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Abstract. Agent-Based Modelling and Simulation (ABMS) is a resea-
rch methodology for studying complex systems that has been used with
success in many social sciences. However, it has so far not been applied
in education research. We describe some of the challenges for applying
ABMS in the area of education, and discuss some of the potential ben-
efits. We describe our proof-of-concept model that uses data collected
from tablet-based classroom education to model how students interact
with the content dependent on their engagement level and other proper-
ties, how we are calibrating that model, and how it can be validated.

1 Introduction

Agent-Based Modelling and Simulation (ABMS) is a methodology for studying
complex systems, and is employed in diverse fields such as economics [30], social
sciences [9], biology [13] and transport engineering [3]. [17] describe ABMS as
being “particularly suitable for the analysis of complex adaptive systems and
emergent phenomena”. Despite pedagogy studying what can clearly be described
as a complex system [5,15,16], ABMS has, to our knowledge, not been applied
in studying education.

There are a number of possible reasons for this, but in our opinion the most
prominent one is that to apply ABMS, one needs a lot of available data, and a suf-
ficient understanding of intermediate constructs and how they can be extracted
from the data. This type of research is performed in the twin fields of Learning
Analytics and Educational Data Mining, which have only recently reached suf-
ficient maturity for ABMS to be a valid approach in researching various aspects
of education. In this work, we aim to promote ABMS as a methodology for
pedagogical research; in particular when studying classroom environments. We
will give an overview of the state-of-the-art in ABMS, and describe some ways
in which it could be applied to education research. Moreover, we will present a
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proof-of-concept ABMS for modelling a classroom education environment, and
how we can use it in both the research and practice of education.

2 Background

Agent-Based Modelling and Simulation (ABMS) is a computational research
methodology to study complex phenomena. In particular, an agent in this
methodology is an autonomous (computational) individual that acts within an
environment. The aim is (usually) to model the agents and their interactions,
and study the resulting emergent properties of the system. It has long been
known that very simple systems can portray complex behaviour. Probably the
most well-known example of this is Conway’s game of life [10], in which a cellular
automaton with four simple rules can, dependent on the starting scenario, have
such complex behaviour that people are still discovering new patterns.

ABMS can be seen as the natural extension of such cellular automata, in that
it considers the system as being distributed: rather than the system having a
single state, each entity (agent) has a state, and agents decide individually (and
asynchronously) on their next action, rather than the system as a whole moving
from state to state. Nevertheless, they have in common that both ABMS and
cellular automata are bottom-up (aka micro) models, where the behaviour of the
system emerges from the behaviour of individuals, as opposed to macro models,
which aim to (usually mathematically) describe the system as a whole without
worrying about individuals. Because ABMS allows for distinct types of agents
within the system, it is rapidly gaining popularity in biology and social science
research, where describing the entire system in a set of mathematical equations
is often too complex to be of much use, if possible at all, whereas it is possible
to build sufficiently realistic models of individuals and how they interact with
each other, and study properties of the system that emerge from the behaviour
of many individuals.

For the development of an ABM, it is necessary to be able to calibrate and
validate it [4]. The former refers to the process of tuning the model to best
correspond to real data. In particular, this requires that there is detailed data
on individuals’ behaviour in order to calibrate the agent models, data on their
interactions, in order to calibrate the interaction models, and finally, data on the
emergent properties of the system in order to validate the model. The validation
of an ABM, or any model for that matter, is a complicated issue and there is
ongoing research on how best to approach this [14,24], but without doubt, it is
only possible with sufficient real data against which to validate.

Up until very recently, such data was not available for the field of educa-
tion. However, over the last decade, many areas of education have been making
increasing use of technology: (i) on the administrative side to keep track of stu-
dents, their grades, attendance rates, etc. (ii) at the course level, where Learning
Management Systems (LMS) applications help teachers distribute course mate-
rial, collect assignments and perform many of the day-to-day tasks of adminis-
tering a course; and (iii) at the class level, mostly in the form of Massive Open
Online Courses (MOOC), where teachers provide a digital course for students
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to follow worldwide (usually completely separate from the normal curriculum).
All such applications generate, and store, detailed data at the level they are
designed for. An administration system will store a history of students and classes
throughout time, whereas an LMS tracks students through a course, in combi-
nation with the material each student accessed, and created, throughout the
course. Finally, MOOCs and other systems within a class collect detailed usage
data for each student, logging each action a user takes throughout the class. The
use of such data to perform data-driven analysis of pedagogical measures is a
development of the last few years.

In particular, Learning Analytics is defined as: “the measurement, collec-
tion, analysis and reporting of data about learners and their contexts, for pur-
poses of understanding and optimising learning and the environments in which
it occurs.” —Siemens [29]. Learning Analytics and Educational Data Mining are
both relatively young, but fast-growing areas of research that focus on finding
algorithmic methods for quantifying various metrics that can model a student’s
learning process. There is a large overlap in the two areas, both in goals and in
methodologies, with the differences between the areas being mostly in the philo-
sophical and historical roots of the fields [28]. However, as Gašević et al. [11] point
out, in accordance with our own findings, “there has been a dearth of empiri-
cal studies that have sought to evaluate the impact and transferability of this
initial work across domains and context”, and “instructors expressed their pref-
erences of learning analytics features that offer insights into learning processes
and identify student gaps in understanding over simple performance measures”.
Eberle et al. [8] discuss 12 grand challenge problems for Technology-Enhanced
Learning. Among these challenges, we distinguish the similar themes: they iden-
tify challenges on how to model students using continuous temporal data, and
how to use the data in providing appropriate feedback to empower teachers. In
short, while there is a significant amount of work [7,25–27] into descriptive and
predictive measures, what is missing is how different measures can be combined
into a theoretically sound, data-driven model of student learning.

We propose that Agent-Based Modelling for Education can address this
question.

3 ABMS for Education

The integration of cognitive theory and agent-based approaches in technology-
enhanced learning has so far been the particular domain of Intelligent Tutoring
Systems (ITS) [12]. In this approach, the focus is on individual learning, and
the student is helped by an artificial tutor. Cognitive theories are employed to
model user knowledge, and a diverse range of AI techniques, including intelligent
agents and recommender systems are used to decide how the tutor should act,
what learning object to present to the user, etc. An example of a modern ITS
approach is SimStudent [22], which uses machine learning techniques to update
a rule-based agent system to adapt to students’ needs. A similar approach is
presented by López Bedoya et al. [21], which uses a combination of computational
techniques to plan, and replan coursework based on heterogeneous characteristics
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of the students. Such systems serve a different purpose from what we propose:
rather than attempting to model students as socio-cognitive systems in order
to understand them, these systems model students as parameters for adaptive
computational tutors.

Fig. 1. Overview of components of a digital teaching platform with intelligence models

Figure 1 gives the outline of components in a contemporary system for
technology-enhanced learning and outlines what kind of models can help improve
our understanding at each stage of education. We see that at the individual level,
the modelling follows a cognitive modelling approach [1], and the aim, as best as
possible, is to model the psychology of learning, and understand such concepts
as creativity, learning styles, engagement and performance. This usually treats
students as individuals in isolation, relying for instance on data from MOOCs
where students can mostly be considered to be working through a course alone;
interacting only with the content and not (much) with their fellow students or
the educator. A system comprised of multiple agents like this could model a class-
room. In this model, in addition to individual properties, the social interactions
come into play. We distinguish between implicit and explicit social interactions.
Implicit interactions are those that arise from individual actions that predicate
a response. For instance, the teacher changes pages, and expects the students to
follow suit. Explicit social interactions are those actions that are directly aimed
at a social goal, such as discussing an item, asking a question, solving an exercise
together. MOOCs and LMS systems attempt to capture many such interactions,
although it is often impossible to do so: if interactions happen outside the system,
the data is usually not available. The emergent properties from such a system
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can also be studied at two levels: firstly, the interactions can have an effect on
individual students, and secondly we can study properties of the classroom, both
as aggregates over the individuals, like average performance or engagement, and
properties that only arise at the level of a classroom, such as sociability. Finally,
we can study how such systems are situated in the environment; the environment
is generally described as everything that is modelled, but is not an agent. In the
education scenario this is the course material and the possibilities for students
and educator to interact with it, but also external parameters, such as noise
level, light level, temperature, time of day and day of week, etc. With regards
to the content, the data that is most easily manipulated by a computational
model is the metadata, which describes properties of the actual course material,
such as whether it is textual, a video, or interactive content, what subject(s) the
content is related to, and for what level it is intended. By modelling the content,
and other aspects of the environment, one can answer other types of questions,
such as whether the same exact class at a different time of day would have led to
better overall performance? Or what effect switching textual content for video
content might have. This is the use of ABMS we have started to study, and we
present our proof-of-concept class simulator in the next Section. However, we
can think of other potential uses of ABMS for education.

ABMS can also be applied at a higher level of abstraction, in order to assist
in policy decisions about educational institutions, teaching methodologies and
content. Students might be modeled as having to decide what institute to study
at, taking into account the policies and teaching philosophies. Or the institutes
themselves can be modeled as agents. The modelling of such macro-level phe-
nomena requires more administrative and demographic data.

A different, but complementary, approach for using ABMS in education is
to use the ABMS as an educational tool for modelling other systems (e.g. a
biological ecosystem). While that is not the use of ABMS we are interested in
this work, it may nevertheless be insightful to give students control over an
ABMS simulating their own situation, and allow them to experiment with what
types of interventions might improve their own, their class’s or their school’s
performance.

4 Proof-of-Concept Model of a Classroom

We built the proof-of-concept Classroom Simulator to model a classroom in
which the students are following the teacher during a lecture. We model students
interactions’ based on different educational contents and teacher characteristics,
however we do not take explicit social interactions into account. In simulating a
classroom, the model is composed of three different steps: (I) Initialization, (II)
Generate Signals, (III) Content Analysis and optimization. This aims to simulate
the actual data that is output by a tablet-based digital teaching platform that we
developed [18] for use in classrooms. This system generates detailed usage logs
for each student, and the teacher. The idea of the model is to be able to gener-
ate such usage logs artificially, and simulate some specific types of interventions.
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In particular, we aim at modelling teacher-oriented interventions, such as chang-
ing the type of material or teaching style. The simulator focuses on a subset of
the log data, specifically those related to navigation through the content.

Step (I), generates the variation of students signals’ based on the charac-
teristic of the teacher, the content and a class profile. Input in this step are
the duration of a class, the educational content profile, the students’ profile
and the teacher profile. The educational content profile is the number of differ-
ent contents, their difficulty, their type (image, video, text or assessment) and
their order. The teacher profile is related to this content: how orderly he goes
through the material and what types of content he spends more time on. Stu-
dents’ profiles are generated stochastically, by drawing random samples from a
class profile. The class profile defines the number of students, and normal dis-
tributions for engagement (the amount of time a student spends working on the
same content as the teacher), activity (the number of actions per time step),
and orderliness (whether they navigate through the content linearly from start
to finish, or a haphazardly fashion that jumps between contents and navigates
backwards) of the students. Furthermore, we simulate eye tracking time series
data about whether an individual student is looking at, or away from the tablet
at every time stamp. All of these parameters can also be extracted from the real
usage logs generated by our tablet-based system. In addition to these profiles, a
set of rules are generated (also adding random noise in the generation process)
based roughly on the possible values each of the different parameters might take
for each student, and the states these create within the system, the next state
for any student. An example of such a rule, for a student, is the following:

IF

the student has the profile of being highly engaged, medium active and highly
orderly;
the student’s recent history of actions are that he or she is looking towards
the tablet, and has been studying the first content (a difficult video) for
at least 10 time steps;
and the teacher is looking at the second content (an image)

THEN

the student will change pages to the second content.

Rules for the teacher are simpler, as they only take the teacher’s actions into
account, whereas we assume that students are influenced by what the teacher is
doing (while the reverse is also possible, we disregard that form of feedback at
this stage). Even so, for both the students and the teacher, there is the possibility
for combinatorial explosion in creating the rules, so we instead generate them
randomly without overlap until a sufficient (parameter of the model) number
have been generated.

In Step (II), the class is simulated. All students, and the teacher, are initial-
ized on page 0. For each time step, the teacher and each student is evaluated: for
each agent the list of rules are run through, and a distance from the agent’s state



162 A. Koster et al.

to the state described in the precondition of the rule is computed. The rule with
the minimum distance is selected, and if this distance is lower than a threshold,
the rule is executed and the agent transitions to a new state. The output of the
simulation is a log of the events that occur during the simulation run.

In Step (III), we can calibrate (and also validate) the model by analysing the
simulated log with regards to student engagement, orderliness and activity, and
see if these correspond to the student profiles generated in Step (I). The calibra-
tion can be done by many different optimization algorithms, but in particular,
we believe Genetic Algorithms (GA) are appropriate, with as fitness criterion a
distance measure between the generated student profiles, and the input student
profiles. We start by generating different class, teacher and material profiles and
generate a population of rule sets. The rules are evaluated through simulation,
and then a subsequent population of rules is generated. The best rule set is
selected. This rule set can then be tested with real data: compute the engage-
ment, orderliness and activity level of a real classroom based on the logs from a
session of use of the tablet-based education platform. Then use the rule set to
generate an artificial log (which could also be compared to the real log for addi-
tional validation), and based on the artificial log, compute the different profiles
again. We can then see how far they differ.

4.1 Implementation

In order to test this idea, we have implemented the simulation above. In order to
test our initial assumptions, we generate a random set of student agents, and a
single teacher agent. The students are generated from the class profile in Table 1.

Table 1. Class profile used to generate student agents

#students Activity Orderliness eye tracking at tablet

5 80(σ = 5) 80(σ = 5) 80(σ = 5) 50(σ = 5)

10 30(σ = 10) 40(σ = 10) 40(σ = 10) 90(σ = 5)

In this table, we see that there are two different profiles for students in
the class, with the first profile used to generate 5 students, and the second to
generate 10. Each student agent’s behaviour is governed by its profile, generated
at random from the Gaussian distributions with the parameters as in the table.
For instance, this can result in a student with profile 1 having an activity level of
85.25, an orderliness of 83.5, “eye tracking” parameter of 82.0, and “at tablet”
parameter of 49.25. Each of these values governs different aspects of the agent’s
behavior. A high activity level means that the agent is more likely to click,
change pages, or perform other activities, at each time stamp. An agent with
high orderliness is likely to work through the material sequentially, whereas a low
orderliness indicates a propensity to jump around in the material haphazardly.
The “eye tracking” and “at tablet” parameters together govern what the student
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looks at. “Eye tracking” gives the percentage of time that a student spends
looking at either the tablet, or the teacher (as opposed to elsewhere), while “at
tablet” is used to divide that time between the tablet and the teacher.

The teacher agent has a similar profile, but there is no need for eye track-
ing, so it only consists of activity level and orderliness. Finally, we generate a
material profile, which specifies a set of learning objects, and their order and
organization by chapters. Each learning object is modeled with a type of object
and its difficulty level.

Independently of the class, teacher and material profiles, the main engine of
the simulator is the rule-based system for each agent. All student agents use
the same rules (or plans), and the teacher agent has a separate set. Because
we do not know how to model such rules, we calibrate the rules with a genetic
algorithm (GA). As stated in the previous section, the rules are used to define
each agent’s behaviour, given the state of the world: what learning object the
agent is at (and for how long), what learning object the teacher is at (and for how
long), the characteristics of both learning objects, whether it is currently looking
at the tablet or the teacher, and the intrinsic parameters defined in the agent’s
profile). The agent matches the plan rule that is nearest to its current state, and
that rule specifies the parameters for the stochastic method of choosing the next
state. In our GA, the initial population consists of 200 models (individuals), for
each of which we generate a random set of 650 rules for students and a further
150 for the teacher (or approximately 800 rules out of a possible 2exp13). We
then run each model to generate the events, which in turn are analysed and
result in 15 student profiles and a teacher profile. The fitness of this profile is
simply how near it is to the original profile (using Euclidean distance).

For creating the next generation we use an elitist approach: the 20% best
models of each generation are copied over as is, with a 1% chance for mutation.
Furthermore, these serve as the basis for crossover (random pairs are selected)
which creates a further 20% of the next population. The remaining 60% is gener-
ated randomly. To perform crossover we pick two parents randomly, and for each
rule, either parent has an equal chance to contribute theirs (and if one parent has
more rules than the other, these are also all copied over). Our mutation operator
works as follows: there is a chance a set of rules is mutated, in which case one
rule (chosen randomly) is generated again randomly. For further information on
genetic algorithms and these operators we refer to Mitchell’s work [23].

4.2 Experiments

We implemented the simulator and genetic algorithm (GA) as described above
in Python. The rules, class profile, teacher profile and material profile are all rep-
resented in JSON format. Subsequently we ran the GA for 200 generations, but
the results plateaued after 40 generations. To compare whether crossover and
mutation were contributing anything over random search, we also ran the algo-
rithm with a selection of 40%, and no crossover or mutation. We then compare
the top 40% of each generation; the results are in Fig. 2.
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Fig. 2. For each generation, a comparison between pure random search, and the GA
with crossover and mutation. The dotted lines are the trend lines (logarithmic for the
GA, and linear for the random search)

We see that the GA improves the performance significantly over a standard
random search, indicating that our crossover and mutation operators work. Nev-
ertheless, the error still seems high, even in the best case. However, that is if
we expect the simulation process to predict the exact same set of students (and
thus have a distance of 0). What we actually aim for is to simulate at a class
level, and thus what we expect is that the process results in a set of students
from the same class profile. The expected distance1 between two sets of agents
generated using the profiles of the table above, is 232. The best model in the
last generation from the GA has a score of 272, or in percentages, it is 17%
away from this optimal score. Whereas the best result from the random search
has a score of 385, or 66% away from the optimal score. This indicates that our
GA is on the right track, and we can probably improve it, by fine tuning the
parameters.

In order to validate the result, we also have to test how well the simulation
works on real data. For this, we test the 20 best results of our last generation
on real data collected in field trials of the Digital Teaching Platform [18,19].
However, the real data is logs of actions in the tablet-based system, and not the
resulting profiles. As such, we should compare the simulated logs with the real
one. In order to do this, we extract the class, material and teacher profiles from
the real log data, and use this profile in each of the 20 models. This generates a log

1 For each student, the expected distance is the expected distance between two sam-
ples from the same normal distribution (as defined by the class profile), which is:√∑

p∈parameters 4σ2
p/π, with σ2

p the variance of the distribution for parameter p.

Summing this distance over all students gives us the expected distance between two
sets of student agents generated from the same class profile.
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of actions, which we can compare to the original log. However, this comparison
is not trivial. Our first impression is that the simulated log and the real log
are very different. For starters, the simulated log contains over 100,000 actions,
whereas the real log contains only 8,000. This also results in the Levenshtein
(edit) distance (the minimal number of insertions, deletions and substitutions to
make two strings equal) [20] between the two logs being approximately the same
as the length of the simulated log, and thus not a useful measure. Instead, we
look at the frequency of event types, and the χ2 distance measure [6] between
them. This results in an average distance of 0.27, which is a more useful measure:
it shows that while the number of events are different, the general frequency of
events is fairly similar. As a measure of similarity between logs, we therefore
suggest to use the geometric mean of the edit distance between the actual logs
and the χ2 difference between their histograms.

Future work is to adapt the simulator using a two-step GA to evolve a model
that is both calibrated (in the sense outlined in the first experiment) and valid
(using the distance measure we just discussed).

5 Discussion

Agent-Based Modelling and Simulation is a powerful tool for doing research into
complex systems, such as education, and while it has so far not been used in this
field, we believe the data is now available to take advantage of this methodology.
Moreover, data-driven research into education is a fast-growing field of research,
and ABMS can take advantage of increasingly sophisticated quantitative met-
rics of education to incorporate into the agent models. Once agent-based models
are sufficiently robust, they can even help validate these metrics, by quantifying
how much explanatory power they add in the model, in comparison to the added
complexity. This can be an invariable tool in quantitative research into educa-
tion, by helping to hone in on what metrics best explain and predict student
learning, and present such information to the students, teachers, parents and
other stakeholders. Moreover, simulations can be designed to test what type of
interventions work best.

Our own agent-based model, although still in an early stage, is intended in
such a capacity. The model as described thus far is a first step, and we have
specific extensions planned to better take advantage of the unique possibilities
of agent-based approaches: the rules that are created to differentiate between
agents’ behaviour do not take social interactions into account, and the student
profile does not take motivational factors or learning styles into account. More-
over, we are still working on creating a valid model based on the data we gather,
but the potential is clear: we can take real class profiles and test how they per-
form using a different content profile. If the students are more engaged than their
input profile suggested, this is an indication that perhaps that type of content
works better with that class. We can design experiments to test such hypotheses
and use a methodology like design-based research [2] to iteratively improve the
model and test its predictions.
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