1

x i =
s⊕

i=1

〈xi
1, . . . , x

i
m〉.

Eventually, we denote functions using sans serif fonts and sets using calli-
graphic ones.

2.2 Directed Graphs

Directed Graphs (or digraphs) are use for many applications in order to
abstractly model a certain problem and find according solutions. In general, a
graph is a set of nodes that are connected by some edges. For a directed graph,
the edge are provided with a certain direction.

134 P. Sasdrich et al.

Definition 1. A directed graph or digraph is an ordered pair of
sets G = (V,A) where V is a set of vertices and A is a set of ordered
pairs aij = 〈vi, vj〉 (called arrows or directed edges) with vi, vj ∈ V.

In particular, each vertex has a certain number of connected edges. Due to the
direction of the edges, we can distinguish between edges that arrive at a vertex
and edges that leave a vertex. The number of arriving edges is given by the in-
degree of a node, whereas the number of leaving edges is given by the out-degree.

Definition 2. In a directed graph, the in-degree deg+(v) and the
out-degree deg−(v) of a vertex v ∈ V count the number of directed
edges connecting to and from a vertex respectively. It holds, that
∑

v∈V deg+(v) =
∑

v∈V deg−(v) = |A|.

Eventually, every node (connected to a digraph) has to have at least one arriving
or leaving edge. In case the node has an in-degree of zero, it is called source,
since it only serves as starting point for several edges. Similarly, a node without
any leaving edges is called sink, since it is only an ending point for some edges.
In the following, we consider the source nodes as starting points of our directed
graph, whereas the sink will be the final points.

2.3 Threshold Implementation

Threshold Implementation (TI) is a widely used technique to protect hardware
devices against physical attacks. In particular, TI is based on Boolean masking
and multi-party computation and provides provable security, even in the pres-
ence of glitches1. In general, any Threshold Implementation has to provide the
following three properties:

Correctness: Given a vector x̄ = (x i, . . . ,x s) in its shared representation, we
can compute any function F(x̄) = ȳ on it but have to ensure correctness, i.e., the
result ȳ = (y i, . . . ,y t) has to be shared representation of y = F(x) with t ≥ s.
But for this purpose, we can use according component functions fi to evaluate
F for each share individually. However, finding correct component functions is
not trivial, in particular if F is a non-linear function [3]. In addition, each com-
ponent function has to ensure further properties such as non-completeness and
uniformity.

Non-completeness: As mentioned before, each resulting share (y i, . . . ,y t)
is given by an individual evaluation of a component function fi∈{1,...,t}(·) over
the input shares. However, in order to achieve security in sense of first-order
statistical moments, each component function has to provide non-completeness.
This means that each component function fi∈{1,...,t}(·) must be non-complete,
i.e., independent of at least one input share.
1 For a more detailed description, please refer to the original articles [4,15,16].

Hiding Higher-Order Side-Channel Leakage 135

Uniformity: The security of Threshold Implementations as masking schemes
is based on the uniform distribution of the mask respectively the shared repre-
sentation which serve as input for a function evaluation. However, since results
of a function, e.g., an S-box, are used as input to another function, the outputs
of the functions again have to be uniformly distributed. This means, given a set
of all possible input sharings X = {x̄ |

⊕s
i=1

x̄ = x} the set of all possible output
sharings, i.e., {(f1(·), . . . , ft(·)|x̄ ∈ X} should be drawn uniformly from the set
of Y = {ȳ |

⊕t
i=1

ȳ = y} as all possible sharings of y = F(x).

2.4 White-Box Cryptography

The concept of White-Box Cryptography is concerned with the protection of
implementations of cryptographic algorithms in the presence of white-box adver-
saries that have virtually unlimited capabilities and access to an implementation
as well as full control of the execution environment. Implementations are assumes
secure against white-box adversaries if they provide an adversary with not more
information than given by a black-box access, in other words, the white-box
implementation should behave as virtual black box.

As a matter of fact, an ideal white-box implementation of a cryptographic
algorithm would consist of a single look-up table which maps every possible
plaintext to an according ciphertext (for a given and fixed secret key). However,
for modern ciphers that provide security levels and key sizes of 128 bits and more,
this approach is obviously impractical. Consequently, alternative approaches
which can be realized in practice are necessary. In 2002, Chow et al. proposed
practical white-box implementations for DES [6] and AES [7] using divide-and-
conquer strategies to build white-box implementations using networks of ran-
domized look-up tables.

In general, the proposed strategy can be applied for any key-alternating,
round-based, symmetric block cipher EK to derive its white-box implementation
E′
K and it can be described as:

E′
K = (fr+1)−1 ◦ Er

kr
◦ fr

︸ ︷︷ ︸

table(s)

◦ · · · ◦ (f3)−1 ◦ E2
k2

◦ f2
︸ ︷︷ ︸

table(s)

◦ (f2)−1 ◦ E1
k1

◦ f1
︸ ︷︷ ︸

table(s)

= (fr+1)−1 ◦ Er
kr

◦ · · · ◦ E2
k2

◦ E1
k1

◦ f1 = (fr+1)−1 ◦ EK ◦ f1,

In this context, Ei∈{1,...,r} is a single round of EK , and fi∈{1,...,(r+1)} are
encoding functions which are chosen randomly in order to randomize and hide
any key material inside the look-up tables. Besides, in order to ensure full pro-
tection of the first and last round of a block cipher and to prevent so called Code
Lifting attacks [8], white-box implementations usually use external encodings
(here given as f1 respectively (fr+1)−1).

136 P. Sasdrich et al.

3 Methodology

In this section, we introduce our methodology to dynamically update and ran-
domize cryptographic implementations using a generic approach. We first state
some important observations that directly lead to a generic representation of the
problem. This is followed by an algorithmic solution to achieve dynamic updates
of cryptographic implementations.

3.1 Generic Approach

In general, our generic approach can be applied to any cryptographic implemen-
tation. However, the provided physical platform has to allow some changes of
the implementation during runtime. Since we want to focus on hardware imple-
mentations throughout this work, we particularly target reconfigurable hardware
in terms of Field-Programmable Gate Arrays (FPGA). Eventually, we present a
solution that achieves on-the-fly dynamic randomization of cryptographic imple-
mentations.

Observation 1. Any cryptographic implementation can be repre-
sented as network or sequence of modular or atomic functions sub-
sequently applied on an internal state.

Consequently, we can model any cryptographic implementation as a directed
graph. Depending on the level of abstraction and the desired granularity (e.g.,
system level, gate level, etc.), each node of the graph represents a single or
multiple modular and atomic functions of the algorithm. Besides, the edges which
connecting the nodes in a certain direction represent the data flow of the internal
state.

Observation 2. Any cryptographic implementation can be modeled
by different but equivalent directed graphs.

In general, the numbers of nodes and edges required to model a cryptographic
implementation is not determined and particularly not limited by an upper
bound. Principally, we can add new nodes and edges arbitrarily to the graph
to find new representations (with sufficient complexity). However, we still have
to maintain and ensure correctness of the overall implementation.

3.2 Morphing Algorithm for Cryptographic Implementations

Based on this observations, we developed a generic algorithm to morph a digraph
of a cryptographic implementation into an equivalent but encoded digraph while
still maintaining correctness of the implementation.

According to Algorithm 1, each arrow 〈vi, vj〉 of a digraph is replaced by
an encoded directed edge. For this purpose, both adjacent vertices have to be
replaced as well. The starting vertex vi is replace such that it not only performs

Hiding Higher-Order Side-Channel Leakage 137

Algorithm 1. Morphing algorithm for cryptographic implementations
Input : G = (V,A): digraph representing a cryptographic implementation.
Output: G∗ = (V∗,A∗): digraph representing an encoded cryptographic

implementation.

G∗ = (V∗,A∗): V∗ ← V, A∗ ← A
for ∀vi ∈ V∗ do

D ← ∅
s ← f(vi), V∗ ← V∗ \ {vi}
for ∀vj ∈ V∗ do

if aij ∈ A∗ then
D ← D ∪ f−1(vj)
V∗ ← V∗ \ {vj}, A∗ ← A∗ \ {aij},

end

end

for ∀di ∈ D do
V∗ ← V∗ ∪ {s, di}, A∗ ← A∗ ∪ 〈s, di〉,

end

end

return G∗

its originally provided function but in addition performs an encoding function f
to the state. In order to maintain correctness of the implementation, the ending
vertex vj has to cancel the applied encoding using the inverse (decoding) function
f−1 before performing its original function to the state.

3.3 Applicable Encoding Functions

In this section, we will briefly discuss properties and requirements on encoding
functions that are applicable within our algorithm. First of all, the encoding
function should be a randomly drawn function in order to perform a randomiza-
tion of the implementation during the update. However, each encoding function
has to fulfill a few minimal requirements and has to provide some properties to
be compatible with our methodology. Obviously, the encoding function has to
be injective, i.e., it has to be information preserving in order to allow a correct
operation of the original implementation. Apart from that, input and output
sizes of the encoding functions will depend on the desired granularity of the
algorithm and can differ as long as the output size is at least the input size.
Besides, the chosen encoding function can have any complexity (but still should
be reasonable efficient). Possible realizations of encoding functions could be: lin-
ear functions [23], non-linear bijections (like S-boxes) [7], or any other instance
which meets the requirements.

138 P. Sasdrich et al.

3.4 Verification and Semantic Equivalence Checking

Since our methodology should not affect the correctness of the final result of
the original implementation, we have to ensure semantic equivalence of the ran-
domized implementations. Therefore, our approach has to include checking and
verification steps. As mentioned before, the randomly drawn encoding functions
have to meet minimal requirements which has to be checked and verified con-
tinuously during the operation. Correctness of the final result, i.e., semantic
equivalence of the randomized implementation, is ensured by only encoding sin-
gle edges (or small paths2) and including the inverse decoding function at the
same time.

4 Case Study: PRESENT Threshold Implementation

Throughout this section, we present a practical realization of our proposed coun-
termeasure using an encoded PRESENT TI as case study. Before investigating
the feasibility of our approach in terms of hiding higher-order side-channel leak-
age, we give a detailed description of our practical architecture realized on a
modern Xilinx FPGA and elaborate our design strategy.

4.1 Adversary Model

Although our practical instantiation employes certain ideas and concepts of
White-Box Cryptography in terms of using encoded look-up tables to hide secret
key material, we want to emphasize that we still do not consider adversaries of
the white-box model. It is obvious that every adversary who has full access
and control of the execution environment can circumvent our proposed counter-
measures in order to extract secret keys from the implementation using more
powerful attacks, e.g., an algebraic analysis of the look-up tables. However, we
therefore only consider adversaries of the gray-box model, i.e., adversaries that
still can access the implementation but can only gain helpful information through
side-channel leakage.

4.2 Design Considerations

PRESENT [5] is a lightweight symmetric block cipher based on a block size of
64 bits. In particular, it is a Substitution-Permutation network (SPN) with 31
rounds. It provides two different key sizes (80 bit or 128 bit) and derives 32
different 64-bit round-keys based on the initial key. Since nowadays, it is advised
against using 80-bit keys, we opted to implement and focus on PRESENT-128.

2 Given for instance a linear operation within a cryptographic implementation (e.g.,
MixColumns of the AES algorithm) and the application of linear encoding functions
would allow to keep encoded intermediate values. However, the decoding function
then has to consider the inversion of the linear operation as well.

Hiding Higher-Order Side-Channel Leakage 139

x1

x2

x3

g2,3

g1,3

g1,2

f2,3

f1,3

f1,2

y1

y2

y3

Fig. 1. First-order TI of the PRESENT S-box

Threshold Implementation of PRESENT: Our implementation is based
on the first TI that was presented in [17]. In particular, we apply the decompo-
sition of the S-box into two quadratic functions g and f that was proposed by
Poschmann et al. in order to benefit from the minimal number of shares (i.e.,
m = n = 3). Since the permutation of the PRESENT cipher is a linear function,
it can be applied to each share individually and without modification. Due to
the decomposition of the S-box, additional register stages have to be placed in
between g and f in order to prevent side-channel leakage caused by glitches. The
final structure of the first-order TI of the PRESENT S-box is shown in Fig. 1.

Encoding the TI: Before instantiating and implementing our proposed algo-
rithm taking the example of a first-order secure PRESENT TI, we have to find
an architecture which supports dynamic updates of sub-functions or components
and can be implemented on an FPGA. Given the basic structure of a TI of the
PRESENT S-box as shown in Fig. 1 we chose the component functions as basic
building blocks that have to be updated on-the-fly. Besides, we opted to imple-
ment each function as look-up tables because it is a natural choice for FPGAs
but also allows fast updates.

Starting from this, the PRESENT TI can be implemented as network of look-
up tables, each operating on 4-bit nibbles of the internal state. In a next step,
the output of each look-up table is encoded using a non-linear 4-bit bijection.
In order to maintain correctness, all subsequent look-up tables have to apply
the according decoding function before being evaluated, i.e., the original table
has to be combined with the according inverse bijection. In general, this app-
roach reflects basic ideas and concepts of White-Box Cryptography as initially
proposed by Chow et al. in [6,7].

However, this strategy has some important implications that effect the final
hardware architecture. First, the secret key has to be known during design time
since it is included within the look-up tables. Hence, the (shared) key is fixed
and combined with the look-up tables of the first layer of the TI S-box. Second,
since the permutation layer is a linear functions which operates on single bits,
we cannot perform the permutation on 4-bit encoded values. Instead, we have
to implement the permutation layer as sequence of look-up tables that decode
and re-encode the nibbles while performing the original permutation.

140 P. Sasdrich et al.

Eventually, our encoded TI is implemented using different look-up tables for
each sub-function and all rounds. However, this complicates the task of imple-
menting our design efficiently using an round-based approach. None the less,
modern FPGAs provide useful features that allow an efficient implementation
(as presented in Sect. 4.3).

Dynamic Update of Encodings: So far, our TI is encoded statically using
arbitrary non-linear functions applied during design time. However, in order to
perform dynamic randomization during operation time, we want to modify these
initial encodings. Therefore, in general, we have to find solutions for the following
two issues:

1. How to find or compute random non-linear functions on-the-fly?
2. How to inject random non-linear functions into our hardware implementation

during runtime?

Random 4-bit non-linear functions, i.e., a random permutations of the
sequence {0, 1, . . . , 15} can be generated using a linear-time algorithm using
swapping operations and sampling uniform random numbers [22]. Although the
permutation generation is slightly biased, this effect can be neglected in the
context of side-channel analysis.

Since our encoded TI is implemented as network of look-up tables, inject-
ing random non-linear functions can be realized as table re-computation and
re-ordering. In particular, we can apply arbitrary functions to the output of a
table by replacing each table entry by the according encoded value. The decod-
ing function can be applied to the input of a table by re-odering the table entries
according to the decoded address value. Fortunately, this procedure is indepen-
dent of the previous injection of random functions, i.e., if we first apply a random
function n1 follow by a second function n2 this is the same as applying another
function n3 with n3 = n2 ◦ n1. Hence, we can continually update our imple-
mentation using random non-linear functions without increasing the size of our
implementation by just performing table re-computations and re-orderings.

Eventually, for the given PRESENT implementation, we have to update 5904
4-bit encodings per encryption in order to perform a full dynamic hardware mod-
ification process. Since there are 16! different 4-bit encodings, the final random-
ization complexity of our methodology (for the given case study) is about 256.

4.3 Practical Implementation on Reconfigurable Hardware

The deliberate application of modern reconfigurable hardware in terms of a
Xilinx Kintex-7 FPGA provides several interesting advantages and allows a
practical evaluation and implementation in order to confirm the feasibility of
the proposed approach. In particular, the selected Kintex-7 XC7K160T FPGA
implements roughly 12 Mb of block RAM (BRAM) in the form of 325 individual
memory instances, each providing 32-Kb of general purpose memory as well as

Hiding Higher-Order Side-Channel Leakage 141

a true dual-port feature. Note that the dual-port option is of particular impor-
tance for the dynamic update of our implementation since we can use one port
solely to perform the cryptographic operations whereas the second port is used
to perform the dynamic table re-ordering and re-computation.

Besides, since all look-up tables of our architecture are 256 × 4-bit tables,
each BRAM primitive could store up to 32 different look-up tables. Fortunately,
PRESENT has only 31 different rounds, so we can arrange tables of the same
operation but different rounds in the same BRAM instance. This strategy yields
a round-based hardware architecture as presented in Fig. 2. Moreover, since each
BRAM still provides enough memory to store another table we can use this free
table entry to store an updated table. Hence, after performing the table re-
ordering and re-computation and storing the updated table in the free segment,
a context switch is performed, i.e., the storage of the old table is released and
the updated table is applied during operation. But since the update is performed
through the second port while the first port is continuously used for operation,
our strategy does not affect the overall performance.

Table 1 provides the implementation numbers of our design, including control
logic and a reconfiguration unit that generates new random 4-bit encodings on-
the-fly. Obviously, a lion’s share of the used resources is necessary to implement
the encoding generation. Basically, the round function can be implemented in 192
BRAM instances – the remaining logic in terms of LUTs is necessary to control
and operate the table update using the second port of the BRAM. Eventually,
the control logic implements a small finite state machine (FSM) that controls
both the round function and the reconfiguration engine and provides an interface
for external access and control.

x1
1 x2

1 x3
1 x1

2 x2
2 x3

2 x1
3 x2

3 x3
3 x1

4 x2
4 x3

4

g2,3 g1,3 g1,2 g2,3 g1,3 g1,2 g2,3 g1,3 g1,2 g2,3 g1,3 g1,2

f2,3 f1,3 f1,2 f2,3 f1,3 f1,2 f2,3 f1,3 f1,2 f2,3 f1,3 f1,2

p11L p11R p21L p21R p31L p31R p11L p11R p21L p21R p31L p31R

p12L p12R p22L p22R p32L p32R p12L p12R p22L p22R p32L p32R

y1
0 y2

0 y3
0 y1

4 y2
4 y3

4 y1
8 y2

8 y3
8 y1

12 y2
12 y3

12

Fig. 2. Quarter round of encoded PRESENT TI

142 P. Sasdrich et al.

Table 1. Area consumption of our hardware architecture

Module/component Resource utilization

Logic Memory Area

(LUT) (FF) (LUTRAM) (BRAM) (Slices)

Control logic 11 24 0 0 13

Round function 96 0 0 192 87

g-Layer 0 0 0 48 0

f-Layer 0 0 0 48 0

p1-Layer 0 0 0 48 0

p2-Layer 0 0 0 48 0

Reconfiguration 3129 3222 1952 0 2373

Context engine 22 44 32 0 18

Encoding engine 2880 2880 1920 0 2258

Randomness generator 136 256 0 0 40

Total 3236 3246 1952 192 2473

4.4 Comparison

In Table 2, we provide a comparison of different approaches to achieve higher-
order side-channel resistance (except for the 1st-order TI) by the example of
PRESENT. Obviously, our approach offers competitive results, both in terms
of performance and area utilization, although it has an increased demand for
BRAM instances. Still, the security of our proposed countermeasure may not
only be limited to second-order attacks but it may also affect higher-order leak-
ages, hence providing better security than a 2n-order TI (at least from a practical
point of view).

Table 2. Comparison of different PRESENT Hardware Architectures

Scheme/ Logic Memory Latency Freq. Throughput Ref.

implementation (LUT) (FF) (LUTRAM) (BRAM) (cycles) (MHz) (MBit/s)

1st-order TI 808 384 - - 64 207 413 [14]

2nd-order TI 2245 1680 - - 128 204 406 [14]

Affine
equivalence

1834 742 - 1 64 112 224 [19]

Glitch-free
duplication

5442 12672 - - 704 459 458 [14]

Dynamic
hardware mod.

3236 3246 1952 192 124 153 315 New

Hiding Higher-Order Side-Channel Leakage 143

5 Practical Side-Channel Evaluation

We evaluated side-channel information of our design implemented on a physical
device using a SAKURA-X FPGA platform [1] which provides a Xilinx Kintex-7
XC7K160T FPGA for practical side-channel evaluations using the power con-
sumption of the device. Measuring the voltage drop over a 1Ω resistor in the
Vdd path of the FPGA using a digital oscilloscope with a sampling rate of 500
MS/s, 20 MHz bandwidth limitation, and a stable, jitter-free clock frequency of
24 MHz, we could practically examine vulnerabilities of our proposed design.

5.1 Non-specific t-Test

A common technique to investigate the resistance and vulnerabilities of physical
cryptographic implementations against side-channel attacks is the Test Vector
Leakage Assessment (TVLA) methodology. The evaluation is based on Welsh’s
(two-tailed) t-test, sometimes also referred to as fix vs. random or non-specific
t-test, and can be extended naturally to higher-order statistical moments [20,21].

5.2 Results

In this section we provide practical evaluation results using the non-specific t-test
on the first, second and third statistical order. Besides, we include the evolution
of the absolute maximum of the t-test over the number of used traces. In total,
we performed measurements and evaluations for two different evaluation profiles:
first, reference measurements without sharing (i.e., all-zero masks) and omitted
dynamic update, and second, measurements using shared values and including
our proposed countermeasure in terms of dynamically updating and randomizing
the implementation.

Profile 1: Before evaluating the feasibility and effectiveness of our proposed
approach, we have to ensure the correctness of our implemented first-order TI
using reference measurements. In order to provide such a reference, we measured
one million power traces while the PRNG that generates the random masks for
sharing and random encodings was disabled, i.e., all masks were set to zero and
the dynamic update was omitted. We expect to detect and observer leakage
on all considered statistical orders which is confirmed by our evaluation results
shown in Fig. 3. One the left-hand side, we provide the results of the non-specific
t-test for the first, second and third order after measuring and evaluating the
total number of one million traces while on the right-hand side, the development
of the absolute maximum for the t-test on each statistical order over the number
of evaluated traces is shown.

Profile 2: Eventually, we extend the previous measurement profile by applying
our proposed approach in order to hide higher-order side-channel leakages by

144 P. Sasdrich et al.

0 1.35 4.05 5.4
-243

0

243

Time [μs]

t

(a) First Order: t-test

1
4.5

243

Traces [106]

t

(b) First Order: Evolution

0 1.35 4.05 5.4
-95

0

95

Time [μs]

t

(c) Second Order: t-test

1
4.5

104

Traces [106]

t

(d) Second Order: Evolution

0 1.35 4.05 5.4
-167

0

167

Time [μs]

t

(e) Third Order: t-test

1
4.5

167

Traces [106]

t

(f) Third Order: Evolution

Fig. 3. Non-specific t-test results: profile 1 (1 000 000 traces)

0 1.35 4.05 5.4

-4.5

0

4.5

Time [μs]

t

(a) First Order

100
0

4.5

Traces [106]

t

(b) First Order

0 1.35 4.05 5.4

-4.5

0

4.5

Time [μs]

t

(c) Second Order

100
0

4.5

Traces [106]

t

(d) Second Order

0 1.35 4.05 5.4

-4.5

0

4.5

Time [μs]

t

(e) Third Order

100
0

4.5

Traces [106]

t

(f) Third Order

Fig. 4. Non-specific t-test results: profile 2 (100 000 000 traces)

continuously performing dynamic updates of the look-up tables of our imple-
mentation. Again, we do not expect to detect any first-order leakage due to the
application of a first-order TI but moreover the leakage detectable at higher
statistical orders should be prevented as well. The evaluation results shown in

Hiding Higher-Order Side-Channel Leakage 145

Fig. 4 confirm the correctness of these assumptions since we could not detect any
leakage after measuring 100 million power traces – neither at the first, second
nor third statistical order – which hence also confirms the effectiveness of our
proposed approach.

6 Conclusion

In this work we have presented a generic strategy and methodology in order
to apply dynamic and random updates to cryptographic implementations and
circuits in order to hide higher-order side-channel leakages. Using a case study
based on a first-order PRESENT TI and a random updates based on non-linear
encodings, we have shown the feasibility and practicability of proposed concept
using side-channel power measurements and applying the state-of-the-art leakage
assessment methodologies. Eventually, we can conclude that our methodology
presents a viable alternative to building higher-order Threshold Implementations
and convinces by its generality and scalability.

Acknowledgment. This work has been co-funded by the Commission of the
European Communities through the Horizon 2020 program under project number
645622 PQCRYPTO.

References

1. Side-Channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5 4

3. Beyne, T., Bilgin, B.: Uniform First-Order Threshold Implementations. Cryptology
ePrint Archive, Report 2016/715 (2016). http://eprint.iacr.org/2016/715

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

6. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: A white-box DES implementation
for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp.
1–15. Springer, Heidelberg (2003). doi:10.1007/978-3-540-44993-5 1

7. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an
AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595,
pp. 250–270. Springer, Heidelberg (2003). doi:10.1007/3-540-36492-7 17

8. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 13

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://dx.doi.org/10.1007/3-540-36400-5_4
http://eprint.iacr.org/2016/715
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-44993-5_1
http://dx.doi.org/10.1007/3-540-36492-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/978-3-662-43414-7_13

146 P. Sasdrich et al.

9. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

10. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

12. Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and fault analysis resistance
in hardware through dynamic reconfiguration. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 346–362. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85053-3 22

13. Moradi, A., Mischke, O.: Comprehensive evaluation of AES dual ciphers as
a side-channel countermeasure. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS
2013. LNCS, vol. 8233, pp. 245–258. Springer, Heidelberg (2013). doi:10.1007/
978-3-319-02726-5 18

14. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 23

15. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

16. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

17. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

18. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 37

19. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application to
tightening threshold implementations. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 263–276. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31301-6 16

20. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48324-4 25

21. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptogr. Eng. 6(2), 85–99 (2016)

22. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

23. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications (2009)

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-540-85053-3_22
http://dx.doi.org/10.1007/978-3-540-85053-3_22
http://dx.doi.org/10.1007/978-3-319-02726-5_18
http://dx.doi.org/10.1007/978-3-319-02726-5_18
http://dx.doi.org/10.1007/978-3-662-48324-4_23
http://dx.doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-319-31301-6_16
http://dx.doi.org/10.1007/978-3-319-31301-6_16
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1007/978-3-642-34961-4_44

Digital Signatures
and Random Numbers

Surnaming Schemes, Fast Verification,
and Applications to SGX Technology

Dan Boneh1 and Shay Gueron2,3(B)

1 Department of Computer Science, Stanford University, Stanford, USA
dabo@cs.stanford.edu

2 Department of Mathematics, University of Haifa, Haifa, Israel
3 Intel Development Center, Intel Corporation, Haifa, Israel

shay@math.haifa.ac.il

Abstract. We introduce a new cryptographic primitive that we call sur-
naming, which is closely related to digital signatures, but has different
syntax and security requirements. While surnaming can be constructed
from a digital signature, we show that a direct construction can be some-
what simpler.

We explain how surnaming plays a central role in Intel’s new Software
Guard Extensions (SGX) technology, and present its specific surnaming
implementation as a special case. These results explain why SGX does
not require a PKI or pinned keys for authorizing enclaves.

SGX motivates an interesting question in digital signature design: for
reasons explained in the paper, it requires a digital signature scheme
where verification must be as fast as possible, the public key must be
short, but signature size is less important. We review the RSA-based
method currently used in SGX and evaluate its performance.

Finally, we propose a new hash-based signature scheme where veri-
fication time is much faster than the RSA scheme used in SGX. Our
scheme can be scaled to provide post-quantum security, thus offering a
viable alternative to the current SGX surnaming system, for a time when
post-quantum security becomes necessary.

Keywords: Digital signatures · Fast verification · Software Guard
Extensions (SGX) technology · Post-quantum secure signatures

1 Introduction

Intel has recently introduced a powerful security architecture called Software
Guard Extensions (SGX for short). It is available on the 6th Generation
Intel R© CoreTM processor (microarchitecture codename Skylake). This technol-
ogy enables applications to operate on secret data without fear of compromise.
The basic element in SGX is called a secure “enclave”, which contains some
application code (and data). SGX allows one to run an enclave on the processor,
and enjoy complete isolation: nothing else running on the processor can access its
memory. The system memory is considered untrusted, so memory reads/writes
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 149–164, 2017.
DOI: 10.1007/978-3-319-52153-4 9

150 D. Boneh and S. Gueron

are encrypted with integrity and replay protection. An enclave is initialized by
loading executable code into a segment of memory, using special SGX instruc-
tions, and then calling the instruction EINIT to initialize the enclave. EINIT
verifies a digital signature, presumably signed by the enclave’s author. After
initialization, the enclave code can invoke another instruction, EGETKEY, which
generates a secret key that is unique to all enclaves written by this author, and
running on this platform.

Surprisingly, SGX does not use a PKI or pinned keys in the processor when
verifying the signature: the inputs to EINIT include both the signature and
the associated public key, but no certificates. Without a PKI or pinned keys,
signature verification is meaningless, and yet SGX uses neither. This is not a
vulnerability because the process of initializing the enclave does not use the
digital signature to authorize the enclave. Instead, it uses the digital signature in
an unusual way, which we call a surnaming scheme. We define surnaming schemes
formally in Sect. 3 and explain why they are sufficient for SGX. We show that
surnaming can be constructed from a digital signature scheme, and vice versa,
but surprisingly, surnaming can be implemented more efficiently. Specifically, a
surnaming scheme can be implemented without conditional statements, whereas
digital signature verification always requires conditional statements, at the very
least to make an accept/reject decision.
The Need for Fast Verification in SGX. EINIT is a processor instruction
that needs to verify a digital signature atomically. It needs to complete execution
within the allowed latency for processor instructions, which is dictated by the
no-interrupt latency that the OS tolerates. This hard limit applies even if EINIT
is used infrequently. As a result, SGX must use a digital signature with the
fastest possible verification time. In our settings, the signature size is unimpor-
tant, because the input to EINIT is a pointer to a large data structure containing
the signature. This introduces an unusual design requirement: construct a secure
signature scheme with the fastest possible verification time, irrespective of sig-
nature size. For a technical reason that we explain below, the signature scheme
must also generate short public-keys.

With this in mind, in Sect. 4 we review the signature scheme currently used
in SGX. It is based on RSA with 3072 bit keys, coupled with an optimization
called QVRSA. The optimization makes signature verification significantly faster
than in the standard RSA and ECDSA signature schemes.

In Sect. 5 we propose an alternative mechanism based on hash-based sig-
natures, optimized for fast verification. After much optimization we obtain a
scheme where signature verification is faster than QVRSA. Moreover, scaling
the parameters of our hash-based scheme, makes it a viable candidate for post-
quantum security. This gives a post-quantum secure alternative for SGX enclave
verification.

Our Contributions.

– We provide an explanation and justification for the unorthodox way that SGX
uses digital signatures.

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 151

– We formalize the concept of surnaming and show secure methods to construct
a surnaming scheme from a signature scheme and vice versa. We also show how
to obtain a surnaming scheme that is somewhat simpler than the signature
scheme from which it is derived.

– We analyze the security of the surnaming mechanism used in SGX, and explain
why it meets the performance requirements.

– We show a hash-based signature scheme whose verification time is even faster
than that of QVRSA. Moreover, this variant can be extended to give a post-
quantum secure scheme.

2 SGX and its Surnaming Mechanism

SGX technology is designed to allow a general purpose computer platform to
run application software in a trustworthy manner, and to handle secrets that
are inaccessible to anyone outside the defined trust boundaries. These trust
boundaries encompass only the CPU internals, implying, in particular, that the
system memory is untrusted. SGX is a complex technology that involves many
details (see [2,3,15,16,18]). We provide here only an outlined description of the
SGX elements needed for this paper.

Enclaves. The basic primitive in SGX is the “enclave”. An enclave consists of
code, data, and metadata (CDM hereafter) that realize some application that the
enclave’s author (A) prepares. The enclave is organized as a collection of 4KB
“pages”. The identity of an enclave consists of the following information: (a)
the CDM inside the enclave (before initialization)1; (b) the order of loading the
pages into memory (and their linear addresses); and (c) the security attributes
(Read/Write/eXecute) of each page. The SHA256 digest of this information is
called MRENCLAVE, and represents the cryptographic identity of the enclave. Two
enclaves with the same identity are considered equivalent.

To prepare an enclave after writing the application code, A is expected to:
(a) compute MRENCLAVE by hashing the appropriate data; (b) generate a private-
public key pair (pk, sksign); (c) sign MRENCLAVE using sksign, to obtain signature σ;
(d) ship σ, pk, and the expected MRENCLAVE, together with the enclave.

SGX ships with a Software Development Kit (SDK) that automates the exe-
cution of some of the above steps. A is responsible for generating the private-
public key pair securely, and to sign MRENCLAVE (that the SDK computes).
The SDK processes the information, produces the required outputs, and wraps
them in the required format. In our context, the SHA256 digest of pk is called
MRSIGNER. These are different identifiers: MRENCLAVE identifies the enclave’s con-
tents (its CDM), thus reflects its intended functionality; MRSIGNER identifies A.

The enclave code and data are available in the clear before instantiation.
That is, the CDM is visible, and – more importantly – auditable (some pieces of

1 The author (A) may decide which parts of the CDM should be baked into the enclave’s
identity, by specifying the pages to be measured. For example, non-initialized data,
or SSA pages, can be skipped.

152 D. Boneh and S. Gueron

the CDM may be encrypted, but the decryption key should not be pre-installed).
Consequently, the entity (Service-Provider) that hands secrets to the enclave
can work with A to pre-approve the enclave (i.e., its intended functionality).
Secrets such as keys, passwords, and other sensitive data, need to be handed to
the enclave from a 3rd party (either from another enclave or from outside the
platform), after it is loaded and instantiated on the platform. To this end, the
enclave must convince a remote service provider (Service-Provider) who owns
a secret, that it is trustworthy, and can be provisioned with secrets. Furthermore,
after an enclave is provisioned with secrets, it should be able to securely store
them outside of the enclave for subsequent use.

Instantiating an Enclave2. SGX includes special CPU instructions that are
used to “build” an enclave: ECREATE (sets up and records the configuration infor-
mation), EADD (records the offset of a page inside the enclave, and its security
attributes, and copies the CDM page from non trusted memory to trusted (pro-
tected) memory, EEXTEND (records the pointer and the data stored in a 128 byte
chunk of the enclave page), and EINIT (described below). The enclave is built
by invoking ECREATE, and then, for each page of its CDM, invoking EADD, followed
by 32 invocations of EEXTEND. This flow copies the CDM, incrementally, from gen-
eral purpose (unprotected) memory, and locks it in a protected memory region,
while (incrementally) measuring MRENCLAVE and logging the size of its CDM. The
build process ends by invoking the EINIT instruction. EINIT has several roles,
and we describe only those that are relevant to our discussion: (a) “finalize” the
SHA256 computation of MRENCLAVE (i.e., add the padding block that reflects the
recorded enclave size); (b) “verify”, using the input pk, that the input σ is a
valid signature on the (measured) MRENCLAVE; and (c) compute MRSIGNER and
store it in the protected memory region (only after completing a successful ver-
ification). After the build process terminates successfully, the initialized enclave
is considered “instantiated,” and ready to run (in a protected enclave mode).

Isolation During Run Time. An instantiated enclave runs in a special “secure
enclave” mode where a hardware based access control mechanism isolates it
from all other processes (at all privilege levels) that run on the platform, and
from external hardware devices that are attached to the system. Furthermore,
the enclave operates from a memory region that is cryptographically protected
by a dedicated hardware unit (Memory Encryption Engine [11]), that protects
privacy, integrity and freshness (anti-replay). In other words, the enclave can
protect its secrets during run-time.

Acquiring Secrets. Secrets need to be delivered to the enclave after its origin,
identity, and execution environment are verified. Service-Provider is expected
to vet the enclave’s Trusted Computing Base (TCB) before it trusts it and
provisions it with secrets (in particular, to guarantee that the enclave would
perform some pre-approved intended functionality). To this end, SGX offers the
means for an enclave to prove to an off-platform party its MRENCLAVE value, its
MRSIGNER value, and its execution environment (enclave mode, the CPU security
2 This is a conceptual flow, but actual software might implement a different one.

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 153

level, and the Security Version Number (SVN)). The details of the tools, the
protocols, and the Provisioning and Attestation services are outside the scope
of this paper (details appear in [3,16]).

Handling Secrets. The enclave needs the ability to store its secrets to non-
volatile memory, in order to use them in subsequent runs. For this purpose,
SGX includes the EGETKEY instruction that the (instantiated) enclave software
can invoke. EGETKEY can be used to obtain a Sealing key which is unique to the
specific platform, to the enclave (either its identity or its author), and to the
SGX SVN. The enclave software can use the Sealing key to encrypt its secret
information and store it on untrusted media. In subsequent runs, the enclave can
retrieve the Sealing key by invoking EGETKEY, and decrypt the sealed information.

EGETKEY computes the Sealing key by applying a PRF (Pseudo Random
Function) whose key is derived from a secret key (PlatformKey) that is unique
to the platform (and the SVN). The PRF runs over several non-secret fields,
including either MRENCLAVE or MRSIGNER, as determined by the parameters that
the enclave software feeds to EGETKEY.

We discuss here only the Sealing keys that are produced by using MRSIGNER
(and ignore Sealing keys that are produced by using MRENCLAVE). They have
the following desirable property: enclaves running on the same platform with
the same SVN, and written by the same author A, will obtain the same Sealing
key when calling EGETKEY. This lets two enclaves written by the same developer
(running on the same platform) share secret state. This greatly simplifies the
process of updating the software running in an enclave — all versions of a single
enclave share the same Sealing key.

Remark 1. The value of MRSIGNER represents A, the enclave’s software devel-
oper. Service-Provider, who owns the secrets that need to be delivered to
the instantiated enclave, is not necessarily A. However, Service-Provider can
communicate, offline, with A and establish trust in A’s MRSIGNER identity. This
implies that Service-Provider would trust all enclave software that A produces
(e.g., different versions of the same application), and allow these applications to
share secrets (on a given platform) through the common Sealing key. The “ISV
SVN” field, that A can embed in the enclave, is also a component in the Sealing
key derivation. It enables A to control which of its application share a common
Sealing key. For this reason, A is sometimes called the Sealing Authority.

The Strict Performance Constraints. SGX raises special constraints. Since
EINIT is a processor instruction, its allowed latency is strictly limited, regardless
of how (in)frequently it is invoked. A too long instruction can affect the stability
of the OS. Thus, it is essential for SGX to specify a signature scheme that has a
very fast verification. In contrast, the time to generate a signature is irrelevant,
as it occurs offline. Similarly, signature size is not a significant concern — the
argument to EINIT is a pointer to a memory location that stores inputs in a
data structure (SIGSTRUCT), that included the signature, and this structure can
be of arbitrary size. Note that EINIT computes MRSIGNER by hashing the input

154 D. Boneh and S. Gueron

public key. This step adds to the latency of EINIT, adding the requirement for
a short public key so that hashing is fast.

3 Surnaming Schemes

We now define the cryptographic primitive needed to authorize enclaves. We call
this primitive a surnmaing scheme.

Recall that a digital signature scheme is a triple of algorithms (G,S, V). Algo-
rithm G generates a private-public key pair, (pk, sksign). Algorithm S(sksign,m)
signs the message m and outputs a signature σ. Algorithm V (pk,m, σ) veri-
fies the signature, and outputs true or false. An example application is a soft-
ware/firmware update mechanism, where a software vendor signs an update
using sksign, and every device verifies the signature before installing the update.
This assumes every device has or can acquire, a trusted copy of pk.

A surnaming scheme has a different syntax and security requirements. The
purpose of surnaming is to allow an author (A) to use its public-private key pair
(pk, sksign) to sign multiple messages m1, . . . , mk and distribute triples (pk, m1, σ1),
. . ., (pk, mk, σk) so that A is assured of the following properties:

– if a verifier (V) is presented with a triplet (pk, mj , σj) for 1 ≤ j ≤ k, it can
apply some pre-agreed algorithm, Surname, to the given values to generate a
constant id that depends only on pk but not on m or σ.

– if V is presented with a triplet (pk′, m′, σ′) where m′ �∈{m1, . . . , mk}, then Surname
outputs a constant id′ �= id, even when σ′ and pk′ are chosen adversarially.

We define this concept formally below.

On the Term “Surnaming”. The Surname algorithm assigns the same “fam-
ily name” (surname) to all the members of a “family” of messages (that were
produced by A), and only to members of that family. This surname (denoted
by id) is subsequently used by the verifier V as input to a PRF with a secret
key owned by V, in order to generate a secret key that can be computed for any
message in the family, and only for those messages. In other words, the “fam-
ily secrets” are shared among all the family members, but with no others. This
motivates the term “surnaming” for describing the scheme.

Note the significant difference from signatures: in a surnaming scheme, V does
not need to trust mj or pk, hence no PKI or pinning is needed for verifying a
triple (pk, m, σ). Moreover, verification does not make an accept/reject decision.
It just outputs some constant. The time it takes V to produce id is hereafter
referred to as the verification time.

3.1 Surnaming Schemes: Definition

Definition 1. A surnaming scheme operates over a message space M. The
scheme is a triple of algorithms (Setup, Authorize, Surname) where

– Setup: outputs sk.

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 155

– Authorize(sk,m) (m ∈ M) outputs σ.
– Surname(m,σ) (m ∈ M): outputs id or ⊥.

Correctness requirement: for all sk output by Setup, and all m,m′ ∈ M:

if σ ← Authorize(sk,m) and σ′ ← Authorize(sk,m′)
then Surname(m,σ) = Surname(m′, σ′).

That is, if m and m′ are authorized, then Surname on either one produces the
same surname (id).

Mapping to SGX. To understand the relation to SGX, it is helpful to think of
the following mapping. The surnaming scheme is used by two parties: A (enclave
author) and V (verifier), which is the processor that executes EINIT. The autho-
rization key sk is A’s private key and m is the enclave’s CDM. The author runs
Authorize(sk, CDM) to obtain the enclave authorization token σ which is packed
into the enclave metadata. On the SGX machine, the EINIT instruction runs
Surname(m,σ) and the output is some constant id. The “consumer” of the
output id is the EGETKEY instruction: it uses id to generate a local secret by
computing Sealing Key = PRF(PlatformKey, id). The correctness property of
the surnaming scheme ensures that all enclaves that are authorized by a single
developer will lead to the generation of the same identifier id, and therefore
obtain the same Sealing Key when running on the same platform.

Security Definition. Define the following challenger-adversary game:

1. Challenger generates random sk ←R Setup.
2. Adversary adaptively submits messages (at least one) m1,m2, . . . , and gets

back σi := Authorize(sk,mi) for i = 1, 2,
3. Eventually, adversary outputs (m,σ) where m is not in {m1,m2, . . .}.

The adversary wins if Surname(m,σ) = Surname(m1, σ1).

Definition 2. A surnaming scheme (Setup, Authorize, Surname) is secure if
no efficient adversary can win the game with non-negligible probability.

The security definition captures the intuition that an adversary who obtains
authorization tokens for arbitrary enclaves of its choice, cannot construct a useful
authorization token σ for some other enclave m. That is, Surname(m,σ) will be
different from the output of Surname for the valid enclaves m1,m2,

Secure Surnaming from a Secure Signature Scheme. It is not difficult
to see that a secure surnaming scheme can be constructed from a secure digital
signature. Let (G,S, V) be a signature scheme, where V outputs 0 or 1. The
derived surnaming scheme is defined as follows:

– Setup: run G to get sksign and vk. Set the secret Surnaming key to be sk :=
(sksign, pk).

– Authorize(sk,m): run sig ← S(sksign,m) and output σ ← (sig, pk).
– Surname(m,σ): output

(

pk, V (pk,m, sig)
)

.

156 D. Boneh and S. Gueron

The scheme is correct: Surname(m,σ) outputs (pk, 1) whenever σ is a valid
authorization for m. Security follows from the following simple theorem.

Theorem 1. The derived surnaming scheme is secure assuming (G, S, V) is a
signature scheme that is existentially unforgeable under a chosen message attack.

Proof (Sketch). An adversary that defeats the derived surnaming scheme queries
the challenger on a sequence of messages m1,m2, . . . and finally produces a pair
(

m, σ = (sig, pk)
)

such that Surname(m,σ) outputs (pk, 1) and m is new.
But then V (pk,m, sig) = 1, which is an existential forgery for the underlying
signature scheme. ��

Surnaming Implies Signatures. Next we show that every secure surnaming
scheme implies a secure signature scheme. Let (Setup, Authorize, Surname) be
a surnaming scheme. Define the following signature scheme (G,S, V):

– Algorithm G works as follows:
• run Setup to get sk,
• run Authorize(sk, 0) to get σ,
• run Surname(m,σ) to get id.

Set pk := id and output the key pair (pk, sk).
– Algorithm S(sk,m): output σ ← Authorize(sk,m).
– Algorithm V (pk,m, σ): accept if Surname(m,σ) = pk.

The following theorem shows that the constructed signature scheme is secure.

Theorem 2. If (Setup, Authorize, Surname) is a secure surnaming scheme
then (G, S, V) is a signature scheme secure against existential forgery under a
chosen message attack.

Proof. Suppose there is an attacker A on the signature scheme. We use it to
build an attacker B on the underlying Surnaming scheme. B begins by choos-
ing a random message m′ and asking its challenger to authorize m′, thereby
receiving σ′ ←R Authorize(sk,m′). Then Surname(m′, σ′) = pk. Next, B runs
the signature attacker A, giving it pk. It responds to A’s signature queries by
asking B’s challenger to authorize the messages output by A. Eventually A out-
puts an existential forgery (m,σ). Since (m,σ) is a valid signature, we know
that Surname(m,σ) = pk, even though m was never authorized. This breaks the
underlying surnaming scheme because Surname(m,σ) = Surname(m′, σ′). We
assume that M is sufficiently large so that m �= m′ with high probability. ��

3.2 Surnaming with Conditional-Free Verification

Signature verification algorithms necessarily require conditional statements to
decide if a given signature is valid. The Surname algorithm in a surnaming
scheme can be implemented with no conditional statements. Nothing needs to
be checked. This is a significant advantage of surnaming schemes over traditional

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 157

signatures, primarily because signature verification checks have often been imple-
mented incorrectly in practice. Bleichenbacher’s attack on low-exponent RSA
signatures [1] is a famous example of faulty signature verification, where the
error was a result of an incorrect PKCS1 padding check. Another example is the
large subgroup attack on some discrete-log based signature schemes where the
verifier forgets to check if the given signature components are in the prescribed
subgroup [19]. Even the original DSA specification from NIST contained a secu-
rity error in signature verification where the verifier did not properly verify that
the size of the two signature elements are in the required range [23]. We demon-
strate how to implement a surnaming scheme with no conditional statements.
An example, we use RSA signatures with PKCS1 padding3.

RSA-PKCS1 Surnaming Scheme:

– Setup: Run the RSA key generation algorithm to obtain pk = (N, e) and
sksign = (N, d). Here N is the RSA modulus and e is the RSA public exponent,
and d is the RSA private exponent. Output sk = (pk, sksign).

– Authorize(sk,m): RSA sign m, that is set

m′ := PKCS1pad ‖ SHA256(m)

as the PKCS1 padded message and treat m′ as an integer. Then use sk to
compute s := (m′)d (mod N) and output σ := (pk, s).

– Surname(m,σ): let σ = (pk, s) and do:
• compute s′ := se (mod N),
• remove the message hash, namely set

s′′ := s′ − SHA256(m) (mod N),

when σ is valid, this zeroes out the 256 least-significant bits of s′′,
• output id := (pk, s′′)

Note that no conditional statements are used in Surname. The point is that
instead of checking the pad, as required during RSA signature verification, we
simply output the pad as part of the id. This eliminates the risk of incorrectly
validating the PKCS1 pad.

In the next section we show that the SGX EINIT instruction essentially uses
this RSA surnaming mechanism to derive the constant id, and EGETKEY uses the
result in order to provide a Sealing Key to an enclave that invokes it.

The RSA surnaming scheme is a correct surnaming scheme: when σ is a valid
authorization for m then Surname(m,σ) produces an id containing the public
key and the PKCS1 pad. The same id is obtained for every properly authorized
message. The following theorem captures the security of the RSA surnaming
scheme.
3 For RSA3072, using SHA256 hash, the PKCS1 pad is (see [17]):

PKCS1pad = 00 || 01 || FF[330B] || 00 || 3031300D060960864801650304020105000420.

158 D. Boneh and S. Gueron

Theorem 3. The RSA surnaming scheme is a secure surnaming scheme assum-
ing RSA-PKCS1 is existentially unforgeable under a chosen message attack.

Proof. Suppose there is an attacker A on the RSA surnaming scheme. We use
it to build an attacker B on the RSA signature scheme. B runs the surnaming
attacker A. It responds to A’s authorization queries by asking B’s challenger to
sign the messages output by A using RSA-PKCS1. Eventually A outputs a valid
forgery (m,σ). We know that Surname(m,σ) outputs (pk, PKCS1pad‖0256).
But this means that σ is a valid RSA-PKCS1 signature for m and therefore
(m,σ) is a valid existential forgery for RSA-PKCS1. ��

More generally, any signature scheme with message recovery can be converted
into a surnaming scheme with conditional-free Surname. Examples include RSA,
Rabin [4], and Nyberg-Reupell [21] signatures. Even pairing-based BLS [8] signa-
tures give a surnaming scheme with a conditional-free Surname. Recall that BLS
signatures are verified by testing that e(g, pk) = e(H(m), σ) where e is a paring
function, H is a hash function, and g is a fixed group generator. When used
in Surname(m,σ) one can instead output e(g, pk)/e(H(m), σ) so that Surname
contains no conditional statements. If the signature is valid the ratio will be 1.
Otherwise, it will be some other value. Since the output of a pairing function is
never zero, we need not worry about division by zero.

4 The SGX Surnaming Scheme

The performance of the processor instruction EINIT limits the possible choice
of signature primitives that SGX can use. To understand the available options,
consider Table 1 which shows the verification performance of some standard 128-
bit security signature schemes. The measurements were done on an Intel Skylake
processor, which is the (first) processor that supports SGX. The performance of
ECDSA and RSA3072 with public exponent e = 216 +1 is prohibitive. RSA3072
with a short public exponent e = 3 is ≈ 2.76x faster than with e = 216 + 1.
Finally, note that RSA3072 with e = 3 using a QVRSA verification method
[10] is the fastest option, by a wide margin. Indeed, SGX’s surnaming scheme is
based on these primitives (see full version [7]). We describe it here.

Table 1. Signature verification performance for several signature schemes.

Scheme Cycles per verification Comments

ECDSA (P256) 264,609 OpenSSL 1.0.2

ECDSA (P256) optimized 226,986 OpenSSL patched [12]

RSA3072 (e = 216 + 1) 122,928 OpenSSL

RSA3072 (e = 3) 44,500 50,400 with padding check

RSA3072 with QVRSA (e = 3) 12,000 Optimized implementation

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 159

The QVRSA Optimization. Because SGX needs a signature with fast ver-
ification, it uses a variant of RSA verification called Quick Verification RSA,
or QVRSA, as proposed by Gueron [10]. This optimization is a way to speed
up RSA verification for any public exponent, in particular, of the form 2k + 1.
QVRSA is based on handing the verifier some pre-computed constants with
which the verifier can compute T = (σ)e (mod N) using only integer arith-
metic instead of modular arithmetic. Computing these (public) constants does
not require knowledge of d, and can even be done by post processing a signature
that a secure platform (e.g., an HSM) generates. QVRSA is especially effective
with e = 3, which is our case. Here, only two constants q1, q2 are needed:

q1 =
⌊

σ2/N
⌋

, q2 =
⌊

(σ3 − q1 · S · N)/N
⌋

(1)

The verifier is given m, σ, N , q1, q2, and applies the following algorithm to
compute σ3 (mod N).

Algorithm 1. The QVRSA algorithm for computing σ3 mod N
Input: m, σ,N, q1, q2 (s.t., 0 < σ, q1, q2 < N < 23072)

(1) if ¬ (σ < N) then verification = FAILURE
(2) T1 = σ2 − q1 · N
(3) if ¬ (0 < T1 < N) then verification = FAILURE
(4) T2 = σ · T1 − q2 · N
(5) if ¬ (0 < T2 < N) then verification = FAILURE

Output: if (verification = FAILURE) output FAILURE; else output T2.

Theorem 4. Algorithm1 returns T2 if and only if q1 and q2 satisfy Condition
1, and in that case, T2 = σ3 (mod N).

The proof, and some additional comments are given in the full version [7].

The SGXConditional-Free Verification. In Sect. 3.2 we explained that RSA
surnaming can be implemented with no conditional statements. This technique is
employed in SGX, in the EINIT instruction, and makes it possible to validate the
given RSA signature without ever checking the PKCS1 pad4. We refer the read-
ers to [2], and the use of the 352 bytes strings “PKCS Padding Buffer” and the
“HARDCODED PKCS1 5 PADDING” in EINIT and EGETKEY. See also the full version [7].

5 Alternative Signatures with Fast Verification

The previous sections motivate two fundamental questions: is there an alterna-
tive signature scheme where verification is faster than QVRSA? Moreover, is there
a post-quantum secure signature scheme with fast verification? We answer both
questions positively by designing a hash-based signature scheme for our settings.

First, consider the Merkle tree-based signature scheme [20]. Optimizing it
for fast verification, irrespective of signature size, is an unusual point in the

4 EINIT executes the correct padding check anyway, but security does not depend on
the padding check.

160 D. Boneh and S. Gueron

design space. Previous schemes, such as SPHINCS [5] and others [6,9], focus
on minimizing signature size to reduce network traffic. Our goal is to minimize
verification speed, which calls for a very different set of optimizations.

We begin by constructing a hash-based one-time signature, which generally
belong to one of two families: Winternitz [9,20] and HORS [22] (both are exten-
sions of Lamport’s signature). HORS is designed to produce short signatures,
but verification is slower than with Winternitz. We therefore opt to optimize a
Winternitz-like construction. Our scheme is built from three primitives:

– a one-way function f : X → X,
– a collision resistant hash h : Xv → Y for some v, and
– an enhanced target collision resistant (eTCR) hash ĥ : {0, 1}∗ × R → X, as

defined in [14].

The eTCR hash ĥ is used to hash the input message using a random nonce
chosen by the signature algorithm. We use a construction due to Halevi and
Krawczyk [14] that shows how to build an eTCR hash function from a Merkle-
Damg̊ard function such as SHA256. The reason to use an eTCR hash is that it
lets us shrink the size of the message hash without affecting security. The smaller
message hash greatly speeds up verification.

Concretely, for 128-bit security we set X := {0, 1}128 and Y := {0, 1}256,
and for post-quantum settings we set X := {0, 1}256 and Y := {0, 1}384. We
emphasize that, thanks to our use of an eTCR, for 128-bit classical security,
the message hash ĥ can output only 128 bits and still provide 128-bit classical
security.

Our scheme is parametrized by a small constant d, called the chain depth. We
explore constructions with d = 2, 4 or 8, because larger values are not helpful for
fast verification (on current processors). The constant d determines the length of
a hash chain based on the function f , as explained below. We use the notation
f (v)(x) to denote the composition of f with itself v times, e.g., f (2)(x) = f(f(x)).

To describe the scheme we need the following two quantities:

n :=�log(|Y |)/ log(d) and � := �log(n(d − 1) + 1)/ log(d). (2)

The total number of hash chains constructed during key generation is n + �
and a (one-time) signature consists of n + � values in X. For example, when
Y = {0, 1}256 and d = 2, we have n = 256 and � = 9, i.e., we construct
256 + 9 = 265 chains and the signature contains 265 values in X. Setting d to 4
reduces the number of chains to 128 + 5 = 133.
The signature scheme works as follows (its security is discussed in the full ver-
sion [7]):

– Algorithm G:
(1) choose random x0, . . . , xn+�−1 in X,
(2) for i = 0, . . . , n + � − 1 compute yi := f (d−1)(xi), that is, construct n + �

hash chains,
(3) output sk := (x0, . . . , xn+�−1) ∈ Xn+� and pk := h(y0, . . . , yn+�−1) ∈ Y .

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 161

– Algorithm S(sk,m):
(1) choose a random r ∈ R and compute ĥ(m, r) ∈ Y , treat it as a posi-

tive integer written in base d with digits 0 ≤ m0, . . . ,mn−1 < d. Then
ĥ(m, r) = m0 + m1d + . . . + mn−1d

n−1.
(2) set w := n(d − 1) − (m0 + . . . + mn−1) and write w in base d with digits

0 ≤ mn, . . . ,mn+�−1 < d,
(3) for i = 0, . . . , n + � − 1 set si := h(mi)(xi),
(4) output the signature σ := (r, s0, . . . , sn+�−1).

– Algorithm V (pk,m, σ): with σ = (r, s0, . . . , sn+�−1) do:
(1) compute ĥ(m, r) and write it base d, namely 0 ≤ m0, . . . ,mn+�−1 < d,
(2) for i = 0, . . . , n + � − 1 let yi := f (d−1−mi)(si),
(3) accept the signature if pk = h(y0, . . . , yn+�−1) and reject otherwise.

Verification time is dominated by steps (2) and (3): evaluating f at (d−1)(n+�)
points in the worst case (half that on average), and computing h given n+ � quan-
tities in X as input. These steps can be implemented to take advantage of pipelin-
ing available in modern processors. The free parameter to play with is the chain
depth d that offers a different balance between the number of evaluations of f and
the length of the string that needs to be hashed using h. Our optimization chooses
the optimal d for different choices of h and f .

In the context of SGX, the enclave author uses surnaming to authorize a
small number of enclaves, mostly needed for software updates. Therefore, a single
signing-key is used only a small number of times. Our experiments are geared
for supporting at most 1,000 enclave/versions per signing key.

We can extend a one-time signature to a 1000-times (stateful) signatures by
generating a thousand one-time public-keys and publishing a Merkle tree root
of these public-keys as the global public-key. Each leaf of the tree can sign one
enclave, and a signature will include a Merkle proof of inclusion of the relevant
public-key in the Merkle tree. The verification algorithm should check this proof,
and this adds another �log2(1000) = 10 hash computations (a small overhead
compared to the amount of hashing needed to verify the one-time signature).

We used our general signature construction to derive several concrete sig-
nature schemes with fast verification. Table 2 lists six candidates for the one-
way function f (f1, . . . , f6) and four candidates for the collision resistant func-
tion h (h1, . . . , h4). The functions f1, f2, h1, h2 target classical 128-bit security,
whereas the other functions target 128-bit post-quantum security. Some of our
experiments use the Simpira permutations [13], a recently proposed family of
cryptographic permutations (see also [7]).

Performance Results for Classical 128-bit Security5. Table 3 (left side)
gives the cycle count for signature verification using different d, f and h selec-
tions (see full version [7]) that target classical 128-bit security. Comparison to
Table 1 shows that our hash-based signatures have much faster verification than

5 Buchmann et al. [9] show that when using a 128-bit function f , Winternitz security
for a chain of depth 4 and 8 is slightly less than 2128. This is because the composition
of random functions is slightly easier to invert than inverting the base function f .

162 D. Boneh and S. Gueron

Table 2. Different options for one way functions (f : X → X) and collision resistant
functions (h : {0, 1}∗ → Y) for different choices of X and Y .

n (bits) X f : X → X

256 {0, 1}128 f1(x) = AES128K0(x) ⊕ x

256 {0, 1}128 f2(x) = AES128x(0)

256 {0, 1}256 f3(x) = Simpira2(x) ⊕ x

256 {0, 1}256 f4(x) = a‖b s.t.,
a = AES256x(0)
b = AES256a(0)

256 {0, 1}256 f5(x) = Rijndael256K0(x) ⊕ x

256 {0, 1}256 f6(x) = Rijndael256x(0)

Y h : {0, 1}∗ → Y

256 {0, 1}256 h1(x) = SHA256(x)

256 {0, 1}256 h2(x) = SimpiraHash(x)

384 {0, 1}384 h3(x) = SHA384(x)

384 {0, 1}384 h4(x) = SimpiraHash(x)

RSA and ECDSA. As expected, QVRSA which SGX uses has a very compet-
itive verification speed. However, our best hash-based signatures option have
faster verification, even if we add ∼2400 cycles measured to be the overhead of
computing the 10 additional hashes to support 1000-time signatures.

Performance Results for 128-bit Post-quantum Security. Table 3 (right
side) provides the cycle counts for signature verification for 128-bit quantum
security parameters, where RSA and ECDSA are not competitors due to their
insecurity against quantum attacks. Lattice based signatures may provide a
viable alternative, but they require large public keys and hashing those keys
during verification may dominate verification time. Moreover, lattice based sig-
natures are based on specific algebraic assumptions which may or may not hold
in a post-quantum world. In contrast, hash-based signatures are unlikely to be
affected by quantum machines. The optimal chain depth is d = 4. The func-
tions (f3, h4) give the best performance, but also require the strongest security
assumptions. The functions (f4, h3) are the most conservative, but are slower
than the fastest Rijndael-based construction. These results may renew the inter-
est in the Rijndael cipher with a 256-bit block. The combination (f2, h1) is the
most conservative in terms of the assumptions needed for security.

Table 3. Signature verification performance. The reported numbers measure processor
cycle counts for signature verification (lower is better). Left table: 128-bit classical
security parameters, with d = 2, 4, 8 and h ∈ {h1, h2} and f ∈ {f1, f2}. Right table:
128-bit quantum security parameters, with d = 2, 4, 8 and h ∈ {h3, h4} and f ∈
{f3, f4, f5, f6}.

d f1 f2

2 h2 2,363 4,805

2 h1 14,720 17,472

4 h2 2,002 6,247

4 h1 9,903 14,211

8 h2 3,001 8,478

8 h1 9,790 15,643

d f3 f4 f5 f6

2 h4 18,157 34,018 21,161 80,708

2 h3 48,599 64,125 51,549 111,049

4 h4 13,759 36,813 18,048 102,729

4 h3 30,051 53,108 34,360 118,982

8 h4 16,240 52,073 22,892 152,566

8 h3 28,668 64,487 35,180 165,060

Surnaming Schemes, Fast Verification, and Applications to SGX Technology 163

6 Conclusions

We formalized the concept of a surnaming mechanism, as needed for Intel’s SGX
technology. Although the concept is closely related to digital signatures, there are
important subtle differences. Most notably, surnaming schemes do not require a
PKI or pinned keys. Our abstraction explains why SGX is able to verify enclaves
without relying on a PKI.

SGX gives rise to an unusual design requirement: the need for a signature
scheme with the fastest possible verification and a short public-key, where the
signature size is immaterial. We reviewed the QVRSA method used in SGX, and
explained its benefits over other options. We then presented an alternative app-
roach based on hash-based signatures that, after considerable optimization work,
yields a signature scheme that has faster verification than QVRSA. To make SGX
post-quantum secure, it would need to move away from QVRSA (in addition to
other necessary changes). Our experiments with quantum-secure hash-based sig-
natures show that they are a practical option for replacing RSA3072 in SGX.

Finally, we mention that surnaming is of fundamental importance to SGX,
and the surname generated by EINIT is used for multiple purposes beyond just
generating a Sealing key. Examples include authorizing a Launch Enclave and
generating a Provisioning key (see full version [7]). This paper sheds light on
this mechanism and explains its cryptographic underpinnings.

Acknowledgments. The first author is supported by NSF, DARPA, the Simons foun-
dation, and a grant from ONR. Opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of DARPA. The second author is supported by the PQCRYPTO project, which is
partially funded by the European Commission Horizon 2020 research Programme, grant
#645622, by the Blavatnik Interdisciplinary Cyber Research Center (ICRC) at the Tel
Aviv University, and by the ISRAEL SCIENCE FOUNDATION (grant No. 1018/16).

References

1. An attack on RSA digital signature. A NIST document (2006). http://csrc.nist.
gov/groups/ST/toolkit/documents/dss/RSAstatement 10-12-06.pdf

2. Intel R© Software Guard Extensions Programming Reference (2014). https://
software.intel.com/en-us/isa-extensions/intel-sgx

3. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13 (2013)

4. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 34

5. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R.,
Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46800-5 15

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/RSAstatement_10-12-06.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/RSAstatement_10-12-06.pdf
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://dx.doi.org/10.1007/3-540-68339-9_34
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1007/978-3-662-46800-5_15

164 D. Boneh and S. Gueron

6. Bleichenbacher, D., Maurer, U.: On the efficiency of one-time digital signatures. In:
Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 145–158.
Springer, Heidelberg (1996). doi:10.1007/BFb0034843

7. Boneh, D., Gueron, S.: Surnaming schemes, fast verification, and applications
to SGX technology (2016). http://crypto.stanford.edu/∼dabo/pubs/abstracts/
surnaming.html

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

9. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21969-6 23

10. Gueron, S.: Quick verification of RSA signatures. In: 2011 Eighth International
Conference on Information Technology: New Generations (ITNG), pp. 382–386,
April 2011

11. Gueron, S.: A memory encryption engine suitable for general purpose processors.
Cryptology ePrint Archive, Report 2016/204 (2016). http://eprint.iacr.org/

12. Gueron, S., Krasnov, V.: Improved P256 ECC performance by means
of a dedicated function for modular inversion modulo the P256 group
order. OpenSSL patch (2015). https://mta.openssl.org/pipermail/openssl-dev/
2015-December/003821.html

13. Gueron, S., Mouha, N.: Simpira v2: a family of efficient permutations using the
AES round function. Cryptology ePrint Archive, Report 2016/122 (2016)

14. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006). doi:10.1007/11818175 3

15. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy, HASP 2013, p. 11:1. ACM, New York (2013)

16. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Extensions, Intel R©
Software Guard: EPID provisioning and attestation services. White Paper (2016)

17. Kaliski, B.S.: Public-Key Cryptography Standards (PKCS) #1: RSA Cryptogra-
phySpecifications Version 2.1. RFC 3447, October 2015

18. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP 2013, p. 10:1. ACM, New
York (2013)

19. Menezes, A.: Another look at HMQV. Cryptology ePrint Archive, Report 2005/205
(2005). http://eprint.iacr.org/

20. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990). doi:10.1007/
0-387-34805-0 21

21. Nyberg, K., Rueppel, A.: A new signature scheme based on the DSA giving message
recovery. In: Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security, CCS 1993 (1993)

22. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). doi:10.1007/3-540-45450-0 11

23. Rivest, R.L., Hellman, M.E., Anderson, J.C., Lyons, J.W.: Responses to NIST’s
proposal. Commun. ACM 35(7), 41–54 (1992)

http://dx.doi.org/10.1007/BFb0034843
http://crypto.stanford.edu/~dabo/pubs/abstracts/surnaming.html
http://crypto.stanford.edu/~dabo/pubs/abstracts/surnaming.html
http://dx.doi.org/10.1007/978-3-642-21969-6_23
http://eprint.iacr.org/
https://mta.openssl.org/pipermail/openssl-dev/2015-December/003821.html
https://mta.openssl.org/pipermail/openssl-dev/2015-December/003821.html
http://dx.doi.org/10.1007/11818175_3
http://eprint.iacr.org/
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/3-540-45450-0_11

On the Entropy of Oscillator-Based True
Random Number Generators

Yuan Ma1,2(B), Jingqiang Lin1,2,3, and Jiwu Jing1,2,3

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

{yma,linjq,jing}@is.ac.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. True random number generators (TRNGs) are essential for
cryptographic systems, and they are usually evaluated by the concept of
entropy. In general, the entropy of a TRNG is estimated from its sto-
chastic model, and reflected in the statistical results of the generated raw
bits. Oscillator-based TRNGs are widely used in practical cryptographic
systems due to its elegant structure, and its stochastic model has been
studied in different aspects. In this paper, we investigate the applica-
bility of the different entropy estimation methods for oscillator-based
TRNGs, including the bit-rate entropy, the lower bound and the approx-
imate entropy . Particularly, we firstly analyze the two existing stochastic
models (one of which is phase-based and the other is time-based), and
deduce consistent bit-rate entropy results from these two models. Then,
we design an approximate entropy calculation method on the output raw
bits of a simulated oscillator-based TRNG, and this statistical calcula-
tion result well matches the bit-rate entropy from stochastic models. In
addition, we discuss the extreme case of tiny randomness where some
methods are inapplicable, and provide the recommendations for these
entropy evaluation methods. Finally, we design a hardware verification
method in a real oscillator-based TRNG, and validate these estimation
methods in the hardware platform.

Keywords: Oscillators · True random number generators · Entropy
estimation · Stochastic model

1 Introduction

Random number generators (RNGs) are widely used in cryptographic systems
to generate sensitive parameters, such as keys, seeds of pseudo-random num-
ber generators, and initialization vectors. The security of many cryptographic
schemes and protocols is built on the randomness of RNGs. The output of a
RNG is expected to be a bit sequence with the properties of unbiasedness, inde-
pendence and unpredictability. Statistical tests (such as NIST SP 800-22 [13] and
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 165–180, 2017.
DOI: 10.1007/978-3-319-52153-4 10

166 Y. Ma et al.

Diehard [11]) cannot evaluate the unpredictability of the sequence, as determin-
istic sequences with good statistical properties are able to pass the statistical
tests.

The concept of entropy, which measures the uncertainty in bits (e.g., bit-
rate entropy), is used to evaluate the unpredictability of a RNG. For a true
RNG (TRNG), the predictability comes from the randomness of physical noises.
The international standard ISO/IEC 18031 [7] and Germany standard AIS 31
[8] recommend to establish the entropy estimator with a stochastic model for
TRNG evaluation. The stochastic model describes the extraction process from
physical random noises to digitized random bits based on reasonable physical
assumptions.

Oscillator-based sampling is a typical structure adopted by many TRNG
designs, and the stochastic models of oscillator-based TRNGs have been well
studied in recent years. To figure out the entropy of oscillator-based TRNGs,
Killmann and Schindler [9] established a common stochastic model by a time-
based approach, and gave a tight lower bound of the entropy; using the similar
approach, Ma et al. [10] presented a calculation method to obtain the precise
entropy. In addition, Amaki et al. [1] calculated the probabilities of certain bit
patterns by using a Markov state transition matrix, but they evaluated the
security using the Poker test [6] rather than entropy estimation. Baudet et al. [2]
proposed a phase-based approach and provided a concise analytical formula for
the entropy calculation (including the n-bit entropy and the lower bound). The
entropy can be rapidly figured out by substituting the TRNG design parameters,
including the jitter ratio and the frequencies of the sampling and sampled signals.
This formula is then employed to estimate the entropy for a sufficient-entropy
TRNG design [4].

While the entropy is estimated with these stochastic models based on the
TRNG design parameters, the approximate entropy (ApEn) is obtained statis-
tically based on the output bit sequence of a TRNG. ApEn is calculated by
comparing the distributions of m-bit and (m+1)-bit blocks in the bit sequence.
However, the parameter m in ApEn shall be chosen carefully to trade off between
the accuracy of entropy estimation and the computation complexity.

Although various entropy estimation methods have been proposed in litera-
ture, a comprehensive and systematical study for their accuracy and applicability
(e.g., the consistency of different methods, the estimation error between theory
and experiment, the extreme cases of design parameters) is still lacking. In this
paper, we investigate the applicability of different entropy calculation methods
for oscillator-based TRNGs, including the bit-rate entropy, the lower bound and
the approximate entropy. Particularly, we make the following contributions.

– We present two bit-rate entropy calculation methods based on the time-
based and phase-based n-bit entropy stochastic models [2,10], respectively.
The results are analyzed, and we deduce consistent bit-rate entropy results
from these two models by expanding the original analytical expression.

– We propose an approximate entropy calculation method for the output bit
sequence of oscillator-based TRNGs, where the parameter m is obtained from

On the Entropy of Oscillator-Based TRNGs 167

the autocorrelation coefficient of the bit sequence. The ApEn calculation result
of a simulated oscillator-based TRNG well matches the bit-rate entropy from
stochastic models, which confirms the correctness of the theoretical results.

– We investigate the applicability of these entropy estimation methods in the
extreme case with tiny randomness (i.e., the accumulated jitter is very small
within the sampling interval). As it is possible to make an overestimation
of the entropy in such case, we provide an alternative method to acquire a
conservative estimation for the entropy.

– We design a hardware verification method in a real oscillator-based TRNG.
In the experiment, we calculate the randomness factor under the white noise,
and validate these estimation methods in the hardware platform.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
preliminary about the principle and existing entropy estimation methods for
oscillator-based TRNGs. We propose our evaluation method on the different
types of entropy in Sect. 3. In Sect. 4, we present the evaluation results and
investigate the case of tiny randomness. In Sect. 5, we investigate the effectiveness
of the estimation methods in the hardware platform. In Sect. 6, we conclude the
paper.

2 Preliminary

In this section, we first introduce the principle of oscillator-based TRNGs. Then
we summarize the methods of entropy estimation. The types of entropy include
n-bit entropy, lower bound of entropy and approximate entropy.

2.1 Oscillator-Based TRNGs

The basic structure of oscillator-based TRNGs contains an unstable oscillator
generating a fast oscillating signal with jitter, and a sampling reference clock
that is assumed without jitter, as shown in Fig. 1. The randomness comes from
jitter in the fast signal periods that is caused by noises. In general, the noises that
affect jitter are assumed to be independent and identically distributed (i.i.d.) for
the simplicity of the model. As an exception, the model of [9] partially allows
short-term dependency in the half-periods of the fast oscillating signal.

We firstly present some definitions of the parameters in the aspect of time
evolution. The half-periods of fast oscillating signal are assumed to be i.i.d. with
mean mX = E(Xk) and variance s2X = V (Xk), where Xk is the k-th half-period.
The fixed sampling interval is denoted as Δt.

As the tiny jitter (sX/mX � 1) accumulates within the sampling interval,
the probability of guessing the sampling point lying in the high or low volt-
age is decreasing. Hence, the jitter ratio and the frequency ratio jointly deter-
mine the quality of this type of TRNG, and the integrated factor is often called
as quality factor [2,10]. Another considerable factor is the divisibility of the
half-period mX to the sampling interval Δt, which is measured using variable

168 Y. Ma et al.

Fig. 1. The basic structure of oscillator-based TRNGs

r = Δt/mX mod 1. The divisibility increases when r approaches to 0.5 from
either 0 or 1 and reaches its maximum at r = 0.5. The cases of r = 0 and r = 0.5
represent the worst and the best case of the TRNG output quality, respectively.
This property has been discovered in [1,2,10].

2.2 n-bit entropy

The n-bit entropy represents the amount of entropy for n-bit output random
sequences. In general, there are two methods to get the n-bit entropy, time-
based and phase-based. The basic idea is to calculate the probability of n-bit
pattern, which is denoted as p(b), from the stochastic model, and then iterate
all the patterns to get n-bit entropy via Eq. (1).

Hn =
∑

b∈{0,1}n

−p(b) log p(b). (1)

Time-Based Method. Ma et al. [10] use the classic model of [9] in the aspect
of time evolution. They utilize the waiting time Wi to represent the relationship
between the adjacent sampling bits, where Wi is the distance of the i-th sam-
pling position to the closest following edge of fast oscillating signal. They use
a set of conditional probability functions to calculate the n-bit pattern prob-
ability by iterating, and eliminate Wi from the final expression by probability
integration for the uniform distribution of Wi. Here we do not list the detailed
computing process. Furthermore, they gave several curves from the worst to the
best case to demonstrate the entropy variation using numerical computation,
but an analytical probability or entropy expression was not given in their work.

Phase-Based Method. Baudet et al. [2] use the phase-oriented approach to
model the stochastic behavior of the oscillating signal. The phase evolution of an
oscillation is modeled by a Wiener stochastic process ϕ(t) with drift μ > 0 and
volatility σ2 > 0. The parameters are equivalent to the time-based definitions
following the equations: μ = 1

2mX
and σ2 = s2

X

4m3
X

.

Another quality factor is denoted as Q = σ2Δt = s2
XΔt

4m3
X

. The frequency ratio

of the fast signal to the slow one is denoted as ν = μΔt = Δt
2mX

, so r = 2ν mod 1.
Note that, as the investigated target is the same as the time-based method, two

On the Entropy of Oscillator-Based TRNGs 169

sets of parameters can be converted to each other. The quality fact Q in the
phase-based method equals 4q2, where q =

√
Δt
mX

· sX

mX
is the parameter defined

in the time-based model [10]. For convenience, we use Q and r to compute the
entropy for either time-based or phase-based method in the subsequent.

The following two formulas computing the probability and n-bit entropy are
provided in their work, where B = e−2π2Q.

1. The probability to output a vector b = (b1, . . . , bn) ∈ {0, 1}n satisfies

p(b) =
1
2n

+
8

2nπ2
(
n−1∑

j=1

(−1)bj+bj+1) cos(2πν)B + O(B2). (2)

2. The entropy of such an output is

Hn =
∑

b∈{0,1}n

−p(b) log p(b) = n − 32(n − 1)
π4 ln(2)

cos2(2πν)B2 + O(B3). (3)

2.3 Lower Bound of Entropy

Min-entropy or lower bound of entropy is the most conservative measurement
of entropy, and is useful in determining the worst-case entropy of a TRNG. In
the aspect of entropy calculating complexity, min-entropy or a lower bound has
considerable advantages for dependent stochastic process, as only the probability
in the worst case is involved. The methods for calculating a lower bound of
entropy for oscillator-based TRNG are presented in [2,9], and the worst case is
also investigated in [1].

The calculation expression of the lower bound [9], which is denoted as Hlo,
was presented in Eq. (4):

H(Bi|Bi−1, . . . , B1) ≥ Hlo = H(Bi|Wi−1) ≈
∫ s

0

H(R(s−u) mod 2)PW (du), (4)

where Bi is the ith sampling bit and R(s−u) represents the number of crossing
edges in the duration of (s − u). The idea is inspired by the fact that Wi tells
more information about Bi+1 than all the previous bits. Following the similar
idea, [2] also provides an analytical expression for Hlo, as shown in Eq. (5).

Hlo = 1 − 4
π2 ln(2)

e−4π2Q + O(e−6π2Q) (5)

2.4 Approximate Entropy

Approximate entropy (ApEn) is originally proposed to quantify the unpre-
dictability of fluctuations in a time series. ApEn is a statistical value derived
from the tested sequences. Note that, although the entropy of an TRNG shall
be estimated from the stochastic model of a TRNG, but ApEn of the raw bits

170 Y. Ma et al.

of a TRNG can also reflect the contained randomness. ApEn randomness test is
also adopted in the NIST statistical test suite [13], which compares the frequency
of overlapping blocks of two consecutive/adjacent lengths (m and m+1) against
the expected result for a random sequence. The calculation process of ApEn for
b = (b1, . . . , bn) is presented in Algorithm 1. The block length m in Algorithm 1
has an important impact on ApEn calculation, which is treated as a trade-off.
The larger value of m improves the accuracy of entropy estimation, but mean-
while significantly increase the computation complexity and the required length
of the tested bit sequence.

Algorithm 1. Approximate entropy calculation [13]
Input: block length m, bit sequence b = (b1, . . . , bn) ∈ {0, 1}n

Output: ApEn
1: Augment the n-bit sequence to create n overlapping m-bit sequences by appending

m − 1 bits from the beginning of the sequence to the end of the sequence.
2: Make a frequency count of the n overlapping blocks. The count is represented as

#i, where i is the m-bit value.
3: Compute Cm

i = #i/n for each value of i.
4: Compute δm = Σ2m−1

i=0 Cm
i log2 Cm

i .
5: Replace m by m + 1 and repeat Steps 1-4.
6: Compute ApEn = δm+1 − δm.
7: return ApEn

3 Our Evaluation Method

In this section, we provide three estimation methods for the entropy: phase-
based, time-based and ApEn. The former two utilize the jitter parameters to
perform the estimation in theory, while the latter analyzes the output sequences.

3.1 Bit-Rate Entropy Calculation

In practice, the concept of entropy per bit is preferred for entropy evaluation,
rather than the n-bit entropy. As the unit of the lower bound and ApEn is one bit,
it is necessary to transfer n-bit entropy to entropy per bit, which is called bit-rate
entropy. The bit-rate entropy is closely related to the expected workload that is
necessary to guess (sufficiently long) sequences of random bits [7]. In addition,
a precise Shannon entropy expression, which contains more parameters, allows
the TRNG designers to optimize their structures and specifically adjust the
parameters to get more entropy.

The bit-rate entropy H should be calculated from infinitely long random
sequences, as Eq. (6) shows. As n shall be infinity, the calculation of H is nearly
infeasible in either statistical or iterative computation. One way is to figure out

On the Entropy of Oscillator-Based TRNGs 171

reliable H is to deduce the precise expression of Hn in terms of n. Another possi-
ble case is that n actually can be a finite value, rather than being asymptotically
infinite.

H = lim
n→∞

Hn

n
= lim

n→∞
H(Bn|Bn−1, ..., B1) (6)

Time-Based Method. In the aspect of time evolution, it is observed that the
correlation between two adjacent sampling bits is decreasing with the increase of
the sampling interval. When the sampling interval is sufficient long, the sampling
bits can be treated as independent. Here we provide a method to determine the
required sampling interval for independent sampling bits.

The correlation coefficient of adjacent bits Bi and Bi+1 is represented as:

cor(Bi, Bi+1) =
COV(Bi, Bi+1)

√

Var(Bi)Var(Bi+1)
,

where COV(·) is the covariance function, and Var(·) represents the variance.
Then, using the stationary property [9] that Prob(Bi = 1) = Prob(Bi+1 = 1),
the correlation coefficient is deduced as:

cor(Bi, Bi+1) =
Prob(Bi = 1, Bi+1 = 1) − Prob(Bi = 1)2

Prob(Bi = 1) · Prob(Bi = 0)
.

For different values of Q, we compute the correlation coefficients, as shown in
Fig. 2. We observe that the dependence oscillatingly decreases with the increasing
of Q. The absolute value of the coefficient drops below 10−3 when Q is larger
than 0.16, where we consider that the correlation can be ignored and the adjacent
sampling bits are treated as independent.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

X: 0.16
Y: −0.0008389

Q

co
rr

el
at

io
n

co
ef

fic
ie

nt

Fig. 2. The correlation coefficient in terms of Q

Using this conclusion, we further determine the longest timing distance,
within which all the sampling behaviors are dependent. That is to say, when

172 Y. Ma et al.

the distance between two sampling bits is longer than that distance, the two
bits are treated to be independent. We denote l as the correlation length, which
means the (i + l)th sampling bit Bi+l is only dependent on the previous l bits.
Given a value of Q for a oscillator-based TRNG, the correlation length is deduced
as l = �(Qind

Q)�, where Qind is the required Q value for the independence, and
Qind is set to 0.16 in this paper. Then, combining with the additional conclusion
that the sampling process is stationary [9], H can be derived as

H = lim
n→∞

H(Bn|Bn−1, ..., B1) = H(Bl+1|Bl, ..., B1). (7)

A lower threshold of the coefficient certainly is helpful for getting a more
reliable result, but the derived correlation length may be too large to complete
the iterating computation of entropy within an acceptable time. The maximum
l in our computation is limited below 15. For Qind = 0.16, setting l = 15 means
reliable values can be acquired for Q > 0.0107.

Phase-Based Method. In [2], since an analytical expression of n-bit entropy
exists, for n is approaching infinity, the approximated bit-rate entropy is
expressed as Eq. (8).

H ≈ 1 − 32
π4 ln(2)

cos2(2πν)B2 (8)

Note that using this equation to calculate bit-rate entropy is tentative, since
Hn in Eq. (3) is not provably uniform in n [2]. The problem of non-uniformness
in n dose not exist in the time-based method, because the parameter l has
been chosen before calculating Eq. (7). In the following sections, we will learn
that Eq. (8) is applicable under some parameters, but has non-ignorable errors
under other parameters. Hence, in the next section, we improve the equation by
performing further expansion of original expression, and validate the effectiveness
of the improvement by comparing with the time-based method and the ApEn of
simulated sequences.

3.2 Approximate Entropy for Short-Term Dependent Bits

ApEn is a statistical result to estimate the entropy of the tested sequence. An
important parameter in the algorithm is the block length m, which partially
determine the estimation accuracy of the algorithm. The ideal case is that the
tested bits are independent beyond the bit interval of m, which means the esti-
mation algorithm can have a comprehensive overlook on the tested sequence.
Fortunately, for the output of oscillator-based TRNGs, the correlation lags are
limited due to the independence condition, hence the sampling bits only have
short-term dependence.

In the statistical method, we first use the autocorrelation test to find out
the correlation length in the sequence, and set m as the length to calculate
ApEn. The autocorrelation test is based on the autocorrelation plot [3], which

On the Entropy of Oscillator-Based TRNGs 173

is a commonly-used tool for checking randomness in a data set. Here, we do not
adopt the autocorrelation test in [12] for random bits, because the basis of that
test is the uniformity of the tested sequence. Otherwise (the uniformity is not
satisfied), a higher correlation value will be acquired and autocorrelation test is
failed. Hence, we return to the original test approach that only focuses on the
correlation. The autocorrelation coefficient is represented as Rh = Ch/C0, and
Ch is the autocovariance function: Ch = 1

n

∑n−h
t=1 (bt − b̄)(bt+h − b̄), where b̄ is

the mean of b1, ..., bn, and C0 is the variance function: C0 = 1
n

∑n
t=1(bt − b̄)2.

For randomness tests, it is recommended to use 99% confidence band to
justify whether the test is passed or not. In this case, the test is passed when
Ch lies in the interval [−z1−α/2/

√
n, z1−α/2/

√
n], where the significance level

α = 0.01 and z is the cumulative distribution function of the standard normal
distribution. Therefore, for the calculation of approximate entropy for short-term
dependent bits, we provide the following statistical method on the oscillator-
based TRNG output, as shown in Algorithm2. Note that, due to the Type-I
error in the hypothesis test, the intrinsic independent sequences still has the
probability of α to fail the test. However, this fact, which increases the correlation
length m, would not lead to estimation error of the entropy as long as the
sequence length is satisfied, since larger m is preferred for estimation.

Algorithm 2. Approximate entropy calculation for short-term dependent bits
Input: h = 1, bit sequence b = (b1, . . . , bn) ∈ {0, 1}n

Output: ApEn
1: while |Ch| > z0.995/

√
n do

2: h = h + 1
3: end while
4: Compute ApEn using Algorithm 1 with the parameter m = h
5: return ApEn

4 Entropy Evaluation

In this section, by comparing the results of different entropy calculation methods,
we evaluate the applicability and accuracy of these methods for oscillator-based
TRNGs. Particularly, as the original analytical formula has biases on the bit-
rata entropy estimation for some TRNG parameters, we present a more accurate
formula by performing further deducing, and the correctness is verified with other
entropy results. Finally, we investigate the limitations of these methods in the
case of tiny randomness, i.e., very small Q.

4.1 Bit-Rate Entropy Calculation Results

We use the proposed time-based and phase-based methods to calculate bit-rate
entropy, and the results in terms of Q and r are shown in Fig. 3. However, we
find that the approximated bit-rate entropy derived from Eq. (8) is not consistent

174 Y. Ma et al.

with that calculated by Eq. (7). The inconsistency has been preliminarily pointed
out in [10]. Note that the entropy at r = 1−x is identical to that at r = x, where
x ∈ (0, 0.5], thus we only present the cases for r ranging from 0 to 0.5. More
precisely, the difference between the two results is maximized with the parameter
r approaching 0.5, as shown in Fig. 3. Their results are almost identical in the
worse cases (r ∈ [0, 0.2]), but in the other cases of r with a modest Q value the
deviation occurs, especially at r = 0.5.

Fig. 3. The bit-rate entropy calculated from Ma et al.’s (time-based) and Baudet et al.’s
(phase-based) methods

From the physical perspective, the r value is related to the fractional part of
the ratio of sampling interval to the mean of half-periods (Δt/mX). From the
theoretical result of [10], to achieve a sufficient bit-rate entropy (such as 0.9999),
the required sampling frequency in the best case is about two times faster than
that in the worst case under the same quality factor. Hence, in the condition of
fixed Q, the value of r has a non-negligible impact on the entropy, as shown in
Fig. 3. Also, from the perspective of the designer, adjusting r can significantly
improve the entropy without the degradation of the sampling frequency.

4.2 Improved Bit-Rate Entropy Expression Formula

We expand the original approximated expression formula of n-bit entropy by
performing further deducing. The improved results are presented in Theorem1.

Theorem 1. For r = Δt
mX

mod 1 and Q =
s2XΔt

4m3
X
, the n-bit entropy is:

Hn
.
= n − 32

ln(2)π4
cos2(πr)(n − 1)e−4π2Q

− 32

ln(2)π4

[
cos4(πr)

(
1.524n − 0.092

)− 2.379 cos2(πr)(n − 2) + (n − 2)
]
e−8π2Q

+O(e−10π2Q). (9)

On the Entropy of Oscillator-Based TRNGs 175

The (trial) approximated bit-rate entropy is expressed as:

H ≈ 1 − 32B2

ln(2)π4
cos2(πr) − 32B4

ln(2)π4

[
1.524 cos4(πr) − 2.379 cos2(πr) + 1

]
.

(10)

In the improved expression Eq. (9), the first two terms are derived from the
original one. Our work focuses on the deduction of the third term, the higher-
order term. We strictly follow the same assumptions used in [2], but perform the
further deduction on the entropy calculation process based on series expansion.
The proof details are presented in the full version of this paper.

4.3 Bit-Rate Entropy Comparison: Time-Based Vs. Phase-Based

In order to validate the reliability of the improved result, we first compare it with
the bit-rate entropy derived from the time-based method. The comparison result
is shown in Fig. 4. We can see that after our improvement the two results become
very close in all six cases from r = 0 to r = 0.5. Note that as the expression is
analytical, the derived entropy is not only the data lying in the six curves, but
the values for all the possible cases of Q and r. We remark that it is no surprise
that the two entropy results are identical, because the focusing target and the
physical assumption of small jitter are both the same. The equivalence between
the two models has been presented in [2].

Fig. 4. The comparison of bit-rate entropy with the improved formula

Furthermore, from Eq. (10) we also explain why the original expression has
a significant estimation error when r is large. When the coefficients of B2, B4,...
(0 < B = e−2π2Q < 1) are comparable, the subsequent terms after B2 can
be ignored for large Q and the estimation error is acceptable. However, with r
increasing from 0 to 0.5, the coefficient of B2 decreases from maximum to 0, while
the impact of B4 increases. Especially, when r approaches 0.5, the coefficient of
B2 approaches 0, while the B4 term does not become zero due to the existence

176 Y. Ma et al.

of the constant 1 in the coefficient of B4. Therefore, in this case the impact of
B4 term cannot be ignored and only using B2 term to estimate the entropy is
not enough.

Another important observation is that expanding the Taylor series to B4

is enough to reliably estimate the entropy for such Q ∈ (0.06,+∞), where Q
is not a very small value. The improved expression might have a bias when Q
becomes a much smaller value, as the impact of the higher-order term of B (such
as B6) exists. But we must admit that getting the higher-order term of B seems
infeasible, as the series in Eq. (3) after further expanding are too complex.

4.4 Bit-Rate Entropy Vs. Approximate Entropy

After the improvement, the bit-rate entropy values derived from the two meth-
ods are consistent, but it is necessary to confirm that the theoretical results
is consistent with the experimental. For this purpose, we use the approximate
entropy, which is a statistical measurement from the output bit sequence, to ver-
ify the applicability of the entropy evaluation method. Note that, the statistical
entropy values are also random for random sequences, so directly using ApEn to
do entropy estimation would lead to measurement errors. However, it is valuable
to compare the trends of ApEn and bit rate entropy, which can be treated as
experimental and theoretical results, respectively.

Following the assumptions in the aspect of time evolution, we perform a
simulation experiment to calculate ApEn. In the experiment, the fast signal
periods are independent and identically distributed, and the distribution is set as
the normal distribution N(1, 0.012). Each ApEn is computed from 105 sampling
bits for each sampling interval which corresponds the values of Q and r. As the
two bit-rate entropy results are almost the same, we use the improved phase-
based result as the reference to compare with ApEn. The comparison results from
r = 0 to r = 0.5 are shown in Fig. 5. We find that the two sets of results are
well-matched for all r values. Therefore, Algorithm 2 is suitable to estimate the
bit-rate entropy for this type of short-term dependent sequences. A more precise
results can be acquired by averaging the estimated values of many statistical
experiments.

4.5 Entropy Estimation for Smaller Quality Factor

In the previous entropy estimation results, the investigated values of Q are not
very small, which are available for the entropy evaluation of most practical
TRNGs. However, for very samll Q values, the presented entropy calculation
methods are not applicable. The reasons are explained as follows.

– For the time-based bit-rate entropy calculation method, a very small Q means
that the dependent length l is very large. For example, when Q = 0.005, l
equals to 32, meaning that the traversal space should be 232, which is infeasible
for computation. In this case, the estimation would be larger than the real
entropy value, i.e., the overestimation occurs.

On the Entropy of Oscillator-Based TRNGs 177

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Q

E
nt

ro
py

bit−rate entropy
approxmate entropy

r=0.1

r=0

r=0.2

r=0.4

r=0.5

r=0.3

Fig. 5. The comparison between the bit-rate entropy and the approximate entropy

– For the phase-based bit-rate entropy calculation method, when Q decreases,
the estimation error increases with no limitation, as the Hn expression is not
uniform in n. Therefore, the approximated formula is not applicable to esti-
mate the bit-rate entropy in this case, though our improvement has extended
the applicable range of the formula.

– For the presented approximate entropy estimation method, a very small Q
makes the statistical correlation lasts very long lags, which causes that the
parameter m in Algorithm 2 is too large to complete the computation. For
example, in our experiment, when Q = 0.01 the statistical m of Algorithm 2
is about 30, thus the workload for the traversal loops and the requirement for
the sequence length are unacceptable in this case. The problem also leads to
an overestimation for the entropy of the tested sequence.

0 0.01 0.02 0.03 0.04 0.05 0.06
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q

E
nt

ro
py

appr. lower bound
precise lower bound
time−based method, ApEn
improved phase−based method
original phase−based method

Fig. 6. The comparison of entropy values with small Q at r = 0

178 Y. Ma et al.

Actually, as we mentioned, the lower bound expression formula has be pre-
sented in [2]. As Eq. (5) shows, the expression formula of the lower bound also
contains a term of O. Using this approximated expression also causes overes-
timation of the entropy when Q is smaller than 0.01. As shown in Fig. 6, the
approximated lower bound becomes larger than the bit-rate entropy derived
from time-based methods with the worst case of r = 0, though the bit-rate
entropy might have been overestimated. However, we emphasize that the com-
putation of this O term in Eq. (5) is feasible since the traverse of 2n states is
nonexistent. Therefore, we present the calculation results for the precise lower
bound of entropy for smaller Q values, as labeled in Fig. 6. The comparison
result indicates that the precise expression of the lower bound eliminates the
overestimation of entropy for very small Q values.

5 On the Relationship with Physical RNGs

The existing models [2,10] assume that the oscillating period or phase increment
is independently distributed due to the influence of white noise. This is a com-
mon assumption in literature, which allows to guarantee the simplicity of the
model. However, in real TRNG circuits, the jitter or phase is also influenced by
colored noises (such as 1/f noise) more than white noise, and the phenomenon
has been demonstrated in recent works [5,10,14]. Under these colored noises, the
period jitter has long-term dependence, and the dependence is also inherited by
the sampling bit sequence [10]. In practical TRNGs, it is infeasible to perform
similar confirmatory experiment as our simulation where the entropy is calcu-
lated via the output sequence, as the randomness amount is inevitably increased
by colored noises and the offset r is hard to be precisely measured.

Fortunately, the white noise is independent from colored noises in principle, so
the existing model and corresponding entropy estimation methods can still work
for estimating the contribution of the white noise. When the estimated contribu-
tion (i.e., entropy) derived from independent jitter is sufficient, we can also claim
that the entropy of the TRNG is satisfied. In practical entropy evaluation, the
independent jitter can be acquired by employing an inner measurement method
that excludes the dependent component of the jitter in the measurement (such as
[5]). This evaluation approach neatly sidesteps the impact of colored noises.

We perform the hardware experiment on an FPGA (Field Programmable
Gate Array) platform (Xilinx XC5LX110T), where two ring oscillators are imple-
mented using Look-Up Tables (LUTs) with the close frequency of 280.5 MHz.
The sampling interval is set as the period number of one oscillating signal, and
the counting period number of the other signal is treated as the random variable,
thus the random bit is the LSB of the counting number. Here, we do not use
the number of half-periods to eliminate the impact of the imbalance of the duty
cycle, and the change is compatible with the above models. The period num-
ber of the sampling signal is set to 256 × i, where i ∈ {20, 21, ..., 40}. For each
sampling interval, we collect the random number sequence with length 220, and
calculate the ApEn of the bit sequence. Particularly, the quality factor that is

On the Entropy of Oscillator-Based TRNGs 179

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.97

0.975

0.98

0.985

0.99

0.995

1

QW

E
nt

ro
py

ApEn
Theor. (worst)
Theor. (best)

Fig. 7. The comparison between ApEn and theoretical entropy in the physical RNG

influenced by white noises QW is computed by employing the method of [5]. The
comparison between the ApEn and the theoretical entropy (worst case and best
case) is depicted in Fig. 7. It is observed that ApEn increases between the worst
and the best case of theoretical entropy as expected. As the bit sequence has
been affected by colored noises, its statistical randomness is much better than
the worst case of the theoretical entropy. From Fig. 7, we can conclude that our
improved theoretical entropy is suitable to estimate the lower and upper bounds
of the output bit sequence.

6 Conclusion

Entropy estimation is essential for TRNG security testing, and a reliable result
of entropy estimation is preferred for both designers and verifiers. In this paper,
we investigate the applicability the different entropy calculation methods for
oscillator-based TRNGs, including bit-rate entropy, the lower bound and approx-
imate entropy. In the evaluation, we present two effective methods for bit-rate
entropy calculation in theory, and design a specific method for the approximate
entropy. The evaluation results indicate that the theoretical estimation results
are consistent with the experimental measurements, thus the presented methods
are reliable for not small Q values. The mutual verifications among these estima-
tion methods make us believe that the calculated results are reliable. Further-
more, for the case with very small quality factor, the existing entropy estimation
methods are inapplicable, thus we recommend to use the precise lower bound
as a conservative estimation. In the hardware experiment, we validate that the
ApEn still lies in the interval between the worst and best case of the theoretical
entropy, though the bit sequence is effected by colored noises.

Acknowledgments.. This work was partially supported by National Basic Research
Program of China (973 Program No. 2013CB338001), National Natural Science Foun-
dation of China (No. 61602476, No. 61402470) and Strategy Pilot Project of Chinese
Academy of Sciences (No. XDA06010702).

180 Y. Ma et al.

References

1. Amaki, T., Hashimoto, M., Mitsuyama, Y., Onoye, T.: A worst-case-aware design
methodology for noise-tolerant oscillator-based true random number genera-
tor with stochastic behavior modeling. IEEE Trans. Inf. Forensics Secur. 8(8),
1331–1342 (2013)

2. Baudet, M., Lubicz, D., Micolod, J., Tassiaux, A.: On the security of oscillator-
based random number generators. J. Cryptol. 24(2), 398–425 (2011)

3. Box, G.E.P., Jenkins, G.: Time Series Analysis: Forecasting and Control, pp. 28–32.
Holden-Day, San Francisco (1976)

4. Fischer, V., Lubicz, D.: Embedded evaluation of randomness in oscillator based
elementary TRNG. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 527–543. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 29

5. Haddad, P., Teglia, Y., Bernard, F., Fischer, V.: On the assumption of mutual
independence of jitter realizations in P-TRNG stochastic models. In: IEEE Design,
Automation and Test in Europe Conference and Exhibition (DATE), pp. 1–6 (2014)

6. Information Technology Laboratory: FIPS 140-2: Security Requirement For Cryp-
tographic Modules (2011)

7. ISO/IEC 18031: Information Technology - Security Techniques - Random bit gen-
eration (2011)

8. Killmann, W., Schindler, W.: A proposal for functionality classes for random
number generators (2011). http://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Zertifizierung/Interpretationen/AIS 31 Functionality classes for random
number generators e.pdf? blob=publicationFile

9. Killmann, W., Schindler, W.: A design for a physical RNG with robust entropy
estimators. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
146–163. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3 10

10. Ma, Y., Lin, J., Chen, T., Xu, C., Liu, Z., Jing, J.: Entropy evaluation for oscillator-
based true random number generators. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 544–561. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 30

11. Marsaglia, G.: Diehard Battery of Tests of Randomness. http://www.stat.fsu.edu/
pub/diehard/

12. Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997)

13. Rukhin, A., et al.: A statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications. NIST Special Publication 800–22.
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/Spp800-22rev1a.pdf

14. Valtchanov, B., Fischer, V., Aubert, A., Bernard, F.: Characterization of random-
ness sources in ring oscillator-based true random number generators in FPGAs.
In: DDECS, pp. 48–53 (2010)

http://dx.doi.org/10.1007/978-3-662-44709-3_29
http://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile
http://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile
http://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile
http://dx.doi.org/10.1007/978-3-540-85053-3_10
http://dx.doi.org/10.1007/978-3-662-44709-3_30
http://dx.doi.org/10.1007/978-3-662-44709-3_30
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/Spp800-22rev1a.pdf

Post-quantum Cryptography

Provably Secure Password Authenticated
Key Exchange Based on RLWE
for the Post-Quantum World

Jintai Ding1(B), Saed Alsayigh1, Jean Lancrenon2,
Saraswathy RV1, and Michael Snook1

1 University of Cincinnati, Cincinnati, USA
jintai.ding@gmail.com

2 University of Luxembourg, Luxembourg City, Luxembourg

Abstract. Authenticated Key Exchange (AKE) is a cryptographic
scheme with the aim to establish a high-entropy and secret session
key over a insecure communications network. Password-Authenticated
Key Exchange (PAKE) assumes that the parties in play share a simple
password, which is cheap and human-memorable and is used to achieve
the authentication. PAKEs are practically relevant as these features are
extremely appealing in an age where most people access sensitive per-
sonal data remotely from more-and-more pervasive hand-held devices.
Theoretically, PAKEs allow the secure computation and authentication
of a high-entropy piece of data using a low-entropy string as a starting
point. In this paper, we apply the recently proposed technique introduced
in [19] to construct two lattice-based PAKE protocols enjoying a very
simple and elegant design that is an parallel extension of the class of Ran-
dom Oracle Model (ROM)-based protocols PAK and PPK [13,41], but in
the lattice-based setting. The new protocol resembling PAK is three-pass,
and provides mutual explicit authentication, while the protocol following
the structure of PPK is two-pass, and provides implicit authentication.
Our protocols rely on the Ring-Learning-with-Errors (RLWE) assump-
tion, and exploit the additive structure of the underlying ring. They
have a comparable level of efficiency to PAK and PPK, which makes
them highly attractive. We present a preliminary implementation of our
protocols to demonstrate that they are both efficient and practical. We
believe they are suitable quantum safe replacements for PAK and PPK.

Keywords: Diffie-Hellman · Key Exchange · Authenticated · PAKE ·
RLWE

1 Introduction

Password-Authenticated Key Exchange and Dictionary Attacks
Authenticated Key Exchange (AKE) is a cryptographic service with the aim of
allowing several entities to jointly establish a high-entropy and secret session key
over a completely insecure communications network. That the protocol includes
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 183–204, 2017.
DOI: 10.1007/978-3-319-52153-4 11

184 J. Ding et al.

authentication of the purported peers is essential to prevent man-in-the-middle
attacks. In order to achieve this, it is required that some form of long-term
authentication material already be in place prior to the exchange occurring. For
instance, the entities could each have their own public-key/secret-key pair (e.g.
for STS [18], or HMQV [35]), certified by a trusted authority, or they can all share
a single symmetric key specifically dedicated to running an AKE with which to
establish other session keys (e.g. the protocols in [7]).

In Password -Authenticated Key Exchange (PAKE), it is assumed that the
parties in play share a simple password. This differs from the shared-symmetric-
key case in that the password is not necessarily a cryptographically strong piece
of data. Indeed, most passwords have very low entropy so that they can retain
their main advantage over strong keying material: they are cheap and human-
memorable. Moreover, these features are extremely appealing in an age where
most people access sensitive personal data remotely from more-and-more perva-
sive hand-held devices. Thus, PAKEs are practically relevant. From a theoretical
standpoint, they are quite unique in that they allow the secure computation and
authentication of a high-entropy piece of data using a low-entropy string as a
starting point.

From a security modeling perspective, the use of passwords as authentication
material presents specific challenges. A password’s low entropy makes it easy to
discover by brute force, assuming an attacker can get its hands on a piece of
password-dependent data that a guess can be checked against. Such attacks
are known as dictionary attacks. There are two types: In an offline attack, the
adversary observes protocol runs - possibly also interacting with the entities
involved - and then goes offline to do password testing privately. To avoid this, the
protocol messages and session keys must look computationally independent from
the password. In an online attack, the attacker needs to be actively involved in a
protocol interaction in order to determine the verdict on its guess(es). The most
natural online attack available is to simply run the protocol with an arbitrary
password guess as input, and observe whether the protocol run succeeds or fails.
It is clear that this attack is unavoidable; thus a PAKE must be designed such
that the adversary can test at most a constant (ideally, one) number of passwords
per online interaction.

PAKEs and the Post-Quantum World. Based on the above reasons, PAKEs
have been very heavily studied in the past three decades. Adequate formal secu-
rity models have appeared [6,13], and a plethora of protocols have been designed
and analyzed (e.g., [1,14,31,34,41]). The current pool of practical protocols1 can
essentially be classified into two categories: the first we shall call the class of
Random Oracle Model (ROM)-based PAKEs (such as [3,6,9,14,15,30,41]), and
the second, the class of Common Reference String (CRS)-based PAKEs (such
as [16,23,27,32,34]). Roughly, the protocols in the first category have very simple
and elegant designs, but rely crucially on the ROM [8] for their proofs of security,

1 Some impractical yet complexity-theoretically efficient protocols have been studied,
for theoretical reasons. See e.g. [25,26,43].

Provably Secure PAKE Based on RLWE for the PQ World 185

while the protocols in the second category use sophisticated cryptographic tools2

to achieve standard-model security (assuming a CRS is in place3). The bottom
line is that the simplicity and efficiency of ROM-based protocols (and the fact
that if carefully instantiated, they are not known to have been broken) makes
them much more attractive for concrete deployment than CRS-based ones.

Searching for tools that can resist against adversaries attacking using a
quantum computer is currently one of the fundamental issues in cryptographic
research. Indeed, the security of all public-key algorithms based on classical
hard problems will no longer be assured as soon as a quantum computer of sat-
isfactory size exists. In the US, the National Security Agency (NSA) [44] pub-
lished a webpage announcing preliminary plans for transitioning from its suite
B cryptographic tools to quantum resistant algorithms, which are specified by
the National Institute of Standards and Technology (NIST) and are used by the
NSA’s Information Assurance Directorate in solutions approved for protecting
classified and unclassified National Security Systems (NSS). It is clear that the
effort to develop quantum-resistant technologies is intensifying and, in the imme-
diate future, NIST, which has the authority to establish the security standards
of the US government, shall have a call to select post-quantum cryptosystem
standards. Regardless of which of the aforementioned categories they belong to,
most known PAKEs rest their security on either group-type or factoring-type
complexity assumptions, making them unsuitable in a possibly upcoming post-
quantum world. Therefore, searching for PAKEs that can be based on provably
secure lattice assumptions is natural. In the current literature, as far as we know
one single PAKE stands out precisely for this reason: the Katz–Vaikuntanathan
protocol [33] relies instead on lattice-type assumptions for its security. Unfortu-
nately, it is CRS-based, and therefore not very efficient.

1.1 Our Contributions

In this paper, we propose two lattice-based PAKE protocols enjoying a very sim-
ple and elegant design that is extremely similar to that of the class of ROM-based
protocols. More specifically, our protocols can be viewed as direct analogues of
the PAK and PPK [13,41] protocols in the lattice-based setting. The protocol
resembling PAK is three-pass, and provides mutual explicit authentication, while
the protocol following the structure of PPK is two-pass, and provides implicit
authentication. Most importantly, our protocols have a comparable level of effi-
ciency to PAK and PPK, which makes them highly attractive.

The starting point for our construction is the recently proposed technique
introduced in [19], and used in [50] to design a lattice-based variant of the HMQV
protocol. As in the latter paper, our protocols rely on the Ring-Learning-with-
Errors (RLWE) assumption, and exploit the additive structure of the underlying

2 In particular, they use universal hash proof systems [17] over complex languages.
3 A CRS is essentially a publicly available string to which a secret trapdoor is theoret-

ically associated, but never used by protocol participants. During a proof of security,
the simulator gets access to this trapdoor.

186 J. Ding et al.

RLWE ring. We therefore obtain two protocols which are suitable quantum-safe
replacements for PAK and PPK.

It is indeed true that we can build the PAKE protocol using RLWE in a
rather straightforward manner. Though the general structure of the proofs for
our protocols is very similar to that of the original PAK protocol’s security proof,
where the security of PAK relies on an adversary being unable to solve the Diffie–
Hellman Problem, the techniques used in our paper are intricate and completely
different.

We manage to establish a full proof of security for our RLWE-PAK protocol,
in the classic security model proposed by Bellare et al. [6]. To simplify the proof,
first we define the Pairing with Errors problem, which can be reduced to the
RLWE problem. This new problem is used multiple times in the proof, and
allows us to build intermediate steps that did not appear in the original proofs
for PAK and PPK.

The complete replacement of the Diffie–Hellman core of PAK with the new
lattice-based core means that the distinguishers used in the PAK proof have to be
completely replaced with lattice-handling analogues. The distinguishers have to
compensate for the presence of the password in the protocol without being able to
directly remove its influence, as they have no access to the value of the password
itself. In the proof, there are three places where we have to build distinguishers
to solve the PWE problem. Since such distinguishers are completely new and
subtle, we need to use novel methods to construct them. Only by applying these
new distinguishers are we able to link the security directly to the PWE problem.

From the construction in [19], we can use the same idea to build in a com-
pletely parallel way a PAKE using the LWE problem instead of the RLWE
problem. Here we need to use matrix multiplications, and need to make sure
that the order of multiplications is correct.

Finally, we created a proof-of-concept implementation of our new PAKE (and
the “implicit” version) to demonstrate its efficiency and practicality. This part
is moved to Appendix E of the full version due the lack of room.

1.2 Related Work

AKE protocol research is far too vast to describe in full, hence we only survey
those portions of it most relevant to this work. These are PAKE, and AKE based
on lattice-type assumptions. We also only consider protocols in the two-party
setting.

PAKE Protocols and Security Models. PAKE was essentially invented by
Bellovin and Merritt in [9]. The authors raised the problem of dictionary attacks
in this particular setting, proposed some protocols - most notably the Encrypted
Key Exchange (EKE) protocol - and offered an informal security analysis of
their designs. Jablon [30] later proposed another protocol - Simple Password
Exponential Key Exchange (SPEKE) - avoiding some of the pitfalls of EKE, but
again with only an informal analysis.

Provably Secure PAKE Based on RLWE for the PQ World 187

The search for good security models began with the work of Lucks [38] and
Halevi and Krawczyk [28]. Laying down adequate foundations for the provable
security of PAKE was a particularly subtle task, since one cannot prevent the
adversary from guessing and trying out candidate passwords in on-line imperson-
ation attempts, and the small size of the dictionary means that the adversary’s
natural advantage in succeeding at this is non-negligible. Good models captur-
ing this phenomenon were finally exhibited by Bellare et al. [6] and Boyko et
al. [13], building respectively on the AKE models proposed by Bellare et al. in [7]
and Shoup in [46]. The model in [6] was further refined by Abdalla et al. in [4].
The notion of universally composable PAKE has also since been introduced by
Canetti et al. [16].

A great deal of protocols have been proposed and analyzed, especially since
the apparition of adequate security models. Some extremely efficient examples
include the protocols in [2,3,6,13–15,29,30,36,40,41]. On one hand, these are
mostly two-or-three-pass protocols, with very few group operations. For instance,
the explicitly authenticated PAK protocol in [41] is three-pass, and sends 2 group
elements (and 2 confirmation bitstrings of length linear in the security parame-
ter) in total over the network. It also requires a total of only 4 exponentiations,
and 2 group multiplications. On the other hand, these protocols’ security is very
heavily reliant on idealized assumptions4. In 2001, a milestone was reached with
the work of Katz et al. [32], which showed that it is possible to provably real-
ize PAKE in a practical way without idealized assumptions, but at the expense
of having a CRS in place. Many works generalizing and optimizing this result
followed, such as [22,23,27,31,34], all using a CRS. It was further shown in [16]
that without idealized assumptions, universally composable PAKE is possible
only if some other trusted setup - e.g. a CRS - is in place. However, all of these
CRS-using protocols are generally much less practical than the ROM-using ones
mentioned before. While it is possible to achieve a low number of passes using
a CRS - e.g. [34] is a two-pass protocol - the number of group computations
and elements sent is typically high. To our knowledge, the latest techniques [2]
discovered to reduce this still do not beat ROM-based PAKEs in efficiency. For
instance, Abdalla et al. [2] report on being able to bring the total group element
and exponentiation counts of the Groce-Katz protocol [27] down to 6 and 18
respectively, and those of [34] down to 10 and 28 respectively.

Finally, some work has been devoted to determining if PAKE can be effi-
ciently realized in a reasonable security model with neither idealized assumptions
nor any form of trusted setup. Goldreich et al. [25] were the first to answer in the
affirmative, but assuming non-concurrent protocol executions. Their work was
followed up by Nguyen et al. [43], who found a more efficient construction, but
in a weaker model. Later, Jain et al. [26] were able to further lift the restriction
on concurrent executions. These works are viewed as being mainly of theoretical
interest, as the protocols, although theoretically efficient, are far less practical
then even the CRS-based protocols.

4 The ROM is one of them; another is the ideal cipher model, see [6].

188 J. Ding et al.

AKE from Lattices. Some work was done to address the problem of finding
AKE protocols based on lattice-type assumptions. The protocols in [20,21,37]
are essentially lattice-based instantiations of generic constructions that use
key-encapsulation mechanisms to construct AKEs. In 2012, Ding et al. [19]
first proposed simple LWE and RLWE analogues of the unauthenticated
Diffie-Hellman protocol. Later there appeared a few variants of Ding’s key
exchange [5,11,12,45], with the slight modification that the new rounding tech-
nique from [19] for least significant bits was adjusted to work for most significant
bits. A true LWE-based AKE was proposed in Zhang et al. [50], where the pro-
tocol proposed by Ding et al. [19] was leveraged to build a RLWE version of the
HMQV protocol.

In all of these works, the authentication mechanism used is reliant on the
deployment of a public-key infrastructure. In the case of password authentication,
the only known protocol to this day appears to be that of Katz et al. [33]. It
too can be viewed as a lattice-based instantiation of a generic construction.
This is because most known CRS-based frameworks for PAKE make use of an
encryption scheme that is both secure against adaptive chosen-ciphertext attacks
and equipped with a universal hash proof system [17], and the heart of [33] is
essentially a lattice-based instantiation of such a scheme.

2 Preliminaries

2.1 Security Model

Here, we review the security model from [6]. It basically models the communi-
cations between a fixed number of users - which are clients and servers - over
a network that is fully controlled by a probabilistic, polynomial-time adversary
A. Users are expected to both establish and use session keys over this network.
Therefore, A is given access to a certain number of queries which reflect this
usage. It may initialize protocol communications between user instances of its
choice, deliver any message it wants to these instances, and observe their reaction
according to protocol specification. It may also reveal session keys established
by instances, thereby modeling loss of keys through higher-level protocol use.
Finally, we even allow the adversary to obtain user passwords, in order to cap-
ture forward secrecy. We describe this formally now.

Let P be a PAKE protocol.

Security Game. An algorithmic game initialized with a security parameter k is
played between a challenger CH and a probabilistic polynomial time adversary A.
CH will essentially run P on behalf of honest users, thereby simulating network
traffic for A.

Users and Passwords. We assume a fixed set U of users, partitioned into two
non-empty sets C of clients and S of servers. We also assume some fixed, non-
empty dictionary D of size L. Before the game starts, for each C ∈ C a password
pwC is drawn uniformly at random from D and assigned to C outside of A’s
view. For each server S ∈ S, we set pwS :=

(

f(pwC)
)

C , where C runs through

Provably Secure PAKE Based on RLWE for the PQ World 189

all of C, and f is some efficiently computable one-way function specified by P.
(In our case, f will be essentially a hash of the password.) CH also generates
P’s public parameters on input 1k, and gives these to A. We assume that A is
polynomial-time in k as well. The game can then begin.

User Instances. During the game, to any user U ∈ U is associated an unlimited
number of user instances Πi

U , where i is a positive integer. The adversary may
activate any of these instances using the queries listed below, causing them to
initiate and run the protocol.

At any point in time, an instance Πi
U may accept. When this happens, it holds

a Partner IDentity (PID) pidi
U , a Session IDentity (SID) sidi

U , and a Session
Key (SK) ski

U . The PID is the identity of the user that instance believes it is
talking to. The SK is what Πi

U is aiming to ultimately compute. The SID is a
string which uniquely identifies the protocol run and ensuing session in which
the SK is to be used in. Often the SID is defined as the ordered concatenation
of messages sent and received by an instance, except possibly the last message.
(In our case, we will need to modify this a bit.)

Queries. The queries A may make to any given instance Πi
U during the game

are as follows:

– Send(U , i,M): Causes message M to be sent to instance Πi
U . The instance

computes what the protocol P says, updates its state, and gives the output to
A. We also assume that A sees if the query causes Πi

U to accept or terminate.
– Execute(C, i,S, j): Causes P to be executed to completion between Πi

C (where
C ∈ C) and Πj

S (where S ∈ S) and hands A the execution’s transcript.
– Reveal(U , i): Returns the SK ski

U held by Πi
U to A.

– Test(U , i): For this query to be valid, instance Πi
U must be fresh, as defined

below. If this is the case, the query causes a bit b to be flipped. If b = 1, the
actual SK skU

i is returned to A; otherwise a string is drawn uniformly from
the SK space and returned to A. Note that this query can be asked only once
during the game.

– Corrupt(U): Returns
(

f(pwC)
)

C to A if U ∈ S else returns pwU to A.

Ending the Game. Eventually, A ends the game, and outputs a single bit b′.
We return to the use of this bit in the definition of security below.

Partnering and Freshness. In order to have a meaningful definition of secu-
rity, we need to introduce the notions of instance partnering and instance fresh-
ness. Essentially, an instance Πi

U is fresh if the adversary does not already
know that instance’s SK through trivial means provided by the security model’s
queries, for instance by using a Reveal query on the instance in question. Fur-
thermore, since instances are supposed to be sharing keys under normal cir-
cumstances, it also makes sense to consider freshness destroyed if an instance’s
proper communicant has been revealed as well. Thus, we need to formally define
what this proper communicant is:

190 J. Ding et al.

Definition 1. Let Πi
U and Πj

V be two instances. We shall say that Πi
U and

Πj
V are partnered if (i) one is in C and one is in S, (ii) both have accepted,

(iii) pidi
U = V and pidj

V = U , (iv) sidi
U = sidj

V =: sid and this value is not
null, and (v) no other instance accepts with a SID of sid.

Capturing the notion of forward secrecy requires freshness to be carefully
defined around the corrupt query. Intuitively, if a corruption occurs after an
instance has had a correct exchange with a proper partner, then those instances’
shared session key should still remain secure. However, we cannot guarantee any-
thing for an instance that has interacted with the adversary after a corruption.
More formally:

Definition 2. An instance Πi
U is fresh if none of the following events occur:

(i) Reveal(U , (i) was queried, (ii) a Reveal(V, j) was queried, where Πj
V is Πi

U ’s
partner, if it has one, or (iii) Corrupt(V) was queried for some V before the Test
query and a Send(U , i,M) query occurs for some M .

Definition of Security. We now turn to actually measuring the adversary’s
success rate in breaking P. A’s objective is to tell apart a random string from
a true SK belonging to a fresh instance. This is the whole purpose of the Test
query. Let Succake

P (A) be the event:
“A makes a Test(U , i) query where Πi

U has terminated and is fresh and b′ = b,
where b is the bit selected when Test(U , i) was made, and b′ is the bit A output
at the end of the game.”
A’s advantage is then defined as:

Advake
P (A) = 2Pr[Succake

P (A)] − 1

It is easy to see that if we have two protocols P and P′ then for any adversary
A we have Pr[Succake

P (A)] = Pr[Succake
P′ (A)] + ε if and only if Advake

P (A) =
Advake

P′ (A) + 2ε.

2.2 Ring Learning with Errors

Ring Learning with Errors. Here, we introduce some notation and recall
informally the Ring Learning with Errors assumption, introduced in [39]. For
our purpose, it will be more convenient to use an assumption we call the Pairing
with Errors PWE, which we state formally at the end of the section, and which
can easily be shown holds under RLWE.

We denote the security parameter k. Recall that a function f is negligible in
k if for every c > 0, there exists a N such that f(k) < 1

kc for all k > N . The
ring of polynomials over Z (respectively, Zq = Z/qZ) we denote by Z[x] (resp.,
Zq[x]). Let n ∈ Z be a power of 2. We consider the ring R = Z[x]/(xn + 1). For
any positive q ∈ Z, we set Rq = Zq[x]/(xn +1). For any polynomial y in R or Rq,
we identify y with its coefficient vector in Z

n or Zn
q , respectively. Recall that for

a fixed β > 0, the discrete Gaussian distribution over Rq (parametrized by β)

Provably Secure PAKE Based on RLWE for the PQ World 191

is naturally induced by that over Zn (centered at 0, with standard deviation β).
We denote this distribution over Rq by χβ . More details can be found in [50].

For a fixed s ∈ Rq, let As,χβ
be the distribution over pairs (a, as + 2x) ∈

Rq×Rq, where a ← Rq is chosen uniformly at random and x ← χβ is independent
of a. The Ring Learning with Errors assumption is the assumption that for a fixed
s sampled from χβ , the distribution As,χβ

is computationally indistinguishable
from the uniform distribution on R2

q , given polynomially many samples.
We define the norm of a polynomial to be the norm of its coefficient vector.

Then we have the following useful facts:

Lemma 1. Let R be defined as above. Then, for any s, t ∈ R, we have ‖s · t‖ ≤√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([24,42]). For any real number α = ω(
√

log n), we have
Prx←χα

[‖x‖ > α
√

n] ≤ 2−n+1.

We now recall the Cha and Mod2 functions defined in [50]. We denote Zq =
{− q−1

2 , . . . , q−1
2 } and consider the set E := {−� q

4�, . . . , � q
4	}, i.e. the “middle”

of Zq. Recall that Cha is the characteristic function of the complement of E,
which returns 0 if the input is in E and 1 if it is not in E, and that Mod2 : Zq ×
{0, 1} → {0, 1} is defined as:

Mod2(v, b) = ((v + b · q − 1
2

) mod q) mod 2.

These two functions have fundamental features which can be seen in the following
two lemmas.

Lemma 3 ([50]). Let n be the security parameter, and let q = 2ω(log n) + 1 be
an odd prime. Let v ∈ Zq be chosen uniformly at random. For any b ∈ {0, 1} and
any v′ ∈ Zq, the output distribution of Mod2(v+v′, b) given Cha(v) is statistically
close to uniform on {0, 1}.

Lemma 4 ([50]). Let q be an odd prime, v ∈ Zq and e ∈ Zq such that |e| < q/8.
Then, for w = v + 2e, we have Mod2(v,Cha(v)) = Mod2(w,Cha(v)).

They also can be extended to Rq by applying them coefficient-wise to the
coefficients in Zq that define the ring elements. In other words, for any ring
element v = (v0, . . . , vn−1) ∈ Rq and binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n,
we set Cha(v) = (Cha(v0), . . . ,Cha(vn−1)) and Mod2(v,b) = (Mod2(v0, b0), . . . ,
Mod2(vn−1, bn−1)).

The PWE Assumption. We now state the Pairing with Errors (PWE)
assumption, under which we prove that our protocols are secure. We return
to the general notations of Sect. 2.2, but using the Gaussian distribution χβ for
a fixed β ∈ R

∗
+. For any (X, s) ∈ R2

q , we set τ(X, s) = Mod2(Xs,Cha(Xs)).
Let A be probabilistic, polynomial-time algorithm taking inputs of the form
(a,X, Y,W), where (a,X, Y) ∈ R3

q and W ∈ {0, 1}n, and outputting a list of
values in {0, 1}n. A’s objective will be for the string τ(X, s) to be in its output,

192 J. Ding et al.

where s is randomly chosen from Rq, Y is a “small additive perturbation” of as,
and W is Cha(Xs) itself. Formally, let

AdvPWE
Rq

(A)
def
= Pr

[
a←Rq;s←χβ ; X←Rq; e←χβ ;

Y ← as + 2e; W←Cha(Xs) : τ(X, s) ∈ A(a, X, Y, W)
]

Let AdvPWE
Rq

(t,N) = maxA
{

AdvPWE
Rq

(A)
}

, where the maximum is taken over
all adversaries of time complexity at most t that output a list containing at most
N elements of {0, 1}n. The PWE assumption states that for t and N polynomial
in k, AdvPWE

Rq
(t,N) is negligible in k.

We also have decision version of PWE problem that can be defined as follows.
Clearly, if DPWE is hard, so is PWE.

Definition 3. (DPWE) Given (a,X, Y,w, σ) ∈ Rq ×Rq ×Rq ×{0, 1}n ×{0, 1}n

where w = ChaK for some K ∈ Rq and σ = Mod2(K,w). The Decision Pairing
with Errors problem (DPWE) is to decide whether K = Xs+2g and Y = as+2e
for some s, g, and e drawn from χβ, or (K,Y) is uniformly random in R2

q.

Before we show the reduction of the DPWE problem to the RLWE problem,
we would like to give a definition to what we called the RLWE-DH problem
which can be reduced to RLWE problem.

Definition 4. (RLWE-DH) Let Rq and χβ be defined as above. Given as input
ring elements a,X, Y,and K, where (a,X) is uniformly random in R2

q, the
RLWE-DH problem is to tell if K is X · sy + 2gy for some gy ← χβ and
Y = a · sy + 2ey for some sy, ey ← χβ, or (K,Y) is uniformly random in R2

q.

Now we state the reduction theorems without proof due to the lack of the
space. Look at Appendix A of the full version for the proof details.

Theorem 1. Let Rq and χβ be defined as above. The RLWE-DH problem is
hard to solve if RLWE problem is hard.

Now we show the reduction of the DPWE problem to the RLWE-DH problem
by the following theorem.

Theorem 2. Let Rq and χβ be defined as above. The DPWE problem is hard if
the RLWE-DH problem is hard.

As a result from Theorems 1 and 2, we can say that if RLWE is a hard
problem then DPWE is also hard, and thus so is PWE.

3 Protocol Description

We turn to studying the protocols RLWE-PAK and RLWE-PPK, and their security.

Provably Secure PAKE Based on RLWE for the PQ World 193

3.1 Password-Authenticated RLWE Key Exchange

Let n be a power of 2, and f(x) = xn + 1. Let q = 2ω(log n) + 1 be an odd prime
such that q mod 2n = 1. Let H1 : {0, 1}∗ → Rq be a hash function, Hl : {0, 1}∗ →
{0, 1}κ for l ∈ {2, 3} be hash functions for verification of communications, and
H4 : {0, 1}∗ → {0, 1}κ be a Key Derivation Function (KDF), where κ is the bit-
length of the final shared key. We model the hash functions and KDF as random
oracles. Let a be a fixed element chosen uniformly at random from Rq and given
to all users. Let χβ be a discrete Gaussian distribution with parameter β ∈ R

∗
+.

We will make use of the Cha and Mod2 functions defined in [50] and recalled
above. The function f used to compute client passwords’ verifiers is set as f =
−H1(·). Our protocol consists of the following steps:

Initiation. Client C randomly samples sC , eC ← χβ , computes α = asC +
2eC , γ = H1(pwC) and m = α + γ and sends < C,m > to party S.

Response. Server S receives < C,m > from party C and checks that m ∈ Rq;
if not, it aborts. Otherwise it computes α = m + γ′ where γ′ = −H1(pwC).
Server S then randomly samples sS , eS ← χβ and computes μ = asS + 2eS
and kS = α · sS .
Next, Server S computes w = Cha(kS) ∈ {0, 1}n and σ = Mod2(kS , w).
Server S sends μ, w, and k = H2(C,S,m, μ, σ, γ′) to party C and computes
the value k′′ = H3(C,S,m, μ, σ, γ′).

Initiator finish. Client C checks that μ ∈ Rq, and computes kC = sC · μ and
σ = Mod2(kC , w). Client C verifies that H2(C,S,m, μ, σC , γ′) matches the
value of k received from Server S where γ′ = −γ. If it does not, Client C ends
the communication.
If it does, Client C computes k′ = H3(C,S,m, μ, σ, γ′) and derives the session
key skC = H4(C,S,m, μ, σ, γ′). It then sends k′ back to Server S, and sets
sidC = (C,S,m, μ).

Responder finish. Finally, Server S verifies that k′ = H3(C,S,m, μ, σ, γ′) the
same way Client C verified k. If this is correct, Server S then derives the session
key by computing skS = H4(C,S,m, μ, σ, γ′). It sets sidS = (C,S,m, μ)5.
Otherwise, S refuses to compute a session key.

Theorem 3 (Correctness). Let q be an odd prime such that q > 16β2n3/2.
Let two parties, C and S, honestly follow the protocol described above. Then, the
two will end with the same key with overwhelming probability.

Proof. To show the correctness of RLWE-PAK, it is sufficient to show that the key
material derived at each end verifies Mod2(kC ,Cha(kS)) = Mod2(kS ,Cha(kS)).
By Lemma 4, if kC and kS are sufficiently close then we are done. Specifically, if
|kC − kS | < q/4 then both sides have the same value, σ. If we compare the two,
we find that kC −kS = 2[eSsC −eCsS]. By Lemma 2, each individual eS , sC , eC , sS

5 We purposefully excluded the hint w from the session identifier in order to avoid a
trivial bit-flipping attack that makes the proof fail in theory, but otherwise leaves
the protocol security unaffected.

194 J. Ding et al.

term has norm less than β
√

n with overwhelming probability. Applying Lemma 1
and the triangle inequality, we have that ‖kC − kS‖ ≤ 4β2n3/2 < q/4 with
overwhelming probability. Hence Mod2(kC ,Cha(kS)) = Mod2(kS ,Cha(kS)).

4 Proof of Security for RLWE-PAK

Our proof of security follows the one in the PAK suite paper by MacKenzie [41].
We essentially adapt it to our PWE instantiation. The objective is to show that
an adversary A attacking the system is unable to gain any information on the SK
of a fresh instance with a greater advantage than through an online dictionary
attack. In what follows, we distinguish Client Action (CA) queries and Server
Action (SA) queries. The adversary makes a:

– CA0 query if it instructs some unused Πi
C to send the first message to some

S;
– SA1 query if it sends some message to a previously unused Πj

S ;
– CA1 query if it sends a message to some Πi

C expecting the second protocol
message;

– SA2 query if it sends some message to a Πj
S expecting the last protocol

message.

For the convenience of the reader, certain events corresponding to A making
password guesses - against a client instance, against a server instance, and against
a client instance and server instance that are partnered - are defined:

– testpw(C, i,S, pw, l): for some m,μ, γ′, w and k, A makes an Hl(<
C,S,m, μ, σ, γ′ >) query, a CA0 query to Πi

C with input S and output
< C,m >, a CA1 query to Πi

C with input < μ, k,w > and an H1(pw) query
returning −γ′ = ash + 2eh ∈ Rq, where the latest query is either the Hl(.)
query or the CA1 query. σ = Mod2(kS , w) = Mod2(kC , w), kS = αsS , kC = μsC
and m = α − γ′. The associated value of this event is output of Hl(.), l ∈
{2, 3, 4}.

– testpw!(C, i,S, pw): for some w and k a CA1 query with input < μ, k,w >
causes a testpw(C, i,S, pw, 2) event to occur, with associated value k.

– testpw(S, j, C, pw, l): for some m,μ, γ′, w and k A makes an Hl(<
C,S,m, μ, σ, γ′ >) query and previously made SA1 query to Πj

S with input
< C,m > and output < μ, k,w >, and an H1(pw) query returning −γ′, where
σ = Mod2(kS , w) = Mod2(kC , w), kS = αsS , kC = μsC and m = α − γ′. The
associated value of this event is output of Hl(.), l ∈ {2, 3, 4} generated by Πj

S .
– testpw!(S, j, C, pw): a SA2 query to Πj

S is made with k′, where a
testpw(S, j, C, pw, 3) event previously occured with associated value k′.

– testpw∗(S, j, C, pw): testpw(S, j, C, pw, l) occurs for some l ∈ {2, 3, 4}.
– testpw(C, i,S, j, pw): for some l ∈ {2, 3, 4}, both a testpw(C, i,S, pw, l) event

and a testpw(S, j, C, pw, l) event occur, where Πi
C is paired with Πj

S and Πj
S

is paired with Πi
C after its SA1 query.

Provably Secure PAKE Based on RLWE for the PQ World 195

– testexecpw(C, i,S, j, pw): for some m,μ, γ′, w, A makes an Hl(< C,S,m,
μ, σ, γ′ >) query for l ∈ {2, 3, 4}, and previously made an Execute(C, i,S, j)
query that generates m and μ and an H1(pw) query returning −γ′ = ash+2eh ∈
Rq, where σ = Mod2(kS , w) = Mod2(kC , w), kS = αsS , kC = μsC and
m = α − γ′.

– correctpw: before any Corrupt query, either a testpw!(C, i,S, pw) event occurs
for some C, i and S, or a testpw∗(S, j, C, pwC) event occurs for some S, j, and C.

– correctpwexec: a testexecpw(C, i,S, j, pwC) event occurs for some C, i,S,
and j.

– doublepwserver: before any Corrupt query happens, both a testpw∗(S, j, C, pw)
event and testpw∗(S, j, C, pw′) occur for some S, j, C, pw and pw′, with pw �=
pw′.

– pairedpwguess: a testpw(C, i,S, j, pwC) event occurs, for some C, i,S, and j.

Theorem 4. Let P:=RLWE-PAK, using group Rq, and with a password dic-
tionary of size L. Fix an adversary A that runs in time t, and makes
nse, nex, nre, nco queries of type Send, Execute,Reveal,Corrupt, respectively, and
nro queries to the random oracles. Then for t′ = O(t + (nro + nse + nex)texp):

Advake
P (A) =

nse

L
+ O
(
nseAdvPWE

Rq
(t′, nro

2) + AdvDRLWE
Rq

(t′, nro)

+
(nse + nex)(nro + nse + nex)

qn
+

nse

2κ

)

Proof. We study a sequence of protocols - P0,P1, · · · ,P7 - with the following
properties. First P0 = P and P7 is by design only possible to attack using natural
online guessing. Secondly, we have

Advake
P0

(A) ≤ Advake
P1

(A) + ε1 ≤ · · · ≤ Advake
P7

(A) + ε7

where ε1, · · · , ε7 are all negligible values in k. Adding up the negligible values
and counting the success probability of the online attack in P7 then gives the
desired result. The reader can find the proofs of the claims in Appendix C of the
full version.

We can assume that nro and nse + nex are both ≥ 1. Random oracle queries
are answered in the usual way: new queries are answered with uniformly ran-
dom values, and previously made queries are answered identically to the past
response. We further assume that the H1(pw) query is answered by the simu-
lator by computing the response as ash + 2eh ∈ Rq, where (sh, eh) is sampled
uniformly at random from R2

q . Finally, if A makes an Hl(v) query for l ∈ {2, 3, 4}
and some v then the corresponding Hl′(v) and Hl′′(v) queries are computed and
stored, where l′, l′′ ∈ {2, 3, 4} \ {l}. A only sees the output of Hl(v), but the
other two queries are still considered to have been made by A.

We now detail our sequence of protocols, and bound A’s advantage difference
from each protocol to the next.

Protocol P0: is just the original protocol P.

196 J. Ding et al.

Protocol P1: P1 is nearly identical to P0, but is forcefully halted as soon as
honest parties randomly choose m or μ values seen previously in the execution.

Specifically, let E1 be the event that an m value generated in a CA0 or
Execute query yields an m value already seen in some previous CA0 or Execute
query, an m value already used as input in some previous SA1 query, or an m
value from some previous Hl(.) query made by A. Let E2 be the event that a
μ value generated in SA1 or Execute query yields a μ from a previous SA1 or
Execute query, a μ value sent as input in some previous CA1 query, or a μ value
from a previous Hl(.) query. Setting E = E1 ∨ E2 then P1 is defined as being
identical to P0 except that the protocol halts and the adversary fails when E
occurs.

Claim 1. For any adversary A,

Advake
P0

(A) ≤ Advake
P1

(A) +
O((nse + nex)(nro + nse + nex))

qn

Protocol P2: This protocol is identical to P1 except that Send and Execute
queries are answered without using random oracles. Any random oracle queries
A subsequently makes are answered in such a way as to be consistent with the
results of these Send and Execute queries.

In more detail, the queries in P2 are now answered as follows:

– In an Execute(C, i,S, j) query, m = asm + 2em where sm, em ← ∈Rq, μ =
asS + 2eS where sS , eS ← ∈χβ , w ←∈ {0, 1}n, k, k′ ← ∈{0, 1}κ, and ski

C ←
skj

S ← {0, 1}κ.
– In a CA0 query to instance Πi

C , m = asm + 2em where sm, em ← ∈Rq.
– In a SA1 query to instance Πj

S , μ = asS + 2eS where sS , eS ← ∈χβ , w ←
{0, 1}n, and skj

S , k, k′′←{0, 1}κ.
– In a CA1 query to instance Πi

C , do the following.
• If this query causes a testpw!(C, i,S, pwC) event to occur, then set k′ to

the associated value of the testpw(C, i,S, pwC , 3) event, and set ski
C to the

associated value of the testpw(C, i,S, pwC , 4) event.
• Else if Πi

C is paired with a server instance Πj
S , set ski

C ← skj
S , then

k′←{0, 1}κ.
• Otherwise, Πi

C aborts.
– In a SA2 query to instance Πj

S , if this query causes a testpw!(S, j, C, pwC) event
to occur, or if Πj

S is paired with a client instance Πi
C , terminate. Otherwise,

Πj
S aborts.

– In an Hl(< C,S,m, μ, σ, γ′ >) query, for l ∈ {2, 3, 4}, if this Hl(.) query
causes a testpw(S, j, C, pwC , l) event, or testexecpw(C, i,S, j, pwC) event to
occur, then output the associated value of the event. Otherwise, output a
random value from {0, 1}κ.

Claim 2. For any adversary A,

Advake
P1

(A) = Advake
P2

(A) +
O(nro)

qn
+

O(nse)
2κ

Provably Secure PAKE Based on RLWE for the PQ World 197

Protocol P3: is identical to P2 except that in an Hl(< C,S,m, μ, σ, γ′ >) query,
for l ∈ {2, 3, 4}, it is not checked for consistency against Execute query. So
the protocol responds with a random output instead backpatching to preserve
consistency with an Execute query. Simply there is no testexecpw(C, i,S, j, pwC)
event checking.

Claim 3. For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that,

Advake
P2

(A) ≤ Advake
P3

(A) + AdvDRLWE
Rq

(t′, nro) + 2AdvPWE
Rq

(t′, nro)

Protocol P4: is identical to P3 except that if correctpw occurs then the protocol
halts and the adversary automatically succeeds. This causes theses changes:

1. In a CA1 query to Πi
C , if a testpw!(C, i,S, pwC) event occurs and no Corrupt

query has been made, halt and say the adversary automatically succeeds.
2. In an Hl(< C,S,m, μ, σ, γ′ >) query for l ∈ {2, 3, 4}, if a testpw∗(S, j, C, pwC)

event occurs and no Corrupt query has been made, halt and say the adversary
automatically succeeds.

Claim 4. For any adversary A,

Advake
P3

(A) ≤ Advake
P4

(A)

Proof. This change can only increase the adversary’s chances at winning the
game, hence the inequality.

Protocol P5: is identical to P4 except that if the adversary makes a password
guess against partnered client and server instances, the protocol halts and the
adversary fails. Simply if a pairedpwguess event occurs, the protocol halts and
the adversary fails. We suppose that when a query is made, the test for correctpw
occurs after the test for pairedpwguess. Note that this causes the following
change: if a testpw(C, i,S, pw, l) event occurs, this should be checked in a CA1
query, or an Hl(.) query for l ∈ {2, 3, 4} check if a testpw(C, i,S, pw) event also
occurs.

Claim 5. For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that,

Advake
P4

(A) ≤ Advake
P5

(A) + 2nseAdvPWE
Rq

(t′, nro)

Protocol P6: is identical to P5 except that if the adversary makes two password
guesses against the same server instance, i.e. if a doublepwserver event occurs,
the protocol halts and the adversary fails. We suppose that when a query is made,
the test for pairedpwguess or correctpw occurs after the test for doublepwserver.

Claim 6. For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that,

Advake
P5

(A) ≤ Advake
P6

(A) + 4AdvPWE
Rq

(t′, nro
2)

198 J. Ding et al.

Protocol P7: is identical to P6 except that this protocol has an internal password
oracle that holds all passwords and accepts queries that examine the correctness
of a given password. Note that this internal oracle passwordoracle is not avail-
able to the adversary. So this oracle generates all passwords during initialization.
It accepts queries of the form testpw(C, pw) and returns TRUE if pw = pwC ,
and FALSE otherwise. It also accepts Corrupt(U) queries whether U ∈ S or
U ∈ C. When a Corrupt(U) query made in the protocol, it is answered using a
Corrupt(U) query to the password oracle. The protocol is also test if correctpw
occurs, whenever the first testpw(C, i,S, pw) event occurs for an instance Πi

C
and password pw, or the first testpw(S, j, C, pw) event occurs for an instance Πj

S
and password pw, a testpw(C, pw) query is made to the password oracle to see
if pw = pwC .

Claim 7. For any adversary A,

Advake
P6

(A) = Advake
P7

(A)

Proof. By observation, P6 and P7 are perfectly indistinguishable.

Now we analyze the advantage of an adversary A against the protocol P7.
From the definition of P7, one can easily bounds the probability of adversary A
succeeding in P7 as the following:

Pr(Succake
P7 (A)) ≤ Pr(correctpw) + Pr(Succake

P7 (A) | ¬correctpw)Pr(¬correctpw).

Note that Pr(correctpw) ≤ nse

L if the passwords are uniformly chosen from
a dictionary of size L, because a Corrupt query occurs after at most nse queries
were occurred to the password oracle.

Next we compute Pr(Succake
P7

(A) | ¬correctpw). Since correctpw event does
not occur then the only way for A to succeed is making a Test query to a fresh
instance Πi

U and guessing the bit used in the Test query. Note that if we can prove
that the view of the adversary is not dependent on ski

U then the probability of
success is exactly 1

2 and to do that we have to examine Reveal and H4(.) queries.
For the first type, we know by definition of Reveal(U, i) query that there could

be no one for the fresh instance Πi
U . Also there is no Reveal(U ′, j) query for the

instance
∏U ′

j which is partnered with Πi
U . Moreover the adversary fails if more

than a single client instance and a single server instance accept with the same
sid by protocol P1. Thus the output of Reveal queries is independent of ski

U .
For the second type, from P4 the unpaired client or server instance will not

terminate before a correctpw event or a Corrupt query which means an instance
may only be fresh and receive a Test query if it is partnered. However if Πi

U is
partnered, H4(.) query will never reveal ski

U by P5.
So, the view of the adversary not dependent on ski

U then the probability of
success is exactly 1

2 . Therefore,

Provably Secure PAKE Based on RLWE for the PQ World 199

Pr(Succake
P7

(A)) ≤ Pr(correctpw) + Pr(Succake
P7

(A) | ¬correctpw)Pr(¬correctpw)

≤ Pr(correctpw) + Pr(Succake
P7

(A) | ¬correctpw)(1 − Pr(correctpw))

≤ nse

L
+

1

2
(1 − nse

L
))

≤ 1

2
+

nse

2L
.

And Advake
P7

(A) ≤ nse

L . The theorem follows from this and the Claims 1, 2, 3, 4,
5, 6 and 7 above.

5 Implicit Authentication

In this section, we describe a variant of the protocol that gives implicit authenti-
cation, similar to the PPK variant on the PAK protocol. We call it the RLWE-PPK
protocol. If either party provides an incorrect password, then the parties’ keys
will not actually match, and neither party will learn anything about the key
held by the other. This effectively prevents communication without explicitly
checking for matching passwords.

5.1 RLWE-PPK

The setup is slightly different from that of RLWE-PAK. Here, we need two hash
functions H1 and H2 from {0, 1}∗ into Rq, and one KDF H3 from {0, 1}∗ into
{0, 1}κ, where κ is again the length of the derived SK. Of course, these are
modeled as random oracles. Also, the function f used to compute password
verifiers for the server is instantiated as follows: f(·) =

(

− H1(·),H2(·)
)

.

Initiation. Client C randomly samples sC , eC ← χβ , computes α = asC +
2eC , γ1 = H1(pwC), γ2 = H2(pwC) and m = α + γ1 and sends< C,m >
to party S.

Response. Server S receives < C,m > from party C and checks if m ∈ Rq. If
not, abort; otherwise Server S randomly samples sS , eS ← χβ and computes
ν = asS + 2eS and recovers α = m + γ′

1 where < γ′
1, γ2 >. Then compute

μ = ν + γ2 and kS = α · sS .
Next, Server S computes w = Cha(kS) ∈ {0, 1}n and σ = Mod2(kS , w).
Server S sends μ and w to party C and computes skS = H3(C,S,m, μ, σ, γ′

1).
Initiator finish. Client C receives < μ,w > from party S and checks if μ ∈ Rq.

If not, it aborts, and otherwise C recovers ν = μ − γ2, computes kC = sC · ν
and σ = Mod2(kC , w).
Finally, Client C derives the session key skC = H3(C,S,m, μ, σ, γ′

1).

5.2 Proof of Security for RLWE-PPK

The proof of security for our implicitly authenticated protocol follows the model
of security in the PAK suite paper by Mackenzie [41], and is similar to our proof

200 J. Ding et al.

for the explicitly authenticated protocol above. Therefore we will not go through
the proof details. However we give a sketch of the proof in Appendix D of the full
version. We first define some similar events to those in Sect. 4, corresponding to
the adversary making a password guess against a client instance, against a server
instance, and against a client instance and server instance that are partnered.
Then we need to show that an adversary attacking the system is unable to
determine the session key of a fresh instance with greater advantage than that
in an online dictionary attack.

Theorem 5. Let P:=RLWE-PPK as described above, using group Rq, and with a
password dictionary of size L. Fix an adversary A that runs in time t, and makes
nse, nex, nre, nco queries of type Send,Execute, Reveal,Corrupt, respectively, and
nro queries to the random oracles. Then for t′ = O(t + (nro + nse + nex)texp):

Advake
P (A) =

nse

L
+ O

(

AdvPWE
Rq

(t′, nro
2) +

(nse + nex)(nro + nse + nex)
qn

)

For space limitation reasons, the proof of this theorem and more details
regarding the security of RLWE-PPK were moved to Appendix D of the full
version.

6 Conclusions

We have proposed two new explicitly and implicitly authenticated PAKE proto-
cols. Our protocols are similar to PAK and PPK; however they are based on the
Ring Learning with Errors problem. Though our construction is very similar to
the classical construction, the security proof is subtle and intricate and it requires
novel techniques. We provide a full proof of security of the new protocols in the
Random Oracle Model. We also provide a proof of concept implementation and
implementation results show our protocols are practical and efficient.

In the proof, we make use of the ROM, which models hash functions as
random functions. Our proof is a classical proof of security, and may not hold
against a quantum adversary. Against such adversaries, one natural extension of
the ROM is to allow the queries to be in quantum superposition; this is known as
the Quantum Random Oracle Model (QROM) [10]. Unfortunately, many tricks
that can be used in the ROM are hard to apply in the QROM. Therefore we leave
proving the security of our protocols in the QROM as future work. Although
there are some developing proof techniques in the QROM [47–49], more work is
needed to adapt classical proofs to this setting.

Acknowledgments. Many thanks to the reviewers for their comments and Peter
Ryan for the useful discussions. We would also like to thank the NSF for its par-
tial support. Finally, the third author was supported by the National Research Fund,
Luxembourg (CORE project aToMS and INTER project Sequoia).

Provably Secure PAKE Based on RLWE for the PQ World 201

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy (2015)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Berlin (2015). doi:10.1007/978-3-662-46447-2 15

3. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Berlin (2008). doi:10.1007/
978-3-540-79263-5 22

4. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Berlin (2005). doi:10.1007/978-3-540-30580-4 6

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-
a new hope. In: 25th USENIX Security Symposium, USENIX Security 16, pp.
327–343 (2016)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Berlin (2000). doi:10.1007/3-540-45539-6 11

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Berlin (1994).
doi:10.1007/3-540-48329-2 21

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

9. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 72–84, 4–6 May 1992

10. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Berlin (2011). doi:10.1007/
978-3-642-25385-0 3

11. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure
key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM (2016)

12. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy (SP), pp. 553–570. IEEE (2015)

13. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Berlin (2000). doi:10.1007/3-540-45539-6 12

14. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: ACM Conference on Computer and Commu-
nications Security. ACM (2003)

http://dx.doi.org/10.1007/978-3-662-46447-2_15
http://dx.doi.org/10.1007/978-3-540-79263-5_22
http://dx.doi.org/10.1007/978-3-540-79263-5_22
http://dx.doi.org/10.1007/978-3-540-30580-4_6
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/3-540-45539-6_12

202 J. Ding et al.

15. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Berlin (2004). doi:10.1007/978-3-540-24632-9 11

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Berlin (2005). doi:10.1007/11426639 24

17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Berlin (2002). doi:10.1007/
3-540-46035-7 4

18. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2, 107–125 (1992)

19. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012)

20. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Berlin
(2012). doi:10.1007/978-3-642-30057-8 28

21. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS 2013, pp. 83–94. ACM, New York (2013)

22. Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Berlin (2008). doi:10.
1007/978-3-540-78524-8 32

23. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Berlin (2003). doi:10.1007/3-540-39200-9 33

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)

25. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Berlin
(2001). doi:10.1007/3-540-44647-8 24

26. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation
on the internet in the plain model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 277–294. Springer, Berlin (2010). doi:10.1007/978-3-642-14623-7 15

27. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 516–525. ACM, New York (2010)

28. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Trans. Inf. Syst. Secur. 2, 230–268 (1999)

29. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. In:
Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Computational
Science XI. LNCS, vol. 6480, pp. 192–206. Springer, Berlin (2010). doi:10.1007/
978-3-642-17697-5 10

30. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 5, 5–26 (1996)

http://dx.doi.org/10.1007/978-3-540-24632-9_11
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-30057-8_28
http://dx.doi.org/10.1007/978-3-540-78524-8_32
http://dx.doi.org/10.1007/978-3-540-78524-8_32
http://dx.doi.org/10.1007/3-540-39200-9_33
http://dx.doi.org/10.1007/3-540-44647-8_24
http://dx.doi.org/10.1007/978-3-642-14623-7_15
http://dx.doi.org/10.1007/978-3-642-17697-5_10
http://dx.doi.org/10.1007/978-3-642-17697-5_10

Provably Secure PAKE Based on RLWE for the PQ World 203

31. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Berlin (2004). doi:10.1007/978-3-540-30564-4 19

32. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 475–494. Springer, Berlin (2001). doi:10.1007/
3-540-44987-6 29

33. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 636–652. Springer, Berlin (2009). doi:10.1007/
978-3-642-10366-7 37

34. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Berlin (2011). doi:10.1007/978-3-642-19571-6 18

35. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Berlin
(2005). doi:10.1007/11535218 33

36. Kwon, T.: Authentication and key agreement via memorable password. In: ISOC
Network and Distributed System Security Symposium (2001)

37. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Berlin
(2011). doi:10.1007/978-3-642-19074-2 21

38. Lucks, S.: Open key exchange: how to defeat dictionary attacks without encrypting
public keys. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security
Protocols 1997. LNCS, vol. 1361, pp. 79–90. Springer, Berlin (1998). doi:10.1007/
BFb0028161

39. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Berlin (2010). doi:10.1007/978-3-642-13190-5 1

40. MacKenzie, P.: On the Security of the SPEKE Password-Authenticated Key
Exchange Protocol. Cryptology ePrint Archive, Report 2001/057 (2001)

41. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key
Exchange. DIMACS Technical report 2002-46 (2002). p. 7

42. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37, 267–302 (2007)

43. Nguyen, M.-H., Vadhan, S.: Simpler session-key generation from short random
passwords. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 428–445. Springer,
Berlin (2004). doi:10.1007/978-3-540-24638-1 24

44. NSA: Commercial national security algorithm suite (2015). https://www.iad.gov/
iad/programs/iad-initiatives/cnsa-suite.cfm

45. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). doi:10.1007/
978-3-319-11659-4 12

46. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint
Archive, Report 1999/012 (1999)

47. Unruh, D.: Quantum position verification in the random oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer,
Berlin (2014). doi:10.1007/978-3-662-44381-1 1

48. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Berlin (2014). doi:10.1007/978-3-642-55220-5 8

http://dx.doi.org/10.1007/978-3-540-30564-4_19
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-19571-6_18
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/BFb0028161
http://dx.doi.org/10.1007/BFb0028161
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-540-24638-1_24
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-662-44381-1_1
http://dx.doi.org/10.1007/978-3-642-55220-5_8

204 J. Ding et al.

49. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Berlin (2012). doi:10.1007/978-3-642-32009-5 44

50. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Berlin (2015). doi:10.1007/
978-3-662-46803-6 24

http://dx.doi.org/10.1007/978-3-642-32009-5_44
http://dx.doi.org/10.1007/978-3-662-46803-6_24
http://dx.doi.org/10.1007/978-3-662-46803-6_24

Symmetric Key Cryptanalysis

Impossible-Differential and Boomerang
Cryptanalysis of Round-Reduced Kiasu-BC

Christoph Dobraunig1(B) and Eik List2

1 Graz University of Technology, Graz, Austria
christoph.dobraunig@iaik.tugraz.at

2 Bauhaus-Universität Weimar, Weimar, Germany
eik.list@uni-weimar.de

Abstract. Kiasu-BC is a tweakable block cipher proposed by Jean
et al. at ASIACRYPT 2014 alongside their TWEAKEY framework. The
cipher is almost identical to the AES-128 except for the tweak, which
renders it an attractive primitive for various modes of operation and
applications requiring tweakable block ciphers. Therefore, studying how
the additional tweak input affects security compared to that of the AES
is highly valuable to gain trust in future instantiations.

This work proposes impossible-differential and boomerang attacks on
eight rounds of Kiasu-BC in the single-key model, using the core idea
that the tweak input allows to construct local collisions. While our results
do not threat the security of the full-round version, they help concretize
the security of Kiasu-BC in the single-key model.

Keywords: Symmetric-key cryptography · Cryptanalysis · Tweakable
block cipher

1 Introduction

At ASIACRYPT 2014, Jean et al. [13] proposed the TWEAKEY framework
together with three software-efficient tweakable block ciphers based on the AES
round function Deoxys-BC, Joltik-BC, and Kiasu-BC. Such tweakable block
ciphers process, in addition to key and plaintext, an additional public input,
called the tweak. While the first construction that followed this concept was
the AES candidate by Schroeppel and Orman [23], the formal foundations have
been laid by Liskov, Rivest, and Wagner [15]. Nowadays, tweakable block ciphers
possess various applications in cryptographic schemes, such as compression func-
tions (e.g. [11]), variable-input-length ciphers (e.g. [18]), message-authentication
codes (e.g. [20]), or (authenticated) encryption schemes (e.g., [14,22]).

While Deoxys-BC and Joltik-BC use a new linear tweak and key schedule,
and in the case of Joltik-BC a round function different from AES working on
64 bit blocks, the design of Kiasu-BC strictly follows AES-128. Kiasu-BC uses

C. Dobraunig—The work has been supported in part by the Austrian Science Fund
(project P26494-N15).

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 207–222, 2017.
DOI: 10.1007/978-3-319-52153-4 12

208 C. Dobraunig and E. List

exactly the key schedule, round function, and number of rounds of the AES-
128. The only difference is an additional 64-bit tweak that is XORed to the
topmost two rows of the state after every round. So, Kiasu-BC is identical
to the AES-128 if the tweak is set to all-zeroes. Therefore, Kiasu-BC may
appear attractive as primitive for instantiating ciphers, AE schemes, or MACs
based on tweakable block ciphers, for it can reuse existing components of AES
implementations. In addition, all the existing and newly done analysis for AES-
128 is directly applicable to Kiasu-BC. However, the additional tweak input
enhances the freedom in attacks. Thus, a comprehensive cryptanalysis of Kiasu-
BC is necessary to determine possible negative effects.

The designers’ analysis in [12] concentrates on differential and meet-in-the-
middle attacks. They stress that the size of the tweak and the position where
it is XORed to the state has been the result of a careful security analysis and
“the current choice in Kiasu-BC assures that no such high probability charac-
teristics exist on more than 6 rounds and no boomerang characteristics on more
than 7 rounds”. Concluding from an automated search, the designers argue that
the minimum number of active S-boxes for seven-round Kiasu-BC is 22, corre-
sponding to an upper bound of the probability of differential characteristics of
(2−6)22 = 2−132. Since the bound is not tight, they conclude in [12, Sect. 4.1] that
“in the framework of related-key related-tweak differential attacks [Kiasu-BC]
has only at most one round security loss compared to AES”.

Regarding Meet-in-the-Middle attacks, the designers [12, Sect. 4.2] conclude
that “the same [MitM] attacks existing for AES-128 appl[y] to Kiasu-BC.”
Concerning further attacks in the single-key model, [12, Sect. 4.3] states that
“the security level of Kiasu-BC against the remaining types of attacks stays

Table 1. Selection of existing attacks on the AES-128, Kiasu-BC and attacks proposed
in this work. Attacks on Kiasu-BC are in the chosen-tweak setting. ACC = chosen
plaintexts and adaptive chosen ciphertexts; CC = chosen ciphertexts; E = Encryptions;
MA = Memory accesses.

Target Rds. Attack type Time Data (CP) Memory Ref.

AES-128 7 Partial sum 2120 2128−ε 257 [10]

7 MitM 299 297 298 [7]

7 Imposs. Diff 2107.1 E +2117.2 MA 2106.2 290.2 [17]

10 Bicliques 2125.98 264 (CC) 262 [5]a

Kiasu-BC 7 Integral 282 240 241 [8]

7 Integral 248.5 243.6 241.7 [8]

7 Rectangle 279 E +280 MA 279 278 [9]

7 Boomerang 265 E +266.6 MA 265 (ACC) 260 [9]

8 Imposs. Diff 2118 E +2125.2 MA 2117.6 2101.6 [1]

8 Imposs. Diff 2116.1 E +2120.2 MA 2118 2102 Sect. 3

8 Boomerang 2103.1 E +2103 MA 2103 (ACC) 260 Sect. 4
a Time complexity corrected in [3]

Impossible-Differential and Boomerang Cryptanalysis 209

the same”. Recently, Dobraunig, Eichlseder, and Mendel [8] showed that the
latter claim does at least not hold in general; the additional degrees of freedom
from the choice of the tweak leads to improved attacks on Kiasu-BC compared
to the AES-128. Dobraunig et al. mounted integral attacks on seven rounds of
Kiasu-BC and its related nonce-respecting AE scheme Kiasu �=.

This work complements the analysis by [8] with differential-based attacks on
Kiasu-BC on eight rounds of Kiasu-BC. Our attacks share the observation that
a chosen non-zero tweak difference allows to cancel a difference in the state at
the beginning of some round. We propose impossible-differential, and boomerang
analysis of Kiasu-BC with lower time complexities and/or higher number of cov-
ered rounds than comparable attacks on the AES-128. Our detailed results are
summarized in Table 1 and compared with existing results on Kiasu-BC, and
a selection of the best existing attacks on the AES-128. We stress that, while
this work was under review, Abdelkhalek, Tolba, and Youssef [1] submitted an
impossible-differential attack on Kiasu-BC similar to ours (but based on differ-
ent trails) but independent from us to a journal. In the following, Sect. 2 briefly
recalls the basics of Kiasu-BC. Section 3 presents our impossible-differential
attack, and Sect. 4 a boomerang attack, both on eight-round Kiasu-BC. For
the interested reader, we provide two further attacks on seven rounds in the full
version [9]. Section 5 concludes.

2 Brief Overview of Kiasu-BC

Kiasu-BC [13] is a tweakable block cipher that adopts the state size (128 bits),
key size (128 bits), round function – consisting of SubBytes (SB), ShiftRows
(SR), MixColumns (MC), and AddKey (AK) – as well as number of rounds
(10), and key schedule from the AES-128. We assume the reader is familiar with
the structure of the AES; otherwise, we refer to e.g. [6,21] for details.

0
1

2
3

4
5

6
7

TKi

Si−1 Si
SB Si

SR Si
MC Si

AK Si

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

SB SR MC

Fig. 1. Round Function of Kiasu-BC.

Kiasu-BC adds to the AES-128 only an additional public 64-bit tweak T =
(T [0] ‖T [1] ‖ . . . ‖T [7]). During the en-/decryption, the same tweak is XORed
to the topmost two state rows at every occurrence of AddKey in every round,
as illustrated in Fig. 1. In the following, we denote by

210 C. Dobraunig and E. List

– Si the state after Round i, for 0 ≤ i ≤ 10.
– Ki the round key of Round i, for 0 ≤ i ≤ 10.
– Si[j] the j-th byte of the state Si, for 0 ≤ j ≤ 15, indexed column-wise as

usual for the AES, and as illustrated in State Si−1 in Fig. 1.
– Ki[j] the j-th byte of the round key Ki, for 0 ≤ j ≤ 15.
– T [j] the j-th byte of the tweak T , for 0 ≤ j ≤ 7. Note that these bytes are

enumerated differently than states and keys, as illustrated in Fig. 1.
– Si

SB, Si
SR, Si

MC, and Si
AK the intermediate states in Round i directly after

SubBytes, ShiftRows, MixColumns, and AddKey, respectively.

For brevity, we also use the notions SB = SB−1, SR = SR−1, and MC = MC−1.
Note that the order of some operations can be swapped without affecting the
result to simplify the description of attacks. For instance, the order of the Mix-
Columns and AddKey operations with a round key Ki can be swapped if
the key addition with the equivalent round key K̂i = MC−1(Ki) is performed
instead. This means, for all x,Ki ∈ {0, 1}128, it holds that Ki ⊕ MC(x) =
MC(K̂i ⊕ x). The same argument holds for decryption.

3 Impossible-Differential Attack on 8-Round Kiasu-BC

This section describes an impossible-differential attack on 8-round Kiasu-BC.
For this attack, we can modify existing differential trails for the AES-128 so that
they can be used in attacks, but introduce differences in the tweak. Those intro-
duced differences allow us to extend the key-recovery phase. First, we provide
the impossible differential, followed by a detailed description of the attack.

3.1 Impossible Differentials on Kiasu-BC

Influence of the Tweak. The tweak input provides the adversary with addi-
tional freedom that can be used for instance to extend the number of covered
rounds. In Kiasu-BC, the tweak can be used to cancel a difference in the trail,
which allows to pass one round for free. Moreover, since the tweak is not mod-
ified by a tweak-schedule over the rounds, the subsequent tweak addition will
produce exactly the same difference that occurred before the free round.

A Concrete Impossible Differential. There exist various impossible differ-
entials – e.g. [2,16,17] on round-reduced AES – which can serve as base of our
analysis of Kiasu-BC. Though, we have to ensure that the influence of the tweak
difference preserves the impossibility of the differential in the middle. Figure 2
shows an impossible differential over 3.5 rounds based on the trail used in [2].
In addition, we use a tweak difference ΔT with a single active byte T [0]. In for-
ward direction, the single active byte in the state Si from the beginning of the
trail always activates at least three bytes in the first column of Si+1 – depend-
ing on whether the tweak difference cancels the difference in Si+1[0] or not. In
both cases, the three rightmost columns which correspond to

−→
S i+2[4, . . . , 15] are

always active. In backward direction, the fact that only three bytes are active

Impossible-Differential and Boomerang Cryptanalysis 211

SB

SB

SR

SR MC

SB

SB

SR

SR

MC

MC

Ki+1

Ki+2

Ki+3

T

T

T

Si Si+1

− →
S i+2

←−
S i+2 Si+3

Si+4
SR

Contradiction

Zero difference

Non-zero difference

Unknown

Fig. 2. Impossible differential for 3.5 rounds of Kiasu-BC.

in Si+3 and the diffusion in the third inverse round will ensure a zero difference
in

←−
S i+2[1, 6, 11, 12], which contradicts with

−→
S i+2[4, . . . , 15], independent from

whether the tweak difference cancels out the diagonal
←−
S i+2[0, 5, 10, 15] or not.

3.2 Attack Procedure

We can extend our impossible differential by two rounds at the beginning and the
end each to a key-recovery attack over Rounds 3 through 10 of Kiasu-BC, using
the fact that the final round omits MixColumns. Figure 3 shows our differential
trail. The following describes the individual steps.

Precomputation. Initially, we precompute a hash table Hprecomp which maps
pairs (S1

AK, S′1
AK) ← (S1

MC, S′1
MC). For all possible pairs S1

MC[0, 1, 2, 3] and
S′1

MC[0, 1, 2, 3] which differ only in Byte 0, compute

S1
AK[0, 5, 10, 15] = SB−1(SR−1(MC−1(S1

MC[0, 1, 2, 3])))

and S′1
AK[0, 5, 10, 15] accordingly. Define ΔS1

AK[0, 5, 10, 15] = S1
AK[0, 5, 10, 15] ⊕

S′1
AK[0, 5, 10, 15]. Compute ΔS1

MC[0] = S1
MC[0] ⊕ S′1

MC[0] and store the pairs as
tuples (S1

AK[0, 5, 10, 15], S′1
AK[0, 5, 10, 15]) in a hash table Hprecomp indexed by

(ΔS1
AK ‖ΔS1

MC[0]). Since there are 224 values for S1
MC[1, 2, 3] and 28 · (28 − 1) ≈

216 pairs for S1
MC[0], there exist about 240 possible pairs. So, Hprecomp has 240

buckets and one element in each on average.

Structures. We will consider sets and structures of plaintexts. A set S consists
of 232 plaintexts Pi which all share equal values in bytes Pi[1, 2, 3, 4, 6, 7, 8, 9, 11,

212 C. Dobraunig and E. List

SB

SB

SR

SR

MC

MC

SB

SB

SR

SR

MC

MC

K0 K1

K2

K6

K7

K8

T T

T

T

T

T

S0 S1
AK S1S1

MC

S2

S6
SR S6

MCS6
AK S6

S7
MCS7

AK S7

S8
SB S8

AK S8

Impossible Differential

Fig. 3. 8-round impossible-differential attack trail.

12, 13, 14], and are pair-wise distinct in the bytes Pi[0, 5, 10, 15]. Assigned to
each set is a concrete tweak T . A structure L consists of 28 sets, where each set
in L differs only in the tweak byte T [0]. We can build pairs of plaintext-tweak
inputs (Pi, Ti) and (Pj , Tj) only inside the same structure. Though, since we
want that pairs differ in their tweaks, we have to build pairs across different
sets in a structure. Moreover, their bytes 0, 5, 10, and 15 after the initial tweak
addition must differ, i.e. (Pi[0] ⊕ Ti[0]) �= (Pj [0] ⊕ Tj [0]). Given two distinct sets
S and S ′, we obtain 232 · (28 −1)4 ≈ 263.98 ≈ 264 pairs. Since there are 28 sets in
a structure, we can build in total

(
28

2

)

· 263.98 ≈ 278.97 ≈ 279 pairs per structure.

Step 1). Choose 2n structures, which yields about 2n+79 possible pairs. For
each structure, do the following steps:

1. Ask for the corresponding ciphertexts Ci ← ETi

K (Pi) of the structure.
2. Invert the final tweak XOR and insert all states S8

AK into a hash table L,
indexed by bytes S8

AK[1, 2, 4, 5, 8, 11, 14, 15].
3. For each bucket in the hash table that contains more than one entry, consider

every combination of pairs therein. We can expect 2n+79 · 2−8·8 = 2n+15 such
pairs that are equal in bytes S8

AK[1, 2, 4, 5, 8, 11, 14, 15].

Step 2). The straight-forward approach would be to guess 32 bits of K8[3, 6, 9,
12] and partially decrypt these bytes for the remaining pairs to obtain S7

MC

[12, 13, 14, 15]. Though, we can use an improvement by Lu et al. [16] to speed

Impossible-Differential and Boomerang Cryptanalysis 213

up the search. The improvement is based on the following observation: given a
random pair of differences ΔX,ΔY ∈ F

8
2 over the AES S-box, there is on average

one pair of X,X ′ ∈ F
8
2 with X ⊕ X ′ = ΔX such that S(X) ⊕ S(X ′) = ΔY .1

For any pair (S8
AK[3, 6, 9, 12], S′8

AK[3, 6, 9, 12]), their difference ΔS8
SB[12, 13, 14,

15] is known.Hence, the knowledge ofΔS7
AK[12, 13, 14, 15] can be used to derive the

values of S8
SB[12, 13, 14, 15] and S′8

SB[12, 13, 14, 15] and thus to derive K8[3, 6, 9, 12].
There exist only 28 − 1 possible values of ΔS7

AK[12, 13, 14, 15] with exactly one
active Byte 13. So, one can perform this step as follows:

1. Initialize 232 empty lists, one for each guess of K8[3, 6, 9, 12].
2. For each pair (S8

AK[3, 6, 9, 12], S′8
AK[3, 6, 9, 12]), and for each of the 255 pos-

sible differences ΔS7
AK[12, 13, 14, 15] = (0, ∗, 0, 0), derive K8[3, 6, 9, 12] that

leads this pair to ΔS7
AK[12, 13, 14, 15] and add this pair to the list corre-

sponding to that key guess.

For each pair and difference guess, we expect one key suggested on average
due to the S-box property observed above. These 2n+15 ·255 ≈ 2n+23 suggestions
are distributed over the 232 possible keys. So, we expect about 2n−9 pairs for
each guess of K8[3, 6, 9, 12].

Step 3). In this step, one could guess 32 bits of K8[0, 7, 10, 13] and partially
decrypt these bytes for the remaining pairs to obtain S7

AK[0, 1, 2, 3]. Though, this
step can be improved in a similar fashion as Step 2):

1. Initialize 232 empty lists, one for each guess of K8[0, 7, 10, 13].
2. For each pair (S8

AK[0, 7, 10, 13], S′8
AK[0, 7, 10, 13]) and for each of the 255 possi-

ble differences ΔS7
AK[0, 1, 2, 3] = (∗, 0, 0, 0), derive the key K8[0, 7, 10, 13] that

leads this pair to ΔS7
AK[0, 1, 2, 3] and add this pair to the list corresponding

to that key guess.

Again, we expect one key suggested on average for each pair and each dif-
ference guess. These 2n−9 · 255 ≈ 2n−1 suggestions are distributed over the 232

possible keys. So, we expect about 2n−33 pairs for each guess of K8[0, 7, 10, 13].

Step 4). The goal of the adversary in this step is to check for all remain-
ing pairs and for the current guess of K8[0, 3, 6, 7, 9, 10, 12, 13] if the difference
ΔS6

AK[0, 1, 2, 3] is zero in exactly one byte, and if the zero byte is Byte 1, 2, or
3. Note that we do not want a zero difference in S6

AK[0] since it could render
the impossible differential possible. The straight-forward approach would be to
guess the bytes K̂7[0, 13] and decrypt the states S7[0, 13] of all remaining pairs
to obtain S6[0, 1]. Again, we use the improvement by Lu et al. [16] instead.

There are 3·2553 possible differences ΔS6
AK[0, 1, 2, 3] with exactly three active

bytes such that the zero-difference byte is not Byte 0. Among those, 3 · 255 dif-
ferences map to a difference ΔS6

MC[0, 1, 2, 3] where only Bytes 0 and 1 are active.
So, the adversary has to check for each pair and each guess of K̂7[0, 13] whether

1 More precisely, 129 out of 256 trails ΔX → ΔY are impossible, about half (126)
propose two solutions, and 1 trail proposes four solutions.

214 C. Dobraunig and E. List

ΔS6
MC[0, 1, 2, 3] belongs to these 3·255 differences. Again, given the input/output

differences of the SubBytes operation, i.e., ΔS6
MC[0, 1] and ΔS7

AK[0, 13], one can
efficiently determine the values S6

MC[0, 1] and S′6
MC[0, 1] and therefore determine

the value of K̂7[0, 13].
The 2n−33 pairs and the 3 ·255 differences yield 3 ·2n−25 candidates K̂7[0, 13]

distributed over the 216 possible values. Thus, we expect for a given guess of
K̂7[0, 13] about 3 ·2n−25/216 = 3 ·2n−41 pairs which yield the input difference to
the impossible differential for each guess of the considered bytes in K8 and K̂7.

Step 5). This step eliminates wrong values of K0[0, 5, 10, 15] using the precom-
puted hash table Hprecomp. For this purpose, initialize a list K for the 232 values
of K0[0, 5, 10, 15]. For each of the remaining 3 · 2n−41 pairs (Pi, Pj):

1. Compute Δi,j [0, 5, 10, 15] = (Pi[0, 5, 10, 15] ⊕ Ti) ⊕ (Pj [0, 5, 10, 15] ⊕ Tj) and
ΔTi,j [0] = Ti[0] ⊕ Tj [0].

2. Access the bucket indexed by Δi,j [0, 5, 10, 15] ‖ΔTi,j [0] in Hprecomp. For each
tuple (S1

AK[0, 5, 10, 15], S′1
AK[0, 5, 10, 15], ΔS1

MC[0]) in that bucket, remove
from K the key entry K0[0, 5, 10, 15] = Pi[0, 5, 10, 15] ⊕ (Ti[0, 1], 0, 0) ⊕
S1
AK[0, 5, 10, 15].

Finally, if K is not empty, output the remaining value(s) in K along with the
current key guess of K̂7[0, 13] and K8[0, 3, 6, 7, 9, 10, 12, 13].

Wrong-Key Elimination. We can determine the data complexity D such that
the following inequality is fulfilled:

(

1 − 2−(cin+cout)
)D

<
1

2|kin∪kout|
,

where cin and cout denote the number of bit conditions to be fulfilled at the
top (in) and bottom (out) parts of the cipher that wrap the impossible dif-
ferential. kin ∪ kout denote the number of combined top and bottom key bits
that are guessed. Consider that the probability to filter wrong key is 2−32 for
K0[0, 5, 10, 15], 2−48 for K8[0, 3, 6, 7, 9, 10, 12, 13], and 3·2−8 for K7[0, 13]. Hence,
we have cin+cout = log2(2−32−48 ·3 ·2−8) ≈ 86 bit conditions. So, the probability
that a wrong key passes is about (1 − 2−86) per tested pair. The guessed key
material sums up to kin ∪ kout = 32 + 64 + 16 = 112 bits. So, we need

(

1 − 2−86
)D ≤ 2−112

which is true for D ≥ 293 pairs. Since we can expect about 2n+15 pairs from 2n

structures, this method yields also that 278 structures, i.e., 2118 chosen plaintexts,
are required for the attack.

Complexity Analysis. The time complexity is composed of the following steps:

1. The precomputation requires ≈ 2·240 ·4/16 = 236 single-round decryptions,
which is equivalent to 236/8 = 233 eight-round decryptions.

2. Step 1 requires 2n+40 encryptions.

Impossible-Differential and Boomerang Cryptanalysis 215

3. Step 2 can be implemented by a look-up table, as suggested by Lu et al.
[16]. By storing the results efficiently, one can fetch a key in one access even
if several keys are suggested. Lu et al. state that most queries fail, whereas
about 1/16 (on average) of the queries return 16 options of 32-bit keys each,
and a smaller fraction can return more options. In total, this step requires
255 · 2n+15 ≈ 2n+23 memory accesses (MA).

4. Step 3 requires 255 · 255 · 2n+15 ≈ 2n+31 memory accesses, since for all 255
differences for the first 32-bit guesses of K8[3, 6, 9, 12], we consider another
255 differences for the second 32 guessed bits K8[0, 7, 10, 13].

5. Step 4 requires 2n−33 ·3 ·255 ≈ 3 ·2n−25 memory accesses in a lookup table to
determine from the differences ΔS6

MC[0, 1, 2, 3] the guess for K̂7[0, 13]. Since
we have to perform this step for each of the 264 guesses of K8[0, 3, 6, 7, 9, 10,
12, 13], this step requires in total 264 · 2n−33 · 3 · 255 ≈ 3 · 2n+39 MA.

6. Step 5 analyzes 3 · 2n−41 remaining pairs, leading in average to one memory
access to Hprecomp plus one memory access to K. This step is repeated 280

times (for each guess of K8[0, 3, 6, 7, 9, 10, 12, 13] and K̂7[0, 13]). So, the time
complexity of this step is 3 · 2n−41 · 2 · 280 = 3 · 2n+40 memory accesses.

7. In an exhaustive step, we can identify the remaining key bytes. This step
requires negligible time regarding the total computational complexity.

So, for n = 78, the overall time complexity of the attack results from

T ≈ (2n+40 + 233) Enc + (2n+23 + 2n+31 + 3 · 2n+39 + 3 · 2n+40) MA

≈ 2118 Enc + 2120.2 MA.

The precomputation table requires 2 · 240 · (4 + 4 + 1) < 245 bytes to store
the values S1

AK[0, 5, 10, 15], S′1
AK[0, 5, 10, 15], and the difference ΔS1

MC[0] for each
entry. The simple approach would further use 28·(4+2+8) = 2112 bytes of memory
for storing the deleted values of the four bytes of K0, the two bytes of K̂7, and
the eight bytes of K8. Instead, Lu et al. [16] proposed to perform the attack
separately for each key guess, and to immediately append an exhaustive search
for the remaining bytes of each guess that is not discarded. So, we have to store
instead the about 2n+23 = 2101 suggestions which remain after Step 2, which
consist of two plaintexts and two ciphertexts of 16 bytes each. So, the memory
complexity of the attack requires 245 + 2106 ≈ 2106 bytes of memory, which is
equivalent to 2102 states.

Several optimizations seem possible to further reduce the attack complexities.
For instance, Boura et al. [4] propose to use multiple impossible differentials in
order to reduce the data complexity. There are

(
4
2

)

= 6 options which two bytes
can be chosen to be active in the difference ΔS6[0, 1, 2, 3]. Each option requires
to consider a different set of guessed bytes in K̂7 and K8, and a different set
of output differences. Moreover, the attack could be executed also with shifted
versions of the state differential and tweak difference, or several times in parallel.
We omit their description for simplicity.

216 C. Dobraunig and E. List

4 Boomerang Attack on 8-Round Kiasu-BC

In the following, we describe a boomerang attack on the final eight rounds of
Kiasu-BC, which is an extension of a seven-round rectangle attack and a seven-
round boomerang attack. For interested readers, we provide those in the full
version of this work [9], together with an short introduction into boomerang
attacks. The upper and lower trails are depicted in Fig. 4. We append a key-
guessing phase over the final round. Again, we use the fact that the final round
omits the MixColumns operation so that only four key bytes have to be con-
sidered. Figure 5 shows the steps that wrap the upper and lower trails.

SB

SB

SB

SR

SR

SR

SR

MC

MC

MC

K1

K2

K3

T

T

T

S1
SB S1

S2

S3

S4
SR

SB

SB

SB

SR

SR

SR

MC

MC

MC

MC

K4

K5

K6

K7

T

T

T

S5
SB

S4
SR S4

S5

S6

S7
AK

Fig. 4. Upper (left) and lower (right) trails of our boomerang attack on Kiasu-BC.

4.1 Attack Procedure

Differentials. Both trails share the same idea: start from a state directly after
the SubBytes operation with a difference ΔSi

SB wherein only the bytes on the
main diagonal are active, and choose it in a way such that the differences in the
state ΔSi

MC and in the tweak ΔT will cancel each other after the first round, i.e.,
ΔSi = 0. Then, it follows that ΔSi+1 = ΔT contains only one and ΔSi+2 only
four active bytes. In the upper trail, only Bytes Si+2[0, 1, 2, 3] are traced through
the final SubBytes operation after Round 3. The lower trail then adds the rest
of Round 4, i.e. it starts from a fully active state difference ΔS4

SR such that it
yields a difference only in the main diagonal after Round 4 with probability one.
The remaining Rounds 5–7 follow the same trail as the first three rounds.

Assuming a correct quartet, both its pairs pass the S-box in Round 7 with
probability (2−6)2. The pairs need not have a specific difference after the final
S-box, but only the same difference γ′ in the middle. So, the four S-boxes in
Round 5 are passed with probability about (2−3.5·4)2 = 2−28. Concerning the
four S-boxes at the bottom of the upper trail, the second pair has a probability
of about (2−7)4 = 2−28 to pass them with the same trail as the first pair.
The final S-box at the beginning of Round 3 is then passed by the second pair

Impossible-Differential and Boomerang Cryptanalysis 217

SB SR

SB

K0

K8

T

T

T

S0 S1
SB

S7
AK S7

S8

Boomerang

Fig. 5. 8-round boomerang attack trail.

with probability 2−7. So, for the correct guess of K8[0, 7, 10, 13], the probability
of a correct pair to follow our trails is about 2−12 · 2−28 · 2−28 · 2−7 = 2−75.
Each structure yields

(
240

2

)

· 2−32 ≈ 247 pairs which collide after the first round.
Hence, for 231 structures, we can expect 231 ·247 ·2−75 = 23 correct quartets, and
recover 32 bits of K8, K8[0, 7, 10, 13] and/or 32 bits of K0, K0[0, 5, 10, 15]. The
remaining 96 bits of either round key can be found e.g. by exhaustive search.

Structures and Sets. We fix an arbitrary base tweak T̂ . We build in total 2n

structures consisting of 240 plaintexts each. For every structure, we choose an
arbitrary base plaintext P̂ and derive 232 plaintexts from it by iterating over all
values of Bytes 0, 5, 10, and 15, and leaving all other bytes constant. We use the
same 232 plaintexts in each of 28 sets T i in the structure, for 0 ≤ i < 28, where
the sets differ only in the first tweak byte. This means, we derive 28 tweaks
T i = (〈i〉, T̂ [1], . . . , T̂ [7]), for 0 ≤ i < 28, from T̂ and assign T i to all texts in T i.

Steps. Choose δ′ ∈ {0, 1}8 so that there exists a differential 0x01 → δ′ with
probability 2−6 through the S-box. Derive δ = MC((δ′, 0, 0, 0)). Then:

1. Choose 2n structures of 240 plaintext-tweak tuples (P, T) each. Ask for their
ciphertexts C.

2. Initialize a list for all possible values of K0[0, 5, 10, 15] and K8[0, 7, 10, 13].
3. For each of 2n structures and for each key guess K8[0, 7, 10, 13]:

(a) For each ciphertext and corresponding tweak (C, TC), derive a tweak TD

with TD[1, . . . , 7] = TC [1, . . . , 7] and TD[0] = TC [0] ⊕ 0x1. Then, par-
tially decrypt C under TD through the inverse final round to obtain
S7
AK[0, 1, 2, 3]. Compute S′7

AK[0, 1, 2, 3] = S7
AK[0, 1, 2, 3] ⊕ δ[0, 1, 2, 3] and

determine D[0, 7, 10, 13] by reencrypting S′7
AK[0, 1, 2, 3] over the final

round, again under TD. Copy the 12 bytes D[1, 2, 3, 4, 5, 6, 8, 9, 11, 12,
14, 15] from the corresponding bytes of C.

(b) Ask for the plaintexts Q of all 2n+40 shifted ciphertexts (D,TD).
(c) Sort the 240 plaintexts Q together with their tweaks TQ (we define

TQ = TD), corresponding ciphertext D, and the original plaintext P
from which D was derived as tuples (Q, TQ, D, P) into 296 buckets

218 C. Dobraunig and E. List

indexed by Q[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]. Since we search for pairs
(Q,Q′) with Q ⊕ Q′ = α and TQ �= TQ′ from the same structure, we
expect in average 2n ·

(
240

2

)

· 2−96 ≈ 2n−17 false-positive colliding pairs
(Q,Q′) for each candidate K8. Since Pr[TQ �= TQ′] = 255/256, we still
have about 2n−17 · 255/256 ≈ 2n−17 colliding pairs per key.

(d) For each potential quartet (P, P ′, Q,Q′), we want to identify the key
values K0[0, 5, 10, 15] which could create the state collisions after the first
round. Let S1

P , S1
P ′ , S1

Q, S1
Q′ denote their corresponding states after the

first round. For a correct quartet, it holds that S1
P = S1

P ′ and analogously,
S1

Q = S1
Q′ . There is a unique mapping from the tweak difference S1

SR,P ⊕
S1
SR,P ′ backwards to S1

SB,P ⊕ S1
SB,P ′ . Since the S-box has two solutions

on average, there are on average two key values per byte K0[0, 5, 10, 15]
such that P and P ′ are mapped to the correct difference ΔS1

SB which
yields S1

P ⊕ S1
P ′ = 0. So, we derive those values for K0[0, 5, 10, 15] for P

and P ′. We derive those key values analogously for Q and Q′. For each
key byte, we have 2 · 2 combinations on average, i.e., four pairs among
which any pair matches with probability about 4 · 2−8 = 2−6. So, an
invalid quartet survives this four-byte filter with probability (2−6)4 =
2−24. For each surviving pair, we increment the counter for the values of
the current K0[0, 5, 10, 15] and K7[0, 7, 10, 13]. Over all 232 keys K8, we
expect 232 · 2n−17 · 2−24 = 2n−9 (false-positive) quartets on average.

(e) For n = 31, we expect 23 correct quartets, and 222 false positives. While
23 can be expected on average, at least three correct quartets occur
with significant probability. Correct quartets suggest the same 64 bits
K8[0, 7, 10, 13] and K0[0, 5, 10, 15]. Assuming that the key suggestions
from the 222 false-positive quartets are uniformly distributed, we can
expect only the correct 64 bits of K0[0, 5, 10, 15] be suggested at least
four times. So, we output the candidate(s) with the highest counters.

4.2 Complexity

The time complexity of the attack consists of the following:

– Step 1 requires 2n+40 full encryptions.
– Step 3a requires 232 · 2n+40 · 4/16 = 2n+70 single-round decryptions of four

bytes for each ciphertext and key candidate to derive S7
AK and the same

amount of single-round encryptions to derive the shifted ciphertexts D, which
is equivalent to 2 · 2n+70 · 1/8 = 2n+68 eight-round encryptions.

– Step 3b requires 232 · 2n+40 = 2n+72 full decryptions.
– Step 3c requires 232 · 2n+40 = 2n+72 MAs with an efficient data structure.
– Step 3d requires 232 ·4 ·2n−17 ·4/16 = 2n+15 single-round decryptions (equiv-

alent to 2n+12 eight-round encryptions) of one column backwards through the
first round for each text in each potential quartet (P, P ′, Q,Q′) and each key.
It requires 2n−9 + 2n+3 memory accesses for the false-positive and the correct
quartets, which are negligible in the total computational complexity.

– An exhaustive search step requires 296 full encryptions.

Impossible-Differential and Boomerang Cryptanalysis 219

The time complexity is given by approximately

(2n+40 + 2n+68 + 2n+72 + 2n+12 + 296) Enc + 2n+72 MA

≈ 2103.1 Enc + 2103 MA.

The data complexity consists of 2n+40 = 271 chosen plaintexts and 232·271 = 2103

adaptively chosen ciphertexts. The attack can be run with memory for 240 states
plus 264 single-byte key counters, which is equivalent to about 260 states.

4.3 Experimental Verification

Murphy [19] showed that boomerangs and rectangles base on oversimplified con-
ditional systems. He stressed that the techniques need a revised foundation,
which is clearly beyond the scope of this work. While the complexity of our
attacks prohibits to implement full versions of them at the moment, we imple-
mented variants of our boomerang distinguishers to support our analysis:

1. the 6-rd. distinguisher under our 7-rd. boomerang attack with Kiasu-BC,
2. the 6-rd. boomerang distinguisher with a downscaled version of Kiasu-BC,

called Mini-Kiasu-BC hereafter,
3. the 7-rd. distinguisher under our 8-rd. attack, again with Mini-Kiasu-BC.
4. the 7-rd. boomerang key-recovery attack with Mini-Kiasu-BC.

We defined Mini-Kiasu-BC as a nibblewise-operating variant of Kiasu-BC
that employs the same high-level structure as Kiasu-BC in downscaled man-
ner, i.e., the same number and order of operations, equal number of rounds and
key schedule, the same ShiftRows, AddKey, and AddTweak operations, the
same MDS matrix, though, with multiplications in GF(24) under the irreducible
polynomial x4 + x + 1, operating on nibbles instead of bytes, and with the Pic-
colo S-box instead of that of the AES. Note that the Piccolo S-box has a maximal
probability of 2−2 for differential trails. Moreover, for differences δ, γ′ ∈ {0, 1}4,
it holds for differential trails δ → γ′ through the inverse Piccolo S-box that
√

∑

γ′∈{0,1}4 Pr2[δ S−1

−−→ γ′] is 2−1 for two values of δ, 2−1.5 for five, and about
2−1.21 for the remaining eight non-zero values of δ.

To verify the intermediate probabilities of our trails, we studied several round-
reduced versions of the distinguishers. Since building structures was unnecessary
for this purpose, we omitted the first round for those, and started directly from
the state S1 after the first round. Thereupon, we (1) chose a random base plain-
text, (2) created plaintexts by iterating over the values of the first column and
all possible values of the first tweak byte, (3) encrypted the resulting plaintext-
tweak pairs over the remaining rounds, (4) applied the δ-shift, and (5) decrypted
3, 4, 5, or 6 rounds. For each of our experiments, we chose the base plaintexts
of our structures and 100 keys randomly from /dev/urandom. The source code
of our analysis will be made freely available to the public. The results of our
experiments are summarized in Table 2.

220 C. Dobraunig and E. List

Table 2. Probabilities of correct quartets from experiments with our 6- and 7-round
boomerang distinguishers on Kiasu-BC and Mini-Kiasu-BC with 100 random keys
per experiment. Probability deviations after subtracting/adding the standard deviation
to the average #correct quartets are given in square brackets. Rds. = #rounds; str. =
#structure(s).

Rds. 6-round distinguisher 7-round distinguisher

Kiasu-BC Mini-Kiasu-BC Mini-Kiasu-BC

216 texts, 28 sets, 1 str. 216 texts, 24 sets, 1 str. 216 texts, 24 sets, 210 str.

3 2−12.00 [2±0.01] 2−4.00 [2±0.01] –

4 2−19.00 [2±0.03] 2−5.88 [2±0.01] 2−14.61 [2±0.01]

5 2−25.42 [2−0.22, 20.19] 2−7.14 [2±0.01] 2−26.94 [2−0.17, 20.16]

6 – 2−7.14 [2±0.01] 2−30.65 [2−0.83, 20.53]

7 – – 2−30.12 [2−0.71, 20.47]

Distinguishers. Concerning the 6-round distinguisher for Mini-Kiasu-BC, the
active S-box in Round 6 of the lower trail is passed with probability ≈ (2−2)2

for both pairs. The S-box in Round 4 is passed with probability about 2−2,
and that at the beginning of Round 3 is passed with probability about 2−1.21,
both for the second pair only. Concerning the 6-round trail for Kiasu-BC, the
active S-box in Round 6 of the lower trail is passed with probability ≈ (2−6)2

for both pairs; the active S-box at the end of the upper trail with probability
about 2−7; the S-box at the beginning of Round 3 multiplies a factor of 2−6.5.
From our intuition, this factor results from the matter that some quartets pass
the S-box with probability 2−6 and some with 2−7. So, the obtained differential
probabilities are slightly higher than expected.

Concerning the 7-round trail for Mini-Kiasu-BC, the five active S-boxes
in the lower trail are passed with a probability about (2−2)2 · (2−1.21·4)2. The
four active S-boxes at the bottom of the upper trail in Round 4 are passed with
slightly lower probability than expected, i.e., 2−12.3 ≈ (2−3)4. Again, we antici-
pate this to result from quartets that pass the lower trail with lower probability.
The final S-box in Round 3 is passed with probability between 2−2 and 2−3 for
the second pair. So, while we do not have figures for Kiasu-BC over the 7-round
distinguisher yet, the analysis with Mini-Kiasu-BC provides us with at least a
good indication that we can expect for Kiasu-BC that the corresponding prob-
abilities are close to (2−6)2 for the S-box in Round 7, about (2−3.5·4)2 for those
in Round 5, (2−7)4 for those in Round 4, and about 2−7 for that in Round 3, as
in our theoretical analysis.

Key-Recovery. In addition, we implemented the 7-round boomerang attack
with the key-recovery stage for Mini-Kiasu-BC, which yielded practical com-
plexity. For this purpose, we created a structure of 216 sets of 24 texts each by
choosing a random base plaintext P and base tweak TP , and iterated over all
values of P [0, 5, 10, 15] and T [0]. We collected the corresponding ciphertexts C.

Impossible-Differential and Boomerang Cryptanalysis 221

For all 220 ciphertexts and for all 216 candidates K7[0, 7, 10, 13], we derived
D from the δ-shift and the corresponding shifted tweak TD = TP [0] ⊕ δ,
obtained the corresponding plaintexts Q in a sorted list, and searched for match-
ing quartets. For the correct key, we obtained always more than 55, 000 ≈
22·16 ·

(
24

2

)

·2−16 ·2−7.14 ≈ 215.77 quartets. We sorted the list lexicographically and
used the first 16 quartets in order for subkey recovery. In total, we tested 100 ran-
domly chosen keys with independently random base plaintext and base tweak.
Each run identified the single correct key candidate with more than 55, 000 quar-
tets, whereas the second highest candidate was suggested by only about 1/4 of
that amount. So, we consider our experiments to show that K0[0, 5, 10, 15] and
K7[0, 7, 10, 13] can reliably be recovered for Mini-Kiasu-BC and similar results
can be expected for the full Kiasu-BC.

5 Conclusion

This work proposed differential-based attacks on eight rounds of Kiasu-BC,
which share the idea that the tweak input allows to construct a local collision.
While the designers already indicated that there exist boomerangs on at most
seven rounds, they had to consider attacks in the single- as well as in the related-
key setting. Our described boomerang and rectangle attacks do not violate their
claims, but concretize the security threats in the single-key model and illustrate
that Kiasu-BC possesses one round less security than the AES-128. Moreover,
the claim that the bounds of existing attacks on the AES for other attacks than
boomerangs, conventional differentials, and meet-in-the-middle can be translated
without modification to Kiasu-BC does not hold in general, which was already
observed by [8] and was confirmed by our impossible-differential attack.

Acknowledgments. The authors thank Ralph Ankele, Christof Beierle, and Maria
Eichlseder for the fruitful discussions at the DISC workshop in March 2016 at Bochum,
and the reviewers for their helpful comments.

References

1. Abdelkhalek, A., Tolba, M., Youssef, A.M.: Impossible Differential Cryptanalysis
of 8-round Kiasu-BC (2016, to appear)

2. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
IET Inform. Secur. 2(2), 28–32 (2008)

3. Bogdanov, A., Chang, D., Ghosh, M., Sanadhya, S.K.: Bicliques with minimal data
and time complexity for AES. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol.
8949, pp. 160–174. Springer, Cham (2015). doi:10.1007/978-3-319-15943-0 10

4. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Berlin (2014). doi:10.1007/978-3-662-45611-8 10

5. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 222–240. Springer, Berlin (2013). doi:10.1007/978-3-642-40041-4 13

http://dx.doi.org/10.1007/978-3-319-15943-0_10
http://dx.doi.org/10.1007/978-3-662-45611-8_10
http://dx.doi.org/10.1007/978-3-642-40041-4_13

222 C. Dobraunig and E. List

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, New York (2002)

7. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Berlin (2013). doi:10.1007/
978-3-642-38348-9 23

8. Dobraunig, C., Eichlseder, M., Mendel, F.: Square attack on 7-round Kiasu-BC.
In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696,
pp. 500–517. Springer, Cham (2016). doi:10.1007/978-3-319-39555-5 27

9. Dobraunig, C., List, E.: Impossible-differential and boomerang cryptanalysis of
round-reduced KIASU-BC. Cryptology ePrint Archive (2016)

10. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis, J., Leeuwen,
J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Berlin
(2001). doi:10.1007/3-540-44706-7 15

11. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST (Round 3)
(2010)

12. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1.1. First-round submission to the CAE-
SAR competition (2014). http://competitions.cr.yp.to/caesar-submissions.html

13. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Berlin (2014). doi:10.1007/978-3-662-45608-8 15

14. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

15. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

16. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 279–293. Springer, Berlin (2008). doi:10.1007/978-3-540-89754-5 22

17. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impos-
sible differential cryptanalysis of 7-Round AES-128. In: Gong, G., Gupta, K.C.
(eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Berlin (2010).
doi:10.1007/978-3-642-17401-8 20

18. Minematsu, K.: Building blockcipher from small-block tweakable blockcipher. Des.
Code Cryptogr. 74(3), 645–663 (2015)

19. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inform.
Theory 57(4), 2517–2521 (2011)

20. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 167–
182. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4 9

21. National Institute of Standards and Technology: FIPS 197. National Institute of
Standards and Technology, November, pp. 1–51 (2001)

22. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Berlin (2016). doi:10.1007/978-3-662-53018-4 2

23. Schroeppel, R., Orman, H.: The hasty pudding cipher. AES candidate submitted
to NIST (1998)

http://dx.doi.org/10.1007/978-3-642-38348-9_23
http://dx.doi.org/10.1007/978-3-642-38348-9_23
http://dx.doi.org/10.1007/978-3-319-39555-5_27
http://dx.doi.org/10.1007/3-540-44706-7_15
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/978-3-540-89754-5_22
http://dx.doi.org/10.1007/978-3-642-17401-8_20
http://dx.doi.org/10.1007/978-3-319-26059-4_9
http://dx.doi.org/10.1007/978-3-662-53018-4_2

Weak Keys for AEZ, and the External
Key Padding Attack

Bart Mennink1,2(B)

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds,
Leuven, Belgium

bart.mennink@esat.kuleuven.be
2 Digital Security Group, Radboud University, Nijmegen, The Netherlands

b.mennink@cs.ru.nl

Abstract. AEZ is one of the third round candidates in the CAESAR
competition. We observe that the tweakable blockcipher used in AEZ
suffers from structural design issues in case one of the three 128-bit sub-
keys is zero. Calling these keys “weak,” we show that a distinguishing
attack on AEZ with weak key can be performed in at most five queries.
Although the fraction of weak keys, around 3 out of every 2128, seems
to be too small to violate the security claims of AEZ in general, they
do reveal unexpected behavior of the scheme in certain use cases. We
derive a potential scenario, the “external key padding,” where a user of
the authenticated encryption scheme pads the key externally before it
is fed to the scheme. While for most authenticated encryption schemes
this would affect the security only marginally, AEZ turns out to be com-
pletely insecure in this scenario due to its weak keys. These observations
open a discussion on the significance of the “robustness” stamp, and on
what it encompasses.

Keywords: AEZ · Tweakable blockcipher · Weak keys · Attack · Exter-
nal key padding · Robustness

1 Introduction

Authenticated encryption aims to offer both privacy and authenticity of data.
The ongoing CAESAR competition [8] targets the development of a portfolio
of new, solid, authenticated encryption schemes. It received 57 submissions, 30
candidates advanced to the second round, and recently, 16 of those advanced to
the third round.

AEZ is an authenticated encryption scheme by Hoang, Krovetz, and
Rogaway [18]. In this work we focus on AEZ v4, the latest version that has been
submitted to CAESAR [17]. The addendum “v4” will be omitted for brevity. We
remark that our findings can also be generalized to versions v2 and v3, despite
the major revisions that have been made in the key scheduling. Our attacks do
not apply to v1, because it differs from v4 not only in the key scheduling but
also in the encryption mode itself.
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 223–237, 2017.
DOI: 10.1007/978-3-319-52153-4 13

224 B. Mennink

AEZ is designed as a “robust authenticated encryption (RAE) scheme” [18];
this informally means that it achieves privacy and authenticity as good as pos-
sible even in the case of nonce-reuse. It moreover implies that it is secure in
case of release of unverified plaintext [2]. The designers of AEZ claim that it is a
RAE scheme as long as the query complexity does not exceed 255 and the time
complexity does not exceed 2128 [17].

On the other hand, robustness implies nothing for more “alternative” attacks,
such as key recovery attacks, related-key attacks, and others. In [13], Fuhr
et al. derived a key recovery attack on AEZ v3 in complexity 2n/2; not breaking
the claimed security, but definitely an unexpected security property. In response
to the observation by Fuhr et al., the designers of AEZ performed a major revi-
sion from AEZ v3 to AEZ v4 in order to mitigate the attack. Chaigneau and
Gilbert [9], however, demonstrated that v4.1 is still vulnerable to a key recovery
attack with a similar complexity to that of [13].

Beyond [9,13], no analysis on AEZ has appeared. In this work, we will inves-
tigate the underlying tweakable blockcipher of AEZ and notice that it shows
remarkable behavior for certain structured sets of keys. We will show how these
weak keys can be used to attack the AEZ mode and to distinguish it from a
random primitive in constant time. We will additionally discuss a specific use
case of AEZ where its weak keys can be exploited.

1.1 Weak Keys

AEZ allows for arbitrarily-sized keys, and transforms them into three subkeys
of 128 bits using a key derivation function:

I‖J‖L ←−
{

K if |K| = 384,

BLAKE2b(K) otherwise.

In other words, if the key is already 384 bits long, it is simply padded into I‖J‖L;
otherwise, it is first hashed via BLAKE2b [5]. This is done deliberately, as the
authors state [17]: “We dispense with calling BLAKE2b if the key K is already
3 · 128 bits.”

We will show that if one of the three subkeys I, J, L equals 0128—call a key
K for which this is the case “weak”—AEZ can be distinguished from random
in at most two evaluations if it is known which subkey equals 0128 and at most
five evaluations otherwise. The attack relies on the fact that for weak keys the
tweakable blockcipher used in AEZ is completely insecure. In more detail, by
explicitly writing out this tweakable blockcipher, as we have done in Sect. 3.1,1

one finds that if I, J , or L equals 0128, one can identify multiple tweaks for which
the tweakable blockcipher collides.

A simple computation shows that, if we consider keys of length 384 bits,
3 · 2256 − 3 · 2128 + 1 ≈ 3 · 2256 of those are weak. Regarding keys of size different

1 This explicit description may contribute to a better understanding of the primitive
used in AEZ, and may be of independent interest.

Weak Keys for AEZ, and the External Key Padding Attack 225

from 384, assuming that BLAKE2b is a random oracle (see [12,15] for the latest
analysis of BLAKE2b) approximately 3 out of 2128 keys result in a subkey 0128.
Although this in itself does not break the security claims of AEZ, the observa-
tion testifies of a more structural weakness in AEZ, namely that the underlying
tweakable blockcipher is not secure (for these weak keys).

1.2 External Key Padding

Focusing on keys of length different from 384 bits, a key is weak if I‖J‖L =
BLAKE2b(K) satisfies that I, J , or L equals 0128. This set of weak keys is
rather unstructured; hitting a weak key is a mere coincidence. As a matter of
fact, calling these keys “weak” is debatable in the first place.

For keys of length exactly 384 bits, the situation is completely different.
We will illustrate this via a potential use case, which we call the “external key
padding.” At a high level, this scenario covers the case where the user of AEZ
pads the key himself prior to feeding it to the scheme. Partly attributed to
the key scheduling of AEZ, this would result in an omission of the evaluation
of BLAKE2b. Above-mentioned weak key attacks can then be used to distin-
guish AEZ from random in case of external key padding. Remarkably, for “ordi-
nary” authenticated encryption schemes (such as [3,7,19,21,22,26]), external
key padding would only have a marginal influence, mostly because the scheme
already pads the key itself in the first place.

A simple patch for this use case would be to always hash the key through
BLAKE2b, regardless of the size of K. Unfortunately, this patch does not resolve
the structural design issues the tweakable blockcipher of AEZ suffers from, and
other problematic use cases may exist.

1.3 Outline

A high-level description of the AEZ mode is given in Sect. 2. We discuss the AEZ
tweakable blockcipher primitive, as well as its weak key issues, in Sect. 3. The
weak key attacks on AEZ are discussed in Sect. 4. We discuss the external key
padding scenario and the corresponding attack in Sect. 5. The work is concluded
in Sect. 6.

2 AEZ

We will describe the interface and security model of AEZ in Sect. 2.1, and give
a high-level description of AEZ in Sect. 2.2.

2.1 Interface and Security Model

AEZ [17,18] is an authenticated encryption scheme that consists of an encryp-
tion function E and a decryption function D. The encryption E gets as input
a key, nonce, associated data, tag size, and message, and outputs an expanded

226 B. Mennink

ciphertext. The decryption D operates the opposite way; it gets as input a key,
nonce, associated data, tag size, and expanded ciphertext, and it outputs either
a message or a dedicated ⊥ symbol. More formally, for some finite key space
K ⊂ {0, 1}∗,

E : K × {0, 1}∗ × {0, 1}∗ × N × {0, 1}∗ → {0, 1}∗,

(K,N,A, τ,M) �→ C ∈ {0, 1}|M |+τ ,

D : K × {0, 1}∗ × {0, 1}∗ × N × {0, 1}∗ → {0, 1}∗ ∪ {⊥},
(K,N,A, τ, C) �→ M/⊥,

where D is required to satisfy that

D(K,N,A, τ, E(K,N,A, τ,M)) = M

for any K,N,A, τ,M .
AEZ is introduced alongside the security model called “robust authenticated

encryption (RAE),” and we will describe it in own terminology. Throughout,
x

$←− X means that x gets sampled uniformly at random from a finite set X . An
adversary A is a probabilistic algorithm that has access to one or more oracles
O, denoted AO. By AO = 1 we denote the event that A, after interacting with
O, outputs 1.

Let K
$←− K be a uniformly randomly drawn key. Denote by π a ran-

dom injection function with the same interface as EK . More detailed, π is
a family of random functions indexed by (N,A, τ) ∈ {0, 1}∗ × {0, 1}∗ × N,
and a query π(N,A, τ,M) is responded with a C ∈ {0, 1}|M |+τ . A decryp-
tion query π−1(N,A, τ, C) is responded with either the unique M such that
π(N,A, τ,M) = C, or with ⊥ if no such M exists. We refer to [18] for the
details.

We define the RAE security of AEZ as

Advrae
AEZ(A) =

∣
∣
∣PrK

(

AEK ,DK = 1
)

− Prπ

(

Aπ,π−1
= 1

)∣
∣
∣ ,

where the probabilities are taken over the randomness of K,π, and the random
choices of A. The resources of A are usually bounded in terms of (q, �, t), where
q is the maximum queries to the construction oracle, each query is of length at
most �, and A runs in time t.

2.2 High-Level Description of AEZ

AEZ takes as input an arbitrarily sized key K ∈ {0, 1}∗, and performs all of its
procedures with three keys I, J, L ∈ {0, 1}128, where

I‖J‖L ←−
{

K if |K| = 384,

BLAKE2b(K) otherwise.
(1)

Weak Keys for AEZ, and the External Key Padding Attack 227

AEZ then evaluates an algorithm depending on the size of M :2

– If |M | = 0, it evaluates AEZ-prf(I‖J‖L,N,A, τ);
– If |M | > 0:

• If |M | < 256 − τ , it evaluates Encipher-AEZ-tiny(I‖J‖L,N,A, τ,M);
• If |M | ≥ 256 − τ , it evaluates Encipher-AEZ-core(I‖J‖L,N,A, τ,M).

Each of these algorithms starts with an evaluation of the AEZ-hash algorithm, a
multi-layer PMAC-style MAC function that transforms (τ,N,A) into a 128-bit
mask Δ. In this work, we are specifically interested in AEZ-hash and Encipher-
AEZ-core. In more detail, in Sect. 4, we will describe three weak key attacks on
Encipher-AEZ-core: two of which directly concern the Encipher-AEZ-core algo-
rithm, one of which operates via AEZ-hash. The latter attack can be performed
equivalently well via AEZ-prf and Encipher-AEZ-tiny, as the three algorithms
rely on AEZ-hash in an identical way.

The four sub-algorithms of AEZ internally use a tweakable blockcipher

Ẽ : {0, 1}3·128 × T × {0, 1}128 → {0, 1}128, (2)

that gets as input a key I‖J‖L ∈ {0, 1}3·128, a tweak (j, i) ∈ T :=
(

{−1, 0} ×
[0..7]

)

∪
(

N
+ × N

)

, and bijectively transforms a plaintext X into a ciphertext
Ẽj,i

I‖J‖L(X). We will elaborate on the tweakable blockcipher of AEZ in Sect. 3.

AEZ-Hash. We will use AEZ-hash for the simplified case where |N | = |A| =
128; AEZ-hash for this case is given in Algorithm 1. Our attack generalizes to
arbitrarily-sized nonces and associated data.

Algorithm 1. AEZ-hash
Input: (I‖J‖L, τ, N, A) with |N | = |A| = 128
Output: Δ ∈ {0, 1}128

1: Δ1 ← Ẽ3,1
I‖J‖L(〈τ〉128) � 〈τ〉128 is the encoding of τ as an 128-bit string

2: Δ2 ← Ẽ4,1
I‖J‖L(N)

3: Δ3 ← Ẽ5,1
I‖J‖L(A)

4: return Δ = Δ1 ⊕ Δ2 ⊕ Δ3

Encipher-AEZ-Core. We will describe our attacks for messages M such that
384 ≤ |M |+τ < 511, and Encipher-AEZ-core for this case is given in Algorithm2
and Fig. 1. We remark that the attacks can easily be generalized to any M such
that |M | ≥ 256 − τ .

2 The interfaces of the underlying algorithms have been slightly modified for the sake
of simplicity.

228 B. Mennink

Fig. 1. AEZ for messages such that 384 ≤ |M | + τ < 511 [17]. Here, the message
is padded as Mu‖Mv‖Mx‖My ← M‖0τ , where |Mu| = |Mx| = |My| = 128 and 0 ≤
|Mv| < 127. The mask Δ is computed as Δ ← AEZ-hash(I‖J‖L, τ, N, A). A box

with inscription j, i represents an evaluation of Ẽj,i
I‖J‖L. A trapezoid represents either

chopping or 10∗-padding, depending on the direction.

Algorithm 2. Encipher-AEZ-core
Input: (I‖J‖L, N, A, τ, M) with 384 ≤ |M | + τ < 511
Output: C ∈ {0, 1}|M|+τ

1: Δ ← AEZ-hash(I‖J‖L, τ, N, A) � See Algorithm 1
2: Mu‖Mv‖Mx‖My ← M‖0τ , where |Mu| = |Mx| = |My| = 128 and 0 ≤ |Mv| < 127

3: X ← Ẽ0,4
I‖J‖L(Mu) ⊕ Ẽ0,5

I‖J‖L(Mv10∗)

4: Sx ← Mx ⊕ Δ ⊕ X ⊕ Ẽ0,1
I‖J‖L(My) ; Sy ← My ⊕ Ẽ−1,1

I‖J‖L(Sx)
5: S ← Sx ⊕ Sy

6: Cu ← Mu ⊕ Ẽ−1,4
I‖J‖L(S) ; Cv ← Mv ⊕ Ẽ−1,5

I‖J‖L(S)

7: Y ← Ẽ0,4
I‖J‖L(Cu) ⊕ Ẽ0,5

I‖J‖L(Cv10∗)

8: Cy ← Sx ⊕ Ẽ−1,2
I‖J‖L(Sy) ; Cx ← Sy ⊕ Δ ⊕ Y ⊕ Ẽ0,2

I‖J‖L(Cy)

9: return Cu‖Cv‖Cx‖Cy

3 AEZ Tweakable Blockcipher

We will elaborate on the tweakable blockcipher used in AEZ in Sect. 3.1, and
describe structured sets of weak keys for it in Sect. 3.2.

3.1 Design

The tweakable blockcipher used in AEZ is internally constructed from the AES
round function [10]. Define the keyless AES round function aesr(X) as

aesr(X) = MixColumns ◦ ShiftRows ◦ SubBytes(X).

Weak Keys for AEZ, and the External Key Padding Attack 229

AEZ uses the two blockciphers AES4 and AES10, where for r ∈ {4, 10},

AESrK0,K1,...,Kr
(X) = aesr(· · · aesr(X ⊕ K0) · · · ⊕ Kr−1) ⊕ Kr.

The tweakable blockcipher in AEZ is furthermore built of multiplications. Note
that we can represent 128-bit strings as elements of a finite field GF(2128) of
order 2128, and vice versa: a 128-bit string A = a127a126 · · · a1a0 ∈ {0, 1}128
can be seen as a polynomial A(x) = a127x127 + · · · a1x + a0 ∈ GF(2128). We
define multiplication of A,B ∈ {0, 1}128 as multiplication in GF(2128) modulo
the irreducible polynomial f(x) used to generate the field:

A · B := A(x) · B(x) mod f(x).

We remark that the multiplications in AEZ usually involve a term A of the form
2m + n for m ∈ N and n ∈ [0..7], which significantly simplifies the computation
of A · B. We refer to [17] for the details.

The tweakable blockcipher Ẽ of (2) takes as input a key I‖J‖L ∈ {0, 1}3·128,
a tweak (j, i) ∈

(

{−1, 0} × [0..7]
)

∪
(

N
+ × N

)

, and a plaintext X and computes
the ciphertext as

tweak Ẽj,i
I‖J‖L(X) =

j = −1, i ∈ [0..7] AES10K(X) with K = (i · J, I, J, L, I, J, L, I, J, L, I)
j = 0, i ∈ [0..7] AES4K(X) with K = (i · I, J, I, L, 0128)
j = 1, i ∈ N AES4K(X) with K =

(

Δi · I, J, I, L, 0128
)

j = 2, i ∈ N AES4K(X) with K =
(

Δi · I, L, I, J, L
)

j ≥ 3, i = 0 AES4K(X) with K =
(

2j−3 · L, J, I, L, 2j−3 · L
)

j ≥ 3, i ≥ 1 AES4K(X) with K =
(

2j−3 · L ⊕ Δi · J, J, I, L, 2j−3 · L ⊕ Δi · J
)

where Δi = (23+�(i–1)/8� + (i–1 mod 8)) for brevity. This tweakable blockcipher
reminds of the XE(X) tweakable blockcipher used in OCB2 [25], as the “inner
keys” are invariant of the tweak, and the “outer keys” depend on the tweak via
the powering-up methodology.

Hoang et al. [17] claim that the AEZ construction is secure as long as Ẽ

is a secure tweakable blockcipher. The usage of the tweakable blockcipher Ẽ as
described above is validated using the so-called proof-then-prune approach: first,
it is argued that if the tweakable blockcipher is instantiated with AES10 every-
where, it behaves like XE(X), and then some uses of AES10 are cut down to 4
rounds to speed up AEZ. As it is unreasonable to assume that AES4 behaves
like a pseudorandom permutation, the proof-then-prune approach is ultimately
a heuristic [17,20]. In this work, we will not consider any internal properties of
AES4 and AES10, and simply consider both AES4 and AES10 as secure prim-
itives: our attacks are independent of the debated proof-then-prune approach,
but rather center around the structural properties of Ẽ.

3.2 Weak Keys

The definition of Ẽ, and more specifically the generation of the key K from
I‖J‖L, reveals peculiar behavior. Particularly, if one of the subkeys I, J, L equals

230 B. Mennink

0128, the tweakable blockcipher allows for trivial collisions among different tweaks
and is insecure.

Lemma 1. The tweakable blockcipher Ẽ satisfies the following properties:

(i) If J = 0128, then Ẽ−1,i
I‖0128‖L = Ẽ−1,i′

I‖0128‖L for any i, i′ ∈ [0..7];

(ii) If I = 0128, then Ẽ0,i
0128‖J‖L = Ẽ0,i′

0128‖J‖L for any i, i′ ∈ [0..7];

(iii) If L = 0128, then Ẽj,i
I‖J‖0128 = Ẽj′,i

I‖J‖0128 for any j, j′ ≥ 3 and i ∈ N.

Proof. The properties are in fact a direct consequence of the definition of Ẽj,i
I‖J‖L

(see Sect. 3.1). Starting with (i): for subkey J = 0128 and tweak value j = −1,
we have

Ẽ−1,i
I‖0128‖L(X) = AES10K(X),

with K = (i ·0128, I, 0128, L, I, 0128, L, I, 0128, L, I). In other words, Ẽ−1,i
I‖0128‖L(X)

is independent of i, and we obtain that

Ẽ−1,i
I‖0128‖L = Ẽ−1,i′

I‖0128‖L

for any i, i′ ∈ [0..7]. The proof of (ii) and (iii) is equivalent: for (ii), Ẽ0,i
0128‖J‖L is

independent of i, and for (iii), Ẽj,i
I‖J‖0128 is independent of j ≥ 3 for all i ∈ N. ��

More properties can be derived in a similar fashion, but these three relations
suffice for the discussion of our attacks.

4 Weak Key Attacks on AEZ

We will perform three distinguishing attacks on AEZ, each of which exploits one
of the properties of Lemma 1 and distinguishes AEZ from random in at most
two queries. Note that if it is unknown which subkey equals 0128, hence it is
unknown which of the properties of Lemma 1 to exploit, all three attacks should
be evaluated and the complexity is five queries (at most).

The first two distinguishing attacks rely on weaknesses in Encipher-AEZ-
core, while the third one relies on a weakness in AEZ-hash. In these attacks, we
will consider an adversary that has access to either EK with random key K, or
its idealized counterpart π (cf. Sect. 2.1), and denote by O ∈ {EK , π} the oracle
to which the adversary has access.

4.1 Attack Exploiting Property (i)

Assume that J = 0128. Using Lemma 1 property (i), we can perform the following
distinguishing attack.

– Let N,A, τ be any nonce, associated data, and tag size;

Weak Keys for AEZ, and the External Key Padding Attack 231

– Let M be any message such that 384 ≤ |M | + τ < 511. Write M‖0τ =
Mu‖Mv‖Mx‖My, where |Mu| = |Mx| = |My| = 128 and |Mv| = |M |+τ−384 =:
�;

– Query C = O(N,A, τ,M) ∈ {0, 1}|M |+τ . Write C = Cu‖Cv‖Cx‖Cy, where
|Cu| = |Cx| = |Cy| = 128, and |Cv| = �;

– If

chop�

(

Mu ⊕ Cu ⊕ Mv ⊕ Cv
)

= 0�, (3)

output 0, otherwise output 1.

If O = EK , we have

chop�

(

Mu ⊕ Cu
)

= chop�

(

Ẽ−1,4
I‖0128‖L(S)

)

(i)
= chop�

(

Ẽ−1,5
I‖0128‖L(S)

)

= chop�

(

Mv ⊕ Cv
)

,

and (3) is satisfied by construction. Thus, the adversary always outputs 0 in the
real world. In the ideal world, if O = π, this condition is satisfied with probability
1/2�. Thus, the success probability of the attack is

Advrae
AEZ(A) = 1 − 1/2�,

where A makes 1 construction query of length |N |+ |A|+ |M |, and has negligible
time complexity. Recall that � = |M | + τ − 384, where M is a freely chosen
message. Hence, by taking |M | + τ = 511 the success probability of the attack
is 1 − 1/2127.

4.2 Attack Exploiting Property (ii)

Assume that I = 0128. Using Lemma 1 property (ii), we can perform the following
distinguishing attack.

– Let N,A, τ be any nonce, associated data, and tag size;
– Let 0 ≤ � < 128. Let Mv,M

′
v ∈ {0, 1}� be any two distinct message blocks.

Write Mu = Mv10∗ and M ′
u = M ′

v10∗. Let Mxy ∈ {0, 1}256−τ be any message
block. Write

M = Mu‖Mv‖Mxy and M = M ′
u‖M ′

v‖Mxy;

– Query C = O(N,A, τ,M) ∈ {0, 1}|M |+τ and C ′ = O(N,A, τ,M ′) ∈
{0, 1}|M ′|+τ . Write C = Cu‖Cv‖Cx‖Cy and C ′ = C ′

u‖C ′
v‖C ′

x‖C ′
y, where

|Cu| = |Cx| = |Cy| = |C ′
u| = |C ′

x| = |C ′
y| = 128, and |Cv| = |C ′

v| = �;
– If

Mu ⊕ Cu ⊕ M ′
u ⊕ C ′

u = 0128, (4)

output 0, otherwise output 1.

232 B. Mennink

The verification of the attack is a bit more complex than for case (i), and relies
on the key observation that in the real world, S = S′. In more detail, if O = EK ,
we have

X = Xu ⊕ Xv = Ẽ0,4
0128‖J‖L(Mu) ⊕ Ẽ0,5

0128‖J‖L(Mv10∗)
(ii)
= 0128, and

X ′ = X ′
u ⊕ X ′

v = Ẽ0,4
0128‖J‖L(M ′

u) ⊕ Ẽ0,5
0128‖J‖L(M ′

v10∗)
(ii)
= 0128.

In other words, X = X ′. Furthermore, as (τ,N,A) is the same in both evalua-
tions,

Δ = AEZ-hash(0128‖J‖L, τ,N,A) = Δ′.

Finally, the two different queries satisfy Mxy = M ′
xy. From Algorithm 2 we obtain

that the intermediate value S is a function of Mxy,X, and Δ, and thus,

S = S′.

We consequently obtain

Mu ⊕ Cu = Ẽ−1,4
0128‖J‖L(S) = Ẽ−1,4

0128‖J‖L(S′) = M ′
u ⊕ C ′

u,

and (4) is satisfied by construction. Thus, the adversary always outputs 0 in the
real world. In the ideal world, if O = π, this condition is satisfied with probability
1/2128. Thus, the success probability of the attack is

Advrae
AEZ(A) = 1 − 1/2128,

where A makes 2 construction queries of length |N |+|A|+|M |, and has negligible
time complexity.

4.3 Attack Exploiting Property (iii)

Assume that L = 0128. Using Lemma 1 property (iii), we can perform the fol-
lowing distinguishing attack.

– Let τ be any tag size and M any message such that 384 ≤ |M | + τ < 511;3

– Let N,N ′ ∈ {0, 1}128 be any two distinct nonces;
– Query C = O(N,N ′, τ,M) ∈ {0, 1}|M |+τ and C ′ = O(N ′, N, τ,M) ∈

{0, 1}|M |+τ ;
– If

C ⊕ C ′ = 0|M |+τ , (5)

output 0, otherwise output 1.
3 The condition on the message length is simply to assure that the attack goes via

Encipher-AEZ-core of Algorithm 2. As a matter of fact, AEZ-prf and Encipher-AEZ-
tiny use AEZ-hash in an identical way, and the attack applies equally well to messages
of a different length.

Weak Keys for AEZ, and the External Key Padding Attack 233

If O = EK , we have

Δ = AEZ-hash(I‖J‖0128, τ,N,N ′)

= Ẽ3,1
I‖J‖0128(〈τ〉128) ⊕ Ẽ4,1

I‖J‖0128(N) ⊕ Ẽ5,1
I‖J‖0128(N

′)

(iii)
= Ẽ3,1

I‖J‖0128(〈τ〉128) ⊕ Ẽ4,1
I‖J‖0128(N

′) ⊕ Ẽ5,1
I‖J‖0128(N)

= AEZ-hash(I‖J‖0128, τ,N ′, N) = Δ′.

It follows from Algorithm 2 that C = C ′, and that (5) is satisfied by con-
struction. Thus, the adversary always outputs 0 in the real world. In the ideal
world, if O = π, this condition is satisfied with probability 1/2|M |+τ . Thus, the
success probability of the attack is

Advrae
AEZ(A) = 1 − 1/2|M |+τ ,

where A makes 2 construction queries of length 256 + |M |, and has negligible
time complexity. Recall that τ can be freely chosen.

5 External Key Padding

We consider a specific scenario, called “external key padding,” which shows
the potential strength of the attacks of Sect. 4. Consider a user that uses AEZ
as a black box. Instead of plugging his key K ′ into AEZ directly, he naively
thinks speed-up could be achieved by artificially extending K ′ to a 384-bit key
in advance:4

K ← K ′‖0384−|K′|.

Alternatively, one could consider a scenario where two users communicate,
both set a part of the key, K ′

a and K ′
b, and the final key is established by padding

in the middle:

K ← K ′
a‖0384−|K′

a|−|K′
b|‖K ′

b.

Although these use cases may sound contrived at first sight, they cover a realistic
setting where a user of a scheme “misuses” it to suit the application. More gen-
erally, the scenario covers any form of poor key generation where K ∈ {0, 1}384
is generated according to a very weak key generation function. This could hap-
pen due to naive use of the user, key generation regulations enforced by service
providers, or whatsoever. See also Fig. 2. Note that in these cases, AEZ works
syntactically fine (as would any other authenticated encryption scheme) and will
not produce errors due to the abuse.
4 Here, it is implicitly assumed that K′ is of size at most 384 bits.

234 B. Mennink

Use case of AEZ

• K ← {0, 1}3·128 derived using poor key generation
• Evaluation of AEZ E and D:

K K
↓ ↓

N,A,τ,M−−−−−−→ AEZ AEZ
N,A,τ,C←−−−−−

C,T←−− E D M/⊥−−−→
• If K is weak, E can be distinguished from ideal π

Fig. 2. External key padding scenario. Here, the key K is generated in such a way that
it may, inadvertently, contain a 0128 subkey.

5.1 How Does AEZ Behave?

It is straightforward to see that in case of external key padding, the attacks of
Sect. 4 directly apply. Indeed, if a user of AEZ has a 256-bit key K ′ ∈ {0, 1}256,
and prematurely pads it to a 384-bit key as K = K ′‖0128, it obtains a weak
key K for which property (iii) of Lemma1 holds. Thus, the scheme can be
broken in at most two queries, making use of the fact that the last subkey
equals 0128. A similar reasoning applies to the case K ← K ′

a‖0128‖K ′
b, where

K ′
a,K ′

b ∈ {0, 1}128.

5.2 How Do Other Schemes Behave?

Intuitively, one would expect the security of the mode to decrease linearly with
the amount of key reduction. In other words, if the security advantage as a
function of the key size is O(2−|K|), then in case of the external key padding,
the distinguishing advantage would increase to O(2−|K′|).

It turns out that, in fact, the majority of the authenticated encryption
schemes show exactly this behavior. For instance, considering Sponge-based
authenticated encryption [1,4,7,11,14,19,22,23,27], the key is already padded
internally, and the external key padding has no influence. Alternatively, for
regular blockcipher-based modes such as OCB [21], SIV [26], and COPA [3],
the security of the mode is reduced to the security of the underlying EK , and
the adjustment from K ′ to K becomes captured in the blockcipher security
Advsprp

E (q, t).

6 Conclusion

Given the rarity of weak keys in AEZ (around 3 out of every 2128 keys), there is
little chance that a randomly selected key is weak, and it seems not possible to
break the security claims of AEZ using these weak keys. In addition, a simple
mitigation of our attacks consists of imposing that no subkey equals 0128. (But

Weak Keys for AEZ, and the External Key Padding Attack 235

there may be other weak keys as multiplications in the tweakable blockcipher
are performed in the finite field GF(2128) [16,24,28].)

Nevertheless, the observations do show a more peculiar weakness in AEZ,
namely that the underlying tweakable blockcipher is not sound. Even if a more
complicated key scheduling is used (as was done, for instance, in AEZ v2 and
v3), it is still straightforward to see that a certain fraction of the keys allows for
collisions in the tweakable blockcipher. In other words, while the issues with the
external key padding could be mitigated using a stronger key scheduling, the
issues with the tweakable blockcipher in AEZ are more structural.

Regardless of whether or not the external key padding scenario is relevant, it
sets the stage for a discussion of what one may expect of a highly secure authenti-
cated encryption scheme. Our observations (as well as the ones by Fuhr et al. [13]
and Chaigneau and Gilbert [9]) stand in sharp contrast with the usage of power-
ful terms like “robustness” and with what high-security authenticated encryption
embraces. Barwell et al. [6] already expressed their worries about the usage of the
“robustness” term in the context of robust authenticated encryption, and stated:
“Robustness characterizes the ability of a construct to be pushed right to the edge
of its intended use case (and possibly beyond).” Putting our attacks in this per-
spective, by padding outside the mode, one incorrectly uses that mode, but on the
other hand, “robust authenticated encryption” seems to imply that such modes
work properly as long as they are employed in a syntactically correct manner. From
this point of view, our attacks violate the robustness claims on AEZ.

Acknowledgments. Bart Mennink is supported by a postdoctoral fellowship from
the Netherlands Organisation for Scientific Research (NWO) under Veni grant
016.Veni.173.017. The author would like to thank his COSIC colleagues, the atten-
dees of Dagstuhl Symmetric Cryptography 2016, and the reviewers of CT-RSA 2017
for their comments and suggestions.

References

1. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02. (2015, Submission to CAE-
SAR competition)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 6

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42033-7 22

4. Aumasson, J., Jovanovic, P., Neves, S.: NORX v2.0. (2015, Submission to CAESAR
competition)

5. Aumasson, J., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: sim-
pler, smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P.,
Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-662-45611-8_6
http://dx.doi.org/10.1007/978-3-642-42033-7_22

236 B. Mennink

6. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: reconciling AE robust-
ness notions. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 94–111.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-27239-9 6

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Duplexing the sponge: single-pass
authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.)
SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28496-0 19

8. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

9. Chaigneau, C., Gilbert, H.: Is AEZ v4.1 sufficiently resilient against key-recovery
attacks? IACR Trans. Symmetric Cryptology 1(1), 114–133 (2016)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.1. (2015, Sub-
mission to CAESAR competition)

12. Espitau, T., Fouque, P.-A., Karpman, P.: Higher-order differential meet-in-the-
middle preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 683–701. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 33

13. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 21

14. Gligoroski, D., Mihajloska, H., Samardjiska, S., Jacobsen, H., El-Hadedy, M.,
Jensen, R.: π-Cipher v2.0. (2015, Submission to CAESAR competition)

15. Guo, J., Karpman, P., Nikolić, I., Wang, L., Wu, S.: Analysis of BLAKE2. In:
Benaloh, J. (ed.) Topics in Cryptology – CT-RSA 2014. LNCS, vol. 8366, pp.
402–423. Springer, Heidelberg (2014)

16. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 9

17. Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v4: Authenticated Encryption by
Enciphering. (2015, Submission to CAESAR competition)

18. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 2

19. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based
authenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 85–104. Springer, Berlin (2014). doi:10.1007/
978-3-662-45611-8 5

20. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
2-round advanced encryption standard (AES). IET Inf. Secur. 1(2), 53–57 (2007)

21. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

22. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 19

http://dx.doi.org/10.1007/978-3-319-27239-9_6
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://competitions.cr.yp.to/caesar.html
http://dx.doi.org/10.1007/978-3-662-47989-6_33
http://dx.doi.org/10.1007/978-3-662-48800-3_21
http://dx.doi.org/10.1007/978-3-540-85174-5_9
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-45611-8_5
http://dx.doi.org/10.1007/978-3-662-45611-8_5
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/978-3-662-48800-3_19

Weak Keys for AEZ, and the External Key Padding Attack 237

23. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wójcik, M.: ICEPOLE v2. (2015, Submission to CAE-
SAR competition)

24. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 15

25. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

26. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

27. Saarinen, M.-J.O.: Beyond modes: building a secure record protocol from a crypto-
graphic sponge permutation. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366,
pp. 270–285. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04852-9 14

28. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 13

http://dx.doi.org/10.1007/978-3-662-43933-3_15
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/11761679_23
http://dx.doi.org/10.1007/978-3-319-04852-9_14
http://dx.doi.org/10.1007/978-3-642-34047-5_13

Symmetric Key Constructions

Full Disk Encryption: Bridging
Theory and Practice

Louiza Khati1,2, Nicky Mouha3,4,5(B), and Damien Vergnaud1

1 École Normale Supérieure - CNRS - Inria, Paris, France
{Louiza.Khati,Damien.Vergnaud}@ens.fr
2 Oppida, Montigny-le-Bretonneux, France

3 Department of Electrical Engineering-ESAT/COSIC,
KU Leuven, Leuven and iMinds, Ghent, Belgium

nicky@mouha.be
4 Project-team SECRET, Inria, Paris, France

5 National Institute of Standards and Technology, Gaithersburg, MD, USA

Abstract. We revisit the problem of Full Disk Encryption (FDE), which
refers to the encryption of each sector of a disk volume. In the context
of FDE, it is assumed that there is no space to store additional data,
such as an IV (Initialization Vector) or a MAC (Message Authentica-
tion Code) value. We formally define the security notions in this model
against chosen-plaintext and chosen-ciphertext attacks. Then, we clas-
sify various FDE modes of operation according to their security in this
setting, in the presence of various restrictions on the queries of the adver-
sary. We will find that our approach leads to new insights for both theory
and practice. Moreover, we introduce the notion of a diversifier, which
does not require additional storage, but allows the plaintext of a par-
ticular sector to be encrypted to different ciphertexts. We show how a
2-bit diversifier can be implemented in the EagleTree simulator for solid
state drives (SSDs), while decreasing the total number of Input/Output
Operations Per Second (IOPS) by only 4%.

Keywords: Disk encryption theory · Full Disk Encryption · FDE ·
XTS · IEEE P1619 · Unique first block · Diversifier · Provable security

1 Introduction

The term Full Disk Encryption (FDE) is commonly used when every sector of a
disk volume is encrypted. There is typically no space to store any additional data,
such as an IV or a MAC. As explained by Ferguson [10], generic solutions to store
additional data will at least double the number of read and write operations,
and will significantly reduce the available disk space. They also change the disk
layout, which makes it extremely complicated to enable FDE on existing disks.

With this restriction, FDE cannot offer authentication, or at best “poor-
man’s authentication” [10], which is to hope that ciphertext changes will result in
a plaintext that is random enough to make the application crash. It can also not
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 241–257, 2017.
DOI: 10.1007/978-3-319-52153-4 14

242 L. Khati et al.

achieve chosen-plaintext indistinguishability: when the same data is encrypted
twice at the same sector index, the resulting ciphertexts will be identical.

Additional efficiency constraints may be imposed on FDE as well. For exam-
ple, it can be desirable to perform encryption and/or decryption in parallel,
which is not possible for inherently sequential constructions where the i-th plain-
text block of a sector cannot be processed until all previous plaintext blocks are
processed. If there is not enough memory available to store an entire sector, it
may be required that encryption and decryption are on-line, meaning that the
i-th block of a sector may only depend on the preceding blocks.

These implementation constraints impose severe restrictions on the algo-
rithms that can be used for FDE. A general problem in the domain of FDE, how-
ever, is that the security properties of the resulting constructions are not always
well-understood. On the other hand, cryptographers often complain about the
absence of well-defined cryptographic goals for FDE (see e.g. Rogaway [25]),
which are prerequisites to find a good-trade-off between security and efficiency.

Our Contributions. Firstly, we want to measure “how much security is left”
within the constraints of FDE. In order to do so, we introduce a theoretical
framework to capture that a FDE algorithm behaves as “randomly as possible”
subject to different practical constraints. We consider settings where the encryp-
tion oracle can be random-up-to-repetition, random-up-to-prefix or random-up-
to-block.

For each of the attack settings in the framework, we list an efficient con-
struction that achieves security within this setting. We recall existing security
results, and provide new proofs, in particular in the unique-first-block (ufb) set-
ting where the Operating System (OS) or application ensures that the first n
bits of the plaintext will not be repeated for a particular sector number, where
n is the block size of the underlying block cipher.

Our model recalls that the modes of operation CBC (Cipher Block Chaining)
and IGE (Infinite Garble Extension), even with a secret IV, do not achieve the
security properties that developers often wrongly assume for these constructions.
As already shown by Bellare et al. [1], CBC and IGE are not IND-CPA secure up-
to-prefix. We will prove, however, that both constructions are IND-CPA secure
under the ufb constraint.

Regarding chosen-ciphertext attacks, we point out that Added Redundancy
Explicit Authentication (AREA) [11] is not secure when used with CBC or IGE,
even when the IV is secret. The insecurity of constructions such as AREA was
already shown in 2001 by Jutla [20], but has nevertheless not yet been pointed
out in the context of FDE. We recall that there exist constructions that are
secure in this setting, such as TC2 and TC3 [26].

Secondly, we revisit the FDE constraints from an engineering point of view.
We show that it is possible to produce different ciphertexts for the same plain-
text at a particular sector index, without storing additional data. Our solution
applies to solid state drives (SSDs), where we show how the SSD firmware can be
modified to associate a diversifier to every sector. This is done without modifying

Full Disk Encryption: Bridging Theory and Practice 243

the data structures of the SSD, but by forcing data to be written to a particular
Logical Unit Number (LUN).

For any particular sector, the diversifier value must be unique. But as we
will explain later, additional requirements are necessary for performance reasons.
When looking at all sectors at any particular point in time, each diversifier value
should occur roughly the same number of times. Additionally, this diversifier
value can typically only be a few bits long. These requirements put the diversifier
in a class by itself, and not as a specific case of a random IV or a nonce (i.e. a
number that is only used once).

When we benchmarked our solution in a modified EagleTree simulator [8], we
found that it increases the average latency by at most 12% for reads and 2% for
writes, and that it reduces the SSD throughput (read and write combined) by less
than 4%. This paper provides the first efficient FDE solution that can achieve
indistinguishability against chosen-plaintext and chosen-ciphertext attacks.

Related Work. The problem of FDE has been researched extensively, see for
example Rogaway [25] for a provable security treatment, or Fruhwirth [11] for
an implementer’s perspective. The formal requirements of disk encryption are
often not clearly stated.

FDE is a topic that has gathered significant interest from industry and stan-
dardization, and often leads to application-specific solutions due to the special
requirements of full disk encryption. Of particular interest are the elephant dif-
fuser used in Microsoft’s BitLocker [10], or IEEE P1619’s XTS standard [17],
which later became a NIST recommendation [9] as well.

Throughout this paper, we assume that adversary has access to the disk
volume at any time. The adversary has (partial) knowledge and even control of
the plaintext, and can even change the ciphertext as well. We therefore go beyond
just “single point-in-time permanent offline compromise” (see e.g. [12,14]). Read
and write operations are assumed to be atomic (on a sector level), so we do not
consider blockwise adaptive attacks [18].

Sound key management is required to avoid that the plaintext contains the
key, or any function of the key [15]. Physical access threats (e.g. cold boot, DMA,
evil maid, or hot plug attacks [13,22]) are also outside the scope of this paper.

2 Disk Encryption Methods

Data is read and written in a sector-addressable device by fixed-length units
called sectors, usually 512 or 4096 bytes long. The OS can access a specific
sector by its sector number s. We consider the case of an encrypted disk volume
where data is encrypted by the OS before being stored.

We list the modes of operation that frequently appear in the context of FDE,
whether it be in academic literature or in practical implementations. We also
mention other modes with interesting security or efficiency properties.

ECB (Electronic Codebook). In the simplest encryption mode, the plaintext
is divided into blocks of n bits, and each block is encrypted separately using an

244 L. Khati et al.

s m1 m�. . .

. . .c0 c1 c3 c�

EK′ EK EK

CBC-essiv

s m1 m2 m3 m�. . .

. . .c0 c1 c2 c3 c�

EK′ EK EK EK

IGE-essiv

Fig. 1. Description of the CBC-essiv and IGE-essiv modes of operation.

n-bit block cipher. It can readily be used for FDE, even though it is well-known
that it does not provide adequate security.

CTR (Counter). This mode uses a counter (incremented for each block) that
is encrypted and then XORed with the plaintext block to output the cipher-
text block. Typically, the counter is the sector number, bit-shifted to the left
over a sufficient number of bits so that the least-significant bits can represent a
counter for the number of blocks in one sector. CTR mode is IND-CPA secure [3]
under the assumption that the counter is a nonce. In the context of FDE, this
assumption does not hold as sectors can be overwritten.

CBC. In this mode, each plaintext block is XORed with the previous ciphertext
block (or an IV for the first plaintext block) before being encrypted. To achieve
the IND-CPA security notion, it is well-known that the IV has to be a random
value [3]. However, for FDE, a first natural idea is to use the sector number as an
IV. Fruhwirth [11] proposed to use as an IV the encryption of the sector number
by the block cipher keyed with an independent key (see Fig. 1).1

IGE. IGE was proposed Campbell [7] as a variant of CBC mode where each
block of plaintext is XORed with the next ciphertext block (see Fig. 1). For
FDE, since the sector number is not secret, we will consider the variant where
the IV is the encryption of the sector number s in which s is not XORed to the
first ciphertext block. We will refer to this mode as IGE-essiv.

XTS. XTS [17] applies a tweakable block cipher to every n-bit block of a sector,
where the tweak depends on the sector number and on the index of the block
within the sector. It uses ciphertext stealing when the sector size is not a multiple
of n bits, however such sectors sizes are not considered in this paper.

TC1, TC2 and TC3. These modes for tweakable block ciphers were defined
by Rogaway and Zhang in [26]. The difference between these constructions is the
way the tweak is used:

1 Two distinct keys are needed: the message is encrypted with key K, and the IV is
encrypted with key K′ �= K (see Fig. 1), in order to avoid an attack by Rogaway [24].

Full Disk Encryption: Bridging Theory and Practice 245

– In TC1, the tweak is the previous ciphertext block as in the HCBC mode [1];
– In TC2, the tweak is the concatenation of the previous ciphertext block and

the previous plaintext block as in the HCBC2 mode [1];
– In TC3 mode, the tweak is the XOR of the previous ciphertext block and the

previous plaintext block as in the MHCBC2 mode [23].

WTBC (Wide Tweakable Block ciphers). In the context of FDE, the block
size of a WTBC is equal to the sector size, and the sector number is used
as the tweak input. From a security point of view, any change in the plain-
text or ciphertext affects the entire sector. A WTBC is typically realized using
smaller (tweakable) block ciphers, as for example in the EME (Encrypt-Mix-
Encrypt) [16] mode.

Our goal in this paper is to analyze these constructions and to evaluate their
security in different models.

3 Security Notions for FDE

In this section, we formalize several security notions for FDE. We first give a
formal syntactic definition of block-cipher-based FDE.

It is assumed that the plaintext of a sector is a multiple of n which is the
block cipher size. All plaintexts are � blocks of n bits. mi denotes the i-th block
of the plaintext m such that m = m1||m2||...||m� where || denotes concatenation
of strings. IND-CPA-xx corresponds to IND-CPA up-to-block, IND-CPA up-to-
prefix, IND-CPA up-to-repetition and IND-CPA.

Definition 1. Let k, n and � be three positive integers. A (k, n, �)-block-cipher-
based FDE scheme is a pair of algorithms (Enc,Dec) such that:

– Enc is the (deterministic) encryption algorithm which takes as input a key
K ∈ {0, 1}k, a sector number s ∈ {0, 1}n and a plaintext m ∈ {0, 1}�·n and
outputs a ciphertext c ∈ {0, 1}�·n;

– Dec is the (deterministic) decryption algorithm which takes as input a key
K ∈ {0, 1}k, a sector number s ∈ {0, 1}n and a ciphertext c ∈ {0, 1}�·n and
outputs a plaintext m ∈ {0, 1}�·n,

such that ∀(K, s,m) ∈ {0, 1}k+n+�·n : Dec(K, s,Enc(K, s,m)) = m.

For each security notion, we define two variants: security under Chosen-
Plaintext Attack (CPA) where the adversary is given access to the Encrypt
procedure and security under Chosen-Ciphertext Attack (CCA) where the adver-
sary is also given access to the Decrypt procedure. The adversary is not allowed
to query the decryption of a ciphertext that was previously returned by Encrypt
or vice versa.

Indistinguishability up-to-block. Each ciphertext block depends determin-
istically on the plaintext block, the sector number s and the block position in
the plaintext, but behaves as “randomly as possible” subject to this constraint.

246 L. Khati et al.

The corresponding game described in the full version of this paper [21] uses inde-
pendent random permutations Π(s,i) : {0, 1}n → {0, 1}n for each sector number
s and each block position i ∈ {1, . . . , �}. We specifically introduce this setting
to describe the security goal of XTS, see Rogaway [25] for a formal definition
(using a filter function) of what is known to leak by the XTS mode.

Indistinguishability up-to-prefix. For i ∈ {1, . . . , �}, the i-th ciphertext
block depends deterministically on the sector number s and all previous plaintext
blocks at position j for j ∈ {1, . . . , i}, but again behave as “randomly as possible”
subject to this constraint. The corresponding game described in the full version
of this paper [21] uses independent random permutations Πi

m : {0, 1}n → {0, 1}n

for each sector number s and each plaintext prefix m ∈ {0, 1}t·n for t ∈ {1, . . . , �}.
This notion corresponds to security notion described in [1] for on-line ciphers.

Indistinguishability up-to-repetition. Each ciphertext block depends deter-
ministically on the plaintext block and the sector number s, but behaves as “ran-
domly as possible” subject to this constraint. The corresponding game described
in the full version of this paper [21] uses independent random permutations
Πs : {0, 1}n → {0, 1}n for each sector number s. It is the best achievable notion
for (length-preserving) deterministic encryption [2].

As different ideal-world encryption oracles are used in the various security
notions, it is trivially possible to distinguish between the encryption oracles. For
example, for a fixed sector number and position on the plaintext, an IND-CPA
up-to-block construction always returns the same ciphertext block. This con-
struction does not reach IND-CPA up-to-prefix security, which requires indis-
tinguishablilty up to the longest common prefix for a fixed sector number. It
also does not satisfy IND-CPA up-to-repetition security, which requires indistin-
guishability up to repetition of the plaintext for a given sector number.

Analysis of Existing Constructions. We now analyze the FDE modes of
operation described in Sect. 2 with respect to these security notions. These results
are summarized in Table 1. The properties shown in the three last lines of Table 1
are relevant implementation properties, but are not taken into account in the
security proofs.

ECB mode. Unsurprisingly, ECB is not IND-CPA for any of our three security
notions.

CTR mode. CTR is not IND-CPA for any of our three security notions. An
adversary can simply query the encryption of m1 = 0n||m2||..||m� and m2 =
1n||m2||..||m� for the same sector number s (where m2, ...,m� can be any n-bit
blocks). The first blocks of the obtained ciphertexts c1 and c2 will always satisfy
c11 = c12 ⊕ 1n, whereas this property holds only with probability 2−n in all three
random worlds.

CBC mode. The attack on the CTR mode also applies to the variant of the
CBC mode where the sector number is used as an IV. In the context of FDE,

Full Disk Encryption: Bridging Theory and Practice 247

Table 1. The security of FDE modes of operation when no diversifier is used. Here,
✓ means that there is a security proof, and ✗ means that there is an attack. Proofs of
the security results can be found in Sect. 3. XTS: see [17]. TC1, TC2 and TC3 [26] are
generalizations of the HCBC1 [1], HCBC2 [1] and MHCBC [23] constructions. WTBC:
wide tweakable block cipher. The � symbol indicates that the property holds for some
constructions, but not for others. Here, x ≥ log2(�).

ECB CTR CBC CBC IGE XTS TC1 TC2/3 WTBC

IV → n/a s � x s EK′ (s) EK′ (s) s s s s

IND-CPA-block ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

IND-CPA-prefix ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

IND-CPA-repetition ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

IND-CPA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

IND-CCA-block ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

IND-CCA-prefix ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

IND-CCA-repetition ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

IND-CCA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

on-line enc./dec ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

parallelizable enc ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓�

parallelizable dec ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓�

this attack is known as a Saarinen’s watermarking attack [27]. Bellare et al. [1]
describe an attack on the CBC-based online cipher that shows that CBC-essiv is
not IND-CPA up-to-prefix. This attack can be adapted to construct an adversary
A for our three security notions:

1. A arbitrarily chooses (�−1) blocks m2, ..,m� and a sector number s. A builds
two plaintexts m1 = 0n||m2|| . . . ||m� and m2 = 1n||m2|| . . . ||m� that differ
only in their first block.

2. A queries the Encrypt procedure to obtain the encryption of m1 and m2 on
sector number s: c1b ||c2b || . . . ||c�

b ← Encrypt(s,mb) for b ∈ {1, 2}.
3. A builds m3 = 1n||m2

3||m3|| . . . ||m� where m2
3 = m2 ⊕ c11 ⊕ c12 and queries the

Encrypt procedure to obtain its encryption: c13||...||c�
3 ← Encrypt(s,m3)

4. A returns 0 to the Finalize procedure if c23 = c21 and 1 otherwise.

The equality c23 = c21 is always satisfied in the real world but holds only with
probability 2−n in all three random worlds.

IGE-essiv mode. The previous attack on the CBC-essiv mode can easily be
adapted to show that IGE-essiv is not IND-CPA for any of our three security
notions. The attack is identical except that the adversary A checks whether the
equality c23 = c21 ⊕ 1n holds or not.

XTS mode. As explained above, in XTS every plaintext block is encrypted
separately using a tweakable block cipher, where the tweak is derived from
the sector number and index of the block within the sector. As argued by

248 L. Khati et al.

Rogaway [25], XTS is IND-CPA up-to-block secure. For syntactic reasons, it
is not IND-CPA up-to-prefix nor IND-CPA up-to-repetition.

TC1, TC2, TC3 modes. Rogaway and Zhang [26] showed that TC1 is IND-
CPA up-to-prefix secure but not IND-CCA up-to-prefix. They also proved that
TC2 and TC3 are IND-CCA up-to-prefix (and thus also IND-CPA up-to-prefix)
secure. For syntactic reasons, they are not IND-CPA up-to-block nor IND-CPA
up-to-repetition.

WTBC modes. Halevi and Rogaway showed that EME is IND-CCA up-to-
repetition (and thus IND-CPA up-to-repetition) secure in [16]. For syntactic
reasons, these modes are not IND-CPA up-to-block nor IND-CPA up-to-prefix.

4 FDE Security with Unique First Block

Because encryption in the context of FDE is deterministic and length-preserving,
encrypting the same plaintext twice will always result in an identical ciphertext.
The OS or application may therefore want to use a particular encoding of the
plaintext, in order to ensure that the ciphertext will not be repeated. This corre-
sponds to Bellare and Rogaway’s Encode-Then-Encipher approach [4] to ensure
strong privacy. One thus has to determine which encoding is sufficient to ensure
security against CPA. In the context of security “up-to-block,” this would require
a large overhead, since encoding is then required for every block of a sector (typ-
ically 128 bits). However, for schemes that are IND-CPA “up-to-repetition” or
“up-to-prefix,” it is sufficient to ensure that the beginning of every message is
unique. This can be done by prepending either random data or a counter, as
suggested by Bellare and Rogaway [4].

In this section, we consider variants of the previous security notions with
unique first block (ufb) and we prove that IND-CPA security for CBC-essiv and
IGE-essiv under this assumption. An application that is aware of this restriction,
can therefore format its input such that the first block of every sector is unique.
The paper’s full version [21] gives a concrete example of such an application.

Relation to Previous Security Notions. The only difference between ufb
model and the previous model is that for a given sector number s, A cannot make
two queries to encrypt plaintexts that have same first block. So if a construction
is secure under a security notion described in Sect. 3, it is still the case in this
model. Furthermore, the IND-CPA up-to-prefix, IND-CPA up-to-repetition and
IND-CPA security notions become equivalent. This is easy to see: if the first block
of plaintext is not repeated, then this is sufficient to ensure that the plaintext
prefix or the entire plaintext is will not be repeated either.

Security Results. In this paragraph, we analyze the FDE modes of operation
described in Sect. 2 with respect to these security notions for unique first block.
These results are summarized in Table 2. For the security proofs of Theorems 1

Full Disk Encryption: Bridging Theory and Practice 249

Table 2. The security of FDE modes of operation when no diversifier is used, but the
first plaintext block unique for any given sector. Here, ✓ means that there is a security
proof, and ✗ means that there is an attack.

ECB CTR CBC CBC IGE XTS TC1 TC2/3 WTBC

IV → n/a s � x s EK′ (s) EK′ (s) s s s s

IND-CPA-block ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

IND-CPA-prefix ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

IND-CPA-repetition ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

IND-CPA ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

IND-CCA-block ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

IND-CCA-prefix ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

IND-CCA-repetition ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

IND-CCA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

on-line enc./dec ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

parallelizable enc ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓�

parallelizable dec ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓�

and 2, we used the code-based game playing framework [6]. The proofs can be
found in the full version of this paper [21].

ECB and CTR. The attacks described in Sect. 3 do not make queries with the
same first block and the same sector number, and therefore still apply.

CBC-essiv. For this mode, in the attack of Sect. 3, A makes forbidden queries
with the same first block. The following theorem states that CBC-essiv achieves
IND-CPA-ufb security if the underlying block cipher E is a Pseudo-Random
Function (PRF) [5].

Theorem 1 [The IND-CPA-ufb Security of CBC-essiv].
Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let A be an IND-CPA-ufb
adversary against the FDE scheme obtained from the CBC-essiv mode on E such
that A runs in time t and makes at most q queries to the Encrypt procedure.
There exists an adversary B (attacking the PRF security of E) such that:

Advind−cpa−ufb
cbc−essiv (A) ≤ 8 · Advprf

E (B) +
q2(� + 1)2

2n−1

where B runs in time at most t′ = t + O(q + nq(� + 1)) and makes at most
q′ = q(� + 1) queries to its oracle.

The following attack shows that it does not achieve IND-CCA-ufb up-to-
prefix security:

1. A chooses a plaintext m1 = m1
1||m2

1||..||m�
1 ∈ {0, 1}�·n and a sector number s

and queries the Encrypt procedure with (s,m1) to obtain c11||c21||..||c�
1.

250 L. Khati et al.

2. A builds a ciphertext c2 = c12||c22||..||c�
2 with c12 = c21, c22 = c31 and arbitrary

ci
2 ∈ {0, 1}n for i ∈ {3, . . . , �} and query the Decrypt procedure with (s, c2)

to obtain a plaintext m2 = m1
2||m2

2||..||m�
2.

3. A outputs 0 if m2
2 = m3

1 and 1 otherwise.

The equality m2
2 = m3

1 is always satisfied in the real world but this property
holds only with probability 2−n in the random world.

IGE-essiv. The following theorem states that the mode IGE-essiv achieves IND-
CPA-ufb security:

Theorem 2 [The IND-CPA-ufb Security of IGE-essiv]. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a block cipher. Let A be an IND-CPA-ufb adversary against
the FDE scheme obtained from the IGE-essiv mode on E such that A runs in
time t and makes at most q queries to the Encrypt procedure. There exists an
adversary B (attacking the PRF security of E) such that:

Advind−cpa−ufb
ige−essiv (A) ≤ 8 · Advprf

E (B) +
q2(� + 1)2

2n−1

where B runs in time at most t′ = t + O(q + nq(� + 1)) and makes at most
q′ = q(� + 1) queries to its oracle.

The following attack (inspired by Rohatgi [19]) shows that IGE-essiv does
not achieve IND-CCA-ufb up-to-prefix security:

1. A chooses a plaintext m1 = m1
1||m2

1||..||m�
1 ∈ {0, 1}�·n and a sector number s

and queries the Encrypt procedure with (s,m1) to obtain c11||c21||..||c�
1.

2. A builds a ciphertext c2 = c12||c22||..||c�
2 with c12 = c11, c22 = m2

1 ⊕ c31 ⊕ m1
1 and

arbitrary ci
2 ∈ {0, 1}n for i ∈ {3, . . . , �} and query the Decrypt procedure

with (s, c2) to obtain a plaintext m2 = m1
2||m2

2||..||m�
2.

3. A outputs 0 if m2
2 = m3

1 ⊕ c21 ⊕ c11 and 1 otherwise.

The equality m2
2 = m3

1 ⊕ c21 ⊕ c11 is always satisfied in the real world but this
property holds only with probability 2−n in the random world.

The TC1, TC2, TC3 and WTBC constructions become IND-CPA with the
ufb restriction because TC1/2/3 were IND-CPA up-to-prefix and WTBC con-
structions were IND-CPA up-to-repetition as explained in Sect. 3.

5 FDE Security with a Diversifier

Typically, IND-CPA cannot be reached for FDE, as the deterministic nature
of FDE means that identical plaintexts will result in identical ciphertexts. We
worked around this problem in the previous section by imposing a restriction on
the plaintext: the first plaintext block must be unique.

Now, we introduce another way to achieve IND-CPA, without imposing
restrictions on the plaintext, but still without storing additional data. Instead,
we will use a diversifier j, which will be associated to every sector.

Full Disk Encryption: Bridging Theory and Practice 251

To stay within the constraints of FDE, it should somehow be possible to
assign a diversifier to every sector without using additional storage. Possible
candidates in the particular case of SSDs will be considered in Sect. 6. For now,
it is enough to consider that for each encryption, a diversifier is picked among
{0, 1}d, in such a way this diversifier is never repeated for a particular sector.
Then two identical plaintexts with the same sector number will have different
ciphertexts, a property that could previously not be achieved within the context
of FDE.

The combination of the sector number s and the diversifier j is used instead
of the sector number in FDE constructions. The combination proposed is simply
the concatenation between these two values s||j such as s ∈ {0, 1}σ, j ∈ {0, 1}d

and n = d + σ.
For the analysis in this section, it suffices that the diversifier is never repeated

for a particular sector. As such, the security analysis is the same as if the diver-
sifier were a nonce. However, we will explain in Sect. 6 that efficiency reasons
require that at any particular point in time, all diversifier values should occur
roughly the same number of times, and that the diversifier must be a rather
short value, typically only a few bits.

Security Results. IND-CPA up-to-repetition becomes equivalent to IND-CPA
security: the only difference between these notions is that if A asks to encrypt
twice the same query (s,m) the answer will be the same ciphertext but these
queries are not allowed any more under the diversifier model. Moreover in IND-
CCA game, the adversary is not allowed to query the decryption of a cipher-
text what was previously encrypted, or vice versa. It can therefore be seen that
IND-CCA up-to-repetition becomes equivalent to IND-CCA. Similarly, since the
adversary A is not allowed to encrypt twice with the same pair s||j, the IND-CPA
up-to-block property is also equivalent to the other IND-CPA security notions.

Table 3 summarizes the security properties achieved by the FDE modes of
operation when used with a diversifier. The IND-CPA attacks of Sect. 3 still carry
over to ECB and CBC with a sector-number IV. However CTR mode becomes
secure as the counter value is not repeated [3]. The IND-CPA security of XTS,
TC1, TC2, TC3 and WTBC follows from the fact that the tweak is not reused.
For CBC-essiv and IGE-essiv, the IND-CPA security follows from the proof of
Sect. 4: now the first block may be reused, but the IV is unique.

Let us explain the attacks under IND-CCA in Table 3:

– This following attack shows that CTR is not IND-CCA-xx: A encrypts
(s||j,m) with m any plaintext and any s||j and receives c then A decrypts
(s||j, c′) where c′ = c ⊕ 0n−11. A. Then, m′1 = m1 ⊕ 0n−11 is always satisfied
in the real world, but holds only with probability 2−n in the ideal world.

– CBC-essiv and IGE-essiv are not secure: the attacks of Sect. 4 still apply, as
they did not perform two encryptions with the same sector number.

– For syntactical reasons, an encryption scheme can only be IND-CCA up-
to-block, IND-CCA up-to-prefix, or IND-CCA up-to-repetition. XTS is only

252 L. Khati et al.

IND-CCA up-to-block, TC2 and TC3 are only IND-CCA up-to-prefix and
WBTC are only IND-CCA up-to-repetition.

As shown in Table 3, the diversifier shows how to reach IND-CPA security for
most commonly-used FDE encryption modes. It also succeeds at providing IND-
CCA security for WTBC constructions, which not achievable in a “classical”
FDE model.

6 Solid State Drive

We now explain the basics of SSD storage, so that we can explain how to modify
only the firmware of SSDs to associate a diversifier to every sector. This diversi-
fier allows us to encrypt the same plaintext in distinct ways for the same sector
number.

Table 3. The security of FDE modes of operation when a diversifier is used. Here, ✓

means that there is a security proof, and ✗ means that there is an attack.

ECB CTR CBC CBC IGE XTS TC1 TC2/3 WTBC

IV → n/a s‖j � x s‖j EK′ (s‖j) EK′ (s‖j) s‖j s‖j s‖j s‖j

IND-CPA-block ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

IND-CPA-prefix ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

IND-CPA-repetition ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

IND-CPA ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

IND-CCA-block ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

IND-CCA-prefix ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

IND-CCA-repetition ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

IND-CCA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

on-line enc./dec ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

parallelizable enc ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓�

parallelizable dec ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓�

SSDs are flash memory devices that are gradually replacing the magnetic
Hard Disk Drive (HDD) due to their reliability and performance. Just like HDDs,
they are sector-addressable devices. They are indexed by a sector number that
is also known as a Logical Block Address (LBA). This ensures that the physical
details of the storage device are not exposed to the OS, but are managed by the
firmware of the storage device.

For SSDs, the Flash Translation Layer (FTL) stores the mapping between
LBAs and Physical Block Addresses (PBAs). This FTL is necessary to ensure
an even distribution of writes to every sector number (wear leveling) and to
invalidate blocks so that they can later be recycled (garbage collection). This
FTL is necessary due to the physical constraints of flash storage: any physical
address can only be written a limited number of times, and rewriting individual
sectors is not possible: invalidated sectors can only be recovered in multiples of
the erase block size.

Full Disk Encryption: Bridging Theory and Practice 253

SSD Components. The flash memory of an SSD is hierarchically organized
as a set of flash chips called packages, which are further divided in dies, planes,
blocks2 and pages. Every page consists of one or more sectors, and is the small-
est unit that can be written. The smallest unit that can be erased in a block.
Invalidated blocks must be erased before writing, and the number of erasures
and writes to every block is limited for flash storage.

To abstract away the notion of packages, dies and planes, the Open NAND
Flash Interface (ONFI) standard introduces the notion of Logical Unit Number
(LUN) as the minimum granularity of parallelism for flash storage. As operations
can be issued to several planes in parallel, a LUN corresponds to a plane.

Introducing a Diversifier. In the context of SSD storage, we will show how to
associate a diversifier to every LBA. This diversifier will not be stored, and will
not modify the data structures of the SSD. Instead, the diversifier will impose
an additional restriction on the FTL, meaning that the diversifier determines
which PBAs can store the data corresponding to a particular LBA.

The intuition is that if the diversifier is selected “randomly” for every write
operation, the data will be spread out evenly over the SSD, and the SSD per-
formance should not be affected too much. We will verify this by implementing
and benchmarking our proposed solution in Sect. 6.

When a write command is issued, there are various ways to specify a diver-
sifier value for a given LBA. We will prefer to transmit this information in one
operation. As such, we do not only avoid the performance drawbacks of issuing
several operations to write one sector, but we also do not need to worry about
inconsistent states when operations are lost, modified, or reordered.

In particular, we propose to send the diversifier along with the sector data as
part of a “fat” sector that is already supported in SATA (Serial ATA) interface
for storage devices. This diversifier value will be returned to the OS when a fat
sector read command is issued.

In an attempt to make the diversifier as long as possible, we may want to con-
sider the optimal (yet completely unrealistic) scenario: the diversifier uniquely
specifies the physical page to which the data must be written. But even then,
the size of the diversfier typically be very short: e.g. only 24 bits in case of an
128 GB SSD with 8 kB pages. We will, in fact, choose the diversifier to be much
shorter, so that a practical implementation is possible that minimally modifies
the SSD firmware. This diversifier cannot be selected at random, as it would
be too short to avoid repetitions for a particular sector. But it can also not be
a counter, as all diversifier values should be used roughly an equal number of
times over all sectors to spread the writes over the entire disk layout.

In our solution, we want to avoid that the SSD needs to send data back to
the host for decryption and re-encryption under a different diversifier, as this
would affect the SSD performance quite drastically. Therefore, wear leveling and
garbage collection operations may not change the diversifier. A straightforward
2 These blocks should not be confused with the blocks of the block cipher, nor with

the “block” (actually “sector”) in the term Logical Block Address (LBA).

254 L. Khati et al.

solution is then to make the diversifier correspond to the LUN (or a set of LUNs),
which is what we will implement and benchmark in the following section.

The OS can freely select the diversifier values, however they may not be
repeated for any particular sector, and all diversifier values should be used
roughly the same number of times. In the paper’s full version [21], we give a
concrete example of an application where the OS implements such diversifier.
More specifically, we show how the OS can ensure randomness and uniqueness
even for very short diversifier values.

EagleTree Benchmarks. In order to confirm that the concept of a diversifier
is not just feasible but also efficient to implement, we implemented this feature in
the EagleTree SSD simulator [8] and performed various benchmarks. An overview
of the source code modifications can be found in the paper’s full version [21].

Table 4. EagleTree Benchmarks for various diversifier sizes.

diversifier size (bits)

0 1 2 3

read latency (μs) 28.292 28.862 31.619 40.640

write latency (μs) 32.009 32.070 32.470 34.560

read throughput (IOPS) 20860 20493 19050 15634

write throughput (IOPS) 31240 31181 30797 28935

garbage collector reads 1284043 1295530 1356043 1489623

garbage collector writes 1284043 1295530 1356041 1489622

erasures 18569 18765 19661 21634

The device that is simulated consists of eight packages, each containing four
dies of 256 blocks. Each block consists of 128 pages of 4096 bytes. EagleTree
currently does not support multiple planes per die. The page read, page write,
bus ctrl, bus data and block erase delays are 5, 20, 1, 10 and 60 μs respectively.
We assume that any latencies incurred by the OS (including sector encryption
and decryption) are negligible with respect to these numbers. The SSD has an
overprovisioning factor of 0.7.

We simulate an SSD configured with DFTL and the greedy garbage collection
policy. The base benchmarks use a simple block scheduler that assigns the next
write to whichever package is free. We then compare this performance to various
choices of the diversifier value, which determines the package for every write.

The workload used in our benchmarks, is the same as the example in Eagle-
Tree’s demo.cpp file: first a large write is made to the entire logical address
space. This write is performed in random order, but without writing to the same
address twice. Once this large write is finished, two threads are started up: one
performs random reads, and the other performs random writes in the address
space. After three million I/O operations, the simulation is stopped.

Full Disk Encryption: Bridging Theory and Practice 255

The benchmark results are shown in Table 4. They suggest that not to choose
the number of diversifier values to be equal to the number of packages, as the
impact on performance is quite significant. Compared to the benchmarks without
diversifier, the throughput of the reads and writes drop by 25% and 7% respec-
tively. The average latency increases by 44% for reads, and 8% for writes. In this
setup, the reads and writes of each garbage collection operation are restricted to
one package, and this affects performance quite significantly. Reads suffer more
than writes; this is mainly because there is no significant drop in performance
for the initial write operations to fill up the SSD.

To avoid the large impact on performance, we must therefore choose the
number of diversifier values to be smaller than the number of packages. When
the diversifier is two bits, our simulations show an increase of the average latency
of 12% for reads and 1% for writes, and a reduction of throughput of 9% for reads
and 1% for writes. The total throughput reduction (reads and writes combined)
is at most 4%. For a diversifier of one bit, latency and throughput are affected
by less than 2%. We also looked into the number of garbage collection and the
number of erasures. They worsen by less than 6% for a diversifier of two bits,
but by 16% for a diversifier of three bits.

7 Conclusion

We presented a theoretical framework for disk encryption and we analyzed
several existing constructions against chosen-plaintext and chosen-ciphertext
attacks, under different notions of the ideal-world encryption oracle: up-to-
repetition, up-to-prefix, or up-to-block.

Using this model, we recalled that IGE-essiv does not have chosen-ciphertext-
security under any of the notions that we consider, which shows that the AREA
construction proposed by Fruhwirth [11] is insecure. Nevertheless, we proved
that IGE-essiv and even CBC-essiv can provide security under chosen-plaintext
attacks, under the assumption that the first block of a plaintext is never repeated
for the same sector number.

We also revisited FDE from an engineering perspective, and showed how to
modify the firmware of a solid-state drive to associate a short “diversifier” to
every sector-plaintext pair (s,m). This diversifier makes it possible to encrypt the
same plaintext into different ciphertexts, something that was previously impos-
sible without additional storage.

Acknowledgments. Nicky Mouha is supported by a Postdoctoral Fellowship from
the Flemish Research Foundation (FWO-Vlaanderen), by a JuMo grant from KU Leu-
ven (JuMo/14/48CF), and by FWO travel grant 12F9714N. Certain algorithms and
commercial products are identified in this paper to foster understanding. Such identifi-
cation does not imply recommendation or endorsement by NIST, nor does it imply that
the algorithms or products identified are necessarily the best available for the purpose.
Damien Vergnaud is supported in part by the French ANR JCJC ROMAnTIC project
(ANR-12-JS02-0004).

We thank Matias Bjørling, Luc Bouganim, Niv Dayan and Javier Gonzalez for their
useful comments and suggestions on SSD technology.

256 L. Khati et al.

References

1. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: On-line ciphers and
the hash-CBC constructions. J. Cryptology 25(4), 640–679 (2012)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently search-
able encryption. In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO
2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74143-5 30

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press
(1997)

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 24

5. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography. In: UCSD CSE
207 Course Notes, 207 pages (2005). http://cseweb.ucsd.edu/∼mihir/cse207/

6. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Berlin (2006). doi:10.1007/
11761679 25

7. Campbell, C.M.: Design and specification of cryptographic capabilities. IEEE Com-
mun. Soc. Mag. 16(6), 15–19 (1978)

8. Dayan, N., Svendsen, M.K., Bjørling, M., Bonnet, P., Bouganim, L.: EagleTree:
exploring the design space of SSD-based algorithms. PVLDB 6(12), 1290–1293
(2013)

9. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices. NIST SP 800–38E (2010)

10. Ferguson, N.: AES-CBC + Elephant diffuser: A Disk Encryption Algorithm for
Windows Vista (2006). http://www.microsoft.com/en-us/download/details.aspx?
id=13866

11. Fruhwirth, C.: New methods in hard disk encryption. Master’s thesis, Vienna Uni-
versity of Technology (2005)

12. Gjøsteen, K.: Security notions for disk encryption. In: Vimercati, S.C., Syverson,
P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 455–474. Springer,
Heidelberg (2005). doi:10.1007/11555827 26

13. Götzfried, J., Müller, T.: Analysing android’s full disk encryption feature. JoWUA
5(1), 84–100 (2014)

14. Halcrow, M., Savagaonkar, U., Ts’o, T., Muslukhov, I.: EXT4 Encryption Design
Document (public version). Google Technical report (2015)

15. Halevi, S.: Re: Lrw key derivation (formerly pink-herring). IEEE P1619 Mailing
List, May 2006

16. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24660-2 23

17. IEEE: IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices. IEEE Std 1619–2007, pp. 1–32 (2008)

18. Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers revisiting the
(in)security of some provably secure encryption modes: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Berlin (2002).
doi:10.1007/3-540-45708-9 2

http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/3-540-44448-3_24
http://cseweb.ucsd.edu/~mihir/cse207/
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://www.microsoft.com/en-us/download/details.aspx?id=13866
http://www.microsoft.com/en-us/download/details.aspx?id=13866
http://dx.doi.org/10.1007/11555827_26
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/3-540-45708-9_2

Full Disk Encryption: Bridging Theory and Practice 257

19. Jutla, C.: Attack on Free-MAC (2000). https://groups.google.com/d/msg/sci.
crypt/4bkzm n7UGA/5cDwfju6evUJ

20. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 32

21. Khati, L., Mouha, N., Vergnaud, D.: Full Disk Encryption: Bridging Theory and
Practice. Cryptology ePrint Archive, Report 2016/1114, full version of this paper
(2016)

22. Müller, T., Freiling, F.C.: A systematic assessment of the security of full disk
encryption. IEEE Trans. Dependable Sec. Comput. 12(5), 491–503 (2015)

23. Nandi, M.: Two new efficient CCA-secure online ciphers: MHCBC and MCBC.
In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol.
5365, pp. 350–362. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5 27

24. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 22

25. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. Technical
report, CRYPTREC Investigation Report (2011)

26. Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19074-2 16

27. Saarinen, M.-J.O.: Encrypted watermarks and linux laptop security. In: Lim, C.H.,
Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 27–38. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-31815-6 3

https://groups.google.com/d/msg/sci.crypt/4bkzm_n7UGA/5cDwfju6evUJ
https://groups.google.com/d/msg/sci.crypt/4bkzm_n7UGA/5cDwfju6evUJ
http://dx.doi.org/10.1007/3-540-44987-6_32
http://dx.doi.org/10.1007/978-3-540-89754-5_27
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-642-19074-2_16
http://dx.doi.org/10.1007/978-3-540-31815-6_3

Revisiting Full-PRF-Secure PMAC
and Using It for Beyond-Birthday

Authenticated Encryption

Eik List1(B) and Mridul Nandi2

1 Bauhaus-Universität Weimar, Weimar, Germany
eik.list@uni-weimar.de

2 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

Abstract. This paper proposes an authenticated encryption scheme,
called SIVx, that preserves BBB security also in the case of unlimited
nonce reuses. For this purpose, we propose a single-key BBB-secure mes-
sage authentication code with 2n-bit outputs, called PMAC2x, based on
a tweakable block cipher. PMAC2x is motivated by PMAC TBC1k by
Naito; we revisit its security proof and point out an invalid assumption.
As a remedy, we provide an alternative proof for our construction, and
derive a corrected bound for PMAC TBC1k.

Keywords: Symmetric cryptography · Message authentication codes ·
Authenticated encryption · Provable security

1 Introduction

Nonce-Based Authenticated Encryption. Authenticated encryption (AE)
schemes aim at protecting both the privacy and the integrity of submitted mes-
sages. Authenticated encryption schemes that allow to authenticate not only the
encrypted message, but also associated data, are commonly known as AEAD
schemes [22]. The common security notions for AE schemes concern the preven-
tion of any leakage about the encrypted messages except for their lengths. Since
stateless schemes would enable adversaries to detect a duplicate encryption of
the same associated data and message under the current key, Rogaway proposed
nonce-based encryption [24], where the user provides an additional nonce for
every message she wants to process. In theory, the concept of nonces is simple.
However, the practice has shown numerous examples of implementation fail-
ures, and settings that render it difficult to almost impossible to prevent nonce
reuse (cf. [8]). Before the CAESAR competition, the majority of widely used AE
schemes protected neither the confidentiality nor the integrity of messages in the
case of nonce repetitions. As a consequence, a considerable number of CAESAR
candidates aimed a certain level of security if nonces repeat (e.g., [1,9,10,15]).

Parallelizable MACs in Authenticated Encryption. Block-cipher-based
message authentication codes (MACs) are important components not only for
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 258–274, 2017.
DOI: 10.1007/978-3-319-52153-4 15

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 259

authentication, but also as part of AE schemes, where they are used to derive an
initialization vector (IV) that is then used for encryption. In particular, paral-
lelizable MACs like PMAC [6] allow to process multiple blocks in parallel, which
is beneficial for software performance on current x64 processors. Since PMAC
has several further desirable properties, e. g. being online and incremental, it is
not a surprise that all the CAESAR candidates cited above essentially combine
a variant of PMAC (or its underlying hash function) with a block-cipher-based
mode of operation for efficiently processing associated data and message.

Beyond-Birthday-Bound AE. Besides performance, the quantitative security
guarantees are important aspects for AE schemes. The privacy and authenticity
guarantees of the AE schemes cited above are limited by the birthday bound of
O(�2/2n), where n denotes the state size of the underlying primitive, and � the
number of blocks processed over all queries. Since the schemes above possess an
n-bit state, a state collision that leads to attacks has significant probability after
approximately 2n/2 blocks have been processed under the same key.

To address this issue, Peyrin and Seurin presented Synthetic Counter in
Tweak (SCT) [20], a beyond-birthday-bound (BBB) AE scheme based on a
tweakable block cipher under a single key. Internally, SCT is a MAC-then-
Encrypt composition: the MAC part is a PMAC-like construction, called
EPWC. The encryption part is Counter-in-Tweak (CTRT), an efficient mode of
operation that takes an n-bit nonce and an n-bit IV. Both EPWC and CTRT
guarantee BBB security as long as nonces never repeat. However, the security of
the nonce-IV-based CTRT degrades to the birthday bound with an increasing
number of nonce reuses; even worse, the security of EPWC (and consequently
that of SCT) immediately reduces to the birthday bound if a single nonce repeats
once. In [21, p. 7], the extended version of [20], the authors remarked therefore
(among others) the following open problem: “[...] to construct an AE scheme
which remains BBB-secure even when nonces are arbitrarily repeated. The main
difficulty is to build a deterministic, stateless, BBB-secure MAC, which is known
to be notably hard”. Intuitively, an efficient block-cipher-based BBB-secure MAC
with 2n bit output length could allow to construct such a deterministic AE
scheme.1 Thus, this work will put a large focus on the construction of BBB-
secure MACs.

Previous Work. Naito [17] proposed two MACs with full PRF security based
on a tweakable block cipher: PMAC TBC3k and PMAC TBC1k. While the
former requires three keys, the latter uses tweak-based domain separation to
require only a single key. Extending the latter seemed a well-suited starting point
for our work since such a MAC could be combined in straight-forward manner
with a BBB-secure mode of encryption. Though, during our studies, we found
that the analysis in [17] assumed internal values to be independent, which—as
we will show—cannot always be guaranteed. Since the proof depended largely

1 We stress that BBB-secure AE is not new if one considers schemes with multiple
primitives and keys. For the sake of space limitations, a discussion can be found in
the full version of this work [11].

260 E. List and M. Nandi

Table 1. Previous parallel BBB-secure MACs. (T)BC = (tweakable) block cipher,
q = max. #queries, m = max. #blocks per query, � = max. total #blocks.

Primitive Construction Keys Output size Advantage Reference

BC PMAC+ 3 n O(q3m3/22n + qm/2n) [25]

1k PMAC+ 1 n O(qm2/2n + q3m4/22n) [7]

TBC PMAC TBC3k 3 n O(q2/22n) [17]

PMAC TBC1k 1 n O(q/2n + q2/22n) [17]

PMACx 1 n O(q2/22n + q3/23n) Section 5

PMAC2x 1 2n O(q2/22n + q3/23n) Section 4

on this aspect, we developed an alternative analysis for our construction and
derived a corrected bound for a PMAC TBC1k-like variant with n-bit output.
So, despite the assumption in the original proof, we confirm that Naito’s MAC
is secure for close to 2n−2 blocks processed under the same key.

Contribution. Our contributions are threefold: first, we propose a BBB-secure
parallelizable MAC, called PMAC2x, which produces 2n-bit outputs and bases
on a tweakable block cipher. Figure 1 provides a schematic illustration. Our
MAC differs from PMAC TBC1k mainly in the fact of the extended output,
and minorly in the point that we add support for inputs whose length is not
a multiple of n. As our second contribution, we briefly revisit the analysis by
Naito on PMAC TBC1k and show that we can easily adapt our proof for
PMAC2x and derive a secure variant that we call PMACx which XORs both
its outputs and produces only n-bit tags. Table 1 compares our constructions to
earlier parallelizable BBB-secure MACs. As our third contribution, we combine
PMAC2x with the purely IV-based variant of Counter-in-Tweak to a single-
primitive, single-key deterministic authenticated encryption scheme, which we
call SIVx, and which provides BBB-security without assumptions about nonces.

Earlier Parallelizable MACs. A considerable amount of works considered
parallel MACs; parallel XOR-MACs have already been introduced in 1995 by
Bellare et al. [2]; their constructions fed the message blocks together with a
counter into a primitive to obtain stateful and randomized MACs. Bernstein [5]
published the Protected Counter Sum (PCS), which transformed an XOR-
MAC with an independent PRF into a stateless deterministic MAC. PMAC
was described by Black and Rogaway first in [6], and was slightly modified to
PMAC1 in [23]. Since then, the security of PMAC has been rigorously stud-
ied in various works [12,14,16,18,19]. The first BBB-secure parallelizable MAC
was proposed by Yasuda [25]; His PMAC+ construction is a three-key version
of PMAC which possesses two n-bit state values, which are processed by two
independently keyed PRPs, and are XORed to produce the tag. Datta et al. [7]
derived a single-key version thereof, called 1k PMAC+. While those are rate-1
designs with larger internal state, there also exist slightly less efficient propos-
als with smaller state. Yasuda [26] introduced PMAC with parity (PMAC/P),
which processes each sequence of r consecutive message blocks in PMAC-like

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 261

M1 M2 Mm 10∗

2 2 2

. . .

. . .

. . .

E0,1
K E0,2

K E1,m
K

E2,Ym
K

E3,Xm
K

U

V

X0
X1 X2 Xm

Y0
Y1 Y2 Ym

Conv

Conv

Fig. 1. Processing an m-block message with a partial final block in PMAC2x. Ẽ :
{0, 1}k ×{0, 1}d ×{0, 1}t ×{0, 1}n → {0, 1}n denotes a tweakable block cipher, Conv :
{0, 1}n → {0, 1}t a regular function, and � multiplication in Galois-Field GF(2n).

manner, but inserts the XOR sum of those r blocks as an additional block.
Zhang’s PMACX construction [27] generalized PMAC/P by multiplying the
input with an MDS matrix before authentication. In a similar direction goes
LightMAC [13], a lightweight variant similar to Bernstein’s PCS. However, the
security guarantees of all earlier parallelizable MACs in this paragraph are far
from the optimal PRF bound.

2 Preliminaries

General Notation. We use lowercase letters x, y for indices and integers, upper-
case letters X,Y for binary strings and functions, calligraphic uppercase letters
X ,Y for sets; X ‖Y for the concatenation of binary strings X and Y , and X ⊕Y
for their bitwise XOR. We indicate the length of X in bits by |X|, and write
Xi for the i-th block, X[i] for the i-th most-significant bit of X, and X[i..j]
for the bit sequence X[i], . . . ,X[j]. We denote by X � X that X is chosen
uniformly at random from the set X . We define Func(X ,Y) for the set of all
functions F : X → Y, Perm(X) for the set of all permutations π : X → X , and
P̃erm(T ,X) for the set of tweaked permutations over X with tweak space T .
We define by X1, . . . , Xj

x←− X an injective splitting of a string X into blocks of
x-bit such that X = X1 ‖ · · · ‖Xj , |Xi| = x for 1 ≤ i ≤ j − 1, and |Xj | ≤ x. For
two sets X and Y, let X ∪←− Y denote X ← X ∪ Y. A uniform random function
ρ : X → Y is a random variable uniformly distributed over Func(X ,Y). Given
a function F : X → Y, we write domain(F) for the set of all inputs X ∈ X to
F that occurred before (i.e., excluding) the current query; similarly, we write
range(F) for the set of all outputs Y ∈ Y that occurred before the current query.
We borrow the notation for a restriction on a set from [8]: let Q ⊆ (X ×Y ×Z)∗,
then we denote by Q|Y,Z = {(Y,Z) | ∃X : (X,Y,Z) ∈ Q} the restriction of Q to
values Y ∈ Y and Z ∈ Z. This generalizes in the obvious way.

262 E. List and M. Nandi

For an event E, we denote by Pr[E] the probability of E. We write 〈x〉n for
the binary representation of an integer x as an n-bit string, or short 〈x〉 if n is
clear from the context, in big-endian manner, e. g., 〈1〉4 would be encoded to
(0001).

Adversaries. An adversary A is an efficient Turing machine that interacts with
a given set of oracles that appear as black boxes to A. We denote by AO the
output of A after interacting with some oracle O. We write ΔA(O1;O2) for the
advantage of A to distinguish between oracles O1 and O2. All probabilities are
defined over the random coins of the oracles and those of the adversary, if any.
We write AdvX

F (q, �, θ) := maxA{AdvX
F (A)} for the maximal advantage over

all X-adversaries A on F that run in time at most θ and pose at most q queries
of at most � blocks in total to its oracles. Wlog., we assume that A never asks
queries to which it already knows the answer.

We will provide pseudocode descriptions of the oracles, which will be referred
to as games, according to the game-playing framework by Bellare and Rogaway
[3]. Each game consists of a set of procedures. We define Pr[G(A) ⇒ x] as the
probability that the game G outputs x when given A as input.

Definition 1 (TPRP Advantage). Let Ẽ : K × T × X → X be a tweak-
able block cipher with non-empty key space K and tweak space T . Let A a
computationally bounded adversary with access to an oracle, where K � K
and π̃ � P̃erm(T ,X). Then, the TPRP advantage of A on Ẽ is defined as
AdvTPRP

Ẽ
(A) := ΔA(ẼK ; π̃).

A MAC is a tuple of functions F : K × X → Y with non-empty key space K,
and a generic verification function Verify : K × X × Y → {1,⊥}, where for all
K ∈ K and X ∈ X , VerifyK(X,Y) returns 1 iff FK(X) = Y and ⊥ otherwise.
We use ⊥, when in place of an oracle, to always return the invalid symbol ⊥. It
is well-known that if F is a secure PRF, it is also a secure MAC; however, the
converse statement is not necessarily true.

Definition 2 (PRF Advantage). Let F : K×X → Y be a function with non-
empty key space K, and A a computationally bounded adversary with access to
an oracle, where K � K and ρ � Func(X ,Y). Then, the PRF advantage of A
on F is defined as AdvPRF

F (A) := ΔA(FK ; ρ).

3 Definition of PMAC2x and PHASHx

This section defines the generic PMAC2x construction and its underlying hash
function PHASHx. Fix integers k, n, t, d, with d ≥ 2. Let K = {0, 1}k and T =
{0, 1}t be non-empty sets of keys and tweaks, respectively. Moreover, derive a set
of domains D := {0, 1, 2, 3} = {0, 1}d which are encoded as their respective d-bit
values, and a domain-tweak set T ′ := D×T . Let M ⊆ ({0, 1}n)∗ denote an input
space. Further, let Ẽ : K×T ′×{0, 1}n → {0, 1}n denote a tweakable block cipher.
We will often write ẼD,T

K (·) as short form of Ẽ(K,D, T, ·). K ∈ K, D ∈ D, and

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 263

Algorithm 1. Definition of PMAC2x[Ẽ] and its internal hash function
PHASHx[Ẽ] with a tweakable block cipher Ẽ : K×{0, 1}d ×{0, 1}t ×{0, 1}n →
{0, 1}n. n, t, and d denote state, tweak and domain sizes, respectively.

11: function PMAC2x[ẼK](M)

12: (Xm, Ym) ← PHASHx[ẼK](M)

13: X̂m ← Conv(Xm)

14: Ŷm ← Conv(Ym)

15: U ← Ẽ2,Ŷm
K (Xm)

16: V ← Ẽ3,X̂m
K (Ym)

17: return (U ‖ V)

21: function Conv(X)
22: if t ≥ n then
23: return X
24: return X[1..t]

31: function ẼD,T
K (X)

32: T̃ ← 〈D〉d ‖ T [1..t]

33: return ẼT̃
K(X)

41: function PHASHx[ẼK](M)
42: X0 ← 0n; Y0 ← 0n

43: (M1, . . . , Mm)
n←− M

44: for i ← 1 to m − 1 do
45: Zi ← Ẽ

0,〈i〉
K (Mi)

46: Xi ← Xi−1 ⊕ Zi

47: Yi ← 2 · (Yi−1 ⊕ Zi)

48: if |Mm| = n then

49: Zm ← Ẽ
0,〈m〉
K (Mm)

50: else
51: M∗

m ← Mm ‖ 10n−|Mm|−1

52: Zm ← Ẽ
1,〈m〉
K (M∗

m)

53: Xm ← Xm−1 ⊕ Zm

54: Ym ← 2 · (Ym−1 ⊕ Zm)
55: return (Xm, Ym)

T ∈ T denote key, domain, and tweak, respectively. Conv : {0, 1}n → {0, 1}t be
a regular function2 which is used to convert the outputs of PHASHx, Xm and
Ym, so they can be used as tweaks of Ẽ in the finalization step. We denote by
PMAC2x[Ẽ] and PHASHx[Ẽ] the instantiation of PMAC2x and PHASHx

with Ẽ. Both are defined, with a default instantiation of Conv, in Algorithm1.

4 Security Analysis of PMAC2x

Theorem 1. Let Ẽ and PMAC2x[Ẽ] be defined as in Sect. 3. Let d + t = n,
and let m < 2t denote the maximum number of n-bit blocks of any query. Then

AdvPRF
PMAC2x[Ẽ]

(q, �, θ) ≤ 22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)

+ AdvTPRP
Ẽ

(� + 2q,O(θ + � + 2q)).

The final term results from a standard argument after replacing the tweakable
block cipher Ẽ by a random tweakable permutation π̃ � P̃erm(T ′, {0, 1}n).
Let A be an adversary that makes at most q queries of at most m blocks each
and of at most � blocks in total. We assume, A does not ask duplicate queries
and has the goal to distinguish between a PMAC2x[π̃] oracle with an internally
sampled tweaked permutations π̃ and a random function ρ : {0, 1}∗ → {0, 1}2n.

We consider the game described in Algorithm 2. The game without the boxed
statements coincides with a random function ρ, whereas the game with them
2 A function is called regular iff all outputs are produced by an equal number of inputs.

264 E. List and M. Nandi

Algorithm 2. Main Game, initialization, finalization, and subroutines. Boxed
statements belong exclusively to the real world.

1: procedure Initialize
2: badU ← false; badV ← false; Q ← ∅
3: X0 ← 0n; Y0 ← 0n; b � {0, 1}

11: function Finalize(b′)
12: bad ← badU ∨ badV
13: return b′ = b ∨ bad

21: function Oracle(M)
22: (Xm, Ym) ← PHASHx[π̃](M)

23: X̂m ← Conv(Xm)

24: Ŷm ← Conv(Ym)
25: U � {0, 1}n

26: V � {0, 1}n

27: if (X̂m, Ŷm) ∈ Q|X̂m,Ŷm
then

28: (U, V) ← Case1(Xm, Ym, X̂m, Ŷm)

29: else if U ∈ range(π̃2,Ŷm) ∧
30: V ∈ range(π̃3,X̂m) then

31: (U, V) ← Case2(Xm, Ym, X̂m, Ŷm)

32: else if U ∈ range(π̃2,Ŷm) ∧
33: V �∈ range(π̃3,X̂m) then

34: (U, V) ← Case3(X̂m, Ŷm, U, V)

35: else if U �∈ range(π̃2,Ŷm) ∧
36: V ∈ range(π̃3,X̂m) then

37: (U, V) ← Case4(X̂m, Ŷm, U, V)

38: else if U �∈ range(π̃2,Ŷm) ∧
39: V �∈ range(π̃3,X̂m) then

40: (U, V) ← Case5(X̂m, Ŷm, U, V)

41: Q ∪←− {(X̂m, Ŷm, U, V)}
42: π̃2,Ŷm [Xm] ← U

43: π̃3,X̂m [Ym] ← V
44: return (U ‖ V)

95: function Case5(X̂m, Ŷm, U, V)
96: return (U, V)

51: function Case1(Xm, Ym, X̂m, Ŷm)

52: if Xm ∈ domain(π̃2,Ŷm) then

53: U ← π̃2,Ŷm [Xm]

54: else

55: U � {0, 1}n \ range(π̃2,Ŷm)

56: if Ym ∈ domain(π̃3,X̂m) then

57: V ← π̃3,X̂m [Ym]

58: else

59: V � {0, 1}n \ range(π̃3,X̂m)

60: badU ← badV ← true
61: return (U, V)

71: function Case2(Xm, Ym, X̂m, Ŷm)

72: U � {0, 1}n \ range(π̃2,Ŷm)

73: V � {0, 1}n \ range(π̃3,X̂m)

74: badU ← badV ← true
75: return (U, V)

81: function Case3(X̂m, Ŷm, U, V)

82: U � {0, 1}n \ range(π̃2,Ŷm)

83: badU ← true
84: return (U, V)

91: function Case4(X̂m, Ŷm, U, V)

92: V � {0, 1}n \ range(π̃3,X̂m)

93: badV ← true
94: return (U, V)

exactly represents PMAC2x[π̃], performing lazy sampling for the permutations
π̃2,Ŷm(·) and π̃3,X̂m(·), for all X̂m, Ŷm ∈ {0, 1}t. Both algorithms differ only when
bad events occur. Hence, by the fundamental lemma of game playing [4], it holds

Pr[APMAC2x[π̃](·) ⇒ 1] − Pr[Aρ(·) ⇒ 1] ≤ Pr[A sets bad].

In the remainder, we consider five cases which cover all possibilities:

– Case1: (X̂m, Ŷm) ∈ Q|X̂m,Ŷm
.

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 265

– Case2: (X̂m, Ŷm) �∈ Q|X̂m,Ŷm
∧ U ∈ range(π̃2,Ŷm) ∧ V ∈ range(π̃3,X̂m).

– Case3: (X̂m, Ŷm) �∈ Q|X̂m,Ŷm
∧ U ∈ range(π̃2,Ŷm) ∧ V �∈ range(π̃3,X̂m).

– Case4: (X̂m, Ŷm) �∈ Q|X̂m,Ŷm
∧ U �∈ range(π̃2,Ŷm) ∧ V ∈ range(π̃3,X̂m).

– Case5: (X̂m, Ŷm) �∈ Q|X̂m,Ŷm
∧ U �∈ range(π̃2,Ŷm) ∧ V �∈ range(π̃3,X̂m).

We list Case 5 only for the sake of completeness. It is easy to see that in Case 5,
the output of the game is indistinguishable between the worlds. We use M i, X̂i

m,
Ŷ i

m, U i, V i to refer to the respective values of the i-th query, where i ∈ [1, q],
and assume it is the current query of the adversary. Additionally, we will use
indices j and k, where j, k ∈ [1, i − 1], to refer to previous queries.

Case1: For this case, we revisit the fact that for two fixed disjoint queries M i

and M j , the values Xm and Ym are results of two random variables. A variant
of the proof is given e.g. in [17, Sect. 3.3], and revisited in the following only
for the sake of completeness. Fix query indices i ∈ [1, q] and j ∈ [1, i − 1]. Let
m and m′ denote the number of blocks of the i-th and j-th query, respectively;
moreover, let Xi

m, Y i
m denote the values Xm and Ym of the i-th query and Xj

m′ ,
Y j

m′ those of the j-th query, respectively. Xi
m, Y i

m, Xj
m, and Y j

m result from:

Xi
m = Ci

1 ⊕ Ci
2 ⊕ · · · ⊕ Ci

m Y i
m = 2mCi

1 ⊕ 2m−1Ci
2 ⊕ · · · ⊕ 2 · Ci

m,

Xi
m′ = Cj

1 ⊕ Cj
2 ⊕ · · · ⊕ Cj

m′ Y j
m′ = 2m′

Cj
1 ⊕ 2m′−1Cj

2 ⊕ · · · ⊕ 2 · Cj
m′ .

So, we want to bound the probability for the following equational system:

Ci
1 ⊕ Ci

2 ⊕ · · · ⊕ Ci
m = Cj

1 ⊕ Cj
2 ⊕ · · · ⊕ Cj

m′

2mCi
1 ⊕ 2m−1Ci

2 ⊕ · · · ⊕ 2 · Ci
m = 2m′

Cj
1 ⊕ 2m′−1Cj

2 ⊕ · · · ⊕ 2 · Cj
m′ .

There exist three distinct subcases which cover all possibilities:

– Subcase 1: m �= m′. In this case, the equations above provide a unique
solution set for two random variables; thus, the probability that the equations
hold for two fixed queries is upper bounded by 1/(2n − (i − 1))2.

– Subcase 2: m = m′ and there exists α ∈ [1,m] s.t. Ci
α �= Cj

α and for
all β ∈ [1,m] with β �= α: Ci

β = Cj
β. In this case, both messages share only

a single different output block. Thus, the equations above never hold.
– Subcase 3: m = m′ and there exist distinct β ∈ [1,m] with β �= α:

Ci
β = Cj

β. In this case, both messages share only a single different output
block. Thus, the equations above can never hold.

So, the probability for two fixed disjoint queries M i and M j that (Xi
m, Y i

m) =
(Xj

m′ , Y
j
m′) holds, is bounded by 1/(2n − q)2. Since X̂i

m and Ŷ i
m are derived from

Xi
m and Y i

m, respectively by a regular function (and so are X̂j
m and Ŷ j

m derived
from Xj

m′ and Y j
m′ , respectively), it follows that the probability of (X̂i

m, Ŷ i
m) =

(X̂j
m′ , Ŷ

j
m′) to hold for the i-th and j-th query, with j ∈ [1, i − 1], is at most

(i − 1) · 2d

(2n − q)
· 2d

(2n − q)
=

22d(i − 1)
(2n − q)2

.

266 E. List and M. Nandi

Case2: In this case, there exists some previous query (X̂j
m′ , Ŷ

j
m′ , U j , V j) s.t.

U = U j ∧ Ŷm = Ŷ j
m′ , and a distinct previous query (X̂k

m′′ , Ŷ k
m′′ , Uk, V k) s.t.

V = V k ∧ X̂m = X̂k
m′′ . From our assumption (X̂m, Ŷm) �∈ Q|X̂m,Ŷm

, it follows
that j �= k; otherwise, the current query would have stepped into Case1 instead.
We can bound the probability by

Pr
[

(U = U j ∧ Ŷm = Ŷ j
m′) ∧ (V = V k ∧ X̂m = X̂k

m′′)
]

≤ Pr
[

U = U j ∧ Ŷm = Ŷ j
m′ ∧ V = V k | X̂m = X̂k

m′′

]

.

U and V are chosen independently and uniformly at random from {0, 1}n each,
and can collide with at most i− 1 previous values U j and at most i− 1 previous
values V k, respectively. For fixed j and k, the probability for U to collide with
U j is upper bounded by 1/2n, and independently, the probability for V to collide
with V k is also 1/2n. Since the game chooses U and V independently from Ym,
the probability that Ŷm collides with Ŷ j

m′ is at most 2d/(2n−q) since we assumed
that the adversary poses no duplicate queries, and therefore, Ym and Y j

m′ are
results of two random variables. Since the collision of U = U j already fixes the
colliding query pair, there is no additional factor (i − 1) for the choice of which
pairs of Ŷm and Ŷ j

m′ to collide. It follows that the probability for this case to
occur at the i-th query is upper bounded by

i − 1
2n

· i − 2
2n

· 2d

2n − q
≤ 2d(i − 1)2

22n(2n − q)
.

Case3: In this case, there exists some previous query (X̂j
m′ , Ŷ

j
m′ , U j , V j) s.t.

U = U j ∧ Ŷm = Ŷ j
m′ . From our assumption (X̂m, Ŷm) �∈ Q|X̂m,Ŷm

and Ŷm = Ŷ j
m′

follows that X̂m �= X̂j
m′ holds, like in Case2. We can bound the probability by

Pr
[

U = U j ∧ Ŷm = Ŷ j
m′ ∧ V �∈ range(π̃3,X̂m)

]

≤ Pr
[

U = U j ∧ Ŷm = Ŷ j
m′ | V �∈ range(π̃3,X̂m)

]

.

For a fixed j-th query, the probability that Ŷm collides with Ŷ j
m′ is at most

2d/(2n − q). Since U is chosen uniformly at random from {0, 1}n and indepen-
dently from Ym, U can collide with U j with probability 1/2n. So, the probability
of this case to occur for the i-th query can be upper bounded by

2d

2n − q
· i − 1

2n
=

2d(i − 1)
2n(2n − q)

.

Case4: In this case, it holds that V = V j ∧ X̂m = X̂j
m′ . From (X̂m, Ŷm) �∈

Q|X̂m,Ŷm
and X̂m = X̂j

m′ follows here that Ŷm �= Ŷ j
m′ holds, analogously to

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 267

Case2 and Case3. We can bound the probability by

Pr
[

V = V j ∧ X̂m = X̂j
m′ ∧ U �∈ range(π̃2,Ŷm)

]

≤ Pr
[

V = V j ∧ X̂m = X̂j
m′ | U �∈ range(π̃2,Ŷm)

]

.

Obviously, this case can be handled similarly as Case3. For a fixed j-th query,
the probability that X̂m collides with X̂j

m′ is at most 2d/(2n − q). Since V is
chosen uniformly at random from {0, 1}n and independently from Xm, V can
collide with V j with probability 1/2n. So, the probability of this case to occur
for the i-th query can also be upper bounded by

2d(i − 1)
2n(2n − q)

.

Taking the terms from all cases and the union bound over at most q queries
gives

Pr [A sets bad] ≤
q

∑

i=1

(
22d(i − 1)
(2n − q)2

+
2d(i − 1)2

22n(2n − q)
+ 2 · 2d(i − 1)

2n(2n − q)

)

≤ 22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)
.

5 Security Analysis of PMACx

This section considers a variant of PMAC2x, PMACx, that adds a final XOR to
produce only an n-bit tag, following the design of PMAC TBC1k. A schematic
illustration is given in Fig. 2. We revisit the assumption by Naito, and show that
our proof of PMAC2x needs only a slight adaption for PMACx.

Previous Analysis. Theorem 2 in [17] proves the security of PMAC TBC1k
with the help of an analysis of multi-collisions of the final chaining values (Xm

and Ym in our notation). Note that our notation differs from [17] to be consistent
to our previous section. Define two monotone events mcoll1 and mcoll2. Let ρ
and ξ denote positive integers and define three sets X , Y, and Q which store the
values X̂i

m, Ŷ i
m, and the tuples (Xi

m, Ŷ i
m), respectively, of the queries 1 ≤ i ≤ q.

mcoll1 := (∃ X̂1
m, . . . , X̂ρ

m ∈ X s.t. X̂1
m = . . . = X̂ρ

m)

∨ (∃ Ŷ 1
m, . . . , Ŷ ρ

m ∈ Y s.t. Ŷ 1
m = . . . = Ŷ ρ

m),

mcoll2 := ∃ (X1
m, Ŷ 1

m), . . . , (Xξ
m, Ŷ ξ

m) ∈ Q s.t. (X1
m, Ŷ 1

m) = . . . = (Xξ
m, Ŷ ξ

m).

The original proof further defined a monotone compound event mcoll := mcoll1∨
mcoll2 and used the fact that

Pr [A sets bad] = Pr [A sets bad ∧ mcoll] + Pr [A sets bad ∧ ¬mcoll]
≤ Pr [mcoll1] + Pr [mcoll2] + Pr [A sets bad|¬mcoll] .

268 E. List and M. Nandi

M1 M2 Mm 10∗

2 2 2

. . .

. . .

. . .

E0,1
K E0,2

K E1,m
K

E2,Ym
K

E3,Xm
K

U

V

T

X0
X1 X2 Xm

Y0
Y1 Y2 Ym

Conv

Conv

Fig. 2. PMACx, the variant of PMAC2x with n-bit output, following the design of
PMAC TBC1k.

The analysis in [17] bounds Pr[mcoll1] as

Pr[mcoll1] ≤ 2 · 2t ·
(

q

ρ

)

·
(

2n−t

2n − q

)ρ

≤ 2t+1 ·
(

2n−t · eq

ρ(2n − q)

)ρ

,

using Stirling’s approximation x! ≥ (x/e)x for any x. Note, in PMAC TBC1k,
the domain size in PMAC2x is fixed to d = 2 bits. The bound above con-
sists of the probability that ρ values are all equal, (2n−t/(2n − q))ρ; the fact
that there are 2t tweak values; and the

(
q
ρ

)

possible ways to choose ρ out of q
values. However, the bound holds only if the ρ colliding tweaks stem from ρ
linearly independent random variables, which is not necessarily the case. Imag-
ine a sequence of 2m queries which combine pair-wise distinct blocks {Mi,M

′
i}

with Mi �= M ′
i , for 1 ≤ i ≤ m position-wise, i. e., we have 2m queries of

m blocks each: Q0 = (M1,M2,M3, . . . ,Mm), Q1 = (M ′
1,M2,M3, . . . ,Mm),

Q2 = (M1,M
′
2,M3, . . . ,Mm), . . . , Q2m−1 = (M ′

1,M
′
2,M

′
3, . . . ,M

′
m). When used

as queries to PMAC TBC1k, the 2m resulting values Xi
m, for 0 ≤ i ≤ 2m − 1,

depend on the linear combination of only 2m random variables. A similar argu-
ment holds for the values Y i

m, as well as for the similarly treated bound of mcoll2.
Thus, the multi-collision bound demands a significantly more detailed analysis.

Fixing the Analysis. From our proof for PMAC2x, we can now derive a
corollary for a similar security bound for PMACx, which again can be easily
transformed into a bound for PMAC TBC1k.

Corollary 1. Let Ẽ and PMAC2x[Ẽ] be defined as in Sect. 3. Let d + t = n,
and let m < 2t denote the maximum number of n-bit blocks of any query. Then,
it holds that AdvPRF

PMACx[Ẽ]
(q, �, θ) ≤ AdvPRF

PMAC2x[Ẽ]
(q, �, θ).

The proof can use a game almost identical to that in Algorithm2, where we only
modify Line 44 to return the XOR of U and V . This is shown in Algorithm3.
All further procedures and functions remain identical to those in Algorithm2.

If (U ‖V) is indistinguishable from outputs of a 2n-bit random function ρ,
then each of the n-bit outputs U and V can be considered random. It follows,

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 269

Algorithm 3. The updated game for the security proof of PMACx. Only the
double-boxed statement changes compared with the game in Algorithm 2.

21: function Oracle(M)
22: . . .
42: π̃2,Ŷm [Xm] ← U

43: π̃3,X̂m [Ym] ← V

44: return T ← U ⊕ V

if U is indistinguishable from n-bit values, then the XOR sum of U ⊕ V is also
indistinguishable from a random n-bit value. Hence, the PRF advantage of A
on PMACx is upper bounded by that of an adversary A′ on PMAC2x with an
equal amount of resources as A; hence, the corollary follows.

PMACx and PMAC TBC1k differ in three aspects: (1) PMACx allows
messages whose length is not a multiple of n bits by padding the final block
with 10∗ and using a distinct tweak for it; (2) PMACx defines a generic d-bit
domain encoding and defines a conversion function Conv for deriving the inputs
for the finalization; and (3) PMACx adds a final doubling for a simpler and
consistent description. Clearly, none of the differences affects the distribution of
final chaining values X̂m and Ŷm. Hence, when fixing d = 2, a security result for
PMACx can be easily carried over to a bound for PMAC TBC1k.

6 Definition and Security Analysis of SIVx

Next, we define the deterministic AE scheme SIVx, which combines PMAC2x
and the IV-based Counter-in-Tweak mode IVCTRT. We recall the definitions
of IV-based encryption and Deterministic AE security in the full version of this
work [11]. Note, that it is straight-forward to derive a nonce-based AE scheme
by fixing the nonce length and appending the nonce to the associated data.

IVCTRT. IVCTRT denotes the version of Counter in Tweak [21, Appendix C],
which takes a 2n-bit random IV plus the message for each encryption. Let T =
{0, 1}t, and T ′ = {0, 1}×T . The mode first splits (U, V) n←− IV , and uses a given
tweakable block cipher Ẽ : K × T ′ × {0, 1}n → {0, 1}n in counter mode, with V
as cipher input. Next, it derives T ← Conv′(U) from U with a regular function
Conv′ : {0, 1}n → T and increments T for every call to Ẽ using addition
modulo 2t. We denote by IVCTRT[Ẽ] the instantiation of IVCTRT with Ẽ;
from Theorem 1 and Appendix C in [21], we recall the following theorem:

Theorem 2 (ivE Security of IVCTRT). Let π̃ � P̃erm(T ′, {0, 1}n) be an
ideal tweakable block cipher. Let A be an adversary which asks at most q queries
of at most 8 ≤ � ≤ |T | blocks in total. Then

AdvivE
IVCTRT[π̃](A) ≤ 1

2n
+

1
|T | +

4� log q

|T | +
� log2(�)

2n
.

270 E. List and M. Nandi

A1 A2 Aa 10∗

2

2

2

2

2

2

X0

Y0

0n

0n

Xa

Ya

Xm

Ym

Mm 10∗

U

U

V VV

V

. . .

. . .

. . .

. . .

. . .

. . .

. . .

E6,1
K E6,2

K E7,a
K

E4,1
K E4,2

K E5,m
K

Conv

Conv

Conv

E2
K

E3
K

T

M1

M1

M2

M2

Mm

C1 C2 Cm

T T+1 T+m−1E1
K E1

K E1
K

PMAC2x[E]

IVCTRT[E]

Fig. 3. The deterministic AE scheme SIVx from the composition of PMAC2x[Ẽ]

(top), and the IVCTRT[Ẽ] mode of encryption (bottom) [20]. The figure starts the
message processing in PMAC2x from 0n only to prevent that X0 and Y0 cancel out.

Definition of SIVx. We define the deterministic AE scheme SIVx[Ẽ] as
the composition of PMAC2x[Ẽ] and IVCTRT[Ẽ], as given in Algorithm 4. A
schematic illustration of the encryption process is depicted in Fig. 3. In general,
we denote by SIVx[F,Π] the instantiation of SIVx with a function F and an
IV-based encryption scheme Π in SIVx. To use the same key in all calls to Ẽ, we
parametrize PHASHx to separate the domains. We use the domains 2 = (0010)2
and 3 = (0011)2 for the finalization steps, 4 = (0100)2 and 5 = (0101)2 for
processing the associated data, as well as 6 = (0110)2 and 7 = (0111)2 for
processing the message in PMAC2x. We encode them into the d = 4 most sig-
nificant bits of the tweak. Inside IVCTRT, however, we use the single-bit domain
1 in all calls to Ẽ for we lose only a single bit from the IV. For concreteness, we
define the initial values in PMAC2x as X0 = Y0 = 0n.

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 271

Algorithm 4. Definition of SIVx[Ẽ]. Note that IVCTRT[Ẽ] and its inverse
IVCTRT−1[Ẽ] are identical operations. Moreover, we define PHASHx[Ẽ]D1,D2

to denote PHASHx[Ẽ] using D1 as domain for processing full blocks, and using
D2 for a potential partial final block of the input to PHASHx.

11: function SIVx[ẼK](A, M)

12: tag ← PMAC2x[ẼK](A, M)
13: (U, V)

n←− tag
14: IV ← Conv′(U) ‖ V

15: C ← IVCTRT[ẼK](IV, M)
16: return (C,tag)

21: function Conv′(U)
22: return T ← U [1..t]

31: function IVCTRT[ẼK](IV, M)
32: (T, V) ← IV
33: (M1, . . . , Mm)

n←− M
34: for i ← 1 to m − 1 do
35: Ci ← Ẽ

1,T+(i−1)
K (V) ⊕ Mi

36: Sm ← Ẽ
1,T+(m−1)
K (V)[1..|Mm|]

37: Cm ← Sm ⊕ Mm

38: return C ← (C1 ‖ . . . ‖ Cm)

41: function SIVx−1[ẼK](A, C,tag)
42: (U, V)

n←− tag
43: IV ← Conv′(U) ‖ V

44: M ← IVCTRT−1[ẼK](IV, C)

45: tag′ ← PMAC2x[ẼK](A, M)
46: if tag = tag′ then
47: return M
48: return ⊥
51: function PMAC2x[ẼK](A, M)

52: (Xa, Ya) ← PHASHx[ẼK]4,5(A)

53: (Xm, Ym) ← PHASHx[ẼK]6,7(M)

54: X̂m ← Conv(Xm ⊕ Xa ⊕ X0)

55: Ŷm ← Conv(Ym ⊕ Ya ⊕ Y0)

56: U ← Ẽ2,Ŷm
K (Xm)

57: V ← Ẽ3,X̂m
K (Ym)

58: return IV ← (U ‖ V)

Theorem 3 (DAE Security of SIVx). Let F : K1 ×A×M → {0, 1}2n, and
let Π = (Ẽ , D̃) be an IV-based encryption scheme with key space K2 and IV space
IV. Let K1 � K1 and K2 � K2 be independent. Let Conv′ : {0, 1}n → IV be a
regular function. Let A be a DAE adversary running in time at most θ, asking
at most q queries of at most 8 ≤ � < 2t blocks in total. Then, it holds that

AdvDAE
SIVx[F,Π](A) ≤ AdvivE

Π (θ + O(�), q, �) + AdvPRF
F (θ + O(�), q, �) +

q

2n
.

We defer the proof of Theorem3 to the full version of this work [11]. Inserting the
bounds from Theorems 1 and 2, we obtain the corollary below, where F denotes
PMAC2x[Ẽ] and Π represents IVCTRT[Ẽ].

Corollary 2. Fix positive integers k, n, t and d = 4. Define d + t = n and let
T = {0, 1}t and T ′ = {0, 1}d × {0, 1}t, and IV = {0, 1}n−1. Let Ẽ : K × T ′ ×
{0, 1}n → {0, 1}n, and Conv′ : {0, 1}n → IV be a regular function. Let K � K
and A be a DAE adversary that runs in time at most θ, and asks at most q
queries of at most 8 ≤ � < 2t blocks in total. Then

AdvDAE
SIVx[Ẽ]

(A) ≤ 22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)
+

4� log q + 1
2n−1

+

q + 1 + � log2(�)
2n

+ AdvTPRP
Ẽ

(θ + O(2� + 2q), 2� + 2q).

272 E. List and M. Nandi

7 Conclusion

This work revisited the PMAC TBC1k construction by Naito for construct-
ing a MAC with beyond-birthday-bound (BBB) security and 2n-bit outputs,
called PMAC2x. We identified a critical assumption in the previous analysis of
PMAC TBC1k and circumvented it by a new proof for PMAC2x; moreover,
we could easily derive a proof for PMACx, a variant of our PMAC2x con-
struction with n-bit outputs. So, we also provided a corrected bound for Naito’s
construction. We obtained the positive result that all three constructions provide
PRF security for up to O(q2/22n +q3/23n) queries. With the help of PMAC2x,
we constructed a BBB-secure AE scheme from a tweakable block cipher whose
security is independent of nonces and which depends on a single primitive under
a single key. We are aware that the 2n-bit tag of SIVx requires still as many
bits to be transmitted as for the 2n-bit nonce-IV in SCT; future work could
study how an appropriate truncation could reduce the transmission overhead
while retaining BBB security.

Acknowledgments. The authors would like to thank Yusuke Naito and the anony-
mous reviewers for fruitful comments that helped improve our work.

References

1. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M.,
Tischhauser, E., Yasuda, K.: COLM v1 (2016). Submission to the CAESAR com-
petition. http://competitions.cr.yp.to/caesar-submissions.html

2. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995). doi:10.
1007/3-540-44750-4 2

3. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. IACR Cryptology ePrint Archive, 2004:331 (2004)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/
11761679 25

5. Bernstein, D.J.: How to stretch random functions: the security of protected counter
sums. J. Crypt. 12(3), 185–192 (1999)

6. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 25

7. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Building single-key beyond
birthday bound message authentication code. IACR Cryptology ePrint Archive,
2015/958 (2015)

8. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 12

http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-44750-4_2
http://dx.doi.org/10.1007/3-540-44750-4_2
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/978-3-642-34047-5_12

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday 273

9. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 2

10. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1.4 (2016). Third-round submission to the
CAESAR competition. http://competitions.cr.yp.to/caesar-submissions.html

11. List, E., Nandi, M.: Revisiting Full-PRF-Secure PMAC and using it for beyond-
birthday authenticated encryption. Cryptology ePrint Archive (2016, to appear)

12. Luykx, A., Preneel, B., Szepieniec, A., Yasuda, K.: On the influence of message
length in PMAC’s security bounds. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 596–621. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 23

13. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-52993-5 3

14. Mandal, A., Nandi, M.: An improved collision probability for CBC-MAC and
PMAC. IACR Cryptology ePrint Archive, 2007:32 (2007)

15. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275–292. Springer, Berlin (2014). doi:10.1007/978-3-642-55220-5 16

16. Minematsu, K., Matsushima, T.: New bounds for PMAC, TMAC, and XCBC.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 434–451. Springer, Berlin
(2007). doi:10.1007/978-3-540-74619-5 27

17. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 167–
182. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4 9

18. Nandi, M.: A unified method for improving PRF bounds for a class of blockcipher
based MACs. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 212–
229. Springer, Berlin (2010). doi:10.1007/978-3-642-13858-4 12

19. Nandi, M., Mandal, A.: Improved security analysis of PMAC. J. Math. Crypt.
2(2), 149–162 (2008)

20. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Berlin (2016). doi:10.1007/978-3-662-53018-4 2

21. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. IACR Cryptology ePrint Archive, 2015:1049, Version, 27
May 2016

22. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security, pp. 98–107 (2002)

23. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Berlin (2004). doi:10.1007/978-3-540-30539-2 2

24. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Berlin (2004). doi:10.1007/
978-3-540-25937-4 22

25. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Berlin (2011).
doi:10.1007/978-3-642-22792-9 34

http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-662-49890-3_23
http://dx.doi.org/10.1007/978-3-662-49890-3_23
http://dx.doi.org/10.1007/978-3-662-52993-5_3
http://dx.doi.org/10.1007/978-3-642-55220-5_16
http://dx.doi.org/10.1007/978-3-540-74619-5_27
http://dx.doi.org/10.1007/978-3-319-26059-4_9
http://dx.doi.org/10.1007/978-3-642-13858-4_12
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-642-22792-9_34

274 E. List and M. Nandi

26. Yasuda, K.: PMAC with parity: minimizing the query-length influence. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 203–214. Springer, Berlin
(2012). doi:10.1007/978-3-642-27954-6 13

27. Zhang, Y.: Using an error-correction code for fast, beyond-birthday-bound authen-
tication. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 291–307.
Springer, Cham (2015). doi:10.1007/978-3-319-16715-2 16

http://dx.doi.org/10.1007/978-3-642-27954-6_13
http://dx.doi.org/10.1007/978-3-319-16715-2_16

2017 Selected Topics

Publish or Perish: A Backward-Compatible
Defense Against Selfish Mining in Bitcoin

Ren Zhang(B) and Bart Preneel

KU Leuven, ESAT/COSIC and IMEC, Leuven, Belgium
{ren.zhang,bart.preneel}@esat.kuleuven.be

Abstract. The Bitcoin mining protocol has been intensively studied
and widely adopted by many other cryptocurrencies. However, it has
been shown that this protocol is not incentive compatible, because the
selfish mining strategy enables a miner to gain unfair rewards. Existing
defenses either demand fundamental changes to block validity rules or
have little effect against a resourceful attacker. This paper proposes a
backward-compatible defense mechanism which outperforms the previ-
ous best defense. Our fork-resolving policy neglects blocks that are not
published in time and appreciates blocks that incorporate links to com-
peting blocks of their predecessors. Consequently, a block that is kept
secret until a competing block is published contributes to neither or both
branches, hence it confers no advantage in winning the block race. Addi-
tionally, we discuss the dilemma between partition recovery time and
selfish mining resistance, and how to balance them in our defense.

Keywords: Bitcoin · Selfish mining · Incentive compatibility

1 Introduction

Bitcoin [15], a decentralized cryptocurrency system, attracts not only many users
but also significant attention from academia. Bitcoin critically relies on an incen-
tive mechanism named mining. Participants of the mining process, called miners,
compete in producing and broadcasting blocks, hoping to get their blocks into
the main chain and receive block rewards. When more than one block extends
the same preceding block, the main chain is decided by a fork-resolving policy :
a miner adopts and mines on the chain with the most work, which is typically
the longest chain, or the first received block when several chains are of the same
length. We refer to this forked situation as a block race, and to an equal-length
block race as a tie. Bitcoin’s designer implicitly assumed the fairness of the min-
ing protocol: as long as more than half of the mining power follows the protocol,
the chance that a miner can earn the next block reward is proportional to the
miner’s computational power [15].

Unfortunately, this assumption has been disproven by a selfish mining attack
highlighted by Eyal and Sirer [10]. In this attack, the selfish miner keeps dis-
covered blocks secret and continues to mine on top of them, hoping to gain a
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 277–292, 2017.
DOI: 10.1007/978-3-319-52153-4 16

278 R. Zhang and B. Preneel

larger lead on the public chain, and only publishes the selfish chain to claim
the rewards when the public chain approaches the length of the selfish chain.
Though risking the rewards of some secret blocks, once the selfish chain is longer
than its competitor, the selfish miner can securely invalidate honest miners’ com-
peting blocks. Accordingly, the overall expectation of the selfish miner’s relative
revenue increases. An attacker with faster block propagation speed than honest
miners can profit from this attack no matter how small the mining power share
is. Furthermore, since the revenue of a malicious miner rises superlinearly with
the computational power, rational miners would prefer to act collectively for a
higher input-output ratio, damaging the decentralized structure of Bitcoin.

Existing defenses can be categorized into two approaches: making fundamen-
tal changes to the block validity rules, as suggested by Bahack [6], Shultz [21],
Solat and Potop-Butucaru [22]; or lowering the chance of honest miners working
on the selfish miner’s chain during a tie, as suggested by Eyal, Sirer [10] and
Heilman [12]. The former approach demands a backward-incompatible upgrade
on both miners and non-miner users; while the latter approach, which we refer
to as tie breaking defenses, has no effectiveness when the selfish chain is longer
than the public chain, therefore cannot defend against resourceful attackers.

This paper proposes another defense against selfish mining. We observe that
two policies are involved in deciding which blocks receive mining rewards: the
fork-resolving policy demands that the main chain is the longest chain, and the
reward distribution policy demands that all blocks in the main chain and no other
block receive rewards. Because changing the latter leaves the protocol backward-
incompatible, our defense aims to change only the fork-resolving policy.

Our defense replaces the original Bitcoin fork-resolving policy, denoted by
length FRP, with a weighted FRP. By asking miners to compare the weight of
the chains instead of their length, weighted FRP puts the selfish miner in a
dilemma: if the selfish miner keeps a block secret after a competing block is
published, the secret block does not contribute to the weight of its chain; if the
secret block is published with the competing block, the next honest block gains a
higher weight by embedding a proof of having seen this block. In both scenarios,
the secret block does not help the selfish miner win the block race. Consequently,
our scheme is the first backward-compatible defense that is able to disincentivize
block withholding behavior when the selfish chain is longer.

Comparing with existing defenses, our defense has the three-fold advantage
of backward-compatible, decentralized and effective. For evaluation, we extend
the method developed by Sapirshtein et al. [18] to compute the optimal selfish
mining strategy and its relative revenue within our defense. For a selfish miner
with more than 40% of mining power, our defense outperforms the optimal tie
breaking defense: an imaginary defense in which the selfish miner loses every tie.

As an additional contribution, we point out that the core reason of selfish
miner’s profitability is the high tolerance of the Bitcoin protocol towards network
partition. To resolve this dilemma, our scheme introduces a fail-safe parameter k
and demands miners to adopt the longest chain if it is at least k blocks ahead of
its competitors. Adjusting this parameter allows us to balance between partition

Publish or Perish 279

recovery time and selfish mining resistance. In the extreme forms, when k = ∞,
although sacrificing the ability to recover from temporary network split, our
defense is effective against a 51% attacker; and when k = 1, the partition recovery
time remains unaffected and the performance of our defense, which is reduced
to a tie breaking defense, is close to the optimal tie breaking defense against a
resourceful attacker. Through evaluating both the effectiveness of our scheme and
its partition recovery performance in the presence of an attacker, we recommend
the value k = 3, which can effectively defend against selfish mining attack and
keep the partition recovery time within acceptable range.

We also reflect upon our modeling of the Bitcoin network and discuss the
limitations and possible future work.

2 Preliminaries

2.1 Bitcoin Blockchain and Mining

We summarize here essential characteristics of Bitcoin for our discussion and
refer to Nakamoto’s original paper [15] and the textbook by Narayanan et al. [16]
for a complete view of the system. To ensure participants have a consensus on
valid transactions, all nodes follow the same block and transaction validity rules.
A typical transaction in Bitcoin consists of at least one input and one output. The
difference between the total amount of inputs and outputs in a transaction, the
transaction fee, goes to the miner who includes the transaction in the blockchain.

The blockchain is a ledger containing all transactions organized as a chain
of blocks. Each block contains its distance from the first block, called height,
the hash value of the preceding parent block, a set of transactions, and a nonce.
Information about the parent block guarantees that a miner must choose which
chain to mine on before starting. A special empty-input coinbase transaction in
the block allocates a fixed amount of new bitcoins to the miner, thus incentivizing
miners to contribute their resources to the system. The miner can embed an
arbitrary string in this transaction. To construct a valid block, miners work on
finding the right nonce so that the hash of the block is smaller than the block
difficulty target. This target is adjusted every 2016 blocks so that on average a
block is generated every ten minutes. The protocol demands miners to publish
valid blocks to the overlay network the moment they are found. If a block ends
up being in the longest chain, the coinbase output and all transaction fees in the
block belong to the miner. The discarded blocks do not receive any block rewards.
To decrease the variance of mining revenues, miners often form mining pools to
work on the same puzzle and split the rewards according to their contributions.

2.2 A History of Selfish Mining Strategies

The idea of selectively delaying publication of blocks to gain an unfair advan-
tage of block rewards appears as early as 2010 [7]. In 2013, Eyal and Sirer
[10] defined and analyzed a specific strategy which they called “selfish mining”.

280 R. Zhang and B. Preneel

Bahack presented a family of selfish mining strategies and evaluated their rela-
tive revenue [6]. Sapirshtein et al. [18] and Nayak et al. [17] showed that under
certain conditions, the selfish miner can obtain higher expected relative revenue
by working on the selfish chain even when the public chain is longer.

2.3 Existing Defenses Against Selfish Mining

Backward-Incompatible Defenses. Bahack proposed a fork-punishment rule:
competing blocks receive no block reward. The first miner who incorporates
a proof of the block fork in the blockchain gets half of the forfeited rewards [6].
However, honest miners suffer collateral damage of this defense, which consti-
tutes another kind of attack. Shultz [21], Solat and Potop-Butucaru [22] recom-
mended that each solved block be accompanied by a certain number of signatures
or dummy blocks, proving that the block is witnessed by the network and a com-
peting block is absent, before miners are able to work on it. However they did
not provide a mechanism to evaluate whether the number of proofs is adequate
to continue working. Neither did they mention how to prevent the selfish miner
from generating a dominant number of proofs and releasing them when neces-
sary. In addition, these three defenses require fundamental changes on the block
validity and reward distribution rules, consequently network participants who
do not upgrade their clients will not understand the new protocol.

Tie Breaking Defenses. Eyal and Sirer proposed that a miner chooses which
chain to mine on uniformly at random in a tie [10]. The defense is referred to as
uniform tie breaking in [18]. The authors showed that this defense raises the profit
threshold, namely the minimum mining power share to earn unfair block rewards,
to 25% within their selfish mining strategy. The threshold was later shown to be
23.21% under the optimal selfish mining strategy [18]. Heilman suggested each
miner incorporate the latest unforgeable timestamp issued by a trusted party into
the working block [12]. The publicly accessible and unpredictable timestamp is
issued with a suggested interval of 60 s. When two competing blocks are received
within 120 s, a miner prefers the block whose timestamp is fresher. The author
claimed that this freshness preferred mechanism can raise the profit threshold to
32%. However, introducing an extra trusted party is inconsistent with Bitcoin’s
decentralized philosophy. At last, we note that the rules of tie breaking defenses
do not apply when the selfish miner’s chain is longer than the public chain,
rendering the defenses ineffective against resourceful attackers. A selfish miner
with 48% of total mining power earns 89% and 83% of mining rewards within
uniform tie breaking and freshness preferred, respectively, given that all other
miners follow honest mining strategy.

2.4 Properties of an Ideal Defense

Acknowledging the weaknesses of existing defenses, we enumerate here the desir-
able properties of an ideal defense.

Publish or Perish 281

Decentralization. Introducing a trusted server would open a new single point
of failure. Moreover, it violates Bitcoin’s fundamental philosophy.

Incentive compatibility. The expected relative revenue of a miner should be
proportional to the mining power.

Backward compatibility. Non-miners who cannot upgrade their clients can
still participate in the network. This is important for hardware products such
as Bitcoin ATMs. Specifically, the following rules should not be changed:
Block validity rules. A valid block in the current Bitcoin protocol should

also be valid within the defense, and vice versa.
Reward distribution policy. All blocks in the main chain and no other

block receive block rewards.
Eventual consensus. Even when an attack happens, old and new clients

should reach a consensus on the main chain eventually. We will further
discuss this notion in Sects. 5 and 6.

3 Our Defense Mechanism

3.1 Threat Model

We follow the threat model of most selfish mining studies [6,10,12,18,21,22]. In
this model, there is only one colluding pool of selfish miners. This is considered
to be the strongest form of attack because malicious miners can achieve higher
input-output ratio by acting together. For brevity we use “the selfish miner”
or “the attacker” instead of “the colluding pool of miners”. The other miners
follow the honest mining strategy. The goal of the attacker is to maximize the
expected relative revenue. The selfish miner controls less than half of the total
mining power so that it is infeasible for the attacker to simply generate a longer
chain to invalidate the work of all the other miners.

In terms of network connectivity, we assume the selfish miner receives and
broadcasts blocks with no propagation delay. However, the attacker does not have
the power to downgrade the propagation speed of blocks found by other miners.
Moreover, we assume there is an upper bound on honest miners’ block propa-
gation time among each other. We believe this assumption is realistic for the
following reasons. First, the Bitcoin developers and the community have investi-
gated a substantial effort to defend against network attackers and to decrease the
block propagation time. This can be seen from the number of dedicated Bitcoin
Improvement Proposals [5] and the fast response time to new attacks [1]. Second,
miners endeavor to receive new blocks as quickly as possible, because a few more
seconds of delay may render the mining effort unprofitable. The majority of large
miners utilize Corallo’s relay network to send and receive blocks faster [8], which
consists of eight well-connected Internet traffic hubs around the globe. Other
methods are observed by researchers, such as using multiple gateways for more
reliable connection to the public Bitcoin network [14]. Third, Miller et al. dis-
covered some very well-connected nodes that can increase network propagation
speed [14]. In early September 2016, 50% of publicly reachable Bitcoin nodes
receive a new block within 10 s of its creation [2].

282 R. Zhang and B. Preneel

At last, although transaction fees are supposed to substitute mining rewards
in the long run, we do not consider them in our model because the amount is
still quite small comparing with block rewards at this moment.

3.2 Mining Algorithm and Fork-Resolving Policy

We use τ to denote the upper bound on the block propagation time. In reality
we expect miners to have a rough consensus on its value. The value can be
computed either by a deterministic mechanism like block difficulty adjustment
or from a miner’s local information similar to network adjusted time [3].

In line with [6,10,12,21,22], we believe nodes should broadcast all competing
valid blocks, instead of just the first one they receive, as in the current imple-
mentation.

Definition 1. From a miner’s perspective, a valid block is considered in time if
(1) its height value is bigger than the miner’s local chain head or (2) its height is
the same as the local chain head and it is received no later than τ after receiving
the first block of this height. Conversely, a valid block is late if the receiving
miner has received a block of the same height τ before receiving this block.

Definition 2. A block B1 is considered to be the uncle of another block B2 if
B1 is a competing in time block of B2’s parent block.

Notably, our definition of an uncle has two differences with the better-known
uncle definition of Ethereum [4], the cryptocurrency with the second largest
market capitalization: (1) the uncle has to be in time; (2) the height of a block
B’s uncle must be one less than the height of B.

Mining Algorithm Modification. A miner should embed in the working block
the hashes of all its uncles.

We now introduce our fork-resolving policy weighted FRP. Since two compet-
ing chains always have a common prefix, our weight calculation only considers
the last part of the chains, i.e., excluding the common prefix.

Definition 3. From a miner’s perspective, the weight of a chain is the number
of its in time blocks plus the number of in time uncle hashes embedded in these
in time blocks. Whether a block is in time is evaluated from the miner’s local
perspective.

Figure 1 illustrates two different choices of the selfish miner in the same min-
ing sequence. In the left graph, both chains have the same weight three. Although
the honest miners have only two blocks, the second block contains the hash of
its uncle S because S is published in time. While in the right graph, both chains
are weighted two, because the selfish miner does not publish S in time.

Weighted FRP. In a block race,

1. if one chain is longer than the others by no less than k blocks, a miner mines
on the longest chain;

Publish or Perish 283

Fig. 1. Two choices of the selfish miner in the same mining sequence. In each graph,
blocks are mined from left to right. A blue square indicates the time its connecting
block is published. Uncle relation is represented by a red curve with an arrow. No
matter whether the selfish miner publishes the first secret block in time or not, the two
chains have the same weight. (Color figure online)

2. otherwise the miner chooses the chain with the largest weight;
3. if the largest weight is achieved by multiple chains simultaneously, the miner

chooses one among them randomly.

A fail-safe parameter k is introduced here. When k = 1, our defense is reduced
to a tie breaking defense: honest miners mine on the heavier chain during a tie.
When k = ∞, the first rule in weighted FRP never applies. The implication of
this parameter will be discussed further in Sect. 5.2.

It can be seen from Fig. 1 that weighted FRP puts the selfish miner in a
dilemma. When a competitor of the first secret block S is released, the selfish
miner has two options: if publishing S, it will be an uncle of the next honest
block; if not, it will be considered a late block by honest miners. In neither
way could S contribute only to the weight of the selfish chain. Furthermore,
because the second selfish block is mined before the first honest block, it is
impossible for the former to embed the hash of this uncle. Hence the latter block
is guaranteed to contribute only to the honest chain. As a result, our defense
lowers the selfish miner’s incentive to withhold a discovered block. This defense
is fully decentralized. As for backward compatibility, keeping the current block
validity rules and reward distribution policy allows a smooth transition; non-
miners who cannot upgrade their clients can also be tolerated. Miners and most
publicly reachable network participants need to upgrade in order to implement
our defense. Next we will show that we are the closest defense to achieving
incentive compatibility to date.

4 Evaluation

Sapirshtein et al. developed an algorithm to convert a mining model into an
undiscounted average reward Markov decision process (MDP), which makes it
possible to compute the optimal selfish mining policy and its relative revenue [18].
In this part we first formally model the mining process of a selfish miner within
our defense, then present the results output by the MDP solver, in the end com-
pare our results with uniform tie breaking and a variant of freshness preferred.

284 R. Zhang and B. Preneel

4.1 Modeling a Block Race

We consider only the simple case of one honest miner and one selfish miner.
This is based on the assumption that τ is carefully calibrated so that all honest
miners have the same view on whether a block is in time. We do not consider an
attacker who publishes blocks right before they are late to create inconsistent
views here and discuss this attack later in Sect. 6. Mining proceeds in steps. In
each step, the selfish miner first makes a decision on how many secret blocks
to publish. Then the publicly visible weight of the selfish chain is updated and
both miners start mining. The honest miner follows weighted FRP and compares
the length and weight of both chains before starting, whereas the selfish miner
always works on the selfish chain before giving up. A new block is then mined
with the probability α by the selfish miner, and with 1 − α, the honest miner.
The honest miner publishes the new block immediately and updates the weight,
whereas the selfish miner always decides whether to publish the new block at
the beginning of the next step. At the end of each step, if the block race is
concluded or partially concluded, the block rewards are allocated. The rationale
behind this publish-mine-found-reward sequence is that rational decisions may
only change when a new block is available [6,18].

Actions. The selfish miner has five possible rational actions in our model.

Adopt. Give up the selfish chain and mine on the honest chain. This action is
always available.

Override. Publish enough blocks so that the published selfish chain is k blocks
longer than the honest chain or the selfish chain’s public weight is heavier than
the honest chain’s. The honest miner would start mining on the published
selfish chain. Feasible when the selfish miner has enough blocks.

Match. If the weight difference is 0, the selfish miner keeps mining without
publishing anything; otherwise publishing enough blocks so that two pub-
lished chains are of the same weight. If both chains are non-empty, half of the
honest mining power, namely (1 − α)/2, would mine on the published selfish
chain, while the other half works on the honest chain. Feasible when the self-
ish miner has enough blocks except the following scenario: there is a secret
block that contains a hash of an honest uncle; if published, the selfish chain’s
public weight would exceed the honest chain’s weight by one, otherwise the
former would be smaller than the latter by one.

Even. Publish enough blocks so that the published selfish chain is no shorter
than the honest chain but the selfish chain’s public weight is smaller than
that of the honest chain. Feasible when the selfish chain is no shorter than
the honest chain, but publishing until the chains are the same length does
not result in a match.

Hide. Do not publish anything new so that the next honest block will not embed
an uncle hash. Feasible when the published selfish chain is strictly shorter than
the honest chain.

Publish or Perish 285

Fig. 2. A block race. Selfish block s2 is not published in time after its competitor h2

is mined, thus becomes a late block.

These five actions are adequate because they cover all combinations of selfish
miner’s chain selection and reasonable public weight that might affect the honest
miner’s chain selection. All other actions either result in the same weight cal-
culation and chain selection or are obviously irrational. Notably, our definitions
of the actions are different from those of [18]. A wait action in their model can
either be match, even or hide in our model. Moreover, sometimes a match or
even operation do not lead to the publication of any block.

State Space. A state is represented as a 6-tuple (Bh, Bs, Diff w, luck , last ,
published). Bh and Bs denote the total length of the honest and selfish chain,
respectively. Diff w = Wh − Ws is the weight difference between two chains. The
Boolean value luck indicates whether there is a secret non-late block with an
honest uncle. We refer to this block as the lucky block. There can be at most one
lucky block because if there are two, the uncle with larger height would force
the first lucky block to be published or convert it into a late block. There are
two possible values of last : h or s, indicating the miner of the block mined in
the last step. Finally, published denotes the number of published selfish blocks.

In our notation, the state in Fig. 2 is described as (2, 3, 2, 1, s, 1). The
lucky block is the last selfish block because s2 is already late. In this state, a
hide action publishes no more block; choosing even publishes s2, the resulting
temporary state before mining is (2, 3, 2, 1, s, 2); publishing the entire chain
would be match, the resulting state before mining is (2, 3, 0, 0, s, 3). The luck
value is updated to 0 because the lucky block is no longer secret.

Reward Allocation and State Transition. The reward of each step is a 2-tuple
(Rh, Rs), indicating the number of block rewards for the honest and the selfish
miner, respectively. The honest miner gets Rh = Bh only in adopt. In two sit-
uations the selfish miner gets rewards: override and at the end of match if the
honest miner finds a block on the published selfish chain. In both situations, all
selfish blocks that are published before and in this step goes to Rs.

Values in the transition matrix are assigned straight-forwardly according to
weighted FRP and the action definitions. We only highlight two tricky details
here. First, the selfish miner compares which rule in weighted FRP requires less
blocks published before override. Second, the state tuple indicates which selfish
block is the lucky block: if the latest block is honest, the lucky block is the
competitor of this block; otherwise the last honest block is an uncle of the lucky
block.

286 R. Zhang and B. Preneel

Solving for the Optimal Policy. We compute the optimal policy and its relative
revenue with the goal of maximizing the objective function

∑
Rs

∑
Rs +

∑
Rh

.

Due to the limitation of computational resources, we set the truncating threshold
of Bh and Bs to 13. Once this number is reached, the selfish miner can only choose
between adopt and override. We believe this only affects the results marginally,
because most block races end long before reaching this threshold. For α ≤ 0.4,
lowering the threshold to 12 alters the result less than 2 × 10−4; for α = 0.48,
lowering the threshold to 12 changes the result no more than 10−3.

4.2 The Optimal Selfish Mining Strategy and Its Relative Revenue

The left part of Fig. 3 displays the optimal strategy within our defense when
k = 3, α = 0.48. All the states of the strategy and the transitions among them
are shown when the first four blocks are mined in a block race. Each circle
represents a state. The string above the horizontal line in a circle describes
the mining history resulted in this state. For example, “SH” means that so far
two blocks are mined, the first by the selfish miner, the second by the honest
miner. An apostrophe after H means the published selfish and honest chains
are of the same weight, and the honest miner mined a new block on the selfish
chain. The optimal action is written below the horizontal line in each state. The
transition probabilities are omitted. The resulted reward is listed next to the
transition arrow if it is not zero. A black dot indicates a temporary state which
deteriorates into one or several other states.

Fig. 3. The optimal selfish mining strategy when α = 0.48.

For comparison, we listed the optimal selfish mining strategy within uniform
tie breaking for α = 0.48 next to our result. The action names are changed to

Publish or Perish 287

match our terminology. In three colored mining sequences, uniform tie breaking
encourages more risky behavior for the selfish miner. Specifically, if the honest
miner mines two blocks on the honest chain after a selfish block is found, a
rational selfish miner would be forced to adopt in our scheme whereas in uniform
tie breaking, the miner tries to catch up from behind. This is because in our
scheme, if the selfish miner keeps working on the selfish chain, the next selfish
block would be late and an extra selfish block is required to catch up the honest
chain’s weight. However in uniform tie breaking, only one selfish block is enough.
Similarly, if the honest miner finds one block after the selfish miner finds two
blocks, a rational selfish miner chooses override in our scheme and claim the
block rewards instead of risking them.

For a complete picture on the performance, we computed the relative revenue
for α between 0.20 and 0.45 with interval 0.05 within our defense, plus a powerful
selfish miner with α = 0.48. Four different k values are chosen: 1, 2, 3 and ∞.

Fig. 4. Relative revenue of the selfish
miner within our defense

Fig. 5. Comparison with other defenses

The results can be found in Fig. 4. In all four settings, the profit threshold,
minimum α to gain unfair rewards, is larger than 0.25. The relative revenue for
α = 0.48 is 0.764, 0.684, 0.642, 0.622 when k = 1, 2, 3 and ∞, respectively. The
effectiveness of our defense increases as k grows.

An interesting result is that when k = ∞, our defense can prevent a mali-
cious miner with more than 50% of mining power from taking over the network.
In Fig. 4, the selfish miner with 55% of mining power only earns 76.3% of block
rewards. When the blockchain integrity is more important than partition recov-
ery time, this variant of our protocol can be useful.

4.3 Comparison with Other Defenses

The optimal selfish mining strategy with no defense is used as the base line for
the comparison. Two other defenses are implemented besides our own. The first

288 R. Zhang and B. Preneel

is uniform tie breaking. The second is an imaginary defense called optimal tie
breaking, in which the selfish miner loses every tie. This defense can be considered
as the strongest form of freshness preferred, in which timestamps are issued with
unlimited granularity. For our own defense we choose k = 3. In all defenses
the selfish miner follows the optimal strategy with truncating threshold 13 to
facilitate the comparison. We do not consider the defenses due to Bahack [6],
Schultz [21], Solat and Potop-Butucaru [22] because the authors provided no
guideline on choosing the parameters or evaluating the performance.

The results are displayed in Fig. 5. The relative revenue for uniform tie break-
ing and optimal tie breaking when α = 0.48 is 0.837 and 0.731, respectively.
The numbers become 0.891 and 0.831 if we set the truncating threshold to 160.
The difference is because block races with a resourceful attacker usually last for
dozens of blocks in these defenses. Neither defense has any effect for α ≥ 0.5.
Our defense has the best performance for all α values except when α = 0.3
and 0.35. The performance of our defense can be boosted by including a trusted
timestamp server or using local time to identify potential selfish miner’s blocks,
however we gave up these ideas to maintain the decentralized nature of Bit-
coin and avoid opening new attack vectors such as the time jacking attack [9].
Moreover, optimal tie breaking is just imaginary.

5 Balancing Partition Recovery Time and Selfish Mining
Resistance

5.1 The Dilemma

If the Bitcoin network is partitioned for at least a moderate amount of time,
say several hours, every part of the network would continue to mine new blocks
and maintain its own version of the blockchain during the partitioned period.
Upon reunion, a malicious miner may strategically mine and publish blocks to
keep the network partitioned, in order to lower the quality of service, or to
perform double-spending attacks. Deploying such an attack is relatively difficult
in Bitcoin, since honest miners would converge to the same history as soon as
one chain becomes longer than the others.

Unfortunately, Bitcoin’s high tolerance of network partition and fast recovery
time is one of the main causes of the selfish miner’s profitability. Bitcoin allows
the longer chain to claim all the block rewards after the reunion. Withholding
blocks receives no punishment because of the indistinguishability between selfish
mining and network partition. As a result, in the default Bitcoin protocol, there
is no mechanism incentivizing the selfish miner to publish blocks as long as the
selfish chain is longer.

Confronted with the dilemma, weighted FRP addresses the selfish mining
problem at the price of sacrificing partition recovery time. In our scheme, pre-
viously separated groups of miners would consider blocks mined by the other
groups during the partitioned period late and only recognize the weight of their
own blocks. Consequently, every group works on its own chain until the first rule
in weighted FRP applies.

Publish or Perish 289

This problem is not fundamental for the following reasons. First, large scale
network partition is relatively easy to detect and hard to forge. Therefore it is
possible for the protocol to switch to a different fork-resolving policy when such
an incident happens. Second, the partition attack is not deemed a substantial
threat in the cryptocurrency community. The GHOST protocol [23], whose vari-
ant is adopted by Ethereum, is also vulnerable to this attack. In both length FRP
and weighted FRP, a newly released malicious block must be on top of its chain
in order to affect honest miners’ decisions, whereas in GHOST, honest miners
may switch to a different chain when a secret uncle is released. Many popular
cryptocurrencies, including Stellar [13] and Ripple [20], do not tolerate network
partition at all. Third, our defense can achieve a good balance between effec-
tiveness and partition recovery time. Next we explain how our protocol allows a
designer to fine-tune between these two goals.

5.2 A Tradeoff

We demonstrate here the resistance of our scheme towards a network partition
attack in a setting highly favorable to the attacker. In this setting, the mali-
cious miner controls α fraction of mining power, while the honest network was
partitioned into two parts with the same mining power, (1 − α)/2 each. The
two versions of main chains have the same length upon reunion. The partition
lasts long enough so that the second rule of weighted FRP persistently results in
different choices on the main chain. We use the Monte Carlo method to compute
how long it takes on average for the two chains to converge by the first rule of
weighted FRP.

At the beginning of each simulation, the lengths of the two chains are both 0.
A block is generated in each round according to the mining power on both sides.
The malicious miner always works on the shorter chain. The goal of the attacker
is to keep the honest mining power segregated as long as possible. The simulation
terminates when one chain is longer than the other by k blocks. For every k, the
simulation is repeated 105 times and the average numbers of blocks generated
on both sides before convergence are recorded.

The results of our simulation are shown in Table 1. The number of blocks can
be roughly converted to time, if we assume on average a block is generated every
10 min. For example, when k = 2, a malicious miner with 30% of mining power
can keep the network segregated for less than one hour after reunion. It can be
seen that although a larger k value means better effectiveness of our defense, the

Table 1. Average number of blocks mined before two parts of the network converge

k \ α 0 0.1 0.2 0.3 0.4 0.5

2 4.00 4.45 4.99 5.69 6.67 7.98

3 12.97 15.35 18.48 23.02 29.90 40.96

4 28.96 36.27 47.08 65.03 95.12 152.14

290 R. Zhang and B. Preneel

partition recovery time also grows exponentially. However, this simulation only
reflects the worst case. If the partition period is short, honest miners are more
likely to converge according to the second rule of weighted FRP; if the partition
period is long, there is a large probability that one chain will be longer than the
other by at least k blocks shortly after reunion.

We believe when k = 3, a good balance is achieved: as can be seen from Fig. 4,
the effectiveness of our defense is close to optimal; the partition recovery time
is no more than a few hours. For a higher-level protocol that has a contingency
plan against network partition, a few hours of recovery time should not cause
extra problems.

6 Limitations and Future Work

We acknowledge our scheme’s limitation as it is designed and evaluated in a
specific threat model, while the reality could be far more complicated.

First, Bitcoin is designed with the goal of functioning in an asynchronous net-
work, yet we designed our defense within the synchronous model by assuming an
upper bound of block propagation time. Designing secure protocols in an asyn-
chronous network is a known hard problem. The only research that proves the
security properties of Bitcoin [11] is conducted within the synchronous model.
Several other selfish mining defenses also require a fixed upper bound on the
block propagation time in order to be effective [12,21,22]. Recognizing this pos-
sible divergence between this wide-used assumption and the reality, we are unable
to solve this conundrum and remove it from our model.

Second, when the fail-safe parameter k > 1, an attacker may broadcast blocks
right before they are late to cause inconsistent views among honest miners.
This is a common problem for all protocols in the synchronous model [13]. One
solution is to ask miners of, e.g., 100 predecessor blocks to broadcast signatures
that a block is in time, and the successor block’s miner to incorporate them in
the block to justify the choice of parent block. Another solution is to establish
an open trust network similar to Stellar [13] to reach consensus among miners
on controversial blocks. The network can be silent when no attack happens.

Third, although eventual consensus is achieved, an attacker may still utilize
the temporary inconsistency between weighted FRP and old clients who fol-
low length FRP to launch double-spending attacks. Therefore non-miners who
are susceptible to this attack should also upgrade their clients. For example, a
merchant running SPV client should receive and verify information about uncle
blocks in order to calculate the weight value. However, to deploy this attack,
the attacker needs to create a competing chain longer than the public chain
and discard it, which costs at least two block rewards, around $14,000 in early
September 2016.

Fourth, our model of the mining process neglects some real-world factors. Our
model does not permit the occurrence of natural forks, neither did we consider
the influence of transaction fees on the selfish miner’s strategy or how multiple
selfish miners colluding and competing with each other.

Publish or Perish 291

At last we note that our protocol does not achieve incentive compatibility,
though it is the closest scheme to date. Achieving incentive compatibility is not
an impossible task [19], we hope to reach this point in the near future.

7 Conclusion

The selfish mining attack is a fundamental challenge faced by Bitcoin, for it
not only breaks the fairness assumption in the original analysis by the Bitcoin
designer, but also posts potential threats to the decentralized structure of Bit-
coin. Existing backward-compatible defenses can only deal with equal-length
block race, but are powerless when facing a selfish chain longer than the public
one. In this study, we proposed a decentralized backward-compatible defense by
replacing the current length with our weighted FRP. It can defend against selfish
mining when the selfish miner’s private chain is longer than the honest miner’s
chain. Under our weighted FRP, miners evaluate which chain to mine on based
on the number of blocks that are published in time and the knowledge of com-
peting blocks that are published in time. As a result, the selfish miner’s chain
would have disadvantages either because the blocks are not published in time
or the lack of knowledge of competing blocks. Our defense outperforms existing
defenses under the optimal selfish mining strategy. Additionally, we observed
that the selfish mining attack is made possible in Bitcoin as a result of Bitcoin’s
high tolerance towards network partition. Reflecting upon this dilemma, our
scheme introduced a fail-safe parameter k. Through adjusting k, we achieved a
balance between effectiveness and partition recovery time.

In contrast to existing defenses, our work attempts to defend against selfish
mining through revising the fork-resolving policy rather than the reward distri-
bution policy. This direction promises the advantage of backward-compatibility.
We believe it contributes to the discussion on defending against selfish mining as
it generates an alternative approach and therefore more possibilities. Our study
also contributes to an in-depth understanding on the origins of selfish mining
attack, namely Bitcoin’s high partition tolerance. By highlighting this dilemma,
we hope to raise the awareness on the trade-off between service availability and
security, and therefore to open discussions on a series of choices in front of us in
designing and improving Bitcoin and other blockchain technologies.

We also acknowledge the limitations of our scheme. Particularly, our defense
is still only a mitigation solution towards selfish mining. A truly incentive com-
patible proof-of-work mining protocol is yet to be discovered.

Acknowledgements. This work was supported in part by the Research Council
KU Leuven: C16/15/058. In addition, this work was supported by the imec High Impact
initiative Distributed Trust project on Blockchain and Smart contracts. The authors
would like to thank Yonatan Sompolinsky for pointing out several potential attacks on
an earlier version of the protocol. We would also like to thank Kaiyu Shao, Güneş Acar,
Alan Szepieniec, Danny De Cock, Michael Herrmann and the anonymous reviewers for
their valuable comments and suggestions.

292 R. Zhang and B. Preneel

References

1. Bitcoin core version 0.10.1 released. https://bitcoin.org/en/release/v0.10.1
2. Bitcoin stats - data propagation. http://bitcoinstats.com/network/propagation/
3. Block timestamp. https://en.bitcoin.it/wiki/Block timestamp
4. Ethereum white paper: Modified Ghost implementation. https://github.com/

ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
5. Bitcoin improvement proposals (2016). https://github.com/bitcoin/bips/blob/

master/README.mediawiki
6. Bahack, L.: Theoretical Bitcoin attacks with less than half of the computational

power (draft). arXiv preprint arxiv:1312.7013 (2013)
7. Btchris, Bytecoin: Mtgox, RHorning: Mining cartel attack (2010). https://

bitcointalk.org/index.php?topic=2227
8. Corallo, M.: Bitcoin relay network. http://bitcoinrelaynetwork.org/
9. culubas: Timejacking & bitcoin (2011). http://culubas.blogspot.be/2011/05/

timejacking-bitcoin 802.html
10. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:

Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Berlin (2014). doi:10.1007/978-3-662-45472-5 28

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

12. Heilman, E.: One weird trick to stop selfish miners: Fresh Bitcoins, a solution for
the honest miner. Cryptology ePrint Archive, Report 2014/007 (2014). https://
eprint.iacr.org/2014/007

13. Mazieres, D.: The stellar consensus protocol: A federated model for internet-level
consensus. Stellar Development Foundation (2015)

14. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N.,
Bhattacharjee, B.: Discovering bitcoins public topology and influential nodes
(2015)

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://www.
bitcoin.org/bitcoin.pdf

16. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
cryptocurrency technologies. Princeton University Press (2016)

17. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

18. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
Bitcoin. Financial Cryptography and Data Security (2016)

19. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive Compatibility
of Bitcoin Mining Pool Reward Functions. In: Financial Cryptography and Data
Security (2016)

20. Schwartz, D., Youngs, N., Britto, A.: The Ripple protocol consensus algorithm.
Ripple Labs White Paper (2014)

21. Shultz, B.L.: Certification of witness: Mitigating blockchain fork attacks (2015).
http://bshultz.com/paper/Shultz Thesis.pdf

22. Solat, S., Potop-Butucaru, M.: Zeroblock: Preventing selfish mining in bitcoin.
arXiv preprint arXiv:1605.02435 (2016)

23. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin.
Financial Cryptography and Data Security (2015)

https://bitcoin.org/en/release/v0.10.1
http://bitcoinstats.com/network/propagation/
https://en.bitcoin.it/wiki/Block_timestamp
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://github.com/bitcoin/bips/blob/master/README.mediawiki
https://github.com/bitcoin/bips/blob/master/README.mediawiki
http://arxiv.org/abs/1312.7013
https://bitcointalk.org/index.php?topic=2227
https://bitcointalk.org/index.php?topic=2227
http://bitcoinrelaynetwork.org/
http://culubas.blogspot.be/2011/05/timejacking-bitcoin_802.html
http://culubas.blogspot.be/2011/05/timejacking-bitcoin_802.html
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/978-3-662-46803-6_10
https://eprint.iacr.org/2014/007
https://eprint.iacr.org/2014/007
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://bshultz.com/paper/Shultz_Thesis.pdf
http://arxiv.org/abs/1605.02435

WEM: A New Family of White-Box Block
Ciphers Based on the Even-Mansour

Construction

Jihoon Cho1, Kyu Young Choi1, Itai Dinur2(B), Orr Dunkelman3,
Nathan Keller4, Dukjae Moon1, and Aviya Veidberg4

1 Security Research Group, Samsung SDS, Inc., Seoul, Republic of Korea
2 Computer Science Department, Ben-Gurion University, Beersheba, Israel

dinuri@cs.bgu.ac.il
3 Computer Science Department, University of Haifa, Haifa, Israel

4 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

Abstract. White-box cryptosystems aim at providing security against
an adversary that has access to the encryption process. As a counter-
measure against code lifting (in which the adversary simply distributes
the code of the cipher), recent white-box schemes aim for ‘incompress-
ibility’, meaning that any useful representation of the secret key material
is memory-consuming.

In this paper we introduce a new family of white-box block ciphers
relying on incompressible permutations and the classical Even-Mansour
construction. Our ciphers allow achieving tradeoffs between encryption
speed and white-box security that were not obtained by previous designs.
In particular, we present a cipher with reasonably strong space hardness
of 215 bytes, that runs at less than 100 cycles per byte.

1 Introduction

The white-box threat model in cryptography, introduced by Chow et al. [6] in
2002, assumes that the adversary is accessible to the entire information on the
encryption process, and can even change parts of it at will. The initial scenario-
in-mind behind the model was the Digital Rights Management (DRM) realm,
where an authorized user, who of course has full access to the encryption process,
may be adversarial. The model has gained more relevance in recent years due to
additional applications, such as mitigation of mass surveillance.

Numerous primitives claiming for security at the white-box model (in short:
white-box primitives) were proposed in the last few years. These primitives can
be roughly divided into two classes.

O. Dunkelman—The fourth author was supported in part by the Israeli Science Foun-
dation through grant No. 827/12 and by the Commission of the European Communi-
ties through the Horizon 2020 program under project number 645622 PQCRYPTO.
N. Keller—The fifth author was supported by the Alon Fellowship.

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 293–308, 2017.
DOI: 10.1007/978-3-319-52153-4 17

294 J. Cho et al.

The first class includes algorithms which take an existing block cipher (usually
AES or DES), and use various methods to ‘obfuscate’ the encryption process, so
that a white-box adversary will not be able to extract the secret key. Pioneered
by Chow et al. [6], this approach was followed by quite a few designers. The more
common way to fortify the encryption process is using large tables and random
encodings, as proposed in [6]. Unfortunately, most of these designs were broken
by practical attacks a short time after their presentation (see [1,16,19]), and the
remaining ones are very recent and have not been subjected to extensive cryptan-
alytic efforts yet. Another disadvantage of the designs in this class is their perfor-
mance – all of them are orders of magnitude slower than the ‘black-box’ primitives
they are based upon.

The second class includes new block ciphers designed with white-box protec-
tion in mind. Usually such designs are based on key-dependent components (e.g.,
S-boxes), designed in such a way that even if a white-box adversary can recover
the full dictionary of such a component, he still cannot use this knowledge to
recover the secret key. Recent designs of this class include the ASASA fam-
ily [3], the SPACE family [5], and the WhiteKey and WhiteBlock ciphers [13].
An important advantage of these designs is their better performance and higher
security (though, some instantiations of ASASA were broken, see [14,17]).

A common property of the new white-box designs is incompressibility [8]
(also called weak white-box security [3] and space hardness [5]), meaning that
an adversary with access to the white-box implementation cannot produce a
functionally equivalent program of significantly smaller size. This property is
needed, as a white-box adversary can perform code lifting, i.e., extract the entire
code and use it as an equivalent secret key. While incompressibility does not
make code lifting impossible, it does make it harder to implement in practice,
especially when the adversary wants to attack multiple targets, e.g., for mass
surveillance purposes. The previous designs SPACE and WhiteBlock achieved
incompressibility by using key-dependent pseudo-random functions.

In this paper we propose a new family of white-box block ciphers in which the
basic S-box component is a pseudo-random permutation, rather than a pseudo-
random function. The new ciphers are based on iterates of the classical Even-
Mansour construction [11], in which instead of each key addition one applies an
S-box layer, where the S-boxes are key-dependent incompressible permutations.
The size of the incompressible S-box is flexible, and can be adjusted to the
desired level of incompressibility, without slowing up the encryption process
significantly. While the new family proposes similar security level as the SPACE
and WhiteBlock ciphers, we show that it allows for additional tradeoffs between
performance and white-box security level that were not achievable in previous
designs. In particular, we achieve encryption speed of less than 100 cycles per
byte with a reasonably strong space hardness of 215 bytes.

This paper is organized as follows. In Sect. 2 we present the WEM family of
white-box block ciphers and explain the rationale behind its design. In Sect. 3
we analyze the security of the new ciphers in the black-box model. In Sect. 4
we analyze the security of the new ciphers in the white-box model and compare
them with the SPACE and WhiteBlock ciphers. We conclude the paper in Sect. 5.

WEM: A New Family of White-Box Block Ciphers 295

2 A New Family of White-Box Block Ciphers Based on
Incompressible Permutations

In this section we present WEM – a new family of white-box block ciphers based
on iterates of the classical Even-Mansour construction [11] and on a key-less
variant of a given block cipher. In order to be specific, we present the scheme
with AES as the basic block cipher, but any other iterated block cipher can be
used instead.

We begin this section with a brief recap of the Even-Mansour construction.
Then we present the new family of block ciphers, and finally we explain the
rationale behind its design.

2.1 The Even-Mansour Construction

The Even-Mansour (EM) construction was designed by Even and Mansour [11]
in 1991, as an attempt to design the ‘simplest possible’ block cipher based upon a
single public permutation. It uses a publicly-known permutation P : {0, 1}n →
{0, 1}n, and two independent n-bit keys K0,K1. The encryption function is
defined simply as EMK0,K1(X) = K1 ⊕ P (K0 ⊕ X), for X ∈ {0, 1}n. Even and
Mansour [11] showed that any attack on EM that requires D queries to the entire
scheme and T queries to the permutation P must satisfy DT = Ω(2n). On the
other hand, attacks on the scheme were presented by Daemen [7], Biryukov and
Wagner [4], and Dunkelman et al. [10] who showed that the lower bound of [11]
is tight by devising a known-plaintext attack that requires D queries to EM and
T queries to P , for any (D,T) such that DT = Ω(2n).

As a security level of 2n/2 is considered insufficient for an n-bit block cipher,
several authors proposed to enhance the security level by considering iterates of
the EM construction. For r ≥ 1, the r-round EM scheme is defined as

rEMK0,K1,...,Kr
(X) = Kr ⊕ Pr(Kr−1 ⊕ Pr−1(· · · (P1(K0 ⊕ X)))),

where P1, P2, . . . , Pr : {0, 1}n → {0, 1}n are public permutations, and K0,K1,
. . . ,Kr are independent n-bit keys. The iterated EM scheme was studied in
numerous papers, and multiple upper and lower bounds on its security level
were obtained (see, e.g., [9]). The analysis conducted so far indicates that even
for small values of r, the security level of the scheme is high. In particular, for
the single-key variant in which K0 = K1 = . . . = Kr, no attack faster than 2n/n
is known even for 2EM (i.e., iterated EM with 2 rounds).

2.2 The New Family of Block Ciphers

The new family of block ciphers, WEM (standing for white-box Even-Mansour),
is based on an iterated EM construction, in which the key additions are replaced
by layers of incompressible key-dependent S-boxes. In order to allow flexibility,
the scheme uses several parameters: n denotes the block size of the cipher, m
denotes the size of the incompressible S-box, where m|n is required. r denotes

296 J. Cho et al.

the number of rounds in the underlying iterated EM construction, E denotes the
‘name’ of the underlying block cipher (e.g., AES), and d denotes the number of
rounds we take in its key-less version.

The Overall Structure of the Cipher. The WEM(n,m, r,E, d) encryption
scheme is a modification of the r-round EM scheme, in which:

– A d-round reduced variant of E with the all-zero key is used as the ‘public
permutation’ P . (The same permutation can be used in all rounds of WEM.)

– Each key addition is replaced by an S-box layer, which consists of parallel
application of n/m incompressible m-to-m bit S-boxes. For this, we generate
(r+1)n/m independent incompressible S-boxes1 S1, S2, . . . , S(r+1)n/m and use
S-boxes S(i−1)n/m+1, . . . , Sin/m in the i’th S-box layer. (The generation of the
S-boxes is presented below.)

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

16-bit
Perm.

5-round AES

5-round AES

k = 0128

k = 0128

Fig. 1. The cipher WEM(128,16,2,AES-128,5)

A specific instantiation of the scheme, with n = 128, m = 16, r = 2, E =AES-
128, and d = 5, is presented in Fig. 1. As can be seen in the figure, the 128-bit
plaintext is divided into eight 16-bit values. These values enter the first S-box
layer. The outputs of the S-box layer are treated as a 128-bit state, to which
5-round AES with the zero key is applied.2 Then, the value is split again and
enters another S-box layer. The outputs of the S-box layer are again unified
and processed with 5-round AES with the zero key, and the resulting values are
passed through a final S-box layer.

Due to the choice of parameters, the cipher presented in the figure has 24
S-boxes and each encryption has time complexity roughly equivalent to a single
AES encryption plus 3 sequences of 8 parallel table lookups.

1 We may also reuse S-boxes to obtain greater flexibility, as noted below.
2 We note that instead, a per-domain fixed key can be used, e.g., each country gets its

own key, or even a per-user key. However, we assume this key to be publicly known.

WEM: A New Family of White-Box Block Ciphers 297

The Structure of the S-Box. Since the S-box can be isolated by a white-box
adversary, it must be a stand-alone primitive that ensures n-bit security to the
key even against an attacker that has the full S-box code-book in his disposal.

To obtain this goal, we instantiate the S-box using a two-step procedure.
First, we use the secret key to generate a long sequence of pseudo-random bits,
and then we use the Fisher-Yates shuffle algorithm [12] to instantiate an S-box
from m bits to m bits from the pseudo-random sequence. We note that sim-
ilar methods were used to generate a pseudo-random function in the SPACE
family [5] and in WhiteBlock [13].

The Fisher-Yates algorithm gets an array a of 2m entries of m bits each, and
outputs the designed S-box (where the S-box value on input i is simply a[i]). It
has the following simple structure:

for i = 0 . . . 2m − 1 do
a[i] ← i

end for
for i = 2m − 1 . . . 0 do

j ← random integer modulo i
exchange a[j] and a[i]

end for

The Fisher-Yates shuffle was shown in [12] to provide perfect randomness:
when instantiated with a truly random sequence of bits, it generates a truly ran-
dom permutation over the range 0, 1, . . . , 2m−1, meaning that each permutation
σ ∈ S2n is obtained with probability 1/(2n)!.

The pseudo-random sequence is generated using the block cipher E (keyed
with the master key) in counter mode. For example, in the case E =AES-128, we
set the key of AES-CTR as our 128-bit secret master key and generate pseudo-
random numbers by encrypting 128-bit plaintexts 0, 1, . . . (as many numbers as
required). Thus, the value of the encrypted plaintext functions as the state of the
pseudo-random generator, and is incremented as more pseudo-random numbers
are required.

Our construction requires generating several such S-boxes (e.g., 8 · 3 = 24
S-boxes in the above example), and the only difference between the generation
of these S-boxes is in the state of the generator (the value of the plaintext
encrypted). This value is initialized to 0 for the first S-box and incremented
as long as pseudo-random numbers are required (namely, the state is preserved
across the initializations of the different S-boxes).

2.3 Design Rationale

The design aims at achieving good performance, while at the same time providing
strong security both in the black-box and white-box models (with an appropriate
choice for the number of rounds).

1. Good performance and strong security in the black-box model are achieved by
using the iterated EM construction as the basis of the cipher. The numerous

298 J. Cho et al.

works published so far on iterated EM suggest that even with only two rounds,
the security level of the scheme (in the black-box model) is close to 2n, and
of course, the scheme becomes even stronger when simple key addition is
replaced by a secret S-box layer. Furthermore, by taking a round-reduced
variant of E as the public permutation of 2EM we obtain good performance
without sacrificing security, as a round-reduced variant of the cipher with
sufficiently many rounds already provides sufficient randomness (even if it is
not secure as a stand-alone cipher).

2. The white-box security is obtained by making it very hard for an adversary
to extract the master key, even if the full code-book of all S-boxes is known.
(Note that the user gets the S-boxes in the form of look-up tables, so that
even a white-box adversary does not have access to the generation process of
the S-box.) Hence, the generation of the S-box must be ‘very secure’. On the
other hand, as the S-boxes are generated only rarely, we can opt for security in
their generation, allowing some performance overhead. Our S-box generation
satisfies the required security criterion: while an adversary that knows the full
code-book can reverse the Fisher-Yates process and find the pseudo-random
string that was used in the S-box generation, this only gives him knowledge
of a few plaintext/ciphertext pairs of AES-CTR. Those cannot be used to
recover the secret key, unless AES-CTR is insecure.

3. A main idea behind the design is to base it upon thoroughly-analyzed com-
ponents, in order to gain confidence in its security. This can be seen in the
previous two points, where the security of WEM is ‘reduced’ to the security
of iterated EM (though, not in a provable manner) and AES-CTR.

4. The S-box generation process also ensures incompressibility. Indeed, recall
that the Fisher-Yates shuffle provably generates a random permutation if the
initial sequence is random. Hence, if an S-box (given in a form of a lookup
table) has a compressed representation, this representation can be used to
distinguish the pseudo-random initial sequence from a truly random sequence,
or in other words, to provide a distinguisher for AES-CTR.

5. Given a desired level of incompressibility, one can choose the parameter m
appropriately to obtain it. More flexibility can be obtained by allowing re-use
of S-boxes. For example, one may use a single S-box for the full scheme, but
then the public permutations must be made slightly different (e.g., by using
another fixed key instead of the zero key) in order to avoid slide attacks.

6. As noted above, one of the main differences between WEM and the SPACE [5]
and WhiteBlock [13] families is that we use secret permutation S-boxes (rather
than secret pseudo-random function S-boxes) in our iterated Even-Mansour
scheme.

2.4 Performance

We implemented the cipher WEM(128,16,12,AES-128,5) (which is our main
instance for white-box security) using AES rounds which are based on tables
(i.e., without using the AES-NI instruction set), thus offering a relatively
portable code which offers decent performance figures on 32-bit platforms.

WEM: A New Family of White-Box Block Ciphers 299

The code was compiled under g++ 4.8.4 and was run on an Intel(R) Core(TM)
i7-5500U CPU @ 2.40 GHz (after being compiled using the -O2 flag). The run-
ning speed we obtained for this basic code was 96.8 cycles per byte.

Compared to WEM(128,16,12,AES-128,5), the related WhiteBlock instance
HOUND with 16-bit S-boxes requires a bit more than 140 cycles per byte. How-
ever, we note that the comparison is not completely fair. First, the authors of
WhiteBlock use a different platform, and in particular, they use AES-NI. On the
other hand, the memory consumption of HOUND with 16-bit S-boxes is about
4 times larger than WEM(128,16,12,AES-128,5), as it uses an expanding S-box.

3 Security in the Black-Box Model

In this section we present security analysis of the WEM family in the black-box
model. Our conclusion is that two rounds of the scheme are sufficient for provid-
ing strong security, and in particular, WEM(128,16,2,AES-128,5) is expected to
provide 128-bit security, basing on previous extensive analysis of its components.
On the other hand, we show that one round of the scheme is not sufficient, by
devising an attack with complexity slightly higher than 2n/2 for an n-bit block
size. Due to space constraints, the more technical parts of the analysis are pre-
sented in the full version of this paper.

In order to be specific, we assume throughout the analysis that the under-
lying block cipher is AES-128, and focus on the variants WEM(128,8,2,AES-
128,5) and WEM(128,16,2,AES-128,5) described above. When WEM is used
with another underlying block cipher instead of AES-128, a separate security
analysis should be conducted. For brevity, we abbreviate WEM(128,8,2,AES-
128,5) and WEM(128,16,2,AES-128,5) to WEM-8 and WEM-16, respectively.

As justified in Sect. 2.2, for the sake of black-box analysis we may view the
secret S-boxes of our construction as random permutations. The security of
WEM-8 and WEM-16 is related to the security of several previously studied
constructions:

1. 2-round Iterated Even-Mansour construction [9],
2. Standard AES with 128-bit key,
3. AES with secret S-boxes [18],
4. 10-round AES with random S-boxes,
5. Known-key round-reduced AES,

and results on these five constructions can be used to obtain evaluation of the
security of WEM-8 and WEM-16, as described below.

When considering round-reduced variants of WEM-8 and WEM-16, we note
that any such round-reduced variant employs a final secret S-box layer. For most
of the attacks described below, we claim that our round-reduced construction
is at least as strong as a previously studied round-reduced construction, thus
establishing confidence in the security of our design. For sake of convenience,
in this section we count the rounds in units of AES rounds, so WEM-8 and

300 J. Cho et al.

WEM-16 have 10 rounds each. The following is a brief assessment of the security
with respect to various attack techniques.

Key Recovery Attacks in General. The secret S-box layers at the beginning
and the end of the encryption make round-reduced variants of WEM-8 and
WEM-16 significantly stronger than corresponding variants of AES with respect
to key-recovery attacks. This is due to the fact that an adversary cannot ‘peel off’
the first/last rounds without guessing a very significant amount of key material.
In this respect, the security of WEM-8 and WEM-16 can be derived from the
security of AES with secret S-boxes, studied in [18]. The best currently known
attack on this version of AES is on 6 rounds [18], with time complexity of
296, and it translates to an attack on 5-round WEM-8/WEM-16 with the same
complexity (due to the additional MixColumns and secret S-box layers at the end
of the cipher). This is clearly far from endangering our 10-round construction.
(It should be noted however that there is no direct reduction from WEM-8 or
WEM-16 to AES with secret S-boxes, since in WEM, only three layers of S-boxes
are secret and not all of them).

Differential and Linear Characteristics. The analysis here is somewhat
technical, and thus, is presented in the full version of this paper. The
conclusion is that for WEM-8, it is expected that any 4-round differen-
tial has probability of less than 2−90, and any 4-round linear hull has a
bias of less than 2−45. For WEM-16, we prove that the number of active
S-boxes in any 4-round characteristic is at least 15 (and this is tight), and expect
that any 4-round differential has probability of less than 2−75 and any 4-round
linear hull has a bias of less than 2−37.5. As in addition, for 4 rounds of our
construction that contain a secret S-box layer, the actual best differential char-
acteristics and linear approximations are unknown to the adversary, we conclude
that the full 10-round WEM-8 and WEM-16 are expected to be immune to both
differential and linear cryptanalysis.

Boomerang Attacks. The boomerang attack of Biryukov [2] on round-reduced
AES (with at most 6 rounds) can be adapted to WEM-8 and WEM-16, with the
same probability as in AES. However, the key recovery part of the attack becomes
significantly more expensive, and thus, even on 6-round WEM-8/WEM-16 its
complexity is expected to be extremely high.

Square Attacks. The classical Square attacks on round-reduced AES are
applicable to WEM-8/WEM-16 with at most 5 rounds, but their complexity
becomes much higher. Actually, this is the class of attacks considered in [18] (on
AES with secret S-boxes), and the best current attack of this class requires 296

time for 5-round WEM-8, and a similar amount for 5-round WEM-16.

Impossible Differentials. Similarly to the previous cases, the classical impos-
sible differentials apply to our construction but with a significantly more expen-
sive key recovery phase for the full attacks. Therefore, we do not expect these
attacks to break more rounds of our construction compared to AES (where the
best attack requires more than 2100 data and time for 7 rounds).

WEM: A New Family of White-Box Block Ciphers 301

Collision Attacks (Demirci-Selçuk attacks). It is expected that reduced WEM-
8 and WEM-16 are much stronger than reduced AES with respect to these
attacks, due to the secret S-box layer in the middle (which increases significantly
the number of possible multisets) and the outer secret S-box layers that make key
recovery more expensive. As the best known collision attack on round-reduced
AES requires 298 data and time for 7 rounds, we expect that WEM-8 and WEM-
16 with at least 7 rounds are secure with respect to collision attacks.

Attacks on the EM Construction. The added S-box layer in the middle
makes the cipher a 2-round EM construction (rather than the relatively weak
1-round EM construction). The best currently known attacks on 2-round EM [9]
are only slightly faster than exhaustive key search. Furthermore, WEM-8 and
WEM-16 are stronger than 2-round EM, since the key-additions of EM are
replaced in WEM-8/WEM-16 with secret S-box layers, which make all current
attacks on 2-round EM inapplicable to WEM-8/WEM-16.

Related-Key Attacks. WEM-8 and WEM-16 are expected to be immune to
related-key attacks, due to the key generation procedure. Indeed, as no related-
key properties are known for full AES-128, it is expected that two related
keys (even with relation chosen by the adversary) lead to two unrelated out-
put streams of AES-CTR, and thus, the sets of secret S-boxes generated for the
two keys do not have any easy-to-exploit relation. Therefore, it is expected that
no related-key attacks on WEM-8/WEM-16 can target more rounds that the
single-key attacks (i.e., not more than 7 of the 10 rounds).

WEM(128,8,1,AES-128,10) Does Not Supply 128-Bit Security

The schemes WEM-8 and WEM-16 considered above are ‘minimal’, in the sense
that if the underlying iterated EM construction of WEM has only one round,
then the security level of the scheme is much weaker than 2128. This is similar
to the situation with iterated EM schemes, where the security level of 1-round
EM is only 2n/2 while with r ≥ 2 rounds the security increases significantly (so
that no attack faster than 2128/128 is known).

To show this, we present a structural attack on 1-round WEM, which is a vari-
ant of the chosen plaintext attack on the Even-Mansour scheme by Daemen [7].
In the attack, we consider pools of 2m chosen plaintexts that assume all possible
values in the input of one S-box, and the same value in the input to all other
S-boxes. This property is, of course, preserved by the first secret S-box layer.
Then, we look at the corresponding ciphertexts, and in each S-box output of the
final S-box layer, we count the number of values that occur 0 times, the number
of values that occur 1 time, etc. As this property is also preserved by the S-box
layer, it allows us to use comparison between 1-round WEM and key-less AES
to recover the secret S-boxes. The full attack is presented in the full version of
this paper. The complexity of the attack is only slightly higher than 2n/2, thus
showing that 1-round WEM is not secure and should not be used.

302 J. Cho et al.

4 Space-Hardness of the WEM Ciphers

The notion of space-hardness was introduced in [5] as a generalization of the
notion of weak white-box security introduced in [3].

Definition 1. A cipher is said to be (M,Z)-space hard if it infeasible for an
adversary to encrypt (decrypt) a randomly chosen plaintext with probability more
that 2−Z given code (table) size less than M .

There are several motivations behind this definition. One of them is that a
space-hard cipher makes it more difficult for a DRM attacker in the white-box
setting to distribute meaningful attack code (whose size is large). Additionally,
a space-hard cipher may make it more challenging for malware (limited by com-
munication) to leak meaningful secrets from an infected network.

In this section, we compute the number of rounds required for the WEM
ciphers to achieve space-hardness, and compare the space-hardness security and
performance of WEM to that of the schemes proposed in [5,13]. For sake of
simplicity and for comparison with previous work [5,13], we only consider in
this section instantiations of our schemes with a single secret S-box. We note
that a more formal treatment of space-hardness was published in [13] by Fouque
et al., using the notion of weak incompressibility (formulated as a cryptographic
game with the aim of obtaining provable security). Since our motivation is more
practical, we will refer to the less formal space-hardness definition of [5]. Hence,
our security analysis will be cryptanalytic in nature (focusing on or the best
algorithm for breaking our scheme rather than on provable security).3

Nevertheless, we point out two issues mentioned in [13] that are relevant
for our space-hardness security analysis. First, for an n-bit block cipher, given
T words of memory, one cannot hope for space-hardness security better than
Z = n − log(T). The reason is that the memory can simply be utilized to
store plaintext/ciphertext pairs, allowing the adversary to correctly encrypt (or
decrypt) a fraction at least 2log(T)−n of the code-book. Even when we restrict
the adversary’s memory to contain entries of the secret S-box in our scheme, it
is still possible to store the particular entries that are accessed in the encryption
procedure of about T plaintexts (up to some multiplicative factor which depends
on the number of times the S-box is accessed in an encryption). A second issue
is that our analysis will indeed assume that the adversary’s memory contains
only secret S-box entries. While we are not aware of significantly better attacks
that store other types of information, these attacks are generally much harder
to analyze.4

3 Interestingly, it is shown in [13] that for certain types of schemes, the gap between
the number of rounds required to resist the best known attack and the the number
of rounds required to obtain provable security is not large.

4 Resistance to such attacks is addressed by the strong incompressibility definition
of [13], which also gives a scheme (called WhiteKey) that provably achieves this
security notion. However, WhiteKey is a key generator rather than a block cipher,
and hence is incomparable to our scheme.

WEM: A New Family of White-Box Block Ciphers 303

4.1 Previous Space-Hard Block Ciphers

There are two previous space-hard block cipher designs. The first one is SPACE,
introduced in [5]. SPACE is a 128-bit generalized Feistel structure with a secret
expanding S-box of input size m (where m is a parameter of the block cipher
instance) and output size 128 − m.5

The second space-hard block cipher design is WhiteBlock, introduced in [13].
The general structure of WhiteBlock is more similar to our scheme. It is a 128-
bit block cipher family, where each round contains a secret S-box layer followed
by several rounds of standard AES (an AES layer). There are several differences
between our scheme and WhiteBlock. The most relevant one in terms of space-
hardness is the structure of the secret S-box layer. In WhiteBlock, the secret S-
box layer is a single-round Feistel-like structure. For a secret S-box of input size
m bits (where m is a parameter of the block cipher instance) and k = �64/m�,
the 128-bit state is partitioned into two parts, where the ‘right part’ contains
km bits and the ‘left part’ contains the remaining 128 − km bits. The output
size of each S-box is 128 − km bits (equal to the size of the left part), hence it
is an expanding S-box. The secret S-box layer applies k parallel S-boxes to the
km bits of the right part of the state and XORs their outputs (in some arbitrary
order) to the right part (hence the km bits of the right part are left unchanged).

WhiteBlock has two variants: PuppyCipher, which was designed with prov-
able security in mind, and Hound which is optimized for performance. The dif-
ference between the two schemes is in the AES layer (but not in the secret S-box
layer). As our main goal is to resist cryptanalysis while optimizing performance,
our scheme is more comparable to Hound. We note that it should be possible
to tweak our AES layer and apply similar provable security arguments to our
scheme as in PuppyCipher, but this is out of the scope of this paper.

4.2 Space-Hardness of Our Scheme

We evaluate the space-hardness of our proposal and show that it can be achieved
using less rounds than the previous schemes of [5,13] (thus, resulting in a faster
cipher with the same level of white-box security). We start by analyzing our
scheme WEM(128,16,r,AES-128,5) and assume that the adversary obtained a
fraction of 1/4 of the S-box entries (the value 1/4 is chosen to be comparable to
the analysis of [5,13]). We then generalize the analysis.

We consider r rounds of our scheme and determine the minimal value of r
such that it achieves (T/4, 112)-space hardness, where T is the size of the 16-bit
S-box in 16-bit words (and we aim for the maximal achievable security of 112 bits
for a 128-bit cipher with a 16-bit S-box). Our analysis is related to the one of [13]
for WhiteBlock, although less formal. The goal is to show that given an arbitrary
set of (only) 1/4 of the S-box entries, the adversary cannot guess the encryp-
tion of any plaintext with probability which is significantly higher than 2−128.

5 For the sake of convenience, we rename the block cipher instance parameters for
both previous space-hard designs [5,13].

304 J. Cho et al.

Note that the set of S-box entries is chosen by the adversary and is not arbi-
trary (in particular, it can correlate with the encryption/decryption procedure
of several plaintexts/ciphertexts). However, roughly speaking, a set of 216/4 of
the S-box entries can be chosen to reveal information about the encryption of
(no more than) 216 plaintexts, whereas for the rest of the plaintexts the analysis
below will apply.6

The encryption procedure of WEM(128,16,r,AES-128,5) contains 8r S-boxes
of 16 bits. Therefore, an adversary can encrypt a random plaintext if he is
given the corresponding 8r S-box entries, which occurs with probability 2−2·8r

(assuming that the known S-box entries are arbitrary). Hence, taking r = 9 such
that 2−2·8r < 2−128 should prevent the adversary from correctly encrypting
any of the 2128 plaintexts. However, the adversary can still miss the entries of
several S-boxes and succeed in encrypting the plaintext with probability better
than 2−128 simply by guessing the S-box outputs. A guess for an S-box output
is correct with probability 1/(216 − 214) < 2−15 (the adversary has 214 entries
of the permutation). Hence, we require that the adversary misses only 8 S-box
entries7 with very low probability (but we do not mind if the adversary misses
9 S-box entries, as 215·9 < 2−128).

Overall, to predict the encryption of a plaintext with probability better than
2−128, the adversary should have 8r − 8 S-box entries which can occur at

(
8r
8

)

places. Therefore, we require that 2−2(8r−8) ·
(
8r
8

)

< 2−128, which is satisfied for
r ≥ 12.

More generally, for a block cipher with an m-bit S-box and k = n/m S-boxes
in a round, we apply a similar line of arguments to analyze the number of rounds
required to obtain (2−α · T, n − log(T))-space hardness (where T is the S-box
size). If the adversary has a 2−α fraction of the 2m possible S-box entries, then
we require 2−α·k(r−1) ·

(
k·r
k

)

< 2−k·m (namely, the adversary misses only k S-box
inputs with very low probability). Since

(
k·r
k

)

< (k · r)k, it is sufficient to require

−α · k(r − 1) + k log(k) + k log(r) < −k · m.

Dividing by αk, we get −r + 1 + log(r)/α + log(k)/α < −m/α or

r − log(r)/α > m/α + log(k)/α + 1.

In other words, the required number of rounds r is larger than m/α by an
additive logarithmic factor.

6 We note that in terms of provable security, it was shown in [13] for WhiteBlock (and
similar arguments can be applied to our scheme) that the analysis for an arbitrary
set of S-box entries should give a close estimation to the number of rounds required
to achieve the desired security level of 112 bits.

7 We point out that the adversary can reduce the number of guesses in case of common
missed S-boxes entries. We do not expect this to give the adversary a significant
advantage, as the adversary can only miss a small number of S-box entries in the
encryption which are likely to be distinct. Nevertheless, this is a shortcoming of our
analysis (which is also present in the analysis of [13]).

WEM: A New Family of White-Box Block Ciphers 305

Next, we compare our scheme to the previous proposals of [5,13]. For the
sake of simplicity, we focus on S-box sizes m which divide the block size n.8

Comparison to WhiteBlock [13]. According to the provable security analysis
of [13], for an S-box size of m bits and α = 2 (namely, assuming that the adver-
sary has 1/4 of the code) WhiteBlock should have r = m + 2 rounds (assuming
that m divides the block size n). Therefore, for α = 2, our scheme requires
half the number of rounds, up to an additive logarithmic factor. However, this
comparison is not completely fair since it was obtained using different analy-
sis methods (even though they are related). Hence, we redo our analysis for
WhiteBlock, and show that it gives similar results as the related analysis [13].

As in Sect. 4.1, we denote the number of S-boxes in a round of WhiteBlock
by k, giving km = 64, namely each S-box maps m bits to 64 bits. Similarly to
the previous section, we require that the adversary cannot guess the encryption
of any plaintext with probability which is significantly higher than 2−128 given
an arbitrary set of the S-box entries of size 2m−α. The encryption procedure of
r rounds contains kr S-boxes of m bits, and since the output of each S-box is 64
bits, we require that for all plaintexts, the adversary misses at least one S-box
entry in at least 2 different rounds. As 2−64·2 ≤ 2−128, this should suffice to
prevent the adversary from predicting the output of an encryption. Note that
we require that the missed entries occur in distinct rounds, since even if the
adversary misses several S-box entries in a single round, he can directly guess
the 64-bit output of the left part of the secret S-box layer (rather than guessing
the output of each S-box separately).

To predict the encryption of a plaintext with probability better than 2−128,
the adversary should have all the k(r −1) S-box entries which can occur in r −1
rounds, and there are

(
r

r−1

)

= r options to choose this round. Overall, we require
that 2−αk(r−1) · r < 2−2km or −αk(r − 1) + log(r) < −2ms. Rearranging, we
obtain

r − log(r)/(αk) > 2m/α + 1.

In other words, the required number of rounds r is about 2m/α and is twice
the number of rounds required by our scheme up to additive logarithmic factors.
This may seem obvious since the S-boxes of WhiteBlock encrypt only half of
the state in each S-box layer, whereas they cover the full state in our scheme.
However, this simplistic argument does not take into account the fact that each
S-box of WhiteBlock is expanding and hence in order to predict the encryption
of a plaintext with good probability, the adversary is allowed to miss less S-box
entries (while guessing their values) in WhiteBlock compared to our scheme. Our
analysis shows that the use of half as many expanding S-boxes in WhiteBlock
compared to our scheme increases the number of rounds required to achieve
the same space-hardness security, and thus, generally leads to slower encryption
speed. Nevertheless, if one seeks to minimize the number of secret S-box look-ups

8 It is also possible to instantiate our scheme for values of m that do not divide n, as
briefly discussed in Sect. 4.4.

306 J. Cho et al.

in the encryption process, then WhiteBlock is superior to our scheme (which has
more table look-ups, but evaluated in parallel).

Comparison to SPACE [5]. Unlike the case of WhiteBlock whose structure
is similar to WEM (both using interleaved applications of a secret S-box layer
and an AES layer), the SPACE family differs from WEM significantly, having
a generalized Feistel structure. Of course, we can directly compare performance
figures, but SPACE was designed with a large security margin and hence, is
expectedly much slower. Thus, comparing design strategies will be more inter-
esting.

If we ignore the fact that there are no AES layers in SPACE and redo the secu-
rity analysis presented above, we get that the SPACE design strategy requires
the smallest number of table lookups to achieve space-hardness, but the largest
number of secret S-box layers. This is a direct continuation of the trend we pre-
viously observed: as we reduce the number of S-boxes applied in a single round,
we can use S-boxes with larger output sizes, and thus we need fewer secret table
look-ups in the cipher to achieve space-hardness. On the other hand, we still
need more secret S-box layers since the reduction in the number of S-boxes is
not sufficient to reduce the number of rounds.

4.3 Space-Hardness Using Permutation S-Boxes

While previous space-hard designs were built using randomly chosen S-boxes, our
scheme was built using permutation S-boxes. This has some impact on the space
hardness of our scheme, as a permutation on m-bit words can be represented
using less memory compared to a random function mapping m-bit words to
m-bit words. However, the difference is only by a small multiplicative factor
of about 1 − 1.44/m, since by Stirling’s approximation, log((2m)!) > m · 2m −
log(e)2m ≈ (1 − 1.44/m)(m · 2m). For example, representing a 16-bit random
function requires 16 ·216 bits, while a 16-bit random permutation requires about
16 · 216 − (1.44/16)(16 · 216) = 14.56 · 216 bits.9

4.4 Concrete Instances

Our main instance uses 16-bit S-boxes. It has 12 rounds and is claimed to have
(1/4 · 14.56 · 216, 112)-space hardness or (214.86, 112)-space hardness in bytes.

We note that additional instances can be picked by choosing additional S-boxes
sizes (e.g., we can define an instance with a 21-bit S-box, where the S-box layer
contains 6 S-boxes and 2 bits are left unchanged), although that requires a slightly
more technical security analysis.

9 This factor is even smaller when considering representation of a fraction of the S-box
entries.

WEM: A New Family of White-Box Block Ciphers 307

5 Conclusions

In this paper we presented a new family of white-box block ciphers, called WEM,
which combines the iterated Even-Mansour construction with incompressible
S-boxes and a round-reduced key-less variant of a ‘standard’ block cipher (e.g.,
the AES). The structure of WEM allows obtaining good performance, while
basing the security confidence in the black-box model on the extensive analysis
of the cipher’s components, and the security in the white-box model on the
provable randomness of the Fisher-Yates shuffle algorithm.

Our cipher is an SP network, in which the incompressible S-boxes are random
permutations. This is in contrast with the previous SPACE and WhiteBlock
designs, in which the secret S-boxes are expanding, and the cipher is either a
generalized Feistel construction (SPACE) or interleaving of Feistel layers with
SPN layers (WhiteBlock). We showed that using an SP network allows reducing
the number of rounds in the scheme (for the same space-hardness level), and
thus, making the scheme faster if application of S-boxes in parallel is possible.
In particular, we present a specific scheme called WEM(128,16,12,AES-128,5)
with space hardness of (214.86, 112) bytes and encryption speed of less than 100
cycles per byte.

References

1. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Berlin (2004). doi:10.1007/978-3-540-30564-4 16

2. Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. In: Dobbertin,
H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 11–15. Springer,
Berlin (2005). doi:10.1007/11506447 2

3. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Berlin (2014). doi:10.1007/978-3-662-45611-8 4

4. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Berlin (2000). doi:10.1007/
3-540-45539-6 41

5. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers.
In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, 12–6
October 2015, pp. 1058–1069. ACM (2015). http://doi.acm.org/10.1145/2810103.
2813699

6. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an
AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595,
pp. 250–270. Springer, Berlin (2003). doi:10.1007/3-540-36492-7 17

7. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Berlin (1993). doi:10.1007/3-540-57332-1 46

http://dx.doi.org/10.1007/978-3-540-30564-4_16
http://dx.doi.org/10.1007/11506447_2
http://dx.doi.org/10.1007/978-3-662-45611-8_4
http://dx.doi.org/10.1007/3-540-45539-6_41
http://dx.doi.org/10.1007/3-540-45539-6_41
http://doi.acm.org/10.1145/2810103.2813699
http://doi.acm.org/10.1145/2810103.2813699
http://dx.doi.org/10.1007/3-540-36492-7_17
http://dx.doi.org/10.1007/3-540-57332-1_46

308 J. Cho et al.

8. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions
for symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 247–264. Springer, Berlin (2014). doi:10.1007/
978-3-662-43414-7 13

9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on iterated
Even-Mansour encryption schemes. J. Cryptology 29(4), 697–728 (2016)

10. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour
encryption scheme. J. Cryptology 28(1), 1–28 (2015)

11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–162 (1997)

12. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd, London (1938)

13. Fouque, P., Karpman, P., Kirchner, P., Minaud, B.: Efficient and Provable White-
Box Primitives. IACR Cryptology ePrint Archive 2016, 642 (2016). http://eprint.
iacr.org/2016/642

14. Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryptosys-
tem with expanding S-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 475–490. Springer, Berlin (2015). doi:10.1007/
978-3-662-47989-6 23

15. Lange, T., Lauter, K.E., Lisonek, P.: Selected Areas in Cryptography – SAC 2013.
LNCS, vol. 8282. Springer, Berlin (2014). doi:10.1007/978-3-662-43414-7

16. Lepoint, T., Rivain, M., Mulder, Y., Roelse, P., Preneel, B.: Two attacks on
a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Berlin (2014). doi:10.1007/
978-3-662-43414-7 14

17. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
3–27. Springer, Berlin (2015). doi:10.1007/978-3-662-48800-3 1

18. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with
a secret S-box. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 175–189.
Springer, Berlin (2015). doi:10.1007/978-3-662-48116-5 9

19. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-77360-3 17

http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://eprint.iacr.org/2016/642
http://eprint.iacr.org/2016/642
http://dx.doi.org/10.1007/978-3-662-47989-6_23
http://dx.doi.org/10.1007/978-3-662-47989-6_23
http://dx.doi.org/10.1007/978-3-662-43414-7
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-48800-3_1
http://dx.doi.org/10.1007/978-3-662-48116-5_9
http://dx.doi.org/10.1007/978-3-540-77360-3_17

Improved Key Recovery Algorithms

A Bounded-Space Near-Optimal Key
Enumeration Algorithm for Multi-subkey

Side-Channel Attacks

Liron David(B) and Avishai Wool(B)

School of Electrical Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
lirondavid@gmail.com, yash@eng.tau.ac.il

Abstract. Enumeration of cryptographic keys in order of likelihood
based on side-channel leakages has a significant importance in crypt-
analysis. The best optimal-order key enumeration algorithms have a huge
space complexity of Ω(nd/2) when there are d subkeys and n candidate
values per subkey. In this paper, we present a parallelizable algorithm
that enumerates the keys in near-optimal order but enjoys a much better
space complexity of O(d2w + dn) for a design parameter w which can be
tuned to available RAM.

Before presenting our algorithm, we provide lower and upper bounds
on the guessing entropy of the full key in terms of the easy-to-compute
guessing entropies of the individual subkeys. We use these results to
quantify the near-optimality of our algorithm’s ranking, and to bound
its guessing entropy. Finally, we evaluate our algorithm through extensive
simulations, to show the advantages of our new algorithm in practice, on
realistic SCA scenarios. We show that our algorithm continues its near-
optimal-order enumeration far beyond the rank at which the optimal
algorithm fails due to insufficient memory.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosystem
based on leakage information gained from physical implementation of the cryp-
tosystem on different devices. Information provided by sources such as timing [13],
power consumption [12], electromagnetic emulation [20], electromagnetic radia-
tion [1,9] and other sources, can be exploited by SCA to break cryptosystems.

Most of the attacks that have been published in the literature are based on a
“divide-and-conquer” strategy. In the first “divide” part, the cryptanalyst recov-
ers multi-dimensional information about different parts of the key, usually called
subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In the “con-
quer” part the cryptanalyst combines the information all together in an efficient
way. In the attacks we consider in this paper, the information that the SCA pro-
vides for each subkey is a probability distribution over the n candidate values for
that subkey.
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 311–327, 2017.
DOI: 10.1007/978-3-319-52153-4 18

312 L. David and A. Wool

Much attention has been paid to the “divide” part of side channel analysis,
aiming to optimize its performance: Kocher et al.’s Differential Power Analysis
(DPA) [12], Brier et al.’s Correlation Power Analysis (CPA) [5] and Chari et al.’s
Template Attacks [6] are some examples. In contrast, less attention has been paid
to the “conquer” part.

1.2 Related Work

The problem of merging two lists of subkey candidates was encountered by Junod
and Vaudenay [11]. The simple approach of merging and sorting the subkeys
lists was tractable thanks to the small size of the lists (up to 213). By decreasing
the order of the probabilities, given partial information obtained for each key bit
individually, Dichtl [8] considered a faster enumeration of key candidates. A more
general and challenging problem is enumerating keys from lists that cannot be
merged, exploiting any partial information on subkeys. For this, a probabilistic
algorithm was proposed in [15]. In this work the attacker has no access to the
subkey distributions but is able to generate subkeys according to them. The
proposed solution is to enumerate keys by randomly choosing subkeys according
to these distributions. This implementation requires O(1) memory but keys may
be chosen many times, leading to useless repetitions.

A deterministic enumeration algorithm was described by Pan et al. [17].
It enumerates key candidates in the optimal order, but large memory require-
ments prevent the application of this, when the number of keys to enumerate
increases.

The currently best optimal algorithm was proposed by Veyrat-Charvillon,
Gérard, Renauld and Standaert, [22], which we denote by OKEA. This algorithm
significantly improves the time and memory complexity thanks to clever data
structures and a recursive decomposition of the problem. However, its worst case
space complexity is Ω(nd/2) when d is the number of subkey dimensions and n
is the number of candidates per subkey - and the space complexity is Ω(r) when
enumerating up to a key at rank r ≤ nd/2. Thus its space complexity becomes a
bottleneck on real computers with bounded RAM in realistic SCA attacks.

To tackle this problem, two improved key enumeration algorithms were pro-
posed by Bogdanov et al. [4] and Martin et al. [14]. Similar to us, both papers
improve upon OKEA [22] by suggesting bounded-memory algorithms.

Bogdanov et al. [4] uses a score-based enumeration, rather than the probability-
based enumeration that OKEA and our algorithm use, producing an enumera-
tion that is suboptimal in terms of output order, and can be parallelized. The
algorithm of Martin et al. [14] also uses a score-based enumeration, focuses on
rank estimation via a reduction to counting knapsack and utilizes it to enu-
merate the B keys with the highest scores in a parallel manner, for any B.
Like [4] they also manipulate the side-channel leakages, but into different
weights. Both use additive scoring (the scores of different subkeys are added
to score a full key): [4] suggests scores that are scaled-and-truncated probabil-
ities, whereas [14] skirts this issue. This makes it difficult to compare apples

A Bounded-Space Near-Optimal Key Enumeration Algorithm 313

with apples: the quality of their order would have been comparable to the opti-
mal (OKEA) order and to our order only if they had used log-probabilities
(whose addition is semantically equivalent to multiplication of probabilities).
Moreover, with scores, standard metrics such as the Guessing Entropy, which
we analyze, cannot be computed, since they require probabilities. Finally, giv-
ing our algorithm more memory greatly improves both its order quality and its
runtime, whereas their algorithms do not enjoy this benefit.

The most similar work to ours was developed in parallel to our technical
report [7] by Poussier et al. [19]. The authors use a very different, histogram-
based method, to enumerate the keys in parallelizable sub-optimal order. Like
us they also use probabilities (technically, log-probabilities). Using our notation,
their algorithm has a Ω(d2Nb + nd) space complexity—when Nb (number of
bins) is a design parameter, i.e., the same asymptotic space complexity as our
method. However, like both [4,14] Poussier et al. [19] did not provide any analyt-
ical bounds on the distance between their rank and the optimum, nor did they
analyze the guessing entropy of their algorithm—they only provide empirical
evidence based on one dataset.

Ye et al. [24] take a different approach: they limit the key enumeration to a
hypercube of the top e candidates for every subkey. Their KSF fails if the true
key is outside this hypercube. This is unlike all previously mentioned papers,
which always find the correct key if given enough time. In some sense KSF is
analogous to the first step of our algorithm: instead of giving up, our algorithm
continues to adjacent volumes wrapping the hypercube, and uses the OKEA
inside the hypercube and in the adjacent volumes, while maintaining a bound
on the memory complexity.

The paper of Poussier et al. [18] is primarily a taxonomy and comparison
of rank estimation algorithms, suggesting new algorithmic combinations. It con-
tinues the work of Veyrat [23], Bernstein [3], Glowacz [10] and also of Martin
et al. [14]. Rank estimation is a closely related, yet different, question, to the
key enumeration we address: It doesn’t necessarily require to enumerate all the
key candidates ranked before the correct key, as it is only necessary to estimate
how many there are.

1.3 Contributions

In this paper, we propose a parallelizable key enumeration algorithm, with
bounded memory requirement of O(d2w + dn) for a design parameter w which
can be tuned to available RAM and allows the enumeration of a large num-
ber of keys without exceeding the available memory. Our algorithm enumerates
in near-optimal order with a bounded ratio between optimal and near-optimal
ranks.

Before presenting our algorithm, we utilize the evaluation framework of [21],
providing lower and upper bounds on the guessing entropy of the full key in
terms of the easy-to-compute guessing entropies of the individual subkeys. We
use these results to quantify the near-optimality of our algorithm’s ranking, and
to bound its guessing entropy.

314 L. David and A. Wool

Finally, we evaluate our algorithm through extensive simulations, to show
the advantages of our new algorithm in practice, on realistic SCA scenarios. On
our lab environment we found that the optimal algorithm fails due to insufficient
memory when attempting to enumerate beyond rank 233, while our bounded-
space algorithm continued its near-optimal-order enumeration unhindered.

Organization: In Sect. 2 we describe the optimal-order key enumeration algo-
rithm of [22]. In Sect. 3 we introduce some bounds on the guessing entropy of
the full key based on the guessing entropies of the individual subkeys. In Sect. 4
we introduce our w-layer key enumeration algorithm and analyze its properties.
In Sect. 5 we present our performance analysis, and we conclude in Sect. 6.

2 Preliminaries

The key enumeration problem: The cryptanalyst obtains d independent sub-
key spaces k1, ..., kd, each of size n, and their corresponding probability distrib-
utions Pk1 , ..., Pkd

. The problem is to enumerate the full-key space in decreasing
probability order, from the most likely key to the least, when the probability of
a full key is defined as the product of its subkey’s probabilities.

The best key enumeration algorithm so far, in terms of optimal-order, was
presented by Veyrat-Charvillon, Gérard, Renauld and Standaert in [22], which
we denote by OKEA. To explain the algorithm, we will use a graphical represen-
tation of the key space—the case of d = 2 is depicted in Fig. 1. In this figure, we
see two subkeys k1 and k2 along the axes of the graph, both sorted by decreasing
order of probability. The width and the height of the rows and columns corre-
spond to the probability of the corresponding subkey. Let k

(j)
i denote the j’th

likeliest value for the i’th subkey. Then, the intersection of row j1 and column
j2 is a rectangle corresponding to the key (k(j1)

1 , k
(j2)
2) whose probability is equal

to the area of the rectangle.

Fig. 1. Left: geometric representation of the key space. Right: geometric representation
of the first two steps of key enumeration.

The algorithm outputs the keys in decreasing order of probability. The algo-
rithm maintains a data structure F of candidates to be the next key in the
sorted order. In each step the algorithm extracts the most likely candidate from
F , (k(j1)

1 , k
(j2)
2), and outputs it. F is then updated by inserting the potential

successors of this candidate: (k(j1+1)
1 , k

(j2)
2) and (k(j1)

1 , k
(j2+1)
2). An important

A Bounded-Space Near-Optimal Key Enumeration Algorithm 315

observation made by [22] is that F should never include 2 candidates in the
same column, or in the same row: one candidate will clearly dominate the other.
Thus the algorithm maintains auxiliary data structures (“bit vectors”) to indi-
cate which rows and columns currently have a member in F . This observation
has a crucial effect on the size of the data structure, |F |.

We can see in Fig. 1 the first steps of the algorithm: the most likely key is
(k(1)

1 , k
(1)
2), therefore this is the key that is output first (represented in dark

gray in step 1). Now, the only possible next key candidates are the successors
(represented in light gray in step 1) (k(2)

1 , k
(1)
2) and (k(1)

1 , k
(2)
2), which are inserted

into F . Then in step 2, the most likely key is extracted, but this time only one
successor is inserted because there is already a key in column 2.

In general, we need to enumerate over more than two lists of subkeys (d > 2).
For AES, typically d = 16 for byte-level side channels or d = 4 for 32-bit subkeys
as in [16]. To do this, [22] suggested a recursive decomposition of the problem.
The algorithm described above is only used for merging two lists, and its outputs
are used to form larger subkey lists which are in turn merged together. In order
to minimize the storage and the enumeration effort, these lists are generated only
as far as required by the key enumeration. Therefore, whenever a new subkey is
inserted into the candidate set, its value is obtained by applying the enumeration
algorithm to the lower level, (for example 64-bit subkeys obtained by merging
two 32-bit subkeys), and so on.

3 Bounding the Guessing Entropy

An important security metric for the evaluation of a side channel attack [21] is
the Guessing Entropy, which intuitively corresponds to the average number of
keys to test before reaching the correct one, based on the probabilities assigned
to key candidates by the side channel attack.

Definition 1 (Guessing Entropy). For a random variable X with n values,
denote the elements of its probability distribution PX by PX(xi) for xi ∈ X such
that PX(x1) ≥ PX(x2) ≥ ... ≥ PX(xn). The guessing entropy of X is:

G(X) =
n∑

i=1

i · PX(xi).

The case d = 2: Let the key be split into 2 independent subkey spaces X and Y,
each of size n, thus a key is a vector xy s.t. x ∈ X and y ∈ Y . A side channel
attack produces 2 separate distributions PX(xi) for xi ∈ X and PY (yj) for
yj ∈ Y . Assume that the subkey distributions are sorted: PX(x1) ≥ PX(x2) ≥
... ≥ PX(xn) and similarly for PY , then G(X) and G(Y) are well defined.

Let XY denote the list of (full) keys sorted in decreasing order of proba-
bility, where PXY (xi, yj) = PX(xi)PY (yj) since the subkeys are independent.
Thus G(XY) is well defined. However, calculating G(XY) requires a time and

316 L. David and A. Wool

space complexity of Ω(n2). Therefore bounding G(XY) in terms of the easy-to-
compute G(X) and G(Y) is a useful goal. To this end, let rank(xi, yj) be the
position of key (xi, yj) in XY . Clearly, rank(x1, y1) = 1 and rank(xn, yn) = n2.
By definition we get:

G(XY) =
n∑

i=1

n∑

j=1

rank(xi, yj) · PX(xi)PY (yj). (1)

Theorem 1. The guessing entropy of XY , G(XY), is bounded by:

G(X)G(Y) ≤ G(XY) ≤ n(G(X) + G(Y)) − G(X)G(Y). (2)

Proof. Appears in the extended version of this paper [7].

We can see that in general G(XY) is not multiplicative:

Corollary 1. G(X)G(Y) ≤ G(XY) ≤ 2n · max
(

G(X), G(Y)
)

.

Proof. Appears in the extended version of this paper [7].

These bounds can be expanded for d > 2. In this case it holds:

d∏

m=1

im ≤ rank(x(1)
i1

, x
(2)
i2

, ..., x
(d)
id

) ≤ nd −
d∏

m=1

(n − im).

Therefore we obtain

Theorem 2. The guessing entropy G(X(1)X(2)...X(d)), is bounded by:

d∏

m=1

G(X(m)) ≤ G(X(1)X(2)...X(d)) ≤ nd −
d∏

m=1

(n − G(X(m))).

As an example of using these bounds, with byte-level SCA on AES we have
d = 16. If the SCA discards 128 values per byte and returns a probability
distribution over the remaining 128 candidates we have n = 128. Assuming that
G(X(m)) = 8 for all 16 subkeys we get that

248 = 816 ≤ G(X(1)X(2)...X(d)) ≤ 12816 − (128 − 8)16 = 2111.36.

Reducing the gap between the lower and the upper bounds is left as an open
question.

4 The Key Enumeration Algorithm

The key enumeration in [22] enumerates the key candidates in optimal order, but
has a significant drawback, its memory requirements may exceed the available
memory. Its worst-case space complexity is Ω(nd/2) since it needs to store the
full sorted distribution of the 2 top-level dimensions (in addition to the data

A Bounded-Space Near-Optimal Key Enumeration Algorithm 317

structure F), for each dimension. Moreover, in order to enumerate until a key
of rank r ≤ nd/2 it has a space complexity of Ω(r). In this section, we present
a new key enumeration algorithm with bounded memory requirements, which
therefore allows to enumerate a large number of key candidates.

To achieve the desired memory bound, we relax the “optimal order” require-
ment: our algorithm enumerates the keys in near-optimal order, and we are able
to bound the ratio between the optimal rank of a key and our algorithm’s rank
of that key.

4.1 The Layering Approach

In order to explain our algorithm, we start with the case of two dimensions, d = 2.
We divide the key-space (n×n) into layers of width w, as depicted in Fig. 2. The
first layer contains the keys (k(i)

1 , k
(j)
2) such that (i, j) ∈ {1, ..., w} × {1, ..., w}.

The second layer contains the keys (k(i)
1 , k

(j)
2) such that (i, j) ∈ {1, ..., 2w} ×

{1, ..., 2w} \ {1, ..., w} × {1, ..., w} and so on. More formally:

Definition 2. Given w > 0 and l > 0, let

layerwl = {(k(i)1 , k
(j)
2)|(i, j) ∈ {1, ..., l ·w}×{1, ..., l ·w} \ {1, ..., (l− 1) ·w}×{1, ..., (l− 1) ·w}}.

Fig. 2. Left: geometric representation of the key space divided into layers of width
w = 3. The keys in cells (1, 7) and (7, 1) are the algorithm’s seeds for layer

(3)
3 . Right:

geometric representation of the key enumeration at layer33.

A key observation is that we can run the optimal enumeration algorithm of
[22] within a layer: we seed the algorithm data structure F by inserting the two
“corners” (see Fig. 2), and then extract candidates and insert their successors as
usual - limiting ourselves not to exceed the boundaries of the layer. Moreover,
within a layer of width w, we can bound the space used by F :

Proposition 1. For every l > 0 and w > 0, applying the optimal key enumer-
ation of [22] on layerwl , the number of next potential key candidates is bounded
by 2w, i.e., |F | ≤ 2w.

Proof. Appears in the extended version of this paper [7].

Importantly, the bound on |F | is independent of n, and depends only on the
design parameter w which we can tune.

318 L. David and A. Wool

4.2 The Two-Dimensional Algorithm

Proposition 1 leads us to our w-layer key enumeration algorithm: Divide the
key-space into layers of width w. Then, go over the layerws, one by one, in
increasing order. For each layerwl , enumerate its key candidates, by applying the
optimal key enumeration [22]. Following the proposition, the number of potential
next candidates, F , that our algorithm should store is bounded by 2w.

4.3 Generalization to a Multi-dimensional Algorithm

For d > 2, similarly to [22] we apply a recursive decomposition of the problem.
Whenever a new subkey is inserted into the candidate set, its value is obtained
by applying the enumeration algorithm to the lower level. For example, let’s look
at d = 4. In order to generate the ordered full-key, we need to generate the 2
ordered lists of the lower level L1,2 and L3,4 on the fly as far as required. For
this, we maintain a set of next potential candidates, for each dimension - F1,2

and F3,4, so that each next subkey candidate we get from F1,2 (or F3,4) we store
at L1,2 (or L3,4). The length of these generated subkey lists, L1,2 and L3,4 is
Ω(n2). For general d, the sizes of the data structures F1,...,d/2 and Fd/2+1,...,d

are bounded by 2w, however, we still have a bottleneck of Ω(nd/2) because of
L1,...,d/2 and Ld/2+1,...,d. Therefore, instead of naively storing the full subkey
order of L1,...,d/2 and Ld/2+1,...,d, we only store the O(w) candidates which were
computed “recently”.

To do this, we divide each layerw in the geometrical representation, into
squares of size w × w, as depicted in Fig. 2 (right side). Our algorithm still
enumerates the key candidates in layerw1 first, then in layerw2 and so on, but in
each layerwl the enumeration will be square-by-square.

More specifically, let Sw
x,y be a set of the key candidates in the square Sw

x,y =

{(k(i)
1,...,d/2, k

(j)
d/2+1,...,d)|(x− 1) ·w < i ≤ x ·w and (y − 1) ·w < j ≤ y ·w}. We say

that two squares, Sx,y and Sz,w are in the same row if y = w, and are in the
same column if x = z.

This in-layer split into squares reduces the space complexity, since instead of
storing the full ordered lists of the lower levels, we store only the relevant subkeys
candidates for enumerating the current two squares, i.e., 2w subkey candidates
for each dimension. However, these subkey candidates which are redundant for
enumerating the current squares, might be useful later in the enumeration of the
next layer. In that case we will need to recompute them.

Now let’s describe the enumeration at each layerwl . We know that the most
likely candidate in layerwl is either at S1,l or Sl,1. Therefore, we enumerate first
the key candidates in S1,l∪Sl,1 by applying the key enumeration in [22] on them
(represented in dark gray in step 1 in Fig. 2). Let S denote the set of squares
that contain potential next candidates in this layer. At some point, one of the
two squares is completely enumerated. Without loss of generality, we assume
this is S1,l. At this point, the only square that contains the next key candidates
after S1,l is the successor S2,l (represented in dark gray in step 2 of Fig. 2).

A Bounded-Space Near-Optimal Key Enumeration Algorithm 319

Algorithm 1. w-Layer Key Enumeration Algorithm.
Input: Subkey distributions {ki}1≤i≤d.
Output: The correct key, if exists, NOT-FOUND otherwise.

1 found = false; initialize(F1,...,d);
2 while (F1,...,d �= ∅) do
3 candidate = nextCandidate(F1,...,d, {ki}1≤i≤d);
4 found = isCorrectKey(candidate);
5 if (found) then
6 return candidate;

7 return NOT-FOUND;

In the general case, the successor of Sx,y is either Sx+1,y or Sx,y+1, only one of
which is in layerwl . Therefore, when one of the squares is completely enumerated,
it is extracted from S, and its successor is inserted, as long as S doesn’t contain
a square in the same row or column.

Notice that only after a square is completed we continue to its successor.
Without loss of generality, we assume that the successor is in the same row as
the current one. Therefore, for all candidates (k(i)

1,...,d/2, k
(j)
d/2+1,...,d) we intend to

check next, the j index is higher than the j index of any candidate in the current
square, therefore these j indexes of the current square are redundant and we do
not need to store them.

It is simple to see that we maintain at most 2 squares of size w × w each
time, therefore we need to maintain sets of next potential candidates and ordered
lists for each square, i.e., F 1

1,...,d/2, L1
1,...,d/2, F 1

d/2+1,...,d, L1
d/2+1,...,d and F 2

1,...,d/2,
L2
1,...,d/2, F 2

d/2+1,...,d, L2
d/2+1,...,d.

4.4 Bounding the Rank and the Guessing Entropy

Let vw denote the vector resulting from enumerating all key candidates, apply-
ing our w-layer key enumeration, for fixed w, and let v denote the vec-
tor resulting from applying the optimal order enumeration. Additionally, let
rankw(i1, i2, .., id) denote the order statistic of key (k(i1)

1 , k
(i2)
2 , ..., k

(id)
d) in vw,

and rank(i1, i2, .., id) be the order statistic of key (k(i1)
1 , k

(i2)
2 , ..., k

(id)
d) in v. Now,

we want to bound the rank of the w-layer algorithm, and the guessing entropy
of vw, G(vw), related to G(v).

Theorem 3. Consider a key (k(i1)
1 , ..., k

(id)
d). Let i∗ = max{i1, ..., id}, and let

αm = im/i∗ for m = 1, ..., d (αm ≤ 1). Then,

rankw(i1, ..., id) ≤
d∏

m=1

(2
αm

)

· rank(i1, ..., 1d).

Proof. Appears in the extended version of this paper [7].

320 L. David and A. Wool

Algorithm 2. nextCandidate.
Input: Fp,..,r and subkey distributions {ki}p≤i≤r.
Output: The next key candidate in Fp,..,r.

1 q � �p + r�/2; x � {p, ..., q}; y � {q + 1, ..., r};

2 (k
(i)
x , k

(j)
y) ← most likely candidate in Fp,...,r;

3 Fp,...,r ← Fp,...,r \ {(k
(i)
x , k

(j)
y)};

4 I � �i�/w; J � �j�/w; t � (I ≥ J) ? 1 : 2; // (k
(i)
x , k

(j)
y) is in SI,J ;

5 if SI,J is completely enumerated then
6 if I == J then
7 if r − p > 1 then

8 nextCandidate(F 1
x); k

(i+1)
x ← L1

x[(i + 1)%w];

9 nextCandidate(F 2
y); k

(j+1)
y ← L2

y[(j + 1)%w];

10 F 2
x ← k

(1)
x ; F 1

y ← k
(1)
y ;

11 Fp,...,r ← {(k
(1)
x , k

(j+1)
y)} ∪ {(k

(i+1)
x , k

(1)
y)};

12 else
13 if no candidates are in same row/column as Successor(SI,J) then
14 Fp,...,r ← Fp,...,r ∪ {most likely candidate in Successor(SI,J)};

15 else

16 if (k
(i+1)
x , k

(j)
y) ∈ SI,J and no candidate in row i+1 then

17 if r − p > 1 then

18 if k
(i+1)
x is not stored at Lt

x then
19 nextCandidate(F t

x);

20 k
(i+1)
x ← Lt

x[(i + 1)%w];

21 Fp,...,r ← Fp,...,r ∪ {(k
(i+1)
x , k

(j)
y)};

22 if (k
(i)
x , k

(j+1)
y) ∈ SI,J and no candidate in column j+1 then

23 if r − p > 1 then
24 if I==J then

25 k
(j+1)
y ← L2

y[(j + 1)%w]
26 else

27 if k
(j+1)
y is not stored at Lt

y then
28 nextCandidate(F t

y);

29 k
(j+1)
y ← Lt

y[(j + 1)%w];

30 Fp,...,r ← Fp,...,r ∪ {(k
(i)
x , k

(j+1)
y)};

31 L[(L.size + 1)%w] ← most likely candidate in Fp,...,r;

32 return (k
(i)
x , k

(j)
y) ;

Theorem 4. The bound of the guessing entropy of vw, G(vw), related to G(v) is:

G(vw) ≤ 2dnd−1 · G(v).

Proof. Appears in the extended version of this paper [7].

It is somewhat counter-intuitive that the bound on the approximation factors
does not depend on the size of the layer w, while, as we will see in Sect. 5, the

A Bounded-Space Near-Optimal Key Enumeration Algorithm 321

experimental analysis suggests a much better (yet w-dependent) behavior. We
leave for further work to find w-dependent theoretical bounds.

4.5 Parallelization of w-Layer Algorithm

We parallelize our algorithm by parallelizing the OKEA [22] inside each square.
OKEA is an inherently serial algorithm, so by parallelizing it we lose the enu-
meration order’s optimality inside the square. However, our bounds on the rank
(Theorem 3) and the guessing entropy (Theorem 4) are independent of the inter-
nal enumerating order in each layer. Therefore our parallel algorithm retains the
same guaranteed performance.

According to Proposition 1, when enumerating a whole layer, the number of
next potential candidates, |F |, is bounded by 2w, and within a single w×w square
we have |F | ≤ w. Hence, enumerating each square can be parallelized between at
most w cores, protecting the access to the structure F with concurrency controls.
Each core extracts the most likely candidate from F , and let s1 be one of its two
successors. The algorithm inserts s1 back into F only if there is no candidates in
the same row/column as s1, and if all the candidates in the same row/column,
before s1, were already enumerated. For this, we need to replace the simple “bit
vector” implementation of [22] by a “greatest index vector”. This vector stores
for any row/column the greatest enumerated index in that row/column.

4.6 Space Complexity Analysis

The algorithm needs to store the candidates of the 2 top-level dimensions, for
each dimension. However, it doesn’t need to store the whole candidate list, but
only two lists (L) of size w for each dimension. For this, it needs to store 2 sets
of potential candidates (F) for each dimension, each one of these sets is bounded
by 2w. Moreover, it needs to store 2 data structures (“bit vectors”) for each F
to indicate which rows and columns currently have a member in it. All together,
we get the following recurrence relation for the space complexity:

S(d) = 4S(d/2) + cw,

for some constant c, which sums to O(d2w). Taking into account the input, whose
space is O(dn), we get a total space complexity of O(d2w + dn).

5 Performance Analysis

We evaluated the performance of our w-layer key enumeration algorithm through
an extensive simulation study. We implemented the optimal algorithm [22] and
our algorithm in Java, and ran both algorithms on a 3.07 GHz PC with 24 GB
RAM running Microsoft windows 7, 64 bit. Note that the code of the optimal
algorithm is used as a subroutine in the w-layer algorithm, thus any potential
improvement in the former’s implementation would automatically translate into
an analogous improvement in the latter.

322 L. David and A. Wool

We used synthetic SCA distributions with d = 8 subkeys and n = 212 candi-
dates per subkey for a total enumeration space of O(nd) = 296. We chose d = 8
and n = 212 since for a key whose rank is ‘deep’, the optimal-order algorithm
takes space of Ω(nd/2) = Ω(248) which exceeds the available memory. We gen-
erated the synthtic SCA distributions according to Pareto distributions, with
α = 0.575 and β = 0.738. The choice of the Pareto distribution and these spe-
cific parameters is based on empirical evidence we discovered, see the extended
version of this paper [7]. For the simulations, we chose two different values of w
to limit our space complexity O(d2w + dn). The first one is w = n which gives
a linear space complexity of O(d2n + dn) and the second one is w = 225 which
gives an O(231) space complexity which is about 1 Gb.

We also evaluated the algorithm’s performance for d = 16 subkeys and n =
26, again for a total enumeration space of 296. The probability distributions were
Pareto distributions with α = 0.3 and β = 1.1197, see the extended version of
this paper [7]. We analyzed our w-layer algorithm for two different values of w:
w = n = 26 and w = 225. The obtained results are similar to those with d = 8.
Graphs are omitted.

We conducted the experiments as follows. We ran the optimal algorithm on
different (optimal) ranks starting from 212, and measured its time and space
consumption. For each optimal rank, 2x, we extracted the key corresponding to
this rank, and ran each of our w-layer key enumeration algorithm variants until
it reached the same key, and measured its rank, time and space. We repeated
this simulation for 64 different ranks near 2x — the graphs below display the
median of the measured values.

Because of time consumption, we decided to stop each w-layer run after 2 h -
if it didn’t find the given key by then. We marked the timed-out runs.

5.1 Runtime Analysis

Figure 3 illustrates the time (in minutes) of the 3 algorithms: OKEA (optimal-
order) (green triangles), w-layer with w = n = 212 (red squares) and w-layer with
w = 225 (blue diamonds) for different ranks. The figure shows that, crucially,
the optimal-order key enumeration stops at 233. This is because of high memory
consumption which exceeds the available memory. The w-layer key enumeration,
in contrast, keeps running.

For ranks beyond 222 we noticed that the w-layer enumeration with w =
n = 212 became significantly slower than the others. The red squares (w = n) in
Fig. 3 are misleadingly low, since as Fig. 4 shows, a large fraction of runs timed-
out at the 2 h mark, and we stopped experimenting with this setting beyond
rank 232. It is important to remark that we chose to stop because of the time
consumption - the algorithm doesn’t stop till it finds the correct key.

For the w-layer algorithm with w = 225, however, we see excellent results. For
small ranks it takes exactly the same time consumption as OKEA, (hidden by
the green triangles in Fig. 3), and for high ranks, its bounded space complexity
enables it to enumerate in reasonable time.

A Bounded-Space Near-Optimal Key Enumeration Algorithm 323

Fig. 3. Median run time, in minutes, of OKEA (green triangles), w-layer key enumer-
ation with w = 225 (blue diamonds) and w-layer key enumeration with w = n (red
squares) on different ranks. (Color figure online)

Fig. 4. Frequency of the keys whose time consumption applying the w-layer key enu-
meration with w = n is higher than 2 h.

Note that for ranks beyond 233, the optimal algorithm failed to run, so we
could not identify the keys with those ranks. In order to demonstrate the w-layer
algorithm’s ability to continue its enumeration we let it run until it reached
a rank r in its own near-optimal order (for r = 234, .., 237) - and for those
experiments we removed the 2 h time out.

We can see that bigger values of w lead to more candidates in each w-layer
which leads to less recomputing and therefore a lower running time.

5.2 Space Utilization

Figure 5 illustrates the space (in bytes) used by the 3 algorithms’ data structures
for different ranks. As we can see again, OKEA stops at 233 because of memory
shortage, while the w-layer algorithm keeps running. For the w-layer algorithm
with w = n we can clearly see the bounded space consumption leveling at around
1 MB. For the w-layer algorithm with w = 225 we see that its space consumption
levels around 4 GB and remains steady, allowing the algorithm to enumerate
further into the key space, limited only by the time the cryptanalyst is willing
to spend.

5.3 The Difference in Ranks

Figure 6 illustrates the ranks detected by the 3 algorithms as a function of the
optimal rank. By definition the optimal algorithm finds the correct ranks. Despite

324 L. David and A. Wool

Fig. 5. Median space, counting the data structure elements, of OKEA (green triangles),
w-layer key enumeration with w = 225 (blue diamonds) and w-layer key enumeration
with w = n (red squares) on different ranks. (Color figure online)

the somewhat pessimistic bounds of Theorem 4, the figure shows that with w = n
the ratio between the optimal rank and rankw is approximately 2.32 (again, for
those runs that complete faster than 2 h running time). Beyond 228 too many
runs timed out for meaningful data. For w = 225 the discovered ranks are almost
identical to the optimal ranks (the symbols in the figure overlap) - and beyond
233 the optimal algorithm failed so comparison is not possible.

Fig. 6. Median rank of OKEA (green triangles), w-layer key enumeration with w = 225

(blue diamonds) and w-layer key enumeration with w = n (red squares) on different
ranks. (Color figure online)

5.4 Influence of w on Space Complexity and Enumeration Accuracy

The trade-off between the space complexity and the accuracy of the enumeration
order is summed up in Table 1. As we can see, for w = 212 our enumeration uses
space of 1 MB. We see the maximum rank for which 80% of the simulations take
less than 2 h is 226, and up to this rank the rank accuracy is at most 2.32 times
the optimal rank. For w = 225 our enumeration uses more space (4 GB), but
the maximum rank for which 80% of the simulations take less than 2 h is 233,
and accuracy is at most 1.007 times the optimal rank. As a consequence, we
recommend to increase w as much as possible without exceeding the available

A Bounded-Space Near-Optimal Key Enumeration Algorithm 325

Table 1. Influence of w on space complexity and enumeration accuracy

w Space Max rank of 80% in 2 h Accuracy

w = 212 1MB 226 ≤ 2.32· OPT

w = 225 4GB 233 ≤ 1.007· OPT

memory. This bounds the space complexity, and therefore enables to enumerate
more keys, with better accuracy.

6 Conclusion

In this paper, we investigated the side channel attack improvement obtained by
adversaries with non-negligible computation power to exploit physical leakage.
For this purpose, we presented a new parallelizable w-layer key enumeration
algorithm, that trades-off the optimal enumeration order in favor of a bounded
memory consumption. We analyzed the algorithm’s space complexity, guessing
entropy, and rank distribution. We also evaluated its performance by exten-
sive simulations. As our simulations show, our w-layer key enumeration allows
stronger attacks than the order-optimal key enumeration [22], whose space com-
plexity grows quickly with the rank of the searched key—and exceeds the avail-
able RAM in realistic scenarios. Since our algorithm can be configured to use as
much RAM as available (but no more) it can continue its near optimal enumer-
ation unhindered.

Along the way, we also provided bounds on the full key guessing entropy in
terms of the guessing entropies of the individual subkeys.

Finally, an open-source Java implementation for both our w-layer key enu-
meration and the order-optimal enumeration [22] are available via the authors’
home pages.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Berlin (2003). doi:10.1007/3-540-36400-5 4

2. Anonymous: Anonymous (2015)
3. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel

security evaluations beyond computing power. Cryptology ePrint Archive, Report
2015/221 (2015). http://eprint.iacr.org/

4. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016).
doi:10.1007/978-3-319-31301-6 19

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Berlin (2004). doi:10.1007/978-3-540-28632-5 2

http://dx.doi.org/10.1007/3-540-36400-5_4
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-31301-6_19
http://dx.doi.org/10.1007/978-3-540-28632-5_2

326 L. David and A. Wool

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Berlin (2003).
doi:10.1007/3-540-36400-5 3

7. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm
for multi-dimensional side-channel attacks. Cryptology ePrint Archive, Report
2015/1236 (2015). http://eprint.iacr.org/2015/1236

8. Dichtl, M.: A new method of black box power analysis and a fast algorithm for
optimal key search. J. Crypt. Eng. 1(4), 255–264 (2011)

9. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Berlin (2001). doi:10.1007/3-540-44709-1 21

10. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Berlin (2015). doi:10.
1007/978-3-662-48116-5 6

11. Junod, P., Vaudenay, S.: Optimal key ranking procedures in a statistical crypt-
analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 235–246. Springer,
Berlin (2003). doi:10.1007/978-3-540-39887-5 18

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Berlin (1999). doi:10.
1007/3-540-48405-1 25

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Berlin (1996). doi:10.1007/3-540-68697-5 9

14. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel after
a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 313–337. Springer, Berlin (2015). doi:10.1007/978-3-662-48800-3 13

15. Meier, W., Staffelbach, O.: Analysis of pseudo random sequences generated by
cellular automata. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 186–199. Springer, Berlin (1991). doi:10.1007/3-540-46416-6 17

16. Oren, Y., Weisse, O., Wool, A.: A new framework for constraint-based prob-
abilistic template side channel attacks. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 17–34. Springer, Berlin (2014). doi:10.1007/
978-3-662-44709-3 2

17. Pan, J., Woudenberg, J.G.J., Hartog, J.I., Witteman, M.F.: Improving DPA
by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Berlin (2011). doi:10.1007/
978-3-642-19574-7 17

18. Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank esti-
mation for side-channel security evaluations. In: Homma, N., Medwed, M. (eds.)
CARDIS 2015. LNCS, vol. 9514, pp. 125–142. Springer, Cham (2016). doi:10.1007/
978-3-319-31271-2 8

19. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Berlin (2016). doi:10.
1007/978-3-662-53140-2 4

20. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Berlin (2001). doi:10.1007/
3-540-45418-7 17

http://dx.doi.org/10.1007/3-540-36400-5_3
http://eprint.iacr.org/2015/1236
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-540-39887-5_18
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/3-540-46416-6_17
http://dx.doi.org/10.1007/978-3-662-44709-3_2
http://dx.doi.org/10.1007/978-3-662-44709-3_2
http://dx.doi.org/10.1007/978-3-642-19574-7_17
http://dx.doi.org/10.1007/978-3-642-19574-7_17
http://dx.doi.org/10.1007/978-3-319-31271-2_8
http://dx.doi.org/10.1007/978-3-319-31271-2_8
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17

A Bounded-Space Near-Optimal Key Enumeration Algorithm 327

21. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Berlin (2009). doi:10.1007/978-3-642-01001-9 26

22. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Berlin
(2013). doi:10.1007/978-3-642-35999-6 25

23. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 126–141. Springer, Berlin (2013). doi:10.1007/
978-3-642-38348-9 8

24. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? how to determine
whether limited side channel information enables key recovery. In: Joye, M.,
Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Cham
(2015). doi:10.1007/978-3-319-16763-3 13

http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-319-16763-3_13

Improved Key Recovery Algorithms from Noisy
RSA Secret Keys with Analog Noise

Noboru Kunihiro(B) and Yuki Takahashi

The University of Tokyo, Kashiwa, Japan
kunihiro@k.u-tokyo.ac.jp

Abstract. From the proposal of key-recovery algorithms for RSA secret
key from its noisy version at Crypto2009, there have been considerable
researches on RSA key recovery from discrete noise. At CHES2014, two
efficient algorithms for recovering secret keys are proposed from noisy
analog data obtained through physical attacks such as side channel
attacks. One of the algorithms works even if the noise distributions are
unknown. However, the algorithm is not optimal especially if the noise
distribution is imbalanced. To overcome this problem, we propose new
algorithms to recover from such an imbalanced analog noise. We first
present a generalized algorithm and show its success condition. We then
construct the algorithm suitable for imbalanced noise under the condi-
tion that the variances of noise distributions are a priori known. Our
algorithm succeeds in recovering the secret key from much more noise.
We present the success condition in the explicit form and verify that our
algorithm is superior to the previous results. We then show its optimal-
ity. Note that the proposed algorithm has the same performance as the
previous one in the balanced noise. We next propose a key recovery algo-
rithm that does not use the values of the variances. The algorithm first
estimates the variance of noise distributions from the observed data with
help of the EM algorithm and then recover the secret key by the first
algorithm with their estimated variances. The whole algorithm works
well even if the values of the variance is unknown in advance. We exam-
ine that our proposed algorithm succeeds in recovering the secret key
from much more noise than the previous algorithm.

Keywords: RSA · Key-recovery · Side channel attack · EM algorithm

1 Introduction

1.1 Background and Motivation

RSA [14] is the most widely used cryptosystem and its security is based on the
difficulty of factoring a large composite. Furthermore, the side-channel attacks
are a real threat to RSA scheme. This kind of attack can be executed by physi-
cally observing cryptographic devices and recovering internal information. Side
channel attacks are important concerns for security analysis in the both of pub-
lic key cryptography and symmetric cryptography. In the typical scenario of the
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 328–343, 2017.
DOI: 10.1007/978-3-319-52153-4 19

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 329

side channel attacks, an attacker tries to recover the full secret key when he can
measure some leaked information from cryptographic devices.

In this paper, we focus on the side channel attacks on RSA cryptosystem.
In the RSA cryptosystem [14], a public modulus N is the product of two dis-
tinct primes p and q. The public and secret exponents are (e, d), which satisfy
ed ≡ 1 (mod (p − 1)(q − 1)). In the textbook RSA, the secret key is only d.
However, the PKCS#1 standard [13] specifies that the RSA secret key includes
(p, q, d, dp, dq, q

−1 mod p) in addition to d, which allows for fast decryption using
the Chinese Remainder Theorem (CRT). It is important to analyze the security
of CRT-RSA in addition to that of the original RSA.

Halderman et al. [4] presented the cold boot attack at USENIX Security
2008, which is classified as a practical side channel attack. They demonstrated
that DRAM remanence effects make possible practical, nondestructive attacks
that recover a noisy version of secret keys stored in a computer’s memory. They
showed how to reconstruct the full of the secret key from the noisy variants
for some encryption schemes including RSA scheme. How to recover the cor-
rect secret key from a noisy version of the secret key is an important question
concerning the cold boot attack situation.

Inspired by cold boot attacks [4], there have been considerable researches on
RSA secret key recovery from discrete noise [5,6,8,12]. In contrast, Kunihiro and
Honda introduced an analog leakage model and proposed two efficient key recov-
ery algorithm (ML-based algorithm and DPA-like algorithm) from the observed
analog data [9].

Observing Analog Data and Motivation. Consider the simple power analy-
sis [7] for CRT-RSA, which is conducted by observing power consumption while
executing decryption process. Power consumption trace depends on the bit value
of dp (and dq). We can obtain analog data from the observed trace through some
adequate functions. Further, the distributions of such analog data for the bit 0
and 1 differ from each other due to the difference of power consumption trace.
In the same manner, we can obtain the analog data for the bit of d. Note that
we cannot obtain those of p and q in the scenario.

In another attack scenario, analog data may be obtained from a (discrete)
measurement value of bit value with an analog value of confidence. This will
be done by some side-channel attacks such as cold boot attack where different
pieces of RAM have different preference to flip towards 0 or to flip towards 1.

Our main research aim is to propose efficient algorithms when such analog
data, especially imbalanced analog data, are obtained.

1.2 Our Contributions

This paper discusses secret key recovery algorithms from noisy analog data. In
our noise model, the observed value is output according to some fixed probability
distribution depending on the corresponding correct secret key bit. Unlike [9], we
do not assume that the probability density functions are known. Our strategy for

330 N. Kunihiro and Y. Takahashi

constructing the algorithms is summarized as follows: (i) estimate the probability
density functions and (ii) run the key-recovery algorithm with the score function
designed by the estimated one. We present the success condition (Theorem 3) in
adapting the strategy, which shows that we can recover the secret key from more
noisy keys if we could succeed to obtain a closer estimation of the probability
density functions.

Next, we propose an efficient algorithm (V-based algorithm) to improve the
success condition from that of [9]. We propose a new score function (Variance-
based Score) by modifying the DPA-like score function introduced in [9] to suit
for imbalanced noise. Concretely, we incorporate the variances of the probabil-
ity distributions into the DPA-like score. By this modification, we succeed in
improving the success condition compared to the DPA-like algorithm in [9]. We
then present the success condition in the explicit form (Theorem 4), which sig-
nificantly improves the previously shown bounds. We then prove that Variance-
based score is optimal in the weighted variant of DPA-like score. Moreover, we
then verify that our algorithm is superior to the previous results by both of the-
oretical analysis and numerical experiments for various noise distributions. Note
it has the same performance as the DPA-like algorithm in the balanced noise.

Although our first algorithm improves the bound, it requires the values of
the variances as additional inputs, which is a significant disadvantage to the
DPA-like algorithm. To overcome this problem, we use the help of the
Expectation-Maximization (EM) algorithm [1,3], which is a well-known algo-
rithm in the area of machine learning, to estimate the variances from the observed
data. The second algorithm (KRP algorithm) is constructed by combining
V-based algorithm and the EM algorithm. In our combined algorithm, we first
run the EM algorithm for the estimation of the variances and run the V-based
algorithm with the estimated variances as additional inputs. The KRP algorithm
works under the same condition as the DPA-like algorithm, that is, that we can
use only the observed data. The numerical results show that our KRP algorithm
is superior to the DPA-like algorithm. For example, when the standard devia-
tion of noises (a precise noise model is discussed in Sect. 2.2) is given 0.4 and
2.2, DPA-like algorithm succeeds with probability 0.16, but KRP algorithm suc-
ceeds with probability 0.65 (see Table 2). We also verify the effectiveness of our
algorithms by numerical experiments on several noise distributions: Gaussian,
Laplace, and Uniform distributions, which are shown in the full version [11].

2 Preliminaries

This section presents an overview of the methods [5,6,9,12] using binary trees
to recover the secret key of the RSA cryptosystem. We use similar notations
to those in [5]. For an n-bit sequence x = (xn−1, . . . , x0) ∈ {0, 1}n, we denote
the i-th bit of x by x[i] = xi, where x[0] is the least significant bit of x. Let
τ(M) denote the largest exponent such that 2τ(M)|M . We denote by lnn the
natural logarithm of n to the base e and by log n the logarithm of n to the
base 2. We denote the expectation of random variable X by E[X]. We remind

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 331

readers the Gaussian distribution N (μ, σ2). The probability density function of
this distribution is fN(x;μ, σ2) = 1√

2πσ2 exp
(

− (x−μ)2

2σ2

)

, where μ and σ2 are the
mean and variance of the distribution, respectively.

2.1 Recovering the RSA Secret Key Using a Binary Tree

An explanation of this subsection is almost the same as previous works [5,6,9,12].
We first explain how to set the keys of the RSA cryptosystem [14], especially
of the PKCS #1 standard [13]. Let (N, e) be the RSA public key and sk =
(p, q, d, dp, dq, q

−1 mod p) be the RSA secret key. We denote the bit length of N
by n. As in the previous works, we ignore the last component q−1 mod p in the
secret key. The public and secret keys follow four equations: N = pq, ed ≡ 1
(mod (p − 1)(q − 1)), edp ≡ 1 (mod p − 1), edq ≡ 1 (mod q − 1). Then, there
exist integers k, kp and kq such that

N = pq, ed = 1 + k(p − 1)(q − 1), edp = 1 + kp(p − 1), edq = 1 + kq(q − 1). (1)

A small public exponent e is usually used in practical applications [15], so we sup-
pose that e is small enough such that e = 216 + 1 as is the case in [5,6,8,9,12].
See [5] for how to compute k, kp and kq. Then there are five unknowns
(p, q, d, dp, dq) in the four equations in Eq. (1).

In the same manner as previous methods, our new methods recover secret
key sk by using a binary tree based technique. We explain how to recover secret
keys, considering sk = (p, q, d, dp, dq) as an example.

First we discuss the generation of the tree. Since p and q are n/2 bit prime
numbers, there exist at most 2n/2 candidates for each secret key in (p, q, d, dp, dq).
Heninger and Shacham [6] introduced the concept of slice. We define the i-th bit
slice for each bit index i as slice(i) := (p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], dq[i +
τ(kq)]). Assume that we have computed a partial solution sk′ = (p′, q′, d′, d′

p, d
′
q)

up to slice(i − 1). Heninger and Shacham [6] applied Hensel’s lemma to Eq. (1)
and obtained the following identities

p[i] + q[i] = (N − p′q′)[i] mod 2,
d[i + τ(k)] + p[i] + q[i] = (k(N + 1) + 1 − k(p′ + q′) − ed′)[i + τ(k)] mod 2,

dp[i + τ(kp)] + p[i] = (kp(p′ − 1) + 1 − ed′
p)[i + τ(kp)] mod 2,

dq[i + τ(kq)] + q[i] = (kq(q′ − 1) + 1 − ed′
q)[i + τ(kq)] mod 2.

This means that we have four linearly independent equations in the five
unknowns p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], and dq[i + τ(kq)] of slice(i). Each
Hensel lift, therefore, yields exactly two candidate solutions. Then, the total
number of candidates is given by 2n/2.

Henecka et al.’s algorithm [5] and Paterson et al.’s algorithm (in short, the
PPS algorithm) [12] perform t Hensel lifts for some fixed parameter t. For each
surviving candidate solution on slice(0) to slice(it− 1), a tree with depth t and
whose 2t leaf nodes represent candidate solutions on slice(it) to slice((i+1)t−1),

332 N. Kunihiro and Y. Takahashi

is generated. This causes 5t new bits. For each new node generated, a pruning
phase is carried out. A solution is kept for the next iteration if the likelihood
of the corresponding noisy variants of the secret key for the 5t new bits is in
the highest L nodes of the L2t nodes as for the PPS algorithm [12]. Kunihiro
and Honda [9] adopted a similar approach to the PPS algorithm [12]. They
introduced a concept of score function, and their algorithms keep the top L
nodes with the highest score.

2.2 Our Noise Model

Let F0 and F1 be probability distributions of an observed value when the cor-
rect secret key bits are 0 and 1, respectively. That means we assume that each
the observed value x follows the fixed probability distribution Fb. Though this
assumption comes from simplification, it is frequently considered and verified
in the practice of side channel attacks. In this paper, we assume that F0 and
F1 have probability densities f0 and f1, respectively. Without loss of generality,
we assume that the means of Fb are (−1)b. Throughout this paper, we assume
that f0 and f1 are unknown to the attackers. That implies that we do not use
any knowledge about explicit forms of probability density functions in designing
algorithms.

We say that the probability density functions f0 and f1 are imbalanced when
f0(x) and f1(−x) are (very) different. Suppose that f0 = N (+1, σ2

0) and f1 =
N (−1, σ2

1). We say that f0 and f1 are imbalanced when σ0 � σ1. (Note that
f1(−x) = N (x; +1, σ2

1)). In this paper, we mainly focus on the case that f0 and
f1 are imbalanced.

2.3 Previous Works on Key-Recovery for Analog Observed Data

A score function is introduced in [9], that is calculated with observed data and a
candidate sequence (if necessary, additional information such as the probability
density functions of noise). A framework of key-recovery algorithm that uses the
score function in Pruning phase is then proposed. Definition 1 gives the syntax
of the score function.

Definition 1 (Syntax of Score Function). The score function receives a
candidate sequence b = (b1, . . . , bn) ∈ {0, 1}n and the corresponding observed
sequence x = (x1, . . . , xn) ∈ R

n and outputs a real number. We use the notation:
Scoren(b,x).

The score function Scoren(b,x) is designed so that the following properties hold
for any fixed x: the score will be large if b is a correct candidate; the score will
be small if b is incorrect.

We review a framework shown in [9,12] for the RSA key-recovery algorithm.
Our proposed algorithms are based on the same framework. It is pointed out in
[9] that the setting t = 1 is enough for gaining high success rates. We use slightly
different notations of generalized PPS algorithm from [9]. Revising the algorithm

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 333

framework itself is not our target. This paper mainly focuses on designing the
score function.

The following two score functions have been proposed in [9]. Denote a candi-
date sequence b = (b1, . . . , bn) and an observed sequence x = (x1, . . . , xn). The
first one is defined by

ML(b,x) :=
n∑

i=1

log
fbi(xi)
g(xi)

, (2)

where g(x) = (f0(x) + f1(x))/2. The second one is defined by

DPA(b,x) :=
n∑

i=1

(−1)bixi. (3)

Equations (2) and (3) are called as ML-based score and DPA-like score, and the
algorithms employing Eqs. (2) and (3) are called as ML-based algorithm and
DPA-like algorithm, respectively. Note that the ML-based algorithm requires the
complete information about probability density functions as inputs. In contrast,
the DPA-like algorithm does not require them as shown in Eq. (3).

We summarize the success condition for the ML-based algorithm, and the
DPA-like algorithm [9]. First, we introduce a differential entropy [2].

Definition 2. The differential entropy h(f) of a probability density function f
is defined as

h(f) = −
∫ ∞

−∞
f(y) log f(y)dy.

Theorem 1 (Corollary 1, [9]). Assume that the probability density functions
for b = 0, 1 are given by fb. The error probability of the ML-based Algorithm
converges to zero as L → ∞ if

h

(
f0 + f1

2

)

− h(f0) + h(f1)
2

>
1
5
. (4)

Theorem 2 (Theorem2, [9]). Assume that the probability density functions
for b = 0, 1 are given by fb. Denote the variance of Fb by σ2

b . The error probability
of the DPA-like Algorithm converges to zero as L → ∞ if

h

(
f0 + f1

2

)

− log
√

πe(σ2
0 + σ2

1) >
1
5
. (5)

Consider the case that f0 and f1 are imbalanced. Without loss of generality,
we assume that σ0 � σ1. In this case, the left-hand side of Eq. (5) heavily
depends on only the variance σ1, which is unnatural. We will give improvement
of the success condition by incorporating the values σ2

b to the score function in
Sect. 4.

Remark 1. Throughout the paper, we only consider the case that we employ
(p, q, d, dp, dq) as secret key tuple. However, we can easily extend to more general
case. For the (p, q), (dp, dq), (p, q, d), and (d, dp, dq) cases, we just replace 1/5
with 1/2, 1/2, 1/3, and 1/3, respectively in Theorems 1–4 and Eq. (11).

334 N. Kunihiro and Y. Takahashi

3 Generalized Algorithm via Estimation of Distributions

In actual attack situations, the attacker does not know the exact form of fb.
Then, we cannot apply the ML-based score directly. On the other hands, if one
could obtain a closer estimation of probability density functions, one can hope
to attain the key-recovery from larger noise. The second best strategy is then
(i) to estimate fb in some way (discussed in Sect. 5) and (ii) to run the key
recovery algorithm with the score function designed by estimated probability
density functions. In this section, we will derive the success condition under the
condition that we have learned the estimation of the distributions. We denote
the estimated distributions of f0 and f1 by f

(E)
0 and f

(E)
1 , respectively.

Before giving the detailed analysis, we introduce the Kullback-Leibler diver-
gence [2].

Definition 3. For the probability density functions p and q, the Kullback–
Leibler divergence D(p||q) of p and q is defined as

D(p||q) =
∫ ∞

−∞
p(y) log

p(y)
q(y)

dy.

It is well-known that the Kullback–Leibler divergence D(p||q) is non-negative
and it is zero if and only if p = q. It is considered as some kind of the distance
between p and q.

We introduce a new notion of the score function based on the estimated
probability density functions, which would be a natural modification of ML-
based score. We define the new score as

R(E)(b,x) =
∑

i

log f
(E)
bi

(xi). (6)

In the modification, we replace the true densities fb with their estimations f
(E)
b

(and ignore the denominator). Using R(E)(b,x) as a score function, we have the
following theorem.

Theorem 3. Assume that the probability density functions for b = 0, 1 are
given by fb. The error probability of Algorithm with the score R(E)(b,x) con-
verges to zero as L → ∞ if

(

h

(
f0 + f1

2

)

− h(f0) + h(f1)
2

)

− D(f0||f (E)
0) + D(f1||f (E)

1)
2

>
1
5
. (7)

Proof. A proof strategy is almost the same as that of Theorem 2 in [10]. The
score R(E)(b,x) is essentially equivalent to the score

R′(E)(b,x) =
∑

i

log
f
(E)
bi

(xi)
g(xi)

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 335

since g(xi) does not depend on b. It is enough for proving the theorem to cal-
culate

I(E) :=
∑

b∈{0,1}

1
2

∫

x

(

log
f
(E)
b (x)
g(x)

)

fb(x)dx.

The exact form of I(E) is calculated as follows.

I(E) = h

(
f0 + f1

2

)

− h(f0) + h(f1)
2

− D(f0||f (E)
0) + D(f1||f (E)

1)
2

The full calculation of I(E) is shown in the full version [11]. The rest of the proof
is the same as that of Theorem 2 in [10]. Then, we have the theorem. �

The former half of the left hand side in Eq. (7), h((f0 + f1)/2) − (h(f0) +
h(f1))/2, is equivalent to the condition when the true distributions are known
(see Theorem 1). Its latter half (D(f0||f (E)

0)+D(f1||f (E)
1))/2 corresponds to the

information loss or penalty caused by mis-estimations. From the definition, it
is always non-negative. If the probability density function is correctly estimated
(which means that the both of f

(E)
0 = f0 and f

(E)
1 = f1 hold), the information

loss vanishes since D(f0||f (E)
0) = D(f1||f (E)

1) = 0. Conversely, if the accurate
estimation fails, the success condition is much worse than expected due to the
information loss caused by mis-estimation of f0 and f1.

4 New Score Function with a Priori Known Variances

In this section, we propose an effective score function when the noise distributions
are unknown but their average and variances are a priori known. Note that we
remove this requirement in Sect. 5. Our score function explicitly uses the values
of the variances of the noise distributions. Specifically, the proposed score is much
more effective than previous one when the variance of F0 and F1 are different.

First, we point out drawbacks of DPA-like algorithm introduced in [9]. The
DPA-like algorithm works with only observed data even if the probability density
functions are not known. From the nature of the DPA-like score, it can not use
any other side information of probability density function such as variances even
if they are available.

We try to incorporate the side information into the DPA-like function. It is
natural to consider the weighted variant of DPA-like score, which is defined by

w-DPA(b,x) :=
n∑

i=1

wbi(−1)bixi (8)

for some kind of weights w0 and w1. The performance on weighted variant of
DPA-like score heavily relies on how to set w0 and w1. If the observed value is
reliable, the corresponding weight should be large. We propose a new score by
following this idea.

336 N. Kunihiro and Y. Takahashi

4.1 New Score Function: Variance-Based Score

We consider the case where F0 and F1 (and hence also f0 and f1) are unknown,
but, their variances are known a priori. We denote by σ2

0 and σ2
1 the variances of

F0 and F1. Under the situation, we have a chance to choose an adequate score
function including the explicit values of the variances.

We introduce a new score function (Variance-based Score):

V(b,x) :=
∑

i

(−1)bixi

σ2
bi

. (9)

It can be considered that w0 = 1/σ2
0 and w1 = 1/σ2

1 in the context of weighted
variant of DPA. We denote Key Recover Algorithm employing Variance-based
Score V(b,x) as a score function by V-based algorithm. Note that in evaluating
the score function by Eq. (9), we explicitly use the variances σ2

0 and σ2
1 . Consider

the case when σ2
0 = σ2

1 = σ2. Then, the score function can be transformed into

V(b,x) =
∑

i(−1)bixi

σ2
=

1
σ2

∑

i

(−1)bixi =
1
σ2

DPA(b,x).

Since the part 1/σ2 does not affect the order of score value, we can ignore it and
recover the DPA-like score. The Variance-based score then includes the DPA-like
score in the special case.

Our strategy for designing a score function can be interpreted as follows: The
observed data from the distribution with larger variance will not be reliable.
Then, its contribution is set to be small if the variance is large, and vice versa.

4.2 Theoretical Analysis for V-Based Algorithm

In this section, we discuss the success condition of the V-based algorithm for
recovering the secret key. The following theorem shows the success condition on
f0 and f1 when we use V-based algorithm for recovering the RSA secret key.

Theorem 4. Assume that the probability density function for b = 0, 1 are given
by fb. The error probability of the V-based algorithm converges to zero as L → ∞
if

h

(
f0 + f1

2

)

− log
√

2πeσ0σ1 >
1
5
. (10)

Proof. A proof is almost the same as the proof [10] of Theorem 2 in [9]. We denote
by f

(G)
b the probability density function of Gaussian distributions with average

(−1)b and σ2
b , respectively. The Variance-based score is essentially equivalent to

the score

R(G)(b,x) =
∑

i

log
f
(G)
bi

(xi)
g(xi)

.

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 337

As the same discussion in [10], it is enough to calculate

I(G) :=
∑

b∈{0,1}

1
2

∫

x

(

log
f
(G)
b (x)
g(x)

)

fb(x)dx.

According to Theorem 1 in [9], the condition is given by I(G) > 1/5. The exact
form of I(G) is calculated as follows.

I(G) =
∑

b∈{0,1}

1
2

∫

x

(

log
f
(G)
b (x)
g(x)

)

fb(x)dx

= −
∫

x

(log g(x))g(x)dx +
1
2

∑

b∈{0,1}

∫

x

(

log f
(G)
b (x)

)

fb(x)dx

= h(g) − 1
2

∑

b∈{0,1}

{
log(2πσ2

b)
2

+
1

2(ln 2)σ2
b

∫

x

(x − (−1)b)2fb(x)dx

}

= h(g) − log(
√

2πeσ0σ1).

Then, we have the theorem. �

We give a comparison between the DPA-like algorithm and the V-based algo-
rithm. The difference between the left hand side of two inequalities: Eqs. (5)
and (10) is given by

log
√

πe(σ2
0 + σ2

1) − log
√

2πeσ0σ1 =
1
2

log
σ2
0 + σ2

1

2σ0σ1
.

Since the arithmetic mean is always larger than or equal to the geometric mean, it
holds that σ2

0+σ2
1

2 ≥
√

σ2
0σ

2
1 = σ0σ1. Then, the difference is always non-negative.

Furthermore, the difference is 0 if and only if σ0 = σ1. It shows that V-based
algorithm is superior to the DPA-like algorithm except the case that σ0 = σ1. As
the ratio between σ0 and σ1 becomes larger, our improvement is more significant.

4.3 Optimality of Variance-Based Score

We show that our proposed variance-based score is optimal in the framework of
weighted variant of DPA-score. If we adopt w0 and w1 as weights, the success
condition is given by

h

(
f0 + f1

2

)

− log
√

2πe − log e
4

(− ln w0 − ln w1 + σ2
0w0 + σ2

1w1 − 2) >
1
5
. (11)

Denote the the left hand side of Eq. (11) by H(w0, w1). By solving a simultaneous
equation ∂H

∂w0
= ∂H

∂w1
= 0, we obtain w0 = 1/σ2

0 and w1 = 1/σ2
1 , which maximizes

H(w0, w1). We recover the Variance-based score introduced in Sect. 4.1. This
shows its optimality.

338 N. Kunihiro and Y. Takahashi

4.4 Experimental Results for V-Based Algorithm

We give experiment results on DPA-like algorithm [9] and our proposed V-based
algorithm, which uses Eq. (9) as a score function. We implemented our algorithm
in gcc with NTL 6.0, GMP 5.1.3 library and tested it on Intel Xeon 6-Core
processor at 2.66 GHz with 32 GB memory. We set the public exponent to e =
216 +1. In all experiments shown in this section, we generated the output sk for
each sk from the Gaussian distribution. Denoting the correct secret bit in sk by
b, we concretely generated sk as follows: the observed value follows N (−1, σ2

1)
if b = 1; and the observed value follows N (+1, σ2

0) if b = 0. In our experiments
on 1024 bit RSA, we prepared 200 different tuples of secret keys sk, e.g., sk =
(p, q, d, dp, dq). We set a parameters L as L = 212.

We especially focus on the case where the σ2
1 	= σ2

0 . Figure 1 shows the success
rates of DPA-like algorithm and V-based algorithm for σ0 = 0.4 and σ0 = 1.0.
The vertical axis represents the success rates, and the horizontal axis shows the
value of σ1.

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 1. Comparison between DPA-like and V-based algorithms

We give some discussion for the case of σ0 = 0.4 from Fig. 1(a). When
σ1 ≤ 1.6, the both algorithms succeed in recovering the secret key with suc-
cess rate 1. Further, when σ1 ≥ 2.6, the both algorithms fail to do that for all
trials. Meanwhile, when 1.7 ≤ σ1 ≤ 2.5, the two algorithms show the different
behavior. For example, when σ1 = 2.1, our algorithm recovers the secret key
with success rate 0.8; while DPA-like algorithm recovers one with success rate
0.35. For another example, when σ1 = 2.4, our algorithm recovers one with suc-
cess rate 0.20; while DPA-like algorithm fails to recover the keys for all trials.
These observations show that our V-based algorithm has superior performance
to the DPA-like algorithm. The running time for the V-based algorithm to find

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 339

the secret key is at most 36.9 s under our computer circumstance for any cases.
More experimental results are shown in the full version [11].

5 Estimation of Variances by the EM Algorithm

Our new score function V(b,x) requires the additional inputs: variances σ2
0 and

σ2
1 of F0 and F1. It is a significant disadvantage against the DPA-like algorithm.

To solve this problem, we will use the help of the EM algorithm [1,3] in estimating
the variances from the observed data. The EM algorithm is a popular algorithm
in the area of machine learning and is used to estimate hidden parameters of
mixture distributions.

We will use the EM algorithm to estimate the variances σ2
0 and σ2

1 as a pre-
processing of the V-based algorithm. That means, we first run the EM algorithm
to estimate the variances and then run the V-based algorithm with the estimated
variances to recover the secret key. It enables us to recover the secret key by
using only the observed data, as well as the DPA-like algorithm. Unlike DPA-
like algorithm, we succeed in taking account of the values of the variances in the
combined algorithm. It can lead to a significant improvement of the bound for
key-recovery against DPA-like algorithm, which will be examined in Sect. 5.2.

5.1 Variance Estimation by the EM Algorithms

Before giving the detailed explanation of the EM algorithm, we present another
view of our noise model. It can be regarded as follows:

– The probability density functions fb(x;θb) are defined by hidden parameters
θb for b = 0, 1.

– The observed value follows the mixture distribution p(x) of f0 and f1, where
p(x) = αf0(x;θ0) + (1 − α)f1(x;θ1) for 0 ≤ α ≤ 1

In the usual setting in the EM algorithm, the form of f0 and f1 are known (say,
f0 is the Gaussian distribution, etc.), but, the set of parameters Θ = {α,θ0,θ1}
are a priori unknown (or hidden). The EM algorithm is usually used to estimate
these parameters from the observed data.

We show the EM algorithm in more details. We denote by D a set of the
observed values. Assume that all the observed value xi ∈ D follows the mixture
density: p(x) = α0f0(x;θ0)+α1f1(x;θ1). We introduce Membership Weight γik

for xi ∈ D given parameters Θ as follows:

γik =
αkf̄k(x;θk)

α0f̄0(x;θ0) + α1f̄1(x;θ1)
(12)

for 1 ≤ i ≤ |D| and k = 0, 1. Note that α0 + α1 = 1 and α0, α1 ≥ 0. Intuitively,
the γik corresponds to a probability that xi comes from the bit k. If we know
the exact form of fk, we use fk itself for f̄k for k = 0 and 1. However, in our
attack scenario, we have no knowledge about fk as described before. Then, we

340 N. Kunihiro and Y. Takahashi

cannot use the EM algorithm as-is. We use the Gaussian distribution in place of
true unknown distribution, which enables the EM algorithm to work. We adopt
the probability density function of Gaussian distribution for f̄k = N (μk, σ2

k). In
this setting, the purpose of the EM algorithm will estimate means and variances
for mixture distributions.

Next, we focus on our attack scenario. The attacker now wants to know the
means μ0 and μ1, and variances σ2

0 and σ2
1 by using the EM algorithm. In this

scenario, it is implicitly assumed that the noise distributions f0 and f1 are the
Gaussian. Then, we can explicitly write Θ as Θ = {α0, α1, μ0, μ1, σ0, σ1}.

It is proved that the log-likelihood of the mixture distribution monotonically
decreases by using the EM algorithm. On the other hand, it is hard to estimate
precisely in advance the number of iteration required until the log-likelihood con-
verges. We will verify that the computational time for the estimation phase for
variances is negligible to the total time for the whole key-recovery by measuring
an actual running time of the EM algorithm.

Algorithm 1 shows the whole proposed algorithm. This algorithm is composed
of two phase: Parameter Estimation Phase and Key-Recovery Phase. That means
we use the EM algorithm as a pre-processing of the key-recovery algorithm. We
call the whole algorithm KRP algorithm.

Algorithm 1. KRP algorithm (Key Recovery with Pre-processing Algorithm)
Input: Public Key (N, e) observed noisy sequences sk
Output: Correct Secret Key sk
Parameter: L ∈ N

Parameter Estimation Phase Run the EM algorithm to estimate the variances σ2
0

and σ2
1 from the observed sequence.

Key-Recovery Phase: Run V-based algorithm with inputs (estimated) σ2
0 and σ2

1 ,
the observed sequence, and L.

5.2 Experimental Results for KRP Algorithm

We first examine the running time of the EM algorithm for various input length
of the observed sequence. We repeat the EM algorithm 100 times given an initial
parameter for Θ and calculate the average of the running time. The environment
for computation is the same as that in Sect. 4.4. In the experiments, we iterate
E-step and M-step until convergence.

Table 1 shows the average time for the RM algorithm.
In general, we can estimate parameters with higher accuracy if we use more

data for estimation. On the other hand, it causes more running time. We can
see that the running time is at most 21.8 ms even if we use full sequences for
estimating the variances. Since the running time for the V-based algorithm is
in average 36.9 s as shown in Sect. 4.4, the running time of the EM-algorithm is
negligible to the whole running time. From now on, we ignore the running time
of the EM Algorithm.

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 341

Table 1. Average of running time for the EM algorithm

Input Data Length 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Computational Time (ms) 1.90 3.94 6.22 8.38 10.5 12.8 15.1 17.5 19.9 21.8

Comparison Between KRP Algorithm and V-Based Algorithm. Next,
we compare KRP algorithm and V-based algorithm. Remember that V-based
algorithm requires additional input: σ0 and σ1 but KRP algorithm works without
them. In the experiments, we consider the case that both of f0 and f1 are the
Gaussian distributions: fk = N ((−1)k, σ2

k) for k = 0 and 1. Here, we run the
experiments under the same environments as in Sect. 4.4.

Figure 2 shows the success rates of the KRP algorithm and the V-based
algorithm for σ0 = 0.4 and 1.0. We give some discussion for the case of σ0 = 0.4.
Figure 2(a) shows that the success rates of the both algorithms are almost 1 if
σ1 is less than or equal to 1.8. We can see that when 1.8 ≤ σ1 ≤ 2.6, their
success rates decrease gradually, but, they are almost the same. Hence, we can
say that there is no difference between their performance. The success rates for
σ0 = 1.0 denote the same tendency as for σ0 = 0.4, that is, there is no difference
in performance between the two algorithms. The above discussion shows that
the EM algorithm succeeds in estimating the variances with enough accuracy
and KRP algorithm. Consequently, the KRP algorithm, which does not receive
σ0 and σ1 as inputs, has almost the same performance as the V-based algorithm.
More experimental results are shown in the full version [11].

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 2. Success Rates of KRP algorithm and V-based algorithm

342 N. Kunihiro and Y. Takahashi

Comparison Between KRP and DPA-like Algorithm. Finally, we com-
pare KRP and DPA-like algorithms [9]. Note that the both algorithms work
given only the observed data, which means that they do not require additional
information about the probability density functions.

We consider the case that the both of f0 and f1 are the Gaussian distrib-
utions: fk = N ((−1)k, σ2

k) for k = 0 and 1. Here, we execute the experiments
under the same environments as in Sect. 4.4.

Figure 3 shows the success rates of KRP algorithm and DPA-like algorithm
for σ0 = 0.4 and σ0 = 1.0. We can see that KRP algorithm attains higher
success rates than the DPA-like algorithm from Figs. 3(a) and (b). Further, their
computational time for recovering the keys are almost the same because the
running time of the EM algorithm is negligible as described before. Summing
up, we can conclude that our proposed KRP algorithm is superior to the DPA-
like algorithm.

Table 2 summarizes the success rates of the DPA-like algorithm, the V-based
algorithm, and the KRP algorithm (more results are given in full version [11]).
We can see that the proposed algorithms in this paper are superior to DPA-
like algorithm [9]. Moreover, the proposed two algorithms have almost the same
performance; while V-based algorithm requires the variances of the noise distri-
butions and KRP algorithm does not.

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 3. Success Rates of KRP algorithm and DPA-like algorithm

Table 2. Success rates of three algorithms for σ0 = 0.4

σ1 0 · · · 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

DPA-like [9] 1 0.99 0.95 0.85 0.68 0.38 0.16 0.05 0.01 0 0 0 0

V-based (this paper) 1 1 1 0.97 0.92 0.81 0.60 0.37 0.18 0.07 0.01 0.01 0.01

KRP (this paper) 1 1 0.99 0.96 0.95 0.75 0.65 0.39 0.23 0.06 0.01 0 0

Improved Key Recovery Algorithms from Noisy RSA Secret Keys 343

We present the performance of KRP algorithm for non-Gaussian distributions
is the full version [11].

Acknowledgement. This research was supported by CREST, JST and supported by
JSPS KAKENHI Grant Number 25280001 and 16H02780.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

2. Cover, C.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)

4. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: Proceedings of USENIX Security Symposium 2008,
pp. 45–60 (2008)

5. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Berlin
(2010). doi:10.1007/978-3-642-14623-7 19

6. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Berlin (2009). doi:10.1007/978-3-642-03356-8 1

7. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

8. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy
key bits with erasures and errors. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 180–197. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 12

9. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
261–278. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 15

10. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. In: IACR eprint: 2014/513 (2014)

11. Kunihiro, N., Takahashi, Y.: Improved key recovery algorithms from noisy RSA
secret keys with analog noise. In: IACR eprint: 2016/1095 (2016)

12. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 24

13. PKCS #1: RSA Cryptography Specifications Version 2.0. http://www.ietf.org/rfc/
rfc2437.txt

14. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

15. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: IMC 2009, pp.
15–27. ACM Press (2009)

http://dx.doi.org/10.1007/978-3-642-14623-7_19
http://dx.doi.org/10.1007/978-3-642-03356-8_1
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-36362-7_12
http://dx.doi.org/10.1007/978-3-642-36362-7_12
http://dx.doi.org/10.1007/978-3-662-44709-3_15
http://dx.doi.org/10.1007/978-3-642-34961-4_24
http://dx.doi.org/10.1007/978-3-642-34961-4_24
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt

Side-channel Analysis

Ridge-Based Profiled Differential Power Analysis

Weijia Wang1, Yu Yu1,3,4(B), François-Xavier Standaert2, Dawu Gu1,
Xu Sen1, and Chi Zhang1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

{aawwjaa,yyuu,dwgu,push.beni,liujr,guozheng}@sjtu.edu.cn
2 ICTEAM/ELEN/Crypto Group,

Université catholique de Louvain, Louvain-la-Neuve, Belgium
fstandae@uclouvain.be

3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
4 Westone Cryptologic Research Center, Beijing, China

Abstract. Profiled DPA is an important and powerful type of side-
channel attacks (SCAs). Thanks to its profiling phase that learns the
leakage features from a controlled device, profiled DPA outperforms
many other types of SCA and are widely used in the security evalua-
tion of cryptographic devices. Typical profiling methods (such as linear
regression based ones) suffer from the overfitting issue which is often
neglected in previous works, i.e., the model characterizes details that are
specific to the dataset used to build it (and not the distribution we want
to capture). In this paper, we propose a novel profiling method based
on ridge regression and investigate its generalization ability (to mitigate
the overfitting issue) theoretically and by experiments. Further, based on
cross-validation, we present a parameter optimization method that finds
out the most suitable parameter for our ridge-based profiling. Finally, the
simulation-based and practical experiments show that ridge-based pro-
filing not only outperforms ‘classical’ and linear regression-based ones
(especially for nonlinear leakage functions), but also is a good candidate
for the robust profiling.

Keywords: Side-channel attack · Profiled DPA · Linear regression ·
Ridge regression · Cross-validation

1 Introduction

Side-channel attacks (SCAs) exploit the physical information leaked from the
implementation of a cryptographic algorithm, and they are usually more pow-
erful than brute-force attacks or classical cryptanalytic techniques that target
at the mathematical weakness of the underlying algorithm. Differential power
analysis (DPA), proposed by Kocher et al. [15], is a form of side-channel attack
that efficiently recovers the secret key from multiple (typically noisy) power con-
sumption measurements (on different plaintexts). Profiled DPA (e.g., [3,20,24])
adds a profiling phase (prior to the online exploitation phase) to the original
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 347–362, 2017.
DOI: 10.1007/978-3-319-52153-4 20

348 W. Wang et al.

DPA and can be considered as a powerful class of power analysis. The profil-
ing phase learns the leakage function from the power consumption of a training
device, and it can significantly enhance the performance of the subsequent online
exploitation phase, namely, the key recovery attack mounted against a similar
target device. We will focus on the profiling phase in this paper.

Chari et al. [3] proposed the first profiled DPA called template attacks, whose
profiling phase is based on multivariate Gaussian templates. We refer to the pro-
filing phase of templates attacks as classical profiling (following the terminology
in [24]). Later Schindler et al. [20] proposed a very promising profiled DPA that
uses linear regression (LR) as its profiling method (referred to as LR-based profil-
ing hereafter). Compared with classical profiling, LR-based profiling builds up a
model more efficiently with less number of measurements and it allows a trade-
off between the profiling and online exploitation phases: more measurements
used in the profiling phase, less measurements needed in the exploitation phase
[8,22,24]. However, the LR-based profiling suffers from the overfitting issue in
practice. That is, noisy measurements in the profiling phase can result in a model
that describes mostly the noise instead of the actual leakage function. Thus, the
LR-based profiling may need more measurements than necessary. We mention
other profiling methods those based on agglomerative hierarchical clustering [25],
K-means [25] and different machine learning methods such as SVM [12,14,16],
random forests [16,17], neural networks [18,19], which enjoy additional features
or are more useful for specific data structures or have an overhead for the time
complexity. We are not extending this line of research any further.

In this paper, we propose a new profiling method (named ridge-based pro-
filing) based on ridge regression. By imposing a constraint on the coefficients
of linear regression, ridge regression is a good alternative to linear regression
with better performance on noisy data [11]. As the constraint (described by
a parameter) affects the performance of ridge-based profiling, we apply the
K-fold cross-validation to find out the most suitable constraint (i.e., the opti-
mized parameter) for ridge-based profiling. We also conduct experiments of the
above parameter optimization in settings of various noise levels. Our results sug-
gest that the optimized parameter is related to the noise level of measurements
(i.e., the optimized parameter increases with respect to the noise level).

We analyze the ridge-based profiling both in theory and by experiments. Our
theoretical investigation aims to answer the question:

Why, how and when is ridge-based profiling better?

where ‘why’ aims to justify the improvement of ridge-based profiling over LR-
based one, ‘how’ and ‘when’ analyze to which extent and under what condition an
improvement can be achieved. Then for a comprehensive comparison, we evaluate
the performances of classical, LR-based and ridge-based profiling in simulation-
based experiments on various settings, which shows the improvement of ridge-
based profiling and confirm the theoretical analysis, At last, we conduct the
practical experiments on the FPGA implementation. The results are consistent
to the ones of simulation-based experiments, and furthermore, they show that

Ridge-Based Profiled Differential Power Analysis 349

the ridge-based profiling can tolerate (some) differences between profiling and
exploitation traces, resulting in a type of robust profiling [25]. Therefore, on one
hand, our results can be considered as an improvement of [3,20,24]. And on the
other hand, we extend the related works which applied the stepwise and ridge
regressions to the non-profiled setting [23,26].

2 Background

Following the ‘divide-and-conquer’ strategy, a profiled DPA attack breaks down
a secret key into a number of subkeys of small length and recovers them inde-
pendently. Let X be a vector of some (partial) plaintext in consideration, i.e.,
X = (Xi)i∈{1,...,n}, where n is the number of measurements and Xi corre-
sponds to the (partial) plaintext of i-th measurement. Let k be a hypothesis
subkey, let Fk : F

m
2 → F

m
2 be a target function, where m is the bit length

of Xi, and thus the intermediate value Zi,k = Fk(Xi) is called a target and
Zk = Fk(X) = (Zi,k)i∈{1,...,N} is the target vector obtained by applying Fk to
X component-wise.

The leakage of a target can be scattered over several points in a measure-
ment’s power consumption. Let Lj : F

m
2 → R be the leakage function at jth

point and let Ti be a vector of power consumption points whose target is Zi,k∗ .
We have T j

i = Lj ◦ Zi,k∗ + εj and T j = L ◦ Zk∗ + εj , where ◦ denotes function
composition, k∗ is the correct subkey key and εj denotes probabilistic noise.
A trace ti is the combination of power consumption Ti and plaintext Xi, i.e.,
ti = (Ti,Xi). Let the function Mj : Fm

2 → R be the model that approximates the
determinate part of leakage function Lj , namely, T j

i ≈ Mj ◦ Fk∗(Xi) + εj .1 The
model is obtained by learning from the profiled device in the profiling phase.

Profiled DPA can be divided into two phases: profiling phase and online
exploitation phase. In the rest of this section, we recall these two phases. Our
presentation is largely based on the (excellent) introduction provided in [24].

2.1 Profiling Phase

The aim of the profiling phase is to ‘learn’ the leakage functions Lj and the noises
εj for all the points. We briefly introduce classical and LR-based profilings below.

Classical profiling. Classical profiling is the profiling phase of template attacks
[3] and it views the leakage of each intermediate value as a vector of random val-
ues following the multivariate Gaussian distribution, i.e., Tz ∼ N(μz, Σz), where
Tz is the power consumption (points) given the associated intermediate target
being z. The adversary ‘learns’ the physical leakages by finding the p×1 sample
mean μ̂z and the p × p sample covariance Σ̂z for all the target z on the profiling
device. Finally, the intermediate value-conditioned leakages is N(μ̂z, Σ̂z) for the
intermediate value z. As suggested in [4], we assume the noise distribution of

1 We often omit the superscript ‘j’ in Lj , Mj and εj for succinctness.

350 W. Wang et al.

different intermediate targets to be equal and use the same covariance estimates
(across all intermediate targets).

Linear regression-based profiling. LR-based profiling [20] uses the stochastic
model of the following form: M(Zi) = α0 +

∑

u∈F
m
2

αuZu
i + ε, where coefficients

αu ∈ R, Zi = Zi,k∗ , zu denotes monomial
∏m

j=1 z
uj

j , and zj (resp., uj) refers to
the jth bit of z (resp., u). The degree of the model is the highest degree of the
non-zero terms in polynomial M(Zi). Define the set Ud = {u|u ∈ F

m
2 ,HW(u) ≤

d} (where HW : F
m
2 → Z is the Hamming weight function), then we denote

αd = (αu)u∈Ud
as the vector of coefficients with degree d, which is estimated

from Ud = (Zu
i)i∈{1,2,...,N},u∈Ud

and T using ordinary least squares, i.e., αd =
(UT

d Ud)−1UT
d T , where (Zu

i)i∈{1,2,...,N},u∈U is a matrix with (i,u) being row and
column indices respectively, and UT

d is the transposition of Ud.
In the LR-based profiling phase, the adversary chooses the degree of model

and calculates the coefficients α of the profiling device. Then, the p × p sample
covariance Σ̂ is computed assuming the noise distributions are identical for var-
ious values of intermediate. Finally, the intermediate value-conditioned leakages
is N(α̂0 +

∑

u∈Ud
α̂uzu

i , Σ̂) for the intermediate value z.

2.2 Online Exploitation Phase

Bayesian key recovery. If the covariance matrix is symmetric and positive
definite, a p-dimensional multivariate Gaussian distribution N(μ,Σ) has the fol-
lowing density function:

f(x) =
1

(2π)d/2|Σ|1/2
exp (−1

2
(x − μ)TΣ−1(x − μ)) . (1)

Therefore, we can describe Bayesian key recovery as follows:

1. Acquire n traces (Ti,Xi), each of p points, for 1 ≤ i ≤ n from the target
device.

2. Make a subkey guess k and compute the corresponding intermediate target
Zi,k = Fk(Xi) for 1 ≤ i ≤ n.

3. Calculate the log likelihood:
∏n

i=1 log(fi,k(Ti)), where fi,k(·) is the density
function associated with the intermediate target Zi,k.

4. The log likelihood should be maximum upon correct key guess (which can be
decided after repeating the above for all possible subkey guesses).

Correlation DPA. Correlation DPA employs a simple (univariate) online
exploitation strategy, and it finds the subkey guess under which the correla-
tion between the determinate part of the template (e.g., Mclassical(z) = μ̂z in
‘classical’ profiling and MLR(z) = α̂0 +

∑

u∈F
m
2

α̂uzu
i in LR-based profiling) and

the (univariate) leakage is maximized, namely,

kguess = argmax
k

ρ(M(Zi,k), Ti) (2)

where ρ is the Pearson’s coefficient.

Ridge-Based Profiled Differential Power Analysis 351

3 Ridge-Based Profiling

In this section, we introduce our ridge-based profiling and give a formal analysis.
We consider only the deterministic part of the model, and meanwhile the sample
variance Σ̂ is considered the same way as LR-based profiling.

3.1 Construction

Our new profiling (for each power consumption point) can be see as a general-
ization of LR-based profiling by explicitly imposing penalty on the coefficients’
size, formally,

α̂ridge
d

def= argmin
α

N∑

i=1

(

Ti − Mridge
d (Zi)

)2

,

subject to
∑

u∈Ud

α2
u ≤ s.

(3)

An equivalent formulation to above is (see [11] for detailed derivation):

α̂ridge
d = argmin

α

(N∑

i=1

(Ti − Mridge
d (Zi))

2
+ λ

∑

u∈Ud

α2
u

)

, (4)

whose optimal solution is given by:

α̂ridge
d = (UT

d Ud + λId)−1UT
d T, (5)

where Ud, Ud and Zi are defined in Sect. 2.1, matrix Id is the |Ud|×|Ud| identity
matrix and |Ud| denotes the cardinality of Ud.

Parameter optimization. As illustrated above, there is an undetermined para-
meter (i.e., λ), the choice of which affects the performance of the profiling. For
each power consumption point, we propose a method to choose the optimized
parameter based on the K-fold2 cross-validation technique from statistical learn-
ing. We mention that cross-validation was already used in the field of side-channel
attack (for different purposes), such as evaluation of side-channel security [6] and
unprofiled DPA [23]. Algorithm 1 finds the optimized parameter using cross-
validation, where we omit the subscript d (the degree) for succinctness.

We sketch the algorithm below. We first choose a set of candidate parameters
(up to some accuracy), and then split profiling traces into K parts C{1...K} of
roughly equal size. For each part Ci, we compute the coefficients αλ,i using the
remaining K − 1 parts from the trace set, and calculate the goodness-of-fit Rλ,i

using the traces in Ci, which is a measurement of similarity between estimated
power consumption and the actual power consumption T .3 We then get the
2 We shall not confuse K with k in online exploitation phase, where K is a parameter

as in the “K-fold cross-validation” and k is a subkey hypothesis.
3 We use the coefficient of determination to measure the goodness-of-fit in this paper,

i.e., R =
∑Nt

i=1(T̂i − Ti)
2/
∑Nt

i=1(Ti −∑Nt
i=1 Ti)

2, where T̂ is the estimated power
consumption and Nt is the trace number in Ci.

352 W. Wang et al.

Algorithm 1. finding the optimized parameter
Require: profiling traces ti = {Ti, xi} where i ∈ {1, ..., N}; the number of parts K;

the true key k∗; the set of candidate parameters Λ;
Ensure: λ̂ as the optimized parameter for the subkey;
1: for i = 1; i <= K; i++ do
2: Ci = {tK∗(i−1)+1, ..., tK∗i}
3: end for
4: for all λ such that λ ∈ Λ do
5: for i = 1; i <= K; i++ do
6: Compute the αλ,i using the traces in Cj , where j ∈ {1. . .K} \ {i}
7: Calculate the goodness-of-fit Rλ,i from Ci

8: end for
9: Rλ = (

∑K
i=1 Rλ,i)/K

10: end for
11: λ̂ = argmax

λ
Rλ

average goodness-of-fit Rλ = (
∑K

i=1 Rλ,i)/K for the each candidate parameter
λ in consideration. Finally, we return the parameter with the highest averaged
goodness-of-fit.

3.2 Theoretical Analysis

In this sub-section, we investigate the improvement of ridge-based profiling (over
LR-based one) theoretically. We first answer the ‘why’ and ‘how’ questions by
analyze the sampling variance of model’s coefficients. Then we answer the ‘when’
question by studying the way that the coefficients shrink in the ridge-based
profiling.

Why and How is Ridge-Based Profiling Better? For simplicity we consider
the univariate leakage, where the leakage of the i-th trace is Ti = L ◦ Zi,k∗ + ε.
Since the coefficients learned from the LR-based (resp., ridge-based) profiling
determine the model (by definition), varying the coefficients will affect stability
of the performance. The variance-covariance matrix of the coefficients learned
from the LR-based (resp., ridge-based) profiling are given by [13, Eq. 4.8]:

Var(αlr
d) = (UT

d Ud)−1σ2 (6)

Var(αridge
d) = WUT

d UdWσ2 (7)

where W = (UT
d Ud +λId)−1 and σ2 is the variance of noise ε, which is identical

for both LR-based and ridge-based profilings.
Without loss of generality, we fix σ2 = 1 and the target values to be bytes,

then compare Var(αlr
d) to Var(αridge

d). Figure 1 shows that the variances goes up
with the increase of d and the decrease of λ. For the same degree and parameter,
the variance learned from ridge-based profiling are much lower than the ones from

Ridge-Based Profiled Differential Power Analysis 353

Fig. 1. The variances of the coefficients for different degrees (of the model) and λ. The
upper-left, upper-right, lower-left, and lower-right figures correspond to the cases for
d = 1, d = 2, d = 4, and d = 8 respectively.

LR-based profiling, thus the former has a more stable performance and is less
prone to noise. Thus, to avoid overfitting one may use a large λ, but then it may
result in a biased model, i.e., the difference between the leakage function and the
model becomes more significant, which also decreases performance. Therefore,
for best performance we need to choose a judicious value for λ by reaching a
tradeoff between bias and coefficients’ variance. To this end, we propose to use
the cross-validation method in parameter optimization (see Sect. 3.1).

How the Coefficients Shrink in the Ridge-Based Profiling? As described
before, the ridge-based profiling enforces a general constraint

∑

u∈U
α2

u < s on
the coefficients of Mk, but it is not clear how each individual coefficient αu

shrinks (e.g., which coefficient shrinks more than the others). In [23], an inter-
esting connection between the degree of a term Zu

i,k in Mk (i.e., the Hamming
Weight of u) and the amount of shrinkage of its coefficient αu is shown. See the
following for a brief introduction and a conclusion of the analysis, and we refer
to [23] for more details.

354 W. Wang et al.

The principal components of Ud are a set of linearly independent vectors
obtained by applying an orthogonal transformation to Ud, i.e., Pd = UdVd,
where the columns of matrix Vd are called directions of the (respective) princi-
pal components. An interesting property is that among the columns of Vd, the
first one, denoted V 1

d (the direction of P 1
d), has the maximal correlation to coef-

ficient vector αd. Figure 2(a) and (b) depict the direction of the first principal
component V 1

8 and the degrees of terms in U8 respectively, and they represent a
high similarity (albeit in a converse manner). Quantitatively, the Pearson’s coef-
ficient between V 1

8 and the corresponding vector of degrees is −0.9704, which
is a nearly perfect negative correlation. Therefore, we establish the connection
that αu is conversely proportional to the Hamming weight of u. Above analysis
is based on the d = 8 setting, for the other degrees (1 to 7), similar results can
be obtained. To summarize, the more Hamming weight that u has, the less αu

contributes to the model. Therefore, ridge-based distinguisher is consistent with
the leakage functions that consist of more low degree terms.

Another observation is that the improvement of ridge-based profiling (over
LR-based one) is significant only for non-linear models (used for profiling). We
can see that for the model of degree 1 the u(s) of all coefficients have same
Hamming weight, and thus every coefficient contributes equally to the model.
That is, the coefficients shrink equally in this setting, which leads to comparable
performance for both ridge-based and LR-based profilings. However, we stress
that the degree of the model (for profiling) is not the same as (and typically
no less than) that of the leakage function, and ridge-based profiling can just
still enjoy performance improvement for linear leakage functions by setting the
degree of model to be greater than 1. We refer to Sect. 4.1, where we will show
that the ridge-based profiling outperforms the LR-based one for leakage function
of degree 1 and model of degree 4.

0 50 100 150 200 250 300
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Coordinates

V
al

ue

(a) The value of V 1
8 (the direction of

the first principal component of U8).

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8

D
eg

re
e

of
 th

e
te

rm
s

Terms

(b) The degrees of the terms in U8.

Fig. 2. The similarity between the direction of the first principle component V 1
8 and

the degrees of terms in U8

Ridge-Based Profiled Differential Power Analysis 355

4 Experimental Results

4.1 Simulation-Based Experiments

In this section, we evaluate the ridge-based, LR-based and classical profiling for
univariate leakage functions with different degrees and randomized coefficients
in the setting of simulated traces. We target at AES-128’s first S-box of the first
round with an 8-bit subkey (recall that AES-128’s first round key is the same
as its encryption key). We do the following trace pre-processing to facilitate the
profiling: we average the traces based on their the input (an 8-bit plaintext) and
use the resulting 256 mean power traces to mount the profiling. This reduces
noise and the number of traces needed for profiling (as otherwise the running
time goes unnecessarily high with a large number of ‘raw’ traces).

Finding the Optimized Parameter. At the beginning of ridge-based pro-
filing, the adversary should first find the optimized parameter (i.e., the λ). We
evaluate parameter optimization algorithm from Sect. 3.1. We consider the set-
tings whose the degrees (of both leakage function and model) are fixed to 4 and
under different signal-noise ratios (SNRs) (0.5, 0.1, 1). Let the set of parame-
ter choices be Λ = {0.1, 1, 10, 50, 200, 800, 2000, 8000}, for which we conduct the
parameter optimization algorithm 100 times (each time with a different random
leakage function). For a fair comparison, we normalized4 the averaged goodness-
of-fits (of each experiment) and plot them in Fig. 3. We also highlight the mean
of the averaged goodness-of-fits with red bold line. This confirms the intuition
that the optimized parameter (which corresponds to each setting’s minimum
averaged goodness-of-fit) decreases with SNR.

0.1 1 10 50 200 800 2000 8000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Value of the parameter

A
ve

ra
ge

d
go

od
ne

ss
−o

f−
fit

Averaged goodness−of−fit with trace number = 2000, SNR =0.1 and degree = 4

0.1 1 10 50 200 800 2000 8000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Value of the parameter

A
ve

ra
ge

d
go

od
ne

ss
−o

f−
fit

Averaged goodness−of−fit with trace number = 2000, SNR =0.5 and degree = 4

0.1 1 10 50 200 800 2000 8000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Value of the parameter

A
ve

ra
ge

d
go

od
ne

ss
−o

f−
fit

Averaged goodness−of−fit with trace number = 2000, SNR =1 and degree = 4

Fig. 3. Averaged goodness-of-fits and their mean values, with SNR = 0.1 (left-hand),
0.5 (middle), 1 (right-hand). (Color figure online)

4 We apply the averaged goodness-of-fit for normalization, i.e., norm(Rλ) = (Rλ −
mean(R)/(max(R) − min(R))), where mean(R) is the average of {Rλ}λ∈Λ and
norm(·) is the normalization function.

356 W. Wang et al.

A Comparison of Different Profilings in Simulation-Based Experi-
ments. We compare different profilings (i.e., classical, LR-based and ridge-
based profiling) using two metrics, namely, theoretical information and guessing
entropy. The former computes the Perceived Information (PI) [6] between the
secret variable and its leakage, and the latter combines the correlation DPA
with the model built from one of three different profilings above and mounts
the attack 100 times (each time with a different random leakage function) to
compute the averaged ranking of the real key.

Figure 4 compares the Perceived Information and guessing entropies (as func-
tions of the number of profiling traces) for different degrees of leakage function.
The left-hand three sub-figures show the Perceived Information and the right-
hand ones present the guessing entropies. The two sub-figures of the same row
correspond to the Perceived Information and guessing entropy for leakage func-
tions of the same degree respectively. Intuitively, the PI is an information the-
oretic metric that relates to the success rate of a profiled adversary using the
estimated model obtained thanks to LR-based or ridge-based regression [5]. So
it is the most revealing metric for comparing profiling phases [22]. In particular,
the left parts of Fig. 4 exhibit both the informativeness of the model after suf-
ficient profiling (i.e. the final Y axis values) and the efficiency of the profiling
(i.e. how fast we converge towards this value). The guessing entropy metric is
used as a confirmation that this intuition is matched and could be computed
for any number of traces in the exploitation phase. In the profiling phase, we
choose the same degree for the model and the leakage function. For all scenar-
ios, the two metrics are consistent: the PI increases and the guessing entropies
approaches to 1 with the increase of the number of traces. As clear from the PI
figures, the ridge-based profiling performs better than the other two ones in all
settings except for the d = 1 setting. More precisely, it generally has a better
convergence speed, without any significant reduction of the final informativeness.
Meanwhile the performance of LR-based profiling lies in between classical and
ridge-based ones and it is largely affected by the degree of the leakage function.
These observations confirm the theoretical analysis in Sect. 3.2. The guessing
entropies computed in function of the number of profiling traces (for a fixed
number of attack traces) confirm these trends.

Note that the typical scenario we are interested in is when the adversary has
no knowledge about the actual degree of the leakage function for his profiling.
In this case, our results show that he may use a conservative estimate about
the degree of the model in the profiling phase without loosing efficiency (i.e.
speed of convergence). To reflect this case, we also conduct experiments where
the estimated degree of the model is higher that its actual value. That is, we
simulate the traces with leakage functions of degrees 1 and 2 and then conduct
the above experiments assuming a model of degree 4 for profiling. As shown
in Fig. 5, the performance of ridge-based profiling is again significantly better.
Therefore, our results show that an adversary (or an evaluation laboratory) can
simply use a ‘conservatively’ estimated degree in ridge-based profiling, instead
of running an enumeration on its possible values.

Ridge-Based Profiled Differential Power Analysis 357

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Profiling trace number

P
er

ce
iv

ed
 In

fo
rm

at
io

n

Perceived Information with SNR =0.2 and degree = 1

LR-based profiling
ridge-based profiling
classical profiling

1000 3000 5000 7000 9000 11000 13000 15000 18000 20000 22000 24000

20

40

60

80

100

120

Profiling trace number

G
ue

ss
in

g
en

tro
py

Guessing entropies with exploitation trace number = 1200, SNR =0.1, degree = 1

LR-based profiling
ridge-based profiling
classical profiling

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Profiling trace number

P
er

ce
iv

ed
 In

fo
rm

at
io

n

Perceived Information with SNR =0.5 and degree = 4

LR-based profiling
ridge-based profiling
classical profiling

1000 3000 5000 7000 9000 11000 13000 15000 18000 20000 22000 24000

20

40

60

80

100

120

Profiling trace number

G
ue

ss
in

g
en

tro
py

Guessing entropies with exploitation trace number = 1500, SNR =0.1, degree = 4

LR-based profiling
ridge-based profiling
classical profiling

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Profiling trace number

P
er

ce
iv

ed
 In

fo
rm

at
io

n

Perceived Information with SNR =0.8 and degree = 8

LR-based profiling
ridge-based profiling
classical profiling

1000 3000 5000 7000 9000 11000 13000 15000 18000 20000 22000 24000

10

20

30

40

50

60

70

80

90

100

Profiling trace number

G
ue

ss
in

g
en

tro
py

Guessing entropies with exploitation trace number = 2000, SNR =0.1, degree = 8

LR-based profiling
ridge-based profiling
classical profiling

Fig. 4. A comparison of Perceived Information and guessing entropies (in functions of
the number of profiling traces) for different degrees of leakage function, where the rows
correspond to degrees 1, 4 and 8 respectively.

4.2 Experiments on Real FPGA Implementation

We carry out experiments on the SAKURA-X which running the AES on Xil-
inx FPGA devices Kintex-7 (XC7K70T/160T/325T). We amplified the signal
using a (customized) LANGER PA 303N amplifier, providing 30 dB of gain.
Then we measure the (absolute value of) power consumptions of the first round

358 W. Wang et al.

Fig. 5. The Perceived Information and guessing entropies with ‘conservatively’ degree
of model for different numbers of exploitation traces, where the rows correspond to
degrees of leakage function 1 and 2 respectively, and the degree of both models is 4.

S-box output, using a LeCroy waverunner 610Zi digital oscilloscope at a sam-
pling rate of 1 GHz. Figure 6 shows the averaged trace5 of the measurements
of first round, we marked the leakage regions of the intermediate variable (i.e.,
the S-box output) in the figure and target them in our following attacks. We
can see that the intermediate variable leaks in both region A and B similarly.
Additionally, for each region, we apply the principal component analysis (PCA)
to compact measurements [1,2,21], then only target the point of first princi-
pal component. And before the profiling, we perform the pre-processing, whose
results are 256 mean traces of single point. In the following, to better illustrate
the improvement of our new proposed method, we conduct two experiments for
two different settings, in which we always profile on points of region A but attack
(do the exploitation) on points of different regions.

5 We shall not confuse the ‘averaged trace’ with the ‘256 mean power traces’, where
the former one is the mean of all the power traces which is only for the presentation
of the measurements. And the latter one, as the result of pre-processing, is the means
of the traces of same corresponding plaintext.

Ridge-Based Profiled Differential Power Analysis 359

Fig. 6. The average trace of the measurements and the leaking points.

First, we assume a common setting (the 1st setting in Fig. 6) where the
profiling and exploitation points are perfect aligned, thus we use the same region
(i.e., region A) for both profiling and exploitation. Figure 7(a) shows the guessing
entropies (as functions of the number of profiling traces) for ridge-based with
different degrees power model in this setting. The parameter (i.e., λ = 8000)
is chosen by means of the cross-validation as simulation-based experiments. We
present the guessing entropies of the LR-based profiling with power model of
degree 1 as the base line, since (in our attack scenario) it outperforms the LR-
based profiling with higher degree as well as the classical one. We can see that
the degree of the leakage function of our implementation is around 2. The result
shows that (under this implementation) the ridge-based profiling with power
model of degree 2 is the best one and perform better than the LR-based one
(with power model of degree 1), which is consistent to the results of simulation-
based experiments and theoretical analysis.

Further, we conduct another experiments to show that our new method can
be used as a type of robust profiling [25], which can tolerate (some) differences
between profiling and exploitation traces in a more realistic setting. As shown
in Fig. 6 (the 2nd setting), we profile on the points in A and attack (do the
exploitation) on the points in B. We aim to show how the miss-alignment of
the points affects the ridge-based profiling. Figure 7(b) presents the guessing
entropies (as functions of the number of profiling traces) for ridge-based with
different degrees power model. We choose a larger parameter λ = 500000 by
using the parameter optimization process in Sect. 3.1. We also add the LR-based
profiling (with power model of degree 1) as the base line. The results show that
the performance of ridge-based profiling is better than the LR-based one, which
means that the performance of the new profiling method is better robust than
LR-based one to the distortions between profiling and exploitation points.

360 W. Wang et al.

(a) standard scenario (b) scenario of robust profiling

Fig. 7. A comparison of guessing entropy (in functions of the number of profiling traces)
for FPGA implementation.

5 Conclusion

In this paper, we propose a new profiled differential power analysis based on
ridge regression. Our theoretical analysis and experiments double confirm that
the proposed profiling method has better performance than LR-based one by
using a more stable (to avoid overfitting) and has a good potential to be a
type of robust profiling. In view of the importance of profiled based side-channel
analysis in security evaluations, these results show ridge-based profiling can allow
laboratories to save significant factors in the number of traces they need to build
a satisfying leakage model.

Acknowledgments. This work has been funded in parts by Major State Basic
Research Development Program (973 Plan), the European Commission through the
ERC project NANOSEC and by the INNOVIRIS project SCAUT. Yu Yu was sup-
ported by the National Natural Science Foundation of China Grant (Nos. 61472249,
61572192, 61572149), Science and Technology on Communication Security Labora-
tory (9140C110203140C11049), and International Science & Technology Cooperation
& Exchange Projects of Shaanxi Province (2016KW-038). François-Xavier Standaert is
a research associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). Dawu
Gu was supported by National Natural Science Foundation of China (No. 61472250).

References

1. Archambeau, C., Peeters, E., Standaert, F., Quisquater, J.: Template attacks in
principal subspaces. In: Goubin, L., Matsui, M. (eds.) [9], pp. 1–14

2. Batina, L., Hogenboom, J., Woudenberg, J.G.J.: Getting more from PCA: first
results of using principal component analysis for extensive power analysis. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-27954-6 24

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

http://dx.doi.org/10.1007/978-3-642-27954-6_24
http://dx.doi.org/10.1007/3-540-36400-5_3

Ridge-Based Profiled Differential Power Analysis 361

4. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) [7], pp. 253–270. http://dx.doi.org/10.1007/978-3-319-08302-5

5. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

6. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 26

7. Francillon, A., Rohatgi, P. (eds.): CARDIS 2013. LNCS, vol. 8419. Springer, Cham
(2014). http://dx.doi.org/10.1007/978-3-319-08302-5

8. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) [9], pp. 15–29

9. Goubin, L., Matsui, M. (eds.): CHES 2006. LNCS, vol. 4249. Springer, Heidelberg
(2006)

10. Güneysu, T., Handschuh, H. (eds.): CHES 2015. LNCS, vol. 9293. Springer,
Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-48324-4

11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn., vol. 1, pp. 43–94. Springer, New York
(2009)

12. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29912-4 18

13. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

14. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptographic Eng.
1(4), 293–302 (2011)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

16. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. IJACT 3(2), 97–115 (2014)

17. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in side-
channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS,
vol. 9064, pp. 20–33. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21476-4 2

18. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: Francillon, A., Rohatgi, P. (eds.) [7], pp. 94–107. http://dx.doi.org/
10.1007/978-3-319-08302-5

19. Quisquater, J., Samyde, D.: Automatic code recognition for smartcards using
a kohonen neural network. In: Proceedings of the Fifth Smart Card Research
and Advanced Application Conference, CARDIS 2002, November 21–22, 2002,
San Jose, CA, USA (2002)

20. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

21. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85053-3 26

http://dx.doi.org/10.1007/978-3-319-08302-5
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/978-3-642-55220-5_26
http://dx.doi.org/10.1007/978-3-319-08302-5
http://dx.doi.org/10.1007/978-3-662-48324-4
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-319-21476-4_2
http://dx.doi.org/10.1007/978-3-319-08302-5
http://dx.doi.org/10.1007/978-3-319-08302-5
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-540-85053-3_26

362 W. Wang et al.

22. Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel
attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01957-9 30

23. Wang, W., Yu, Y., Liu, J., Guo, Z., Standaert, F., Gu, D., Xu, S., Fu, R.: Evaluation
and improvement of generic-emulating DPA attacks. In: Güneysu, T., Handschuh,
H. (eds.) [10], pp. 416–432. http://dx.doi.org/10.1007/978-3-662-48324-4

24. Whitnall, C., Oswald, E.: Profiling DPA: efficacy and efficiency trade-offs. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 37–54. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40349-1 3

25. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) [10], pp. 3–21. http://dx.doi.org/10.1007/978-3-662-48324-4

26. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA...and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Cham (2014). doi:10.1007/978-3-319-04852-9 10

http://dx.doi.org/10.1007/978-3-642-01957-9_30
http://dx.doi.org/10.1007/978-3-642-01957-9_30
http://dx.doi.org/10.1007/978-3-662-48324-4
http://dx.doi.org/10.1007/978-3-642-40349-1_3
http://dx.doi.org/10.1007/978-3-662-48324-4
http://dx.doi.org/10.1007/978-3-319-04852-9_10

My Traces Learn What You Did in the Dark:
Recovering Secret Signals Without Key Guesses

Si Gao1,2, Hua Chen1(B), Wenling Wu1, Limin Fan1, Weiqiong Cao1,2,
and Xiangliang Ma1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
{gaosi,chenhua,wwl,fanlimin,caowq,maxiangliang}@tca.iscas.ac.cn

2 University of Chinese Academy of Sciences,
Beijing 100049, People’s Republic of China

Abstract. In side channel attack (SCA) studies, it is widely believed
that unprotected implementations leak information about the interme-
diate states of the internal cryptographic process. However, directly
recovering the intermediate states is not common practice in today’s
SCA study. Instead, most SCAs exploit the leakages in a “guess-and-
determine” way, where they take a partial key guess, compute the cor-
responding intermediate states, then try to identify which one fits the
observed leakages better. In this paper, we ask whether it is possible
to take the other way around—directly learning the intermediate states
from the side channel leakages. Under certain circumstances, we find that
the intermediate states can be efficiently recovered with the well-studied
Independent Component Analysis (ICA). Specifically, we propose several
methods to convert the side channel leakages into effective ICA observa-
tions. For more robust recovery, we also present a specialized ICA algo-
rithm which exploits the specific features of circuit signals. Experiments
confirm the validity of our analysis in various circumstances, where most
intermediate states can be correctly recovered with only a few hundred
traces. Our approach brings new possibilities to the current SCA study,
including building an alternative SCA distinguisher, directly attacking
the middle encryption rounds and reverse engineering with fewer restric-
tions. Considering its potential in more advanced applications, we believe
our ICA-based SCA deserves more research attention in the future study.

Keywords: Side channel analysis · Signal recovery · Independent com-
ponent analysis

1 Introduction

Nowadays, Side Channel Attacks (SCA) pose a major threat for various cryp-
tographic devices [1–4]. With some data-dependent leakage measurements, an
SCA attacker can efficiently retrieve the secret key, even if the underlying cipher
is cryptographically strong.
c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 363–378, 2017.
DOI: 10.1007/978-3-319-52153-4 21

364 S. Gao et al.

In a typical SCA context (illustrated in Fig. 1), the attacker Eve encrypts
T plaintexts and measures the corresponding leakages L. In SCA, it is widely
believed that L depends on some key-related intermediate states, denoted as
xk = {xk(1), ..., xk(T)}. With certain key guess ki, Eve computes the inter-
mediate state sequence xki

= {xki
(1), ..., xki

(T)} according to the encryption
algorithm. Throughout this paper, we denote this sequence as a signal. Since
the leakages L only depend on the correct signal xk, Eve combines all possible
xki

with L and learns the most likely key guess.

Fig. 1. A typical SCA procedure

In Fig. 1, Eve has a list of all possible intermediate state sequences (signals)
and tries to find the correct one with the corresponding leakages. In SCA studies,
such procedure is called a side channel distinguisher. The term distinguisher
demonstrates its inherent limitation: such process only distinguishes the correct
signal from the wrong ones, yet never directly retrieves any secret. A natural
question to ask, is whether Eve can take one step further and directly learn the
correct signal from the leakages, without an enumerative signal list.

It is not surprising that little SCA study answers this question. As the mas-
ter key is the only secret in modern block ciphers, the “key-distingshers” above
already present enough threat for unprotected chips. Nonetheless, recovering the
intermediate states without a key guess may still be helpful in certain circum-
stances. For instance, in a typical SCA procedure, the computation cost strictly
depends on the correlated key size. If the target intermediate state involves a
large proportion of the secret key (>32 bits), enumerating all xki

becomes infea-
sible. Other examples include Side Channel Analysis for Reverse Engineering
(SCARE), where the secret components baffle the computation of xki

. Since
the signal list cannot be efficiently computed, SCA in these cases needs a more
general secret recovery technique.

Related Work. Despite a few ad hoc SPA-like attacks, in general, most previ-
ous non-profiled SCAs cannot directly recover the intermediate states. Collision
attack may be the closest match in this direction [5]. In a collision attack, the
attacker collects a few collisions and solves the intermediate states from the

My Traces Learn What You Did in the Dark 365

collision equations. More specifically, if the measurements from two Sbox com-
putations match, we can reasonably predict they share the same input (a.k.a a
collision). Since the leakages of the exact same Sbox computation are not always
available, such “online-profiling” stage imposes restrictions on the implementa-
tions as well as the target ciphers. Indeed, none of the previous collision-based
SCAREs gave realistic experiments to validate their results [6–8].

Our Contribution. In this paper, we aim to recover the secret intermediate states
directly from the observed leakages. Our analysis shows that, under certain cir-
cumstances, recovering the intermediate states can be regarded as a noisy Blind
Source Separation (BSS) problem. Following the study of BSS, we introduce
the well-studied Independent Component Analysis (ICA) [9] to SCA. In signal
processing, ICA is a widely used tool for recovering unknown sources in a blind
context. Considering ICA takes at least n observations to recover n sources, we
propose several methods to construct multi-channel observations from the side
channel leakages. Moreover, since typical ICA algorithms are sensitive to noise,
we present a more robust ICA algorithm based on Belouchrani and Cardoso’s
work on discrete ICA [10]. By exploiting the specific features of circuit signals,
our specialized ICA gives efficient SCA recoveries: in our realistic experiments,
our ICA-based SCA recovers over 80% of the intermediate states correctly, with
only a few hundred traces. Furthermore, our ICA-based SCA brings several new
possibilities to the current non-profiled SCA studies. In our experiments, our
ICA-based SCA helps to improve the key-recovery result in a limited trace set,
extend SCA to the middle encryption rounds as well as loosen the restrictions
of current SCAREs. As a potentially powerful tool, we believe our ICA-based
SCA deserves more research attention in the future.

Paper Organization. In the next section, we present a brief introduction of Inde-
pendent Component Analysis, discussing its assumptions as well as limitations.
Section 3 shows how to convert an SCA recovery to an ICA problem. Specifically,
we propose several methods to construct multi-channel observations from the
side channel leakages and build a specialized ICA algorithm for circuit signals.
Section 4 demonstrates some advanced applications of our ICA-based SCA. With
realistic measurements of an unprotected software implementation of DES, we
confirm the validity of our approach. Further discussions about our ICA-based
SCA and its promising prospects in the future are presented in Sect. 5.

2 Independent Component Analysis

2.1 Definition

Independent Component Analysis (ICA) [9] belongs to a boarder class of prob-
lems called Blind Source Separation (BSS) [11], which requires to separate a set
of mixed signals, without the aid of information about the source signals or the
mixing process. A common example is the cocktail party problem, which suggests
a partygoer can focus on a single conversation in a noisy room.

366 S. Gao et al.

Suppose we have n simultaneous conversations (sources) S = {s1, s2, ..., sn}
going on in the party room. Microphones are placed in different positions,
recording m mixtures (observations) of the original sources Y = {y1, y2, ..., ym}.
Assuming the observation yj is a linear mixture of all sources, we have

yj = aj,1s1 + aj,2s2 + ... + aj,nsn

where aj,i stands for the real-valued coefficient. The overall mixing procedure
can be written as

Y = AS

where A is called the mixing matrix. In signal processing, such statistical model
is called Independent Component Analysis [9]. With additional multivariate
Gaussian noise N, the noisy ICA model is defined as

Y = AS + N

2.2 Assumptions and Ambiguities

Since both S and A are not given, in general, the BSS problem is highly underde-
termined. In order to find useful solutions, BSS usually requires some additional
assumptions. Specifically, ICA relies on the following assumptions [9]:

– Independence: The source signals are independent of each other.
– Non-Gaussianity: The source signals have non-Gaussian distributions.

In addition, typical ICA algorithms also assume the number of observations is no
less than the number of sources (m ≥ n) [9]. Like most noisy statistical models,
noise significantly affects the effectiveness of ICA.

From the ICA model, it is not hard to see the following ambiguities hold [9]:

– ICA cannot determine the amplitude of the sources. As both S and A
are unknown, any scalar multiplier in si can always be cancelled by dividing
the corresponding column of A with the same scalar.

– ICA cannot determine the order of the sources. As both S and A are
unknown, we can pick a random permutation matrix P. In the ICA model,
Y = AP−1PS, where A′ = AP−1 and S′ = PS is also a valid solution.

Besides, in ICA, the input signal usually enters a whitening transformation
before any further analysis. Theoretically speaking, a whitening transformation
is a decorrelation transformation that transforms a set of random variables into a
set of new random variables with zero means and identity covariance. As a result,
ICA only returns the estimates of the “whitened sources”. In other words, the
means of the original sources cannot be determined through ICA. For typical
ICA applications like separating independent speeches, none of these ambiguities
presents an obstacle in practice.

My Traces Learn What You Did in the Dark 367

2.3 Existing ICA Algorithms

Despite the fact that the BSS problem is highly underdetermined, in the past
30 years, researchers have proposed many successful ICA algorithms, such like
FastICA [12], JADE [13] and Infomax [14]. Although these algorithms use dif-
ferent measurements of independence, as Hyvärinen’s explanation [9], they are
indeed not “that” different. For efficiency, we simply choose FastICA as our pri-
mary ICA technique in this paper. Due to the space limit, here we omit further
technical details. Interested readers can learn more from Hyvärinen’s tutorial [9].

3 ICA-Based Signal Recovery

3.1 ICA versus SCA: Similarities and Differences

Throughout this paper, we assume the leakage follows the weighted Hamming
Weight model. For an n-bit intermediate state X, the corresponding data-
dependent leakage can be written as

L(x) = α0 + α1x1 + α2x2 + ... + αnxn, αi ∈ R (1)

where xi represents the i-th bit of x. With T times measurements, the sequence
of the intermediate states x = {x(1),x(2), ...,x(T)} forms a T -length sig-
nal. Apparently, x can also be regarded as a group of binary signals, where
x = {x1, ...,xn}�. As the leakages y capture the instantaneous mixtures of x,
SCA in this setting shares many similarities with ICA. Indeed, the basic assump-
tions of ICA—non-gaussianity and independence—are naturally satisfied: since
all xi are 1-bit 0–1 signals, the distribution of xi is far from Gaussian. Consider-
ing the sources come from a cryptographic intermediate state, the cryptographic
operation ensures each bit is statistically independent. The major difference is
ICA requires at least n observations, whereas the SCA context provides only
one. Although not explicitly stated, the additional noise may be another prob-
lem: since SCA exploits the unintended information leakage, the Signal-to-Noise-
Ratio (SNR) in SCA is usually much lower than typical ICA contexts.

Table 1. Similarities and differences between ICA and SCA

ICA SCA

Sources s = {s1, s2, ..., sn} x = {x1,x2, ...,xn}
Distribution non-Gaussian Bernoulli

Independence Independent Independent

Observation Y = AS + N l = αx + N

Number of observations m 1

Level of noise Low High

368 S. Gao et al.

Toy example. Assume our intermediate state x has only 2 bits (n=2). The
leakages follow the standard Hamming Weight model, where both α1 and α2 in
Equation (1) equals to 1 and α0 = 0. If the attacker takes 4 leakage measurements
(T=4) with {x(1) = 0,x(2) = 1,x(3) = 2,x(4) = 3}, the resultant leakage
measurements l = {0, 1, 1, 2} can be regarded as an observation in ICA. x1 =
{0, 0, 1, 1} and x2 = {0, 1, 0, 1} are two blind sources in ICA and the mixing
procedure is l = x1 + x2.

3.2 Applying ICA in SCA: Obstacles and Solutions

As demonstrated in Table 1, the number of observations and the level of noise
are two major obstacles for applying ICA in the SCA context. In the following,
we further discuss these two obstacles and propose possible solutions.
Constructing multi-channel observations. The first difficulty we have to
overcome is to construct multi-channel observations from the side channel leak-
ages. In the following, our discussion focuses on the best solution we found for
power leakage.

Our primary solution is based on a simple observation: if a binary source s
is XORed with a constant k, the resultant source s′ is

s′ =
{

s k = 0
1 − s k = 1

In ICA, since the whitening transformation removes all constant terms in s′,
XORing k = 1 has the same effect as flipping the sign of the whitened source
s. According to our discussion in Sect. 2.2, we can move the flipping sign to
the corresponding coefficients in the mixing matrix A. In SCA, suppose we can
measure the leakages of X = S ⊕ k. With m different ki, the overall model can
be regarded as

x′ = s

A′ =

⎛

⎜
⎜
⎜
⎝

α1 · · · αn

α1

...

· · ·
...

αn

...
α1 · · · αn

⎞

⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎝

2k1,1 − 1 · · · 2k1,n − 1
2k2,1 − 1
...

· · ·
...

2k2,n − 1
...

2km,1 − 1 · · · 2km,n − 1

⎞

⎟
⎟
⎟
⎠

where ki,j represents the j-th bit of ki. If the resultant A′ is non-singular, the
attacker can simply uses n different ki to collect input for ICA. On the other
hand, if A′ is singular, the attacker has to construct m > n observations to
ensure that ICA gets n linearly independent channels.

Toy example. In the previous example, assume the attacker can control a con-
stant k that XORed to the intermediate state x. The attacker measures one
observation l1 when k = 0. Then, the attacker repeats his measurements with

My Traces Learn What You Did in the Dark 369

exactly the same plaintext inputs, using k = 1. In this case, the measured leak-
age signal becomes l2 = 1 − x1 + x2. Considering the whitening stage, we can
omit the constant term α0 and write the model as

l =
(

l1
l2

)

=
(

1 1
−1 1

)(
x1

x2

)

Apparently, l forms a valid input for ICA (m = n = 2).
Considering XOR is a common operation in symmetric cryptography, finding

such constant should be easy. Since ICA does not need the actual value of k, in
many block ciphers, the round key serves as a good candidate. It is worth men-
tioning that constructing multi-channel observations might be easier for certain
implementations, such like software implementation of DES (Sect. 4).

Noise tolerance. As stated in Table 1, the Signal-to-Noise Ratio (SNR) in the
SCA context is often much lower than the SNR in typical ICA applications.
Thus, designing a more robust ICA is essential for ICA’s application in SCA.
Compared with the standard ICA context, ICA-based SCA does have some
unusual a priori knowledge: all sources follow the Bernoulli distribution with p =
0.5. Taking the a priori distribution into consideration, ICA with the Maximum
Likelihood Principle becomes a more robust choice. Specifically, Belouchrani and
Cardoso had proposed an ICA algorithm specialized for discrete sources in 1994
[10]. Their approach estimates the unknown sources and the mixing matrix as
well as the additional noise, then maximizes the likelihood via the Expectation-
Maximization (EM) algorithm. With moderate adjustments, their EM-ICA can
be a more robust candidate for circuit signal recovery.

3.3 Specialized ICA Algorithm

Taking the a priori distribution into consideration, we present a specialized
ICA based on Belouchrani and Cardoso’s EM-ICA [10]. In order to formally
describe our ICA algorithm, we assume the sources X consist of T intermediate
states {x(1), ...,x(T)}. Each bit of X forms an independent source, denoted as
xi = {xi(1), ...,xi(T)}. Similarly, the observations Y can also be written as
Y = {y1, ...,ym}�, where yi = {yi(1), ...,yi(T)}. The detailed algorithm is
presented in Algorithm 1.

4 Applications in SCA

As our specialized ICA does not require any information from the plaintexts,
it sheds light on several more advanced applications in SCA. Throughout this
section, our experiments use leakages acquired from an unprotected software
implementation of DES. The power consumptions were measured with a LeCroy
WaveRunner 610Zi oscilloscope at a sampling rate of 20 MSa/s. The entire trace
set contains 20 000 traces, with 80 000 sample points covering the first 3 rounds.
An appealing property of this card, is that it performs DES’s permutation P

370 S. Gao et al.

Algorithm 1. Specialized ICA for SCA
Step 1: Collect m observations Y = {y1, ...,ym}�

Step 2: Get n independent components (IC1, IC2, ..., ICn) from FastICA
Step 3: Find the closest binary signals x̃ = {x̃1, x̃2, ..., x̃n} for IC
Step 4: Start EM-ICA with x̃, estimate the initial parameter θ(0)

while ΔL > threshold do
E-Step: Compute the expectation of the log-likelihood L

(
θ(j)
)

with

current θ(j)

M-Step: Compute the θ(j+1) that maximize the expected log-
likelihood function L

end while
Step 5: Find the x̂ that maximize the expected log-likelihood function L
return binary signals x̂

bit-by-bit. As the influence of each signal bit is separated in time, the leakage
trace naturally provides multi-channel observations. Most experiments in this
section take advantage of this property. However, in Sect. 4.4, we present ICA
analysis against the leakages of the Sboxes’ input, where such property does not
hold. Although the analysis becomes trickier, we can still perform a successful
recovery with our XOR-constant method.

4.1 New SCA Distinguisher

Although key recovery is not our primary goal, surprisingly, in our experiments,
our specialized ICA can serve as a competitor for common key recovery attacks.
Specifically, let us focus on one of the Sboxes (S5) in the first round. Figure 2(a)
presents the performance of traditional univariate CPA (10 to 200 traces): the
correct key (red line) stands out after 60 traces, although the distinguishing
margin is quite small.

Fig. 2. Attacking S5 in the first round: CPA v.s. ICA

My Traces Learn What You Did in the Dark 371

On the other hand, in this particular implementation, we can also use our
specialized ICA to recover the Sbox output sequence Xr. In our experiments,
we picked 5 points of interest (m = 5) from the leakages that correspond to
S5’s output (n = 4). Similar to CPA, the attacker computes the guessed Sbox
output sequences Xk̂ from the guessed key k̂ and the known plaintext sequences
{P1, P2, ..., PT }:

Xk̂=
{

DESS5(k̂, P1),DESS5(k̂, P2),...,DESS5(k̂, PT)
}

where DESS5 represents the corresponding DES encryption in the first round.
In the following, the attacker need to decide which Xk̂ is the closest match for
Xr. Considering the ICA’s ambiguity, if Xr is the signal that ICA returned,
applying any bit permutation B or flipping any sign also gives a correct ICA
result. Thus, we choose the distance between Xk̂ and its closest equivalent of
Xr as our distinguish value. In the following, ||v||1 stands for the L1 norm
(Manhattan norm) of v, whereas Xk̂,i stands for the i-th bit of Xk̂.

DICA(k̂) = D
(

Xk̂,Xr

)

= min
B

{
n∑

i=1

dist
(

Xk̂,i,Xr,B(i)

)
}

dist
(

Xk̂,i,Xr,B(i)

)

= min
{∥

∥
∥Xk̂,i − Xr,B(i)

∥
∥
∥
1
,
∥
∥
∥Xk̂,i − Xr,B(i)

∥
∥
∥
1

}

Figure 2(b) presents the performance of our ICA-based SCA. The correct
key stands out after 30 traces, which shows a slight advantage over CPA (60
traces). Besides, our ICA-based SCA provides a larger distinguishing margin:
the distance with correct key stays stable after 50 traces, while the distances
with incorrect keys increase linearly with the number of traces.

4.2 Extending SCA to the Middle Rounds

Considering ICA does not take a guess-and-determine procedure, in theory, our
ICA-based SCA can be applied to the leakages of any encryption operation. This
feature becomes crucial when the target implementation protects the first/last
few rounds. In traditional SCAs, the attacker has to increase the guessed key
space, in order to compute the middle round’s intermediate states. This is hardly
an issue for our ICA-based SCA: as long as the attacker can build effective
observations, ICA can recover the intermediate states of any round.

Figure 3 demonstrates the results of recovering the 8 Sboxes’ outputs (n = 4)
in the second round. Following our discussion in Sect. 4.1, we further define the
success rate of an ICA recovery as:

Succ(Xr) =
D (Xr,Xc)

nT

From this definition, it is not hard to see that the success rate is at least
0.5. If the success rate equals to 0.5, the ICA-returned signal is no better than

372 S. Gao et al.

Fig. 3. Recovering the 8 Sboxes’ outputs in the second round

a random guess. The success rates of all 8 attempts in Fig. 3 are over 0.8, which
suggests our ICA-based attack learns most signal bits correctly. As our goal here
is merely key recovery, 80% accuracy is enough for further cryptanalysis.

4.3 Reverse Engineering on Sbox

Despite the applications in key recovery, reverse engineering seems to be a more
natural application for our ICA-based SCA. In order to infer the underlying
cryptographic operations, SCARE usually requires to recover the secret inter-
mediate states first. Indeed, the experiments in Sect. 4.1 already confirm our
ICA-based SCA can recover some information about the intermediate states. In
the following, let us first consider how to recover secret Sboxes.

Assume the target chip implements a customized DES with secret Sboxes.
In the first round, the attacker can compute the output of the Expansion E.
Similar to most SCAREs, the secret key is treated as a part of the secret Sbox
(S′(x) = S(x⊕k)), which means the output of E can be regarded as the input of
S′. Since the Sboxes are secret, the attacker cannot take a key guess and analyze
the leakages with traditional SCAs. Our ICA-based SCA works for this case,
as long as the attacker can pick several independent leakage points. Figure 4(a)
demonstrates the recovery of all 8 Sboxes’ outputs (n = 4) in the first round with
5 (m = 5) manually picked leakage points. The analysis procedure is exactly
the same as Sect. 4.1, except for the key distinguish step in the end. In all 8
attempts, our approach works very well with only 100 traces, recovering more
than 80% of the intermediate states correctly. In Fig. 4(a), all 8 attempts report
over 95% success rate after the number of traces reaches 400. Meanwhile, ICA
with manually picked leakages always gives a few faulty recovery, even if the
trace set is large (Fig. 4(a)).

The major drawback of picking leakages manually is the attacker may not
know how to pick valid leakages in a non-profiled setting. In SCARE, since we

My Traces Learn What You Did in the Dark 373

Fig. 4. Reverse engineering the first round’s 8 Sboxes with ICA

have the Sboxes’ input, Linear Discriminant Analysis (LDA) [15] can make the
selection process easier. In our experiments, as the implementation performs the
permutation bit-by-bit, the first 5 LDA components form a valid input for ICA.
The benefit of LDA is twofold: on the one hand, the attacker does not have to
choose leakage points himself. All he has to do is to estimate an approximate
range on the trace corresponding to the target computation. On the other hand,
in Fig. 4(b), our attack with LDA shows better recovery with larger trace sets.
In fact, all 8 attempts achieve 100% accurate recovery with 600 traces. Noted
in our traces set, the target operation lasts for 300–400 sample points. It is well
known that LDA are not suitable for the cases where the number of traces is
smaller than the range of interest [15]. This explains the fact that LDA gives
poor results when the trace set is smaller than 400. Since the attacker has both
the Sbox input and output now, writing the input and output in sequence gives
the equivalent Sbox (up to ICA’s ambiguity).

4.4 Reverse Engineering on Feistel Round Function

So far, all our experiments rely on the specific implementation of DES: as the
implementation naturally provides multi-channel observations, the attacker can
directly build ICA’s input from the measured traces. For other ciphers or other
implementations, this nice property does not always hold. In the following, our
experiment demonstrates how the attacker can build his observations with our
XOR-constant method and recover the output of the first round function.

Assume the attacker is reverse engineering a customized version of DES,
where both the Sboxes and the linear permutation are altered. For convenience,
we assume the attacker already knows the initial permutation IP and the expan-
sion permutation E. Let Fk1 denote the first round function of DES and (L0, R0)
denote the initial input state (after IP). The first Sbox’s input in the second
round can be written as

X = E0(L0 ⊕ Fk1(R0)) = E0(L0) ⊕ E0(Fk1(R0))

374 S. Gao et al.

where E0 stands for taking the 6 least significant bits after the expansion E.
Clearly, we can use the corresponding bits in L0 as our XORed constant and
recover the intermediate states E0(Fk1(R0)) (n = 6). Specifically, in our exper-
iments, we choose E0(L0) = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20} (m = 6). For
each value of E0(L0), we set the other bits in L0 to random numbers and let
R0 take 64 fix values {R0(1), ..., R0(64)} (T = 64). Considering the following
recovery, the attacker can choose 64 random values, or set {R0(1), ..., R0(64)}
to anything he likes. Thus, we have 6 groups of 64 traces, where the inter-
mediate state (S0’s input) sequences are the same, except for E0(L0). The
attacker can then pick one leakage point on the trace, and build 6 64-length
leakage observations. As our discussion in Sect. 3.2, these observations can be
regarded as the results of 6 different leakage functions with the same sources
{E0 ◦ Fk1(R0(1)), ..., E0 ◦ Fk1(R0(64))}. Considering the noise, the attacker can
also repeat the above measurements several times: all settings stay the same,
except for the random bits in L0. In our experiments, we repeat the above mea-
surements 10 times and get 6 trace sets, with 640 traces in each set.

Figure 5(a) presents the recovery with one manually picked leakage point.
Our analysis works well with all 6 sets, recovering over 90% of the intermediate
state bits correctly without any repetition. If the attacker repeats the measure-
ment one more time and increases the trace set size to 128, our ICA-based SCA
successfully recovers {E0◦Fk1(R0(1)), ..., E0◦Fk1(R0(64))}, up to ICA’s ambigu-
ity. On the other hand, if the attacker cannot build 6 trace sets, our analysis still
works with inadequate observations. With 4 or 5 observations, our ICA-based
SCA still learns about 80% of the intermediate state bits correctly.

Fig. 5. Reverse engineering the first round’s outputs of DES

As finding a valid leakage point for ICA might be difficult in practice, we also
present our ICA-based SCA with LDA in Fig. 5(b). Unlike the previous section,
LDA in this section simply takes the first component as our new observation1.

1 Here we simply use {1, ..., 64} as LDA’s labels.

My Traces Learn What You Did in the Dark 375

Similar to the previous sections, LDA only gives valid results after the number of
traces is much larger than the input range (�50). In Fig. 5(b), LDA gives better
recovery when the observations are not adequate (m = 5). As the first round’s
outputs are already recovered, the attacker can further perform other attacks to
recover the inner structure of Fk1. It is worth mentioning that this attack is not
specific to DES. Indeed, it works for any cipher with Feistel scheme, regardless
of the inner structure or the specific implementation.

Remarks. Due to the ambiguities of ICA, our recovery cannot learn the actual
intermediate states, only its ICA equivalent. This is not an issue in SCARE:
as most cryptographic components in SCARE are secret, most SCAREs only
learn an equivalent form of the original cipher [8]. The difference between the
recovered components and the original are usually cancelled by the following
recovery. Take our recovery above for instance, if the original intermediate state
is X, our ICA-based SCA returns X̂ = B(X) ⊕ c, where B is a bit permutation
and c is a constant. The following Sbox computation can be written as S′(X̂) =
S ◦B−1

(

X̂ ⊕ c
)

. Since the attacker knows nothing about S, X̂ and S′ might as
well be an valid form of the original cipher.

5 Discussions and Perspectives

5.1 Comparison with Other SCAREs

As a state recovery technique, our ICA-based SCA shares many inherent sim-
ilarities with previous SCARE techniques. To date, Collision attack [5,7,8] is
probably the most prevalent SCARE. Indeed, our attacker model shares many
features with Collision Attacks: both attacks recover the intermediate state with-
out key guesses. In theory, both attacks apply to any implementation; although in
practice, most experimental verifications come from sequential software imple-
mentations [8]. Nonetheless, most applications in Sect. 4 cannot use collision
attacks. The major difficulty comes from the “online profilling” step, where the
attacker has to find another computation of the exact same Sbox for profiling.
Furthermore, the attacker must know the Sboxes’ input in this profiling set, at
least up to its permutation equivalent. This assumption limits the profiling set
to the first round, as the Sboxes’ inputs of the second round are not accessible.
Despite the fact that the secret cipher might use different Sboxes (like DES),
studies also show that even the same Sbox computation can sometimes pro-
duce different leakages [5]. Since the attacker cannot build effective templates
in these cases, our ICA-based SCA gives more stable recovery. However, our
approach does have one major drawback: it only handles linear leakages. If the
leakages contain significant non-linear components, collision attacks may be the
only choice, thanks to the “online profilling” step (Table 2).

Apart from Collision Attacks, there are a few other SCAREs in the litera-
ture [16–18]. To our knowledge, these attacks are often restricted to certain cryp-
tographic structures [16] or certain implementations [17]. Besides, their recovery

376 S. Gao et al.

Table 2. Similarities and differences: collision attack v.s. ICA-based SCA

Collision attack ICA-based SCA

Target Intermediate states Intermediate states

Point of interest Approximate Approximate

Implementation Sequential & Software Sequential & Software

Profiling “Online profilling” None

Attacked round First/Last Any

Assumption on leakage None Linear

usually focuses on a single component, such as an Sbox [18]. These SCAREs
may present more realistic threats in certain applications, while our approach
recovers secret intermediate states in a more general way.

5.2 Future Improvements

In this section, we present some interesting extensions in this direction, which
may further expand the applications of our ICA-based SCA.

– Parallel hardware implementations: In Sect. 4, our experiments mainly
focus on unprotected software implementations. As hardware implementations
are getting more and more popular, whether our ICA-based SCA works for
hardware implementations is an interesting question. Theoretically, the com-
mon leakage model in hardware implementations—the Hamming Distance
(HD) model—is still a linear model. Suppose the attacker knows the last state
in the target register, the HD model alone should not hinder our ICA-based
SCA. However, the assumption of knowing the last state is not always rea-
sonable, especially for the SCARE applications. Another issue with hardware
implementations is they usually involves parallel operations, which signifi-
cantly reduces the Signal-to-Noise Ratio.

– More convenient observation collection: As stated in Sect. 4.2, the con-
stant in our XOR-constant method should not affect the secret signal. For
Feistel (or generalized Feistel) structures, we can choose part of the plaintext
as our XOR-constant and attack the second round (or the first a few rounds).
In the following rounds, since the target signal is affected by the chosen con-
stant, constructing multi-channel observation is still an open problem. In SPN
ciphers (like AES), with a few assumptions, our XOR-constant method can
be applied to the second round. Although our XOR-constant method does
ease the pain, in order to fully explore ICA’s potential, we still need more
convenient methods to construct multi-channel observations.

6 Conclusion

Despite their threat to various embedded devices, typical side channel attacks
usually involve a “guess-and-determine” procedure. Instead of directly learning

My Traces Learn What You Did in the Dark 377

any secrets from the leakage, SCA takes key guesses and verifies them with the
side channel leakages. In this paper, we propose an algorithm that directly learns
the secret intermediate states from the observed leakages. Specifically, we show
that under certain circumstances, the signal recovery problem can be regarded as
a Blind Source Separation problem, and solved by the well-studied Independent
Component Analysis. In order to find valid inputs for ICA, we propose several
methods to construct multi-channel observations from the side channel leakages.
In addition, to further exploit the specific features of circuit signals, we introduce
a customized EM-ICA algorithm. Experiments show our analysis works well in
certain ICA models, recovering most of the secret signal correctly with only a
few hundred traces. Furthermore, our ICA-based SCA brings new possibilities
to the current non-profiled SCA study, including attacking the middle round’s
encryption and reverse engineering with fewer restrictions. Considering ICA is a
more aggressive tool than most previous SCA techniques, we believe our ICA-
based SCA is a promising tool for the future SCA study.

Acknowledgements. We would like to thank Prof. Ming Tang and Dr. Carolyn
Whitnall for the inspiring discussions on this topic. We would also like to thank the
anonymous reviewers for providing valuable comments. This work is supported by the
National Basic Research Program of China (No. 2013CB338002) and National Natural
Science Foundation of China (No. 61272476, 61672509 and 61232009).

References

1. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

2. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

3. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7 17

4. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 25

5. Gérard, B., Standaert, F.X.: Unified and optimized linear collision attacks and their
application in a non-profiled setting: extended version. J. Cryptographic Eng. 3(1),
45–58 (2013)

6. Clavier, C.: An improved SCARE cryptanalysis against a secret A3/A8 GSM algo-
rithm. In: McDaniel, P., Gupta, S.K. (eds.) ICISS 2007. LNCS, vol. 4812, pp.
143–155. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77086-2 11

7. Clavier, C., Isorez, Q., Wurcker, A.: Complete SCARE of AES-like block ciphers
by chosen plaintext collision power analysis. In: Paul, G., Vaudenay, S. (eds.)
INDOCRYPT 2013. LNCS, vol. 8250, pp. 116–135. Springer, Heidelberg (2013).
doi:10.1007/978-3-319-03515-4 8

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-540-77086-2_11
http://dx.doi.org/10.1007/978-3-319-03515-4_8

378 S. Gao et al.

8. Rivain, M., Roche, T.: SCARE of secret ciphers with SPN structures. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 526–544. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 27

9. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applica-
tions. Neural Netw. 13, 411–430 (2000)

10. Belouchrani, A., Cardoso, J.F.: Maximum likelihood source separation by the
expectation-maximization technique: deterministic and stochastic implementation.
In: Proceedings of the NOLTA, pp. 49–53 (1995)

11. Wiki: Blind signal separation. https://en.wikipedia.org/wiki/Blind signal
separation

12. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component
analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

13. Cardoso, J.: High-order contrasts for independent component analysis. Neural
Comput. 11(1), 157–192 (1999)

14. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation
and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

15. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85053-3 26

16. Novak, R.: Side-channel attack on substitution blocks. In: Zhou, J., Yung, M., Han,
Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 307–318. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45203-4 24

17. Daudigny, R., Ledig, H., Muller, F., Valette, F.: SCARE of the DES. In: Ioannidis,
J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 393–406.
Springer, Heidelberg (2005). doi:10.1007/11496137 27

18. Guilley, S., Sauvage, L., Micolod, J., Réal, D., Valette, F.: Defeating any secret
cryptography with SCARE attacks. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LAT-
INCRYPT 2010. LNCS, vol. 6212, pp. 273–293. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14712-8 17

http://dx.doi.org/10.1007/978-3-642-42033-7_27
https://en.wikipedia.org/wiki/Blind_signal_separation
https://en.wikipedia.org/wiki/Blind_signal_separation
http://dx.doi.org/10.1007/978-3-540-85053-3_26
http://dx.doi.org/10.1007/978-3-540-45203-4_24
http://dx.doi.org/10.1007/11496137_27
http://dx.doi.org/10.1007/978-3-642-14712-8_17
http://dx.doi.org/10.1007/978-3-642-14712-8_17

Cryptographic Protocols

Actively Secure 1-out-of-N OT Extension
with Application to Private Set Intersection

Michele Orrù1(B), Emmanuela Orsini2, and Peter Scholl2

1 CNRS, ENS Paris, Paris, France
michele.orru@ens.fr

2 Department of Computer Science, University of Bristol, Bristol, UK
{Emmanuela.Orsini,Peter.Scholl}@bristol.ac.uk

Abstract. This paper describes a 1-out-of-N oblivious transfer (OT)
extension protocol with active security, which achieves very low overhead
on top of the passively secure protocol of Kolesnikov and Kumaresan
(Crypto 2011). Our protocol obtains active security using a consistency
check which requires only simple computation and has a communica-
tion overhead that is independent of the total number of OTs to be
produced. We prove its security in both the random oracle model and
the standard model, assuming a variant of correlation robustness. We
describe an implementation, which demonstrates our protocol only costs
around 5–30% more than the passively secure protocol.

Random 1-out-of-N OT is a key building block in recent, very efficient,
passively secure private set intersection (PSI) protocols. Our random OT
extension protocol has the interesting feature that it even works when
N is exponentially large in the security parameter, provided that the
sender only needs to obtain polynomially many outputs. We show that
this can be directly applied to improve the performance of PSI, allowing
the core private equality test and private set inclusion subprotocols to
be carried out using just a single OT each. This leads to a reduction in
communication of up to 3 times for the main component of PSI.

Keywords: Oblivious transfer · Private set intersection · Multi-party
computation

1 Introduction

Oblivious transfer (OT) is a fundamental primitive in cryptography, first intro-
duced by Rabin [Rab81] and now employed in a variety of protocols, ranging
from contract signing [EGL85] to special-purpose tasks such as private set inter-
section [PSZ14]. It plays a decisive role in protocols for secure two-party and
multi-party computation, including those based on Yao’s garbled circuits [Yao82]
and secret-sharing [NNOB12,LOS14,KOS16]. The most commonly studied form

Full version available at http://eprint.iacr.org/2016/933.pdf
M. Orrù–Work done while visiting University of Bristol.

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 381–396, 2017.
DOI: 10.1007/978-3-319-52153-4 22

http://eprint.iacr.org/2016/933.pdf

382 M. Orrù et al.

of oblivious transfer is 1-out-of-2 OT, where a sender has two messages (x0, x1)
as input, and a receiver chooses a bit b; the goal of the protocol is for the receiver
to learn xb, but no information on x1−b, whilst the sender learns nothing about
b. This can be generalized to 1-out-of-N OT and k-out-of-N OT, in which the
receiver learns k of the sender’s N messages.

Unfortunately, due to a result of Impagliazzo and Rudich [IR89], oblivi-
ous transfer is highly unlikely to be possible without the use of public-key
cryptography; consequently, even the most efficient oblivious transfer construc-
tions [PVW08,CO15] come with a relatively high cost.

OT Extensions. In 1996, Beaver [Bea96] first showed that it is possible to extend
OT starting with a small number (say, security parameter κ) of “base” OTs,
to create poly(κ) additional OTs using only symmetric primitives, with com-
putational security κ. This construction is very impractical as it requires the
evaluation of pseudorandom generators within Yao’s garbled circuits.

Later, in 2003, Ishai et al. [IKNP03] proposed a protocol for extending oblivi-
ous transfers: the passively secure version of this protocol (hereafter IKNP) only
requires black-box use of a correlation robust hash function, and is very efficient.
Concretely, an optimized version of IKNP for OT on random strings (described
in [ALSZ13,KK13]) requires sending κ bits and computing three hash function
evaluations per OT, after a one-time cost of κ base OTs, for computational secu-
rity κ. With a carefully optimized implementation, the dominant cost of this is
communication [ALSZ16].

Kolesnikov and Kumaresan [KK13] showed how to modify the IKNP proto-
col using Walsh-Hadamard error-correcting codes and obtain a passively secure
protocol for 1-out-of-N OT on random strings. The cost is only a small constant
factor more than the 1-out-of-2 IKNP for values of N up 256.

Several recent works have proposed increasingly efficient protocols for 1-out-
of-2 OT extension with active security [NNOB12,ALSZ15,KOS15]. The latter
work of Keller et al. [KOS15], which is proven secure in the random oracle model,
brings the cost of actively secure 1-out-of-2 OT to essentially the same as the
passive IKNP protocol by adding a simple consistency check.

1.1 Contributions

Actively Secure 1-out-of-N OT Extension. Our main contribution is a prac-
tical, actively secure 1-out-of-N OT extension protocol with very low overhead
on top of the passively secure protocol of Kolesnikov and Kumaresan [KK13].
For the case of random OT, where the sender’s strings are sampled at random,
our protocol (proven secure in the random oracle model) improves upon [KK13]
by allowing for much larger values of N with a suitable choice of binary linear
code. Our protocol even works when N is exponential in the security parameter,
provided that the sender is only required to learn polynomially many output
strings. The protocol requires only κ base OTs, and the extension phase has an
amortized communication cost of O(κ) bits per random OT.

Actively Secure 1-out-of-N OT Extension 383

At a high level, our protocol starts with the passively secure [KK13] protocol
and adds a simple consistency check to obtain active security (similar to [KOS15]
for 1-out-of-2 OT). However, there are several technical challenges to solve on
the way. In [KOS15], a check is used to verify that pairs of strings are of the
form (xi,xi + b) for a fixed correlation b (with addition modulo 2), when the
receiver only knows one string from each pair. In the [KK13] protocol, however,
we must ensure that strings are of the form xi + b � C(mi), where C encodes
a message mi using an error-correcting code and � denotes the component-
wise product of bit vectors. The check of [KOS15] cannot be applied to this
situation. We overcome this by adapting a check used previously in additively
homomorphic UC commitments [FJNT16], which requires that C is a linear
code with sufficiently large minimum distance.1 The number of codewords in
the binary linear code determines N in the 1-out-of-N OT, which gives a range
of choices of N depending on the choice of code.

To be able to handle exponentially large N , it may seem that we just need
to choose a suitable binary linear code of the right length. However, we need to
take care that the security reduction does not contain any loss in security that
scales with N : the reduction in [KK13] incurs a loss in O(N2), which would give
a meaningless security result in this case. To ensure this, we modify the 1-out-
of-N random OT functionality so that the sender can only obtain N ′ = poly(κ)
of the output messages, and show that the loss in the resulting reduction is in
O(N ′).

Security in the Standard Model. For random OT extension, it is not
known how to prove security without using a programmable random oracle as
in [ALSZ13,KOS15]. However, for the case of non-random 1-out-of-N OT, we
prove our protocol secure in the standard model, assuming a hash function that
satisfies a variant of correlation robustness on high min-entropy secrets. This
is a similar assumption to the protocol in [ALSZ15], but more general as we
require the assumption to hold for a range of different parameters. This gives
the first actively secure OT extension protocol needing only κ base OTs for
security parameter κ and is proven secure without random oracles, even in the
1-out-of-2 case.2

Faster Private Set Intersection. We show that random 1-out-of-N OT with
an exponentially large N can be directly applied to improve the efficiency of the
previous fastest (semi-honest) private set intersection protocols. OT-based PSI
protocols [PSZ14,PSSZ15] use random 1-out-of-N OT as a building block for a
private equality test protocol, where two parties learn whether their inputs are
1 We observe an interesting connection between our protocol and additively homomor-

phic UC commitment schemes [FJNT16,CDD+16]: our protocol essentially runs a
homomorphic commitment protocol and hashes the resulting commitments to obtain
random OTs. However, this mechanism seems very specific to the workings of these
commitment schemes and appears unlikely to lead to a generic transformation.

2 Note that our security reduction requires fixing the adversary’s random coins, so is
non-uniform. Obtaining a uniform reduction seems to need at least κ + s base OTs,
for statistical security parameter s.

384 M. Orrù et al.

equal (and nothing more). In that protocol, one random OT is used to perform
an equality test on log N -bit inputs. Since the random OT protocol of [KK13]
only works for values of N up to 256 (due to the use of small Walsh-Hadamard
codes) several OTs are XORed together to construct a protocol for comparing
large (e.g. up to 128 bit) messages. Using our protocol with N = 2k gives a very
simple private equality test on k-bit messages, for any k = poly(κ), using just
a single 1-out-of-N random OT. This can be generalized to perform private set
inclusion—where one party holds a single value and another party a set of m
values—at the cost of one random OT and sending m · s bits, where s is the
statistical security parameter. This results in a reduction in communication of
around 2–5 times (depending on the bit-length of the input) for this component
of the semi-honest PSI protocol in [PSSZ15].

Implementation. We have implemented and benchmarked our 1-out-of-N ran-
dom OT extension protocol and compared its performance with the passive pro-
tocol of [KK13]. Although our implementation is not heavily optimized (it occu-
pies around 800 lines of C in all), we show that the overhead of our consistency
check for achieving active security is very low: the actively secure protocol takes
only around 20% more time than the passive version, depending on parameters.

Towards Efficient Actively Secure PSI. Currently, the most efficient PSI
protocols are the OT-based ones mentioned above, but these are only secure
against a passive adversary. Since 1-out-of-N random OT is a key component
in these protocols, our work can be seen as a step towards constructing more
efficient PSI with active security. Actively secure PSI was recently studied by
Lambæk [Lam16], who showed the protocol of [PSSZ15] can be modified to
provide active security for one party, assuming the underlying OT protocol is
actively secure; our protocol therefore provides an instantiation of this proposal.

Recent Work and Open Problems. In a very recent, independent work,
Kolesnikov et al. [KKRT16] describe a batched oblivious PRF evaluation pro-
tocol with application to private set intersection. Although their protocol is
phrased in the language of oblivious PRFs rather than 1-out-of-N OT, it is very
similar to ours, only with passive security. Instead of using a traditional error-
correcting code, they show that a random oracle has the necessary properties
for passive security. In contrast, our protocol requires the linearity and erasure
decoding properties of the binary code to achieve active security. They describe
the same application to improved performance of PSI (with slightly better para-
meters than ours due to use of a random oracle) and give a thorough efficiency
evaluation and implementation of the resulting PSI protocol. We note that it is
still an interesting open problem to obtain a fully actively secure variant of the
PSI protocol in [PSSZ15] with low overhead.

Regarding OT extension in general, there are still some interesting unsolved
problems. Our 1-out-of-N OT extension cannot be used directly to improve
performance of 1-out-of-2 OT on short secrets (as was done for the passive
case in [KK13]), since the standard reduction from 1-out-of-N to 1-out-of-
2 OT [NP99] is only passively secure. Therefore, it is still an open problem

Actively Secure 1-out-of-N OT Extension 385

to construct a practical 1-out-of-2 OT extension on short strings with com-
munication sublinear in the security parameter. Also, the case of constructing
k-out-of-N OT with active security using OT extensions is still open; there is
an elegant passively secure protocol [SSR08], but it seems difficult to make this
actively secure.

2 Preliminaries

Notation. We denote by κ and s the computational, resp. statistical, security
parameters. We use bold lower case letters for vectors. Given a matrix A, we let
ai denote the i-th row of A, and aj denote the j-th column of A. When referring
to a vector v ∈ F

n, we write v[i], with 1 ≤ i ≤ n, to mean the i-th component
of v. We identify bit strings as vectors over the finite field F2, and use “+” and
“·” to mean addition and multiplication in this field. We use the notation a � b
to denote the component-wise product of vectors a,b ∈ F

n
2 . Given an integer N ,

we denote by [N] the set of integers {1, . . . , N}.

Error-Correcting Codes. Our protocol uses an [nC , kC , dC] binary linear code
C , where nC is the length, kC the dimension and dC the distance of C . So, C :
F

kC
2 → F

nC
2 is a linear map such that for every pair of messages m1,m2 ∈

F
kC
2 , the Hamming weight of the sum of the encodings of the messages satisfies

wtH(C(m1) + C(m2)) ≥ dC .

Oblivious Transfer Functionalities. We now recall some definitions of oblivi-
ous transfer. Following Even et al. [EGL85], 1-out-of-2 OT is a two-party protocol
between a sender PS, who inputs two messages v0, v1, and a receiver PR who
inputs a choice bit c and learns as output vc and nothing about v1−c, in such a
way that PS remains oblivious as what message was received by PR. Formally,
the general case of 1-out-of-N OT on κ-bit strings is defined as the functionality:

FN-OT((v0, . . . ,vN−1), c) = (⊥,vc),

where xi ∈ {0, 1}κ are the sender’s inputs and c ∈ {0, . . . , N−1} is the receiver’s
input. We denote by Fκ,m

N-OT the functionality that runs FN-OT m times on mes-
sages in {0, 1}κ. For example, in Fκ,m

2-OT, PS inputs (vi,0,vi,1) and PR inputs ci

for i ∈ [m], and PR receives the output vi,ci
.

Another important variant is the random OT functionality Fκ,m
N-ROT, in which

the sender provides no input, but receives random messages (v0, . . . ,vN−1) from
the functionality as output.

2.1 Passively Secure OT Extension: The KK Protocol

We now recall the passively secure KK protocol for 1-out-of-N OT extension
described in [KK13], which is a generalized version of the IKNP protocol for
1-out-of-2 OT [IKNP03].

Suppose the two parties wish to perform m sets of 1-out-of-N random OTs,
where N is a power of two. There is a sender PS with no input, and a receiver

386 M. Orrù et al.

PR, who inputs the choices w1, . . . , wm ∈ {0, . . . , N − 1}, which are represented
as vectors wi ∈ F

log N
2 . The two parties begin by performing nC base 1-out-of-2

OTs on random inputs, with the roles of sender and receiver reversed. So, PR

obtains nC pairs of random strings (rj
0, r

j
1) of length κ and PS obtains (bj , r

j
bj

),

where bj
$← {0, 1}, for j ∈ [nC].

Next, both parties locally extend their base OT outputs to length m using
a pseudorandom generator, where m is the final number of OTs desired. This
results in κ sets of 1-out-of-2 OTs on m-bit strings, which we represent as matri-
ces T0, T1 ∈ F

m×nC
2 , held by PR, whilst PS holds the vector b = (b1, . . . , bnC) ∈

F
nC
2 and the matrix

Tb :=
(

t1b1 . . . tnC
bnC

)

∈ F
m×nC
2 ,

where tj
0, t

j
1 are the columns of T0, T1, for j ∈ [nC].

At this point PR constructs a matrix C ∈ F
m×nC
2 , where each row ci is the

encoding C(wi) of the input wi ∈ F
kC
2 , where C is a binary code of length nC ,

dimension kC = log2 N and minimum distance dC ≥ κ. Then PR sends to PS the
matrix

U = T0 + T1 + C.

Note that for each column of U , all information on the receiver’s encoded input
is masked by the value tj

1−bj
, which is unknown to PS.

After this step PS defines an m×nC matrix Q with columns qj = bj ·uj+tj
bj

=

bj ·cj +tj
0 (where cj are the columns of C). Notice that the rows of Q are given by

qi = ci � b + ti,

where ti are the rows of T0. Here, PR holds ti and PS holds (qi,b), for i ∈ [m].
The key observation to turn these values into OTs is that for each of the possible
receiver choices w ∈ F

kC
2 , PS can compute the value qi + C(w) � b. If w = wi

then this is equal to ti so is known to PR. Otherwise, for any w 	= wi, PR must
guess κ bits of PS’s secret b to be able to compute qi + C(w) � b, since the
minimum distance of C guarantees that C(w) and C(wi) are at least Hamming
distance κ apart.

Therefore, the parties can convert these values to random 1-out-of-N OTs
by simply hashing their outputs with a random oracle, H. PS outputs the values
vw,i = H(i,qi + C(w) � b), for all w ∈ F

kC
2 , and PR outputs vwi,i = H(i, ti).

Instantiating the Code. As noticed in [KK13], if we instantiate the binary linear
code C with the [κ, 1, κ] binary repetition code, we obtain the 1-out-of-2 IKNP
protocol [IKNP03]. In this case, each row of the matrix C constructed by the
receiver is either 0κ or 1κ, depending on the receiver’s choice bits. If instead
C is chosen to be a Walsh-Hadamard code as in [KK13], then the result is a
1-out-of-2kC OT. This needs a code length of N = 2kC with security parameter

Actively Secure 1-out-of-N OT Extension 387

N/2; this turns out to be more efficient than constructing 1-out-of-N OT from
1-out-of-2 OT for values of N ≤ 256 with 128-bit security.

Security. The KK protocol (and hence IKNP) is actively secure against a corrupt
sender, since after the base OTs, there is no opportunity for PS to cheat. How-
ever, it only provides passive security against a corrupt receiver, since PR may
incorrect compute the encodings of their input in the matrix U . It was explained
in [IKNP03,ALSZ15] that if PR cheats in this way, and also learns (via a side-
channel, for instance) the sender’s outputs in just κ of the random OTs then PR

can compute the sender’s secret b, and thus learn all of the sender’s outputs in
every remaining OT.

3 Actively Secure Random 1-out-of-N OT Extension

In this section we present our actively secure OT extension protocol in the ran-
dom oracle model. Since we want to construct 1-out-of-N random OT when N
may be exponential in the security parameter, our protocol implements a modi-
fied random OT functionality FN-ROT+ (Fig. 1), which allows the sender to query
the functionality to obtain their random OT outputs one at a time, so that all
N need not be produced.

Fig. 1. Ideal functionality FN-ROT+ for m 1-out-of-(≤N) random OTs on κ-bit strings
between a sender PS and receiver PR

The high-level idea of our protocol (Fig. 2) is that, to deal with a malicious
receiver in the KK protocol, we add a consistency check that ensures PR inputs
codewords as rows of the matrix C when sending the matrix U in step 3. If the
check passes then the protocol carries on and the correlated OTs are hashed to
obtain random OTs. Otherwise, the protocol aborts.

The intuition behind security is that if not all the PR’s inputs ci are code-
words then to pass the check, the errors must ‘cancel out’ when taking the
random linear combinations. However, the x

(�)
i values used in the consistency

check are unknown when PR chooses ci so this can only happen with negligible
probability; since each x

(�)
i ∈ {0, 1}, there is a 1/2 probability that ci is not

388 M. Orrù et al.

Fig. 2. An actively secure protocol for Fκ,m
N-ROT+, extending Fκ,nC

2-OT .

Actively Secure 1-out-of-N OT Extension 389

included in the linear combination, so s sets of checks are needed to ensure a
negligible cheating probability.

Compared with the consistency check of [KOS15] (for the 1-out-of-2 case),
our check is simpler as we only require XOR operations instead of multiplications
in the finite field F2κ . However, being over F2 means that we must repeat the
check s times, whereas [KOS15] only needs one check; in our case, working in
F2κ would not allow the linear encoding relation to be verified, which is why we
use F2.

We observe that our protocol, minus the final hashing step, is essentially
the same as the additively homomorphic commitment protocol from [FJNT16]
(which inspired our consistency check). Although our security proof requires
quite some extra work to implement OT instead of commitments, it is interesting
to see how the same construction can lead to two very different applications with
just a small modification. More recently, another scheme [CDD+16] improved
upon [FJNT16] by using a linear-time computable consistency check based on a
special class of universal hash functions, and constructing a linear-time encodable
error-correcting code. These changes can also be applied to our protocol, but it is
not clear how efficient these would be in practice, and since we aim for practical
(rather than asymptotic) efficiency we do not present this here.

Theorem 1. Assuming that H is a random oracle and PRG a pseudo-random
generator, the protocol N -ROTκ,m in Fig. 2 securely implements Fκ,m

N-ROT+
(Fig. 1) in the F2-OT-hybrid model with computational security parameter κ and
statistical security parameter s against a static malicious adversary.

Proof of this result can be found in the full version of this work.
The case of a corrupt sender is straightforward and reduces to the security of

PRG, similar to previous works [ALSZ16,KOS15]. For a corrupt receiver, the first
main challenge is for the simulator to extract the receiver’s inputs, wi, to send
to the functionality FN-ROT+. This is done by using the values sent during the
check to identify a set of positions where the receiver has attempted to ‘guess’
some bits of the sender’s secret, b. Removing these positions from the ci values
used by PR leaves behind an incomplete codeword, which can be erasure decoded
to recover the message.

After decoding the inputs, the simulator must then respond to random oracle
queries made by the environment. We do this in an optimistic manner, meaning,
we do not abort if conflicting queries are made, but answer at random in that
case; the environment may not always notice this inaccurate behaviour if the
sender did not learn all N outputs from the OTs. This allows us to obtain a
security bound that depends on N ′, the maximum number of outputs learnt by
PS in any OT, rather than N , which may be exponential in κ.

Instantiating the Code. It remains to instantiate the binary linear code, C ,
to obtain a 1-out-of-N random OT protocol for a desired power of two choice
of N . As well as the repetition code (for 1-out-of-2 OT), we suggest a more
efficient form of the Walsh-Hadamard code for N ≤ 512; a binary Golay code

390 M. Orrù et al.

Table 1. Parameters for various choices of code

Code N Length Distance/Security

Repetition [IKNP03] 2 128 128

Walsh-Hadamard [KK13] ≤256 256 128

Punctured Walsh-Hadamard ≤512 256 128

Binary Golay 2048 384 128

BCH-511 276 511 171

BCH-1023 2443 1023 128

for N = 2048; and BCH codes for values of N that are exponential in the
security parameter. The parameters of these codes are presented in Table 1; note
that the code length determines exactly the amount of communication required
per extended OT. We obtained the generator matrices for all of these codes using
Sage3. For further details of the constructions, see the full version.

4 Security in the Standard Model

In this section we consider the case of non-random 1-out-of-N OT. In this proto-
col (Fig. 3), we remove the random oracle assumption and prove security in the
standard model. Similarly to [ALSZ15], we need a stronger version of correlation
robustness than that given in [IKNP03], and require that the secret correlation
b comes from a distribution of min-entropy k and in addition is multiplied by a
codeword in the binary linear code C .

Fig. 3. An implementation of Fκ,m
N-OT extending Fκ,nC

2-OT in the Standard Model.

3 http://www.sagemath.org.

http://www.sagemath.org

Actively Secure 1-out-of-N OT Extension 391

Definition 1 (k-min-entropy code correlation robustness). Let χ be a
distribution on F

nC
2 with min-entropy k and C be an [nC , kC , dC] binary linear

code. An efficiently computable function H : F
nC
2 → F

κ
2 is said to be k-min-

entropy C -correlation robust if it holds that:

{ti,H(ti + c � b)}i∈[m],c∈C
c≡ Um·nC+(m+|C |)·κ,

where b $← χ and t1, . . . , tm ∈ F
nC
2 are independent and uniformly distributed.

Similarly, H(·) is said to be k-min-entropy strongly C -correlation robust if
it holds that:

{H(ti + c � b)}i∈[m],c∈C
c≡ U (m+|C |)·κ,

where b $← χ, for any distribution of the {ti}i∈[m].

Notice that in the values used to mask PS’s inputs, it is the receiver that
effectively chooses the tj ’s, and they can not only choose these values non-
uniformly, but even maliciously. This is the reason why we need a strong code-
correlation robust hash function.

We claim that if H is a k-min-entropy strongly correlation robust function
for all nC − s ≤ k ≤ nC , then the protocol is secure in the standard model. For
further discussion on parameter choices regarding this assumption, see the full
version.

Theorem 2. Assuming that H is k-min-entropy strongly code-correlation robust
for all k ∈ {nC −s, . . . , nC}, and PRG is a pseudo-random generator, the protocol
N -OTκ,m in Fig. 3 securely implements Fκ,m

N-OT in the F2-OT-hybrid model against
a static malicious adversary.

Proof of this result can be found in the full version.

5 Application to Private Set Intersection

We now show how to apply the 1-out-of-N random OT extension protocol to
increase the efficiency and obtain stronger security guarantees in existing private
set intersection (PSI) protocols. We describe a simpler and more efficient private
set inclusion protocol with active security, which is used as a key component of
the most efficient passively secure PSI protocols.

5.1 Private Set Inclusion

A core building block of OT-based PSI protocols is a private set inclusion proto-
col, where party PA has input a ∈ {0, 1}k, party PB has input a set B ⊂ {0, 1}k

and the parties wish to learn whether a ∈ B. Note that the special case of |B| = 1
is a private equality test.

The previous most efficient protocol [PSSZ15, Sect. 6.1] requires t = k/8
executions of 1-out-of-256 random OT, and uses the KK protocol with length

392 M. Orrù et al.

256 Walsh-Hadamard codes. However, with the observation that our random OT
protocol can be used for exponentially large values of N , we can in fact choose
N = 2k and perform a private set inclusion with just a single 1-out-of-N random
OT. This is possible because the OT sender is only required to learn one of the
random OT outputs in order to run the set inclusion protocol.

The protocol, shown in Fig. 4, is very simple: PA inputs their value a as the
receiver’s choice in a 1-out-of-N random OT, and PB inputs each of their values
b ∈ B to obtain |B| of the sender’s random outputs. Thus, PA learns a random
value ra and PB learns a set of random values R = {rb}b∈B . PB randomly
permutes R and sends this to PA, who checks whether ra ∈ R to determine the
result (and can send this to PB if desired).

Since PA only learns one of the random OT outputs initially, all other possible
elements of the set R are uniformly random so do not leak any information on
PB ’s input. Note that because our 1-out-of-N OT protocol is actively secure, we
actually obtain an actively secure private set inclusion protocol (although this
does not seem to suffice to make the PSI protocol of [PSSZ15] actively secure).

Fig. 4. Private set inclusion protocol

The complete security proof and functionality that we implement is given in
the full version.

Efficiency. The cost of the above protocol is precisely the cost of 1-out-of-N
random OT, plus sending s · |B| bits. If the protocol is run in a large batch

Table 2. Comparing the communication cost of private set inclusion subprotocols on
k-bit strings and size |B| sets with statistical security s.

k Cost with BCH (bit) Cost with W-H (bit)

32 467 + s · |B| 1024 + s · |B|
64 499 + s · |B| 2048 + s · |B|
128 708 + s · |B| 4096 + s · |B|

Actively Secure 1-out-of-N OT Extension 393

using Fκ,m
N-ROT+ for large m (which is possible for the application to private set

intersection) then this gives an amortized cost of nC + s · |B| bits per exe-
cution, where nC is the length of the code. The costs for this when instan-
tiated with BCH codes (as described previously) are illustrated for various
choices of k in Table 2, and compared with the Walsh-Hadamard code used
in [PSSZ15]. In practice, the set size used in the set inclusion subprotocol for
PSI in [PSSZ15] is around |B| = 20. For a large item length of k = 128 bits, and
s = 40-bit statistical security, this gives a 3.3× reduction in communication for
the dominant component of PSI.

6 Implementation

We now evaluate the complexity of our random OT protocol, and compare its
performance to a passively secure variant by analysing implementation results.

Complexity Analysis. The main overhead introduced by our protocol to produce
m OTs, compared with the passively secure KK protocol, is the computation of
m · s XORs (on nC -bit strings) by each party, and the communication of s · m
random bits from the sender to receiver, followed by s ·(nC +kC) bits in the other
direction, in the consistency check. However, the s · m bits can be reduced to κ
by having PS send only a single random seed for these values, and expanding
the seed using a PRG.

Outside of the consistency check, the main protocol costs are the encodings,
hash function evaluations and the nC bits that are sent by PR for each extended
OT. Of course, the sender’s computational cost also highly depends on the num-
ber of random OT outputs that are desired.

Implementation. We evaluated our protocol on two machines running over a
1 Gbps local network, and also simulated a WAN environment with 50 Mbps
bandwidth and 100 ms round-trip latency to model a real-life scenario over the
Internet. All benchmarks have been run on modern Core i7 machines at 2–3 GHz.

Our implementation is in plain C, and uses the SimpleOT [CO15] oblivious
transfer software4 to run the base OTs, and blake2 [ANWOW13] for hashing,
as this provides fast hashing on short inputs. Otherwise, it does not rely on any
other software and is available in the public domain. The executable occupies
280K.

The core protocol covers roughly 200 lines of C code. It mostly runs on single
thread, except we use OpenMP to parallelize the encodings and hash function
evaluations, which are the computational bottlenecks of the protocol. We fix the
computational security parameter κ = 128 and statistical security parameter
s = 40. We used Intel AVX instructions to efficiently implement vector addition,
componentwise product, and matrix transposition. Encoding of the binary linear
code is implemented with multiplication by the generator matrix.

4 http://users-cs.au.dk/orlandi/simpleOT/.

http://users-cs.au.dk/orlandi/simpleOT/

394 M. Orrù et al.

Fig. 5. Benchmarking different 1-out-of-N random OTs in LAN environment; average
time for 20 runs.

Table 3. Data transmitted per OT and runtimes in seconds for 223 OTs (LAN) or 220

OTs (WAN), for several choices of N

Setting N = 2 256 512 2048 276

Comms. (bit) 128 256 256 384 512

LAN, passive 4.1812 8.0260 8.1193 11.6642 23.4738

LAN, active 5.6191 9.5693 10.4379 13.8065 25.4001

WAN, passive 27.3982 54.2414 54.274 81.0548 108.89

WAN, active 27.882 54.7445 54.8189 81.6644 109.44

Our results for 1-out-of-N random OT for the small sized codes (repetition,
Walsh-Hadamard, punctured Walsh-Hadamard and binary Golay) in the LAN
setting can be seen in Fig. 5, for varying numbers of OTs. Table 3 compares the
performance of the active and passively secure variants in both LAN and WAN
settings, including the BCH-511 code, which could be used for the private set
intersection application. We see that the overhead of active security is around 20–
30% of the passive protocol over a LAN, and less than 5 % in the WAN setting.
This fits with the fact that the main cost of the check is computation, which is
less significant in a WAN. The table also gives the amount of communication
required for each choice of N , which shows that this reflects the main total
cost of the protocol. Encoding of larger BCH codes (for N = 276) does have a
noticeable effect in a LAN, though: here, BCH runtimes are 3 times higher than
Walsh-Hadamard, but only have twice the communication cost. We expect that
this could be improved by a more sophisticated encoding algorithm, rather than
naive multiplication by the generator matrix.

Actively Secure 1-out-of-N OT Extension 395

Acknowledgements. We thank Ranjit Kumaresan for providing us with an extended
version of [KK13].

The work in this paper has been partially supported by the ERC via Advanced
Grant ERC-2010-AdG-267188-CRIPTO and the Defense Advanced Research Projects
Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific)
under contract No. N66001-15-C-4070.

References

[ALSZ13] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient obliv-
ious transfer and extensions for faster secure computation. In: ACM
Conference on Computer and Communications Security, CCS 2013, pp.
535–548 (2013)

[ALSZ15] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient
oblivious transfer extensions with security for malicious adversaries. In:
Proceedings of Advances in Cryptology - EUROCRYPT 2015, Sofia,
Bulgaria, Part I, pp. 673–701, 26–30 April 2015

[ALSZ16] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient obliv-
ious transfer extensions. J. Cryptol. 1–54 (2016)

[ANWOW13] Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.:
BLAKE2: simpler, smaller, fast as MD5. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
119–135. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38980-1 8

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of pri-
vate computations. In: Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 479–488. ACM (1996)

[CDD+16] Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1,
linear time and additively homomorphic UC commitments. In: Proceed-
ings of Advances in Cryptology - CRYPTO 2016, Santa Barbara, CA,
USA, Part III, pp. 179–207, 14–18 August 2016

[CO15] Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In:
Progress in Cryptology - LATINCRYPT 2015, Guadalajara, Mexico, pp.
40–58, 23–26 August 2015

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[FJNT16] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the
complexity of additively homomorphic UC commitments. In: Proceed-
ings of Theory of Cryptography - TCC 2016-A, Tel Aviv, Israel, 10–13
January 2016, Part I, pp. 542–565 (2016)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 9

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pp. 44–61. ACM (1989)

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transfer-
ring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 4

http://dx.doi.org/10.1007/978-3-642-38980-1_8
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-642-40084-1_4
http://dx.doi.org/10.1007/978-3-642-40084-1_4

396 M. Orrù et al.

[KKRT16] Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: ACM
Conference on Computer and Communications Security, CCS (2016)

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with opti-
mal overhead. In: Advances in Cryptology - CRYPTO Santa Barbara,
CA, USA, pp. 724–741, 16–20 August 2015

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: ACM Conference on
Computer and Communications Security, Vienna, Austria, pp. 830–842
(2016)

[Lam16] Lambæk, M.: Breaking and fixing private set intersection protocols.
Cryptology ePrint Archive, Report 2016/665 (2016)

[LOS14] Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party
computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44381-1 28

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new app-
roach to practical active-secure two-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 40

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, Atlanta, GA, USA, pp. 245–254 (1999)

[PSSZ15] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set
intersection using permutation-based hashing. In: 24th USENIX Secu-
rity Symposium, Washington, D.C., USA, 12–14 August 2015, pp. 515–
530 (2015)

[PSZ14] Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection
based on OT extension. In: 23rd USENIX Security Symposium, San
Diego, CA, pp. 797–812, August 2014

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85174-5 31

[Rab81] Rabin, M.O.: How to exchange secrets with oblivious transfer (1981)
[SSR08] Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for gen-

eralized oblivious transfer. In: 9th International Conference on Distrib-
uted Computing and Networking, ICDCN (2008)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract).
In: 23rd Annual Symposium on Foundations of Computer Science, pp.
160–164 (1982)

http://dx.doi.org/10.1007/978-3-662-44381-1_28
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-540-85174-5_31

Low-Leakage Secure Search for Boolean
Expressions

Fernando Krell1, Gabriela Ciocarlie2, Ashish Gehani2,
and Mariana Raykova3(B)

1 Dreamlab Technologies, Bern, Switzerland
fernando.krell@dreamlab.net

2 SRI International, Menlo Park, USA
{gabriela,gehani}@csl.sri.com

3 Yale University, New Haven, USA
mariana.raykova@yale.edu

Abstract. Schemes for encrypted search face inherent trade-offs
between efficiency and privacy guarantees. Whereas search in plaintext
can leverage efficient structures to achieve sublinear query time in the
data size, similar performance is harder to achieve for secure search.
Oblivious RAM (ORAM) techniques can provide the desired efficiency
for simple look-ups, but do not address the needs of complex search
protocols. Several recent works achieve efficiency at the price of reveal-
ing the access pattern. We propose a new encrypted search scheme that
reduces the leakage of current Boolean queries solutions, while introduc-
ing limited overhead and preserving the sublinear efficiency properties
for the search protocol in the semi-honest model. Our scheme achieves
a privacy-efficiency trade-off that lies between highly optimized systems
such as Blind Seer [18] and OXT-OSPIR [15], which exhibit significant
access pattern leakage, and the secure search solution of Gentry et al. [8],
which has no leakage, but a much higher efficiency cost.

Our solution is based on a hybrid approach, which integrates ORAM
techniques with the efficient search index structure of the Blind Seer sys-
tem. We reduce the leakage to the server to only the number of nodes
visited in the search tree during query execution. Queries that execute in
sublinear time in Blind Seer execute also in sublinear time in our scheme.

To enable delegated queries, we develop a new protocol for oblivious
PRF sum evaluation and perform secure Boolean queries in a Bloom
filter that reveals only the match result. We also enable oblivious-search
token generation to hide the specifics of the delegated query from the
data owner issuing the search tokens.

We evaluated our system by implementing a prototype and testing it
on a 100,000-record database. Our results indicate that the index can
be traversed at a rate of a few seconds per matching record for both
conjunction and small Disjunctive Normal Form queries.

F. Krell—Work described here was carried out while this author was at SRI Inter-
national and partially at Columbia University
M. Raykova—Work described here was mainly carried out while this author was at
SRI International.

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 397–413, 2017.
DOI: 10.1007/978-3-319-52153-4 23

398 F. Krell et al.

Keywords: Private search · Boolean queries · Bloom filters · ORAM

1 Introduction

The ability to search over encrypted data provides critical capabilities for data-
base systems that need to guarantee privacy protection for data and queries;
examples include information sharing between law enforcement agencies; elec-
tronic discovery in private databases such as log files, bank records, during law-
suits, and private queries to census data; police investigations using data from
automated license plate readers [4,18]. Such functionality enables data outsourc-
ing, where a client stores its data on a remote server and later sends queries that
the server executes without learning them. An extension to this functionality is
the setting of delegated search, where the data owner can generate query tokens
for third parties that enable them to execute only the authorized query requests
with the storage server without learning any other information about the out-
sourced data. An immediate application of this extension is the ability to audit
cloud applications and allow auditors only issue to authorized queries.

However, there are two main relevant questions of privacy and efficiency for
encrypted search schemes, whose answers are also related. The privacy question
considers how much the storage server learns about the queries it executes. While
encryption techniques can help hide the content stored on the server, they do
not protect the client’s access pattern which becomes a privacy leakage to the
server. A recent work [14] has demonstrated that this leakage can be substantial
even in the simplest search scenario of exact match such as keyword search.
For more complex types of queries, such as Boolean queries, this leakage can
have even more serious security implications. The second question is related to
efficiency. Search algorithms in plaintext usually have sublinear efficiency in the
size of the database, and this efficiency guarantee is crucial for the usability of
an algorithm. The sublinear efficiency of a search algorithm implies that it does
not access all data. At the same time, the ability of the server to know what
data has been accessed translates into access pattern leakage. Thus, an inherent
trade-off between the privacy and efficiency questions for secure search emerges.

There have been several approaches to secure search in previous works that
achieve various trade-offs between the efficiency and the privacy guarantees of their
schemes. Searchable encryption [3,6,22] provides the capability to encrypt data
items such as keywords, issue search tokens for particular items using the private
parameters for the scheme, and support matching functionality to check whether a
ciphertext contains the same item as a search token. Using this primitive, one can
implement a search protocol with sublinear efficiency, which completely reveals
the access pattern into the database for each query. Private information retrieval
(PIR) [5] and symmetric PIR [9] techniques allow a client to retrieve a record stored
on a server without revealing what record is being retrieved or allowing the client
to learn anything more about the data. Such techniques can be employed for secure
search, but they require computation proportional to the size of the database.

Low-Leakage Secure Search for Boolean Expressions 399

While earlier work on secure search considered mostly single keyword search
queries [3,6,17,19,21,22], recent approaches address more complex queries over
databases, such as Boolean and range queries, and model queries over data-
bases of records, which are described by several attributes and a main payload
[4,7,13,15,18]1. These last solutions provide surprisingly good efficiency at the
price of access pattern leakage. Unfortunately, the access pattern is not uniquely
defined. In fact, each of these solutions reveals an access pattern that is specific
to the structure of the scheme’s data storage and goes beyond the records that
match each query. Hence, it is difficult to analyze this leakage and to precisely
define what is protected, making it impossible to compare the leakage of different
schemes that employ different underlying encrypted search structures.

A different line of work [20] proposes a solution for encrypted search that
can handle SQL queries. However, it considers a different adversarial model that
aims to protect the data against curious database administrators, but assumes
fully trusted proxy that encrypts the queries. This model does not match the
guarantees that we want to achieve. This solution also reveals the access patterns
for the query terms.

A completely different approach for the secure search problem is to employ
secure computation techniques to implement the search functionality. While
generic secure computation techniques require computation time at least lin-
ear in the size of its inputs, the works of Gordon et al. [12] and Afshar et al. [1]
manage to achieve sublinear (amortized) time for sublinear RAM computations
in the semi-honest and malicious setting respectively. These approaches leverage
the random access machine computation (RAM) model together with a spe-
cial structure for memory storage called oblivious RAM (ORAM) [11], which
provides access patterns hiding with only polylogarithmic overhead for memory
accesses. This approach was further pursued in the work of Gentry et al. [8] focus-
ing on the database query functionality and employing somewhat-homomorphic
encryption to implement the small secure computation steps. This work handles
keyword database queries and limited conjunction queries.

Our work is motivated by the lack of a good grasp on analyzing leakage in
the Boolean search protocols mentioned earlier. We propose a construction that
adopts the approach of combining ORAM together with small secure computa-
tion steps. We focus on functionality for Boolean search queries and we develop
tailored solutions for that. Our solution for secure search enables the same func-
tionality for Boolean queries as Blind Seer [7,18], but it diminishes the access
pattern leakage, while preserving the sublinear efficiency overhead for queries
that are executed in sublinear time in these protocols. As expected, when com-
pared with these solutions that reveal complete access patterns, the concrete
efficiency overhead for our protocol increases. Although the direct comparison
with the work of Gentry et al. [8] is hard, since their work implements much
simpler queries compared to our protocols, our protocols achieve a much better
efficiency for comparable functionality.

1 Interesting is the single-keyword range-query solution of [13] which provide a tunable
privacy-efficiency trade-off.

400 F. Krell et al.

1.1 Setting

The setting we are interested in is called Outsourced Symmetric Private Infor-
mation Retrieval (OSPIR) [15]. It captures the scenario in which the data owner
outsources the data to a server, and gives search capabilities to clients. Such a
scheme can be defined by two phases OSPIRSetup and OSPIRSearch.

In the OSPIRSetup phase, the data owner (Owner) on input DB, does some
preliminary computation on the data and produces an encrypted database EDB
and access parameters params. EDB is then given to the server (Server). In the
OSPIRSearch phase, a client (Client) inputs a query q, Owner inputs params, and
Server inputs EDB. After protocol execution, Client obtains database records
satisfying its query. We provide a formal definition next, allowing a tunable false
positive rate on the records returned to Client.

Definition 1. We define an OSPIR Scheme as a pair of interactive algorithms

– (params,EDB)←OSPIRSetup(1λ,DB, fp). Owner inputs database DB = {(Di,
Wi)}D

i=1, and gets back params. Server gets EDB.
– (records)←OSPIRSearch(params,EDB,q). Owner inputs params, Server inputs

EDB and Client inputs q. Client gets records.

such that for all λ and for all DB, q, if (params,EDB)←OSPIRSetup(1λ,
DB, fp), and (records)←OSPIRSearch(params,EDB,q), then DBfp(q) = records,
where DBfp(q) denotes the records of DB satisfying the query q plus each DB
record with probability fp.

The OSPIR scheme described in this work assumes a semi-honest behavior
of the participants. That is, we assume that every participant honestly follows
the description of the protocol, and we define and prove security in such setting.

1.2 Related Work

As mentioned earlier, the problem of privately searching a database can be solved
by generic secure computation schemes [10,23]. However, these generic protocols
require a computation time that is at least linear in the size of the participant’s
inputs. A scenario closer to out setting is the one of PIR and SPIR protocols,
where a client obliviously selects an item from the server’s database. Although
PIR-like protocols provide sublinear communication, they do require linear-time
computation. Ad hoc solutions [8,12] provide sublinear computation time for
look-ups and single keyword search in the private DB setting.

A more practical approach is taken in the searchable encryption schemes
[3,4,6,22] and OSPIR protocols [7,15,18]. These schemes achieve an efficiency
close to plaintext solutions, but at the cost of revealing access patterns to the
database records and the underlying search structure. The OSPIR solution of [13]
provides a tunable efficiency-privacy trade-off solution. They achieve efficiency
comparable to [7,15,18] with virtually no access pattern leakage for a tunable
number of queries. After this threshold is reached, the index need to be rebuild
to avoid incurring access pattern leakage.

Low-Leakage Secure Search for Boolean Expressions 401

Among the works just mentioned, the HE-over-ORAM approach [8], and the
Blind Seer and OXT-OSPIR [15] are of particular interest. First, these schemes
focus on the delegated query scenario. Secondly, while HE-over-ORAM aims for
a secure asymptotically sublinear solution for single keyword search, the Blind
Seer and OXT-OSPIR systems focus on practicality: they both support a rich
set of queries and their efficiency is close to the plaintext database case. Our goal
is to build a system that lies in-between these systems in terms of the privacy
vs. efficiency trade-off. Hence, we borrow techniques from all these solutions.

OSPIR-OXT and Blind Seer. The first solution for the OSPIR setting was
proposed by Jarecki et al. [15] and Pappas et al. [18]. Although they solve the
same problem, they provide very different approaches. OSPIR-OXT [15] is an
extension of the OXT searchable encryption scheme [4]. This solution allows for
Boolean queries in Searchable Normal Form (t1 ∧ φ(t2, ..., tn)), and runs in time
proportional to the number of records satisfying the term t1. The solution is
based on an inverted index approach, which is used to search information about
the leading term t1. This information is used then to search for the records
satisfying the sub-queries t1 ∧ ti. A completely different approach was taken in
Blind Seer [7,18]. Instead of using an inverted index, Blind Seer builds a Bloom
filter tree on the searchable keywords of the database. Each leaf of the tree is
associated with a record in the database, and each internal node corresponds to
a masked Bloom filter containing the searchable keywords of the records in its
subtree. Hence, a Boolean formula is answered by following root-to-leaves paths,
where the nodes’ Bloom filter satisfy the query. To evaluate each node, the server
and the client engage in a secure two-party computation protocol (implemented
using Yao’s protocol [23]), where the server inputs masked Bloom filter bits,
and the client inputs the mask. The big advantage of OSPIR-OXT over Blind
Seer is efficiency. This is due to the interactive nature of Blind Seer. In terms of
leakage, these systems are incomparable since their underlying data structures
are completely different. Blind Seer, though, has the advantage that the search
procedure does not reveal the partial evaluation results. In addition, Blind Seer
can answer any Boolean query in sublinear time.

HE-over-ORAM Database Search. Gentry et al. [8] recently proposed a
private DB system with no leakage based on ORAM and Somewhat Homomor-
phic Encryption Scheme. ORAM is used to protect the client’s access patterns
and the owner’s data from the server. To protect the database information from
the client, data is also encrypted using a variation of a Somewhat Homomor-
phic Encryption Scheme that enables Equal-to-Zero and Comparison operations.
These operations enable the client to blindly perform ORAM operations until
the requested value is found. Although this work shows the feasibility of the
HE-over-ORAM approach, it has significant limitations in efficiency and func-
tionality. In terms of efficiency, their experimental results shows that it requires
30 min to execute a single keyword query on a 222 record database. In terms
of functionality, the system only allows single keyword queries, and conjunction
may be enabled by a trivial addition of the keywords into the database index.

402 F. Krell et al.

1.3 Approach

Our approach is to use the Bloom filter Search Tree of Blind Seer as our search
structure, while storing the encrypted data and its index in ORAM structures
at the server. We give the ORAM access parameters to the client, as done in the
HE-over-ORAM scheme. To avoid the case where the client learns more infor-
mation than necessary, the actual data held by the ORAM should be encrypted
in a special way. While this is done using Somewhat Homomorphic Encryp-
tion by Gentry et al. [8], we provide a new encoding scheme that allows parties
to securely evaluate an index node, revealing to the client only the necessary
information to continue the search procedure. We accomplish this with a novel
protocol for conjunctive query evaluation on specially encrypted Bloom filters.
This protocol is then extended to handle queries in Disjunctive Normal Form.

The use of ORAM eliminates all important leakage to the index server of
Blind Seer [18]. ORAM protocols, however, do leak the number of queries per-
formed by the client; hence, our solution reveals the amount of work done by
the client (which is unavoidable if we require sublinear time). In particular, the
server can infer the number of records retrieved by the client. It also learns the
relation between the amount of work in the index and the amount of records
retrieved. Nevertheless, the server is unable to link the work done in the index
and the specific record retrieved.

2 Preliminaries

Bloom Filter. A Bloom filter [2] is a data structure that allows for set mem-
bership queries. The structure is composed by a bit array B[1..n] and a set of
hash functions H = {H(i) : {0, 1}∗ → [n]}h

i=1. An element is inserted by turn-
ing on the bits at the positions indicated by the hash values of the element.
Hence, if an element e is in the filter, then B[H(i)(e)] = 1 for all i ∈ {1..h}. A
Bloom filter is parametrized by a false positive rate since elements not in the set
may hash to positions that are all set in B. Given a false positive probability fp
and the number of elements N in the filter the optimal length n of B and the
optimal number of hash functions h to use can be approximately computed as
n = � N ln fp

ln 1
2ln 2

�, h = �ln 2 n
N � ≈ log2(1/fp).

Bloom Filter Search Tree. A Bloom Filter Search Tree (BFT) is an index
for a database (Di,Wi)D

i=1, where Di is an arbitrary document and Wi is Di’s
associated set of searchable keywords. Given a parameter fp (false positive), a
Bloom filter tree is constructed by building a b-ary tree of D leaves. Each leaf
of this tree is associated with a document Di and holds a Bloom filter with the
corresponding set of keywords Wi. Each internal node contains a Bloom filter
having inserted all keywords held at its children nodes. A search procedure for
documents containing a keyword w starts by querying the Bloom filter at the
root node. If the keyword is present, we continue recursively querying its children
until reaching the leaf nodes whose associated document contains w.

Low-Leakage Secure Search for Boolean Expressions 403

Oblivious RAM. An Oblivious RAM protocol [11] is a two-party protocol
that allows a client to outsource its data and completely hide the access pat-
tern of future queries. It is composed by an algorithm OSetup and by a protocol
OAccess. OSetup is run by the client (or data owner) and outputs parameters
param (including an initial state state), and data structure struct. OAccess is a
two-party protocol in which the client inputs an operation op ∈ {ORead,OWrite},
an index i, data D� (if op is OWrite), and parameters param. The server inputs
struct. At the end of the protocol execution, the server obtains an updated struc-
ture, struct′, while the client obtains the updated state state′, and data Di (if op
was ORead). It is well known that any ORAM holding n elements and simulating
m RAM accesses requires Ω(m log n) accesses [11].

Participants. The system supports three actors: Owner, Server, and Client. The
Owner knows the database (Di,Wi)D

i=1, builds an index and outsources the list
of documents (Di) and the index to the Server. The Client has a query q = φ(W)
composed by a Boolean formula φ(·) over a set of keywords W . The Client gets
the set of documents {Di : Wi satisfies φ(W)}.

Notation. We use λ to denote a security parameter, and fp a false positive rate.
The set {1, 2, ..., i} will be denoted as [i]. Let G be a group of generator g and
prime order p, where the Decisional Diffie-Hellman (DDH) assumption holds. We
use multiplicative notation for the group operations. Let H : {0, 1}λ ×{0, 1}∗ →
{0, 1}λ be a keyed hash function (or MAC) having keys in {0, 1}λ, in which
H(k,w) is denoted as Hk(w). Similarly, let F : {0, 1}λ × {0, 1}λ → G be a
pseudo random function (PRF) indexed by keys in {0, 1}λ, having domain in
{0, 1}λ, and image in G. We denote F (k, r) as Fk(r). Let E = 〈Gen,Enc,Dec〉
be a semantically secure encryption scheme. For a query q corresponding to a
DNF formula φ(·), we let |q| = |φ| be the number of conjunctive clauses in φ.
For a clause Ci ∈ φ, we let |Ci| be the number of terms in C. The topology of
q, denoted as topo(q) (or topo(φ)), correspond to |q| and |Ci| for each i ∈ [|q|]
We denote by x

$← S the process of sampling a uniformly random element x
from set S. For a tree node v, we let Children(v) be the set of children nodes
of v. We let BFBuild(S, fp) denote the process of building a Bloom filter for
set S with false positive rate fp, and BFMatch(BF, w) denotes the process of
matching a keyword w in Bloom filter BF. For a set of hash functions H, we
let H(w) denote the set {H(w) : H ∈ H}. Finally, we abuse ORAM notation
and let Di←ORead(i, struct) denote a read ORAM access on address i at ORAM
structure struct held by the server. That is, we omit in the notation the client’s
parameters and the updated structure given to the server.

3 Cryptographic Primitives

In this section, we introduce the necessary cryptographic primitives for the con-
struction of our private search scheme (Sect. 4). These primitives are presented
in a modular way, and can be of independent interest.

404 F. Krell et al.

Oblivious PRF. First, our solution uses an Oblivious Pseudorandom Function
(OPRF). It involves two parties, C having input m and S having input k, who
jointly evaluate a pseudorandom function Fk(m), keeping k,m private to the
respective party. A simple construction proposed by Jarecki and Liu [16] uses
the Hashed Diffie-Hellman PRF (Fk(m) = Hash(m)k). The protocol is described
in Fig. 1. C starts by sampling a uniformly random invertible exponent α and
sends X = Hash(m)α to S. S responds with Y = Xk. Finally, C outputs Z =
Y α−1

= Hash(m)k.

MUL-OPRF. In a simple variation of the above primitive, C inputs a set
{m1, ...,mn}, S inputs the secret key k, and C receives as output

∏

i Fk(mi).
We call this new primitive MUL-OPRF. We obtain a secure protocol for this
primitive by using

∏

i Hash(mi), as the random hash function in the protocol
of Fig. 1.

Masked MOPRF. For the purpose of the construction in Sect. 4, we require a
slight modification on the above MUL-OPRF functionality. We call this new prim-
itive a Masked MOPRF. In this primitive, C gets the result of the MUL-OPRF
protocol masked with a random value R, while S obtains the mask R. This simple
modification is achieved by adding one extra message in the protocol (Fig. 2). The
server starts by sampling a uniformly random exponent β, and sending W = gβ

back to C. C responds with X = (W ·
∏

i Hash(mi))α for the uniformly random
invertible exponent α. S replies with Y = Xk, and outputs R = gβ·k. C outputs
Z = Y α−1

= R ·
∏

i Hash(mi)k.

Security. The security of the MUL-OPRF protocol follows directly form the
security of the Hashed DH Oblivious PRF protocol [16] by using

∏
Hash(·) as

the random function in the random oracle model. The security and correctness of
the Masked MUL-OPRF protocol follows directly from DDH assumption since
it implies that the value gβ·k ×

∏

i Fk(mi) is pseudo-random even given gβ (and
even if the adversary somehow knows

∏

i Fk(mi)).

4 Scheme

In this section, we present our private search scheme. Our ultimate goal is a
secure search functionality that enables oblivious delegated queries on outsourced

Fig. 1. The two-party protocol OPRF

Low-Leakage Secure Search for Boolean Expressions 405

Fig. 2. The two-party protocol Masked-MOPRF

data to a server (Server), where the data owner (Owner) can obliviously issue a
search token to a client (Client) for a query that remains hidden from the owner.
Given this search token, Client should only learn the data matching the query,
while minimizing the information that the server (Server) learns about the issued
queries (we analyze what Server learns formally in the full version of this work).

Recall from Sect. 1.3 that our search structure is a Bloom filter tree in which
documents are associated with the leaves of the tree and each node contains a
Bloom filter holding the searchable keywords of the documents associated with
the leaves of its subtree. In the simple two-party setting, where Owner is the
querier (or client), Owner can build a plaintext Bloom filter tree storing it as
an ORAM at the server. Then, for each query, Owner traverses the Bloom filter
tree (via ORAM accesses), to find the documents that satisfy its query (which
it retrieves and decrypts also via ORAM accesses).

In the delegated queries scenario (i.e., where Client is not the database owner),
if complete ORAM access is allowed to Client, information beyond what is strictly
necessary is revealed. First, since each ORAM access may retrieve several ele-
ments, Client gets bits of the index that do not correspond to its query. Equally
important, Client learns partial evaluation information, such as which keywords
of the formula are satisfied at each node, and which Bloom filter bits are set.
Ideally, Client should only learn if the complete query is satisfied by the index
node being evaluated. These two problems are addressed by specially encrypting
the index bits and introducing an oblivious protocol that allows Client to only
learn whether the formula is satisfied by an index node, but nothing more.

In Sect. 4.1, we introduce techniques that allow for secure delegated queries
leveraging Bloom filter tree and ORAM approaches. We first show how to gen-
erate query tokens without revealing the client’s query to either party. We then
describe how to securely evaluate single term queries, conjunctions and DNF
queries on each Bloom filter, allowing Client to traverse the tree and find the
documents satisfying its query. Finally, we describe how Client can decrypt the
retrieved documents without any party knowing the identifiers of these docu-
ments. In Sect. 4.2, we present the complete construction of our private search
scheme.

406 F. Krell et al.

4.1 Building Block Techniques

Obliviously Generating Search Tokens. Before Client can evaluate its query,
it needs to be able to compute Bloom filter indices corresponding to the terms in
the query for each Bloom filter in the tree. These indices need to be derived from
a PRF, whose key, sbf , is held by the database owner. For this purpose, each
term is mapped through the use of this PRF to a search token, which is then
hashed to get the Bloom filter indices. Similarly to Jarecki et al. [15], we use the
Hashed Diffie-Hellman PRF Fsbf (w) = Hash(w)sbf as our PRF to compute search
tokens for each term. This PRF can be obliviously computed via the protocol
in Fig. 1.

Single Term Queries. For single keyword queries, q = φ(w) = w, the client
needs to learn if all the bits queried in a Bloom filter are set. For this purpose,
we leverage the Masked-MOPRF protocol making use of the underlying PRF to
encrypt each bit. We encode a bit to an arbitrary element in the range group
of the PRF F , and use F to encrypt the bit. Let g be a group generator (that
we keep secret from the client); we map a bit bi to gbi and encrypt it as 〈gbi ·
Fk(ri), ri〉 for position i in the Bloom filter2. The client and server use the
Masked-MOPRF primitive described in Fig. 2 to evaluate a Bloom filter query
that reveals no additional information to the client as follows. They execute the
Masked-MOPRF protocol with inputs a set of {ri}i∈S , for the client, and a PRF
key k for the server, where S is the set of BF indices corresponding to the query.
At the end of the protocol, the client obtains R ·

∏

i∈S Fk(ri), while the server
obtains a random value R. Next, the client computes

∏

i∈S

(

gbi · Fk(ri)
)

, and,
using its output from the Masked-MOPRF protocol, obtains

∏

i∈S

(

gbi · Fk(ri)
)

(

R ·
∏

i∈S

Fk(ri)

)−1

= R−1 · g
∑

i∈S bi

The server now provides H(R−1 · gh) so that the client can do the matching
evaluating H(R−1 · g

∑
i∈S bi) and the comparison. The random element R binds

together the values from all BF indices corresponding to a query, and does not
allow the client to learn any information about subsets of the BF bits in the
corresponding positions. The hash over the server-side matching key R−1 · gh

hides R from the client. Hence, the protocol completely hides the value
∑

i∈S bi

for a mismatching query.

Conjunction Queries. The method described above can be trivially extended
to conjunctions since the single term case is in fact a conjunction on the corre-
sponding Bloom filter bits. We can treat a conjunction as a bigger single term
query. Let C be a conjunction, and let |C| denote the number of terms in C,
then the number of bits to be checked is h × |C|.
Disjunctive Normal Form Queries. In the case of single term queries (and
conjunctions), a match requires that all the bits at the query indices of the

2 The values ri across different Bloom filters are independent.

Low-Leakage Secure Search for Boolean Expressions 407

Bloom filter be set to one. Therefore, it suffices that the server provides the
hash of a single “randomized matching key” H(R · gh) to the client. In the case
of disjunctions, on the other hand, there are many settings for the bit values of
the query BF indices that can satisfy the query; hence, there are many possible
matching keys. In fact, there can be as many as |C| ·2h·(|C|−1) different satisfying
bit value assignments for the BF query indices. However, in our construction,
we consider the expression g

∑
i∈S bi for each term in the conjunction, which has

h different possible values which depend only on the number of ones in the set
of bits. Hence, there are only |C| · h|C|−1 possible matching evaluation values
for the client formula. With this observation in mind, we construct the following
protocol:

1. For each conjunctive clause C the client and the server execute the protocol
for the single query matching (without the final stage where server reveals the
hashed matching key), and the client learns the value RC · g

∑
i∈SC

bi , where
SC denotes the set of Bloom filter positions to be checked for clause C.

2. Each of the resulting values is blinded by a public random exponent LC , and
the final matching evaluation key is computed as

∏

C∈φ(RC · g
∑

i∈SC
bi)LC .

3. The server computes the set Matching of all the possible matching values,
and the client obliviously does the matching. There are several ways to do
the matching. One possibility is to hash and permute all the matching keys,
before sending them to the client. Another approach is through a Bloom filter.

The purpose of the exponent LC is to separate the space of possible values
of each clause evaluation, such that there are no overlaps that could (with high
probability) make a set of unsatisfying clauses evaluate to a matching key.

Record Decryption. After finding the list of identifiers of records satisfying the
query, Client can actually retrieve them by querying the ORAM that contains
the records. However, as mentioned earlier, in the case of the index ORAM,
each ORAM access can potentially reveal records that do not satisfy Client’s
query. Hence, each document should be encrypted under a key unknown to
Client. However, the client should be allowed to decrypt the satisfying records.
For this purpose, Owner samples a secret key sr and, using again the Hashed
Diffie-Hellman PRF, it derives for each document Di an encryption key ki ←
Fsr = Hash(i)sr . For each document identifier obtained by Client, Owner and
Client execute the OPRFprotocol in Fig. 1 to derive the decryption keys.

4.2 Final Scheme

Preprocessing. The procedure is parametrized by a false positive rate fp and
a security parameter λ. The database owner starts by choosing a key sbf for
the PRF F and keys sk, sr for the keyed hash function H. It then proceeds
by building a Bloom filter Search Tree with false positive rate fp for the data-
base DB = (Di,Wi)D

i=1, where each keyword w ∈ Wi is mapped to Hsk(w)
forming set W̃i. Each record Di is encrypted using the derived key ki ← Hsr(i),

408 F. Krell et al.

D̃i = Encki
(Di). The Bloom filter tree is then encrypted by encoding each Bloom

filter bit b as gb and encrypting it as bEncsbf (g
b) = 〈gb · Fsbf (r), r〉, where r is

sampled uniformly random from {0, 1}λ. The owner continues by preparing an
ORAM structure (paramI , structI) holding the encrypted index, and the ORAM
structure (paramD, structD) holding the records. In principle, each encrypted
Bloom filter bit can be an ORAM block. However, this can be optimized to pack
several bits in the same ORAM block to reduce the number of ORAM lookups.
We can choose, for example, to hold an entire Bloom filter in one ORAM block,
or to pack together bits in the same position across sibling Bloom filters.

We describe next the basic procedures used by the setup phase:
◦ BFTBuild({W̃i}D

i=1, fp, d): Let BFT be a balanced d-ary tree of D leafs. Let L =
�logd D� be the height of the tree. We build the tree level by level, starting from
the bottom level L. We then proceed recursively until reaching the root of the
tree. Let NL = max |Wi|. Using NL and fp, compute Bloom filters length nL and
number of Bloom filter hash function hL. Then, we sample hL independent hash
function HL = {H(1), ...,H(hL)} with image {0, 1, ..., nL − 1}. For each i ∈ [D],
we build a Bloom filter Bi (using HL) inserting the elements of W̃i. We maintain
each Bloom filter in a unique leaf of BFT. The internal nodes of the tree are built
recursively as follows: we associate each node at level � with the keywords held in
its children. That is, for each internal node, we build a Bloom filter that contains
the elements from all its d children. Return H = {H1,H2, ...,HL} and tree BFT.
We force the sets of hash functions to be of the same size h = hL = |HL|, such
that, for each query, the number of lookups in every node is the same. This
will prevent the server from learning the level in the tree of the nodes being
evaluated.
◦ BFTEncrypt(BFT, 1λ): Sample a uniformly random key sbf for PRF F . Build
a tree EBFT by: (a) encoding each bit b of BFT as gb, (b) encrypting gb as
bEncsbf (g

b) = 〈gb ·Fsbf (r), r〉, where r is uniformly random in {0, 1}λ. Return key
sbf and tree EBFT.

Search. Client inputs a DNF formula q = φ(W) = C1 ∨ C2 ∨ · · · ∨ C|q| on
keywords in W . The client reveals the query topology (number of clauses and
size of each clause) to Server. Client and Owner then execute the protocol in
Fig. 1 to obtain search tokens for each keyword in each clause. For each clause C
in the query, Client (or Server) uniformly samples LC from [|q|] and sends it to
Server (Client). Client and Server then start the tree traversal protocol. For each
node being evaluated, both parties proceed as follows:

1. For each clause C of the query, the client computes the Bloom filter positions
of the clause’s hashed keywords for the node being evaluated, and performs
the ORAM queries to get the corresponding encrypted bits 〈gbi · Fsbf (ri), ri〉.

2. To get each clause evaluation key, Client and Server engage in the Masked-
MOPRF protocol, where Client inputs the encryption randomness ri of each
encrypted bit, and Server inputs the PRF secret key sbf . Client obtains πC =
RC ·

∏

t∈SC
Fsbf (ri), and Server obtains the random mask RC . Client computes

each clause C evaluation key as
∏

i∈SC
(gbi ·Fsbf (ri))·(πC)−1. The key obtained

is ζC = R−1 · g
∑

bi .

Low-Leakage Secure Search for Boolean Expressions 409

3. The client computes each clause evaluation key KC = ζLC

C , and multiplies
all keys together to obtain the final evaluation key FinalKey:

∏

C∈φ KC =
∏

C∈φ(R−1
C · g

∑
i∈SC

bi)LC

4. The server computes all possible matching keys. That is, for each clause
C, Server computes the set MatchingC =

{

(RC · g|C|·h)LC ·
∏

C′ �=C(RC′ ·
gνC′)LC

}

, where each νC′ ∈ {0, . . . , |C ′| · h}.
5. Each node evaluation finishes by checking if Client’s FinalKey belongs to the

set Matching =
⋃

C MatchingC . This can be done securely by computing a
Bloom filter with all matching keys and sending the filter to the client, or by
sending a permutation of all hashed keys.

After the tree traversal, Client gets the indices of all documents satisfying the
query. It can obtain the documents by querying the documents ORAM structure.
To obtain the document decryption keys, Client and Owner execute protocol
OPRF, where Owner inputs key sr and Client inputs the document identifiers.
A formal description of the protocol is presented in the full version of this work.

5 Evaluation

In this section, we quantify the performance of the encrypted index traversal of
our OSPIR protocol by both showing the results of running our prototype on
datasets of 1K, 10K, and 100K records, and providing an asymptotic analysis of
performance.

Experimental Setup. Motivated by the audit log application on cloud services,
we collected provenance data from an Ubuntu 14.04 system running Apache.
From this data, we built a single table database containing on each row a node
from the provenance graph and its annotation. We set up two Intel Xeon E5-2430
2.2 Ghz (2 cores of 12 threads), 100 GB RAM machines with Broadcom 1 GB
Ethernet. Server and Owner run on the same machine. Our system parameters
were set so that the index for the 100K records database fits in 100 GB of RAM.
Specifically, we fixed the degree of the tree to 10, the Bloom filter false positive
to 10−5, and the number of searchable keywords per record to 4.

Queries. We ran SELECT-id queries that match a single record. The perfor-
mance of the queries that return one result provides the worst-case latency per
record, since queries returning several records do not need to inspect already-
evaluated nodes. Additionally, by returning just the record identifier, we can
evaluate exactly the cost of the search procedure. The types of queries covered
were single term, conjunctions, disjunctions and 3-DNFs.

Conjunctions vs. Disjunctions. Figure 3 shows, in log10 scale, the latency
time for conjunctions and disjunctions of sizes 1, 2, 3, 4, and 5 on a 100 K
records database. We observe that while conjunctive queries run in a few seconds,
disjunctive queries are exponentially more expensive. It is interesting to note that
the number of ORAM queries performed by both types of queries is exactly the

410 F. Krell et al.

Fig. 3. Latency of conjunctions and disjunctions of sizes 1, 2, 3, 4 and 5 for 100K
records DB.

Fig. 4. Query latency time for different-size DNF queries for databases of sizes 1K,
10K and 100K records.

same; hence, the latency time is dominated by the cryptographic operations and
the data transfer of the matching keys set. In the case of disjunctive queries, we
also note that the use of multiple cores does not reduce the latency significantly
(at most a factor of two for 24 cores). In the case of conjunctions, the evaluation
is entirely sequential and the use of multiple cores has no effect.

Varying Database Size. Figure 4 shows the latency for different DNF queries
across databases of sizes 1K, 10K, and 100K. The difference between running a
query on databases of varying sizes is captured in the number of nodes to be
evaluated and the potentially larger ORAM size for larger databases. Observe
the sub-linearity of our system’s running time: an increase in the database size
by a factor of 10 increases the running time by a comparatively small amount,
which is due to a single extra evaluation node and a larger ORAM structure.

ORAM vs. Node Evaluation. In Table 1, the second and third columns illus-
trate the time our prototype spent in ORAM read queries and node evalua-
tion, once ORAM queries have been performed. Since same-size queries require
the same number of ORAM operations, the ORAM time is identical for same-
size queries. Disjunctive queries, however, exhibit a much more expensive node

Low-Leakage Secure Search for Boolean Expressions 411

Table 1. Latency in seconds of tasks in protocol and network usage per query on a
100K records DB.

Query ORAM Eval Network Query ORAM Eval Network

Single term 4 6 26 MB

2-Conjunction 9 6 52 MB 4-Conjunction 18 6 105MB

2-Disjunction 9 10 52 MB 4-Disjunction 18 90 140MB

3-Conjunction 14 6 78 MB 5-Conjunction 18 6 131 MB

3-Disjunction 14 20 80 MB 5-Disjunction 18 90 932MB

Size 2 3-DNF 25 11 158MB

Size 3 3-DNF 35 35 249MB

Size 4 3-DNF 50 680 1173MB

evaluation execution, since they involve an exponentially large number of possi-
ble matching keys, which Server has to compute and hash individually. Moreover,
the fourth column indicates that the network usage increases significantly with
bigger disjunctions. The reason is that Server also needs to send the set of pos-
sible matching keys to Client. In particular, for size-4 3-DNF, the network usage
raises to 1 GB, and we can infer that for these queries the index traversal will
dominate the running time for queries that also return the records’ payload.

Index Size. One of the drawbacks of our solution is the space utilization of the
index. Each bit of a plaintext version of our index is encoded using 140 bytes.
Moreover, the index is stored as is in an ORAM structure, which multiplies the
space by a non-small constant factor. In our evaluation, each record was asso-
ciated with 4 searchable keywords. Consequently, for our 100K records dataset,
the encrypted index uses 75 GB of RAM.

6 Conclusions

We proposed an private search scheme that supports Boolean queries and del-
egated queries. Our system diminishes the leakage of existent solutions, while
preserving sublinear search efficiency. Our construction integrates ORAM tech-
niques with efficient search index structures, and leaks to the server only the
number of nodes visited in the search tree during the execution of a query.
We proposed a new protocol for oblivious PRF evaluation that allows to securely
evaluate Bloom filters. This enables the delegated-query feature by disclosing
only the match result. Finally, protect the client’s queries from the data owner.
We implemented our system prototype and ran it on a 100,000-record database.
We showed that our system can handle conjunctive queries and small DNF
formulas in 10–30 s. The sublinearity of our solution, also experimentally illus-
trated in Fig. 4, allows us to extrapolate that queries on much larger databases
(106, 107, and 108 records) will run in a few minutes. The cost of eliminating
leakage is substantial; the Blind Seer and OXT-OSPIR systems manage to return

412 F. Krell et al.

records in less than a second for databases of size 108 records with a much larger
number of searchable keywords. On the other hand, our system outperforms the
secure single-keyword search of the HE-over-ORAM solution whose experimen-
tal results showed that their system answers a query in 30 min for 4×106 record
databases. Therefore, our scheme provides a new tradeoff mark between privacy
and efficiency.

Acknowledgments. This work was funded by the US Department of Homeland Secu-
rity (DHS) Science and Technology (S&T) Directorate under contract no. HSHQDC-
10-C-00144. The views and conclusions contained herein are the authors’ and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DHS or the US government.

While at Columbia University, Fernando Krell was supported by NSF awards
#CNS-1445424 and #CCG-1423306.

Mariana Raykova is supported by NSF grants CNS-1633282, 1562888, 1565208, and
DARPA W911NF-15-C-0236, W911NF-16-1-0389.

References

1. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 27

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

3. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryp-
tion with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

4. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

5. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS (2006)

7. Fisch, B., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V., Malkin, T.,
Bellovin, S.M.: Malicious-client security in blind seer: a scalable private DBMS.
Cryptology ePrint Archive, Report 2014/963 (2014). http://eprint.iacr.org/

8. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with
HE-over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-28166-7 9

9. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

http://dx.doi.org/10.1007/978-3-662-46800-5_27
http://dx.doi.org/10.1007/978-3-662-46800-5_27
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-28166-7_9

Low-Leakage Secure Search for Boolean Expressions 413

11. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

12. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)

13. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases
with distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA
2016. LNCS, vol. 9610, pp. 90–107. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29485-8 6

14. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS (2012)

15. Jarecki, S., Jutla, C.S., Krawczyk, Rosu, H., Steiner, M.: Outsourced symmetric
private information retrieval. In: CCS (2013)

16. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15317-4 26

17. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: CCS (2012)

18. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S., George, W.,
Keromytis, A., Bellovin, S.: Blind seer: a scalable private DBMS. In: IEEE S&P
(2014)

19. Pappas, V., Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Private search in the
real world. In: ACSAC 2011, pp. 83–92 (2011)

20. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: SOSP (2011)

21. Raykova, M., Vo, B., Bellovin, S., Malkin, T.: Secure anonymous database search.
In: CCSW 2009 (2009)

22. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE S&P (2000)

23. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)

http://dx.doi.org/10.1007/978-3-319-29485-8_6
http://dx.doi.org/10.1007/978-3-319-29485-8_6
http://dx.doi.org/10.1007/978-3-642-15317-4_26

Public Key Algorithms

Constructions Secure Against Receiver Selective
Opening and Chosen Ciphertext Attacks

Dingding Jia1,2,3(B), Xianhui Lu1,2,3, and Bao Li1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{ddjia,xhlu,lb}@is.ac.cn
2 Data Assurance and Communication Security Research Center,

CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper we study public key encryption schemes of
indistinguishability security against receiver selective opening (IND-
RSO) attacks, where the attacker can corrupt some receivers and get
the corresponding secret keys in the multi-party setting. Concretely:

– We present a general construction of RSO security against cho-
sen ciphertext attacks (RSO-CCA) by combining any RSO secure
scheme against chosen plaintext attacks (RSO-CPA) with any reg-
ular CCA secure scheme, along with an appropriate non-interactive
zero-knowledge proof.

– We show that the leakage-resistant construction given by Hazay et al.
in Eurocrypt 2013 from weak hash proof system (wHPS) is RSO-CPA
secure.

– We further show that the CCA secure construction given by Cramer
and Shoup in Eurocrypt 2002 based on the universal HPS is RSO-
CCA secure, hence obtain a more efficient paradigm for RSO-CCA
security.

Keywords: Receiver selective opening · Chosen ciphertext security ·
Hash proof system

1 Introduction

Indistinguishability against chosen plaintext and chosen ciphertext attacks (IND-
CPA, IND-CCA) are widely accepted security notions for public key encryption
(PKE). However, in the multi-party situation, when attacks such as selective
opening [7,11] are possible, the above security requirements are not enough.

Generally, in selective opening attacks the adversary may corrupt a fraction
of parties and get the plaintext messages together with internal randomness for

This work is Supported by the National Basic Research Program of China (973
project) (No. 2013CB338002), the National Nature Science Foundation of China
(No. 61502484, No. 61379137, No. 61572495).

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 417–431, 2017.
DOI: 10.1007/978-3-319-52153-4 24

418 D. Jia et al.

encryption or decryption, while it is hoped that messages for uncorrupted parties
remain protected. The notion of selective opening attacks is considered in two
settings: sender selective opening (SSO), where part of senders are corrupted and
messages together with randomness for encryption are revealed; and receiver
selective opening (RSO), where part of receivers are corrupted and messages
together with secret keys for decryption are revealed [8].

Formal study of selective opening in PKE scenario was initiated by Bellare,
Hofheinz and Yilek [4,5] in 2009. They gave rigorous definitions with two styles:
indistinguishability-based (IND) and simulation-based (SIM). Considering that
in the selective opening scenario, part of random coins or secret keys are opened,
whether the ciphertext is consistant with the plaintext can be checked. In security
proof this restricts the way how the target ciphertext generated, thus whether
the ordinary IND security implies SO security and relations of SO security of
different styles attracts much attention [1,3,12,21–23,31].

Earlier constructions of SO security either depended on erasures, updating
secret keys, with long secret keys or were in the random oracle model [7,8,30].
As to the result in the random oracle model, Heuer et al. [17] proved that the
practical schemes RSA-OAEP and DHIES were SIM-SSO-CCA secure. Next we
review constructions that are stateless, non-interactive and without erasures in
the standard model.

For constructions secure in the SSO setting a lot of works have been done
in recent years [4,13,17–19,27–29]. Up to now constructions secure in the RSO
setting [8,23] are relatively less, and these constructions are only RSO-CPA
secure. In this paper we will focus on the constructions that are secure against
RSO of the indistinguishability style and CCA attacks simultaneously.

1.1 Our Contribution

In this paper we show the existence of IND-RSO-CCA secure schemes by giving a
construction from a variant of the Noar-Yung paradigm [6]. The construction is a
combination of any IND-RSO-CPA secure scheme, any IND-CCA secure scheme
and an appropriate non-interactive zero-knowledge proof (NIZK). And we prove
that the leakage-resistant construction from weak hash proof systems (wHPS) in
[20] is actually IND-RSO-CPA secure. For more efficient constructions, we prove
that the Cramer-Shoup paradigm [9,10] from universal HPS is IND-RSO-CCA
secure. In the following we outline the main idea of the construction.

To modify an IND-RSO-CPA secure scheme to be IND-RSO-CCA secure, one
should handle decryption queries appropriately. We observe that when apply-
ing the Noar-Yung paradigm (or its variant), it is possible to keep secret keys
unchanged by taking only the first copy of the secret key of the IND-RSO-
CPA secure scheme as the secret key for the whole encryption scheme. Our
first construction, which is constructed from an IND-RSO-CPA secure scheme,
an IND-CCA secure scheme, an appropriate NIZK and a one-time signature, is
inspired by the paradigm to achieving key-dependent message security against
chosen ciphertext attacks (KDM-CCA) [6]. The proof sketch is shown in Fig. 5.

Constructions of RSO-CCA Security 419

Besides, we prove the IND-RSO-CPA security for the leakage-resistant con-
struction from wHPS given by Hazay et al. [20]. Since wHPS can be constructed
from any CPA secure scheme, our result shows that IND-RSO-CPA secure PKE
can be built from any IND-CPA secure PKE. Considering that IND-CCA secure
PKE can be get from any IND-CPA secure PKE and an appropriate NIZK, we
get that IND-RSO-CCA security can be built from any IND-CPA, an appropriate
NIZK and a one-time signature. Generally speaking, a wHPS is a key encapsu-
lation mechanism (KEM) along with a fake encapsulation algorithm. The fake
encapsulation algorithm can generate a fake ciphertext, which is indistinguish-
able from the real ciphertext even given the secret key and is non-committing
to any message when given the public key. In fact, the construction from wHPS,
which adds to the encryption and decryption algorithm a bitwise XOR with the
message, is IND-RSO-CPA secure. The security proof is straightforward, since
when the adversary gets fake ciphertexts, messages are completely hidden, while
fake ciphertexts are indistinguishable from real ciphertexts.

Although the framework we give above implies the existence of IND-RSO-
CCA secure PKE, the use of NIZK makes it less efficient. In the final part, we
prove that the construction from universal hash proof system (HPS) [9], which
is more efficient, is IND-RSO-CCA secure. Here we give a general explaination.
Hazay et al. demonstrated that smooth HPS implies tNCER, which leads to
IND-RSO-CPA security [21]. Although the CCA construction from universal
HPS adds elements in secret key for ciphertext verification compared with con-
struction for CPA security, this does not affect the non-committing property, for
the simulator is able to open messages along with secret keys which it holds.

One may notice that constructions in this paper can only achieve single-
message security, while a more reliable requirement for practice is security for
multi-message. In the full version [24] we give a reduction from multi-message
security to single-message case through a hybrid argument. The reduction leads
to a security loss related to the number of messages. We leave constructions that
are secure for multi-messages with a tight reduction as an open problem.

Organization. The rest of our paper is organized as follows: in Sect. 2 we give defi-
nitions and preliminaries; in Sect. 3 we give a variant of the Noar-Yung paradigm
to build IND-RSO-CCA secure encryption and prove that the leakage-resistant
construction given by Hazay et al. from wHPS is IND-RSO-CPA secure; in Sect. 4
we prove that the construction in [9] is IND-RSO-CCA secure.

2 Preliminaries and Definitions

2.1 Preliminaries

Notations. In this paper we use PPT to represent probabilistic polynomial time
for short. Let [n] be the set of {1, 2, ..., n}. a ← A is to denote choosing a
random element from A when A is a set, and to denote picking a uniformly dis-
tributed randomness, running A with the randomness and assigning the output
to a when A is a PPT algorithm. we use the lower case boldface to denote vec-
tors. Enc(pk,m) := (Enc(pk1,m1), ..., Enc(pkn,mn)) when pk,m are vectors

420 D. Jia et al.

of dimension n. The statistical distance of two distributions X ,Y is defined as
SD(X ,Y) := 1

2Σx|Pr[X = x] − Pr[Y = x]|.
Besides efficiently samplable, the message space is required to be efficiently

conditional resamplable to accompany the security definition we will give later.

Definition 1 (Efficiently Conditional Resamplable [4]). Let dist be a joint
distribution over M

n, where M is the message space, then dist is efficiently
conditional resamplable if there is a PPT algorithm Redist such that for any
I ⊂ [n] and any mI := (mi)i∈I , where m = (mi)i∈[n] is sampled from dist, the
output m′ ← Redist(mI) satisfies that m′ is distributed according to dist and
m′

i = mi for i ∈ I.

2.2 Security Definitions

Public Key Encryption (PKE). A PKE scheme supported ciphertexts with
labels consists of three algorithms: Keygen(1λ) → (pk, sk), Enc(pk,m, l) →
c, Dec(sk, c, l) → m or ⊥, where Keygen is the key generation algorithm, Enc
is the encryption algorithm with label l and Dec is the decryption algorithm.
Correctness. A PKE scheme satisfies correctness, if for all (pk, sk) ←
Keygen(1λ), m ∈ M, Dec(sk,Enc(pk,m, l), l) = m.

Clearly, an ordinary PKE scheme can be seen as a PKE scheme with empty
label spaces.

Security. Here we give the definition of indistinguishability based security against
receiver selective opening chosen ciphertext attacks (IND-RSO-CCA) as in [21]
and IND-CCA security definition for ciphertexts with labels in Fig. 1. As in
[4,19], we require the message space be efficiently conditional resamplable. The
security experiment proceeds as follows:

Note that in Expind-rso-cca(A), the decryption query is of the form (c, j) sat-
isfying that c �= c∗

j , and is answered by Dec(skj , c). And after the adversary gets
skI , it is required that j /∈ I. The advantage is defined as AdvIND-RSO-CCA

A =

Fig. 1. The IND-RSO-CCA and IND-CCA experiment

Constructions of RSO-CCA Security 421

∣
∣
∣2Pr[Expind-rso-cca(A) = 1] − 1

∣
∣
∣. In Expind-cca(A), the decryption query

is of the form (c, l) such that (c, l) �= (c∗, l∗), where l is a label, and the
query is answered by Dec(sk, c, l). The advantage is defined as AdvIND-CCA

A =
∣
∣
∣2Pr[Expind-cca(A) = 1] − 1

∣
∣
∣. When omitting the decryption oracle, the above

experiment gives a definition of IND-RSO-CPA and IND-CPA security respec-
tively.

Definition 2 (IND-RSO-CCA/CPA Security). A PKE scheme is IND-
RSO-CCA secure if for any PPT adversary A, AdvIND-RSO-CCA

A is negligible in
λ. And it is IND-RSO-CPA secure if for any PPT adversary A, AdvIND-RSO-CPA

A
is negligible in λ. IND-CCA/CPA security are defined similarly.

One-Time Signature. A signature scheme consists of three PPT algo-
rithms satisfying that for all: Sig.Kg(1λ) → (vk, sigk),m ∈ M, V er(vk,m,
Sign(sigk,m)) = 1, where Sig.Kg is the key generation algorithm, Sign is
the signature algorithm and V er is the verification algorithm.

Security. Here we give the security notion of strong existential unforgeability
under one-time chosen message attack in the following experiment between a
challenger C and a PPT adversary A (Fig. 2):

Definition 3 (One-time Unforgeable Security). A signature scheme is
strongly existential unforgeable under one-time chosen message attack if for any

PPT adversary A, Advots
A := Pr[Exp

uf-ot
sig (A) = 1] is negligible in λ.

2.3 Non-interactive Zero-Knowledge Proofs

Let R be a binary relation that is efficiently computable. Let L := {x :
∃w, s.t. (x,w) ∈ R}. A non-interactive zero-knowledge (NIZK) proof system for
R consists of three PPT algorithms (CRSGen, P, V) satisfying the completeness
property such that: for all C ← CRSGen, all (x,w) ∈ R, and p ← P (C, x, w),
V (C, x, p) = 1 where CRSGen generates a common reference string (CRS), P
is the proof algorithm and V is the verification algorithm.

Fig. 2. One-time unforgeable for signatures

422 D. Jia et al.

Definition 4 (NIZK [2,14]). (CRSGen, P, V) is an NIZK proof system for R
if it satisfies the following properties:

Computational Soundness: For any PPT A, Advcsnizk,A = Pr[A(C) → (x, p)∧
x /∈ L ∧ V (C, x, p) = 1] is negligible, where C ← CRSGen is given to A.

Computational Zero-knowledge: There exists a simulator S such that for
any PPT adversary A, Advczknizk,A = |Pr[Expreal(A) = 1]−Pr[Expsim(A) =

1]| is negligible, where Expreal(A) and Expsim(A) are defined in Fig. 3, in
which ε denotes an empty string and E denotes an empty set.

Fig. 3. Computational zero-knowledge

Loosely speaking, CZK means that with the help of the secret information t
generated with C, the simulator S can produce a proof that is indistinguishable
from the real proof without the witness for x ∈ L. For the construction in
this paper, although only one message is encrypted for each public key, there
are multi public keys, the one-time definition of computational zero-knowledge
given by Blum et al. [2] is not enough.

3 An IND-RSO-CCA Secure Construction

In this section, we give an IND-RSO-CCA secure construction analogous to that
in [6] with the following building blocks: a PKE E1 with IND-RSO-CPA security,
a regular CCA secure PKE E2 that supports ciphertexts with labels, an NIZK
proof system for the language consisting of the set of all pairs that encrypt the
same message using E1 and E2, and a strong existential unforgeable one-time
signature scheme. Then we prove that the construction from wHPS [20] is IND-
RSO-CPA secure.

Constructions of RSO-CCA Security 423

3.1 Preliminaries for Section 3

Tweaked Non-committing Encryption for Receivers (tNCER). In
[21], Hazay et al. defined tNCER and proved that a tNCER is IND-
RSO-CPA secure. A tweaked PKE (tPKE) consists of five algorithms
(tKeygen, tEnc, tEnc∗, tDec, tOpen), where (tKeygen, tEnc, tDec) form a reg-
ular PKE and the tweaked encryption algorithm tEnc∗ outputs a fake ciphertext
c∗ ← tEnc∗(pk, sk,m) and the (possibly inefficient)open algorithm tOpen out-
puts a secret key sk∗ ← tOpen(pk, c∗,m), satisfying that tDec(sk∗, c∗) = m.

Fig. 4. Tweaked NCER

Definition 5 (tNCER). A tPKE is a tweaked NCER (Fig. 4) if:

– for any PPT adversary A, Adv
ind-tcipher
tpke,A

:= |2Pr[Exp
ind-tcipher
tpke (A) = 1] −

1| is negligible.
– for any unbounded adversary A, Advind-tncer

tpke,A := |2Pr[Expind-tncer
tpke (A) =

1] − 1| is negligible.

Weak Hash Proof System (wHPS). Weak hash proof system, which can be
seen as a generalization of HPS, was proposed by Hazay et al. to provide leakage
resistant security from CPA secure schemes [20]. Here we give a brief review.
A wHPS is an ordinary KEM in addition with a fake encryption algorithm Enc∗

that takes as input pk, outputs an invalid ciphertext. c∗ ← Enc∗(pk).
It should satisfy indistinguishability and smoothness properties.

Indistinguishability. Given (pk, sk) ← Keygen(1λ), any PPT adversary A
cannot distinguish a valid ciphertext from an invalid ciphertext. That is, for
any PPT adversary A, AdvCI

A,wHPS is negligible, where

AdvCI
A,wHPS = |Pr[A(pk, sk, c|(c,K) ← Enc(pk)) = 1]

−Pr[A(pk, sk, c∗|c∗ ← Enc∗(pk)) = 1]|.

424 D. Jia et al.

Smoothness. For any invalid ciphertext c∗, the distribution of (pk, c∗,K∗) and
(pk, c∗,K) are identical, where K∗ = Dec(sk, c∗) and K is chosen randomly
from the session key space.

3.2 Construction

Let E1 := (Keygen1, Enc1,Dec1) be IND-RSO-CPA secure, and E2 :=
(Keygen2, Enc2,Dec2) be IND-CCA secure and supports ciphertext with labels,
S := (Sig.Kg, Sign, V er) be strong existential unforgeable under one-time cho-
sen message attack, Leq := {(c1, c2, l)|∃m, r1, r2, s.t.c1 = Enc1(pk1,m; r1), c2 =
Enc2(pk2,m, l; r2)}. Let P := (CRSGen, P, V) be an NIZK proof for Leq. The
scheme is described as follows:

Keygen: Generate (pki, ski) ← Keygeni(1λ) for i = 1, 2, run CRSGen to get
the CRS C of the NIZK P. Set pk := (pk1, pk2,C), sk := sk1.

Enc: Generate (vk, sigk) ← Sig.Kg(1λ), randomly choose r1, r2 and compute
c1 = Enc1(pk1,m; r1), c2 = Enc2(pk2,m, vk; r2), p ← P (C, (c1, c2, vk),
(m, r1, r2)), σ = Sign(Sigk, c1‖c2‖p). The ciphertext c = (vk, c1, c2, p, σ).

Dec: Verifies whether V (C, c1‖c2‖vk, p) = 1 and V er(vk, c1‖c2‖p, σ) = 1, if both
equations hold, output m = Dec1(sk, c1), otherwise reject.

Correctness of the decryption algorithm is trivially follows from the completeness
of NIZK, correctness of the signature scheme and correctness of the IND-RSO-
CPA scheme.

Theorem 1. Let E1 be IND-RSO-CPA secure, E2 be IND-CCA secure that sup-
ports ciphertext with labels, S be existential unforgeable under one-time chosen
message attack, P be an NIZK proof for Leq, then the scheme constructed above
is IND-RSO-CCA secure. Concretely,

AdvIND-RSO-CCA

pke ≤ 2q(Advcs

nizk + nAdvuf-ot

sig) + 2nAdvcca

pke + 2Advczk

nizk + AdvIND-RSO-CPA

pke

Proof. The proof is through a sequence of games depicted in Fig. 5, where the
boxed item is the change from the former game.

Next we give the formal description of the games. Let Wi denote the event
that the adversary outputs 1 in Gamei.

Game0: the real security game when b = 0.
Game1: the same as Game0, except that when responding to a decryp-

tion query (c, j), the challenger computes m = Dec2(sk2j , c2) instead of
m = Dec1(sk1j , c1). From the soundness property of P, one can get that
Pr[W1] − Pr[W0] is negligible.

Game2: the same as Game1, except that C is generated by a simulator S and
when responding to the encryption query dist, the challenger produce simu-
lated proofs p ← S(t, (c1, c2, vk)) instead of a real p. From the zero-knowledge
property of P, one can get that Pr[W2] − Pr[W1] is negligible.

Constructions of RSO-CCA Security 425

Game3: the same as Game2, except that when responding to a decryption oracle
(c, j), where c = (vk, c1, c2, p, σ), the challenger checks whether vk = vk∗

j ,
if the equation holds, then it just rejects. From the existential unforgeable
property of S, one can get that Pr[W3] − Pr[W2] is negligible.

Game4: the same as Game3 except that when responding to the encryption
query dist, the challenger samples m0 ← dist, and random mR from the
message space, generates (vk, sigk) ← Sig.Kgn(1λ), computes c∗

1 = Enc1
(pk1,m0), c∗

2 = Enc2(pk2,mR,vk∗), and other parts of the ciphertext vec-
tor as in Game3. From the CCA security of E2, by a hybrid argument one
can get that Pr[W4] − Pr[W3] is negligible.

Game5: the same as Game4, except that in the open phase, the adversary
resamples m1 ← Redist(m0I) and responds with (skI ,m1). From the RSO-
CPA security of E1, one can get that Pr[W5] − Pr[W4] is negligible.

Game6: the same as Game5, except that when responding to the encryption
query dist, the challenger computes c2 = Enc2(pk2,m0,vk

∗), with the real
sampled message vector instead of randomly chosen one. From the CCA
security of E2, one can get that Pr[W6] − Pr[W5] is negligible.

Game7: the same as Game6, except that when responding to a decryption query
(c, j), the challenger no longer rejects when vk = vk∗

j . From the existential
unforgeable property of S, one can get that Pr[W7] − Pr[W6] is negligible.

Game8: the same as Game7, except that C is normally generated and when
responding to the encryption query dist, the challenger produce real proofs
p. From the zero-knowledge property of P, one can get that Pr[W8]−Pr[W7]
is negligible.

Game9: the real security game when b = 1. From the soundness property of P,
one can get that Pr[W9] − Pr[W8] is negligible.

Combining the above game sequences, we get that Pr[W9]−Pr[W0] is negligible. �

Fig. 5. Game transform for RSO-CCA security from RSO-CPA security

426 D. Jia et al.

3.3 IND-RSO-CPA Secure PKE from wHPS

Up to now there are instantiations of RSO-CPA secure PKE [21], CCA secure
scheme with labeled ciphertext [6], NIZK for equal message relations [6,16],
one-time signatures [15]. Here we prove that the leakage-resistant construction
from wHPS [20] is IND-RSO-CPA secure. Since in [20] Hazay et al. showed that
wHPS can be realized from CPA secure PKE schemes, our result implies that
IND-RSO-CPA secure PKE can be constructed from any IND-CPA secure PKE.

Lemma 1 ([21]). For any PPT adversary A attacking tPKE in the IND-RSO-
CPA scheme, there exists a PPT adversary B and an unbounded adversary C,

such that Adv
ind-rso-cpa
tpke (A) ≤ 2n(Adv

ind-tcipher
tpke (B) + Advind-tncer

tpke (C)).

Construction. Next we show that the PKE constructed from wHPS [20] is a
tNCER. The scheme is described as follows.

tKeygen(1λ): The key generation algorithm is the generation algorithm of
wHPS. (pk, sk) ← wHPS.Keygen(1λ).

tEnc(pk,m): c = (c1, c2), where (c1,K) ← wHPS.Enc(pk), c2 = K + m, here
we assume that the encrypted messages are in an additive group.

tDec(sk, c): K ← wHPS.Dec(sk, c1),m ← c2 − K.
tEnc∗(pk, sk,m): c∗ = (c∗

1, c
∗
2), c

∗
1 ← wHPS.Enc∗(pk),K∗ ← wHPS.

Dec(sk, c∗
1),

c∗
2 = K∗ + m.

tOpen(pk, c∗,m): Parse c∗ as c∗ = (c∗
1, c

∗
2), compute K∗ = c∗

2 − m, find an sk∗

such that wHPS.Dec(sk∗, c∗) = m.

Correctness can be easily verified from the correctness property of wHPS.
It is obvious that the decryption of a fake ciphertext c∗ outputs the encrypted
message m. Since c∗

1 is an output of wHPS.Enc∗(pk), from the smooth property
of wHPS, (pk, c∗

1, wHPS.Dec(sk, c∗
1)) is distributed as (pk, c∗

1,K) for randomly
chosen K. Hence for a given K∗, there exists a sk∗ corresponding to pk such
that wHPS.Dec(sk∗, c∗

1) = K∗, an unbounded algorithm can find it. The cipher-
text indistinguishability of tPKE easily follows from the indistinguishability of
wHPS. And the non-committing property for fake ciphertexts follows from the
smoothness property of wHPS.

4 IND-RSO-CCA Secure PKE from Universal HPS

The construction of the above section implies the existence of IND-RSO-CCA
secure scheme. However, due to the employment of NIZK (pairing), the con-
struction is less efficient, and the ciphertext is not compact. In this section we
prove that the compact and efficient CCA secure scheme in [9] based on HPS is
IND-RSO-CCA secure.

Constructions of RSO-CCA Security 427

4.1 Universal Hash Proof System

Projective Hash Family. Firstly we recall the concept of hash proof system
(HPS) introduced by Cramer and Shoup [9]. A projective hash family consists
of (Λ,SK,X ,L,W, Y,PK, μ), where X ,Y,L,W,SK, PK are sets and L ⊂ X is
a language, Let Λ be a family of hash functions indexed by sk ∈ SK mapping
from X to Y. Let μ be a polynomial time function mapping from SK to PK. A
hash family H = (Λ,SK,X ,L,W, Y,PK, μ) is projective if for all sk ∈ SK, the
action of Λsk on L is determined by μ(sk).

Definition 6 (ε-smoothness [9]). The projective hash family is ε-smooth if for
randomly chosen sk ← SK, X ← X\L, pk = μ(sk), given pk,X, the distribution
of Y = Λsk(X) and randomly chosen Ỹ ∈ Y are statistically indistinguishable,

SD((pk,X, Y), (pk,X, Ỹ)) ≤ ε.

Definition 7 (ι-related ε-smoothness). The projective hash family is ι-
related ε-smooth if for ι randomly chosen sk = (sk1, ..., skι) ← SKι, X =
(X1, ...,Xι) ← (aL)ι, a ← X\L, compute pk = (μ(sk1), ..., μ(skι)), Y =
(Λsk1(X1), ..., Λskι

(Xι)), for randomly chosen Ỹ ∈ Yι,

SD((pk,X,Y), (pk,X, Ỹ)) ≤ ε.

ι-related ε-smoothness property can be easily deduced from the ordinary
smoothness property of hash family with a hybrid proof argument.

As in [9], we introduce a finite set E to extend the sets X and L to define
a universal2 extended projective hash family H = (Λ,SK,X × E ,L × E ,W,
Y,PK, μ).

Definition 8 (universal2 [9,25]). The extended projective hash family is
universal2 if for all pk ∈ PK, X1,X2 ∈ X\L, E1, E2 ∈ E , (X1, E1) �= (X2, E2),
for all Y1, Y2 ∈ Y,

Pr[Λsk(X2, E2) = Y2|μ(sk) = pk, Λsk(X1, E1) = Y1] =
1

|Y| .

Subset Membership Problem (SMP). An SMP specifies an instance ensem-
bles {In}n such that for each n, In specifies a distribution over instance
Γ = (X ,L,W,R), where X ,L,W are non-empty sets and L ⊂ X and R ⊂ X×W
is a binary relation such that x ∈ L iff there exists a w satisfying (x,w) ∈ R.

We assume that there are efficient algorithms to sample instances from In,
elements from X , X\L and elements L from L together with its witness w ∈ W.
Also we require that X ,Y being abelian groups (with computational symbol
“+”) and L being subgroup of X .

Definition 9 (Subset Membership (SM) Problem [9]). The advantage of
an adversary A in breaking SMP is defined as:

AdvSM

A = |Pr[A(Γ,Z0) = 1] − Pr[A(Γ,Z1) = 1]| ,

428 D. Jia et al.

where the probability is taken over the randomness of choosing instance Γ and
elements Z0, Z1, the internal randomness of A. We say that the SM problem is
hard if for every PPT A, AdvSM

A is negligible.

Hash Proof System (HPS). An HPS associates each SM instance Γ with a
projective hash family H = (Λ,SK,X ,L,W,Y,PK, μ). In addition, it provides
PPT algorithms to choose sk ∈ SK and X ∈ X uniformly at random, PPT algo-
rithm to compute μ(sk), and PPT algorithms (Priv, Pub) to compute Λsk(L)
for L ∈ L with witness w :

Λsk(L) = Priv(sk, L) = Pub(μ(sk), L, w).

HPS with Trapdoor. Following [25,26], we also require that the SM problem can
be efficiently solved with a master trapdoor, which will be used not in the actual
scheme but in the security proof. In fact, all known hash proof systems have
such a trapdoor.

4.2 Construction

Let H1 = (Λ1,SK1,X ,L,W,Y1,PK1, μ1) be a smooth projective hash proof sys-
tem, H2 = (Λ2,SK2,X × Y1,L × Y1,W,Y2,PK2, μ2) be an extended universal2
projective hash proof system. Public parameters are set as pp = (H1,H2).

Keygen(pp) : The key generation algorithm chooses random secret key sk1 ←
SK1, sk2 ← SK2 and computes the public key as pk = (pk1 = μ1(sk1), pk2 =
μ2(sk2)).

Enc(pk,m) : The encryption algorithm samples random L ∈ L with witness w,
and computes the ciphertext c = (c0, c1, c2) as:

c0 = L, Y1 = Pub(pk1, L, w), c1 = Y1 + m, c2 = Pub(pk2, L, c1, w).

Dec(sk, c) : The decryption algorithm first verifies whether c2 = Priv(sk2,
c0, c1), if the equation does not hold, it just rejects, else it computes the
message as:

Y1 = Priv(sk1, c0),m = c1 − Y1.

Correctness can be easily verified from the projective property of the HPS.

4.3 Security Proof

Theorem 2. If H1 is a ε1-smooth projective HPS with the corresponding SM
problem hard, H2 is an extended universal2 projective hash proof system with the
same corresponding SM problem hard, then our PKE scheme is IND-RSO-CCA
secure. Concretely,

AdvIND-RSO-CCA

A ≤ AdvSM,HPS

B + q(
1

(|X | − |L|) · |Y1|
+

1
|Y2|

) + nε1.

where q is the number of decryption queries, n is the number of key pairs.

Constructions of RSO-CCA Security 429

Proof. A ciphertext c is invalid if c0 /∈ L. The master trapdoor mt is used to
solve the SM problem.

To prove the security of our scheme, we define a sequence of games whereby
any PPT adversary can not tell the difference between consecutive games.

Game0: the real security game.
Game1: the same as Game0 except that the challenge ciphertexts are gen-

erated using the secret keys. That is Y ∗
i1 = Priv1(ski1, c

∗
i0), c

∗
i2 =

Priv2(ski2, c
∗
i0, c

∗
i1).

Game2: the same as Game1 except that the challenge ciphertexts are invalid.
Concretely, {c∗

i0}i∈[n] are chosen uniformly from a random coset of L, that is
aL, a ← X\L.

Game3: the same as Game2 except that the decryption oracle rejects all queries
(c, j) that satisfy c0 /∈ L. This can be achieved with the help of the master
trapdoor mt.

Let Advi
A denote A’s advantage in Gamei for i = 0, 1, 2, 3.

It is clear to see Adv0
A = Adv1

A from the projective property of HPS.

Lemma 2. Suppose that there exists a PPT adversary A such that Adv1
A −

Adv2
A = ε, then there exists a PPT adversary B with advantage ε in solving the

SM problem.

Lemma 3. Adv2
A − Adv3

A ≤ ε if the projective HPS H2 satisfies the universal2
property, where ε = q(1

(|X |−|L|)·|Y1| + 1
|Y2|).

Lemma 4. Adv3
A ≤ nε1, if the underlying projective HPS H1 is ε1-smooth.

Concrete proofs for Lemmas 2, 3 and 4 are deferred to the full version. �

Instantiations. The instantiations are the same as that in [9] from the DDH,
DCR and QR assumptions.

Acknowledgments. We are grateful to Yamin Liu and Haiyang Xue for helpful dis-
cussions and advice. We also thank the anonymous reviewers of CT-RSA 2017 for their
useful comments.

References

1. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 38

2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC 1988, pp. 103–112 (1988)

http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-29011-4_38

430 D. Jia et al.

3. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 31

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

5. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
IACR Cryptology ePrint Archive 2009, 101 (2009)

6. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01001-9 20

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: Twenty-Eighth Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 1995, pp. 639–648. ACM Press (1996)

8. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Berlin (2005). doi:10.1007/978-3-540-30576-7 9

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

10. Cramer, R., Shoup, V.: Design and analysis of practical public-Key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Compt. 33(1),
167–226 (2003)

11. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. J. ACM
50(6), 852–921 (2003)

12. Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does imply
security against selective opening for Markov distributions. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 282–305. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 12

13. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 20

14. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS 1990, pp. 308–317
(1990)

15. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006). doi:10.1007/11935230 29

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

17. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of
practical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 27–51. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 2

18. Huang, Z., Liu, S., Qin, B., Chen, K.: Fixing the sender-equivocable encryption
scheme in Eurocrypt 2010. In: INCOS, pp. 366–372 (2013)

http://dx.doi.org/10.1007/978-3-642-30057-8_31
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_20
http://dx.doi.org/10.1007/978-3-540-30576-7_9
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-662-49096-9_12
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-662-46447-2_2

Constructions of RSO-CCA Security 431

19. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 4

20. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography
from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 10

21. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 19

22. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 25

23. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.
9986, pp. 121–145. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 5

24. Jia, D., Lu, X., Li, B.: Constructions secure against receiver selective opening and
chosen ciphertext attacks. IACR Cryptology ePrint Archive 2016, 1083 (2016)

25. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 26

26. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction par-
adigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 590–609. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 34

27. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure
against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 5

28. Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE
from key encapsulation mechanisms. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 3–26. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 1

29. Liu, S., Zhang, F., Chen, K.: Public-key encryption scheme with selective open-
ing chosen-ciphertext security based on the Decisional Diffie-Hellman assumption.
Concurrency Comput. Pract. Experience 26(8), 1506–1519 (2014)

30. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 8

31. Ostrovsky, R., Rao, V., Visconti, I.: On selective-opening attacks against encryp-
tion schemes. In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
578–597. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10879-7 33

http://dx.doi.org/10.1007/978-3-642-25385-0_4
http://dx.doi.org/10.1007/978-3-642-38348-9_10
http://dx.doi.org/10.1007/978-3-642-38348-9_10
http://dx.doi.org/10.1007/978-3-662-48797-6_19
http://dx.doi.org/10.1007/978-3-642-54242-8_25
http://dx.doi.org/10.1007/978-3-662-53644-5_5
http://dx.doi.org/10.1007/978-3-540-28628-8_26
http://dx.doi.org/10.1007/978-3-642-01001-9_34
http://dx.doi.org/10.1007/978-3-642-55220-5_5
http://dx.doi.org/10.1007/978-3-662-46447-2_1
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/978-3-319-10879-7_33

New Revocable IBE in Prime-Order Groups:
Adaptively Secure, Decryption Key Exposure
Resistant, and with Short Public Parameters

Yohei Watanabe1,2(B), Keita Emura3, and Jae Hong Seo4

1 The University of Electro-Communications, Tokyo, Japan
watanabe@uec.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

3 National Institute of Information and Communications Technology (NICT),
Tokyo, Japan

k-emura@nict.go.jp
4 Myongji University, Yongin, Korea

jaehongseo@mju.ac.kr

Abstract. Revoking corrupted users is a desirable functionality for
cryptosystems. Since Boldyreva, Goyal, and Kumar (ACM CCS 2008)
proposed a notable result for scalable revocation method in identity-
based encryption (IBE), several works have improved either the security
or the efficiency of revocable IBE (RIBE). Currently, all existing scalable
RIBE schemes that achieve adaptively security against decryption key
exposure resistance (DKER) can be categorized into two groups; either
with long public parameters or over composite-order bilinear groups.
From both practical and theoretical points of views, it would be interest-
ing to construct adaptively secure RIBE scheme with DKER and short
public parameters in prime-order bilinear groups.

In this paper, we address this goal by using Seo and Emura’s tech-
nique (PKC 2013), which transforms the Waters IBE to the correspond-
ing RIBE. First, we identify necessary requirements for the input IBE of
their transforming technique. Next, we propose a new IBE scheme having
several desirable properties; satisfying all the requirements for the Seo-
Emura technique, constant-size public parameters, and using prime-order
bilinear groups. Finally, by applying the Seo-Emura technique, we obtain
the first adaptively secure RIBE scheme with DKER and constant-size
public parameters in prime-order bilinear groups.

Keywords: Revocable identity-based encryption · Static assumptions ·
Asymmetric pairings

1 Introduction

Identity-Based Encryption (IBE) scheme is a public key cryptosystem enabling
one to use arbitrary bit-string as her/his public key. In dynamic cryptosystem,

The first author is supported by JSPS Research Fellowships for Young Scientists.

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 432–449, 2017.
DOI: 10.1007/978-3-319-52153-4 25

New Revocable IBE in Prime-Order Groups 433

user registration and revocation are important functionalities. When Boneh and
Franklin proposed the first realization of IBE [4], they already explained how to
revoke corrupted users; for an identity I of a non-revoked user at time T , I‖T is
regarded as the identity, and Key Generation Center (KGC) issues a secret key
for I‖T to a non-revoked user I for each time period. Even though this simple
identity-encoding method can successfully revoke users from the system, KGC’s
huge overhead (linear computational complexity in the number of users per each
time period) is an inherent problem. To resolve this problem, Boldyreva, Goyal,
and Kumar [2] proposed a scalable revocation method by using the symmet-
ric key broadcast encryption technique, so-called the Complete Subtree (CS)
method [21]. They called IBE with such the efficient revocation Revocable IBE
(RIBE).

After the seminal work by Boldyreva, Goyal, and Kumar [2], several RIBE
schemes have been proposed so far. Almost all such subsequent works basi-
cally follow Boldyreva et al.’s revocation methodology. Let us briefly explain
Boldyreva et al.’s approach; as in IBE, each user has a (long-term) secret key
skI. At each time T , KGC broadcasts key update information kuT which is
constructed by the Complete Subtree (CS) method [21]. Remark that no secure
channel is required to send kuT to users. A user can compute a decryption
key dkI,T from kuT and own skI if the user is not revoked at T . Due to the
CS method, the size of kuT is O(r log(n/r)), where n is the number of maxi-
mum users and r is the number of revoked users. Thus, Bolyreva et al. RIBE
scheme is scalable. The first adaptively secure RIBE scheme was proposed by
Libert and Vergnaud [20]. Seo and Emura extended the Boldyreva et al.’s secu-
rity notion to consider more practical threats; decryption key exposure resistance
(DKER) [28,30]. Intuitively, this notion considers the case where several decryp-
tion keys dkI∗,T for the target identity I∗ are leaked to an adversary but the
target decryption key dkI∗,T ∗ is not exposed. This notion is important where
the secret key is stored in physically secure devices such as USB pen drives to
be isolated from the Internet but decryption keys are stored in weaker device
such as a smart phone. They also proposed the first scalable RIBE scheme with
adaptive security with DKER. The Seo-Emura RIBE is based on the Waters
IBE [35], so that long public parameters are inevitable. Since there exist several
efficient IBE schemes, it is quite natural to ask

whether we attain an adaptively secure RIBE scheme with DKER, which
achieves similar performance to efficient IBE schemes, in particular, short
public parameters in prime-order groups.

Although several RIBE schemes are proposed so far [5,7,8,12,16,22,34], none of
them achieves adaptive security against decryption key exposure and short para-
meters (in the sense of constant public parameters and prime-order groups) at
the same time. We found that the answer is not trivial due to the following
reasons. Basically, there are two approaches to achieving constant-size pub-
lic parameter IBE: One is to use strong assumptions such as static ones in
composite-order groups and q-type ones (e.g., [11,37]); and the other is to apply

434 Y. Watanabe et al.

the dual system encryption methodology [36] in either prime-order or composite-
order groups. Therefore, if we want to realize an RIBE scheme with constant-size
public parameter under static assumptions in prime-order groups, it is quite nat-
ural to apply the latter approach for our purpose.

Unfortunately, there exists a subtle obstacle in applying the dual system
encryption methodology for adaptive security with decryption key exposure resis-
tance. In fact, Lee observed such an obstacle [15] and also, basing on his observa-
tion, pointed out a flaw of an Revocable Hierarchical IBE (RHIBE) scheme [31].
Let us briefly review such an obstacle. In the dual system encryption frame-
work, ciphertexts and secret keys can be transformed into semi-functional ones.
Normal ciphertexts can be decrypted with either a normal or semi-functional
key, whereas semi-functional ciphertexts can be decrypted with only a normal
secret key. In the security proof, a normal challenge ciphertext and secret keys
are transformed into their semi-functional forms one by one. In the process of
changing some normal key (called a target key) into its semi-functional form,
a simulator has to embed some function f into public parameters. Thus, the
simulator can generate randomness rC := f(I∗) for the challenge ciphertext, as
well as randomness rK := f(I) for the target key, where I∗ is the target identity
and I is an identity such that I �= I∗. The proof goes well since f is a pairwise
independent function and I �= I∗, i.e., rC is independent of rK from an adversar-
ial view in the information-theoretic sense. To the best of our knowledge, such
a pairwise independent function f is necessary for proving security of all of the
currently-known IBE schemes using the dual system encryption methodology.
On the other hand, an adversary against the security game of RIBE can get not
only a challenge ciphertext for I∗ but also a secret key for I∗ (see Definition 1).
Therefore, we cannot argue that randomness rC for the challenge ciphertext and
randomness rK for the secret key are independent of each other from the view
point of the adversary, since it holds rC = rK = f(I∗).

Lee [15] introduced a way to circumvent the above obstacle and also proposed
provably secure RHIBE scheme in the adaptive adversary model. Since we can
consider a 1-level HIBE as an IBE scheme, Lee’s RHIBE can be considered as
an adaptively secure RIBE with DKER and short public parameters. We note
that, however, his approach essentially used composite-order bilinear groups.
Moreover, there are other RHIBE schemes [9,17,26,27,29,32,33], but none of
them satisfies both adaptive security with decryption key exposure resistance
and short parameters (i.e., short public parameters in prime-order groups) at the
same time. Therefore, designing an adaptively secure RIBE scheme with DKER
and short parameters (possibly through the dual system encryption approach)
is still open.

1.1 Our Contribution

In this paper, we propose the first adaptively secure RIBE scheme with con-
stant size public parameters in asymmetric bilinear groups of prime order. Our
RIBE scheme also supports decryption key exposure resistance (i.e., our scheme
meets the strong security notion for RIBE). The security of our scheme is proved

New Revocable IBE in Prime-Order Groups 435

under static assumptions, which are mild variants of the symmetric external
Diffie-Hellman (SXDH) assumption.

We overcome the difficulty mentioned above by the following strategy: Taking
the Seo-Emura approach [28]. Seo and Emura proposed an adaptively secure
RIBE scheme based on the Waters IBE [35], and showed a security reduction
from the Waters IBE to their RIBE scheme. Note that the Waters IBE does not
use the dual system encryption methodology, and requires long public parameters
which depend on the bit-length of identities. Therefore, by taking the Seo-Emura
approach we want to avoid the randomness correlation problem specific to dual
system encryption-based RIBE schemes. Namely, we want to make a security
reduction from some IBE scheme using the dual system encryption methodology
to our RIBE scheme. However, the Seo-Emura technique essentially requires
the secret-key re-randomization1 of the underlying IBE scheme, but almost all
of the dual system encryption-based IBE schemes in prime-order groups (e.g.,
[6,19,36]) do not have this property.

Therefore, we employ the Jutla-Roy IBE [13] (and its variant [25]) as a promis-
ing candidate of our basic IBE scheme since it allows one to publicly re-randomize
the secret key. However, the public parameter of the Jutla-Roy IBE lacks some
important elements for simulating secret keys in the security proof. In the secu-
rity proof taking the Seo-Emura approach, a simulator extracts the master key
of the underlying IBE scheme by using the Boneh-Boyen technique [3], and cre-
ates a secret key skI∗ or decryption key dkI∗,T for any T , where I∗ is the chal-
lenge identity and T is a time period such that it is not the challenge one. The
Boneh-Boyen technique requires some group elements that contain the master key
in the exponent in the public parameter of the underlying IBE, however the orig-
inal Jutla-Roy IBE does not contain them (For details, see Sect. 3). Hence, we
modify the Jutla-Roy IBE so that the Seo-Emura technique can be applied to it,
and we prove the security under the Augmented Decisional Diffie-Hellman on G1

(ADDH1), which is a new static assumption, and Decisional Diffie-Hellman on G2

(DDH2) assumptions. The ADDH1 assumption is newly introduced in this paper,
and therefore it is a non-standard one. However, this assumption is not so com-
plicated and similar to the previously used assumption in [24]. The security of the
ADDH1 assumption is proved in the generic bilinear group model.

We then propose an RIBE scheme based on the Jutla-Roy IBE, and the
security is proved by making a security reduction from the modified Jutla-Roy
IBE to the RIBE scheme.2 As a result, we obtain the first RIBE scheme that
achieves adaptive security with decryption key exposure resistance and constant-
size public parameters in prime-order asymmetric bilinear groups. Furthermore,
our proof technique provides a better reduction loss, which is elaborated in the
next paragraph.

1 It means that each secret key can be re-randomized with fresh randomness.
2 This situation is the same as that of Ishida et al.’s construction [12]. Since the

Kiltz-Galindo IB-KEM [14] is not directly applicable due to the same reason, they
constructed a variant of the Kiltz-Galindo IB-KEM, and then showed a security
reduction from the variant scheme to their scheme.

436 Y. Watanabe et al.

Table 1. Efficiency comparison among adaptively secure RIBE schemes with decryp-
tion key exposure resistance.

Efficiency Comparison. We give an efficiency comparison in Table 1. All of the
schemes meet adaptive security with decryption key exposure resistance. We use
the KUNode algorithm for efficient revocation as in previous RIBE schemes (For
details, see Sect. 2 or [21]). Therefore, the sizes of secret keys and key updates in
every scheme are O(log n) and O(r log(n/r)), respectively, due to the KUNode
algorithm. Lee’s scheme [15] is less efficient than the others since it is con-
structed over composite-order bilinear groups. Our scheme is more efficient than
the Seo-Emura RIBE in terms of constant-size public parameters and asymmet-
ric pairings, and other parameters are comparable to those of the Seo-Emura
RIBE. In addition, our proof technique provides a better reduction loss than
that of the Seo-Emura RIBE. More precisely, the reduction loss of our scheme
is O(q1q|T |), whereas that of the Seo-Emura RIBE is O(�q2|T |), where � is the
bit-length of identity, q is the maximum number of queries in the security game,
q1 is the maximum number of queries before the challenge phase in the security
game, and |T | is the number of time periods in the schemes.

New Revocable IBE in Prime-Order Groups 437

1.2 Paper Organization

In Sect. 2, we describe notation and definitions throughout this paper. In Sect. 3,
we propose an IBE scheme, which is used as the underlying IBE scheme of
our RIBE scheme, based on the Jutla-Roy IBE. In Sect. 4, we show the first
adaptively secure RIBE scheme with DKER and short public parameters in
prime-order groups, and we conclude in Sect. 5.

2 Preliminaries

Notation. In this paper, “probabilistic polynomial-time” is abbreviated as
“PPT”. For a prime p, let Zp := {0, 1, . . . , p − 1} and Z

×
p := Zp \ {0}. If we

write (y1, y2, . . . , ym) ← A(x1, x2, . . . , xn) for an algorithm A having n inputs
and m outputs, it means to input x1, x2, . . . , xn into A and to get the resulting
output y1, y2, . . . , ym. We write (y1, y2, . . . , ym) ← AO(x1, x2, . . . , xn) to indicate
that an algorithm A that is allowed to access an oracle O takes x1, x2, . . . , xn

as input and outputs (y1, y2, . . . , ym). If X is a set, we write x
$←X to mean the

operation of picking an element x of X uniformly at random. We use λ as a secu-
rity parameter. M, I, and T denote sets of plaintexts, IDs, and time periods,
respectively, which are determined by the security parameter λ.

Bilinear Groups. A bilinear group generator G is an algorithm that
takes a security parameter λ as input and outputs a bilinear group
(p,G1,G2,GT , g1, g2, e), where p is a prime, G1, G2, and GT are multiplica-
tive cyclic groups of order p, g1 and g2 are (random) generators of G1 and G2,
respectively, and e is an efficiently computable and non-degenerate bilinear map
e : G1 × G2 → GT with the following bilinear property: For any u, u′ ∈ G1 and
v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′).

A bilinear map e is called symmetric or a “Type-1” pairing if G1 = G2. Oth-
erwise, it is called asymmetric. In the asymmetric setting, e is called a “Type-2”
pairing if there is an efficiently computable isomorphism from G2 to G1. If no effi-
ciently computable isomorphism between G1 and G2 is known, then it is called a
“Type-3” pairing. Throughout this paper, we focus on the Type-3 pairing. Type-3
is the most efficient setting since compared to Type-1, the size of representation
of G1 in the Type-3 setting is smaller and whole operations in the Type-3 setting
are more efficient; and compared to Type-2, the size of representation of G2 in
the Type-3 setting is smaller and group operations in G2 in the Type-3 are more
efficient. For details, see [10].

KUNode Algorithm. To reduce costs of a revocation process, we use a binary
tree structure and apply the following KUNode algorithm as in the previous
RIBE schemes [2,20,28]. KUNode(BT, RL, T) takes as input a binary tree BT,
a revocation list RL, and a time period T ∈ T , and outputs a set of nodes.
When η is a non-leaf node, then we write ηL and ηR as the left and right child
of η, respectively. When η is a leaf node, Path(BT, η) denotes the set of nodes
on the path from η to the root. Each user is assigned to a leaf node. If a user

438 Y. Watanabe et al.

who is assigned to η is revoked on a time period T ∈ T , then (η, T) ∈ RL.
KUNode(BT, RL, T) is executed as follows. It sets X := ∅ and Y := ∅. For
any (ηi, Ti) ∈ RL, if Ti ≤ T then it adds Path(BT, ηi) to X (i.e., X := X ∪
Path(BT, ηi)). That is, KUNode adds at most r log n nodes to X where r = |RL|
and n is the number of leaves of BT. Then, for any η ∈ X , if ηL /∈ X , then it adds
ηL to Y. If ηR /∈ X , then it adds ηR to Y. That is, KUNode adds at most r log n
nodes to Y. Actually, due to the result of [21], the size of Y is O(r log(n/r)),
and the time complexity is O(log log n). Finally, it outputs Y if Y �= ∅. If Y = ∅,
then it adds root to Y and outputs Y.

Revocable Identity-Based Encryption. An RIBE scheme Π consists of
seven-tuple algorithms (Setup, SKGen, KeyUp, DKGen, Enc, Dec, Revoke) defined
as follows: For simplicity, we omit a public parameter in the input of all algo-
rithms except for the Setup algorithm.

– (mpk,msk,RL, st) ← Setup(λ,N): A probabilistic algorithm for setup. It
takes a security parameter λ and the maximum number of users N as input
and outputs a public parameter mpk, a master secret key msk, an initial
revocation list RL = ∅ and a state st.

– (skI, st) ← SKGen(st, I): An algorithm for private key generation. It takes st
and an identity I ∈ I as input and outputs a secret key skI and updated state
information st.3

– kuT ← KeyUp(msk, st, RL, T): An algorithm for key update generation. It
takes msk, state st, a current revocation list RL, and a time period T as
input, and then outputs key update kuT .

– dkI,T or ⊥ ← DKGen(skI, kuT): A probabilistic algorithm for decryption key
generation. It takes skI and kuT as input and then outputs a decryption key
dkI,T at T or ⊥ if I has been revoked by T .

– CI,T ← Enc(M, I, T): A probabilistic algorithm for encryption. It takes M ∈
M, I ∈ I, and T ∈ T as input and then outputs a ciphertext CI,T .

– M or ⊥ ← Dec(dkI,T , CI,T): A deterministic algorithm for decryption. It takes
dkI,T and CI,T as input and then outputs M or ⊥.

– RL ← Revoke(I, T,RL, st): An algorithm for revocation. It takes (I, T) ∈
I×T , the current revocation list RL, and a state st as input and then outputs
an updated revocation list RL.

In the above model, we assume that Π meets the following correctness property:
For all security parameter λ ∈ N, all (mpk,msk,RL, st) ← Setup(λ,N), all
M ∈ M, all I ∈ I, all T ∈ T , if I is not revoked on T ∈ T , it holds that
M = Dec(DKGen(SKGen(st, I),KeyUp(msk, st, RL, T)),Enc(M, I, T)).

We describe the notion of indistinguishability against chosen plaintext attack
(IND-RID-CPA). Note that this notion also captures decryption key exposure
resistance, which was introduced by Seo and Emura [28], and this security model
is the strongest known one. Let A be a PPT adversary, and A’s advantage against

3 We consider the SKGen algorithm in the sense of history-free RHIBE [32,33], i.e.,
the algorithm takes st, rather than msk, as input.

New Revocable IBE in Prime-Order Groups 439

IND-RID-CPA security is defined by

AdvIND-RID-CPA
Π,A (λ,N) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b′ = b

(mpk,msk,RL, st) ← Setup(λ,N),
(M∗

0 ,M∗
1 , I∗, T ∗, state) ← AO(find,mpk),

b
$← {0, 1},

C∗
I∗,T ∗ ← Enc(M∗

b , I∗, T ∗),
b′ ← AO(guess, C∗

I∗,T ∗ , state)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Here, O is a set of oracles {SKGen(·), KeyUp(·), Revoke(·, ·), DKGen(·, ·)}
defined as follows.

SKGen(·): For a query I ∈ I, it stores and returns SKGen(st, I).
KeyUp(·): For a query T ∈ T , it stores and returns KeyUp(msk,RL, st, T).
Revoke(·, ·): For a query (I, T) ∈ I × T , it updates a revocation list RL by

running Revoke(I, T,RL, st).
DKGen(·, ·): For a query (I, T) ∈ I × T , it finds skI and kuT generated

by the SKGen and KeyUp oracles, respectively (If skI has not been gen-
erated yet, DKGen executes (skI, st) ← SKGen(st, I)).4 DKGen returns
DKGen(skI, kuT) and stores it unless it is ⊥.

The above oracles represent the following realistic threats and situations:
SKGen represents the collusion among users as in ordinary IBE. A can access
KeyUp since key updates are broadcasted by the KGC. The reason why A can
access Revoke is an RIBE scheme should be secure against any situations in
terms of the revocation list. DKGen represents decryption key exposure.

We then impose the following restrictions on A. Specifically, the first three
restrictions are placed to take into account practical situations, and we circum-
vent some trivial attacks by the other restrictions.

1. KeyUp(·) and Revoke(·, ·) can be queried at a time period which is later than
or equal to that of all previous queries.

2. Revoke(·, ·) cannot be queried at a time period T after issuing T to KeyUp(·).
3. DKGen(·, ·) cannot be queried at T before issuing T to KeyUp(·).
4. If I∗ was issued to SKGen(·) at T ′, then (I∗, T) must be issued to Revoke(·, ·)

such that T ′ ≤ T ≤ T ∗.
5. (I∗, T ∗) cannot be issued to DKGen(·, ·).

Definition 1. An RIBE scheme Π is said to be IND-RID-CPA secure if for all
PPT adversaries A, AdvIND-RID-CPA

Π,A (λ,N) is negligible in λ.

4 Contrary to skI, kuT is already stored by the KeyUp oracle due to the restrictions
on the oracles.

440 Y. Watanabe et al.

3 The Basic IBE Scheme

We begin with reviewing Seo and Emura’s approach for transforming IBE to
RIBE [28]. Although their approach is not generic, it seems quite broadly applica-
ble to the other IBE schemes. We find some requirements for applying their
technique. Then, we propose an IBE scheme satisfying such the requirements,
which has short public parameters and over prime-order bilinear groups.

Seo and Emura constructed an RIBE scheme based on the Waters IBE [35]
and provided as security reduction to the Waters IBE. In the reduction, almost
all queries can be easily simulated due to the adaptive security of the underlying
IBE. The most non-trivial part in the reduction is simulating decryption keys for
(I∗, T), where I∗ is the target identity, since the security of usual IBE scheme
does not handle this case related to I∗. To this end, Seo and Emura employed
two techniques; the Boneh-Boyen technique [3] and secret-key re-randomization.

The Boneh-Boyen technique is originally for selectively secure scheme5; that
is, if the simulator knows the target (time T ∗ in our case) in advance, then the
simulator embeds it into public parameters so that the simulator can simulate
all the other queries not related to T ∗.6 The Boneh-Boyen technique enables the
simulator to compute decryption keys for (I∗, T) with biased distribution, where
T is not the target time. The secret-key re-randomization can resolve the biased
distribution by forcing that all decryption keys have uniform randomness.

From the above interpretation, we find two requirements for the input IBE;
(1) the secret-key re-randomization property and (2) applicability of the Boneh-
Boyen technique. The latter requirement can be further segmentalized. (2-1)
Each component of a secret key contains at most one component of a master key
and (2-2) each component of the master-key is available in the public parame-
ters in some form of elements in source-groups (of bilinear groups). The former
is due to that the Boneh-Boyen technique can extract at most one master-key
component from each secret-key component. The latter is due to that in the secu-
rity reduction the master-key is embedded into key updates that consist of only
elements in source-groups by using the master-key-related public parameters.7

The Waters IBE satisfies all the above requirements, but most of dual-system-
encryption-based IBE schemes in prime-order groups do not. For example, the
first scheme by Waters [36] and almost all of the IBE schemes using dual pairing
vector spaces (DPVS) (e.g.,[6,19]) do not satisfy any requirement, in particular,
the public re-randomization requirement.

5 Although our goal is adaptive security, the polynomial reduction loss enables one to
use the selective security technique in terms of (polynomial-size) time period.

6 Although the decryption key (I∗, T) is related to the target identity I∗, it is not
related to T ∗ so that the Boneh-Boyen technique is applicable.

7 In (usual-but-not-all) pairing-based IBE schemes, private keys consist of elements
in source-groups. Since both key updates and secret keys of RIBE are materials for
decryption keys, they also should consist of source-group elements.

New Revocable IBE in Prime-Order Groups 441

3.1 Modified Jutla-Roy IBE

We employ a modified version of the Jutla-Roy IBE [13] (and its variant [25]).
The original scheme satisfies two requirements (1) and (2-1). In this subsection,
we modify the Jutla-Roy IBE to additionally satisfy the requirement (2-2).

The master key of the Jutla-Roy IBE is (y0, x0) ∈ Z
2
p. To get a basic IBE

scheme for our RIBE scheme based on the Jutla-Roy IBE, we add the mas-
ter key in the forms of elements in G1 and G2 with a random mask β ∈ Z

×
p ,

respectively, to the public parameters. Specifically, we add four group elements
(χ1 := g

β(−x0α+y0)
1 , gx0β

2 , gy0β
2 , g

1/β
2) to the original public parameter. However,

we then cannot apply the original security proof of the Jutla-Roy IBE, and so we
add a new twist to the proof. The modified Jutla-Roy IBE Πjr =(Init, KeyGen,
IBEnc, IBDec) is constructed as follows.8

– Init(λ): It runs (G1,G2,GT , p, g1, g2, e) ← G. It chooses x0, y0, x1, y1, x2, y2,

x3, y3
$← Zp and α, β

$← Z
×
p , and sets

z = e(g1, g2)−x0α+y0 , u1 := g−x1α+y1
1 , w1 := g−x2α+y2

1 ,

h1 := g−x3α+y3
1 , χ1 := g

β(−x0α+y0)
1 .

It outputs PP := (g1, gα
1 , u1, w1, h1, χ1, g2, g

x1
2 , gx2

2 , gx3
2 , gy1

2 , gy2
2 , gy3

2 , z, gx0β
2 ,

gy0β
2 , g

1
β

2), MK := (gy0
2 , g−x0

2).
– KeyGen(PP,MK, I): Parse MK as (d′

1, d
′
2). It chooses r

$← Zp and computes

D1 := (gy2
2)r, D′

1 := d′
1

(

(gy1
2)Igy3

2

)r

,

D2 := (gx2
2)−r, D′

2 := d′
2

(

(gx1
2)Igx3

2

)−r

, D3 := gr
2.

It outputs SKI := (D1,D
′
1,D2,D

′
2,D3).

– IBEnc(PP, I,M): It chooses t, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzt, C1 := gt
1, C2 := (gα

1)t, C3 :=
(

uI
1w

tag
1 h1

)t

.

It outputs C := (C0, C1, C2, C3, tag).
– IBDec(PP, SKI, C): Parse SKI and C as (D1,D

′
1,D2,D

′
2,D3) and (C0, C1, C2,

C3, tag), respectively. It computes

M =
C0e(C3,D3)

e(C1,D
tag
1 D′

1)e(C2,D
tag
2 D′

2)
.

8 Due to space limitation, we omit the syntax of IBE.

442 Y. Watanabe et al.

We show the correctness of Πjr. Suppose that skI = (D1,D
′
1,D2,D

′
2,D3)

and C = (C0, C1, C2, C3, tag) are correctly generated. Then, we have

C0e(C3,D3)
e(C1,D

tag
1 D′

1)e(C2,D
tag
2 D′

2)

= Me(g1, g2)(−x0α+y0)t
e(gt(I(−x1α+y1)+tag(−x2α+y2)−x3α+y3)

1 , gr
2)

e(gt
1, g

y2rtag+y0+r(y1I+y3)
2)e(gαt

1 , g
−x2rtag−x0−r(x1I+x3)
2)

= Me(g1, g2)(−x0α+y0)t
1

e(gt
1, g

y0
2)e(gαt

1 , g−x0
2)

= M.

3.2 Proof of Security

We describe complexity assumptions used for proving the security proof of the
modified Jutla-Roy IBE.

First, we give the definition of the decisional Diffie-Hellman (DDH) assump-
tion in G1 and G2, which are called the DDH1 and DDH2 assumptions, respec-
tively. We say that the SXDH assumption holds if both the DDH1 and DDH2
assumptions hold. Let A be a PPT adversary and we consider A’s advantage
against the DDHi problem (i = 1, 2) as follows.

AdvDDHi
G,A (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

b′ = b

D := (p,G1,G2,GT , g1, g2, e) ← G,

c1, c2
$← Zp, b

$← {0, 1},

if b = 0 then Z := gc1c2
i , else Z

$← Gi,
b′ ← A(λ,D, gc1

i , gc2
i , Z)

⎤

⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣

.

Definition 2 (DDHi Assumption). The DDHi assumption relative to a gen-
erator G holds if for all PPT adversaries A, AdvDDHi

G,A (λ) is negligible in λ.

We then introduce a new assumption based on the DDH1 assumption, which
is called Augmented DDH1 (ADDH1) assumption. Let A be a PPT adversary
and we consider A’s advantage against the ADDH1 problem as follows.

AdvADDH1
G,A (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎣

b′ = b

D := (p,G1,G2,GT , g1, g2, e) ← G(λ),
d, c1, c2

$← Zp, c3
$← Z

×
p , b

$← {0, 1},

if b = 0 then Z := gc1c2
1 , else Z

$← G1,

b′ ← A(λ,D, gc1
1 , gc2

1 , gdc3
1 , gd

2 , g
c2c3
2 , gdc3

2 , g
1

c3
2 , Z)

⎤

⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Definition 3 (ADDH1 Assumption). The ADDH1 assumption relative to a
generator G holds if for all PPT adversaries A, AdvADDH1

G,A (λ) is negligible in λ.

This assumption is similar to the DDH2v assumption (“v” stands for “vari-
ant”), which was used for constructing the Lewko-Waters IBE [18] in prime-
order groups in [24]. Similarly, we can also consider the DDH1v assumption.9

9 We give the formal definition of the DDH2v and DDH1v assumptions in the full
version of this paper.

New Revocable IBE in Prime-Order Groups 443

The authors of [24] argued that the DDH2v (resp., DDH1v) assumption is the
minimal assumption when one tries to put some information about c1 or c2 in
an instance of DDH1 (resp., DDH2) while staying in the hardness of the prob-
lem. We define the ADDH1 problem by removing gd

1 from the DDH1v problem
and adding gdc3

1 and g
1/c3
2 . Therefore, we may say this new assumption is also

a not-so-strange one. Actually, we prove the security of this assumption in the
generic bilinear group model as follows (For the formal proof, see the full version
of this paper).

Theorem 1 (Informal). Let A be an algorithm that attempts to solve the
ADDH1 problem in the generic group model. A makes at most q queries to the
oracles computing the group actions in G1, G2, and GT , and the bilinear map e.
Then, the advantage ε of A in solving the problem is bounded by ε ≤ 3(q+11)2/4p.

We prove the security of Πjr under the above assumptions.

Theorem 2. If the ADDH1 and DDH2 assumptions hold, then the resulting
Jutla-Roy IBE Πjr is IND-ID-CPA secure.

Proof (Sketch). Our security proof is the same as that of the Jutla-Roy IBE
except that we have to care the extra terms (χ1, g

x0β
2 , gy0β

2 , g
1/β
2) that were

added to their scheme. We replace the DDH1 assumption of Jutla-Roy’s proof
with “DDH1 with the additional instance”, the ADDH1 assumption, in order
to treat these extra terms. More specifically, we need the ADDH1 assumption
in the proof of indistinguishability of the semi-functional challenge ciphertext
and the random element in the ciphertext space. In the proof, the simula-
tor B receives the DDH1 instance (gc1

1 , gc2
1 , Z) with the additional instance

(gdc3
1 , gd

2 , g
c2c3
2 , gdc3

2 , g
1/c3
2), where Z = gc1c2

1 or Z
$← G1. B chooses α

$← Z
×
p

and (implicitly) sets x0 := c2, y′
0 := d, y0 := αx0 + y′

0, and β := c3. B then can
create the elements as follows: χ1 := gdc3

1 , gβx0
2 := gc2c3

2 , gβy0
2 := (gc2c3

2)αgdc3
2 ,

and g
1/β
2 := g

1/c3
2 . Furthermore, gd

2 is used for creating z := e(g1, gd
2). For the

full proof, see the full version. ��

4 Our Construction

We construct an RIBE scheme based on the original Jutla-Roy IBE, and prove
that the security of the proposed scheme relies on that of the modified Jutla-Roy
IBE. An RIBE scheme Π = (Setup, SKGen, KeyUp, DKGen, Enc, Dec, Revoke)
is constructed as follows.

– Setup(λ,N): It runs (G1,G2,GT , p, g1, g2, e) ← G. It chooses x0, y0, x1, y1,

x2, y2, x3, y3, x4, y4, x5, y5
$← Zp and α

$← Z
×
p , and sets

z = e(g1, g2)−x0α+y0 , u1 := g−x1α+y1
1 , w1 := g−x2α+y2

1 ,

h1 := g−x3α+y3
1 , v1 := g−x4α+y4

1 , v̂1 := g−x5α+y5
1 ,

444 Y. Watanabe et al.

Let BT be a binary tree that has N leaves, where N is a power of two for
simplicity. It outputs mpk := (g1, gα

1 , u1, w1, h1, v1, v̂1, g2, g
x1
2 , gx2

2 , . . . , gx5
2 , gy1

2 ,
gy2
2 , . . . , gy5

2 , z), msk := (gy0
2 , g−x0

2), st := BT, and RL := ∅.
– SKGen(st, I): Parse st as BT. It randomly chooses an unassigned leaf η from

BT, and stores I in the node η. For each node θ ∈ Path(BT, η), it recalls Pθ if
it was defined. Otherwise, it chooses Pθ

$← G2 and stores Pθ in the node θ.
Then, it chooses rθ

$← Zp and it computes

SK1,θ := (gy2
2)rθ , SK′

1,θ := Pθ

(

(gy1
2)Igy3

2

)rθ

,

SK2,θ := (gx2
2)−rθ , SK′

2,θ := Pθ

(

(gx1
2)Igx3

2

)−rθ

, SK3,θ := grθ
2 .

It outputs skI := {(SK1,θ, SK′
1,θ, SK2,θ, SK′

2,θ, SK3,θ)}θ∈Path(BT,η).
– KeyUp(msk, st, RL, T): Parse msk as (MK1, MK2). For each node θ ∈
KUNode(BT, RL, T), it recalls Pθ if it was defined. Otherwise, it chooses
Pθ

$← G2 and stores Pθ in the node θ. It chooses sθ
$← Zp and computes

KU′
1,θ := P−1

θ MK1
(

(gy4
2)T gy5

2

)sθ

, KU′
2,θ := P−1

θ MK2
(

(gx4
2)T gx5

2

)−sθ

, KU3,θ := gsθ
2 .

It outputs kuT := {(KU′
1,θ, KU

′
2,θ, KU3,θ)}θ∈KUNode(BT,RL,T).

– DKGen(skI, kuT): Parse skI and kuT as {(SK1,θ, SK′
1,θ, SK2,θ, SK′

2,θ, SK3,θ)}θ∈Θsk

and {(KU′
1,θ, KU

′
2,θ, KU3,θ)}θ∈Θku

, respectively. It outputs ⊥ if Θsk ∩ Θku = ∅.

Otherwise, for some θ ∈ Θsk∩Θku, it computes as follows. It chooses R,S
$← Zp

and computes

DK1 := SK1,θ(g
y2
2)R, DK′

1 := SK′
1,θKU

′
1,θ

(

(gy1
2)Igy3

2

)R(

(gy4
2)T gy5

2

)S

,

DK2 := SK2,θ(gx2
2)−R, DK′

2 := SK′
2,θKU

′
2,θ

(

(gx1
2)Igx3

2

)−R(

(gx4
2)T gx5

2

)−S

,

DK3 := SK3,θg
R
2 , DK4 := KU3,θg

S
2 .

It outputs dkI,T := (DK1, DK′
1, DK2, DK

′
2, DK3, DK4).

– Enc(M, I, T): It chooses t, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzt, C1 := gt
1, C2 := (gα

1)t, C3 :=
(

uI
1w

tag
1 h1

)t

, C4 := (vT
1 v̂1)t.

It outputs CI,T := (C0, C1, C2, C3, C4, tag).
– Dec(dkI,T , CI,T): Parse dkI,T and CI,T as (DK1, DK′

1, DK2, DK
′
2, DK3, DK4) and

(C0, C1, C2, C3, C4, tag), respectively. It computes

M =
C0e(C3, DK3)e(C4, DK4)

e(C1, DK
tag
1 DK′

1)e(C2, DK
tag
2 DK′

2)
.

– Revoke(I, T,RL, st): Output RL := RL ∪ {(I, T)}.

New Revocable IBE in Prime-Order Groups 445

Due to space limitation, we give the correctness of our RIBE scheme Π in the
full version. The security of the above construction is given as follows.

Theorem 3. If the ADDH1 and DDH2 assumptions holds, then the resulting
RIBE scheme Π is IND-RID-CPA secure.

We show the following lemma, and we obtain Theorem 3 as a corollary of the
lemma.

Lemma 1. The proposed RIBE scheme Π is IND-RID-CPA secure as long as
the modified Jutla-Roy IBE Πjr, which is described in Section 3.1, is IND-ID-
CPA secure.

Proof (Sketch). Due to space limitation, we here give a sketch of the proof.
For the full proof, see the full version. We construct a PPT algorithm B which
breaks the IND-ID-CPA security of the modified Jutla-Roy IBE Πjr using a
PPT adversary A which breaks the IND-RID-CPA security of Π.

At the beginning, B receives a public parameter PP of Πjr. B guesses what
time period T ∗ will be submitted from A in the challenge phase, and it holds
with probability 1/|T |. We assume B’s guess is right. B chooses x̃, x̂, ỹ, ŷ

$← Zp

and (implicitly) sets

x4 := βx0 + x̃, x5 := −T ∗βx0 + x̂, y4 := βy0 + ỹ, y5 := −T ∗βy0 + ŷ,

− x4α + y4 = −(βx0 + x̃)α + βy0 + ỹ = β(−x0α + y0) − αx̃ + ỹ,

− x5α + y5 = −(−T ∗βx0 + x̂)α − T ∗βy0 + ŷ = −T ∗β(−x0α + y0) − αx̂ + ŷ.

Then, B computes

gx4
2 := gβx0

2 gx̃
2 , gx5

2 := (gβx0
2)−T ∗

gx̂
2 , gy4

2 := gβy0
2 gỹ

2 , gy5
2 := (gβy0

2)−T ∗
gŷ
2 ,

v1 := g−x4α+y4
1 = χ1(gα

1)−x̃gỹ
1 , v̂1 := g−x5α+y5

1 = χ−T ∗
1 (gα

1)−x̂gŷ
1 ,

and sends mpk to A.
Since B changes a way to simulate oracles based on A’s behavior, B has to

guess whether A will issue the target identity I∗ to the SKGen oracle, and when
it will first issue I∗ to the (SKGen and) DKGen oracle. The probability that
B’s guess is right is 1/2(q1 + 1), where q1 is the maximum number of identities
issued to the SKGen and DKGen oracles before the challenge phase. In this
sketch, we only show the case that A never issues the target identity I∗ to the
SKGen oracle, and that B knows when the target identity I∗ is first issued to
the DKGen oracle. Although B does not know the master key (gy0

2 , g−x0
2), it can

easily return a secret key skI and a decryption key dkI,T for any I (�= I) and T
by using the KeyGen oracle of the modified Jutla-Roy IBE Πjr. However, B has
to respond to the decryption-key query (I∗, T) for any T without the knowledge
of the master key. We show how B creates the decryption key dkI∗,T as follows.

446 Y. Watanabe et al.

B chooses r, s
$← Zp and computes

DK1 := (gy2
2)r, DK′

1,θ := ((gy1
2)I

∗
gy3
2)r((gy4

2)T gy5
2)s(g

1
β

2)− T ỹ+ŷ
T −T ∗ ,

DK2 := (gx2
2)−r, DK′

2 := ((gx1
2)I

∗
gx3
2)−r((gx4

2)T gx5
2)−s(g

1
β

2)
T x̃+x̂
T −T ∗ ,

DK3 := gr
2, DK4 := gs

2(g
1
β

2)− 1
T −T ∗ .

B sends dkI∗,T := (DK1, DK′
1, DK2, DK

′
2, DK3, DK4) to A. The simulation goes well

since it holds that

((gy1
2)I

∗
gy3
2)r((gy4

2)T gy5
2)s(g

1
β

2)− T ỹ+ŷ
T −T ∗

= gy0
2 ((gy1

2)I
∗
gy3
2)r(g(T−T ∗)βy0+T ỹ+ŷ

2)sg
− T ỹ+ŷ

(T −T ∗)β

2 g−y0
2

= gy0
2 ((gy1

2)I
∗
gy3
2)r(g(T−T ∗)βy0+T ỹ+ŷ

2)s(g(T−T ∗)βy0+T ỹ+ŷ
2)− 1

(T −T ∗)β

= gy0
2 ((gy1

2)I
∗
gy3
2)r((gy4

2)T gy5
2)s′

,

((gx1
2)I

∗
gx3
2)−r((gx4

2)T gx5
2)−s(g

1
β

2)
T x̃+x̂
T −T ∗

= g−x0
2 ((gx1

2)I
∗
gx3
2)−r(g(T−T ∗)βx0+T x̃+x̂

2)−sg
T x̃+x̂

(T −T ∗)β

2 gx0
2

= g−x0
2 ((gx1

2)I
∗
gx3
2)−r(g(T−T ∗)βx0+T x̃+x̂

2)−s(g(T−T ∗)βx0+T x̃+x̂
2)

1
(T −T ∗)β

= g−x0
2 ((gx1

2)I
∗
gx3
2)−r((gx4

2)T gx5
2)−s′

,

gs
2(g

1
β

2)− 1
T −T ∗ = g

s− 1
(T −T ∗)β

2 = gs′
2 ,

where s′ = s − 1
(T−T ∗)β .

In the challenge phase, B receives (M∗
0 ,M∗

1 , I∗, T ∗) from A. It then
sends (M∗

0 ,M∗
1 , I∗) to the challenger in the IND-ID-CPA game of Πjr.

After receiving (C∗
0 , C∗

1 , C∗
2 , C∗

3 , tag∗) from the challenger, B sets C∗
4 :=

(C∗
2)−(T ∗x̃+x̂)(C∗

1)T ∗ỹ+ŷ. Since C∗
4 = (vT ∗

1 v̂1)t = g
t(−T ∗x̃α+T ∗ỹ−x̂α+ŷ)
1 =

g
−tα(T ∗x̃+x̂)+t(T ∗ỹ+ŷ)
1 , this is well-formed. B sends (C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 , tag∗) to
A. When A outputs b′, then B transfer it.

Thus, we have AdvIND-RID-CPA
Π,A (λ) = 2|T |(q1 + 1)AdvIND-ID-CPA

Πjr,B (λ). There-
fore, we have AdvIND-RID-CPA

Π,A (λ) ≤ 8|T |(q1 + 1)AdvADDH1
G,B (λ) + 2|T |q(q1 +

1)AdvDDH2
G,B (λ), where q is the maximum number of queries issued to the KeyGen

oracle in the IND-ID-CPA game of Πjr. ��

5 Concluding Remarks

In the context of identity-based encryption schemes, it is natural to employ
dual system encryption methodology. However, as aforementioned in the intro-
duction, if we consider revocation functionality in the identity-based cryptosys-
tem, there is a subtle obstacle in an approach using dual system encryption
methodology, in particular, in prime-order groups. To circumvent this obstacle,

New Revocable IBE in Prime-Order Groups 447

we revisited the proof of Seo-Emura RIBE scheme [28], which does not uses dual
system encryption methodology, but give a reduction to the IND-CPA security
of the underlying IBE scheme. We extract several important requirements for
Seo-Emura approach, and then construct a new IBE scheme satisfying all such
the requirements, based on Jutla-Roy IBE scheme. Then, we construct an RIBE
based on the proposed modified Jutla-Roy IBE scheme. We prove the IND-RID-
CPA security of the proposed scheme under mild variants of the SXDH assump-
tion, which are static and generically secure. Furthermore, we can extend the
proposed scheme to guarantee the CCA security by using the technique in [12]
and also to a server-aided scheme [23] (For details, see the full version).

Acknowledgments. We would like to thank anonymous reviewers for valuable com-
ments. Yohei Watanabe was supported by Grant-in-Aid for JSPS Fellows Grant Num-
ber JP16J10532. Keita Emura was supported by JSPS KAKENHI Grant Number
JP16K00198.

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). doi:10.1007/11693383 22

2. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: Proceedings of the 15th ACM Conference on Computer and Communi-
cations Security, CCS 2008, pp. 417–426. ACM, New York (2008)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

5. Chen, J., Lim, H.W., Ling, S., Su, L., Wang, H.: Anonymous and adaptively secure
revocable IBE with constant size public parameters (2012). http://arxiv.org/abs/
1210.6441

6. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter identity-based encryp-
tion via asymmetric pairings. Des. Codes Crypt. 73(3), 911–947 (2014)

7. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-
based encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP
2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31448-3 29. http://eprint.iacr.org/2011/583

8. Cheng, S., Zhang, J.: Adaptive-ID secure revocable identity-based encryption
from lattices via subset difference method. In: Lopez, J., Wu, Y. (eds.) ISPEC
2015. LNCS, vol. 9065, pp. 283–297. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17533-1 20

9. Emura, K., Seo, J.H., Youn, T.: Semi-generic transformation of revocable hierarchi-
cal identity-based encryption and its DBDH instantiation. IEICE Trans. 99-A(1),
83–91 (2016)

10. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/3-540-44647-8_13
http://arxiv.org/abs/1210.6441
http://arxiv.org/abs/1210.6441
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://eprint.iacr.org/2011/583
http://dx.doi.org/10.1007/978-3-319-17533-1_20
http://dx.doi.org/10.1007/978-3-319-17533-1_20

448 Y. Watanabe et al.

11. Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006). doi:10.1007/11761679 27

12. Ishida, Y., Watanabe, Y., Shikata, J.: Constructions of CCA-secure revocable
identity-based encryption. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol.
9144, pp. 174–191. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19962-7 11

13. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 1

14. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encapsu-
lation without random oracles. Theor. Comput. Sci. 410(47–49), 5093–5111 (2009)

15. Lee, K.: Revocable hierarchical identity-based encryption with adaptive security.
Cryptology ePrint Archive, Report 2016/749 (2016)

16. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via
subset difference methods. Cryptology ePrint Archive, Report 2014/132 (2014).
http://eprint.iacr.org/

17. Lee, K., Park, S.: Revocable hierarchical identity-based encryption with shorter
private keys and update keys. Cryptology ePrint Archive, Report 2016/460 (2016).
http://eprint.iacr.org/

18. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

19. Lewko, A.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 20

20. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00862-7 1

21. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

22. Park, S., Lee, K., Lee, D.H.: New constructions of revocable identity-based encryp-
tion from multilinear maps. IEEE Trans. Inf. Forensics Secur. 10(8), 1564–1577
(2015)

23. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryp-
tion. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol.
9326, pp. 286–304. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24174-6 15

24. Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of Waters’ dual system primi-
tives using asymmetric pairings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 298–315. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30057-8 18

25. Ramanna, S.C., Sarkar, P.: Efficient (Anonymous) compact HIBE from standard
assumptions. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec
2014. LNCS, vol. 8782, pp. 243–258. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12475-9 17

26. Ryu, G., Lee, K., Park, S., Lee, D.H.: Unbounded hierarchical identity-based
encryption with efficient revocation. In: Kim, H., Choi, D. (eds.) WISA
2015. LNCS, vol. 9503, pp. 122–133. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31875-2 11

http://dx.doi.org/10.1007/11761679_27
http://dx.doi.org/10.1007/978-3-319-19962-7_11
http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-11799-2_27
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-00862-7_1
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/978-3-319-24174-6_15
http://dx.doi.org/10.1007/978-3-642-30057-8_18
http://dx.doi.org/10.1007/978-3-642-30057-8_18
http://dx.doi.org/10.1007/978-3-319-12475-9_17
http://dx.doi.org/10.1007/978-3-319-12475-9_17
http://dx.doi.org/10.1007/978-3-319-31875-2_11
http://dx.doi.org/10.1007/978-3-319-31875-2_11

New Revocable IBE in Prime-Order Groups 449

27. Seo, J.H., Emura, K.: Efficient delegation of key generation and revocation
functionalities in identity-based encryption. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 343–358. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 22

28. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 14

29. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption. Theor.
Comput. Sci. 542, 44–62 (2014)

30. Seo, J.H., Emura, K.: Revocable identity-based cryptosystem revisited: security
models and constructions. IEEE Trans. Inf. Forensics Secur. 9(7), 1193–1205 (2014)

31. Seo, J.H., Emura, K.: Adaptive-ID secure revocable hierarchical identity-based
encryption. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp.
21–38. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22425-1 2

32. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption: history-
free update, security against insiders, and short ciphertexts. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 106–123. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-16715-2 6

33. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption via history-
free approach. Theor. Comput. Sci. 615, 45–60 (2016)

34. Su, L., Lim, H.W., Ling, S., Wang, H.: Revocable IBE systems with almost
constant-size key update. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol.
8365, pp. 168–185. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04873-4 10

35. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

37. Wee, H.: Déjà Q: Encore! un petit IBE. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 9

http://dx.doi.org/10.1007/978-3-642-36095-4_22
http://dx.doi.org/10.1007/978-3-642-36095-4_22
http://dx.doi.org/10.1007/978-3-642-36362-7_14
http://dx.doi.org/10.1007/978-3-319-22425-1_2
http://dx.doi.org/10.1007/978-3-319-16715-2_6
http://dx.doi.org/10.1007/978-3-319-16715-2_6
http://dx.doi.org/10.1007/978-3-319-04873-4_10
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-662-49099-0_9
http://dx.doi.org/10.1007/978-3-662-49099-0_9

Author Index

Alsayigh, Saed 183

Boneh, Dan 149
Breier, Jakub 77

Cao, Weiqiong 363
Chen, Hua 363
Cheng, Chen-Mou 39
Cho, Jihoon 293
Choi, Kyu Young 293
Ciocarlie, Gabriela 397

David, Liron 311
Ding, Jintai 183
Dinur, Itai 293
Dobraunig, Christoph 207
Dunkelman, Orr 293

Emura, Keita 432

Fan, Limin 363

Gao, Si 363
Gehani, Ashish 397
Gross, Hannes 95
Gu, Dawu 347
Gueron, Shay 149
Güneysu, Tim 131

Hoffstein, Jeff 3
Hou, Xiaolu 77

Jia, Dingding 417
Jing, Jiwu 165
Joye, Marc 19

Keller, Nathan 293
Khati, Louiza 241
Korak, Thomas 95
Krell, Fernando 397

Kunihiro, Noboru 58, 328
Kuo, Po-Chun 39

Lancrenon, Jean 183
Li, Bao 417
Libert, Benoît 19
Lin, Jingqiang 165
List, Eik 207, 258
Lu, Xianhui 417

Ma, Xiangliang 363
Ma, Yuan 165
Mangard, Stefan 95
Mennink, Bart 223
Moon, Dukjae 293
Moradi, Amir 131
Mouha, Nicky 241

Nandi, Mridul 258

Orrù, Michele 381
Orsini, Emmanuela 381

Pipher, Jill 3
Preneel, Bart 277

Raykova, Mariana 397
RV, Saraswathy 183

Sasdrich, Pascal 131
Schanck, John M. 3
Scholl, Peter 381
Sen, Xu 347
Seo, Jae Hong 432
Silverman, Joseph H. 3
Snook, Michael 183
Standaert, François-Xavier 347

Takahashi, Yuki 328
Takayasu, Atsushi 58

Vadnala, Praveen Kumar 115
Veidberg, Aviya 293
Vergnaud, Damien 241

Wang, Weijia 347
Watanabe, Yohei 432
Whyte, William 3

Wool, Avishai 311
Wu, Wenling 363

Yang, Bo-Yin 39
Yang, Shang-Yi 39
Yu, Yu 347

Zhang, Chi 347
Zhang, Ren 277
Zhang, Zhenfei 3

452 Author Index

	Preface
	Organization
	Contents
	Public Key Implementations
	Choosing Parameters for NTRUEncrypt
	1 Introduction and Notation
	2 General Considerations
	2.1 Ring Parameters
	2.2 Private Key, Blinding Polynomial, and Message Parameters

	3 Review of the Hybrid Attack
	4 Meet in the Middle Search
	5 Rejecting Sparse (and Dense) Message Representatives
	6 Estimating the Probability of Decryption Failure
	7 Product Form Combinatorial Strength
	8 Explicit Algorithm for Computing Parameters
	8.1 Sample Parameter Generation

	9 New Parameters
	References

	Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves
	1 Introduction
	2 Encoding-Free ElGamal Schemes
	2.1 Virat's Cryptosystem
	2.2 The Chevallier-Mames--Paillier--Pointcheval Scheme

	3 New Cryptosystems
	3.1 Class Function on Elliptic Curves
	3.2 An Additive Cryptosystem
	3.3 A Multiplicative Cryptosystem

	4 Security Analysis
	4.1 Complexity Assumptions
	4.2 Semantic Security

	5 Extension
	5.1 Chameleon Hash Functions
	5.2 A Chosen-Ciphertext-Secure Construction

	A Appendix
	A.1 Public-Key Encryption
	A.2 Security Notions
	A.3 Consistent Lifting Problem

	References

	Lattice-based Cryptanalysis
	Gauss Sieve Algorithm on GPUs
	1 Introduction
	2 Preliminary
	2.1 Definition and Notation
	2.2 CUDA Programming

	3 Background
	3.1 Sieving Algorithms
	3.2 Gauss Sieve

	4 Lifting Ideal Lattices
	4.1 Lifting Prime Cyclotomic Polynomials
	4.2 Norms and Inner Products
	4.3 Lazy Rotation
	4.4 Generalizing Lifting

	5 Parallelization
	5.1 Outer Layer
	5.2 Inner Layer

	6 Implementation Details
	6.1 Vector Layout
	6.2 Instruction-Level Parallelism
	6.3 More Kernel Optimizations
	6.4 On Faster Convolution
	6.5 Heuristics

	7 Experiments
	7.1 Parallel Efficiency
	7.2 Ideal Lattices Versus General Lattices
	7.3 Chronological Behavior
	7.4 Hardness Estimation

	8 Conclusion
	References

	A Tool Kit for Partial Key Exposure Attacks on RSA
	1 Introduction
	2 Preliminaries
	3 Attacks by Solving Integer Equations
	3.1 The Attack 1
	3.2 The Attack 2
	3.3 Attack 3

	4 Attacks with the MSBs of d by Solving Modular Equations
	4.1 The Attack 4
	4.2 The Attack 5
	4.3 The Attack 6

	5 Attacks with the LSBs of d by Solving Modular Equations
	5.1 The Attack 7
	5.2 The Attack 8

	References

	Fault and Glitch Resistant Implementations
	Feeding Two Cats with One Bowl: On Designing a Fault and Side-Channel Resistant Software Encoding Scheme
	1 Introduction
	2 General Background
	2.1 Related Work
	2.2 Coding Theory Background

	3 Theoretical Analysis
	3.1 Correction Table
	3.2 Detection Table
	3.3 Coding Schemes

	4 Evaluation Methodology and Results
	4.1 Code Generation and Ranking Algorithm
	4.2 Estimated Values for Chosen Codes
	4.3 Fault Simulation
	4.4 Simulated Results

	5 Discussion
	6 Conclusions
	References

	An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order
	1 Introduction
	2 Private Circuits and the ISW Transformation
	3 A Glitch-Resistant Masked AND Gate
	3.1 1st-Order Secure AND Gate
	3.2 Higher-Order Secure AND Gate

	4 dth-Order Secure AES Implementation
	4.1 AES S-Box

	5 Implementation Results
	5.1 dth-Order AES Implementation Results

	6 Side-Channel Evaluation
	7 Conclusions
	References

	Side-channel Resistant Implementations
	Time-Memory Trade-Offs for Side-Channel Resistant Implementations of Block Ciphers
	1 Introduction
	1.1 Classical Randomized Table Countermeasure
	1.2 Compression of Lookup Table

	2 First-Order Secure Compression Scheme
	2.1 A Variant of the Compression Scheme
	2.2 Generic Compression Scheme
	2.3 Time-Memory Trade-Offs for First-Order Masking

	3 Second-Order Secure Compression Scheme
	4 Implementation Results
	5 Conclusion
	References

	Hiding Higher-Order Side-Channel Leakage
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Directed Graphs
	2.3 Threshold Implementation
	2.4 White-Box Cryptography

	3 Methodology
	3.1 Generic Approach
	3.2 Morphing Algorithm for Cryptographic Implementations
	3.3 Applicable Encoding Functions
	3.4 Verification and Semantic Equivalence Checking

	4 Case Study: PRESENT Threshold Implementation
	4.1 Adversary Model
	4.2 Design Considerations
	4.3 Practical Implementation on Reconfigurable Hardware
	4.4 Comparison

	5 Practical Side-Channel Evaluation
	5.1 Non-specific t-Test
	5.2 Results

	6 Conclusion
	References

	Digital Signatures and Random Numbers
	Surnaming Schemes, Fast Verification, and Applications to SGX Technology
	1 Introduction
	2 SGX and its Surnaming Mechanism
	3 Surnaming Schemes
	3.1 Surnaming Schemes: Definition
	3.2 Surnaming with Conditional-Free Verification

	4 The SGX Surnaming Scheme
	5 Alternative Signatures with Fast Verification
	6 Conclusions
	References

	On the Entropy of Oscillator-Based True Random Number Generators
	1 Introduction
	2 Preliminary
	2.1 Oscillator-Based TRNGs
	2.2 n-bit entropy
	2.3 Lower Bound of Entropy
	2.4 Approximate Entropy

	3 Our Evaluation Method
	3.1 Bit-Rate Entropy Calculation
	3.2 Approximate Entropy for Short-Term Dependent Bits

	4 Entropy Evaluation
	4.1 Bit-Rate Entropy Calculation Results
	4.2 Improved Bit-Rate Entropy Expression Formula
	4.3 Bit-Rate Entropy Comparison: Time-Based Vs. Phase-Based
	4.4 Bit-Rate Entropy Vs. Approximate Entropy
	4.5 Entropy Estimation for Smaller Quality Factor

	5 On the Relationship with Physical RNGs
	6 Conclusion
	References

	Post-quantum Cryptography
	Provably Secure Password Authenticated Key Exchange Based on RLWE for the Post-Quantum World
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Security Model
	2.2 Ring Learning with Errors

	3 Protocol Description
	3.1 Password-Authenticated RLWE Key Exchange

	4 Proof of Security for RLWE-PAK
	5 Implicit Authentication
	5.1 RLWE-PPK
	5.2 Proof of Security for RLWE-PPK

	6 Conclusions
	References

	Symmetric Key Cryptanalysis
	Impossible-Differential and Boomerang Cryptanalysis of Round-Reduced Kiasu-BC
	1 Introduction
	2 Brief Overview of Kiasu-BC
	3 Impossible-Differential Attack on 8-Round Kiasu-BC
	3.1 Impossible Differentials on Kiasu-BC
	3.2 Attack Procedure

	4 Boomerang Attack on 8-Round Kiasu-BC
	4.1 Attack Procedure
	4.2 Complexity
	4.3 Experimental Verification

	5 Conclusion
	References

	Weak Keys for AEZ, and the External Key Padding Attack
	1 Introduction
	1.1 Weak Keys
	1.2 External Key Padding
	1.3 Outline

	2 AEZ
	2.1 Interface and Security Model
	2.2 High-Level Description of AEZ

	3 AEZ Tweakable Blockcipher
	3.1 Design
	3.2 Weak Keys

	4 Weak Key Attacks on AEZ
	4.1 Attack Exploiting Property (i)
	4.2 Attack Exploiting Property (ii)
	4.3 Attack Exploiting Property (iii)

	5 External Key Padding
	5.1 How Does AEZ Behave?
	5.2 How Do Other Schemes Behave?

	6 Conclusion
	References

	Symmetric Key Constructions
	Full Disk Encryption: Bridging Theory and Practice
	1 Introduction
	2 Disk Encryption Methods
	3 Security Notions for FDE
	4 FDE Security with Unique First Block
	5 FDE Security with a Diversifier
	6 Solid State Drive
	7 Conclusion
	References

	Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday Authenticated Encryption
	1 Introduction
	2 Preliminaries
	3 Definition of PMAC2x and PHASHx
	4 Security Analysis of PMAC2x
	5 Security Analysis of PMACx
	6 Definition and Security Analysis of SIVx
	7 Conclusion
	References

	2017 Selected Topics
	Publish or Perish: A Backward-Compatible Defense Against Selfish Mining in Bitcoin
	1 Introduction
	2 Preliminaries
	2.1 Bitcoin Blockchain and Mining
	2.2 A History of Selfish Mining Strategies
	2.3 Existing Defenses Against Selfish Mining
	2.4 Properties of an Ideal Defense

	3 Our Defense Mechanism
	3.1 Threat Model
	3.2 Mining Algorithm and Fork-Resolving Policy

	4 Evaluation
	4.1 Modeling a Block Race
	4.2 The Optimal Selfish Mining Strategy and Its Relative Revenue
	4.3 Comparison with Other Defenses

	5 Balancing Partition Recovery Time and Selfish Mining Resistance
	5.1 The Dilemma
	5.2 A Tradeoff

	6 Limitations and Future Work
	7 Conclusion
	References

	WEM: A New Family of White-Box Block Ciphers Based on the Even-Mansour Construction
	1 Introduction
	2 A New Family of White-Box Block Ciphers Based on Incompressible Permutations
	2.1 The Even-Mansour Construction
	2.2 The New Family of Block Ciphers
	2.3 Design Rationale
	2.4 Performance

	3 Security in the Black-Box Model
	4 Space-Hardness of the WEM Ciphers
	4.1 Previous Space-Hard Block Ciphers
	4.2 Space-Hardness of Our Scheme
	4.3 Space-Hardness Using Permutation S-Boxes
	4.4 Concrete Instances

	5 Conclusions
	References

	Improved Key Recovery Algorithms
	A Bounded-Space Near-Optimal Key Enumeration Algorithm for Multi-subkey Side-Channel Attacks
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contributions

	2 Preliminaries
	3 Bounding the Guessing Entropy
	4 The Key Enumeration Algorithm
	4.1 The Layering Approach
	4.2 The Two-Dimensional Algorithm
	4.3 Generalization to a Multi-dimensional Algorithm
	4.4 Bounding the Rank and the Guessing Entropy
	4.5 Parallelization of w-Layer Algorithm
	4.6 Space Complexity Analysis

	5 Performance Analysis
	5.1 Runtime Analysis
	5.2 Space Utilization
	5.3 The Difference in Ranks
	5.4 Influence of w on Space Complexity and Enumeration Accuracy

	6 Conclusion
	References

	Improved Key Recovery Algorithms from Noisy RSA Secret Keys with Analog Noise
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions

	2 Preliminaries
	2.1 Recovering the RSA Secret Key Using a Binary Tree
	2.2 Our Noise Model
	2.3 Previous Works on Key-Recovery for Analog Observed Data

	3 Generalized Algorithm via Estimation of Distributions
	4 New Score Function with a Priori Known Variances
	4.1 New Score Function: Variance-Based Score
	4.2 Theoretical Analysis for V-Based Algorithm
	4.3 Optimality of Variance-Based Score
	4.4 Experimental Results for V-Based Algorithm

	5 Estimation of Variances by the EM Algorithm
	5.1 Variance Estimation by the EM Algorithms
	5.2 Experimental Results for KRP Algorithm

	References

	Side-channel Analysis
	Ridge-Based Profiled Differential Power Analysis
	1 Introduction
	2 Background
	2.1 Profiling Phase
	2.2 Online Exploitation Phase

	3 Ridge-Based Profiling
	3.1 Construction
	3.2 Theoretical Analysis

	4 Experimental Results
	4.1 Simulation-Based Experiments
	4.2 Experiments on Real FPGA Implementation

	5 Conclusion
	References

	My Traces Learn What You Did in the Dark: Recovering Secret Signals Without Key Guesses
	1 Introduction
	2 Independent Component Analysis
	2.1 Definition
	2.2 Assumptions and Ambiguities
	2.3 Existing ICA Algorithms

	3 ICA-Based Signal Recovery
	3.1 ICA versus SCA: Similarities and Differences
	3.2 Applying ICA in SCA: Obstacles and Solutions
	3.3 Specialized ICA Algorithm

	4 Applications in SCA
	4.1 New SCA Distinguisher
	4.2 Extending SCA to the Middle Rounds
	4.3 Reverse Engineering on Sbox
	4.4 Reverse Engineering on Feistel Round Function

	5 Discussions and Perspectives
	5.1 Comparison with Other SCAREs
	5.2 Future Improvements

	6 Conclusion
	References

	Cryptographic Protocols
	Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Passively Secure OT Extension: The KK Protocol

	3 Actively Secure Random 1-out-of-N OT Extension
	4 Security in the Standard Model
	5 Application to Private Set Intersection
	5.1 Private Set Inclusion

	6 Implementation
	References

	Low-Leakage Secure Search for Boolean Expressions
	1 Introduction
	1.1 Setting
	1.2 Related Work
	1.3 Approach

	2 Preliminaries
	3 Cryptographic Primitives
	4 Scheme
	4.1 Building Block Techniques
	4.2 Final Scheme

	5 Evaluation
	6 Conclusions
	References

	Public Key Algorithms
	Constructions Secure Against Receiver Selective Opening and Chosen Ciphertext Attacks
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries and Definitions
	2.1 Preliminaries
	2.2 Security Definitions
	2.3 Non-interactive Zero-Knowledge Proofs

	3 An IND-RSO-CCA Secure Construction
	3.1 Preliminaries for Section[3]
	3.2 Construction
	3.3 IND-RSO-CPA Secure PKE from wHPS

	4 IND-RSO-CCA Secure PKE from Universal HPS
	4.1 Universal Hash Proof System
	4.2 Construction
	4.3 Security Proof

	References

	New Revocable IBE in Prime-Order Groups: Adaptively Secure, Decryption Key Exposure Resistant, and with Short Public Parameters
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organization

	2 Preliminaries
	3 The Basic IBE Scheme
	3.1 Modified Jutla-Roy IBE
	3.2 Proof of Security

	4 Our Construction
	5 Concluding Remarks
	References

	Author Index

