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Abstract. Artificial Bee Colony (ABC) algorithm is a relatively new
swarm-based optimization algorithm, which has been shown to be better than or
at least competitive to other evolutionary algorithms (EAs). Since ABC gen-
erally performs well in exploration but poorly in exploitation, ABC often shows
a slow convergence. In order to address this issue and improve its performance,
in this paper, we present a novel artificial bee colony algorithm with hierarchical
groups, named HGABC. In employed bee phase of HGABC, the population is
divided into three groups based on the fitness values of the food source posi-
tions, and three solution search strategies with different characteristics are cor-
respondingly employed by different groups. Moreover, in onlooker bee phase,
onlooker bees conduct exploitation in the most promising area of search space,
instead of around some good solutions. In order to demonstrate the performance
of HGABC, we compare HGABC with four other state-of-the-art ABC variants
on 22 benchmark functions with 30D. The experimental results show that
HGABC is better than other competitors in terms of solution accuracy and
convergence rate.

Keywords: Artificial bee colony algorithm � Hierarchical group � Exploitation
in the most promising area � Global numerical optimization

1 Introduction

Global optimization problems (GOPs) always arise in almost all of science research and
engineering fields. population-based random optimization algorithms, such as genetic
algorithm (GA) [1, 2], ant colony optimization (ACO) [3], particle swarm optimization
(PSO) [4] and artificial bee colony algorithm (ABC), have been becoming a popular
and promising way to handle these GOPs. ABC was developed by Karaboga [5] firstly,
inspired by the collective foraging behavior of honey bee colony. The performance of
ABC was demonstrated by comparing ABC with other evolutionary algorithms (EAs).
Due to its simple structure, easy implementation and good performances, ABC has
successfully attracted numerous researcher’s attention and been applied to solve many
practical engineering optimization problems [6–9].

© Springer International Publishing AG 2017
M. Qiu (Ed.): SmartCom 2016, LNCS 10135, pp. 72–85, 2017.
DOI: 10.1007/978-3-319-52015-5_8



However, like other EAs, ABC often shows a slow convergence speed [10] since its
solution search equation does well in exploration but poorly in exploitation. The search
equation is the core operator of ABC, which significantly affects the performance of
ABC. Therefore, in order to keep a better balance between exploration and exploita-
tion, many new search equations were proposed. Inspired by PSO, Zhu and Kwong
[11] introduced the information of the global best solution into the solution search
equation to improve the exploitation ability of ABC (GABC). The experimental results
showed that GABC is better than ABC on most benchmark functions. Karaboga and
Akay [13] introduced two new parameters i.e., modification rate (MR) and scaling
factor (SF), into the solution equation to control frequency and magnitude of pertur-
bation, respectively. In order to combine the advantage of different solution search
equations, Kiran et al. [14] proposed a new method, which integrates five search
equations to generate candidate solutions by the way of cooperation and competition.
Moreover, Wang et al. [12] proposed the MEABC algorithm to improve the local and
global search capability of the ABC, in which a pool of three distinct solution search
strategies coexists throughout the search process and produces new solutions com-
petitively. Recently, Karabaga et al. [15] proposed a new search equation for onlooker
bees (qABC), which uses the valuable information of the best solution among the
neighbors to improve the search efficiency of ABC. At the same time there are some
improvements that blend with other operations [16, 17], and so on.

According to above considerations, the performance of ABC mainly depends on its
solution search equation. Therefore, it is a promising way to improve the performance of
ABC by introducing new search equation or integrating multiple search equations. In this
paper, we follow this basic idea and propose an improvedABC algorithm, namedHGABC.
In employed bee phase of HGABC, all employed bees are divided into three groups
according to the quality of their food source positions (fitness values), and different groups
use different solution search equations. Moreover, to enhance the local exploitation ability
in a promising area, in onlooker bee phase of HGABC, the most promising area is firstly
recognized based on the quality of all food source positions, and onlooker bees conduct
exploitation only around the positions located in themost promising area. The experimental
results on 22 benchmark functions show that HGABC performs more competitively and
effectively when it is compared with the other ABC variants.

The rest of this paper is organized as follows. Section 2 introduces ABC algorithm
briefly. The proposed algorithm is presented detailedly in Sect. 3. Section 4 discusses
and analyzes the experimental results. Finally, Sect. 5 concludes this paper.

2 Artificial Bee Colony Algorithm

Inspired by the waggle dance and foraging behaviors of honey bee colony, ABC
algorithm has been developed. In ABC algorithm, the position of a food source rep-
resents a possible solution to the optimization problem, and the nectar amount of a food
source position corresponds to the quality (fitness value) of the associated solution. The
number of the employed bees or the onlooker bees is equal to the number of food
sources. The basic ABC algorithm consists of four basic phases, namely initialization
phase, employed bee phase, onlooker bee phase and scout bee phase.
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2.1 Initialization Phase

In the initialization phase, the necessary parameters, i.e., the number of food source
position SN, the termination condition and the parameter limit, should be initialized
firstly. Then, the initial food source positions are randomly produced in the whole
search space by Eq. (1) as follows,

xi;j ¼ xmin;j þ rand 0; 1ð Þðxmax;j � xmin;jÞ ð1Þ

where i ¼ 1; 2; � � � ; SN, j ¼ 1; 2; � � � ;D, SN is the population size, and xi;j is the jth
dimension of the ith solution. xmin;j and xmax;j are the lower and upper bounds of the jth
dimension of the problem, respectively. rand 0; 1ð Þ is a random number in the range of
[0,1]. The fitness value of the food source positions are calculated as follows,

fit xið Þ ¼ 1= 1þ f xið Þð Þ if f xið Þ� 0ð Þ
1þ abs f xið Þð Þ else

(
ð2Þ

where f ðxiÞ is the objective function value of the ith food source position, and fitðxiÞ is
the fitness value of the ith food source position.

2.2 Employed Bee Phase

In this phase, each employed bee flies to a distinct food source position to search for
better food source position, and the candidate food source position is generated as
follows,

vi;j ¼ xi;j þ/i;j xi;j � xk;j
� � ð3Þ

where i ¼ 1; 2; � � � ; SN and j ¼ 1; 2; � � � ;D; k 2 1; 2; . . .; SNf g and it is different from i;
D is the dimension of the problem; /i;j is a random number in the range of [−1,1]. After
the generation of the candidate solution vi, if the candidate solution is better than the
old one, the old solution will be replaced by the candidate solution. Otherwise, the old
solution will be kept.

2.3 Onlooker Bee Phase

After all employed bees complete their search process, they will share the information
(quality and position of food source) of their food source position to onlooker bees by
assigning each food source position a selection probability, which is calculated as
follows,

pi ¼ fitðxiÞ
,XSN

i¼1

fitðxiÞ ð4Þ
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where pi is the selection probability of the ith food source position, and each onlooker
bee selects a food source position to perform search according to the selection prob-
ability of each food source position. The same search strategy and greedy selection
method are employed by onlooker bees to perform further exploitation.

2.4 Scout Bees Phase

In the scout bee phase, if a certain food source position (solution) fails to be updated
during a predetermined cycle (defined as “limit”), the corresponding employed bee
becomes a scout bee and the food source position should be replaced by a new one,
which is generated randomly according to Eq. (1).

After the initialization, ABC enters a loop of employed bee phase, onlooker phase
and scout bee phase until the terminal condition is satisfied.

3 Artificial Bee Colony Algorithm with Hierarchical Groups
(HGABC)

In the original ABC or other ABC variants [11], only one search strategy is employed
by employed bee and onlooker bee, which may result in that the search ability of these
methods are limited. Inspired by the observation in the team work of human being,
since each member in the team has different characteristics, such as knowledge, attitude
and skill, the whole team usually is divided into multiple groups according to their
abilities, and each group takes different responsibilities or tasks. By this way, the work
efficiency can be significantly improved. In original ABC, although the colony contains
three types of bees, i.e., employed bee, onlooker bee and scout bee, different types of
bees are responsible for different search abilities. However, ABC treats all employed
bees (or onlooker bee) equally because all employed bees (or onlooker bees) employ
the same search strategy. While in real bee colony, each employed bee (or onlooker
bee) is a unique individual, and the search ability of them may be different from each
other. Therefore, different employed bees (and onlooker bees) may adopt different
search strategies in fact.

According to above consideration, in this paper, we propose a novel artificial bee
colony algorithm with hierarchical groups, named HGABC. To be specific, in
HGABC, the employed bees are divided into three groups based on the quality of their
food source positions, and different groups employ different search strategies so as to
be responsible for different search abilities. Moreover, in order to pay more attention to
the exploitation in the most promising area, all onlooker bees only search around the
food source positions which locate in the most promising area. Similarly, three search
strategies could be used by onlooker bees in a random manner. The proposed strategies
are described in detail as follows.
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3.1 Division of Employed Bees and Search Strategies

In ABC, each employed bee occupies a food source position. Since each employed bee
has distinct ability and should adopt different search strategy, in order to differentiate
employed bees, we firstly divide the employed bees into three group based on the
quality of their own food source positions. To be specific, the employed bees firstly sort
from best to worst based on the quality of their food source positions. The first a � SN
employed bees, the medium b � SN employed bees and the last c � SN employed bees,
respectively constitute the high group, medium group and low group, where a; b; c 2
½0; 1� and aþ bþ c ¼ 1.

The high group includes some current good solutions, which may be located in the
local optimal areas or the global optimal area. Therefore, its employed bees should
learn the beneficial information from the current best solution and conduct exploitation
toward the current best solution. The employed bees belonging to the high group adopt
the search strategy as follows,

vi;j ¼ xk;j þui;jðxbestj � xk;jÞ ð5Þ

where xbest is the current best solution; xk is randomly selected from the population,
which is different from xi and xbest; ui;j is a random number in the range of [0,1]; j is a
randomly selected dimension.

With respect to the medium group, it consists of some neither better nor worse
solutions that are not far from or close to the global optimal area. Their employed bees
should take the responsibility of obtaining balance between the exploitation and
exploration. Therefore, the employed bees in the medium group use the search strategy
as follows,

vi;j ¼ xk;j þ/i:jðxk;j � xq;jÞþui;jðxbestj � xk;jÞ ð6Þ

where xbest is the current best solution, and xk and xq are randomly selected from the
population, which are distinct from each other and different from xi and xbest. ui;j is a
random number in the range of [0,1], and /i;j is a random number in the range of [−1, 1].
j is a randomly selected dimension.

Regarding to the low group, it contains the current bad solutions that may be far
from the local optimal areas or the global optimal area with a high probability, and its
employed bees should be responsible for exploration by exploiting new areas ran-
domly. Therefore, the third kind of employed bees employ the search strategy as
follows,

vi;j ¼ xk;j þ/i:jðxk;j � xq;jÞ ð7Þ

where xk and xq are randomly selected from the population, which are distinct from
each other and different from xi. /i;j is a random number in the range of [−1, 1]. j is a
randomly selected dimension.

Overall, in our proposed algorithm, all employed bees are divided into three groups,
namely the high group, the medium group and the low group. The employed bees in
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different groups adopt different search strategies and undertake different search tasks.
More specifically, the high group’s employed bees pay more attention to exploitation,
the low group’s employed bees focus on exploration, and the medium group’s
employed bees are responsible to balance between exploration and exploitation.

3.2 Search Strategy of Onlooker Bee

In original ABC, after all employed bees complete their search tasks, the onlooker bees
start to work depending on the information provided by the employed bees. To be
specific, each onlooker bee will select a food source position to conduct exploitation by
the roulette wheel method, which is a time-consuming procedure. Moreover, the better
the quality of the food source position is, the bigger the selection probability is. In order
to pay more attention to the promising area and accelerate the convergence, in this
paper, we present a most promising area search strategy for onlooker bee. The details
are described as follows.

In order to recognize the most promising area, each food source position denotes an
area. To be specific, for the ith food source position, if the Euclidean distance between
food source position xi and xj (j ¼ 1; 2; � � � ; SN and j 6¼ i) is less than the radius r, the
position xj belongs to the area located by the position xi. Moreover, the radius r is
calculated as follows,

r ¼
PSN�1

i¼1

PSN
j¼iþ 1 dðxi; xjÞ

SNðSN � 1Þ=2 ð8Þ

Fig. 1. The pseudo-code of onlooker bee phase

Artificial Bee Colony Algorithm with Hierarchical Groups 77



where dðxi; xjÞ is the Euclidean distance between xi and xj, and SN is the number of the
food source positions.

Obviously, there are SN areas in the search space and the best quality area based on
the average fitness value of its members is treated as the most promising area. After the
most promising area is identified, the onlooker bees only fly to a randomly selected
food source position located in the most promising area to search.

Moreover, to make the onlooker bees show different search abilities and keep a
better balance between exploration and exploitation, the above three search equations
(Eqs. (5), (6) and (7)) are employed by onlooker bees in a random manner based on
two control parameters s1 and s2.

Fig. 2. The pseudo-code of HGABC
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According to the proposed modifications, the pseudo-code of onlooker bee phase is
shown in Fig. 1 and the completed pseudo-code of the proposed algorithm HGABC is
shown in Fig. 2.

4 Experiments

In order to demonstrate the performance of our proposed algorithm HGABC, we
compare HGABC with four ABC methods, i.e., the basic ABC [5], GABC [11], qABC
[15] and MEABC [12] on 22 benchmark functions with 30D, which are listed in
Table 1. To make a fair comparison, for all compared algorithms, SN and limit are set
to 50 and SN � D, respectively. Other parameters are set the same as the original papers.
For HGABC, a, b and c are respectively set to 0.2, 0.3 and 0.5; s1 and s2 are set to 0.25
and 0.75, respectively. The maximal number of function evaluation (maxFES) is used
as the termination condition, which is set to 5000 � D. All algorithms conduct 25 times
independent runs on each function. The experimental results are given in Table 2. For
the sake of clarity, the best results are marked in boldface. Moreover, the Wilcoxon’s
rank sum test at 5% significance level on results gained by two competing algorithms is
also conducted to show the significant differences between HGABC and other ABC
methods. The results of the test are represented as “+”, “−”, “=”, which mean that the
compared algorithm is significantly better than, worse than, equal to HGABC,
respectively.

As shown in Table 2, the metric of mean and std respectively denote the average
value and standard deviation of the best objective function value of 25 independent
runs. According to these metrics, HGABC successfully gets the best results on all
functions except that f4, f10 and f14. To be specific, HGABC is better than ABC, GABC,
qABC and MEABC on 18, 12, 18 and 9 functions, respectively. On the contrary,
HGABC is only beaten by GABC and MEABC on 1 and 1 function, respectively.
Moreover, ABC and qABC is unable to perform better than HGABC on any cases.

In addition, in order to clearly show the convergence speed and robustness of
different algorithms, more experimental results about the average FES (AVEN) and
success rate (SR) are also given in Table 1. AVEN represents the average FES needed
to reach the threshold defined in Table 1. In Table 1, “NAN” denotes that the algorithm
cannot get any solutions, whose objective function is smaller than the acceptable value
in 25 independent runs. SR represents the ratio of the number of success runs in the 25
independent runs. The success run means that algorithm can find the solution, whose
objective function value is less than the acceptable value. Obviously, the search
accuracy of HGABC is better than or equal to other algorithms on all functions,
excluding f4, f10 and f14. Similarly, the SR of HGABC is 100% on all functions except
f10, on which all algorithms are unable to get a 100% success rate. Overall, HGABC is
better than the competitors in terms of solution accuracy, convergence speed and
robustness.
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Table 2. Comparison results on 22 test functions with 30D

Alg ABC
mean(std)
AVEN(SR)

GABC
mean(std)
AVEN(SR)

qABC
mean(std)
AVEN(SR)

MEABC
mean(std)
AVEN(SR)

HGABC
mean(std)
AVEN(SR)

f1 8.05e−18
(6.08e−18) −
100/82934

6.97e−33
(4.93e−33) −
100/50130

1.60e−15
(1.32e−15) −
100/72618

3.45e−40
(4.66e−40) −
100/44910

2.18e−57
(2.33e−57)
100/32314

f2 4.77e−10
(3.76e−10) −
100/135230

1.92e−26
(2.12e−26) −
100/76150

1.53e−10
(3.87e−10) −
100/123870

6.17e−37
(6.37e−37) −
100/55908

7.59e−55
(1.12e−54)
100/40498

f3 1.55e−19
(1.31e−19) −
100/75366

2.98e−34
(2.38e−34) −
100/45478

3.14e−16
(2.92e−16) −
100/63946

2.74e−41
(2.06e−41) −
100/41710

2.91e−58
(2.97e−58)
100/30186

f4 2.41e−31
(9.09e−31) −
100/23266

1.83e−52
(6.33e−52) −
100/14106

3.01e−21
(1.31e−20) −
100/13342

4.93e−86
(1.20e−85) +
100/12014

5.32e−76
(1.81e−75)
100/10022

f5 6.55e−11
(2.12e−11) −
100/125030

5.95e−18
(1.76e−18) −
100/77478

1.09e−08
(3.89e−09) −
48/148340

1.47e−21
(6.87e−22) −
100/66784

5.85e−30
(3.45e−30)
100/48882

f6 4.35e+00
(8.60e−01) −

0/NAN

2.55e−01
(1.30e−01) −
100/109060

9.36e−02
(1.79e−02) −
100/35898

3.00e+00
(1.37e+00) −
4/131500

4.57−03
(3.39−03)
100/58034

f7 0.00e+00
(0.00e+00) =
100/11314

0.00e+00
(0.00e+00) =
100/10314

0.00e+00
(0.00e+00) =
100/6482

0.00e+00
(0.00e+00) =
100/18974

0.00e+00
(0.00e+00)
100/11962

f8 7.18e−66
(4.37e−73) =

100/150

7.18e−66
(9.22e−77) =

100/150

7.18e−66
(2.98e−72) =

100/150

7.18e−66
(3.63e−79) =

100/100

7.18e−66
(7.66e−80)
100/150

f9 6.42e−02
(1.37e−02) −
100/93186

2.80e−02
(6.51e−03) −
100/41966

2.78e−02
(8.01e−03) −
100/11018

2.98e−02
(8.07e−03) −
100/45748

1.26e−02
(2.78e−03)
100/20674

f10 6.79e−02
(5.93e−02) =
72/120030

8.21e−01
(3.73e+00) =
68/77515

5.56e−01
(6.12e−01) −
36/75828

9.34e−02
(1.17e−01) =
80/115880

1.99e−01
(2.77e−01)
56/98729

f11 2.68e−14
(1.03e−13) −
100/99214

0.00e+00
(0.00e+00) =
100/68134

1.23e−10
(1.68e−10) −
100/112510

0.00e+00
(0.00e+00) =
100/51876

0.00e+00
(0.00e+00)
100/36926

f12 4.25e−13
(1.57e−12) −
100/110050

0.00e+00
(0.00e+00) =
100/76642

4.95e−10
(5.78e−10) −
100/119730

0.00e+00
(0.00e+00) =
100/55650

0.00e+00
(0.00e+00)
100/39794

f13 3.08e−04
(1.54e−03) −
96/96783

4.51e−08
(2.25e−07) =
96/61688

2.48e−12
(6.35e−12) −
100/95790

0.00e+00
(0.00e+00) =
100/53762

0.00e+00
(0.00e+00)
100/38790

f14 4.51e−12
(1.59e−12) −
100/84338

2.18e−13
(6.03e−13) +
100/65670

3.88e−10
(1.46e−09) −
100/112170

2.76e−12
(1.50e−12) −
100/53292

3.64e−12
(0.00e+00)
100/40506
(continued)
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To clearly show the advantages of HGABC, the convergence curves of the mean on
some representative functions are plotted in Fig. 3. It can be seen from Fig. 3 that
HGABC converges faster than ABC, GABC, qABC and MEABC on both unimodal
functions and multimodal functions. In conclusion, the experimental results demon-
strate that our modifications of employed bee phase and onlooker bee phase can ontain
a better balance between exploration and exploitation, and effectively improve the
performance of ABC.

Table 2. (continued)

Alg ABC
mean(std)
AVEN(SR)

GABC
mean(std)
AVEN(SR)

qABC
mean(std)
AVEN(SR)

MEABC
mean(std)
AVEN(SR)

HGABC
mean(std)
AVEN(SR)

f15 3.83e−09
(2.27e−09) −
96/144000

1.49e−14
(2.92e−15) −
100/89178

1.61e−06
(8.36e−07) −

0/NAN

6.79e−15
(1.97e−15) −
100/76954

3.84e−15
(9.84e−16)
100/55678

f16 1.29e−18
(1.76e−18) −
100/79398

1.57e−32
(5.59e−48) =
100/45786

4.12e−15
(7.77e−15) −
100/63282

1.57e−32
(5.59e−48) =
100/40080

1.57e−32
(5.59e−48)
100/28266

f17 8.19e−18
(1.71e−17) −
100/84730

4.06e−33
(2.30e−33) −
100/49750

1.83e−15
(1.51e−15) −
100/75322

1.50e−33
(0.00e+00) =
100/44876

1.50e−33
(0.00e+00)
100/30854

f18 3.15e−06
(1.85e−06) −

0/NAN

3.88e−07
(6.54e−07) −
16/129980

1.43e−05
(3.92e−05) −

0/NAN

1.78e−17
(6.15e−17) −
100/68064

7.80e−31
(1.20e−30)
100/49198

f19 8.23e−14
(1.25e−13) −
100/91734

1.39e−31
(1.41e−32) =
100/50934

9.29e−10
(9.59e−10) −
100/123530

1.35e−31
(2.23e−47) =
100/42450

1.35e−31
(2.23e−47)
100/32006

f20 3.06e−02
(3.75e−02) −

0/NAN

3.60e−02
(4.19e−02) −

0/NAN

8.71e−03
(8.44e−03) −

0/NAN

0.00e+00
(0.00e+00) =
100/89724

0.00e+00
(0.00e+00)
100/68534

f21 −7.83e+01
(4.10e−15) =
100/26934

−7.83e+01
(5.02e−15) =
100/15986

−7.83e+01
(7.11e−15) =
100/6838

−7.83e+01
(5.80e−15) =
100/12760

−7.83e+01
(2.90e−15)
100/7666

f22 −2.999e+01
(8.26e−04) −
100/25362

−2.999e+01
(1.01e−03) −
100/21778

−3.00e+01
(1.12e−05) =
100/2310

−3.00e+01
(2.19e−07) =
100/17126

−3.00e+01
(3.29e−06)
100/9530

+/
=/−

0/4/18 1/9/12 0/4/18 1/12/9
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5 Conclusion

This paper presents a new ABC algorithm, called HGABC. In HGABC, in order to
differentiate the employed bees, the employed bees are divided into three groups
according to the quality of their food source positions. The employed bees belonging to
different groups employ different search strategies and are responsible for different
search abilities. Moreover, to speed up convergence and pay more attention to the most
promising area, the onlooker bees using three search strategies in a random manner
only exploit in the most promising area. The comparison results on 22 benchmark
functions show that HGABC can significantly improve the performance of ABC and
outperform other ABC methods in terms of solution accuracy, convergence speed and
robustness. In future, we can apply HGABC to handle real world engineering
problems.
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Fig. 3. Convergence curve of all ABCs on some representative functions
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